""" /* Copyright (c) 2023 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import os import argparse import sys try: import git has_git = True except: has_git = False import yaml import torch from torch.optim.lr_scheduler import LambdaLR from data import LPCNetDataset from models import model_dict from engine.lpcnet_engine import train_one_epoch, evaluate from utils.data import load_features from utils.wav import wavwrite16 debug = False if debug: args = type('dummy', (object,), { 'setup' : 'setup.yml', 'output' : 'testout', 'device' : None, 'test_features' : None, 'finalize': False, 'initial_checkpoint': None, 'no-redirect': False })() else: parser = argparse.ArgumentParser("train_lpcnet.py") parser.add_argument('setup', type=str, help='setup yaml file') parser.add_argument('output', type=str, help='output path') parser.add_argument('--device', type=str, help='compute device', default=None) parser.add_argument('--test-features', type=str, help='test feature file in v2 format', default=None) parser.add_argument('--finalize', action='store_true', help='run single training round with lr=1e-5') parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint', default=None) parser.add_argument('--no-redirect', action='store_true', help='disables re-direction of output') args = parser.parse_args() torch.set_num_threads(4) with open(args.setup, 'r') as f: setup = yaml.load(f.read(), yaml.FullLoader) if args.finalize: if args.initial_checkpoint is None: raise ValueError('finalization requires initial checkpoint') if 'sparsification' in setup['lpcnet']['config']: for sp_job in setup['lpcnet']['config']['sparsification'].values(): sp_job['start'], sp_job['stop'] = 0, 0 setup['training']['lr'] = 1.0e-5 setup['training']['lr_decay_factor'] = 0.0 setup['training']['epochs'] = 1 checkpoint_prefix = 'checkpoint_finalize' output_prefix = 'output_finalize' setup_name = 'setup_finalize.yml' output_file='out_finalize.txt' else: checkpoint_prefix = 'checkpoint' output_prefix = 'output' setup_name = 'setup.yml' output_file='out.txt' # check model if not 'model' in setup['lpcnet']: print(f'warning: did not find model entry in setup, using default lpcnet') model_name = 'lpcnet' else: model_name = setup['lpcnet']['model'] # prepare output folder if os.path.exists(args.output) and not debug and not args.finalize: print("warning: output folder exists") reply = input('continue? (y/n): ') while reply not in {'y', 'n'}: reply = input('continue? (y/n): ') if reply == 'n': os._exit() else: os.makedirs(args.output, exist_ok=True) checkpoint_dir = os.path.join(args.output, 'checkpoints') os.makedirs(checkpoint_dir, exist_ok=True) # add repo info to setup if has_git: working_dir = os.path.split(__file__)[0] try: repo = git.Repo(working_dir) setup['repo'] = dict() hash = repo.head.object.hexsha urls = list(repo.remote().urls) is_dirty = repo.is_dirty() if is_dirty: print("warning: repo is dirty") setup['repo']['hash'] = hash setup['repo']['urls'] = urls setup['repo']['dirty'] = is_dirty except: has_git = False # dump setup with open(os.path.join(args.output, setup_name), 'w') as f: yaml.dump(setup, f) # prepare inference test if wanted run_inference_test = False if type(args.test_features) != type(None): test_features = load_features(args.test_features) inference_test_dir = os.path.join(args.output, 'inference_test') os.makedirs(inference_test_dir, exist_ok=True) run_inference_test = True # training parameters batch_size = setup['training']['batch_size'] epochs = setup['training']['epochs'] lr = setup['training']['lr'] lr_decay_factor = setup['training']['lr_decay_factor'] # load training dataset lpcnet_config = setup['lpcnet']['config'] data = LPCNetDataset( setup['dataset'], features=lpcnet_config['features'], input_signals=lpcnet_config['signals'], target=lpcnet_config['target'], frames_per_sample=setup['training']['frames_per_sample'], feature_history=lpcnet_config['feature_history'], feature_lookahead=lpcnet_config['feature_lookahead'], lpc_gamma=lpcnet_config.get('lpc_gamma', 1)) # load validation dataset if given if 'validation_dataset' in setup: validation_data = LPCNetDataset( setup['validation_dataset'], features=lpcnet_config['features'], input_signals=lpcnet_config['signals'], target=lpcnet_config['target'], frames_per_sample=setup['training']['frames_per_sample'], feature_history=lpcnet_config['feature_history'], feature_lookahead=lpcnet_config['feature_lookahead'], lpc_gamma=lpcnet_config.get('lpc_gamma', 1)) validation_dataloader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, drop_last=True, num_workers=4) run_validation = True else: run_validation = False # create model model = model_dict[model_name](setup['lpcnet']['config']) if args.initial_checkpoint is not None: print(f"loading state dict from {args.initial_checkpoint}...") chkpt = torch.load(args.initial_checkpoint, map_location='cpu') model.load_state_dict(chkpt['state_dict']) # set compute device if type(args.device) == type(None): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: device = torch.device(args.device) # push model to device model.to(device) # dataloader dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4) # optimizer is introduced to trainable parameters parameters = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.Adam(parameters, lr=lr) # learning rate scheduler scheduler = LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x)) # loss criterion = torch.nn.NLLLoss() # model checkpoint checkpoint = { 'setup' : setup, 'state_dict' : model.state_dict(), 'loss' : -1 } if not args.no_redirect: print(f"re-directing output to {os.path.join(args.output, output_file)}") sys.stdout = open(os.path.join(args.output, output_file), "w") best_loss = 1e9 for ep in range(1, epochs + 1): print(f"training epoch {ep}...") new_loss = train_one_epoch(model, criterion, optimizer, dataloader, device, scheduler) # save checkpoint checkpoint['state_dict'] = model.state_dict() checkpoint['loss'] = new_loss if run_validation: print("running validation...") validation_loss = evaluate(model, criterion, validation_dataloader, device) checkpoint['validation_loss'] = validation_loss if validation_loss < best_loss: torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_best.pth')) best_loss = validation_loss torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth')) torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth')) # run inference test if run_inference_test: model.to("cpu") print("running inference test...") output = model.generate(test_features['features'], test_features['periods'], test_features['lpcs']) testfilename = os.path.join(inference_test_dir, output_prefix + f'_epoch_{ep}.wav') wavwrite16(testfilename, output.numpy(), 16000) model.to(device) print()