""" /* Copyright (c) 2023 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import argparse import os from uuid import UUID from collections import OrderedDict import pickle import torch import numpy as np import utils parser = argparse.ArgumentParser() parser.add_argument("input", type=str, help="input folder containing multi-run output") parser.add_argument("tag", type=str, help="tag for multi-run experiment") parser.add_argument("csv", type=str, help="name for output csv") def is_uuid(val): try: UUID(val) return True except: return False def collect_results(folder): training_folder = os.path.join(folder, 'training') testing_folder = os.path.join(folder, 'testing') # validation loss checkpoint = torch.load(os.path.join(training_folder, 'checkpoints', 'checkpoint_finalize_epoch_1.pth'), map_location='cpu') validation_loss = checkpoint['validation_loss'] # eval_warpq eval_warpq = utils.data.parse_warpq_scores(os.path.join(training_folder, 'out_finalize.txt'))[-1] # testing results testing_results = utils.data.collect_test_stats(os.path.join(testing_folder, 'final')) results = OrderedDict() results['eval_loss'] = validation_loss results['eval_warpq'] = eval_warpq results['pesq_mean'] = testing_results['pesq'][0] results['warpq_mean'] = testing_results['warpq'][0] results['pitch_error_mean'] = testing_results['pitch_error'][0] results['voicing_error_mean'] = testing_results['voicing_error'][0] return results def print_csv(path, results, tag, ranks=None, header=True): metrics = next(iter(results.values())).keys() if ranks is not None: rank_keys = next(iter(ranks.values())).keys() else: rank_keys = [] with open(path, 'w') as f: if header: f.write("uuid, tag") for metric in metrics: f.write(f", {metric}") for rank in rank_keys: f.write(f", {rank}") f.write("\n") for uuid, values in results.items(): f.write(f"{uuid}, {tag}") for val in values.values(): f.write(f", {val:10.8f}") for rank in rank_keys: f.write(f", {ranks[uuid][rank]:4d}") f.write("\n") def get_ranks(results): metrics = list(next(iter(results.values())).keys()) positive = {'pesq_mean', 'mix'} ranks = OrderedDict() for key in results.keys(): ranks[key] = OrderedDict() for metric in metrics: sign = -1 if metric in positive else 1 x = sorted([(key, value[metric]) for key, value in results.items()], key=lambda x: sign * x[1]) x = [y[0] for y in x] for key in results.keys(): ranks[key]['rank_' + metric] = x.index(key) + 1 return ranks def analyse_metrics(results): metrics = ['eval_loss', 'pesq_mean', 'warpq_mean', 'pitch_error_mean', 'voicing_error_mean'] x = [] for metric in metrics: x.append([val[metric] for val in results.values()]) x = np.array(x) print(x) def add_mix_metric(results): metrics = ['eval_loss', 'pesq_mean', 'warpq_mean', 'pitch_error_mean', 'voicing_error_mean'] x = [] for metric in metrics: x.append([val[metric] for val in results.values()]) x = np.array(x).transpose() * np.array([-1, 1, -1, -1, -1]) z = (x - np.mean(x, axis=0)) / np.std(x, axis=0) print(f"covariance matrix for normalized scores of {metrics}:") print(np.cov(z.transpose())) score = np.mean(z, axis=1) for i, key in enumerate(results.keys()): results[key]['mix'] = score[i].item() if __name__ == "__main__": args = parser.parse_args() uuids = sorted([x for x in os.listdir(args.input) if os.path.isdir(os.path.join(args.input, x)) and is_uuid(x)]) results = OrderedDict() for uuid in uuids: results[uuid] = collect_results(os.path.join(args.input, uuid)) add_mix_metric(results) ranks = get_ranks(results) csv = args.csv if args.csv.endswith('.csv') else args.csv + '.csv' print_csv(args.csv, results, args.tag, ranks=ranks) with open(csv[:-4] + '.pickle', 'wb') as f: pickle.dump(results, f, protocol=pickle.HIGHEST_PROTOCOL)