import argparse parser = argparse.ArgumentParser() parser.add_argument('features', type=str, help='Features generated from dump_data') parser.add_argument('data', type=str, help='Data generated from dump_data (offset by 5ms)') parser.add_argument('output', type=str, help='output .f32 feature file with replaced neural pitch') parser.add_argument('checkpoint', type=str, help='model checkpoint file') parser.add_argument('path_lpcnet_extractor', type=str, help='path to LPCNet extractor object file (generated on compilation)') parser.add_argument('--device', type=str, help='compute device',default = None,required = False) parser.add_argument('--replace_xcorr', type = bool, default = False, help='Replace LPCNet xcorr with updated one') args = parser.parse_args() import os from utils import stft, random_filter import subprocess import numpy as np import json import torch import tqdm from models import PitchDNNIF, PitchDNNXcorr, PitchDNN device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is not None: device = torch.device(args.device) # Loading the appropriate model checkpoint = torch.load(args.checkpoint, map_location='cpu') dict_params = checkpoint['config'] if dict_params['data_format'] == 'if': pitch_nn = PitchDNNIF(dict_params['freq_keep']*3, dict_params['gru_dim'], dict_params['output_dim']) elif dict_params['data_format'] == 'xcorr': pitch_nn = PitchDNNXcorr(dict_params['xcorr_dim'], dict_params['gru_dim'], dict_params['output_dim']) else: pitch_nn = PitchDNN(dict_params['freq_keep']*3, dict_params['xcorr_dim'], dict_params['gru_dim'], dict_params['output_dim']) pitch_nn.load_state_dict(checkpoint['state_dict']) pitch_nn = pitch_nn.to(device) N = dict_params['window_size'] H = dict_params['hop_factor'] freq_keep = dict_params['freq_keep'] os.environ["OMP_NUM_THREADS"] = "16" def run_lpc(signal, lpcs, frame_length=160): num_frames, lpc_order = lpcs.shape prediction = np.concatenate( [- np.convolve(signal[i * frame_length : (i + 1) * frame_length + lpc_order - 1], lpcs[i], mode='valid') for i in range(num_frames)] ) error = signal[lpc_order :] - prediction return prediction, error if __name__ == "__main__": args = parser.parse_args() features = np.memmap(args.features, dtype=np.float32,mode = 'r').reshape((-1, 36)) data = np.memmap(args.data, dtype=np.int16,mode = 'r').reshape((-1, 2)) num_frames = features.shape[0] feature_dim = features.shape[1] assert feature_dim == 36 output = np.memmap(args.output, dtype=np.float32, shape=(num_frames, feature_dim), mode='w+') output[:, :36] = features # lpc coefficients and signal lpcs = features[:, 20:36] sig = data[:, 1] # parameters # constants pitch_min = 32 pitch_max = 256 lpc_order = 16 fs = 16000 frame_length = 160 overlap_frames = 100 chunk_size = 10000 history_length = frame_length * overlap_frames history = np.zeros(history_length, dtype=np.int16) pitch_position=18 xcorr_position=19 conf_position=36 num_frames = len(sig) // 160 - 1 frame_start = 0 frame_stop = min(frame_start + chunk_size, num_frames) signal_start = 0 signal_stop = frame_stop * frame_length niters = (num_frames - 1)//chunk_size for i in tqdm.trange(niters): if (frame_start > num_frames - 1): break chunk = np.concatenate((history, sig[signal_start:signal_stop])) chunk_la = np.concatenate((history, sig[signal_start:signal_stop + 80])) # Feature computation spec = stft(x = np.concatenate([np.zeros(80),chunk_la/(2**15 - 1)]), w = 'boxcar', N = N, H = H).T phase_diff = spec*np.conj(np.roll(spec,1,axis = -1)) phase_diff = phase_diff/(np.abs(phase_diff) + 1.0e-8) idx_save = np.concatenate([np.arange(freq_keep),(N//2 + 1) + np.arange(freq_keep),2*(N//2 + 1) + np.arange(freq_keep)]) feature = np.concatenate([np.log(np.abs(spec) + 1.0e-8),np.real(phase_diff),np.imag(phase_diff)],axis = 0).T feature_if = feature[:,idx_save] data_temp = np.memmap('./temp_featcompute_' + dict_params['data_format'] + '_.raw', dtype=np.int16, shape=(chunk.shape[0]), mode='w+') data_temp[:chunk.shape[0]] = chunk_la[80:].astype(np.int16) subprocess.run([args.path_lpcnet_extractor, './temp_featcompute_' + dict_params['data_format'] + '_.raw', './temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw']) feature_xcorr = np.flip(np.fromfile('./temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw', dtype='float32').reshape((-1,256),order = 'C'),axis = 1) ones_zero_lag = np.expand_dims(np.ones(feature_xcorr.shape[0]),-1) feature_xcorr = np.concatenate([ones_zero_lag,feature_xcorr],axis = -1) os.remove('./temp_featcompute_' + dict_params['data_format'] + '_.raw') os.remove('./temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw') if dict_params['data_format'] == 'if': feature = feature_if elif dict_params['data_format'] == 'xcorr': feature = feature_xcorr else: indmin = min(feature_if.shape[0],feature_xcorr.shape[0]) feature = np.concatenate([feature_xcorr[:indmin,:],feature_if[:indmin,:]],-1) # Compute pitch with my model model_cents = pitch_nn(torch.from_numpy(np.copy(np.expand_dims(feature,0))).float().to(device)) model_cents = 20*model_cents.argmax(dim=1).cpu().detach().squeeze().numpy() frequency = 62.5*2**(model_cents/1200) frequency = frequency[overlap_frames : overlap_frames + frame_stop - frame_start] # convert frequencies to periods periods = np.round(fs / frequency) periods = np.clip(periods, pitch_min, pitch_max) output[frame_start:frame_stop, pitch_position] = (periods - 100) / 50 frame_offset = (pitch_max + frame_length - 1) // frame_length offset = frame_offset * frame_length padding = lpc_order if frame_start < frame_offset: lpc_coeffs = np.concatenate((np.zeros((frame_offset - frame_start, lpc_order), dtype=np.float32), lpcs[:frame_stop])) else: lpc_coeffs = lpcs[frame_start - frame_offset : frame_stop] pred, error = run_lpc(chunk[history_length - offset - padding :], lpc_coeffs, frame_length=frame_length) xcorr = np.zeros(frame_stop - frame_start) for i, p in enumerate(periods.astype(np.int16)): if p > 0: f1 = error[offset + i * frame_length : offset + (i + 1) * frame_length] f2 = error[offset + i * frame_length - p : offset + (i + 1) * frame_length - p] xcorr[i] = np.dot(f1, f2) / np.sqrt(np.dot(f1, f1) * np.dot(f2, f2) + 1e-6) output[frame_start:frame_stop, xcorr_position] = xcorr - 0.5 # update buffers and indices history = chunk[-history_length :] frame_start += chunk_size frame_stop += chunk_size frame_stop = min(frame_stop, num_frames) signal_start = frame_start * frame_length signal_stop = frame_stop * frame_length