""" /* Copyright (c) 2023 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import sys sys.path.append('../dnntools') import numbers import torch from torch import nn import torch.nn.functional as F from torch.nn.utils import weight_norm from utils.complexity import _conv1d_flop_count from dnntools.quantization.softquant import soft_quant from dnntools.sparsification import mark_for_sparsification class SilkFeatureNetPL(nn.Module): """ feature net with partial lookahead """ def __init__(self, feature_dim=47, num_channels=256, hidden_feature_dim=64, softquant=False, sparsify=True, sparsification_density=0.5, apply_weight_norm=False): super(SilkFeatureNetPL, self).__init__() if isinstance(sparsification_density, numbers.Number): sparsification_density = 4 * [sparsification_density] self.feature_dim = feature_dim self.num_channels = num_channels self.hidden_feature_dim = hidden_feature_dim norm = weight_norm if apply_weight_norm else lambda x, name=None: x self.conv1 = norm(nn.Conv1d(feature_dim, self.hidden_feature_dim, 1)) self.conv2 = norm(nn.Conv1d(4 * self.hidden_feature_dim, num_channels, 2)) self.tconv = norm(nn.ConvTranspose1d(num_channels, num_channels, 4, 4)) self.gru = norm(norm(nn.GRU(num_channels, num_channels, batch_first=True), name='weight_hh_l0'), name='weight_ih_l0') if softquant: self.conv2 = soft_quant(self.conv2) self.tconv = soft_quant(self.tconv) self.gru = soft_quant(self.gru, names=['weight_hh_l0', 'weight_ih_l0']) if sparsify: mark_for_sparsification(self.conv2, (sparsification_density[0], [8, 4])) mark_for_sparsification(self.tconv, (sparsification_density[1], [8, 4])) mark_for_sparsification( self.gru, { 'W_ir' : (sparsification_density[2], [8, 4], False), 'W_iz' : (sparsification_density[2], [8, 4], False), 'W_in' : (sparsification_density[2], [8, 4], False), 'W_hr' : (sparsification_density[3], [8, 4], True), 'W_hz' : (sparsification_density[3], [8, 4], True), 'W_hn' : (sparsification_density[3], [8, 4], True), } ) def flop_count(self, rate=200): count = 0 for conv in self.conv1, self.conv2, self.tconv: count += _conv1d_flop_count(conv, rate) count += 2 * (3 * self.gru.input_size * self.gru.hidden_size + 3 * self.gru.hidden_size * self.gru.hidden_size) * rate return count def forward(self, features, state=None): """ features shape: (batch_size, num_frames, feature_dim) """ batch_size = features.size(0) num_frames = features.size(1) if state is None: state = torch.zeros((1, batch_size, self.num_channels), device=features.device) features = features.permute(0, 2, 1) # dimensionality reduction c = torch.tanh(self.conv1(features)) # frame accumulation c = c.permute(0, 2, 1) c = c.reshape(batch_size, num_frames // 4, -1).permute(0, 2, 1) c = torch.tanh(self.conv2(F.pad(c, [1, 0]))) # upsampling c = torch.tanh(self.tconv(c)) c = c.permute(0, 2, 1) c, _ = self.gru(c, state) return c