#!/usr/bin/python3 '''Copyright (c) 2018 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import argparse import sys import h5py import numpy as np import lpcnet from ulaw import ulaw2lin, lin2ulaw parser = argparse.ArgumentParser() parser.add_argument('model-file', type=str, help='model weight h5 file') parser.add_argument('--lpc-gamma', type=float, help='LPC weighting factor. WARNING: giving an inconsistent value here will severely degrade performance', default=1) args = parser.parse_args() filename = args.model_file with h5py.File(filename, "r") as f: units = min(f['model_weights']['gru_a']['gru_a']['recurrent_kernel:0'].shape) units2 = min(f['model_weights']['gru_b']['gru_b']['recurrent_kernel:0'].shape) cond_size = min(f['model_weights']['feature_dense1']['feature_dense1']['kernel:0'].shape) e2e = 'rc2lpc' in f['model_weights'] model, enc, dec = lpcnet.new_lpcnet_model(training = False, rnn_units1=units, rnn_units2=units2, flag_e2e = e2e, cond_size=cond_size, batch_size=1) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) #model.summary() feature_file = sys.argv[2] out_file = sys.argv[3] frame_size = model.frame_size nb_features = 36 nb_used_features = model.nb_used_features features = np.fromfile(feature_file, dtype='float32') features = np.resize(features, (-1, nb_features)) nb_frames = 1 feature_chunk_size = features.shape[0] pcm_chunk_size = frame_size*feature_chunk_size features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) periods = (.1 + 50*features[:,:,18:19]+100).astype('int16') model.load_weights(filename); order = 16 pcm = np.zeros((nb_frames*pcm_chunk_size, )) fexc = np.zeros((1, 1, 3), dtype='int16')+128 state1 = np.zeros((1, model.rnn_units1), dtype='float32') state2 = np.zeros((1, model.rnn_units2), dtype='float32') mem = 0 coef = 0.85 lpc_weights = np.array([args.lpc_gamma ** (i + 1) for i in range(16)]) fout = open(out_file, 'wb') skip = order + 1 for c in range(0, nb_frames): if not e2e: cfeat = enc.predict([features[c:c+1, :, :nb_used_features], periods[c:c+1, :, :]]) else: cfeat,lpcs = enc.predict([features[c:c+1, :, :nb_used_features], periods[c:c+1, :, :]]) for fr in range(0, feature_chunk_size): f = c*feature_chunk_size + fr if not e2e: a = features[c, fr, nb_features-order:] * lpc_weights else: a = lpcs[c,fr] for i in range(skip, frame_size): pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1]) fexc[0, 0, 1] = lin2ulaw(pred) p, state1, state2 = dec.predict([fexc, cfeat[:, fr:fr+1, :], state1, state2]) #Lower the temperature for voiced frames to reduce noisiness p *= np.power(p, np.maximum(0, 1.5*features[c, fr, 19] - .5)) p = p/(1e-18 + np.sum(p)) #Cut off the tail of the remaining distribution p = np.maximum(p-0.002, 0).astype('float64') p = p/(1e-8 + np.sum(p)) fexc[0, 0, 2] = np.argmax(np.random.multinomial(1, p[0,0,:], 1)) pcm[f*frame_size + i] = pred + ulaw2lin(fexc[0, 0, 2]) fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i]) mem = coef*mem + pcm[f*frame_size + i] #print(mem) np.array([np.round(mem)], dtype='int16').tofile(fout) skip = 0