// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "settings.h" #include "test.h" #include "imgui/imgui.h" enum { e_maxBodies = 256 }; // This test demonstrates how to use the world ray-cast feature. // NOTE: we are intentionally filtering one of the polygons, therefore // the ray will always miss one type of polygon. // This callback finds the closest hit. Polygon 0 is filtered. class RayCastClosestCallback : public b2RayCastCallback { public: RayCastClosestCallback() { m_hit = false; } float ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float fraction) override { uintptr_t index = fixture->GetUserData().pointer; if (index == 1) { // By returning -1, we instruct the calling code to ignore this fixture and // continue the ray-cast to the next fixture. return -1.0f; } m_hit = true; m_point = point; m_normal = normal; // By returning the current fraction, we instruct the calling code to clip the ray and // continue the ray-cast to the next fixture. WARNING: do not assume that fixtures // are reported in order. However, by clipping, we can always get the closest fixture. return fraction; } bool m_hit; b2Vec2 m_point; b2Vec2 m_normal; }; // This callback finds any hit. Polygon 0 is filtered. For this type of query we are usually // just checking for obstruction, so the actual fixture and hit point are irrelevant. class RayCastAnyCallback : public b2RayCastCallback { public: RayCastAnyCallback() { m_hit = false; } float ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float) override { uintptr_t index = fixture->GetUserData().pointer; if (index == 1) { // By returning -1, we instruct the calling code to ignore this fixture and // continue the ray-cast to the next fixture. return -1.0f; } m_hit = true; m_point = point; m_normal = normal; // At this point we have a hit, so we know the ray is obstructed. // By returning 0, we instruct the calling code to terminate the ray-cast. return 0.0f; } bool m_hit; b2Vec2 m_point; b2Vec2 m_normal; }; // This ray cast collects multiple hits along the ray. Polygon 0 is filtered. // The fixtures are not necessary reported in order, so we might not capture // the closest fixture. class RayCastMultipleCallback : public b2RayCastCallback { public: enum { e_maxCount = 3 }; RayCastMultipleCallback() { m_count = 0; } float ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float) override { uintptr_t index = fixture->GetUserData().pointer; if (index == 1) { // By returning -1, we instruct the calling code to ignore this fixture and // continue the ray-cast to the next fixture. return -1.0f; } b2Assert(m_count < e_maxCount); m_points[m_count] = point; m_normals[m_count] = normal; ++m_count; if (m_count == e_maxCount) { // At this point the buffer is full. // By returning 0, we instruct the calling code to terminate the ray-cast. return 0.0f; } // By returning 1, we instruct the caller to continue without clipping the ray. return 1.0f; } b2Vec2 m_points[e_maxCount]; b2Vec2 m_normals[e_maxCount]; int32 m_count; }; class RayCast : public Test { public: enum Mode { e_any = 0, e_closest = 1, e_multiple = 2 }; RayCast() { // Ground body { b2BodyDef bd; b2Body* ground = m_world->CreateBody(&bd); b2EdgeShape shape; shape.SetTwoSided(b2Vec2(-40.0f, 0.0f), b2Vec2(40.0f, 0.0f)); ground->CreateFixture(&shape, 0.0f); } { b2Vec2 vertices[3]; vertices[0].Set(-0.5f, 0.0f); vertices[1].Set(0.5f, 0.0f); vertices[2].Set(0.0f, 1.5f); m_polygons[0].Set(vertices, 3); } { b2Vec2 vertices[3]; vertices[0].Set(-0.1f, 0.0f); vertices[1].Set(0.1f, 0.0f); vertices[2].Set(0.0f, 1.5f); m_polygons[1].Set(vertices, 3); } { float w = 1.0f; float b = w / (2.0f + b2Sqrt(2.0f)); float s = b2Sqrt(2.0f) * b; b2Vec2 vertices[8]; vertices[0].Set(0.5f * s, 0.0f); vertices[1].Set(0.5f * w, b); vertices[2].Set(0.5f * w, b + s); vertices[3].Set(0.5f * s, w); vertices[4].Set(-0.5f * s, w); vertices[5].Set(-0.5f * w, b + s); vertices[6].Set(-0.5f * w, b); vertices[7].Set(-0.5f * s, 0.0f); m_polygons[2].Set(vertices, 8); } { m_polygons[3].SetAsBox(0.5f, 0.5f); } { m_circle.m_radius = 0.5f; } { m_edge.SetTwoSided(b2Vec2(-1.0f, 0.0f), b2Vec2(1.0f, 0.0f)); } m_bodyIndex = 0; memset(m_bodies, 0, sizeof(m_bodies)); m_degrees = 0.0f; m_mode = e_closest; } void Create(int32 index) { if (m_bodies[m_bodyIndex] != NULL) { m_world->DestroyBody(m_bodies[m_bodyIndex]); m_bodies[m_bodyIndex] = NULL; } b2BodyDef bd; float x = RandomFloat(-10.0f, 10.0f); float y = RandomFloat(0.0f, 20.0f); bd.position.Set(x, y); bd.angle = RandomFloat(-b2_pi, b2_pi); if (index == 4) { bd.angularDamping = 0.02f; } m_bodies[m_bodyIndex] = m_world->CreateBody(&bd); if (index < 4) { b2FixtureDef fd; fd.shape = m_polygons + index; fd.friction = 0.3f; fd.userData.pointer = index + 1; m_bodies[m_bodyIndex]->CreateFixture(&fd); } else if (index < 5) { b2FixtureDef fd; fd.shape = &m_circle; fd.friction = 0.3f; fd.userData.pointer = index + 1; m_bodies[m_bodyIndex]->CreateFixture(&fd); } else { b2FixtureDef fd; fd.shape = &m_edge; fd.friction = 0.3f; fd.userData.pointer = index + 1; m_bodies[m_bodyIndex]->CreateFixture(&fd); } m_bodyIndex = (m_bodyIndex + 1) % e_maxBodies; } void DestroyBody() { for (int32 i = 0; i < e_maxBodies; ++i) { if (m_bodies[i] != NULL) { m_world->DestroyBody(m_bodies[i]); m_bodies[i] = NULL; return; } } } void UpdateUI() override { ImGui::SetNextWindowPos(ImVec2(10.0f, 100.0f)); ImGui::SetNextWindowSize(ImVec2(210.0f, 285.0f)); ImGui::Begin("Ray-cast Controls", nullptr, ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoResize); if (ImGui::Button("Shape 1")) { Create(0); } if (ImGui::Button("Shape 2")) { Create(1); } if (ImGui::Button("Shape 3")) { Create(2); } if (ImGui::Button("Shape 4")) { Create(3); } if (ImGui::Button("Shape 5")) { Create(4); } if (ImGui::Button("Shape 6")) { Create(5); } if (ImGui::Button("Destroy Shape")) { DestroyBody(); } ImGui::RadioButton("Any", &m_mode, e_any); ImGui::RadioButton("Closest", &m_mode, e_closest); ImGui::RadioButton("Multiple", &m_mode, e_multiple); ImGui::SliderFloat("Angle", &m_degrees, 0.0f, 360.0f, "%.0f"); ImGui::End(); } void Step(Settings& settings) override { Test::Step(settings); g_debugDraw.DrawString(5, m_textLine, "Shape 1 is intentionally ignored by the ray"); m_textLine += m_textIncrement; switch (m_mode) { case e_closest: g_debugDraw.DrawString(5, m_textLine, "Ray-cast mode: closest - find closest fixture along the ray"); break; case e_any: g_debugDraw.DrawString(5, m_textLine, "Ray-cast mode: any - check for obstruction"); break; case e_multiple: g_debugDraw.DrawString(5, m_textLine, "Ray-cast mode: multiple - gather multiple fixtures"); break; } m_textLine += m_textIncrement; float angle = b2_pi * m_degrees / 180.0f; float L = 11.0f; b2Vec2 point1(0.0f, 10.0f); b2Vec2 d(L * cosf(angle), L * sinf(angle)); b2Vec2 point2 = point1 + d; if (m_mode == e_closest) { RayCastClosestCallback callback; m_world->RayCast(&callback, point1, point2); if (callback.m_hit) { g_debugDraw.DrawPoint(callback.m_point, 5.0f, b2Color(0.4f, 0.9f, 0.4f)); g_debugDraw.DrawSegment(point1, callback.m_point, b2Color(0.8f, 0.8f, 0.8f)); b2Vec2 head = callback.m_point + 0.5f * callback.m_normal; g_debugDraw.DrawSegment(callback.m_point, head, b2Color(0.9f, 0.9f, 0.4f)); } else { g_debugDraw.DrawSegment(point1, point2, b2Color(0.8f, 0.8f, 0.8f)); } } else if (m_mode == e_any) { RayCastAnyCallback callback; m_world->RayCast(&callback, point1, point2); if (callback.m_hit) { g_debugDraw.DrawPoint(callback.m_point, 5.0f, b2Color(0.4f, 0.9f, 0.4f)); g_debugDraw.DrawSegment(point1, callback.m_point, b2Color(0.8f, 0.8f, 0.8f)); b2Vec2 head = callback.m_point + 0.5f * callback.m_normal; g_debugDraw.DrawSegment(callback.m_point, head, b2Color(0.9f, 0.9f, 0.4f)); } else { g_debugDraw.DrawSegment(point1, point2, b2Color(0.8f, 0.8f, 0.8f)); } } else if (m_mode == e_multiple) { RayCastMultipleCallback callback; m_world->RayCast(&callback, point1, point2); g_debugDraw.DrawSegment(point1, point2, b2Color(0.8f, 0.8f, 0.8f)); for (int32 i = 0; i < callback.m_count; ++i) { b2Vec2 p = callback.m_points[i]; b2Vec2 n = callback.m_normals[i]; g_debugDraw.DrawPoint(p, 5.0f, b2Color(0.4f, 0.9f, 0.4f)); g_debugDraw.DrawSegment(point1, p, b2Color(0.8f, 0.8f, 0.8f)); b2Vec2 head = p + 0.5f * n; g_debugDraw.DrawSegment(p, head, b2Color(0.9f, 0.9f, 0.4f)); } } #if 0 // This case was failing. { b2Vec2 vertices[4]; //vertices[0].Set(-22.875f, -3.0f); //vertices[1].Set(22.875f, -3.0f); //vertices[2].Set(22.875f, 3.0f); //vertices[3].Set(-22.875f, 3.0f); b2PolygonShape shape; //shape.Set(vertices, 4); shape.SetAsBox(22.875f, 3.0f); b2RayCastInput input; input.p1.Set(10.2725f,1.71372f); input.p2.Set(10.2353f,2.21807f); //input.maxFraction = 0.567623f; input.maxFraction = 0.56762173f; b2Transform xf; xf.SetIdentity(); xf.position.Set(23.0f, 5.0f); b2RayCastOutput output; bool hit; hit = shape.RayCast(&output, input, xf); hit = false; b2Color color(1.0f, 1.0f, 1.0f); b2Vec2 vs[4]; for (int32 i = 0; i < 4; ++i) { vs[i] = b2Mul(xf, shape.m_vertices[i]); } g_debugDraw.DrawPolygon(vs, 4, color); g_debugDraw.DrawSegment(input.p1, input.p2, color); } #endif } static Test* Create() { return new RayCast; } int32 m_bodyIndex; b2Body* m_bodies[e_maxBodies]; b2PolygonShape m_polygons[4]; b2CircleShape m_circle; b2EdgeShape m_edge; float m_degrees; int32 m_mode; }; static int testIndex = RegisterTest("Collision", "Ray Cast", RayCast::Create);