#!/usr/bin/python3 '''Copyright (c) 2017-2018 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import os import io import lpcnet import sys import numpy as np from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Layer, GRU, Dense, Conv1D, Embedding from ulaw import ulaw2lin, lin2ulaw from mdense import MDense from diffembed import diff_Embed from parameters import get_parameter import h5py import re import argparse # no cuda devices needed os.environ['CUDA_VISIBLE_DEVICES'] = "" # Flag for dumping e2e (differentiable lpc) network weights flag_e2e = False max_rnn_neurons = 1 max_conv_inputs = 1 max_mdense_tmp = 1 def printVector(f, vector, name, dtype='float', dotp=False): global array_list if dotp: vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8)) vector = vector.transpose((2, 0, 3, 1)) v = np.reshape(vector, (-1)); #print('static const float ', name, '[', len(v), '] = \n', file=f) if name not in array_list: array_list.append(name) f.write('#ifndef USE_WEIGHTS_FILE\n') f.write('#define WEIGHTS_{}_DEFINED\n'.format(name)) f.write('#define WEIGHTS_{}_TYPE WEIGHT_TYPE_{}\n'.format(name, dtype)) f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v))) for i in range(0, len(v)): f.write('{}'.format(v[i])) if (i!=len(v)-1): f.write(',') else: break; if (i%8==7): f.write("\n ") else: f.write(" ") #print(v, file=f) f.write('\n};\n') f.write('#endif\n\n') return; def printSparseVector(f, A, name, have_diag=True): N = A.shape[0] M = A.shape[1] W = np.zeros((0,), dtype='int') W0 = np.zeros((0,)) if have_diag: diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])]) A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N])) A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N])) A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:])) printVector(f, diag, name + '_diag') AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int') idx = np.zeros((0,), dtype='int') for i in range(M//8): pos = idx.shape[0] idx = np.append(idx, -1) nb_nonzero = 0 for j in range(N//4): block = A[j*4:(j+1)*4, i*8:(i+1)*8] qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8] if np.sum(np.abs(block)) > 1e-10: nb_nonzero = nb_nonzero + 1 idx = np.append(idx, j*4) vblock = qblock.transpose((1,0)).reshape((-1,)) W0 = np.concatenate([W0, block.reshape((-1,))]) W = np.concatenate([W, vblock]) idx[pos] = nb_nonzero f.write('#ifdef DOT_PROD\n') printVector(f, W, name, dtype='qweight') f.write('#else /*DOT_PROD*/\n') printVector(f, W0, name, dtype='qweight') f.write('#endif /*DOT_PROD*/\n') #idx = np.tile(np.concatenate([np.array([N]), np.arange(N)]), 3*N//16) printVector(f, idx, name + '_idx', dtype='int') return AQ def dump_layer_ignore(self, f, hf): print("ignoring layer " + self.name + " of type " + self.__class__.__name__) return False Layer.dump_layer = dump_layer_ignore def dump_sparse_gru(self, f, hf): global max_rnn_neurons name = 'sparse_' + self.name print("printing layer " + name + " of type sparse " + self.__class__.__name__) weights = self.get_weights() qweights = printSparseVector(f, weights[1], name + '_recurrent_weights') printVector(f, weights[-1], name + '_bias') subias = weights[-1].copy() subias[1,:] = subias[1,:] - np.sum(qweights*(1./128),axis=0) printVector(f, subias, name + '_subias') if hasattr(self, 'activation'): activation = self.activation.__name__.upper() else: activation = 'TANH' if hasattr(self, 'reset_after') and not self.reset_after: reset_after = 0 else: reset_after = 1 neurons = weights[0].shape[1]//3 max_rnn_neurons = max(max_rnn_neurons, neurons) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) model_struct.write(' SparseGRULayer {};\n'.format(name)); model_init.write(' if (sparse_gru_init(&model->{}, arrays, "{}_bias", "{}_subias", "{}_recurrent_weights_diag", "{}_recurrent_weights", "{}_recurrent_weights_idx", {}, ACTIVATION_{}, {})) return 1;\n' .format(name, name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after)) return True def dump_grub(self, f, hf, gru_a_size): global max_rnn_neurons name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() qweight = printSparseVector(f, weights[0][:gru_a_size, :], name + '_weights', have_diag=False) f.write('#ifdef DOT_PROD\n') qweight2 = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127) printVector(f, qweight2, name + '_recurrent_weights', dotp=True, dtype='qweight') f.write('#else /*DOT_PROD*/\n') printVector(f, weights[1], name + '_recurrent_weights') f.write('#endif /*DOT_PROD*/\n') printVector(f, weights[-1], name + '_bias') subias = weights[-1].copy() subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0) subias[1,:] = subias[1,:] - np.sum(qweight2*(1./128.),axis=0) printVector(f, subias, name + '_subias') if hasattr(self, 'activation'): activation = self.activation.