""" Perform Data Augmentation (Gain, Additive Noise, Random Filtering) on Input TTS Data 1. Read in chunks and compute clean pitch first 2. Then add in augmentation (Noise/Level/Response) - Adds filtered noise from the "Demand" dataset, https://zenodo.org/record/1227121#.XRKKxYhKiUk - When using the Demand Dataset, consider each channel as a possible noise input, and keep the first 4 minutes of noise for training 3. Use this "augmented" audio for feature computation, and compute pitch using CREPE on the clean input Notes: To ensure consistency with the discovered CREPE offset, we do the following - We pad the input audio to the zero-centered CREPE estimator with 80 zeros - We pad the input audio to our feature computation with 160 zeros to center them """ import argparse parser = argparse.ArgumentParser() parser.add_argument('data', type=str, help='input raw audio data') parser.add_argument('output', type=str, help='output directory') parser.add_argument('--gpu-index', type=int, help='GPU index to use if multiple GPUs',default = 0,required = False) parser.add_argument('--chunk-size-frames', type=int, help='Number of frames to process at a time',default = 100000,required = False) args = parser.parse_args() import os os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_index) import numpy as np import tqdm import crepe data = np.memmap(args.data, dtype=np.int16,mode = 'r') # list_features = [] list_cents = [] list_confidences = [] min_period = 32 max_period = 256 f_ref = 16000/max_period chunk_size_frames = args.chunk_size_frames chunk_size = chunk_size_frames*160 nb_chunks = (data.shape[0]+79)//chunk_size+1 output_data = np.zeros((0,2),dtype='float32') for i in tqdm.trange(nb_chunks): if i==0: chunk = np.concatenate([np.zeros(80),data[:chunk_size-80]]) elif i==nb_chunks-1: chunk = data[i*chunk_size-80:] else: chunk = data[i*chunk_size-80:(i+1)*chunk_size-80] chunk = chunk/np.array(32767.,dtype='float32') # Clean Pitch/Confidence Estimate # Padding input to CREPE by 80 samples to ensure it aligns _, pitch, confidence, _ = crepe.predict(chunk, 16000, center=True, viterbi=True,verbose=0) pitch = pitch[:chunk_size_frames] confidence = confidence[:chunk_size_frames] # Filter out of range pitches/confidences confidence[pitch < 16000/max_period] = 0 confidence[pitch > 16000/min_period] = 0 pitch = np.reshape(pitch, (-1, 1)) confidence = np.reshape(confidence, (-1, 1)) out = np.concatenate([pitch, confidence], axis=-1, dtype='float32') output_data = np.concatenate([output_data, out], axis=0) output_data.tofile(args.output)