import os import torch import numpy as np def load_lpcnet_features(feature_file, version=2): if version == 2: layout = { 'cepstrum': [0,18], 'periods': [18, 19], 'pitch_corr': [19, 20], 'lpc': [20, 36] } frame_length = 36 elif version == 1: layout = { 'cepstrum': [0,18], 'periods': [36, 37], 'pitch_corr': [37, 38], 'lpc': [39, 55], } frame_length = 55 else: raise ValueError(f'unknown feature version: {version}') raw_features = torch.from_numpy(np.fromfile(feature_file, dtype='float32')) raw_features = raw_features.reshape((-1, frame_length)) features = torch.cat( [ raw_features[:, layout['cepstrum'][0] : layout['cepstrum'][1]], raw_features[:, layout['pitch_corr'][0] : layout['pitch_corr'][1]] ], dim=1 ) lpcs = raw_features[:, layout['lpc'][0] : layout['lpc'][1]] periods = (0.1 + 50 * raw_features[:, layout['periods'][0] : layout['periods'][1]] + 100).long() return {'features' : features, 'periods' : periods, 'lpcs' : lpcs} def create_new_data(signal_path, reference_data_path, new_data_path, offset=320, preemph_factor=0.85): ref_data = np.memmap(reference_data_path, dtype=np.int16) signal = np.memmap(signal_path, dtype=np.int16) signal_preemph_path = os.path.splitext(signal_path)[0] + '_preemph.raw' signal_preemph = np.memmap(signal_preemph_path, dtype=np.int16, mode='write', shape=signal.shape) assert len(signal) % 160 == 0 num_frames = len(signal) // 160 mem = np.zeros(1) for fr in range(len(signal)//160): signal_preemph[fr * 160 : (fr + 1) * 160] = np.convolve(np.concatenate((mem, signal[fr * 160 : (fr + 1) * 160])), [1, -preemph_factor], mode='valid') mem = signal[(fr + 1) * 160 - 1 : (fr + 1) * 160] new_data = np.memmap(new_data_path, dtype=np.int16, mode='write', shape=ref_data.shape) new_data[:] = 0 N = len(signal) - offset new_data[1 : 2*N + 1: 2] = signal_preemph[offset:] new_data[2 : 2*N + 2: 2] = signal_preemph[offset:] def parse_warpq_scores(output_file): """ extracts warpq scores from output file """ with open(output_file, "r") as f: lines = f.readlines() scores = [float(line.split("WARP-Q score:")[-1]) for line in lines if line.startswith("WARP-Q score:")] return scores def parse_stats_file(file): with open(file, "r") as f: lines = f.readlines() mean = float(lines[0].split(":")[-1]) bt_mean = float(lines[1].split(":")[-1]) top_mean = float(lines[2].split(":")[-1]) return mean, bt_mean, top_mean def collect_test_stats(test_folder): """ collects statistics for all discovered metrics from test folder """ metrics = {'pesq', 'warpq', 'pitch_error', 'voicing_error'} results = dict() content = os.listdir(test_folder) stats_files = [file for file in content if file.startswith('stats_')] for file in stats_files: metric = file[len("stats_") : -len(".txt")] if metric not in metrics: print(f"warning: unknown metric {metric}") mean, bt_mean, top_mean = parse_stats_file(os.path.join(test_folder, file)) results[metric] = [mean, bt_mean, top_mean] return results