""" /* Copyright (c) 2023 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ """ Dataset for LPCNet training """ import os import yaml import torch import numpy as np from torch.utils.data import Dataset scale = 255.0/32768.0 scale_1 = 32768.0/255.0 def ulaw2lin(u): u = u - 128 s = np.sign(u) u = np.abs(u) return s*scale_1*(np.exp(u/128.*np.log(256))-1) def lin2ulaw(x): s = np.sign(x) x = np.abs(x) u = (s*(128*np.log(1+scale*x)/np.log(256))) u = np.clip(128 + np.round(u), 0, 255) return u def run_lpc(signal, lpcs, frame_length=160): num_frames, lpc_order = lpcs.shape prediction = np.concatenate( [- np.convolve(signal[i * frame_length : (i + 1) * frame_length + lpc_order - 1], lpcs[i], mode='valid') for i in range(num_frames)] ) error = signal[lpc_order :] - prediction return prediction, error class LPCNetDataset(Dataset): def __init__(self, path_to_dataset, features=['cepstrum', 'periods', 'pitch_corr'], input_signals=['last_signal', 'prediction', 'last_error'], target='error', frames_per_sample=15, feature_history=2, feature_lookahead=2, lpc_gamma=1): super(LPCNetDataset, self).__init__() # load dataset info self.path_to_dataset = path_to_dataset with open(os.path.join(path_to_dataset, 'info.yml'), 'r') as f: dataset = yaml.load(f, yaml.FullLoader) # dataset version self.version = dataset['version'] if self.version == 1: self.getitem = self.getitem_v1 elif self.version == 2: self.getitem = self.getitem_v2 else: raise ValueError(f"dataset version {self.version} unknown") # features self.feature_history = feature_history self.feature_lookahead = feature_lookahead self.frame_offset = 1 + self.feature_history self.frames_per_sample = frames_per_sample self.input_features = features self.feature_frame_layout = dataset['feature_frame_layout'] self.lpc_gamma = lpc_gamma # load feature file self.feature_file = os.path.join(path_to_dataset, dataset['feature_file']) self.features = np.memmap(self.feature_file, dtype=dataset['feature_dtype']) self.feature_frame_length = dataset['feature_frame_length'] assert len(self.features) % self.feature_frame_length == 0 self.features = self.features.reshape((-1, self.feature_frame_length)) # derive number of samples is dataset self.dataset_length = (len(self.features) - self.frame_offset - self.feature_lookahead - 1) // self.frames_per_sample # signals self.frame_length = dataset['frame_length'] self.signal_frame_layout = dataset['signal_frame_layout'] self.input_signals = input_signals self.target = target # load signals self.signal_file = os.path.join(path_to_dataset, dataset['signal_file']) self.signals = np.memmap(self.signal_file, dtype=dataset['signal_dtype']) self.signal_frame_length = dataset['signal_frame_length'] self.signals = self.signals.reshape((-1, self.signal_frame_length)) assert len(self.signals) == len(self.features) * self.frame_length def __getitem__(self, index): return self.getitem(index) def getitem_v2(self, index): sample = dict() # extract features frame_start = self.frame_offset + index * self.frames_per_sample - self.feature_history frame_stop = self.frame_offset + (index + 1) * self.frames_per_sample + self.feature_lookahead for feature in self.input_features: feature_start, feature_stop = self.feature_frame_layout[feature] sample[feature] = self.features[frame_start : frame_stop, feature_start : feature_stop] # convert periods if 'periods' in self.input_features: sample['periods'] = (0.1 + 50 * sample['periods'] + 100).astype('int16') signal_start = (self.frame_offset + index * self.frames_per_sample) * self.frame_length signal_stop = (self.frame_offset + (index + 1) * self.frames_per_sample) * self.frame_length # last_signal and signal are always expected to be there sample['last_signal'] = self.signals[signal_start : signal_stop, self.signal_frame_layout['last_signal']] sample['signal'] = self.signals[signal_start : signal_stop, self.signal_frame_layout['signal']] # calculate prediction and error if lpc coefficients present and prediction not given if 'lpc' in self.feature_frame_layout and 'prediction' not in self.signal_frame_layout: # lpc coefficients with one frame lookahead # frame positions (start one frame early for past excitation) frame_start = self.frame_offset + self.frames_per_sample * index - 1 frame_stop = self.frame_offset + self.frames_per_sample * (index + 1) # feature positions lpc_start, lpc_stop = self.feature_frame_layout['lpc'] lpc_order = lpc_stop - lpc_start lpcs = self.features[frame_start : frame_stop, lpc_start : lpc_stop] # LPC weighting lpc_order = lpc_stop - lpc_start weights = np.array([self.lpc_gamma ** (i + 1) for i in range(lpc_order)]) lpcs = lpcs * weights # signal position (lpc_order samples as history) signal_start = frame_start * self.frame_length - lpc_order + 1 signal_stop = frame_stop * self.frame_length + 1 noisy_signal = self.signals[signal_start : signal_stop, self.signal_frame_layout['last_signal']] clean_signal = self.signals[signal_start - 1 : signal_stop - 1, self.signal_frame_layout['signal']] noisy_prediction, noisy_error = run_lpc(noisy_signal, lpcs, frame_length=self.frame_length) # extract signals offset = self.frame_length sample['prediction'] = noisy_prediction[offset : offset + self.frame_length * self.frames_per_sample] sample['last_error'] = noisy_error[offset - 1 : offset - 1 + self.frame_length * self.frames_per_sample] # calculate error between real signal and noisy prediction sample['error'] = sample['signal'] - sample['prediction'] # concatenate features feature_keys = [key for key in self.input_features if not key.startswith("periods")] features = torch.concat([torch.FloatTensor(sample[key]) for key in feature_keys], dim=-1) signals = torch.cat([torch.LongTensor(lin2ulaw(sample[key])).unsqueeze(-1) for key in self.input_signals], dim=-1) target = torch.LongTensor(lin2ulaw(sample[self.target])) periods = torch.LongTensor(sample['periods']) return {'features' : features, 'periods' : periods, 'signals' : signals, 'target' : target} def getitem_v1(self, index): sample = dict() # extract features frame_start = self.frame_offset + index * self.frames_per_sample - self.feature_history frame_stop = self.frame_offset + (index + 1) * self.frames_per_sample + self.feature_lookahead for feature in self.input_features: feature_start, feature_stop = self.feature_frame_layout[feature] sample[feature] = self.features[frame_start : frame_stop, feature_start : feature_stop] # convert periods if 'periods' in self.input_features: sample['periods'] = (0.1 + 50 * sample['periods'] + 100).astype('int16') signal_start = (self.frame_offset + index * self.frames_per_sample) * self.frame_length signal_stop = (self.frame_offset + (index + 1) * self.frames_per_sample) * self.frame_length # last_signal and signal are always expected to be there for signal_name, index in self.signal_frame_layout.items(): sample[signal_name] = self.signals[signal_start : signal_stop, index] # concatenate features feature_keys = [key for key in self.input_features if not key.startswith("periods")] features = torch.concat([torch.FloatTensor(sample[key]) for key in feature_keys], dim=-1) signals = torch.cat([torch.LongTensor(sample[key]).unsqueeze(-1) for key in self.input_signals], dim=-1) target = torch.LongTensor(sample[self.target]) periods = torch.LongTensor(sample['periods']) return {'features' : features, 'periods' : periods, 'signals' : signals, 'target' : target} def __len__(self): return self.dataset_length