#!/usr/bin/python3 '''Copyright (c) 2022 Amazon Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import math import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation, GaussianNoise, AveragePooling1D, RepeatVector from tensorflow.compat.v1.keras.layers import CuDNNGRU from tensorflow.keras import backend as K from tensorflow.keras.constraints import Constraint from tensorflow.keras.initializers import Initializer from tensorflow.keras.callbacks import Callback from tensorflow.keras.regularizers import l1 import numpy as np import h5py from uniform_noise import UniformNoise class WeightClip(Constraint): '''Clips the weights incident to each hidden unit to be inside a range ''' def __init__(self, c=2): self.c = c def __call__(self, p): # Ensure that abs of adjacent weights don't sum to more than 127. Otherwise there's a risk of # saturation when implementing dot products with SSSE3 or AVX2. return self.c*p/tf.maximum(self.c, tf.repeat(tf.abs(p[:, 1::2])+tf.abs(p[:, 0::2]), 2, axis=1)) #return K.clip(p, -self.c, self.c) def get_config(self): return {'name': self.__class__.__name__, 'c': self.c} constraint = WeightClip(0.496) def soft_quantize(x): #x = 4*x #x = x - (.25/np.math.pi)*tf.math.sin(2*np.math.pi*x) #x = x - (.25/np.math.pi)*tf.math.sin(2*np.math.pi*x) #x = x - (.25/np.math.pi)*tf.math.sin(2*np.math.pi*x) return x def noise_quantize(x): return soft_quantize(x + (K.random_uniform((128, 16, 80))-.5) ) def hard_quantize(x): x = soft_quantize(x) quantized = tf.round(x) return x + tf.stop_gradient(quantized - x) def apply_dead_zone(x): d = x[1]*.05 x = x[0] y = x - d*tf.math.tanh(x/(.1+d)) return y def rate_loss(y_true,y_pred): log2_e = 1.4427 n = y_pred.shape[-1] C = n - log2_e*np.math.log(np.math.gamma(n)) k = K.sum(K.abs(y_pred), axis=-1) p = 1.5 #rate = C + (n-1)*log2_e*tf.math.log((k**p + (n/5)**p)**(1/p)) rate = C + (n-1)*log2_e*tf.math.log(k + .112*n**2/(n/1.8+k) ) return K.mean(rate) eps=1e-6 def safelog2(x): log2_e = 1.4427 return log2_e*tf.math.log(eps+x) def feat_dist_loss(y_true,y_pred): lambda_1 = 1./K.sqrt(y_pred[:,:,:,-1]) y_pred = y_pred[:,:,:,:-1] ceps = y_pred[:,:,:,:18] - y_true[:,:,:18] pitch = 2*(y_pred[:,:,:,18:19] - y_true[:,:,18:19])/(y_true[:,:,18:19] + 2) corr = y_pred[:,:,:,19:] - y_true[:,:,19:] pitch_weight = K.square(K.maximum(0., y_true[:,:,19:]+.5)) return K.mean(lambda_1*K.mean(K.square(ceps) + 10*(1/18.)*K.abs(pitch)*pitch_weight + (1/18.)*K.square(corr), axis=-1)) def sq1_rate_loss(y_true,y_pred): lambda_val = K.sqrt(y_pred[:,:,-1]) y_pred = y_pred[:,:,:-1] log2_e = 1.4427 n = y_pred.shape[-1]//3 r = (y_pred[:,:,2*n:]) p0 = (y_pred[:,:,n:2*n]) p0 = 1-r**(.5+.5*p0) y_pred = y_pred[:,:,:n] y_pred = soft_quantize(y_pred) y0 = K.maximum(0., 1. - K.abs(y_pred))**2 rate = -y0*safelog2(p0*r**K.abs(y_pred)) - (1-y0)*safelog2(.5*(1-p0)*(1-r)*r**(K.abs(y_pred)-1)) rate = -safelog2(-.5*tf.math.log(r)*r**K.abs(y_pred)) rate = -safelog2((1-r)/(1+r)*r**K.abs(y_pred)) #rate = -safelog2(- tf.math.sinh(.5*tf.math.log(r))* r**K.abs(y_pred) - tf.math.cosh(K.maximum(0., .5 - K.abs(y_pred))*tf.math.log(r)) + 1) rate = lambda_val*K.sum(rate, axis=-1) return K.mean(rate) def sq2_rate_loss(y_true,y_pred): lambda_val = K.sqrt(y_pred[:,:,-1]) y_pred = y_pred[:,:,:-1] log2_e = 1.4427 n = y_pred.shape[-1]//3 