import numpy as np import torch from torch import nn import torch.nn.functional as F import filters from torch.nn.utils import weight_norm #from convert_lsp import lpc_to_lsp, lsp_to_lpc from rc import lpc2rc, rc2lpc Fs = 16000 fid_dict = {} def dump_signal(x, filename): return if filename in fid_dict: fid = fid_dict[filename] else: fid = open(filename, "w") fid_dict[filename] = fid x = x.detach().numpy().astype('float32') x.tofile(fid) def sig_l1(y_true, y_pred): return torch.mean(abs(y_true-y_pred))/torch.mean(abs(y_true)) def sig_loss(y_true, y_pred): t = y_true/(1e-15+torch.norm(y_true, dim=-1, p=2, keepdim=True)) p = y_pred/(1e-15+torch.norm(y_pred, dim=-1, p=2, keepdim=True)) return torch.mean(1.-torch.sum(p*t, dim=-1)) def interp_lpc(lpc, factor): #print(lpc.shape) #f = (np.arange(factor)+.5*((factor+1)%2))/factor lsp = torch.atanh(lpc2rc(lpc)) #print("lsp0:") #print(lsp) shape = lsp.shape #print("shape is", shape) shape = (shape[0], shape[1]*factor, shape[2]) interp_lsp = torch.zeros(shape, device=lpc.device) for k in range(factor): f = (k+.5*((factor+1)%2))/factor interp = (1-f)*lsp[:,:-1,:] + f*lsp[:,1:,:] interp_lsp[:,factor//2+k:-(factor//2):factor,:] = interp for k in range(factor//2): interp_lsp[:,k,:] = interp_lsp[:,factor//2,:] for k in range((factor+1)//2): interp_lsp[:,-k-1,:] = interp_lsp[:,-(factor+3)//2,:] #print("lsp:") #print(interp_lsp) return rc2lpc(torch.tanh(interp_lsp)) def analysis_filter(x, lpc, nb_subframes=4, subframe_size=40, gamma=.9): device = x.device batch_size = lpc.size(0) nb_frames = lpc.shape[1] sig = torch.zeros(batch_size, subframe_size+16, device=device) x = torch.reshape(x, (batch_size, nb_frames*nb_subframes, subframe_size)) out = torch.zeros((batch_size, 0), device=device) #if gamma is not None: # bw = gamma**(torch.arange(1, 17, device=device)) # lpc = lpc*bw[None,None,:] ones = torch.ones((*(lpc.shape[:-1]), 1), device=device) zeros = torch.zeros((*(lpc.shape[:-1]), subframe_size-1), device=device) a = torch.cat([ones, lpc], -1) a_big = torch.cat([a, zeros], -1) fir_mat_big = filters.toeplitz_from_filter(a_big) #print(a_big[:,0,:]) for n in range(nb_frames): for k in range(nb_subframes): sig = torch.cat([sig[:,subframe_size:], x[:,n*nb_subframes + k, :]], 1) exc = torch.bmm(fir_mat_big[:,n,:,:], sig[:,:,None]) out = torch.cat([out, exc[:,-subframe_size:,0]], 1) return out # weight initialization and clipping def init_weights(module): if isinstance(module, nn.GRU): for p in module.named_parameters(): if p[0].startswith('weight_hh_'): nn.init.orthogonal_(p[1]) def gen_phase_embedding(periods, frame_size): device = periods.device batch_size = periods.size(0) nb_frames = periods.size(1) w0 = 2*torch.pi/periods w0_shift = torch.cat([2*torch.pi*torch.rand((batch_size, 1), device=device)/frame_size, w0[:,:-1]], 1) cum_phase = frame_size*torch.cumsum(w0_shift, 1) fine_phase = w0[:,:,None]*torch.broadcast_to(torch.arange(frame_size, device=device), (batch_size, nb_frames, frame_size)) embed = torch.unsqueeze(cum_phase, 2) + fine_phase embed = torch.reshape(embed, (batch_size, -1)) return torch.cos(embed), torch.sin(embed) class GLU(nn.Module): def __init__(self, feat_size): super(GLU, self).__init__() torch.manual_seed(5) self.gate = weight_norm(nn.Linear(feat_size, feat_size, bias=False)) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d)\ or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding): nn.init.orthogonal_(m.weight.data) def forward(self, x): out = x * torch.sigmoid(self.gate(x)) return out class FWConv(nn.Module): def __init__(self, in_size, out_size, kernel_size=2): super(FWConv, self).