/** @defgroup rcc_file RCC
*
* @ingroup STM32L4xx
*
* @section rcc_l4_api_ex Reset and Clock Control API.
*
* @brief libopencm3 STM32L4xx Reset and Clock Control
*
* @author @htmlonly © @endhtmlonly 2016 Karl Palsson
*
* @date 12 Feb 2016
*
* This library supports the Reset and Clock Control System in the STM32 series
* of ARM Cortex Microcontrollers by ST Microelectronics.
*
* LGPL License Terms @ref lgpl_license
*/
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2016 Karl Palsson
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see .
*/
/**@{*/
#include
/* Set the default clock frequencies after reset. */
uint32_t rcc_ahb_frequency = 4000000;
uint32_t rcc_apb1_frequency = 4000000;
uint32_t rcc_apb2_frequency = 4000000;
void rcc_osc_ready_int_clear(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CICR |= RCC_CICR_PLLRDYC;
break;
case RCC_HSE:
RCC_CICR |= RCC_CICR_HSERDYC;
break;
case RCC_HSI16:
RCC_CICR |= RCC_CICR_HSIRDYC;
break;
case RCC_MSI:
RCC_CICR |= RCC_CICR_MSIRDYC;
break;
case RCC_LSE:
RCC_CICR |= RCC_CICR_LSERDYC;
break;
case RCC_LSI:
RCC_CICR |= RCC_CICR_LSIRDYC;
break;
case RCC_HSI48:
RCC_CICR |= RCC_CICR_HSI48RDYC;
break;
}
}
void rcc_osc_ready_int_enable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIER |= RCC_CIER_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIER |= RCC_CIER_HSERDYIE;
break;
case RCC_HSI16:
RCC_CIER |= RCC_CIER_HSIRDYIE;
break;
case RCC_MSI:
RCC_CIER |= RCC_CIER_MSIRDYIE;
break;
case RCC_LSE:
RCC_CIER |= RCC_CIER_LSERDYIE;
break;
case RCC_LSI:
RCC_CIER |= RCC_CIER_LSIRDYIE;
break;
case RCC_HSI48:
RCC_CIER |= RCC_CIER_HSI48RDYIE;
break;
}
}
void rcc_osc_ready_int_disable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIER &= ~RCC_CIER_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIER &= ~RCC_CIER_HSERDYIE;
break;
case RCC_HSI16:
RCC_CIER &= ~RCC_CIER_HSIRDYIE;
break;
case RCC_MSI:
RCC_CIER &= ~RCC_CIER_MSIRDYIE;
break;
case RCC_LSE:
RCC_CIER &= ~RCC_CIER_LSERDYIE;
break;
case RCC_LSI:
RCC_CIER &= ~RCC_CIER_LSIRDYIE;
break;
case RCC_HSI48:
RCC_CIER &= ~RCC_CIER_HSI48RDYIE;
break;
}
}
int rcc_osc_ready_int_flag(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return ((RCC_CIFR & RCC_CIFR_PLLRDYF) != 0);
break;
case RCC_HSE:
return ((RCC_CIFR & RCC_CIFR_HSERDYF) != 0);
break;
case RCC_HSI16:
return ((RCC_CIFR & RCC_CIFR_HSIRDYF) != 0);
break;
case RCC_MSI:
return ((RCC_CIFR & RCC_CIFR_MSIRDYF) != 0);
break;
case RCC_LSE:
return ((RCC_CIFR & RCC_CIFR_LSERDYF) != 0);
break;
case RCC_LSI:
return ((RCC_CIFR & RCC_CIFR_LSIRDYF) != 0);
break;
case RCC_HSI48:
return ((RCC_CIFR & RCC_CIFR_HSI48RDYF) != 0);
break;
}
return false;
}
void rcc_css_int_clear(void)
{
RCC_CICR |= RCC_CICR_CSSC;
}
int rcc_css_int_flag(void)
{
return ((RCC_CIFR & RCC_CIFR_CSSF) != 0);
}
bool rcc_is_osc_ready(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return RCC_CR & RCC_CR_PLLRDY;
case RCC_HSE:
return RCC_CR & RCC_CR_HSERDY;
case RCC_HSI16:
return RCC_CR & RCC_CR_HSIRDY;
case RCC_MSI:
return RCC_CR & RCC_CR_MSIRDY;
case RCC_LSE:
return RCC_BDCR & RCC_BDCR_LSERDY;
case RCC_LSI:
return RCC_CSR & RCC_CSR_LSIRDY;
case RCC_HSI48:
return RCC_CRRCR & RCC_CRRCR_HSI48RDY;
}
return false;
}
void rcc_wait_for_osc_ready(enum rcc_osc osc)
{
while (!rcc_is_osc_ready(osc));
}
void rcc_wait_for_sysclk_status(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK)
!= RCC_CFGR_SWS_PLL);
break;
case RCC_HSE:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK)
