""" /* Copyright (c) 2023 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import argparse import torch from scipy.io import wavfile from models import model_dict from utils.silk_features import load_inference_data from utils import endoscopy debug = False if debug: args = type('dummy', (object,), { 'input' : 'testitems/all_0_orig.se', 'checkpoint' : 'testout/checkpoints/checkpoint_epoch_5.pth', 'output' : 'out.wav', })() else: parser = argparse.ArgumentParser() parser.add_argument('input', type=str, help='path to folder with features and signals') parser.add_argument('checkpoint', type=str, help='checkpoint file') parser.add_argument('output', type=str, help='output file') parser.add_argument('--debug', action='store_true', help='enables debug output') args = parser.parse_args() torch.set_num_threads(2) input_folder = args.input checkpoint_file = args.checkpoint output_file = args.output if not output_file.endswith('.wav'): output_file += '.wav' checkpoint = torch.load(checkpoint_file, map_location="cpu") # check model if not 'name' in checkpoint['setup']['model']: print(f'warning: did not find model name entry in setup, using pitchpostfilter per default') model_name = 'pitchpostfilter' else: model_name = checkpoint['setup']['model']['name'] model = model_dict[model_name](*checkpoint['setup']['model']['args'], **checkpoint['setup']['model']['kwargs']) model.load_state_dict(checkpoint['state_dict']) # generate model input setup = checkpoint['setup'] signal, features, periods, numbits = load_inference_data(input_folder, **setup['data']) if args.debug: endoscopy.init() output = model.process(signal, features, periods, numbits, debug=args.debug) wavfile.write(output_file, 16000, output.cpu().numpy()) if args.debug: endoscopy.close()