/* Copyright (c) 2013-2018 Evan Nemerson * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /*** Configuration ***/ /* This is just where the output from the test goes. It's really just * meant to let you choose stdout or stderr, but if anyone really want * to direct it to a file let me know, it would be fairly easy to * support. */ #if !defined(MUNIT_OUTPUT_FILE) # define MUNIT_OUTPUT_FILE stdout #endif /* This is a bit more useful; it tells µnit how to format the seconds in * timed tests. If your tests run for longer you might want to reduce * it, and if your computer is really fast and your tests are tiny you * can increase it. */ #if !defined(MUNIT_TEST_TIME_FORMAT) # define MUNIT_TEST_TIME_FORMAT "0.8f" #endif /* If you have long test names you might want to consider bumping * this. The result information takes 43 characters. */ #if !defined(MUNIT_TEST_NAME_LEN) # define MUNIT_TEST_NAME_LEN 37 #endif /* If you don't like the timing information, you can disable it by * defining MUNIT_DISABLE_TIMING. */ #if !defined(MUNIT_DISABLE_TIMING) # define MUNIT_ENABLE_TIMING #endif /*** End configuration ***/ #if defined(_POSIX_C_SOURCE) && (_POSIX_C_SOURCE < 200809L) # undef _POSIX_C_SOURCE #endif #if !defined(_POSIX_C_SOURCE) # define _POSIX_C_SOURCE 200809L #endif /* Solaris freaks out if you try to use a POSIX or SUS standard without * the "right" C standard. */ #if defined(_XOPEN_SOURCE) # undef _XOPEN_SOURCE #endif #if defined(__STDC_VERSION__) # if __STDC_VERSION__ >= 201112L # define _XOPEN_SOURCE 700 # elif __STDC_VERSION__ >= 199901L # define _XOPEN_SOURCE 600 # endif #endif /* Because, according to Microsoft, POSIX is deprecated. You've got * to appreciate the chutzpah. */ #if defined(_MSC_VER) && !defined(_CRT_NONSTDC_NO_DEPRECATE) # define _CRT_NONSTDC_NO_DEPRECATE #endif #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) # include #elif defined(_WIN32) /* https://msdn.microsoft.com/en-us/library/tf4dy80a.aspx */ #endif #include #include #include #include #include #include #include #include #if !defined(MUNIT_NO_NL_LANGINFO) && !defined(_WIN32) # define MUNIT_NL_LANGINFO # include # include # include #endif #if !defined(_WIN32) # include # include # include #else # include # include # include # if !defined(STDERR_FILENO) # define STDERR_FILENO _fileno(stderr) # endif #endif #include "munit.h" #define MUNIT_STRINGIFY(x) #x #define MUNIT_XSTRINGIFY(x) MUNIT_STRINGIFY(x) #if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_CC) || \ defined(__IBMCPP__) # define MUNIT_THREAD_LOCAL __thread #elif (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201102L)) || \ defined(_Thread_local) # define MUNIT_THREAD_LOCAL _Thread_local #elif defined(_WIN32) # define MUNIT_THREAD_LOCAL __declspec(thread) #endif /* MSVC 12.0 will emit a warning at /W4 for code like 'do { ... } * while (0)', or 'do { ... } while (1)'. I'm pretty sure nobody * at Microsoft compiles with /W4. */ #if defined(_MSC_VER) && (_MSC_VER <= 1800) # pragma warning(disable : 4127) #endif #if defined(_WIN32) || defined(__EMSCRIPTEN__) # define MUNIT_NO_FORK #endif #if defined(__EMSCRIPTEN__) # define MUNIT_NO_BUFFER #endif /*** Logging ***/ static MunitLogLevel munit_log_level_visible = MUNIT_LOG_INFO; static MunitLogLevel munit_log_level_fatal = MUNIT_LOG_ERROR; #if defined(MUNIT_THREAD_LOCAL) static MUNIT_THREAD_LOCAL munit_bool munit_error_jmp_buf_valid = 0; static MUNIT_THREAD_LOCAL jmp_buf munit_error_jmp_buf; #endif /* At certain warning levels, mingw will trigger warnings about * suggesting the format attribute, which we've explicity *not* set * because it will then choke on our attempts to use the MS-specific * I64 modifier for size_t (which we have to use since MSVC doesn't * support the C99 z modifier). */ #if defined(__MINGW32__) || defined(__MINGW64__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wsuggest-attribute=format" #endif MUNIT_PRINTF(5, 0) static void munit_logf_exv(MunitLogLevel level, FILE *fp, const char *filename, int line, const char *format, va_list ap) { if (level < munit_log_level_visible) return; switch (level) { case MUNIT_LOG_DEBUG: fputs("Debug", fp); break; case MUNIT_LOG_INFO: fputs("Info", fp); break; case MUNIT_LOG_WARNING: fputs("Warning", fp); break; case MUNIT_LOG_ERROR: fputs("Error", fp); break; default: munit_logf_ex(MUNIT_LOG_ERROR, filename, line, "Invalid log level (%d)", level); return; } fputs(": ", fp); if (filename != NULL) fprintf(fp, "%s:%d: ", filename, line); vfprintf(fp, format, ap); fputc('\n', fp); } MUNIT_PRINTF(3, 4) static void munit_logf_internal(MunitLogLevel level, FILE *fp, const char *format, ...) { va_list ap; va_start(ap, format); munit_logf_exv(level, fp, NULL, 0, format, ap); va_end(ap); } static void munit_log_internal(MunitLogLevel level, FILE *fp, const char *message) { munit_logf_internal(level, fp, "%s", message); } void munit_logf_ex(MunitLogLevel level, const char *filename, int line, const char *format, ...) { va_list ap; va_start(ap, format); munit_logf_exv(level, stderr, filename, line, format, ap); va_end(ap); if (level >= munit_log_level_fatal) { #if defined(MUNIT_THREAD_LOCAL) if (munit_error_jmp_buf_valid) longjmp(munit_error_jmp_buf, 1); #endif abort(); } } void munit_errorf_ex(const char *filename, int line, const char *format, ...) { va_list ap; va_start(ap, format); munit_logf_exv(MUNIT_LOG_ERROR, stderr, filename, line, format, ap); va_end(ap); #if defined(MUNIT_THREAD_LOCAL) if (munit_error_jmp_buf_valid) longjmp(munit_error_jmp_buf, 1); #endif abort(); } #if defined(__MINGW32__) || defined(__MINGW64__) # pragma GCC diagnostic pop #endif #if !defined(MUNIT_STRERROR_LEN) # define MUNIT_STRERROR_LEN 80 #endif static void munit_log_errno(MunitLogLevel level, FILE *fp, const char *msg) { #if defined(MUNIT_NO_STRERROR_R) || \ (defined(__MINGW32__) && !defined(MINGW_HAS_SECURE_API)) munit_logf_internal(level, fp, "%s: %s (%d)", msg, strerror(errno), errno); #else char munit_error_str[MUNIT_STRERROR_LEN]; munit_error_str[0] = '\0'; # if !defined(_WIN32) strerror_r(errno, munit_error_str, MUNIT_STRERROR_LEN); # else strerror_s(munit_error_str, MUNIT_STRERROR_LEN, errno); # endif munit_logf_internal(level, fp, "%s: %s (%d)", msg, munit_error_str, errno); #endif } /*** Memory allocation ***/ void *munit_malloc_ex(const char *filename, int line, size_t size) { void *ptr; if (size == 0) return NULL; ptr = calloc(1, size); if (MUNIT_UNLIKELY(ptr == NULL)) { munit_logf_ex(MUNIT_LOG_ERROR, filename, line, "Failed to allocate %" MUNIT_SIZE_MODIFIER "u bytes.", size); } return ptr; } /*** Timer code ***/ #if defined(MUNIT_ENABLE_TIMING) # define psnip_uint64_t munit_uint64_t # define psnip_uint32_t munit_uint32_t /* Code copied from portable-snippets * . If you need to * change something, please do it there so we can keep the code in * sync. */ /* Clocks (v1) * Portable Snippets - https://gitub.com/nemequ/portable-snippets * Created by Evan Nemerson * * To the extent possible under law, the authors have waived all * copyright and related or neighboring rights to this code. For * details, see the Creative Commons Zero 1.0 Universal license at * https://creativecommons.org/publicdomain/zero/1.0/ */ # if !defined(PSNIP_CLOCK_H) # define PSNIP_CLOCK_H # if !defined(psnip_uint64_t) # include "../exact-int/exact-int.h" # endif # if !defined(PSNIP_CLOCK_STATIC_INLINE) # if defined(__GNUC__) # define PSNIP_CLOCK__COMPILER_ATTRIBUTES __attribute__((__unused__)) # else # define PSNIP_CLOCK__COMPILER_ATTRIBUTES # endif # define PSNIP_CLOCK__FUNCTION PSNIP_CLOCK__COMPILER_ATTRIBUTES static # endif enum PsnipClockType { /* This clock provides the current time, in units since 1970-01-01 * 00:00:00 UTC not including leap seconds. In other words, UNIX * time. Keep in mind that this clock doesn't account for leap * seconds, and can go backwards (think