""" Tensorflow/Keras helper functions to do the following: 1. \mu law <-> Linear domain conversion 2. Differentiable prediction from the input signal and LP coefficients 3. Differentiable transformations Reflection Coefficients (RCs) <-> LP Coefficients """ from tensorflow.keras.layers import Lambda, Multiply, Layer, Concatenate from tensorflow.keras import backend as K import tensorflow as tf # \mu law <-> Linear conversion functions scale = 255.0/32768.0 scale_1 = 32768.0/255.0 def tf_l2u(x): s = K.sign(x) x = K.abs(x) u = (s*(128*K.log(1+scale*x)/K.log(256.0))) u = K.clip(128 + u, 0, 255) return u def tf_u2l(u): u = tf.cast(u,"float32") u = u - 128.0 s = K.sign(u) u = K.abs(u) return s*scale_1*(K.exp(u/128.*K.log(256.0))-1) # Differentiable Prediction Layer # Computes the LP prediction from the input lag signal and the LP coefficients # The inputs xt and lpc conform with the shapes in lpcnet.py (the '2400' is coded keeping this in mind) class diff_pred(Layer): def call(self, inputs, lpcoeffs_N = 16, frame_size = 160): xt = inputs[0] lpc = inputs[1] rept = Lambda(lambda x: K.repeat_elements(x , frame_size, 1)) zpX = Lambda(lambda x: K.concatenate([0*x[:,0:lpcoeffs_N,:], x],axis = 1)) cX = Lambda(lambda x: K.concatenate([x[:,(lpcoeffs_N - i):(lpcoeffs_N - i + 2400),:] for i in range(lpcoeffs_N)],axis = 2)) pred = -Multiply()([rept(lpc),cX(zpX(xt))]) return K.sum(pred,axis = 2,keepdims = True) # Differentiable Transformations (RC <-> LPC) computed using the Levinson Durbin Recursion class diff_rc2lpc(Layer): def call(self, inputs, lpcoeffs_N = 16): def pred_lpc_recursive(input): temp = (input[0] + K.repeat_elements(input[1],input[0].shape[2],2)*K.reverse(input[0],axes = 2)) temp = Concatenate(axis = 2)([temp,input[1]]) return temp Llpc = Lambda(pred_lpc_recursive) inputs = inputs[:,:,:lpcoeffs_N] lpc_init = inputs for i in range(1,lpcoeffs_N): lpc_init = Llpc([lpc_init[:,:,:i],K.expand_dims(inputs[:,:,i],axis = -1)]) return lpc_init class diff_lpc2rc(Layer): def call(self, inputs, lpcoeffs_N = 16): def pred_rc_recursive(input): ki = K.repeat_elements(K.expand_dims(input[1][:,:,0],axis = -1),input[0].shape[2],2) temp = (input[0] - ki*K.reverse(input[0],axes = 2))/(1 - ki*ki) temp = Concatenate(axis = 2)([temp,input[1]]) return temp Lrc = Lambda(pred_rc_recursive) rc_init = inputs for i in range(1,lpcoeffs_N): j = (lpcoeffs_N - i + 1) rc_init = Lrc([rc_init[:,:,:(j - 1)],rc_init[:,:,(j - 1):]]) return rc_init