""" /* Copyright (c) 2022 Amazon Written by Jan Buethe and Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import os import subprocess import argparse import numpy as np from scipy.io import wavfile import tensorflow as tf from rdovae import new_rdovae_model, pvq_quantize, apply_dead_zone, sq_rate_metric from fec_packets import write_fec_packets, read_fec_packets debug = False if debug: args = type('dummy', (object,), { 'input' : 'item1.wav', 'weights' : 'testout/rdovae_alignment_fix_1024_120.h5', 'enc_lambda' : 0.0007, 'output' : "test_0007.fec", 'cond_size' : 1024, 'num_redundancy_frames' : 64, 'extra_delay' : 0, 'dump_data' : './dump_data' })() os.environ['CUDA_VISIBLE_DEVICES']="" else: parser = argparse.ArgumentParser(description='Encode redundancy for Opus neural FEC. Designed for use with voip application and 20ms frames') parser.add_argument('input', metavar='', help='audio input (.wav or .raw or .pcm as int16)') parser.add_argument('weights', metavar='', help='trained model file (.h5)') # parser.add_argument('enc_lambda', metavar='', type=float, help='lambda for controlling encoder rate') parser.add_argument('output', type=str, help='output file (will be extended with .fec)') parser.add_argument('--dump-data', type=str, default='./dump_data', help='path to dump data executable (default ./dump_data)') parser.add_argument('--cond-size', metavar='', default=1024, type=int, help='number of units in conditioning network (default 1024)') parser.add_argument('--quant-levels', type=int, help="number of quantization steps (default: 40)", default=40) parser.add_argument('--num-redundancy-frames', default=64, type=int, help='number of redundancy frames (20ms) per packet (default 64)') parser.add_argument('--extra-delay', default=0, type=int, help="last features in packet are calculated with the decoder aligned samples, use this option to add extra delay (in samples at 16kHz)") parser.add_argument('--lossfile', type=str, help='file containing loss trace (0 for frame received, 1 for lost)') parser.add_argument('--debug-output', action='store_true', help='if set, differently assembled features are written to disk') args = parser.parse_args() model, encoder, decoder, qembedding = new_rdovae_model(nb_used_features=20, nb_bits=80, batch_size=1, nb_quant=args.quant_levels, cond_size=args.cond_size) model.load_weights(args.weights) lpc_order = 16 ## prepare input signal # SILK frame size is 20ms and LPCNet subframes are 10ms subframe_size = 160 frame_size = 2 * subframe_size # 91 samples delay to align with SILK decoded frames silk_delay = 91 # prepend zeros to have enough history to produce the first package zero_history = (args.num_redundancy_frames - 1) * frame_size # dump data has a (feature) delay of 10ms dump_data_delay = 160 total_delay = silk_delay + zero_history + args.extra_delay - dump_data_delay # load signal if args.input.endswith('.raw') or args.input.endswith('.pcm') or args.input.endswith('.sw'): signal = np.fromfile(args.input, dtype='int16') elif args.input.endswith('.wav'): fs, signal = wavfile.read(args.input) else: raise ValueError(f'unknown input signal format: {args.input}') # fill up last frame with zeros padded_signal_length = len(signal) + total_delay tail = padded_signal_length % frame_size right_padding = (frame_size - tail) % frame_size signal = np.concatenate((np.zeros(total_delay, dtype=np.int16), signal, np.zeros(right_padding, dtype=np.int16))) padded_signal_file = os.path.splitext(args.input)[0] + '_padded.raw' signal.tofile(padded_signal_file) # write signal and call dump_data to create features feature_file = os.path.splitext(args.input)[0] + '_features.f32' command = f"{args.dump_data} -test {padded_signal_file} {feature_file}" r = subprocess.run(command, shell=True) if r.returncode != 0: raise RuntimeError(f"command '{command}' failed with exit code {r.returncode}") # load features nb_features = model.nb_used_features + lpc_order nb_used_features = model.nb_used_features # load features features = np.fromfile(feature_file, dtype='float32') num_subframes = len(features) // nb_features num_subframes = 2 * (num_subframes // 2) num_frames = num_subframes // 2 features = np.reshape(features, (1, -1, nb_features)) features = features[:, :, :nb_used_features] features = features[:, :num_subframes, :] #variable