#!/usr/bin/python3 '''Copyright (c) 2021-2022 Amazon Copyright (c) 2018-2019 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' # Train an LPCNet model import argparse #from plc_loader import PLCLoader parser = argparse.ArgumentParser(description='Train a PLC model') parser.add_argument('features', metavar='', help='binary features file (float32)') parser.add_argument('output', metavar='', help='trained model file (.h5)') parser.add_argument('--model', metavar='', default='rdovae', help='PLC model python definition (without .py)') group1 = parser.add_mutually_exclusive_group() group1.add_argument('--weights', metavar='', help='model weights') parser.add_argument('--cond-size', metavar='', default=1024, type=int, help='number of units in conditioning network (default 1024)') parser.add_argument('--batch-size', metavar='', default=1, type=int, help='batch size to use (default 128)') parser.add_argument('--seq-length', metavar='', default=1000, type=int, help='sequence length to use (default 1000)') args = parser.parse_args() import importlib rdovae = importlib.import_module(args.model) from rdovae import apply_dead_zone import sys import numpy as np from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger import tensorflow.keras.backend as K import h5py import tensorflow as tf from rdovae import pvq_quantize # Try reducing batch_size if you run out of memory on your GPU batch_size = args.batch_size model, encoder, decoder, qembedding = rdovae.new_rdovae_model(nb_used_features=20, nb_bits=80, batch_size=batch_size, cond_size=args.cond_size) model.load_weights(args.weights) lpc_order = 16 feature_file = args.features nb_features = model.nb_used_features + lpc_order nb_used_features = model.nb_used_features sequence_size = args.seq_length # u for unquantised, load 16 bit PCM samples and convert to mu-law features = np.memmap(feature_file, dtype='float32', mode='r') nb_sequences = len(features)//(nb_features*sequence_size)//batch_size*batch_size features = features[:nb_sequences*sequence_size*nb_features] features = np.reshape(features, (nb_sequences, sequence_size, nb_features)) print(features.shape) features = features[:, :, :nb_used_features] #features = np.random.randn(73600, 1000, 17) bits, gru_state_dec = encoder.predict([features], batch_size=batch_size) (gru_state_dec).astype('float32').tofile(args.output + "-state.f32") #dist = rdovae.feat_dist_loss(features, quant_out) #rate = rdovae.sq1_rate_loss(features, model_bits) #rate2 = rdovae.sq_rate_metric(features, model_bits) #print(dist, rate, rate2) print("shapes are:") print(bits.shape) print(gru_state_dec.shape) features.astype('float32').tofile(args.output + "-input.f32") #quant_out.astype('float32').tofile(args.output + "-enc_dec.f32") nbits=80 bits.astype('float32').tofile(args.output + "-syms.f32") lambda_val = 0.0002 * np.ones((nb_sequences, sequence_size//2, 1)) quant_id = np.round(3.8*np.log(lambda_val/.0002)).astype('int16') quant_id = quant_id[:,:,0] quant_embed = qembedding(quant_id) quant_scale = tf.math.softplus(quant_embed[:,:,:nbits]) dead_zone = tf.math.softplus(quant_embed[:, :, nbits : 2 * nbits]) bits = bits*quant_scale bits = np.round(apply_dead_zone([bits, dead_zone]).numpy()) bits = bits/quant_scale gru_state_dec = pvq_quantize(gru_state_dec, 82) #gru_state_dec = gru_state_dec/(1e-15+tf.norm(gru_state_dec, axis=-1,keepdims=True)) gru_state_dec = gru_state_dec[:,-1,:] dec_out = decoder([bits[:,1::2,:], gru_state_dec]) print(dec_out.shape) dec_out.numpy().astype('float32').tofile(args.output + "-quant_out.f32")