""" /* Copyright (c) 2023 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ """ This module implements the SILK upsampler from 16kHz to 24 or 48 kHz """ import torch from torch import nn import torch.nn.functional as F import numpy as np frac_fir = np.array( [ [189, -600, 617, 30567, 2996, -1375, 425, -46], [117, -159, -1070, 29704, 5784, -2143, 611, -71], [52, 221, -2392, 28276, 8798, -2865, 773, -91], [-4, 529, -3350, 26341, 11950, -3487, 896, -103], [-48, 758, -3956, 23973, 15143, -3957, 967, -107], [-80, 905, -4235, 21254, 18278, -4222, 972, -99], [-99, 972, -4222, 18278, 21254, -4235, 905, -80], [-107, 967, -3957, 15143, 23973, -3956, 758, -48], [-103, 896, -3487, 11950, 26341, -3350, 529, -4], [-91, 773, -2865, 8798, 28276, -2392, 221, 52], [-71, 611, -2143, 5784, 29704, -1070, -159, 117], [-46, 425, -1375, 2996, 30567, 617, -600, 189] ], dtype=np.float32 ) / 2**15 hq_2x_up_c_even = [x / 2**16 for x in [1746, 14986, 39083 - 65536]] hq_2x_up_c_odd = [x / 2**16 for x in [6854, 25769, 55542 - 65536]] def get_impz(coeffs, n): s = 3*[0] y = np.zeros(n) x = 1 for i in range(n): Y = x - s[0] X = Y * coeffs[0] tmp1 = s[0] + X s[0] = x + X Y = tmp1 - s[1] X = Y * coeffs[1] tmp2 = s[1] + X s[1] = tmp1 + X Y = tmp2 - s[2] X = Y * (1 + coeffs[2]) tmp3 = s[2] + X s[2] = tmp2 + X y[i] = tmp3 x = 0 return y class SilkUpsampler(nn.Module): SUPPORTED_TARGET_RATES = {24000, 48000} SUPPORTED_SOURCE_RATES = {16000} def __init__(self, fs_in=16000, fs_out=48000): super().__init__() self.fs_in = fs_in self.fs_out = fs_out if fs_in not in self.SUPPORTED_SOURCE_RATES: raise ValueError(f'SilkUpsampler currently only supports upsampling from {self.SUPPORTED_SOURCE_RATES} Hz') if fs_out not in self.SUPPORTED_TARGET_RATES: raise ValueError(f'SilkUpsampler currently only supports upsampling to {self.SUPPORTED_TARGET_RATES} Hz') # hq 2x upsampler as FIR approximation hq_2x_up_even = get_impz(hq_2x_up_c_even, 128)[::-1].copy() hq_2x_up_odd = get_impz(hq_2x_up_c_odd , 128)[::-1].copy() self.hq_2x_up_even = nn.Parameter(torch.from_numpy(hq_2x_up_even).float().view(1, 1, -1), requires_grad=False) self.hq_2x_up_odd = nn.Parameter(torch.from_numpy(hq_2x_up_odd ).float().view(1, 1, -1), requires_grad=False) self.hq_2x_up_padding = [127, 0] # interpolation filters frac_01_24 = frac_fir[0] frac_17_24 = frac_fir[8] frac_09_24 = frac_fir[4] self.frac_01_24 = nn.Parameter(torch.from_numpy(frac_01_24).view(1, 1, -1), requires_grad=False) self.frac_17_24 = nn.Parameter(torch.from_numpy(frac_17_24).view(1, 1, -1), requires_grad=False) self.frac_09_24 = nn.Parameter(torch.from_numpy(frac_09_24).view(1, 1, -1), requires_grad=False) self.stride = 1 if fs_out == 48000 else 2 def hq_2x_up(self, x): num_channels = x.size(1) weight_even = torch.repeat_interleave(self.hq_2x_up_even, num_channels, 0) weight_odd = torch.repeat_interleave(self.hq_2x_up_odd , num_channels, 0) x_pad = F.pad(x, self.hq_2x_up_padding) y_even = F.conv1d(x_pad, weight_even, groups=num_channels) y_odd = F.conv1d(x_pad, weight_odd , groups=num_channels) y = torch.cat((y_even.unsqueeze(-1), y_odd.unsqueeze(-1)), dim=-1).flatten(2) return y def interpolate_3_2(self, x): num_channels = x.size(1) weight_01_24 = torch.repeat_interleave(self.frac_01_24, num_channels, 0) weight_17_24 = torch.repeat_interleave(self.frac_17_24, num_channels, 0) weight_09_24 = torch.repeat_interleave(self.frac_09_24, num_channels, 0) x_pad = F.pad(x, [8, 0]) y_01_24 = F.conv1d(x_pad, weight_01_24, stride=2, groups=num_channels) y_17_24 = F.conv1d(x_pad, weight_17_24, stride=2, groups=num_channels) y_09_24_sh1 = F.conv1d(torch.roll(x_pad, -1, -1), weight_09_24, stride=2, groups=num_channels) y = torch.cat( (y_01_24.unsqueeze(-1), y_17_24.unsqueeze(-1), y_09_24_sh1.unsqueeze(-1)), dim=-1).flatten(2) return y[..., :-3] def forward(self, x): y_2x = self.hq_2x_up(x) y_3x = self.interpolate_3_2(y_2x) return y_3x[:, :, ::self.stride]