#!/usr/bin/python3 '''Copyright (c) 2021-2022 Amazon Copyright (c) 2018-2019 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import math import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation, GaussianNoise from tensorflow.compat.v1.keras.layers import CuDNNGRU from tensorflow.keras import backend as K from tensorflow.keras.constraints import Constraint from tensorflow.keras.initializers import Initializer from tensorflow.keras.callbacks import Callback import numpy as np def quant_regularizer(x): Q = 128 Q_1 = 1./Q #return .01 * tf.reduce_mean(1 - tf.math.cos(2*3.1415926535897931*(Q*x-tf.round(Q*x)))) return .01 * tf.reduce_mean(K.sqrt(K.sqrt(1.0001 - tf.math.cos(2*3.1415926535897931*(Q*x-tf.round(Q*x)))))) class WeightClip(Constraint): '''Clips the weights incident to each hidden unit to be inside a range ''' def __init__(self, c=2): self.c = c def __call__(self, p): # Ensure that abs of adjacent weights don't sum to more than 127. Otherwise there's a risk of # saturation when implementing dot products with SSSE3 or AVX2. return self.c*p/tf.maximum(self.c, tf.repeat(tf.abs(p[:, 1::2])+tf.abs(p[:, 0::2]), 2, axis=1)) #return K.clip(p, -self.c, self.c) def get_config(self): return {'name': self.__class__.__name__, 'c': self.c} constraint = WeightClip(0.992) def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, nb_burg_features=36, batch_size=128, training=False, adaptation=False, quantize=False, cond_size=128): feat = Input(shape=(None, nb_used_features+nb_burg_features), batch_size=batch_size) lost = Input(shape=(None, 1), batch_size=batch_size) fdense1 = Dense(cond_size, activation='tanh', name='plc_dense1') cfeat = Concatenate()([feat, lost]) cfeat = fdense1(cfeat) #cfeat = Conv1D(cond_size, 3, padding='causal', activation='tanh', name='plc_conv1')(cfeat) quant = quant_regularizer if quantize else None if training: rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True, name='plc_gru1', stateful=True, kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant) rnn2 = CuDNNGRU(rnn_units, return_sequences=True, return_state=True, name='plc_gru2', stateful=True, kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant) else: rnn = GRU(rnn_units, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='plc_gru1', stateful=True, kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant) rnn2 = GRU(rnn_units, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='plc_gru2', stateful=True, kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant) gru_out1, _ = rnn(cfeat) gru_out1 = GaussianNoise(.005)(gru_out1) gru_out2, _ = rnn2(gru_out1) out_dense = Dense(nb_used_features, activation='linear', name='plc_out') plc_out = out_dense(gru_out2) model = Model([feat, lost], plc_out) model.rnn_units = rnn_units model.cond_size = cond_size model.nb_used_features = nb_used_features model.nb_burg_features = nb_burg_features return model