__init__() torch.manual_seed(5) self.in_size = in_size self.kernel_size = kernel_size self.conv = weight_norm(nn.Linear(in_size*self.kernel_size, out_size, bias=False)) self.glu = GLU(out_size) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d)\ or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding): nn.init.orthogonal_(m.weight.data) def forward(self, x, state): xcat = torch.cat((state, x), -1) #print(x.shape, state.shape, xcat.shape, self.in_size, self.kernel_size) out = self.glu(torch.tanh(self.conv(xcat))) return out, xcat[:,self.in_size:] def n(x): return torch.clamp(x + (1./127.)*(torch.rand_like(x)-.5), min=-1., max=1.) class FARGANCond(nn.Module): def __init__(self, feature_dim=20, cond_size=256, pembed_dims=12): super(FARGANCond, self).__init__() self.feature_dim = feature_dim self.cond_size = cond_size self.pembed = nn.Embedding(224, pembed_dims) self.fdense1 = nn.Linear(self.feature_dim + pembed_dims, 64, bias=False) self.fconv1 = nn.Conv1d(64, 128, kernel_size=3, padding='valid', bias=False) self.fdense2 = nn.Linear(128, 80*4, bias=False) self.apply(init_weights) nb_params = sum(p.numel() for p in self.parameters()) print(f"cond model: {nb_params} weights") def forward(self, features, period): features = features[:,2:,:] period = period[:,2:] p = self.pembed(period-32) features = torch.cat((features, p), -1) tmp = torch.tanh(self.fdense1(features)) tmp = tmp.permute(0, 2, 1) tmp = torch.tanh(self.fconv1(tmp)) tmp = tmp.permute(0, 2, 1) tmp = torch.tanh(self.fdense2(tmp)) #tmp = torch.tanh(self.fdense2(tmp)) return tmp class FARGANSub(nn.Module): def __init__(self, subframe_size=40, nb_subframes=4, cond_size=256): super(FARGANSub, self).__init__() self.subframe_size = subframe_size self.nb_subframes = nb_subframes self.cond_size = cond_size self.cond_gain_dense = nn.Linear(80, 1) #self.sig_dense1 = nn.Linear(4*self.subframe_size+self.passthrough_size+self.cond_size, self.cond_size, bias=False) self.fwc0 = FWConv(2*self.subframe_size+80+4, 192) self.gru1 = nn.GRUCell(192+2*self.subframe_size, 160, bias=False) self.gru2 = nn.GRUCell(160+2*self.subframe_size, 128, bias=False) self.gru3 = nn.GRUCell(128+2*self.subframe_size, 128, bias=False) self.gru1_glu = GLU(160) self.gru2_glu = GLU(128) self.gru3_glu = GLU(128) self.skip_glu = GLU(128) #self.ptaps_dense = nn.Linear(4*self.cond_size, 5) self.skip_dense = nn.Linear(192+160+2*128+2*self.subframe_size, 128, bias=False) self.sig_dense_out = nn.Linear(128, self.subframe_size, bias=False) self.gain_dense_out = nn.Linear(192, 4) self.apply(init_weights) nb_params = sum(p.numel() for p in self.parameters()) print(f"subframe model: {nb_params} weights") def forward(self, cond, prev_pred, exc_mem, period, states, gain=None): device = exc_mem.device #print(cond.shape, prev.shape) cond = n(cond) dump_signal(gain, 'gain0.f32') gain = torch.exp(self.cond_gain_dense(cond)) dump_signal(gain, 'gain1.f32') idx = 256-period[:,None] rng = torch.arange(self.subframe_size+4, device=device) idx = idx + rng[None,:] - 2 mask = idx >= 256 idx = idx - mask*period[:,None] pred = torch.gather(exc_mem, 1, idx) pred = n(pred/(1e-5+gain)) prev = exc_mem[:,-self.subframe_size:] dump_signal(prev, 'prev_in.f32') prev = n(prev/(1e-5+gain)) dump_signal(prev, 'pitch_exc.f32') dump_signal(exc_mem, 'exc_mem.f32') tmp = torch.cat((cond, pred, prev), 1) #fpitch = taps[:,0:1]*pred[:,:-4] + taps[:,1:2]*pred[:,1:-3] + taps[:,2:3]*pred[:,2:-2] + taps[:,3:4]*pred[:,3:-1] + taps[:,4:]*pred[:,4:] fpitch = pred[:,2:-2] #tmp = self.dense1_glu(torch.tanh(self.sig_dense1(tmp))) fwc0_out, fwc0_state = self.fwc0(tmp, states[3]) fwc0_out = n(fwc0_out) pitch_gain = torch.sigmoid(self.gain_dense_out(fwc0_out)) gru1_state = self.gru1(torch.cat([fwc0_out, pitch_gain[:,0:1]*fpitch, prev], 1), states[0]) gru1_out = self.gru1_glu(n(gru1_state)) gru1_out = n(gru1_out) gru2_state = self.gru2(torch.cat([gru1_out, pitch_gain[:,1:2]*fpitch, prev], 1), states[1]) gru2_out = self.gru2_glu(n(gru2_state)) gru2_out = n(gru2_out) gru3_state = self.gru3(torch.cat([gru2_out, pitch_gain[:,2:3]*fpitch, prev], 1), states[2]) gru3_out = self.gru3_glu(n(gru3_state)) gru3_out = n(gru3_out) gru3_out = torch.cat([gru1_out, gru2_out, gru3_out, fwc0_out], 1) skip_out = torch.tanh(self.skip_dense(torch.cat([gru3_out, pitch_gain[:,3:4]*fpitch, prev], 1))) skip_out = self.skip_glu(n(skip_out)) sig_out = torch.tanh(self.sig_dense_out(skip_out)) dump_signal(sig_out, 'exc_out.f32') #taps = self.ptaps_dense(gru3_out) #taps = .2*taps + torch.exp(taps) #taps = taps / (1e-2 + torch.sum(torch.abs(taps), dim=-1, keepdim=True)) #dump_signal(taps, 'taps.f32') dump_signal(pitch_gain, 'pgain.f32') #sig_out = (sig_out + pitch_gain*fpitch) * gain sig_out = sig_out * gain exc_mem = torch.cat([exc_mem[:,self.subframe_size:], sig_out], 1) prev_pred = torch.cat([prev_pred[:,self.subframe_size:], fpitch], 1) dump_signal(sig_out, 'sig_out.f32') return sig_out, exc_mem, prev_pred, (gru1_state, gru2_state, gru3_state, fwc0_state) class FARGAN(nn.Module): def __init__(self, subframe_size=40, nb_subframes=4, feature_dim=20, cond_size=256, passthrough_size=0, has_gain=False, gamma=None): super(FARGAN, self).__init__() self.subframe_size = subframe_size self.nb_subframes = nb_subframes self.frame_size = self.subframe_size*self.nb_subframes self.feature_dim = feature_dim self.cond_size = cond_size self.cond_net = FARGANCond(feature_dim=feature_dim, cond_size=cond_size) self.sig_net = FARGANSub(subframe_size=subframe_size, nb_subframes=nb_subframes, cond_size=cond_size) def forward(self, features, period, nb_frames, pre=None, states=None): device = features.device batch_size = features.size(0) prev = torch.zeros(batch_size, 256, device=device) exc_mem = torch.zeros(batch_size, 256, device=device) nb_pre_frames = pre.size(1)//self.frame_size if pre is not None else 0 states = ( torch.zeros(batch_size, 160, device=device), torch.zeros(batch_size, 128, device=device), torch.zeros(batch_size, 128, device=device), torch.zeros(batch_size, (2*self.subframe_size+80+4)*1, device=device) ) sig = torch.zeros((batch_size, 0), device=device) cond = self.cond_net(features, period) if pre is not None: exc_mem[:,-self.frame_size:] = pre[:, :self.frame_size] start = 1 if nb_pre_frames>0 else 0 for n in range(start, nb_frames+nb_pre_frames): for k in range(self.nb_subframes): pos = n*self.frame_size + k*self.subframe_size #print("now: ", preal.shape, prev.shape, sig_in.shape) pitch = period[:, 3+n] gain = .03*10**(0.5*features[:, 3+n, 0:1]/np.sqrt(18.0)) #gain = gain[:,:,None] out, exc_mem, prev, states = self.sig_net(cond[:, n, k*80:(k+1)*80], prev, exc_mem, pitch, states, gain=gain) if n < nb_pre_frames: out = pre[:, pos:pos+self.subframe_size] exc_mem[:,-self.subframe_size:] = out else: sig = torch.cat([sig, out], 1) states = [s.detach() for s in states] return sig, states