'''Copyright (c) 2017-2018 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' """ helper functions for dumping some Keras layers to C files """ import numpy as np def printVector(f, vector, name, dtype='float', dotp=False, static=True): """ prints vector as one-dimensional C array """ if dotp: vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8)) vector = vector.transpose((2, 0, 3, 1)) v = np.reshape(vector, (-1)) if static: f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v))) else: f.write('const {} {}[{}] = {{\n '.format(dtype, name, len(v))) for i in range(0, len(v)): f.write('{}'.format(v[i])) if (i!=len(v)-1): f.write(',') else: break; if (i%8==7): f.write("\n ") else: f.write(" ") f.write('\n};\n\n') return vector def printSparseVector(f, A, name, have_diag=True): N = A.shape[0] M = A.shape[1] W = np.zeros((0,), dtype='int') W0 = np.zeros((0,)) if have_diag: diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])]) A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N])) A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N])) A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:])) printVector(f, diag, name + '_diag') AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int') idx = np.zeros((0,), dtype='int') for i in range(M//8): pos = idx.shape[0] idx = np.append(idx, -1) nb_nonzero = 0 for j in range(N//4): block = A[j*4:(j+1)*4, i*8:(i+1)*8] qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8] if np.sum(np.abs(block)) > 1e-10: nb_nonzero = nb_nonzero + 1 idx = np.append(idx, j*4) vblock = qblock.transpose((1,0)).reshape((-1,)) W0 = np.concatenate([W0, block.reshape((-1,))]) W = np.concatenate([W, vblock]) idx[pos] = nb_nonzero f.write('#ifdef DOT_PROD\n') printVector(f, W, name, dtype='qweight') f.write('#else /*DOT_PROD*/\n') printVector(f, W0, name, dtype='qweight') f.write('#endif /*DOT_PROD*/\n') printVector(f, idx, name + '_idx', dtype='int') return AQ def dump_sparse_gru(self, f, hf): name = 'sparse_' + self.name print("printing layer " + name + " of type sparse " + self.__class__.__name__) weights = self.get_weights() qweights = printSparseVector(f, weights[1], name + '_recurrent_weights') printVector(f, weights[-1], name + '_bias') subias = weights[-1].copy() subias[1,:] = subias[1,:] - np.sum(qweights*(1./128),axis=0) printVector(f, subias, name + '_subias') if hasattr(self, 'activation'): activation = self.activation.__name__.upper() else: activation = 'TANH' if hasattr(self, 'reset_after') and not self.reset_after: reset_after = 0 else: reset_after = 1 neurons = weights[0].shape[1]//3 max_rnn_neurons = neurons f.write('const SparseGRULayer {} = {{\n {}_bias,\n {}_subias,\n {}_recurrent_weights_diag,\n {}_recurrent_weights,\n {}_recurrent_weights_idx,\n {}, ACTIVATION_{}, {}\n}};\n\n' .format(name, name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('extern const SparseGRULayer {};\n\n'.format(name)); return max_rnn_neurons def dump_gru_layer(self, f, hf, dotp=False, sparse=False): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() if sparse: qweight = printSparseVector(f, weights[0], name + '_weights', have_diag=False) else: qweight = printVector(f, weights[0], name + '_weights') if dotp: f.write('#ifdef DOT_PROD\n') qweight2 = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127) printVector(f, qweight2, name + '_recurrent_weights', dotp=True, dtype='qweight') f.write('#else /*DOT_PROD*/\n') else: qweight2 = weights[1] printVector(f, weights[1], name + '_recurrent_weights') if dotp: f.write('#endif /*DOT_PROD*/\n') printVector(f, weights[-1], name + '_bias') subias = weights[-1].copy() subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0) subias[1,:] = subias[1,:] - np.sum(qweight2*(1./128.),axis=0) printVector(f, subias, name + '_subias') if hasattr(self, 'activation'): activation = self.activation.__name__.upper() else: activation = 'TANH' if hasattr(self, 'reset_after') and not self.reset_after: reset_after = 0 else: reset_after = 1 neurons = weights[0].shape[1]//3 max_rnn_neurons = neurons f.write('const GRULayer {} = {{\n {}_bias,\n {}_subias,\n {}_weights,\n {},\n {}_recurrent_weights,\n {}, {}, ACTIVATION_{}, {}\n}};\n\n' .format(name, name, name, name, name + "_weights_idx" if sparse else "NULL", name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('extern const GRULayer {};\n\n'.format(name)); return max_rnn_neurons def dump_dense_layer_impl(name, weights, bias, activation, f, hf): printVector(f, weights, name + '_weights') printVector(f, bias, name + '_bias') f.write('const DenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, ACTIVATION_{}\n}};\n\n' .format(name, name, name, weights.shape[0], weights.shape[1], activation)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1])) hf.write('extern const DenseLayer {};\n\n'.format(name)); def dump_dense_layer(self, f, hf): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() activation = self.activation.__name__.upper() dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf) return False def dump_conv1d_layer(self, f, hf): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, weights[0], name + '_weights') printVector(f, weights[-1], name + '_bias') activation = self.activation.__name__.upper() max_conv_inputs = weights[0].shape[1]*weights[0].shape[0] f.write('const Conv1DLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n' .format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2])) hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1))) hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2)) hf.write('extern const Conv1DLayer {};\n\n'.format(name)); return max_conv_inputs