__name__.upper() else: activation = 'TANH' if hasattr(self, 'reset_after') and not self.reset_after: reset_after = 0 else: reset_after = 1 neurons = weights[0].shape[1]//3 max_rnn_neurons = max(max_rnn_neurons, neurons) model_struct.write(' GRULayer {};\n'.format(name)); model_init.write(' if (gru_init(&model->{}, arrays, "{}_bias", "{}_subias", "{}_weights", "{}_weights_idx", "{}_recurrent_weights", {}, {}, ACTIVATION_{}, {})) return 1;\n' .format(name, name, name, name, name, name, gru_a_size, weights[0].shape[1]//3, activation, reset_after)) return True def dump_gru_layer_dummy(self, f, hf): name = self.name weights = self.get_weights() hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) return True; GRU.dump_layer = dump_gru_layer_dummy def dump_dense_layer_impl(name, weights, bias, activation, f, hf): printVector(f, weights, name + '_weights') printVector(f, bias, name + '_bias') hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1])) model_struct.write(' DenseLayer {};\n'.format(name)); model_init.write(' if (dense_init(&model->{}, arrays, "{}_bias", "{}_weights", {}, {}, ACTIVATION_{})) return 1;\n' .format(name, name, name, weights.shape[0], weights.shape[1], activation)) def dump_dense_layer(self, f, hf): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() activation = self.activation.__name__.upper() dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf) return False Dense.dump_layer = dump_dense_layer def dump_mdense_layer(self, f, hf): global max_mdense_tmp name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, np.transpose(weights[0], (0, 2, 1)), name + '_weights') printVector(f, np.transpose(weights[1], (1, 0)), name + '_bias') printVector(f, np.transpose(weights[2], (1, 0)), name + '_factor') activation = self.activation.__name__.upper() max_mdense_tmp = max(max_mdense_tmp, weights[0].shape[0]*weights[0].shape[2]) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[0])) model_struct.write(' MDenseLayer {};\n'.format(name)); model_init.write(' if (mdense_init(&model->{}, arrays, "{}_bias", "{}_weights", "{}_factor", {}, {}, {}, ACTIVATION_{})) return 1;\n' .format(name, name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation)) return False MDense.dump_layer = dump_mdense_layer def dump_conv1d_layer(self, f, hf): global max_conv_inputs name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, weights[0], name + '_weights') printVector(f, weights[-1], name + '_bias') activation = self.activation.__name__.upper() max_conv_inputs = max(max_conv_inputs, weights[0].shape[1]*weights[0].shape[0]) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2])) hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1))) hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2)) model_struct.write(' Conv1DLayer {};\n'.format(name)); model_init.write(' if (conv1d_init(&model->{}, arrays, "{}_bias", "{}_weights", {}, {}, {}, ACTIVATION_{})) return 1;\n' .format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation)) return True Conv1D.dump_layer = dump_conv1d_layer def dump_embedding_layer_impl(name, weights, f, hf): printVector(f, weights, name + '_weights') hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1])) model_struct.write(' EmbeddingLayer {};\n'.format(name)); model_init.write(' if (embedding_init(&model->{}, arrays, "{}_weights", {}, {})) return 1;\n' .format(name, name, weights.shape[0], weights.shape[1])) def dump_embedding_layer(self, f, hf): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights()[0] dump_embedding_layer_impl(name, weights, f, hf) return False Embedding.dump_layer = dump_embedding_layer diff_Embed.dump_layer = dump_embedding_layer if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('model_file', type=str, help='model weight h5 file') parser.add_argument('--nnet-header', type=str, help='name of c header file for dumped model', default='nnet_data.h') parser.add_argument('--nnet-source', type=str, help='name of c source file for dumped model', default='nnet_data.c') parser.add_argument('--lpc-gamma', type=float, help='LPC weighting factor. If not specified I will attempt to read it from the model file with 1 as default', default=None) parser.add_argument('--lookahead', type=float, help='Features lookahead. If not specified I will attempt to read it from the model file with 2 as default', default=None) args = parser.parse_args() filename = args.model_file with h5py.File(filename, "r") as f: units = min(f['model_weights']['gru_a']['gru_a']['recurrent_kernel:0'].shape) units2 = min(f['model_weights']['gru_b']['gru_b']['recurrent_kernel:0'].shape) cond_size = min(f['model_weights']['feature_dense1']['feature_dense1']['kernel:0'].shape) e2e = 'rc2lpc' in f['model_weights'] model, _, _ = lpcnet.new_lpcnet_model(rnn_units1=units, rnn_units2=units2, flag_e2e = e2e, cond_size=cond_size) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) #model.summary() model.load_weights(filename, by_name=True) cfile = args.nnet_source hfile = args.nnet_header f = open(cfile, 'w') hf = open(hfile, 'w') model_struct = io.StringIO() model_init = io.StringIO() model_struct.write('typedef struct {\n') model_init.write('#ifndef DUMP_BINARY_WEIGHTS\n') model_init.write('int init_lpcnet_model(LPCNetModel *model, const WeightArray *arrays) {\n') array_list = [] f.write('/*This file is automatically generated from a Keras model*/\n') f.write('/*based on model {}*/\n\n'.format(sys.argv[1])) f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "nnet.h"\n#include "{}"\n\n'.format(hfile)) hf.write('/*This file is automatically generated from a Keras model*/\n\n') hf.write('#ifndef RNN_DATA_H\n#define RNN_DATA_H\n\n#include "nnet.h"\n\n') if e2e: hf.write('/* This is an end-to-end model */\n') hf.write('#define END2END\n\n') else: hf.write('/* This is *not* an end-to-end model */\n') hf.write('/* #define END2END */\n\n') # LPC weighting factor if type(args.lpc_gamma) == type(None): lpc_gamma = get_parameter(model, 'lpc_gamma', 1) else: lpc_gamma = args.lpc_gamma hf.write('/* LPC weighting factor */\n') hf.write('#define LPC_GAMMA ' + str(lpc_gamma) +'f\n\n') # look-ahead if type(args.lookahead) == type(None): lookahead = get_parameter(model, 'lookahead', 2) else: lookahead = args.lookahead hf.write('/* Features look-ahead */\n') hf.write('#define FEATURES_DELAY ' + str(lookahead) +'\n\n') embed_size = lpcnet.embed_size E = model.get_layer('embed_sig').get_weights()[0] W = model.get_layer('gru_a').get_weights()[0][:embed_size,:] dump_embedding_layer_impl('gru_a_embed_sig', np.dot(E, W), f, hf) W = model.get_layer('gru_a').get_weights()[0][embed_size:2*embed_size,:] dump_embedding_layer_impl('gru_a_embed_pred', np.dot(E, W), f, hf) W = model.get_layer('gru_a').get_weights()[0][2*embed_size:3*embed_size,:] dump_embedding_layer_impl('gru_a_embed_exc', np.dot(E, W), f, hf) W = model.get_layer('gru_a').get_weights()[0][3*embed_size:,:] #FIXME: dump only half the biases b = model.get_layer('gru_a').get_weights()[2] dump_dense_layer_impl('gru_a_dense_feature', W, b[:len(b)//2], 'LINEAR', f, hf) W = model.get_layer('gru_b').get_weights()[0][model.rnn_units1:,:] b = model.get_layer('gru_b').get_weights()[2] # Set biases to zero because they'll be included in the GRU input part # (we need regular and SU biases) dump_dense_layer_impl('gru_b_dense_feature', W, 0*b[:len(b)//2], 'LINEAR', f, hf) dump_grub(model.get_layer('gru_b'), f, hf, model.rnn_units1) layer_list = [] for i, layer in enumerate(model.layers): if layer.dump_layer(f, hf): layer_list.append(layer.name) dump_sparse_gru(model.get_layer('gru_a'), f, hf) f.write('#ifndef USE_WEIGHTS_FILE\n') f.write('const WeightArray lpcnet_arrays[] = {\n') for name in array_list: f.write('#ifdef WEIGHTS_{}_DEFINED\n'.format(name)) f.write(' {{"{}", WEIGHTS_{}_TYPE, sizeof({}), {}}},\n'.format(name, name, name, name)) f.write('#endif\n') f.write(' {NULL, 0, 0, NULL}\n};\n') f.write('#endif\n') model_init.write(' return 0;\n}\n') model_init.write('#endif\n') f.write(model_init.getvalue()) hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons)) hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs)) hf.write('#define MAX_MDENSE_TMP {}\n\n'.format(max_mdense_tmp)) hf.write('typedef struct {\n') for i, name in enumerate(layer_list): hf.write(' float {}_state[{}_STATE_SIZE];\n'.format(name, name.upper())) hf.write('} NNetState;\n\n') model_struct.write('} LPCNetModel;\n\n') hf.write(model_struct.getvalue()) hf.write('int init_lpcnet_model(LPCNetModel *model, const WeightArray *arrays);\n\n') hf.write('\n\n#endif\n') f.close() hf.close()