import lossgen import os import argparse import torch import numpy as np parser = argparse.ArgumentParser() parser.add_argument('model', type=str, help='CELPNet model') parser.add_argument('percentage', type=float, help='percentage loss') parser.add_argument('output', type=str, help='path to output file (ascii)') parser.add_argument('--length', type=int, help="length of sequence to generate", default=500) args = parser.parse_args() checkpoint = torch.load(args.model, map_location='cpu') model = lossgen.LossGen(*checkpoint['model_args'], **checkpoint['model_kwargs']) model.load_state_dict(checkpoint['state_dict'], strict=False) states=None last = torch.zeros((1,1,1)) perc = torch.tensor((args.percentage,))[None,None,:] seq = torch.zeros((0,1,1)) one = torch.ones((1,1,1)) zero = torch.zeros((1,1,1)) if __name__ == '__main__': for i in range(args.length): prob, states = model(last, perc, states=states) prob = torch.sigmoid(prob) states[0] = states[0].detach() states[1] = states[1].detach() loss = one if np.random.rand() < prob else zero last = loss seq = torch.cat([seq, loss]) np.savetxt(args.output, seq[:,:,0].numpy().astype('int'), fmt='%d')