# LPCNet Incomplete pytorch implementation of LPCNet ## Data preparation For data preparation use dump_data in github.com/xiph/LPCNet. To turn this into a training dataset, copy data and feature file to a folder and run python add_dataset_config.py my_dataset_folder ## Training To train a model, create and adjust a setup file, e.g. with python make_default_setup.py my_setup.yml --path2dataset my_dataset_folder Then simply run python train_lpcnet.py my_setup.yml my_output ## Inference Create feature file with dump_data from github.com/xiph/LPCNet. Then run e.g. python test_lpcnet.py features.f32 my_output/checkpoints/checkpoint_ep_10.pth out.wav Inference runs on CPU and takes usually between 3 and 20 seconds per generated second of audio, depending on the CPU.