NTP adjustments). */ PSNIP_CLOCK_TYPE_WALL = 1, /* The CPU time is a clock which increases only when the current * process is active (i.e., it doesn't increment while blocking on * I/O). */ PSNIP_CLOCK_TYPE_CPU = 2, /* Monotonic time is always running (unlike CPU time), but it only ever moves forward unless you reboot the system. Things like NTP adjustments have no effect on this clock. */ PSNIP_CLOCK_TYPE_MONOTONIC = 3 }; struct PsnipClockTimespec { psnip_uint64_t seconds; psnip_uint64_t nanoseconds; }; /* Methods we support: */ # define PSNIP_CLOCK_METHOD_CLOCK_GETTIME 1 # define PSNIP_CLOCK_METHOD_TIME 2 # define PSNIP_CLOCK_METHOD_GETTIMEOFDAY 3 # define PSNIP_CLOCK_METHOD_QUERYPERFORMANCECOUNTER 4 # define PSNIP_CLOCK_METHOD_MACH_ABSOLUTE_TIME 5 # define PSNIP_CLOCK_METHOD_CLOCK 6 # define PSNIP_CLOCK_METHOD_GETPROCESSTIMES 7 # define PSNIP_CLOCK_METHOD_GETRUSAGE 8 # define PSNIP_CLOCK_METHOD_GETSYSTEMTIMEPRECISEASFILETIME 9 # define PSNIP_CLOCK_METHOD_GETTICKCOUNT64 10 # include # if defined(HEDLEY_UNREACHABLE) # define PSNIP_CLOCK_UNREACHABLE() HEDLEY_UNREACHABLE() # else # define PSNIP_CLOCK_UNREACHABLE() assert(0) # endif /* Choose an implementation */ /* #undef PSNIP_CLOCK_WALL_METHOD */ /* #undef PSNIP_CLOCK_CPU_METHOD */ /* #undef PSNIP_CLOCK_MONOTONIC_METHOD */ /* We want to be able to detect the libc implementation, so we include ( isn't available everywhere). */ # if defined(__unix__) || defined(__unix) || defined(__linux__) # include # include # endif # if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) /* These are known to work without librt. If you know of others * please let us know so we can add them. */ # if (defined(__GLIBC__) && \ (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 17))) || \ (defined(__FreeBSD__)) # define PSNIP_CLOCK_HAVE_CLOCK_GETTIME # elif !defined(PSNIP_CLOCK_NO_LIBRT) # define PSNIP_CLOCK_HAVE_CLOCK_GETTIME # endif # endif # if defined(_WIN32) # if !defined(PSNIP_CLOCK_CPU_METHOD) # define PSNIP_CLOCK_CPU_METHOD PSNIP_CLOCK_METHOD_GETPROCESSTIMES # endif # if !defined(PSNIP_CLOCK_MONOTONIC_METHOD) # define PSNIP_CLOCK_MONOTONIC_METHOD \ PSNIP_CLOCK_METHOD_QUERYPERFORMANCECOUNTER # endif # endif # if defined(__MACH__) && !defined(__gnu_hurd__) # if !defined(PSNIP_CLOCK_MONOTONIC_METHOD) # define PSNIP_CLOCK_MONOTONIC_METHOD \ PSNIP_CLOCK_METHOD_MACH_ABSOLUTE_TIME # endif # endif # if defined(PSNIP_CLOCK_HAVE_CLOCK_GETTIME) # include # if !defined(PSNIP_CLOCK_WALL_METHOD) # if defined(CLOCK_REALTIME_PRECISE) # define PSNIP_CLOCK_WALL_METHOD PSNIP_CLOCK_METHOD_CLOCK_GETTIME # define PSNIP_CLOCK_CLOCK_GETTIME_WALL CLOCK_REALTIME_PRECISE # elif !defined(__sun) # define PSNIP_CLOCK_WALL_METHOD PSNIP_CLOCK_METHOD_CLOCK_GETTIME # define PSNIP_CLOCK_CLOCK_GETTIME_WALL CLOCK_REALTIME # endif # endif # if !defined(PSNIP_CLOCK_CPU_METHOD) # if defined(_POSIX_CPUTIME) || defined(CLOCK_PROCESS_CPUTIME_ID) # define PSNIP_CLOCK_CPU_METHOD PSNIP_CLOCK_METHOD_CLOCK_GETTIME # define PSNIP_CLOCK_CLOCK_GETTIME_CPU CLOCK_PROCESS_CPUTIME_ID # elif defined(CLOCK_VIRTUAL) # define PSNIP_CLOCK_CPU_METHOD PSNIP_CLOCK_METHOD_CLOCK_GETTIME # define PSNIP_CLOCK_CLOCK_GETTIME_CPU CLOCK_VIRTUAL # endif # endif # if !defined(PSNIP_CLOCK_MONOTONIC_METHOD) # if defined(CLOCK_MONOTONIC_RAW) # define PSNIP_CLOCK_MONOTONIC_METHOD PSNIP_CLOCK_METHOD_CLOCK_GETTIME # define PSNIP_CLOCK_CLOCK_GETTIME_MONOTONIC CLOCK_MONOTONIC # elif defined(CLOCK_MONOTONIC_PRECISE) # define PSNIP_CLOCK_MONOTONIC_METHOD PSNIP_CLOCK_METHOD_CLOCK_GETTIME # define PSNIP_CLOCK_CLOCK_GETTIME_MONOTONIC CLOCK_MONOTONIC_PRECISE # elif defined(_POSIX_MONOTONIC_CLOCK) || defined(CLOCK_MONOTONIC) # define PSNIP_CLOCK_MONOTONIC_METHOD PSNIP_CLOCK_METHOD_CLOCK_GETTIME # define PSNIP_CLOCK_CLOCK_GETTIME_MONOTONIC CLOCK_MONOTONIC # endif # endif # endif # if defined(_POSIX_VERSION) && (_POSIX_VERSION >= 200112L) # if !defined(PSNIP_CLOCK_WALL_METHOD) # define PSNIP_CLOCK_WALL_METHOD PSNIP_CLOCK_METHOD_GETTIMEOFDAY # endif # endif # if !defined(PSNIP_CLOCK_WALL_METHOD) # define PSNIP_CLOCK_WALL_METHOD PSNIP_CLOCK_METHOD_TIME # endif # if !defined(PSNIP_CLOCK_CPU_METHOD) # define PSNIP_CLOCK_CPU_METHOD PSNIP_CLOCK_METHOD_CLOCK # endif /* Primarily here for testing. */ # if !defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ defined(PSNIP_CLOCK_REQUIRE_MONOTONIC) # error No monotonic clock found. # endif /* Implementations */ # if (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == \ PSNIP_CLOCK_METHOD_CLOCK_GETTIME)) || \ (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_CLOCK)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_CLOCK)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_CLOCK)) || \ (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_TIME)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_TIME)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_TIME)) # include # endif # if (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_GETTIMEOFDAY)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_GETTIMEOFDAY)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_GETTIMEOFDAY)) # include # endif # if (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_GETPROCESSTIMES)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_GETPROCESSTIMES)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == \ PSNIP_CLOCK_METHOD_GETPROCESSTIMES)) || \ (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_GETTICKCOUNT64)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_GETTICKCOUNT64)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_GETTICKCOUNT64)) # include # endif # if (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_GETRUSAGE)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_GETRUSAGE)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_GETRUSAGE)) # include # include # endif # if (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_MACH_ABSOLUTE_TIME)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == \ PSNIP_CLOCK_METHOD_MACH_ABSOLUTE_TIME)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == \ PSNIP_CLOCK_METHOD_MACH_ABSOLUTE_TIME)) # include # include # include # endif /*** Implementations ***/ # define PSNIP_CLOCK_NSEC_PER_SEC ((psnip_uint32_t)(1000000000ULL)) # if (defined(PSNIP_CLOCK_CPU_METHOD) && \ (PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME)) || \ (defined(PSNIP_CLOCK_WALL_METHOD) && \ (PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME)) || \ (defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ (PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME)) PSNIP_CLOCK__FUNCTION psnip_uint32_t psnip_clock__clock_getres(clockid_t clk_id) { struct timespec res; int r; r = clock_getres(clk_id, &res); if (r != 0) return 0; return (psnip_uint32_t)(PSNIP_CLOCK_NSEC_PER_SEC / (psnip_uint64_t)res.tv_nsec); } PSNIP_CLOCK__FUNCTION int psnip_clock__clock_gettime(clockid_t clk_id, struct PsnipClockTimespec *res) { struct timespec ts; if (clock_gettime(clk_id, &ts) != 0) return -10; res->seconds = (psnip_uint64_t)(ts.tv_sec); res->nanoseconds = (psnip_uint64_t)(ts.tv_nsec); return 0; } # endif PSNIP_CLOCK__FUNCTION psnip_uint32_t psnip_clock_wall_get_precision(void) { # if !defined(PSNIP_CLOCK_WALL_METHOD) return 0; # elif defined(PSNIP_CLOCK_WALL_METHOD) && \ PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME return psnip_clock__clock_getres(PSNIP_CLOCK_CLOCK_GETTIME_WALL); # elif defined(PSNIP_CLOCK_WALL_METHOD) && \ PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_GETTIMEOFDAY return 1000000; # elif defined(PSNIP_CLOCK_WALL_METHOD) && \ PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_TIME return 1; # else return 0; # endif } PSNIP_CLOCK__FUNCTION int psnip_clock_wall_get_time(struct PsnipClockTimespec *res) { # if !defined(PSNIP_CLOCK_WALL_METHOD) (void)res; return -2; # elif defined(PSNIP_CLOCK_WALL_METHOD) && \ PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME return psnip_clock__clock_gettime(PSNIP_CLOCK_CLOCK_GETTIME_WALL, res); # elif defined(PSNIP_CLOCK_WALL_METHOD) && \ PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_TIME res->seconds = time(NULL); res->nanoseconds = 0; # elif defined(PSNIP_CLOCK_WALL_METHOD) && \ PSNIP_CLOCK_WALL_METHOD == PSNIP_CLOCK_METHOD_GETTIMEOFDAY struct timeval tv; if (gettimeofday(&tv, NULL) != 0) return -6; res->seconds = (psnip_uint64_t)tv.tv_sec; res->nanoseconds = (psnip_uint64_t)tv.tv_usec * 1000; # else (void)res; return -2; # endif return 0; } PSNIP_CLOCK__FUNCTION psnip_uint32_t psnip_clock_cpu_get_precision(void) { # if !defined(PSNIP_CLOCK_CPU_METHOD) return 0; # elif defined(PSNIP_CLOCK_CPU_METHOD) && \ PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME return psnip_clock__clock_getres(PSNIP_CLOCK_CLOCK_GETTIME_CPU); # elif defined(PSNIP_CLOCK_CPU_METHOD) && \ PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_CLOCK return CLOCKS_PER_SEC; # elif defined(PSNIP_CLOCK_CPU_METHOD) && \ PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_GETPROCESSTIMES return PSNIP_CLOCK_NSEC_PER_SEC / 100; # else return 0; # endif } PSNIP_CLOCK__FUNCTION int psnip_clock_cpu_get_time(struct PsnipClockTimespec *res) { # if !defined(PSNIP_CLOCK_CPU_METHOD) (void)res; return -2; # elif defined(PSNIP_CLOCK_CPU_METHOD) && \ PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME return psnip_clock__clock_gettime(PSNIP_CLOCK_CLOCK_GETTIME_CPU, res); # elif defined(PSNIP_CLOCK_CPU_METHOD) && \ PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_CLOCK clock_t t = clock(); if (t == ((clock_t)-1)) return -5; res->seconds = t / CLOCKS_PER_SEC; res->nanoseconds = (t % CLOCKS_PER_SEC) * (PSNIP_CLOCK_NSEC_PER_SEC / CLOCKS_PER_SEC); # elif defined(PSNIP_CLOCK_CPU_METHOD) && \ PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_GETPROCESSTIMES FILETIME CreationTime, ExitTime, KernelTime, UserTime; LARGE_INTEGER date, adjust; if (!GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, &KernelTime, &UserTime)) return -7; /* http://www.frenk.com/2009/12/convert-filetime-to-unix-timestamp/ */ date.HighPart = (LONG)UserTime.dwHighDateTime; date.LowPart = UserTime.dwLowDateTime; adjust.QuadPart = 11644473600000 * 10000; date.QuadPart -= adjust.QuadPart; res->seconds = (psnip_uint64_t)(date.QuadPart / 10000000); res->nanoseconds = (psnip_uint64_t)(date.QuadPart % 10000000) * (PSNIP_CLOCK_NSEC_PER_SEC / 100); # elif PSNIP_CLOCK_CPU_METHOD == PSNIP_CLOCK_METHOD_GETRUSAGE struct rusage usage; if (getrusage(RUSAGE_SELF, &usage) != 0) return -8; res->seconds = usage.ru_utime.tv_sec; res->nanoseconds = tv.tv_usec * 1000; # else (void)res; return -2; # endif return 0; } PSNIP_CLOCK__FUNCTION psnip_uint32_t psnip_clock_monotonic_get_precision(void) { # if !defined(PSNIP_CLOCK_MONOTONIC_METHOD) return 0; # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME return psnip_clock__clock_getres(PSNIP_CLOCK_CLOCK_GETTIME_MONOTONIC); # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_MACH_ABSOLUTE_TIME static mach_timebase_info_data_t tbi = { 0, }; if (tbi.denom == 0) mach_timebase_info(&tbi); return (psnip_uint32_t)(tbi.numer / tbi.denom); # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_GETTICKCOUNT64 return 1000; # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == \ PSNIP_CLOCK_METHOD_QUERYPERFORMANCECOUNTER LARGE_INTEGER Frequency; QueryPerformanceFrequency(&Frequency); return (psnip_uint32_t)((Frequency.QuadPart > PSNIP_CLOCK_NSEC_PER_SEC) ? PSNIP_CLOCK_NSEC_PER_SEC : Frequency.QuadPart); # else return 0; # endif } PSNIP_CLOCK__FUNCTION int psnip_clock_monotonic_get_time(struct PsnipClockTimespec *res) { # if !defined(PSNIP_CLOCK_MONOTONIC_METHOD) (void)res; return -2; # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_CLOCK_GETTIME return psnip_clock__clock_gettime(PSNIP_CLOCK_CLOCK_GETTIME_MONOTONIC, res); # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_MACH_ABSOLUTE_TIME psnip_uint64_t nsec = mach_absolute_time(); static mach_timebase_info_data_t tbi = { 0, }; if (tbi.denom == 0) mach_timebase_info(&tbi); nsec *= ((psnip_uint64_t)tbi.numer) / ((psnip_uint64_t)tbi.denom); res->seconds = nsec / PSNIP_CLOCK_NSEC_PER_SEC; res->nanoseconds = nsec % PSNIP_CLOCK_NSEC_PER_SEC; # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == \ PSNIP_CLOCK_METHOD_QUERYPERFORMANCECOUNTER LARGE_INTEGER t, f; if (QueryPerformanceCounter(&t) == 0) return -12; QueryPerformanceFrequency(&f); res->seconds = (psnip_uint64_t)(t.QuadPart / f.QuadPart); res->nanoseconds = (psnip_uint64_t)(t.QuadPart % f.QuadPart); if (f.QuadPart > PSNIP_CLOCK_NSEC_PER_SEC) res->nanoseconds /= (psnip_uint64_t)f.QuadPart / PSNIP_CLOCK_NSEC_PER_SEC; else res->nanoseconds *= PSNIP_CLOCK_NSEC_PER_SEC / (psnip_uint64_t)f.QuadPart; # elif defined(PSNIP_CLOCK_MONOTONIC_METHOD) && \ PSNIP_CLOCK_MONOTONIC_METHOD == PSNIP_CLOCK_METHOD_GETTICKCOUNT64 const ULONGLONG msec = GetTickCount64(); res->seconds = msec / 1000; res->nanoseconds = sec % 1000; # else return -2; # endif return 0; } /* Returns the number of ticks per second for the specified clock. * For example, a clock with millisecond precision would return 1000, * and a clock with 1 second (such as the time() function) would * return 1. * * If the requested clock isn't available, it will return 0. * Hopefully this will be rare, but if it happens to you please let us * know so we can work on finding a way to support your system. * * Note that different clocks on the same system often have a * different precisions. */ PSNIP_CLOCK__FUNCTION psnip_uint32_t psnip_clock_get_precision(enum PsnipClockType clock_type) { switch (clock_type) { case PSNIP_CLOCK_TYPE_MONOTONIC: return psnip_clock_monotonic_get_precision(); case PSNIP_CLOCK_TYPE_CPU: return psnip_clock_cpu_get_precision(); case PSNIP_CLOCK_TYPE_WALL: return psnip_clock_wall_get_precision(); } PSNIP_CLOCK_UNREACHABLE(); return 0; } /* Set the provided timespec to the requested time. Returns 0 on * success, or a negative value on failure. */ PSNIP_CLOCK__FUNCTION int psnip_clock_get_time(enum PsnipClockType clock_type, struct PsnipClockTimespec *res) { assert(res != NULL); switch (clock_type) { case PSNIP_CLOCK_TYPE_MONOTONIC: return psnip_clock_monotonic_get_time(res); case PSNIP_CLOCK_TYPE_CPU: return psnip_clock_cpu_get_time(res); case PSNIP_CLOCK_TYPE_WALL: return psnip_clock_wall_get_time(res); } return -1; } # endif /* !defined(PSNIP_CLOCK_H) */ static psnip_uint64_t munit_clock_get_elapsed(struct PsnipClockTimespec *start, struct PsnipClockTimespec *end) { psnip_uint64_t r = (end->seconds - start->seconds) * PSNIP_CLOCK_NSEC_PER_SEC; if (end->nanoseconds < start->nanoseconds) { return r - (start->nanoseconds - end->nanoseconds); } return r + (end->nanoseconds - start->nanoseconds); } #else # include #endif /* defined(MUNIT_ENABLE_TIMING) */ /*** PRNG stuff ***/ /* This is (unless I screwed up, which is entirely possible) the * version of PCG with 32-bit state. It was chosen because it has a * small enough state that we should reliably be able to use CAS * instead of requiring a lock for thread-safety. * * If I did screw up, I probably will not bother changing it unless * there is a significant bias. It's really not important this be * particularly strong, as long as it is fairly random it's much more * important that it be reproducible, so bug reports have a better * chance of being reproducible. */ #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ !defined(__STDC_NO_ATOMICS__) && !defined(__EMSCRIPTEN__) && \ (!defined(__GNUC_MINOR__) || (__GNUC__ > 4) || \ (__GNUC__ == 4 && __GNUC_MINOR__ > 8)) # define HAVE_STDATOMIC #elif defined(__clang__) # if __has_extension(c_atomic) # define HAVE_CLANG_ATOMICS # endif #endif /* Workaround for http://llvm.org/bugs/show_bug.cgi?id=26911 */ #if defined(__clang__) && defined(_WIN32) # undef HAVE_STDATOMIC # if defined(__c2__) # undef HAVE_CLANG_ATOMICS # endif #endif #if defined(_OPENMP) # define ATOMIC_UINT32_T uint32_t # define ATOMIC_UINT32_INIT(x) (x) #elif defined(HAVE_STDATOMIC) # include # define ATOMIC_UINT32_T _Atomic uint32_t # define ATOMIC_UINT32_INIT(x) ATOMIC_VAR_INIT(x) #elif defined(HAVE_CLANG_ATOMICS) # define ATOMIC_UINT32_T _Atomic uint32_t # define ATOMIC_UINT32_INIT(x) (x) #elif defined(_WIN32) # define ATOMIC_UINT32_T volatile LONG # define ATOMIC_UINT32_INIT(x) (x) #else # define ATOMIC_UINT32_T volatile uint32_t # define ATOMIC_UINT32_INIT(x) (x) #endif static ATOMIC_UINT32_T munit_rand_state = ATOMIC_UINT32_INIT(42); #if defined(_OPENMP) static inline void munit_atomic_store(ATOMIC_UINT32_T *dest, ATOMIC_UINT32_T value) { # pragma omp critical(munit_atomics) *dest = value; } static inline uint32_t munit_atomic_load(ATOMIC_UINT32_T *src) { int ret; # pragma omp critical(munit_atomics) ret = *src; return ret; } static inline uint32_t munit_atomic_cas(ATOMIC_UINT32_T *dest, ATOMIC_UINT32_T *expected, ATOMIC_UINT32_T desired) { munit_bool ret; # pragma omp critical(munit_atomics) { if (*dest == *expected) { *dest = desired; ret = 1; } else { ret = 0; } } return ret; } #elif defined(HAVE_STDATOMIC) # define munit_atomic_store(dest, value) atomic_store(dest, value) # define munit_atomic_load(src) atomic_load(src) # define munit_atomic_cas(dest, expected, value) \ atomic_compare_exchange_weak(dest, expected, value) #elif defined(HAVE_CLANG_ATOMICS) # define munit_atomic_store(dest, value) \ __c11_atomic_store(dest, value, __ATOMIC_SEQ_CST) # define munit_atomic_load(src) __c11_atomic_load(src, __ATOMIC_SEQ_CST) # define munit_atomic_cas(dest, expected, value) \ __c11_atomic_compare_exchange_weak(dest, expected, value, \ __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST) #elif defined(__GNUC__) && (__GNUC__ > 4) || \ (__GNUC__ == 4 && __GNUC_MINOR__ >= 7) # define munit_atomic_store(dest, value) \ __atomic_store_n(dest, value, __ATOMIC_SEQ_CST) # define munit_atomic_load(src) __atomic_load_n(src, __ATOMIC_SEQ_CST) # define munit_atomic_cas(dest, expected, value) \ __atomic_compare_exchange_n(dest, expected, value, 1, __ATOMIC_SEQ_CST, \ __ATOMIC_SEQ_CST) #elif defined(__GNUC__) && (__GNUC__ >= 4) # define munit_atomic_store(dest, value) \ do { \ *(dest) = (value); \ } while (0) # define munit_atomic_load(src) (*(src)) # define munit_atomic_cas(dest, expected, value) \ __sync_bool_compare_and_swap(dest, *expected, value) #elif defined(_WIN32) /* Untested */ # define munit_atomic_store(dest, value) \ do { \ *(dest) = (value); \ } while (0) # define munit_atomic_load(src) (*(src)) # define munit_atomic_cas(dest, expected, value) \ InterlockedCompareExchange((dest), (value), *(expected)) #else # warning No atomic implementation, PRNG will not be thread-safe # define munit_atomic_store(dest, value) \ do { \ *(dest) = (value); \ } while (0) # define munit_atomic_load(src) (*(src)) static inline munit_bool munit_atomic_cas(ATOMIC_UINT32_T *dest, ATOMIC_UINT32_T *expected, ATOMIC_UINT32_T desired) { if (*dest == *expected) { *dest = desired; return 1; } else { return 0; } } #endif #define MUNIT_PRNG_MULTIPLIER (747796405U) #define MUNIT_PRNG_INCREMENT (1729U) static munit_uint32_t munit_rand_next_state(munit_uint32_t state) { return state * MUNIT_PRNG_MULTIPLIER + MUNIT_PRNG_INCREMENT; } static munit_uint32_t munit_rand_from_state(munit_uint32_t state) { munit_uint32_t res = ((state >> ((state >> 28) + 4)) ^ state) * (277803737U); res ^= res >> 22; return res; } void munit_rand_seed(munit_uint32_t seed) { munit_uint32_t state = munit_rand_next_state(seed + MUNIT_PRNG_INCREMENT); munit_atomic_store(&munit_rand_state, state); } static munit_uint32_t munit_rand_generate_seed(void) { munit_uint32_t seed, state; #if defined(MUNIT_ENABLE_TIMING) struct PsnipClockTimespec wc = { 0, }; psnip_clock_get_time(PSNIP_CLOCK_TYPE_WALL, &wc); seed = (munit_uint32_t)wc.nanoseconds; #else seed = (munit_uint32_t)time(NULL); #endif state = munit_rand_next_state(seed + MUNIT_PRNG_INCREMENT); return munit_rand_from_state(state); } static munit_uint32_t munit_rand_state_uint32(munit_uint32_t *state) { const munit_uint32_t old = *state; *state = munit_rand_next_state(old); return munit_rand_from_state(old); } munit_uint32_t munit_rand_uint32(void) { munit_uint32_t old, state; do { old = munit_atomic_load(&munit_rand_state); state = munit_rand_next_state(old); } while (!munit_atomic_cas(&munit_rand_state, &old, state)); return munit_rand_from_state(old); } static void munit_rand_state_memory(munit_uint32_t *state, size_t size, munit_uint8_t *data) { size_t members_remaining = size / sizeof(munit_uint32_t); size_t bytes_remaining = size % sizeof(munit_uint32_t); munit_uint8_t *b = data; munit_uint32_t rv; while (members_remaining-- > 0) { rv = munit_rand_state_uint32(state); memcpy(b, &rv, sizeof(munit_uint32_t)); b += sizeof(munit_uint32_t); } if (bytes_remaining != 0) { rv = munit_rand_state_uint32(state); memcpy(b, &rv, bytes_remaining); } } void munit_rand_memory(size_t size, munit_uint8_t *data) { munit_uint32_t old, state; do { state = old = munit_atomic_load(&munit_rand_state); munit_rand_state_memory(&state, size, data); } while (!munit_atomic_cas(&munit_rand_state, &old, state)); } static munit_uint32_t munit_rand_state_at_most(munit_uint32_t *state, munit_uint32_t salt, munit_uint32_t max) { /* We want (UINT32_MAX + 1) % max, which in unsigned arithmetic is the same * as (UINT32_MAX + 1 - max) % max = -max % max. We compute -max using not * to avoid compiler warnings. */ const munit_uint32_t min = (~max + 1U) % max; munit_uint32_t x; if (max == (~((munit_uint32_t)0U))) return munit_rand_state_uint32(state) ^ salt; max++; do { x = munit_rand_state_uint32(state) ^ salt; } while (x < min); return x % max; } static munit_uint32_t munit_rand_at_most(munit_uint32_t salt, munit_uint32_t max) { munit_uint32_t old, state; munit_uint32_t retval; do { state = old = munit_atomic_load(&munit_rand_state); retval = munit_rand_state_at_most(&state, salt, max); } while (!munit_atomic_cas(&munit_rand_state, &old, state)); return retval; } int munit_rand_int_range(int min, int max) { munit_uint64_t range = (munit_uint64_t)max - (munit_uint64_t)min; if (min > max) return munit_rand_int_range(max, min); if (range > (~((munit_uint32_t)0U))) range = (~((munit_uint32_t)0U)); return min + (int)munit_rand_at_most(0, (munit_uint32_t)range); } double munit_rand_double(void) { munit_uint32_t old, state; double retval = 0.0; do { state = old = munit_atomic_load(&munit_rand_state); /* See http://mumble.net/~campbell/tmp/random_real.c for how to do * this right. Patches welcome if you feel that this is too * biased. */ retval = munit_rand_state_uint32(&state) / ((~((munit_uint32_t)0U)) + 1.0); } while (!munit_atomic_cas(&munit_rand_state, &old, state)); return retval; } /*** Test suite handling ***/ typedef struct { unsigned int successful; unsigned int skipped; unsigned int failed; unsigned int errored; #if defined(MUNIT_ENABLE_TIMING) munit_uint64_t cpu_clock; munit_uint64_t wall_clock; #endif } MunitReport; typedef struct { const char *prefix; const MunitSuite *suite; const char **tests; munit_uint32_t seed; unsigned int iterations; MunitParameter *parameters; munit_bool single_parameter_mode; void *user_data; MunitReport report; munit_bool colorize; munit_bool fork; munit_bool show_stderr; munit_bool fatal_failures; } MunitTestRunner; const char *munit_parameters_get(const MunitParameter params[], const char *key) { const MunitParameter *param; for (param = params; param != NULL && param->name != NULL; param++) if (strcmp(param->name, key) == 0) return param->value; return NULL; } #if defined(MUNIT_ENABLE_TIMING) static void