#!/usr/bin/python3 '''Copyright (c) 2021-2022 Amazon Copyright (c) 2018-2019 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' # Train an LPCNet model import argparse from plc_loader import PLCLoader parser = argparse.ArgumentParser(description='Train a PLC model') parser.add_argument('features', metavar='', help='binary features file (float32)') parser.add_argument('lost_file', metavar='', help='packet loss traces (int8)') parser.add_argument('output', metavar='', help='trained model file (.h5)') parser.add_argument('--model', metavar='', default='lpcnet_plc', help='PLC model python definition (without .py)') group1 = parser.add_mutually_exclusive_group() group1.add_argument('--quantize', metavar='', help='quantize model') group1.add_argument('--retrain', metavar='', help='continue training model') parser.add_argument('--gru-size', metavar='', default=256, type=int, help='number of units in GRU (default 256)') parser.add_argument('--cond-size', metavar='', default=128, type=int, help='number of units in conditioning network (default 128)') parser.add_argument('--epochs', metavar='', default=120, type=int, help='number of epochs to train for (default 120)') parser.add_argument('--batch-size', metavar='', default=128, type=int, help='batch size to use (default 128)') parser.add_argument('--seq-length', metavar='', default=1000, type=int, help='sequence length to use (default 1000)') parser.add_argument('--lr', metavar='', type=float, help='learning rate') parser.add_argument('--decay', metavar='', type=float, help='learning rate decay') parser.add_argument('--band-loss', metavar='', default=1.0, type=float, help='weight of band loss (default 1.0)') parser.add_argument('--loss-bias', metavar='', default=0.0, type=float, help='loss bias towards low energy (default 0.0)') parser.add_argument('--logdir', metavar='', help='directory for tensorboard log files') args = parser.parse_args() import importlib lpcnet = importlib.import_module(args.model) import sys import numpy as np from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger import tensorflow.keras.backend as K import h5py import tensorflow as tf #gpus = tf.config.experimental.list_physical_devices('GPU') #if gpus: # try: # tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)]) # except RuntimeError as e: # print(e) nb_epochs = args.epochs # Try reducing batch_size if you run out of memory on your GPU batch_size = args.batch_size quantize = args.quantize is not None retrain = args.retrain is not None if quantize: lr = 0.00003 decay = 0 input_model = args.quantize else: lr = 0.001 decay = 2.5e-5 if args.lr is not None: lr = args.lr if args.decay is not None: decay = args.decay if retrain: input_model = args.retrain def plc_loss(alpha=1.0, bias=0.): def loss(y_true,y_pred): mask = y_true[:,:,-1:] y_true = y_true[:,:,:-1] e = (y_pred - y_true)*mask e_bands = tf.signal.idct(e[:,:,:-2], norm='ortho') bias_mask = K.minimum(1., K.maximum(0., 4*y_true[:,:,-1:])) l1_loss = K.mean(K.abs(e)) + 0.1*K.mean(K.maximum(0., -e[:,:,-1:])) + alpha*K.mean(K.abs(e_bands) + bias*bias_mask*K.maximum(0., e_bands)) + K.mean(K.minimum(K.abs(e[:,:,18:19]),1.)) + 8*K.mean(K.minimum(K.abs(e[:,:,18:19]),.4)) return l1_loss return loss def plc_l1_loss(): def L1_loss(y_true,y_pred): mask = y_true[:,:,-1:] y_true = y_true[:,:,:-1] e = (y_pred - y_true)*mask l1_loss = K.mean(K.abs(e)) return l1_loss return L1_loss def plc_ceps_loss(): def ceps_loss(y_true,y_pred): mask = y_true[:,:,-1:] y_true = y_true[:,:,:-1] e = (y_pred - y_true)*mask l1_loss = K.mean(K.abs(e[:,:,:-2])) return l1_loss return ceps_loss def plc_band_loss(): def L1_band_loss(y_true,y_pred): mask = y_true[:,:,-1:] y_true = y_true[:,:,:-1] e = (y_pred - y_true)*mask e_bands = tf.signal.idct(e[:,:,:-2], norm='ortho') l1_loss = K.mean(K.abs(e_bands)) return l1_loss return L1_band_loss def plc_pitch_loss(): def pitch_loss(y_true,y_pred): mask = y_true[:,:,-1:] y_true = y_true[:,:,:-1] e = (y_pred - y_true)*mask l1_loss = K.mean(K.minimum(K.abs(e[:,:,18:19]),.4)) return l1_loss return pitch_loss opt = Adam(lr, decay=decay, beta_2=0.99) strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() with strategy.scope(): model = lpcnet.new_lpcnet_plc_model(rnn_units=args.gru_size, batch_size=batch_size, training=True, quantize=quantize, cond_size=args.cond_size) model.compile(optimizer=opt, loss=plc_loss(alpha=args.band_loss, bias=args.loss_bias), metrics=[plc_l1_loss(), plc_ceps_loss(), plc_band_loss(), plc_pitch_loss()]) model.summary() lpc_order = 16 feature_file = args.features nb_features = model.nb_used_features + lpc_order + model.nb_burg_features nb_used_features = model.nb_used_features nb_burg_features = model.nb_burg_features sequence_size = args.seq_length # u for unquantised, load 16 bit PCM samples and convert to mu-law features = np.memmap(feature_file, dtype='float32', mode='r') nb_sequences = len(features)//(nb_features*sequence_size)//batch_size*batch_size features = features[:nb_sequences*sequence_size*nb_features] features = np.reshape(features, (nb_sequences, sequence_size, nb_features)) features = features[:, :, :nb_used_features+model.nb_burg_features] lost = np.memmap(args.lost_file, dtype='int8', mode='r') # dump models to disk as we go checkpoint = ModelCheckpoint('{}_{}_{}.h5'.format(args.output, args.gru_size, '{epoch:02d}')) if args.retrain is not None: model.load_weights(args.retrain) if quantize or retrain: #Adapting from an existing model model.load_weights(input_model) model.save_weights('{}_{}_initial.h5'.format(args.output, args.gru_size)) loader = PLCLoader(features, lost, nb_burg_features, batch_size) callbacks = [checkpoint] if args.logdir is not None: logdir = '{}/{}_{}_logs'.format(args.logdir, args.output, args.gru_size) tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir) callbacks.append(tensorboard_callback) model.fit(loader, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks)