""" /* Copyright (c) 2022 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import os os.environ['CUDA_VISIBLE_DEVICES'] = "" import argparse parser = argparse.ArgumentParser() parser.add_argument('exchange_folder', type=str, help='exchange folder path') parser.add_argument('output', type=str, help='path to output model checkpoint') model_group = parser.add_argument_group(title="model parameters") model_group.add_argument('--num-features', type=int, help="number of features, default: 20", default=20) model_group.add_argument('--latent-dim', type=int, help="number of symbols produces by encoder, default: 80", default=80) model_group.add_argument('--cond-size', type=int, help="first conditioning size, default: 256", default=256) model_group.add_argument('--cond-size2', type=int, help="second conditioning size, default: 256", default=256) model_group.add_argument('--state-dim', type=int, help="dimensionality of transfered state, default: 24", default=24) model_group.add_argument('--quant-levels', type=int, help="number of quantization levels, default: 40", default=40) args = parser.parse_args() import torch from rdovae import RDOVAE from wexchange.torch import load_torch_weights exchange_name_to_name = { 'encoder_stack_layer1_dense' : 'core_encoder.module.dense_1', 'encoder_stack_layer3_dense' : 'core_encoder.module.dense_2', 'encoder_stack_layer5_dense' : 'core_encoder.module.dense_3', 'encoder_stack_layer7_dense' : 'core_encoder.module.dense_4', 'encoder_stack_layer8_dense' : 'core_encoder.module.dense_5', 'encoder_state_layer1_dense' : 'core_encoder.module.state_dense_1', 'encoder_state_layer2_dense' : 'core_encoder.module.state_dense_2', 'encoder_stack_layer2_gru' : 'core_encoder.module.gru_1', 'encoder_stack_layer4_gru' : 'core_encoder.module.gru_2', 'encoder_stack_layer6_gru' : 'core_encoder.module.gru_3', 'encoder_stack_layer9_conv' : 'core_encoder.module.conv1', 'statistical_model_embedding' : 'statistical_model.quant_embedding', 'decoder_state1_dense' : 'core_decoder.module.gru_1_init', 'decoder_state2_dense' : 'core_decoder.module.gru_2_init', 'decoder_state3_dense' : 'core_decoder.module.gru_3_init', 'decoder_stack_layer1_dense' : 'core_decoder.module.dense_1', 'decoder_stack_layer3_dense' : 'core_decoder.module.dense_2', 'decoder_stack_layer5_dense' : 'core_decoder.module.dense_3', 'decoder_stack_layer7_dense' : 'core_decoder.module.dense_4', 'decoder_stack_layer8_dense' : 'core_decoder.module.dense_5', 'decoder_stack_layer9_dense' : 'core_decoder.module.output', 'decoder_stack_layer2_gru' : 'core_decoder.module.gru_1', 'decoder_stack_layer4_gru' : 'core_decoder.module.gru_2', 'decoder_stack_layer6_gru' : 'core_decoder.module.gru_3' } if __name__ == "__main__": checkpoint = dict() # parameters num_features = args.num_features latent_dim = args.latent_dim quant_levels = args.quant_levels cond_size = args.cond_size cond_size2 = args.cond_size2 state_dim = args.state_dim # model checkpoint['model_args'] = (num_features, latent_dim, quant_levels, cond_size, cond_size2) checkpoint['model_kwargs'] = {'state_dim': state_dim} model = RDOVAE(*checkpoint['model_args'], **checkpoint['model_kwargs']) dense_layer_names = [ 'encoder_stack_layer1_dense', 'encoder_stack_layer3_dense', 'encoder_stack_layer5_dense', 'encoder_stack_layer7_dense', 'encoder_stack_layer8_dense', 'encoder_state_layer1_dense', 'encoder_state_layer2_dense', 'decoder_state1_dense', 'decoder_state2_dense', 'decoder_state3_dense', 'decoder_stack_layer1_dense', 'decoder_stack_layer3_dense', 'decoder_stack_layer5_dense', 'decoder_stack_layer7_dense', 'decoder_stack_layer8_dense', 'decoder_stack_layer9_dense' ] gru_layer_names = [ 'encoder_stack_layer2_gru', 'encoder_stack_layer4_gru', 'encoder_stack_layer6_gru', 'decoder_stack_layer2_gru', 'decoder_stack_layer4_gru', 'decoder_stack_layer6_gru' ] conv1d_layer_names = [ 'encoder_stack_layer9_conv' ] embedding_layer_names = [ 'statistical_model_embedding' ] for name in dense_layer_names + gru_layer_names + conv1d_layer_names + embedding_layer_names: print(f"loading weights for layer {exchange_name_to_name[name]}") layer = model.get_submodule(exchange_name_to_name[name]) load_torch_weights(os.path.join(args.exchange_folder, name), layer) checkpoint['state_dict'] = model.state_dict() torch.save(checkpoint, args.output)