quantizer depending on the delay q0 = 3 q1 = 15 quant_id = np.round(q1 + (q0-q1)*np.arange(args.num_redundancy_frames//2)/args.num_redundancy_frames).astype('int16') #print(quant_id) quant_embed = qembedding(quant_id) # run encoder print("running fec encoder...") symbols, gru_state_dec = encoder.predict(features) # apply quantization nsymbols = 80 quant_scale = tf.math.softplus(quant_embed[:, :nsymbols]).numpy() dead_zone = tf.math.softplus(quant_embed[:, nsymbols : 2 * nsymbols]).numpy() #symbols = apply_dead_zone([symbols, dead_zone]).numpy() #qsymbols = np.round(symbols) quant_gru_state_dec = pvq_quantize(gru_state_dec, 82) # rate estimate hard_distr_embed = tf.math.sigmoid(quant_embed[:, 4 * nsymbols : ]).numpy() #rate_input = np.concatenate((qsymbols, hard_distr_embed, enc_lambda), axis=-1) #rates = sq_rate_metric(None, rate_input, reduce=False).numpy() # run decoder input_length = args.num_redundancy_frames // 2 offset = args.num_redundancy_frames - 1 packets = [] packet_sizes = [] sym_batch = np.zeros((num_frames-offset, args.num_redundancy_frames//2, nsymbols), dtype='float32') quant_state = quant_gru_state_dec[0, offset:num_frames, :] #pack symbols for batch processing for i in range(offset, num_frames): sym_batch[i-offset, :, :] = symbols[0, i - 2 * input_length + 2 : i + 1 : 2, :] #quantize symbols sym_batch = sym_batch * quant_scale sym_batch = apply_dead_zone([sym_batch, dead_zone]).numpy() sym_batch = np.round(sym_batch) hard_distr_embed = np.broadcast_to(hard_distr_embed, (sym_batch.shape[0], sym_batch.shape[1], 2*sym_batch.shape[2])) fake_lambda = np.ones((sym_batch.shape[0], sym_batch.shape[1], 1), dtype='float32') rate_input = np.concatenate((sym_batch, hard_distr_embed, fake_lambda), axis=-1) rates = sq_rate_metric(None, rate_input, reduce=False).numpy() #print(rates.shape) print("average rate = ", np.mean(rates[args.num_redundancy_frames:,:])) #sym_batch.tofile('qsyms.f32') sym_batch = sym_batch / quant_scale #print(sym_batch.shape, quant_state.shape) #features = decoder.predict([sym_batch, quant_state]) features = decoder([sym_batch, quant_state]) #for i in range(offset, num_frames): # print(f"processing frame {i - offset}...") # features = decoder.predict([qsymbols[:, i - 2 * input_length + 2 : i + 1 : 2, :], quant_embed_dec[:, i - 2 * input_length + 2 : i + 1 : 2, :], quant_gru_state_dec[:, i, :]]) # packets.append(features) # packet_size = 8 * int((np.sum(rates[:, i - 2 * input_length + 2 : i + 1 : 2]) + 7) / 8) + 64 # packet_sizes.append(packet_size) # write packets packet_file = args.output + '.fec' if not args.output.endswith('.fec') else args.output #write_fec_packets(packet_file, packets, packet_sizes) #print(f"average redundancy rate: {int(round(sum(packet_sizes) / len(packet_sizes) * 50 / 1000))} kbps") if args.lossfile != None: loss = np.loadtxt(args.lossfile, dtype='int16') fec_out = np.zeros((features.shape[0]*2, features.shape[-1]), dtype='float32') foffset = -2 ptr = 0; count = 2; for i in range(features.shape[0]): if (loss[i] == 0) or (i == features.shape[0]-1): fec_out[ptr:ptr+count,:] = features[i, foffset:, :] #print("filled ", count) foffset = -2 ptr = ptr+count count = 2 else: count = count + 2 foffset = foffset - 2 fec_out_full = np.zeros((fec_out.shape[0], nb_features), dtype=np.float32) fec_out_full[:, :nb_used_features] = fec_out fec_out_full.tofile(packet_file[:-4] + f'_fec.f32') #create packets array like in the original version for debugging purposes for i in range(offset, num_frames): packets.append(features[i-offset:i-offset+1, :, :]) if args.debug_output: import itertools #batches = [2, 4] batches = [4] #offsets = [0, 4, 20] offsets = [0, (args.num_redundancy_frames - 2)*2] # sanity checks # 1. concatenate features at offset 0 for batch, offset in itertools.product(batches, offsets): stop = packets[0].shape[1] - offset print(batch, offset, stop) test_features = np.concatenate([packet[:,stop - batch: stop, :] for packet in packets[::batch//2]], axis=1) test_features_full = np.zeros((test_features.shape[1], nb_features), dtype=np.float32) test_features_full[:, :nb_used_features] = test_features[0, :, :] print(f"writing debug output {packet_file[:-4] + f'_tf_batch{batch}_offset{offset}.f32'}") test_features_full.tofile(packet_file[:-4] + f'_tf_batch{batch}_offset{offset}.f32')