munit_print_time(FILE *fp, munit_uint64_t nanoseconds) { fprintf(fp, "%" MUNIT_TEST_TIME_FORMAT, ((double)nanoseconds) / ((double)PSNIP_CLOCK_NSEC_PER_SEC)); } #endif /* Add a paramter to an array of parameters. */ static MunitResult munit_parameters_add(size_t *params_size, MunitParameter **params, char *name, char *value) { *params = realloc(*params, sizeof(MunitParameter) * (*params_size + 2)); if (*params == NULL) return MUNIT_ERROR; (*params)[*params_size].name = name; (*params)[*params_size].value = value; (*params_size)++; (*params)[*params_size].name = NULL; (*params)[*params_size].value = NULL; return MUNIT_OK; } /* Concatenate two strings, but just return one of the components * unaltered if the other is NULL or "". */ static char *munit_maybe_concat(size_t *len, char *prefix, char *suffix) { char *res; size_t res_l; const size_t prefix_l = prefix != NULL ? strlen(prefix) : 0; const size_t suffix_l = suffix != NULL ? strlen(suffix) : 0; if (prefix_l == 0 && suffix_l == 0) { res = NULL; res_l = 0; } else if (prefix_l == 0 && suffix_l != 0) { res = suffix; res_l = suffix_l; } else if (prefix_l != 0 && suffix_l == 0) { res = prefix; res_l = prefix_l; } else { res_l = prefix_l + suffix_l; res = malloc(res_l + 1); memcpy(res, prefix, prefix_l); memcpy(res + prefix_l, suffix, suffix_l); res[res_l] = 0; } if (len != NULL) *len = res_l; return res; } /* Possbily free a string returned by munit_maybe_concat. */ static void munit_maybe_free_concat(char *s, const char *prefix, const char *suffix) { if (prefix != s && suffix != s) free(s); } /* Cheap string hash function, just used to salt the PRNG. */ static munit_uint32_t munit_str_hash(const char *name) { const char *p; munit_uint32_t h = 5381U; for (p = name; *p != '\0'; p++) h = (munit_uint32_t)(h << 5) + h + (munit_uint32_t)*p; return h; } static void munit_splice(int from, int to) { munit_uint8_t buf[1024]; #if !defined(_WIN32) ssize_t len; ssize_t bytes_written; ssize_t write_res; #else int len; int bytes_written; int write_res; #endif do { len = read(from, buf, sizeof(buf)); if (len > 0) { bytes_written = 0; do { write_res = write(to, buf + bytes_written, #if !defined(_WIN32) (size_t) #else (unsigned int) #endif (len - bytes_written)); if (write_res < 0) break; bytes_written += write_res; } while (bytes_written < len); } else break; } while (1); } /* This is the part that should be handled in the child process */ static MunitResult munit_test_runner_exec(MunitTestRunner *runner, const MunitTest *test, const MunitParameter params[], MunitReport *report) { unsigned int iterations = runner->iterations; MunitResult result = MUNIT_FAIL; #if defined(MUNIT_ENABLE_TIMING) struct PsnipClockTimespec wall_clock_begin = { 0, }, wall_clock_end = { 0, }; struct PsnipClockTimespec cpu_clock_begin = { 0, }, cpu_clock_end = { 0, }; #endif unsigned int i = 0; if ((test->options & MUNIT_TEST_OPTION_SINGLE_ITERATION) == MUNIT_TEST_OPTION_SINGLE_ITERATION) iterations = 1; else if (iterations == 0) iterations = runner->suite->iterations; munit_rand_seed(runner->seed); do { void *data = (test->setup == NULL) ? runner->user_data : test->setup(params, runner->user_data); #if defined(MUNIT_ENABLE_TIMING) psnip_clock_get_time(PSNIP_CLOCK_TYPE_WALL, &wall_clock_begin); psnip_clock_get_time(PSNIP_CLOCK_TYPE_CPU, &cpu_clock_begin); #endif result = test->test(params, data); #if defined(MUNIT_ENABLE_TIMING) psnip_clock_get_time(PSNIP_CLOCK_TYPE_WALL, &wall_clock_end); psnip_clock_get_time(PSNIP_CLOCK_TYPE_CPU, &cpu_clock_end); #endif if (test->tear_down != NULL) test->tear_down(data); if (MUNIT_LIKELY(result == MUNIT_OK)) { report->successful++; #if defined(MUNIT_ENABLE_TIMING) report->wall_clock += munit_clock_get_elapsed(&wall_clock_begin, &wall_clock_end); report->cpu_clock += munit_clock_get_elapsed(&cpu_clock_begin, &cpu_clock_end); #endif } else { switch ((int)result) { case MUNIT_SKIP: report->skipped++; break; case MUNIT_FAIL: report->failed++; break; case MUNIT_ERROR: report->errored++; break; default: break; } break; } } while (++i < iterations); return result; } #if defined(MUNIT_EMOTICON) # define MUNIT_RESULT_STRING_OK ":)" # define MUNIT_RESULT_STRING_SKIP ":|" # define MUNIT_RESULT_STRING_FAIL ":(" # define MUNIT_RESULT_STRING_ERROR ":o" # define MUNIT_RESULT_STRING_TODO ":/" #else # define MUNIT_RESULT_STRING_OK "OK " # define MUNIT_RESULT_STRING_SKIP "SKIP " # define MUNIT_RESULT_STRING_FAIL "FAIL " # define MUNIT_RESULT_STRING_ERROR "ERROR" # define MUNIT_RESULT_STRING_TODO "TODO " #endif static void munit_test_runner_print_color(const MunitTestRunner *runner, const char *string, char color) { if (runner->colorize) fprintf(MUNIT_OUTPUT_FILE, "\x1b[3%cm%s\x1b[39m", color, string); else fputs(string, MUNIT_OUTPUT_FILE); } #if !defined(MUNIT_NO_BUFFER) static int munit_replace_stderr(FILE *stderr_buf) { if (stderr_buf != NULL) { const int orig_stderr = dup(STDERR_FILENO); int errfd = fileno(stderr_buf); if (MUNIT_UNLIKELY(errfd == -1)) { exit(EXIT_FAILURE); } dup2(errfd, STDERR_FILENO); return orig_stderr; } return -1; } static void munit_restore_stderr(int orig_stderr) { if (orig_stderr != -1) { dup2(orig_stderr, STDERR_FILENO); close(orig_stderr); } } #endif /* !defined(MUNIT_NO_BUFFER) */ /* Run a test with the specified parameters. */ static void munit_test_runner_run_test_with_params(MunitTestRunner *runner, const MunitTest *test, const MunitParameter params[]) { MunitResult result = MUNIT_OK; MunitReport report = { 0, 0, 0, 0, #if defined(MUNIT_ENABLE_TIMING) 0, 0 #endif }; unsigned int output_l; munit_bool first; const MunitParameter *param; FILE *stderr_buf; #if !defined(MUNIT_NO_FORK) int pipefd[2]; pid_t fork_pid; ssize_t bytes_written = 0; ssize_t write_res; ssize_t bytes_read = 0; ssize_t read_res; int status = 0; pid_t changed_pid; #endif if (params != NULL) { output_l = 2; fputs(" ", MUNIT_OUTPUT_FILE); first = 1; for (param = params; param != NULL && param->name != NULL; param++) { if (!first) { fputs(", ", MUNIT_OUTPUT_FILE); output_l += 2; } else { first = 0; } output_l += (unsigned int)fprintf(MUNIT_OUTPUT_FILE, "%s=%s", param->name, param->value); } while (output_l++ < MUNIT_TEST_NAME_LEN) { fputc(' ', MUNIT_OUTPUT_FILE); } } fflush(MUNIT_OUTPUT_FILE); stderr_buf = NULL; #if !defined(_WIN32) || defined(__MINGW32__) stderr_buf = tmpfile(); #else tmpfile_s(&stderr_buf); #endif if (stderr_buf == NULL) { munit_log_errno(MUNIT_LOG_ERROR, stderr, "unable to create buffer for stderr"); result = MUNIT_ERROR; goto print_result; } #if !defined(MUNIT_NO_FORK) if (runner->fork) { pipefd[0] = -1; pipefd[1] = -1; if (pipe(pipefd) != 0) { munit_log_errno(MUNIT_LOG_ERROR, stderr, "unable to create pipe"); result = MUNIT_ERROR; goto print_result; } fork_pid = fork(); if (fork_pid == 0) { int orig_stderr; close(pipefd[0]); orig_stderr = munit_replace_stderr(stderr_buf); munit_test_runner_exec(runner, test, params, &report); /* Note that we don't restore stderr. This is so we can buffer * things written to stderr later on (such as by * asan/tsan/ubsan, valgrind, etc.) */ close(orig_stderr); do { write_res = write(pipefd[1], ((munit_uint8_t *)(&report)) + bytes_written, sizeof(report) - (size_t)bytes_written); if (write_res < 0) { if (stderr_buf != NULL) { munit_log_errno(MUNIT_LOG_ERROR, stderr, "unable to write to pipe"); } exit(EXIT_FAILURE); } bytes_written += write_res; } while ((size_t)bytes_written < sizeof(report)); if (stderr_buf != NULL) fclose(stderr_buf); close(pipefd[1]); exit(EXIT_SUCCESS); } else if (fork_pid == -1) { close(pipefd[0]); close(pipefd[1]); if (stderr_buf != NULL) { munit_log_errno(MUNIT_LOG_ERROR, stderr, "unable to fork"); } report.errored++; result = MUNIT_ERROR; } else { close(pipefd[1]); do { read_res = read(pipefd[0], ((munit_uint8_t *)(&report)) + bytes_read, sizeof(report) - (size_t)bytes_read); if (read_res < 1) break; bytes_read += read_res; } while (bytes_read < (ssize_t)sizeof(report)); changed_pid = waitpid(fork_pid, &status, 0); if (MUNIT_LIKELY(changed_pid == fork_pid) && MUNIT_LIKELY(WIFEXITED(status))) { if (bytes_read != sizeof(report)) { munit_logf_internal(MUNIT_LOG_ERROR, stderr_buf, "child exited unexpectedly with status %d", WEXITSTATUS(status)); report.errored++; } else if (WEXITSTATUS(status) != EXIT_SUCCESS) { munit_logf_internal(MUNIT_LOG_ERROR, stderr_buf, "child exited with status %d", WEXITSTATUS(status)); report.errored++; } } else { if (WIFSIGNALED(status)) { # if defined(_XOPEN_VERSION) && (_XOPEN_VERSION >= 700) munit_logf_internal(MUNIT_LOG_ERROR, stderr_buf, "child killed by signal %d (%s)", WTERMSIG(status), strsignal(WTERMSIG(status))); # else munit_logf_internal(MUNIT_LOG_ERROR, stderr_buf, "child killed by signal %d", WTERMSIG(status)); # endif } else if (WIFSTOPPED(status)) { munit_logf_internal(MUNIT_LOG_ERROR, stderr_buf, "child stopped by signal %d", WSTOPSIG(status)); } report.errored++; } close(pipefd[0]); waitpid(fork_pid, NULL, 0); } } else #endif { #if !defined(MUNIT_NO_BUFFER) const volatile int orig_stderr = munit_replace_stderr(stderr_buf); #endif #if defined(MUNIT_THREAD_LOCAL) if (MUNIT_UNLIKELY(setjmp(munit_error_jmp_buf) != 0)) { result = MUNIT_FAIL; report.failed++; } else { munit_error_jmp_buf_valid = 1; result = munit_test_runner_exec(runner, test, params, &report); } #else result = munit_test_runner_exec(runner, test, params, &report); #endif #if !defined(MUNIT_NO_BUFFER) munit_restore_stderr(orig_stderr); #endif /* Here just so that the label is used on Windows and we don't get * a warning */ goto print_result; } print_result: fputs("[ ", MUNIT_OUTPUT_FILE); if ((test->options & MUNIT_TEST_OPTION_TODO) == MUNIT_TEST_OPTION_TODO) { if (report.failed != 0 || report.errored != 0 || report.skipped != 0) { munit_test_runner_print_color(runner, MUNIT_RESULT_STRING_TODO, '3'); result = MUNIT_OK; } else { munit_test_runner_print_color(runner, MUNIT_RESULT_STRING_ERROR, '1'); if (MUNIT_LIKELY(stderr_buf != NULL)) munit_log_internal(MUNIT_LOG_ERROR, stderr_buf, "Test marked TODO, but was successful."); runner->report.failed++; result = MUNIT_ERROR; } } else if (report.failed > 0) { munit_test_runner_print_color(runner, MUNIT_RESULT_STRING_FAIL, '1'); runner->report.failed++; result = MUNIT_FAIL; } else if (report.errored > 0) { munit_test_runner_print_color(runner, MUNIT_RESULT_STRING_ERROR, '1'); runner->report.errored++; result = MUNIT_ERROR; } else if (report.skipped > 0) { munit_test_runner_print_color(runner, MUNIT_RESULT_STRING_SKIP, '3'); runner->report.skipped++; result = MUNIT_SKIP; } else if (report.successful > 1) { munit_test_runner_print_color(runner, MUNIT_RESULT_STRING_OK, '2'); #if defined(MUNIT_ENABLE_TIMING) fputs(" ] [ ", MUNIT_OUTPUT_FILE); munit_print_time(MUNIT_OUTPUT_FILE, report.wall_clock / report.successful); fputs(" / ", MUNIT_OUTPUT_FILE); munit_print_time(MUNIT_OUTPUT_FILE, report.cpu_clock / report.successful); fprintf(MUNIT_OUTPUT_FILE, " CPU ]\n %-" MUNIT_XSTRINGIFY(MUNIT_TEST_NAME_LEN) "s Total: [ ", ""); munit_print_time(MUNIT_OUTPUT_FILE, report.wall_clock); fputs(" / ", MUNIT_OUTPUT_FILE); munit_print_time(MUNIT_OUTPUT_FILE, report.cpu_clock); fputs(" CPU", MUNIT_OUTPUT_FILE); #endif runner->report.successful++; result = MUNIT_OK; } else if (report.successful > 0) { munit_test_runner_print_color(runner, MUNIT_RESULT_STRING_OK, '2'); #if defined(MUNIT_ENABLE_TIMING) fputs(" ] [ ", MUNIT_OUTPUT_FILE); munit_print_time(MUNIT_OUTPUT_FILE, report.wall_clock); fputs(" / ", MUNIT_OUTPUT_FILE); munit_print_time(MUNIT_OUTPUT_FILE, report.cpu_clock); fputs(" CPU", MUNIT_OUTPUT_FILE); #endif runner->report.successful++; result = MUNIT_OK; } fputs(" ]\n", MUNIT_OUTPUT_FILE); if (stderr_buf != NULL) { if (result == MUNIT_FAIL || result == MUNIT_ERROR || runner->show_stderr) { fflush(MUNIT_OUTPUT_FILE); rewind(stderr_buf); munit_splice(fileno(stderr_buf), STDERR_FILENO); fflush(stderr); } fclose(stderr_buf); } } static void munit_test_runner_run_test_wild(MunitTestRunner *runner, const MunitTest *test, const char *test_name, MunitParameter *params, MunitParameter *p) { const MunitParameterEnum *pe; char **values; MunitParameter *next; for (pe = test->parameters; pe != NULL && pe->name != NULL; pe++) { if (p->name == pe->name) break; } if (pe == NULL) return; for (values = pe->values; *values != NULL; values++) { next = p + 1; p->value = *values; if (next->name == NULL) { munit_test_runner_run_test_with_params(runner, test, params); } else { munit_test_runner_run_test_wild(runner, test, test_name, params, next); } if (runner->fatal_failures && (runner->report.failed != 0 || runner->report.errored != 0)) break; } } /* Run a single test, with every combination of parameters * requested. */ static void munit_test_runner_run_test(MunitTestRunner *runner, const MunitTest *test, const char *prefix) { char *test_name = munit_maybe_concat(NULL, (char *)prefix, (char *)test->name); /* The array of parameters to pass to * munit_test_runner_run_test_with_params */ MunitParameter *params = NULL; size_t params_l = 0; /* Wildcard parameters are parameters which have possible values * specified in the test, but no specific value was passed to the * CLI. That means we want to run the test once for every * possible combination of parameter values or, if --single was * passed to the CLI, a single time with a random set of * parameters. */ MunitParameter *wild_params = NULL; size_t wild_params_l = 0; const MunitParameterEnum *pe; const MunitParameter *cli_p; munit_bool filled; unsigned int possible; char **vals; size_t first_wild; const MunitParameter *wp; int pidx; munit_rand_seed(runner->seed); fprintf(MUNIT_OUTPUT_FILE, "%-" MUNIT_XSTRINGIFY(MUNIT_TEST_NAME_LEN) "s", test_name); if (test->parameters == NULL) { /* No parameters. Simple, nice. */ munit_test_runner_run_test_with_params(runner, test, NULL); } else { fputc('\n', MUNIT_OUTPUT_FILE); for (pe = test->parameters; pe != NULL && pe->name != NULL; pe++) { /* Did we received a value for this parameter from the CLI? */ filled = 0; for (cli_p = runner->parameters; cli_p != NULL && cli_p->name != NULL; cli_p++) { if (strcmp(cli_p->name, pe->name) == 0) { if (MUNIT_UNLIKELY(munit_parameters_add(¶ms_l, ¶ms, pe->name, cli_p->value) != MUNIT_OK)) goto cleanup; filled = 1; break; } } if (filled) continue; /* Nothing from CLI, is the enum NULL/empty? We're not a * fuzzer… */ if (pe->values == NULL || pe->values[0] == NULL) continue; /* If --single was passed to the CLI, choose a value from the * list of possibilities randomly. */ if (runner->single_parameter_mode) { possible = 0; for (vals = pe->values; *vals != NULL; vals++) possible++; /* We want the tests to be reproducible, even if you're only * running a single test, but we don't want every test with * the same number of parameters to choose the same parameter * number, so use the test name as a primitive salt. */ pidx = (int)munit_rand_at_most(munit_str_hash(test_name), possible - 1); if (MUNIT_UNLIKELY(munit_parameters_add(¶ms_l, ¶ms, pe->name, pe->values[pidx]) != MUNIT_OK)) goto cleanup; } else { /* We want to try every permutation. Put in a placeholder * entry, we'll iterate through them later. */ if (MUNIT_UNLIKELY(munit_parameters_add(&wild_params_l, &wild_params, pe->name, NULL) != MUNIT_OK)) goto cleanup; } } if (wild_params_l != 0) { first_wild = params_l; for (wp = wild_params; wp != NULL && wp->name != NULL; wp++) { for (pe = test->parameters; pe != NULL && pe->name != NULL && pe->values != NULL; pe++) { if (strcmp(wp->name, pe->name) == 0) { if (MUNIT_UNLIKELY(munit_parameters_add(¶ms_l, ¶ms, pe->name, pe->values[0]) != MUNIT_OK)) goto cleanup; } } } munit_test_runner_run_test_wild(runner, test, test_name, params, params + first_wild); } else { munit_test_runner_run_test_with_params(runner, test, params); } cleanup: free(params); free(wild_params); } munit_maybe_free_concat(test_name, prefix, test->name); } /* Recurse through the suite and run all the tests. If a list of * tests to run was provied on the command line, run only those * tests. */ static void munit_test_runner_run_suite(MunitTestRunner *runner, const MunitSuite *suite, const char *prefix) { size_t pre_l; char *pre = munit_maybe_concat(&pre_l, (char *)prefix, (char *)suite->prefix); const MunitTest *test; const char **test_name; const MunitSuite *child_suite; /* Run the tests. */ for (test = suite->tests; test != NULL && test->test != NULL; test++) { if (runner->tests != NULL) { /* Specific tests were requested on the CLI */ for (test_name = runner->tests; test_name != NULL && *test_name != NULL; test_name++) { if ((pre_l == 0 || strncmp(pre, *test_name, pre_l) == 0) && strncmp(test->name, *test_name + pre_l, strlen(*test_name + pre_l)) == 0) { munit_test_runner_run_test(runner, test, pre); if (runner->fatal_failures && (runner->report.failed != 0 || runner->report.errored != 0)) goto cleanup; } } } else { /* Run all tests */ munit_test_runner_run_test(runner, test, pre); } } if (runner->fatal_failures && (runner->report.failed != 0 || runner->report.errored != 0)) goto cleanup; /* Run any child suites. */ for (child_suite = suite->suites; child_suite != NULL && child_suite->prefix != NULL; child_suite++) { munit_test_runner_run_suite(runner, child_suite, pre); } cleanup: munit_maybe_free_concat(pre, prefix, suite->prefix); } static void munit_test_runner_run(MunitTestRunner *runner) { munit_test_runner_run_suite(runner, runner->suite, NULL); } static void munit_print_help(int argc, char *const *argv, void *user_data, const MunitArgument arguments[]) { const MunitArgument *arg; (void)argc; printf("USAGE: %s [OPTIONS...] [TEST...]\n\n", argv[0]); puts( " --seed SEED\n" " Value used to seed the PRNG. Must be a 32-bit integer in " "decimal\n" " notation with no separators (commas, decimals, spaces, " "etc.), or\n" " hexidecimal prefixed by \"0x\".\n" " --iterations N\n" " Run each test N times. 0 means the default number.\n" " --param name value\n" " A parameter key/value pair which will be passed to any test " "with\n" " takes a parameter of that name. If not provided, the test " "will be\n" " run once for each possible parameter value.\n" " --list Write a list of all available tests.\n" " --list-params\n" " Write a list of all available tests and their possible " "parameters.\n" " --single Run each parameterized test in a single configuration " "instead of\n" " every possible combination\n" " --log-visible debug|info|warning|error\n" " --log-fatal debug|info|warning|error\n" " Set the level at which messages of different severities are " "visible,\n" " or cause the test to terminate.\n" #if !defined(MUNIT_NO_FORK) " --no-fork Do not execute tests in a child process. If this option is " "supplied\n" " and a test crashes (including by failing an assertion), no " "further\n" " tests will be performed.\n" #endif " --fatal-failures\n" " Stop executing tests as soon as a failure is found.\n" " --show-stderr\n" " Show data written to stderr by the tests, even if the test " "succeeds.\n" " --color auto|always|never\n" " Colorize (or don't) the output.\n" /* 12345678901234567890123456789012345678901234567890123456789012345678901234567890 */ " --help Print this help message and exit.\n"); #if defined(MUNIT_NL_LANGINFO) setlocale(LC_ALL, ""); fputs((strcasecmp("UTF-8", nl_langinfo(CODESET)) == 0) ? "µnit" : "munit", stdout); #else puts("munit"); #endif printf(" %d.%d.%d\n" "Full documentation at: https://nemequ.github.io/munit/\n", (MUNIT_CURRENT_VERSION >> 16) & 0xff, (MUNIT_CURRENT_VERSION >> 8) & 0xff, (MUNIT_CURRENT_VERSION >> 0) & 0xff); for (arg = arguments; arg != NULL && arg->name != NULL; arg++) arg->write_help(arg, user_data); } static const MunitArgument * munit_arguments_find(const MunitArgument arguments[], const char *name) { const MunitArgument *arg; for (arg = arguments; arg != NULL && arg->name != NULL; arg++) if (strcmp(arg->name, name) == 0) return arg; return NULL; } static void munit_suite_list_tests(const MunitSuite *suite, munit_bool show_params, const char *prefix) { size_t pre_l; char *pre = munit_maybe_concat(&pre_l, (char *)prefix, (char *)suite->prefix); const MunitTest *test; const MunitParameterEnum *params; munit_bool first; char **val; const MunitSuite *child_suite; for (test = suite->tests; test != NULL && test->name != NULL; test++) { if (pre != NULL) fputs(pre, stdout); puts(test->name); if (show_params) { for (params = test->parameters; params != NULL && params->name != NULL; params++) { fprintf(stdout, " - %s: ", params->name); if (params->values == NULL) { puts("Any"); } else { first = 1; for (val = params->values; *val != NULL; val++) { if (!first) { fputs(", ", stdout); } else { first = 0; } fputs(*val, stdout); } putc('\n', stdout); } } } } for (child_suite = suite->suites; child_suite != NULL && child_suite->prefix != NULL; child_suite++) { munit_suite_list_tests(child_suite, show_params, pre); } munit_maybe_free_concat(pre, prefix, suite->prefix); } static munit_bool munit_stream_supports_ansi(FILE *stream) { #if !defined(_WIN32) return isatty(fileno(stream)); #else # if !defined(__MINGW32__) size_t ansicon_size = 0; # endif if (isatty(fileno(stream))) { # if !defined(__MINGW32__) getenv_s(&ansicon_size, NULL, 0, "ANSICON"); return ansicon_size != 0; # else return getenv("ANSICON") != NULL; # endif } return 0; #endif } int munit_suite_main_custom(const MunitSuite *suite, void *user_data, int argc, char *const *argv, const MunitArgument arguments[]) { int result = EXIT_FAILURE; MunitTestRunner runner; size_t parameters_size = 0; size_t tests_size = 0; int arg; char *envptr; unsigned long ts; char *endptr; unsigned long long iterations; MunitLogLevel level; const MunitArgument *argument; const char **runner_tests; unsigned int tests_run; unsigned int tests_total; runner.prefix = NULL; runner.suite = NULL; runner.tests = NULL; runner.seed = 0; runner.iterations = 0; runner.parameters = NULL; runner.single_parameter_mode = 0; runner.user_data = NULL; runner.report.successful = 0; runner.report.skipped = 0; runner.report.failed = 0; runner.report.errored = 0; #if defined(MUNIT_ENABLE_TIMING) runner.report.cpu_clock = 0; runner.report.wall_clock = 0; #endif runner.colorize = 0; #if !defined(_WIN32) runner.fork = 1; #else runner.fork = 0; #endif runner.show_stderr = 0; runner.fatal_failures = 0; runner.suite = suite; runner.user_data = user_data; runner.seed = munit_rand_generate_seed(); runner.colorize = munit_stream_supports_ansi(MUNIT_OUTPUT_FILE); for (arg = 1; arg < argc; arg++) { if (strncmp("--", argv[arg], 2) == 0) { if (strcmp("seed", argv[arg] + 2) == 0) { if (arg + 1 >= argc) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "%s requires an argument", argv[arg]); goto cleanup; } envptr = argv[arg + 1]; ts = strtoul(argv[arg + 1], &envptr, 0); if (*envptr != '\0' || ts > (~((munit_uint32_t)0U))) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "invalid value ('%s') passed to %s", argv[arg + 1], argv[arg]); goto cleanup; } runner.seed = (munit_uint32_t)ts; arg++; } else if (strcmp("iterations", argv[arg] + 2) == 0) { if (arg + 1 >= argc) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "%s requires an argument", argv[arg]); goto cleanup; } endptr = argv[arg + 1]; iterations = strtoul(argv[arg + 1], &endptr, 0); if (*endptr != '\0' || iterations > UINT_MAX) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "invalid value ('%s') passed to %s", argv[arg + 1], argv[arg]); goto cleanup; } runner.iterations = (unsigned int)iterations; arg++; } else if (strcmp("param", argv[arg] + 2) == 0) { if (arg + 2 >= argc) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "%s requires two arguments", argv[arg]); goto cleanup; } runner.parameters = realloc( runner.parameters, sizeof(MunitParameter) * (parameters_size + 2)); if (runner.parameters == NULL) { munit_log_internal(MUNIT_LOG_ERROR, stderr, "failed to allocate memory"); goto cleanup; } runner.parameters[parameters_size].name = (char *)argv[arg + 1]; runner.parameters[parameters_size].value = (char *)argv[arg + 2]; parameters_size++; runner.parameters[parameters_size].name = NULL; runner.parameters[parameters_size].value = NULL; arg += 2; } else if (strcmp("color", argv[arg] + 2) == 0) { if (arg + 1 >= argc) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "%s requires an argument", argv[arg]); goto cleanup; } if (strcmp(argv[arg + 1], "always") == 0) runner.colorize = 1; else if (strcmp(argv[arg + 1], "never") == 0) runner.colorize = 0; else if (strcmp(argv[arg + 1], "auto") == 0) runner.colorize = munit_stream_supports_ansi(MUNIT_OUTPUT_FILE); else { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "invalid value ('%s') passed to %s", argv[arg + 1], argv[arg]); goto cleanup; } arg++; } else if (strcmp("help", argv[arg] + 2) == 0) { munit_print_help(argc, argv, user_data, arguments); result = EXIT_SUCCESS; goto cleanup; } else if (strcmp("single", argv[arg] + 2) == 0) { runner.single_parameter_mode = 1; } else if (strcmp("show-stderr", argv[arg] + 2) == 0) { runner.show_stderr = 1; #if !defined(_WIN32) } else if (strcmp("no-fork", argv[arg] + 2) == 0) { runner.fork = 0; #endif } else if (strcmp("fatal-failures", argv[arg] + 2) == 0) { runner.fatal_failures = 1; } else if (strcmp("log-visible", argv[arg] + 2) == 0 || strcmp("log-fatal", argv[arg] + 2) == 0) { if (arg + 1 >= argc) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "%s requires an argument", argv[arg]); goto cleanup; } if (strcmp(argv[arg + 1], "debug") == 0) level = MUNIT_LOG_DEBUG; else if (strcmp(argv[arg + 1], "info") == 0) level = MUNIT_LOG_INFO; else if (strcmp(argv[arg + 1], "warning") == 0) level = MUNIT_LOG_WARNING; else if (strcmp(argv[arg + 1], "error") == 0) level = MUNIT_LOG_ERROR; else { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "invalid value ('%s') passed to %s", argv[arg + 1], argv[arg]); goto cleanup; } if (strcmp("log-visible", argv[arg] + 2) == 0) munit_log_level_visible = level; else munit_log_level_fatal = level; arg++; } else if (strcmp("list", argv[arg] + 2) == 0) { munit_suite_list_tests(suite, 0, NULL); result = EXIT_SUCCESS; goto cleanup; } else if (strcmp("list-params", argv[arg] + 2) == 0) { munit_suite_list_tests(suite, 1, NULL); result = EXIT_SUCCESS; goto cleanup; } else { argument = munit_arguments_find(arguments, argv[arg] + 2); if (argument == NULL) { munit_logf_internal(MUNIT_LOG_ERROR, stderr, "unknown argument ('%s')", argv[arg]); goto cleanup; } if (!argument->parse_argument(suite, user_data, &arg, argc, argv)) goto cleanup; } } else { runner_tests = realloc((void *)runner.tests, sizeof(char *) * (tests_size + 2)); if (runner_tests == NULL) { munit_log_internal(MUNIT_LOG_ERROR, stderr, "failed to allocate memory"); goto cleanup; } runner.tests = runner_tests; runner.tests[tests_size++] = argv[arg]; runner.tests[tests_size] = NULL; } } fflush(stderr); fprintf(MUNIT_OUTPUT_FILE, "Running test suite with seed 0x%08" PRIx32 "...\n", runner.seed); munit_test_runner_run(&runner); tests_run = runner.report.successful + runner.report.failed + runner.report.errored; tests_total = tests_run + runner.report.skipped; if (tests_run == 0) { fprintf(stderr, "No tests run, %d (100%%) skipped.\n", runner.report.skipped); } else { fprintf(MUNIT_OUTPUT_FILE, "%d of %d (%0.0f%%) tests successful, %d (%0.0f%%) test skipped.\n", runner.report.successful, tests_run, (((double)runner.report.successful) / ((double)tests_run)) * 100.0, runner.report.skipped, (((double)runner.report.skipped) / ((double)tests_total)) * 100.0); } if (runner.report.failed == 0 && runner.report.errored == 0) { result = EXIT_SUCCESS; } cleanup: free(runner.parameters); free((void *)runner.tests); return result; } int munit_suite_main(const MunitSuite *suite, void *user_data, int argc, char *const *argv) { return munit_suite_main_custom(suite, user_data, argc, argv, NULL); } static uint8_t hexchars[] = "0123456789abcdef"; static uint8_t *hexdump_addr(uint8_t *dest, size_t addr) { size_t i; uint8_t a; for (i = 0; i < 4; ++i) { a = (addr >> (3 - i) * 8) & 0xff; *dest++ = hexchars[a >> 4]; *dest++ = hexchars[a & 0xf]; } return dest; } static uint8_t *asciidump(uint8_t *dest, const uint8_t *data, size_t datalen) { size_t i; *dest++ = '|'; for (i = 0; i < datalen; ++i) { if (0x20 <= data[i] && data[i] <= 0x7e) { *dest++ = data[i]; } else { *dest++ = '.'; } } *dest++ = '|'; return dest; } static uint8_t *hexdump8(uint8_t *dest, const uint8_t *data, size_t datalen) { size_t i; for (i = 0; i < datalen; ++i) { *dest++ = hexchars[data[i] >> 4]; *dest++ = hexchars[data[i] & 0xf]; *dest++ = ' '; } for (; i < 8; ++i) { *dest++ = ' '; *dest++ = ' '; *dest++ = ' '; } return dest; } static uint8_t *hexdump16(uint8_t *dest, const uint8_t *data, size_t datalen) { dest = hexdump8(dest, data, datalen < 8 ? datalen : 8); *dest++ = ' '; if (datalen < 8) { data = NULL; datalen = 0; } else { data += 8; datalen -= 8; } dest = hexdump8(dest, data, datalen); *dest++ = ' '; return dest; } static uint8_t *hexdump_line(uint8_t *dest, const uint8_t *data, size_t datalen, size_t addr) { dest = hexdump_addr(dest, addr); *dest++ = ' '; *dest++ = ' '; dest = hexdump16(dest, data, datalen); dest = asciidump(dest, data, datalen); return dest; } int munit_hexdump(FILE *fp, const void *data, size_t datalen) { size_t offset = 0, n, len; uint8_t buf[128], *p; const uint8_t *s; int repeated = 0; if (datalen == 0) { return 0; } for (; offset < datalen; offset += 16) { n = datalen - offset; s = (const uint8_t *)data + offset; if (n >= 16) { n = 16; if (offset > 0) { if (memcmp(s - 16, s, 16) == 0) { if (repeated) { continue; } repeated = 1; if (fwrite("*\n", 1, 2, fp) < 2) { return -1; } continue; } repeated = 0; } } p = hexdump_line(buf, s, n, offset); *p++ = '\n'; len = (size_t)(p - buf); if (fwrite(buf, 1, len, fp) < len) { return -1; } } p = hexdump_addr(buf, datalen); *p++ = '\n'; len = (size_t)(p - buf); if (fwrite(buf, 1, len, fp) < len) { return -1; } return 0; } int munit_hexdump_diff(FILE *fp, const void *a, size_t alen, const void *b, size_t blen) { size_t offset = 0, k, i, len, ncomp, maxlen, adoff = 0; uint8_t buf[128], *p; const uint8_t mk[2] = {'-', '+'}; struct datasource { const uint8_t *data; size_t datalen; const uint8_t *s; size_t n; } ds[] = {{a, alen, NULL, 0}, {b, blen, NULL, 0}}, *dp; maxlen = alen < blen ? blen : alen; for (; offset < maxlen; offset += 16) { for (k = 0; k < 2; ++k) { dp = &ds[k]; if (offset < dp->datalen) { dp->s = (const uint8_t *)dp->data + offset; dp->n = dp->datalen - offset; if (dp->n > 16) { dp->n = 16; } } else { dp->s = NULL; dp->n = 0; } } if (ds[0].n == ds[1].n && memcmp(ds[0].s, ds[1].s, ds[0].n) == 0) { continue; } for (k = 0; k < 2; ++k) { dp = &ds[k]; if (!dp->n) { continue; } p = buf; *p++ = mk[k]; *p++ = mk[k]; *p++ = mk[k]; *p++ = mk[k]; p = hexdump_line(p, dp->s, dp->n, offset); *p++ = '\n'; len = (size_t)(p - buf); if (fwrite(buf, 1, len, fp) < len) { return -1; } } if (!ds[0].n || !ds[1].n) { continue; } ncomp = ds[0].n < ds[1].n ? ds[0].n : ds[1].n; p = buf + 4 + 10; memset(buf, ' ', 4 + 78); for (i = 0; i < ncomp; ++i) { if (ds[0].s[i] == ds[1].s[i]) { *p++ = ' '; *p++ = ' '; } else { adoff = 4 + 10 + 51 + i; *(buf + adoff) = '^'; *p++ = '^'; *p++ = '^'; } *p++ = ' '; if (i == 7) { *p++ = ' '; } } if (adoff) { len = adoff + 1; } else { len = (size_t)(p - buf); } buf[len++] = '\n'; if (fwrite(buf, 1, len, fp) < len) { return -1; } } return 0; }