r = y_pred[:,:,2*n:] p0 = y_pred[:,:,n:2*n] p0 = 1-r**(.5+.5*p0) #theta = K.minimum(1., .5 + 0*p0 - 0.04*tf.math.log(r)) #p0 = 1-r**theta y_pred = tf.round(y_pred[:,:,:n]) y0 = K.maximum(0., 1. - K.abs(y_pred))**2 rate = -y0*safelog2(p0*r**K.abs(y_pred)) - (1-y0)*safelog2(.5*(1-p0)*(1-r)*r**(K.abs(y_pred)-1)) rate = lambda_val*K.sum(rate, axis=-1) return K.mean(rate) def sq_rate_metric(y_true,y_pred, reduce=True): y_pred = y_pred[:,:,:-1] log2_e = 1.4427 n = y_pred.shape[-1]//3 r = y_pred[:,:,2*n:] p0 = y_pred[:,:,n:2*n] p0 = 1-r**(.5+.5*p0) #theta = K.minimum(1., .5 + 0*p0 - 0.04*tf.math.log(r)) #p0 = 1-r**theta y_pred = tf.round(y_pred[:,:,:n]) y0 = K.maximum(0., 1. - K.abs(y_pred))**2 rate = -y0*safelog2(p0*r**K.abs(y_pred)) - (1-y0)*safelog2(.5*(1-p0)*(1-r)*r**(K.abs(y_pred)-1)) rate = K.sum(rate, axis=-1) if reduce: rate = K.mean(rate) return rate def pvq_quant_search(x, k): x = x/tf.reduce_sum(tf.abs(x), axis=-1, keepdims=True) kx = k*x y = tf.round(kx) newk = k for j in range(10): #print("y = ", y) #print("iteration ", j) abs_y = tf.abs(y) abs_kx = tf.abs(kx) kk=tf.reduce_sum(abs_y, axis=-1) #print("sums = ", kk) plus = 1.000001*tf.reduce_min((abs_y+.5)/(abs_kx+1e-15), axis=-1) minus = .999999*tf.reduce_max((abs_y-.5)/(abs_kx+1e-15), axis=-1) #print("plus = ", plus) #print("minus = ", minus) factor = tf.where(kk>k, minus, plus) factor = tf.where(kk==k, tf.ones_like(factor), factor) #print("scale = ", factor) factor = tf.expand_dims(factor, axis=-1) #newk = newk * (k/kk)**.2 newk = newk*factor kx = newk*x #print("newk = ", newk) #print("unquantized = ", newk*x) y = tf.round(kx) #print(y) #print(K.mean(K.sum(K.abs(y), axis=-1))) return y def pvq_quantize(x, k): x = x/(1e-15+tf.norm(x, axis=-1,keepdims=True)) quantized = pvq_quant_search(x, k) quantized = quantized/(1e-15+tf.norm(quantized, axis=-1,keepdims=True)) return x + tf.stop_gradient(quantized - x) def var_repeat(x): return tf.repeat(tf.expand_dims(x[0], 1), K.shape(x[1])[1], axis=1) nb_state_dim = 24 def new_rdovae_encoder(nb_used_features=20, nb_bits=17, bunch=4, nb_quant=40, batch_size=128, cond_size=128, cond_size2=256, training=False): feat = Input(shape=(None, nb_used_features), batch_size=batch_size) gru = CuDNNGRU if training else GRU enc_dense1 = Dense(cond_size2, activation='tanh', kernel_constraint=constraint, name='enc_dense1') enc_dense2 = gru(cond_size, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, name='enc_dense2') enc_dense3 = Dense(cond_size2, activation='tanh', kernel_constraint=constraint, name='enc_dense3') enc_dense4 = gru(cond_size, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, name='enc_dense4') enc_dense5 = Dense(cond_size2, activation='tanh', kernel_constraint=constraint, name='enc_dense5') enc_dense6 = gru(cond_size, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, name='enc_dense6') enc_dense7 = Dense(cond_size, activation='tanh', kernel_constraint=constraint, name='enc_dense7') enc_dense8 = Dense(cond_size, activation='tanh', kernel_constraint=constraint, name='enc_dense8') #bits_dense = Dense(nb_bits, activation='linear', name='bits_dense') bits_dense = Conv1D(nb_bits, 4, padding='causal', activation='linear', name='bits_dense') zero_out = Lambda(lambda x: 0*x) inputs = Reshape((-1, 2*nb_used_features))(feat) d1 = enc_dense1(inputs) d2 = enc_dense2(d1) d3 = enc_dense3(d2) d4 = enc_dense4(d3) d5 = enc_dense5(d4) d6 = enc_dense6(d5) d7 = enc_dense7(d6) d8 = enc_dense8(d7) pre_out = Concatenate()([d1, d2, d3, d4, d5, d6, d7, d8]) enc_out = bits_dense(pre_out) global_dense1 = Dense(128, activation='tanh', name='gdense1') global_dense2 = Dense(nb_state_dim, activation='tanh', name='gdense2') global_bits = global_dense2(global_dense1(pre_out)) encoder = Model([feat], [enc_out, global_bits], name='encoder') return encoder def new_rdovae_decoder(nb_used_features=20, nb_bits=17, bunch=4, nb_quant=40, batch_size=128, cond_size=128, cond_size2=256, training=False): bits_input = Input(shape=(None, nb_bits), batch_size=batch_size, name="dec_bits") gru_state_input = Input(shape=(nb_state_dim,), batch_size=batch_size, name="dec_state") gru = CuDNNGRU if training else GRU dec_dense1 = Dense(cond_size2, activation='tanh', kernel_constraint=constraint, name='dec_dense1') dec_dense2 = gru(cond_size, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, name='dec_dense2') dec_dense3 = Dense(cond_size2, activation='tanh', kernel_constraint=constraint, name='dec_dense3') dec_dense4 = gru(cond_size, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, name='dec_dense4') dec_dense5 = Dense(cond_size2, activation='tanh', kernel_constraint=constraint, name='dec_dense5') dec_dense6 = gru(cond_size, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, name='dec_dense6') dec_dense7 = Dense(cond_size, activation='tanh', kernel_constraint=constraint, name='dec_dense7') dec_dense8 = Dense(cond_size, activation='tanh', kernel_constraint=constraint, name='dec_dense8') dec_final = Dense(bunch*nb_used_features, activation='linear', name='dec_final') time_reverse = Lambda(lambda x: K.reverse(x, 1)) #time_reverse = Lambda(lambda x: x) #gru_state_rep = RepeatVector(64//bunch)(gru_state_input) #gru_state_rep = Lambda(var_repeat, output_shape=(None, nb_state_dim)) ([gru_state_input, bits_input]) gru_state1 = Dense(cond_size, name="state1", activation='tanh')(gru_state_input) gru_state2 = Dense(cond_size, name="state2", activation='tanh')(gru_state_input) gru_state3 = Dense(cond_size, name="state3", activation='tanh')(gru_state_input) dec1 = dec_dense1(time_reverse(bits_input)) dec2 = dec_dense2(dec1, initial_state=gru_state1) dec3 = dec_dense3(dec2) dec4 = dec_dense4(dec3, initial_state=gru_state2) dec5 = dec_dense5(dec4) dec6 = dec_dense6(dec5, initial_state=gru_state3) dec7 = dec_dense7(dec6) dec8 = dec_dense8(dec7) output = Reshape((-1, nb_used_features))(dec_final(Concatenate()([dec1, dec2, dec3, dec4, dec5, dec6, dec7, dec8]))) decoder = Model([bits_input, gru_state_input], time_reverse(output), name='decoder') decoder.nb_bits = nb_bits decoder.bunch = bunch return decoder def new_split_decoder(decoder): nb_bits = decoder.nb_bits bunch = decoder.bunch bits_input = Input(shape=(None, nb_bits), name="split_bits") gru_state_input = Input(shape=(None,nb_state_dim), name="split_state") range_select = Lambda(lambda x: x[0][:,x[1]:x[2],:]) elem_select = Lambda(lambda x: x[0][:,x[1],:]) points = [0, 100, 200, 300, 400] outputs = [] for i in range(len(points)-1): begin = points[i]//bunch end = points[i+1]//bunch state = elem_select([gru_state_input, end-1]) bits = range_select([bits_input, begin, end]) outputs.append(decoder([bits, state])) output = Concatenate(axis=1)(outputs) split = Model([bits_input, gru_state_input], output, name="split") return split def tensor_concat(x): #n = x[1]//2 #x = x[0] n=2 y = [] for i in range(n-1): offset = 2 * (n-1-i) tmp = K.concatenate([x[i][:, offset:, :], x[-1][:, -offset:, :]], axis=-2) y.append(tf.expand_dims(tmp, axis=0)) y.append(tf.expand_dims(x[-1], axis=0)) return Concatenate(axis=0)(y) def new_rdovae_model(nb_used_features=20, nb_bits=17, bunch=4, nb_quant=40, batch_size=128, cond_size=128, cond_size2=256, training=False): feat = Input(shape=(None, nb_used_features), batch_size=batch_size) quant_id = Input(shape=(None,), batch_size=batch_size) lambda_val = Input(shape=(None, 1), batch_size=batch_size) lambda_bunched = AveragePooling1D(pool_size=bunch//2, strides=bunch//2, padding="valid")(lambda_val) lambda_up = Lambda(lambda x: K.repeat_elements(x, 2, axis=-2))(lambda_val) qembedding = Embedding(nb_quant, 6*nb_bits, name='quant_embed', embeddings_initializer='zeros') quant_embed_dec = qembedding(quant_id) quant_scale = Activation('softplus')(Lambda(lambda x: x[:,:,:nb_bits], name='quant_scale_embed')(quant_embed_dec)) encoder = new_rdovae_encoder(nb_used_features, nb_bits, bunch, nb_quant, batch_size, cond_size, cond_size2, training=training) ze, gru_state_dec = encoder([feat]) ze = Multiply()([ze, quant_scale]) decoder = new_rdovae_decoder(nb_used_features, nb_bits, bunch, nb_quant, batch_size, cond_size, cond_size2, training=training) split_decoder = new_split_decoder(decoder) dead_zone = Activation('softplus')(Lambda(lambda x: x[:,:,nb_bits:2*nb_bits], name='dead_zone_embed')(quant_embed_dec)) soft_distr_embed = Activation('sigmoid')(Lambda(lambda x: x[:,:,2*nb_bits:4*nb_bits], name='soft_distr_embed')(quant_embed_dec)) hard_distr_embed = Activation('sigmoid')(Lambda(lambda x: x[:,:,4*nb_bits:], name='hard_distr_embed')(quant_embed_dec)) noisequant = UniformNoise() hardquant = Lambda(hard_quantize) dzone = Lambda(apply_dead_zone) dze = dzone([ze,dead_zone]) ndze = noisequant(dze) dze_quant = hardquant(dze) div = Lambda(lambda x: x[0]/x[1]) dze_quant = div([dze_quant,quant_scale]) ndze_unquant = div([ndze,quant_scale]) mod_select = Lambda(lambda x: x[0][:,x[1]::bunch//2,:]) gru_state_dec = Lambda(lambda x: pvq_quantize(x, 82))(gru_state_dec) combined_output = [] unquantized_output = [] cat = Concatenate(name="out_cat") for i in range(bunch//2): dze_select = mod_select([dze_quant, i]) ndze_select = mod_select([ndze_unquant, i]) state_select = mod_select([gru_state_dec, i]) tmp = split_decoder([dze_select, state_select]) tmp = cat([tmp, lambda_up]) combined_output.append(tmp) tmp = split_decoder([ndze_select, state_select]) tmp = cat([tmp, lambda_up]) unquantized_output.append(tmp) concat = Lambda(tensor_concat, name="output") combined_output = concat(combined_output) unquantized_output = concat(unquantized_output) e2 = Concatenate(name="hard_bits")([dze, hard_distr_embed, lambda_val]) e = Concatenate(name="soft_bits")([dze, soft_distr_embed, lambda_val]) model = Model([feat, quant_id, lambda_val], [combined_output, unquantized_output, e, e2], name="end2end") model.nb_used_features = nb_used_features return model, encoder, decoder, qembedding