// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "test.h" // This test shows how to apply forces and torques to a body. // It also shows how to use the friction joint that can be useful // for overhead games. class ApplyForce : public Test { public: ApplyForce() { m_world->SetGravity(b2Vec2(0.0f, 0.0f)); const float k_restitution = 0.4f; b2Body* ground; { b2BodyDef bd; bd.position.Set(0.0f, 20.0f); ground = m_world->CreateBody(&bd); b2EdgeShape shape; b2FixtureDef sd; sd.shape = &shape; sd.density = 0.0f; sd.restitution = k_restitution; // Left vertical shape.SetTwoSided(b2Vec2(-20.0f, -20.0f), b2Vec2(-20.0f, 20.0f)); ground->CreateFixture(&sd); // Right vertical shape.SetTwoSided(b2Vec2(20.0f, -20.0f), b2Vec2(20.0f, 20.0f)); ground->CreateFixture(&sd); // Top horizontal shape.SetTwoSided(b2Vec2(-20.0f, 20.0f), b2Vec2(20.0f, 20.0f)); ground->CreateFixture(&sd); // Bottom horizontal shape.SetTwoSided(b2Vec2(-20.0f, -20.0f), b2Vec2(20.0f, -20.0f)); ground->CreateFixture(&sd); } { b2Transform xf1; xf1.q.Set(0.3524f * b2_pi); xf1.p = xf1.q.GetXAxis(); b2Vec2 vertices[3]; vertices[0] = b2Mul(xf1, b2Vec2(-1.0f, 0.0f)); vertices[1] = b2Mul(xf1, b2Vec2(1.0f, 0.0f)); vertices[2] = b2Mul(xf1, b2Vec2(0.0f, 0.5f)); b2PolygonShape poly1; poly1.Set(vertices, 3); b2FixtureDef sd1; sd1.shape = &poly1; sd1.density = 2.0f; b2Transform xf2; xf2.q.Set(-0.3524f * b2_pi); xf2.p = -xf2.q.GetXAxis(); vertices[0] = b2Mul(xf2, b2Vec2(-1.0f, 0.0f)); vertices[1] = b2Mul(xf2, b2Vec2(1.0f, 0.0f)); vertices[2] = b2Mul(xf2, b2Vec2(0.0f, 0.5f)); b2PolygonShape poly2; poly2.Set(vertices, 3); b2FixtureDef sd2; sd2.shape = &poly2; sd2.density = 2.0f; b2BodyDef bd; bd.type = b2_dynamicBody; bd.position.Set(0.0f, 3.0); bd.angle = b2_pi; bd.allowSleep = false; m_body = m_world->CreateBody(&bd); m_body->CreateFixture(&sd1); m_body->CreateFixture(&sd2); float gravity = 10.0f; float I = m_body->GetInertia(); float mass = m_body->GetMass(); // Compute an effective radius that can be used to // set the max torque for a friction joint // For a circle: I = 0.5 * m * r * r ==> r = sqrt(2 * I / m) float radius = b2Sqrt(2.0f * I / mass); b2FrictionJointDef jd; jd.bodyA = ground; jd.bodyB = m_body; jd.localAnchorA.SetZero(); jd.localAnchorB = m_body->GetLocalCenter(); jd.collideConnected = true; jd.maxForce = 0.5f * mass * gravity; jd.maxTorque = 0.2f * mass * radius * gravity; m_world->CreateJoint(&jd); } { b2PolygonShape shape; shape.SetAsBox(0.5f, 0.5f); b2FixtureDef fd; fd.shape = &shape; fd.density = 1.0f; fd.friction = 0.3f; for (int i = 0; i < 10; ++i) { b2BodyDef bd; bd.type = b2_dynamicBody; bd.position.Set(0.0f, 7.0f + 1.54f * i); b2Body* body = m_world->CreateBody(&bd); body->CreateFixture(&fd); float gravity = 10.0f; float I = body->GetInertia(); float mass = body->GetMass(); // For a circle: I = 0.5 * m * r * r ==> r = sqrt(2 * I / m) float radius = b2Sqrt(2.0f * I / mass); b2FrictionJointDef jd; jd.localAnchorA.SetZero(); jd.localAnchorB.SetZero(); jd.bodyA = ground; jd.bodyB = body; jd.collideConnected = true; jd.maxForce = mass * gravity; jd.maxTorque = 0.1f * mass * radius * gravity; m_world->CreateJoint(&jd); } } } void Step(Settings& settings) override { g_debugDraw.DrawString(5, m_textLine, "Forward (W), Turn (A) and (D)"); m_textLine += m_textIncrement; if (glfwGetKey(g_mainWindow, GLFW_KEY_W) == GLFW_PRESS) { b2Vec2 f = m_body->GetWorldVector(b2Vec2(0.0f, -50.0f)); b2Vec2 p = m_body->GetWorldPoint(b2Vec2(0.0f, 3.0f)); m_body->ApplyForce(f, p, true); } if (glfwGetKey(g_mainWindow, GLFW_KEY_A) == GLFW_PRESS) { m_body->ApplyTorque(10.0f, true); } if (glfwGetKey(g_mainWindow, GLFW_KEY_D) == GLFW_PRESS) { m_body->ApplyTorque(-10.0f, true); } Test::Step(settings); } static Test* Create() { return new ApplyForce; } b2Body* m_body; }; static int testIndex = RegisterTest("Forces", "Apply Force", ApplyForce::Create);