import numpy as np import torch from torch import nn import torch.nn.functional as F import tqdm from scipy.signal import lfilter import os import lossgen class LossDataset(torch.utils.data.Dataset): def __init__(self, loss_file, sequence_length=997): self.sequence_length = sequence_length self.loss = np.loadtxt(loss_file, dtype='float32') self.nb_sequences = self.loss.shape[0]//self.sequence_length self.loss = self.loss[:self.nb_sequences*self.sequence_length] self.perc = lfilter(np.array([.001], dtype='float32'), np.array([1., -.999], dtype='float32'), self.loss) self.loss = np.reshape(self.loss, (self.nb_sequences, self.sequence_length, 1)) self.perc = np.reshape(self.perc, (self.nb_sequences, self.sequence_length, 1)) def __len__(self): return self.nb_sequences def __getitem__(self, index): r0 = np.random.normal(scale=.1, size=(1,1)).astype('float32') r1 = np.random.normal(scale=.1, size=(self.sequence_length,1)).astype('float32') perc = self.perc[index, :, :] perc = perc + (r0+r1)*perc*(1-perc) return [self.loss[index, :, :], perc] adam_betas = [0.8, 0.98] adam_eps = 1e-8 batch_size=256 lr_decay = 0.001 lr = 0.003 epsilon = 1e-5 epochs = 2000 checkpoint_dir='checkpoint' os.makedirs(checkpoint_dir, exist_ok=True) checkpoint = dict() device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") checkpoint['model_args'] = () checkpoint['model_kwargs'] = {'gru1_size': 16, 'gru2_size': 32} model = lossgen.LossGen(*checkpoint['model_args'], **checkpoint['model_kwargs']) dataset = LossDataset('loss_sorted.txt') dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) optimizer = torch.optim.AdamW(model.parameters(), lr=lr, betas=adam_betas, eps=adam_eps) # learning rate scheduler scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay * x)) if __name__ == '__main__': model.to(device) states = None for epoch in range(1, epochs + 1): running_loss = 0 print(f"training epoch {epoch}...") with tqdm.tqdm(dataloader, unit='batch') as tepoch: for i, (loss, perc) in enumerate(tepoch): optimizer.zero_grad() loss = loss.to(device) perc = perc.to(device) out, states = model(loss, perc, states=states) states = [state.detach() for state in states] out = torch.sigmoid(out[:,:-1,:]) target = loss[:,1:,:] loss = torch.mean(-target*torch.log(out+epsilon) - (1-target)*torch.log(1-out+epsilon)) loss.backward() optimizer.step() scheduler.step() running_loss += loss.detach().cpu().item() tepoch.set_postfix(loss=f"{running_loss/(i+1):8.5f}", ) # save checkpoint checkpoint_path = os.path.join(checkpoint_dir, f'lossgen_{epoch}.pth') checkpoint['state_dict'] = model.state_dict() checkpoint['loss'] = running_loss / len(dataloader) checkpoint['epoch'] = epoch torch.save(checkpoint, checkpoint_path)