!= RCC_CFGR_SWS_HSE);
break;
case RCC_HSI16:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK)
!= RCC_CFGR_SWS_HSI16);
break;
case RCC_MSI:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK)
!= RCC_CFGR_SWS_MSI);
break;
default:
/* Shouldn't be reached. */
break;
}
}
void rcc_osc_on(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR |= RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR |= RCC_CR_HSEON;
break;
case RCC_HSI16:
RCC_CR |= RCC_CR_HSION;
break;
case RCC_MSI:
RCC_CR |= RCC_CR_MSION;
break;
case RCC_LSE:
RCC_BDCR |= RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR |= RCC_CSR_LSION;
break;
case RCC_HSI48:
RCC_CRRCR |= RCC_CRRCR_HSI48ON;
break;
}
}
void rcc_osc_off(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR &= ~RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR &= ~RCC_CR_HSEON;
break;
case RCC_HSI16:
RCC_CR &= ~RCC_CR_HSION;
break;
case RCC_MSI:
RCC_CR &= ~RCC_CR_MSION;
break;
case RCC_LSE:
RCC_BDCR &= ~RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR &= ~RCC_CSR_LSION;
break;
case RCC_HSI48:
RCC_CRRCR &= ~RCC_CRRCR_HSI48ON;
break;
}
}
void rcc_css_enable(void)
{
RCC_CR |= RCC_CR_CSSON;
}
void rcc_css_disable(void)
{
RCC_CR &= ~RCC_CR_CSSON;
}
void rcc_set_sysclk_source(uint32_t clk)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_SW_MASK << RCC_CFGR_SW_SHIFT);
RCC_CFGR = (reg32 | (clk << RCC_CFGR_SW_SHIFT));
}
void rcc_set_pll_source(uint32_t pllsrc)
{
uint32_t reg32;
reg32 = RCC_PLLCFGR;
reg32 &= ~(RCC_PLLCFGR_PLLSRC_MASK << RCC_PLLCFGR_PLLSRC_SHIFT);
RCC_PLLCFGR = (reg32 | (pllsrc << RCC_PLLCFGR_PLLSRC_SHIFT));
}
void rcc_set_ppre2(uint32_t ppre2)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT);
RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT));
}
void rcc_set_ppre1(uint32_t ppre1)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT);
RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT));
}
void rcc_set_hpre(uint32_t hpre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT);
RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT));
}
void rcc_set_main_pll(uint32_t source, uint32_t pllm, uint32_t plln, uint32_t pllp,
uint32_t pllq, uint32_t pllr)
{
RCC_PLLCFGR = (RCC_PLLCFGR_PLLM(pllm) << RCC_PLLCFGR_PLLM_SHIFT) |
(plln << RCC_PLLCFGR_PLLN_SHIFT) |
(pllp) |
(source << RCC_PLLCFGR_PLLSRC_SHIFT) |
(pllq << RCC_PLLCFGR_PLLQ_SHIFT) |
(pllr << RCC_PLLCFGR_PLLR_SHIFT) | RCC_PLLCFGR_PLLREN;
}
uint32_t rcc_system_clock_source(void)
{
/* Return the clock source which is used as system clock. */
return (RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK;
}
/**
* Set the msi run time range.
* Can only be called when MSI is either OFF, or when MSI is on _and_
* ready. (RCC_CR_MSIRDY bit). @sa rcc_set_msi_range_standby
* @param msi_range range number @ref rcc_cr_msirange
*/
void rcc_set_msi_range(uint32_t msi_range)
{
uint32_t reg = RCC_CR;
reg &= ~(RCC_CR_MSIRANGE_MASK << RCC_CR_MSIRANGE_SHIFT);
reg |= msi_range << RCC_CR_MSIRANGE_SHIFT;
RCC_CR = reg | RCC_CR_MSIRGSEL;
}
/**
* Set the msi range after reset/standby.
* Until MSIRGSEl bit is set, this defines the MSI range.
* Note that not all MSI range values are allowed here!
* @sa rcc_set_msi_range
* @param msi_range range number valid for post standby @ref rcc_csr_msirange
*/
void rcc_set_msi_range_standby(uint32_t msi_range)
{
uint32_t reg = RCC_CSR;
reg &= ~(RCC_CSR_MSIRANGE_MASK << RCC_CSR_MSIRANGE_SHIFT);
reg |= msi_range << RCC_CSR_MSIRANGE_SHIFT;
RCC_CSR = reg;
}
/**@}*/