#pragma once // MESSAGE OPTICAL_FLOW PACKING #define MAVLINK_MSG_ID_OPTICAL_FLOW 100 MAVPACKED( typedef struct __mavlink_optical_flow_t { uint64_t time_usec; /*< Timestamp (UNIX)*/ float flow_comp_m_x; /*< Flow in meters in x-sensor direction, angular-speed compensated*/ float flow_comp_m_y; /*< Flow in meters in y-sensor direction, angular-speed compensated*/ float ground_distance; /*< Ground distance in meters. Positive value: distance known. Negative value: Unknown distance*/ int16_t flow_x; /*< Flow in pixels * 10 in x-sensor direction (dezi-pixels)*/ int16_t flow_y; /*< Flow in pixels * 10 in y-sensor direction (dezi-pixels)*/ uint8_t sensor_id; /*< Sensor ID*/ uint8_t quality; /*< Optical flow quality / confidence. 0: bad, 255: maximum quality*/ float flow_rate_x; /*< Flow rate in radians/second about X axis*/ float flow_rate_y; /*< Flow rate in radians/second about Y axis*/ }) mavlink_optical_flow_t; #define MAVLINK_MSG_ID_OPTICAL_FLOW_LEN 34 #define MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN 26 #define MAVLINK_MSG_ID_100_LEN 34 #define MAVLINK_MSG_ID_100_MIN_LEN 26 #define MAVLINK_MSG_ID_OPTICAL_FLOW_CRC 175 #define MAVLINK_MSG_ID_100_CRC 175 #if MAVLINK_COMMAND_24BIT #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW { \ 100, \ "OPTICAL_FLOW", \ 10, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_t, time_usec) }, \ { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 24, offsetof(mavlink_optical_flow_t, sensor_id) }, \ { "flow_x", NULL, MAVLINK_TYPE_INT16_T, 0, 20, offsetof(mavlink_optical_flow_t, flow_x) }, \ { "flow_y", NULL, MAVLINK_TYPE_INT16_T, 0, 22, offsetof(mavlink_optical_flow_t, flow_y) }, \ { "flow_comp_m_x", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_optical_flow_t, flow_comp_m_x) }, \ { "flow_comp_m_y", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_t, flow_comp_m_y) }, \ { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 25, offsetof(mavlink_optical_flow_t, quality) }, \ { "ground_distance", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_t, ground_distance) }, \ { "flow_rate_x", NULL, MAVLINK_TYPE_FLOAT, 0, 26, offsetof(mavlink_optical_flow_t, flow_rate_x) }, \ { "flow_rate_y", NULL, MAVLINK_TYPE_FLOAT, 0, 30, offsetof(mavlink_optical_flow_t, flow_rate_y) }, \ } \ } #else #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW { \ "OPTICAL_FLOW", \ 10, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_t, time_usec) }, \ { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 24, offsetof(mavlink_optical_flow_t, sensor_id) }, \ { "flow_x", NULL, MAVLINK_TYPE_INT16_T, 0, 20, offsetof(mavlink_optical_flow_t, flow_x) }, \ { "flow_y", NULL, MAVLINK_TYPE_INT16_T, 0, 22, offsetof(mavlink_optical_flow_t, flow_y) }, \ { "flow_comp_m_x", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_optical_flow_t, flow_comp_m_x) }, \ { "flow_comp_m_y", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_t, flow_comp_m_y) }, \ { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 25, offsetof(mavlink_optical_flow_t, quality) }, \ { "ground_distance", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_t, ground_distance) }, \ { "flow_rate_x", NULL, MAVLINK_TYPE_FLOAT, 0, 26, offsetof(mavlink_optical_flow_t, flow_rate_x) }, \ { "flow_rate_y", NULL, MAVLINK_TYPE_FLOAT, 0, 30, offsetof(mavlink_optical_flow_t, flow_rate_y) }, \ } \ } #endif /** * @brief Pack a optical_flow message * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * * @param time_usec Timestamp (UNIX) * @param sensor_id Sensor ID * @param flow_x Flow in pixels * 10 in x-sensor direction (dezi-pixels) * @param flow_y Flow in pixels * 10 in y-sensor direction (dezi-pixels) * @param flow_comp_m_x Flow in meters in x-sensor direction, angular-speed compensated * @param flow_comp_m_y Flow in meters in y-sensor direction, angular-speed compensated * @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality * @param ground_distance Ground distance in meters. Positive value: distance known. Negative value: Unknown distance * @param flow_rate_x Flow rate in radians/second about X axis * @param flow_rate_y Flow rate in radians/second about Y axis * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_optical_flow_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, uint64_t time_usec, uint8_t sensor_id, int16_t flow_x, int16_t flow_y, float flow_comp_m_x, float flow_comp_m_y, uint8_t quality, float ground_distance, float flow_rate_x, float flow_rate_y) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, flow_comp_m_x); _mav_put_float(buf, 12, flow_comp_m_y); _mav_put_float(buf, 16, ground_distance); _mav_put_int16_t(buf, 20, flow_x); _mav_put_int16_t(buf, 22, flow_y); _mav_put_uint8_t(buf, 24, sensor_id); _mav_put_uint8_t(buf, 25, quality); _mav_put_float(buf, 26, flow_rate_x); _mav_put_float(buf, 30, flow_rate_y); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN); #else mavlink_optical_flow_t packet; packet.time_usec = time_usec; packet.flow_comp_m_x = flow_comp_m_x; packet.flow_comp_m_y = flow_comp_m_y; packet.ground_distance = ground_distance; packet.flow_x = flow_x; packet.flow_y = flow_y; packet.sensor_id = sensor_id; packet.quality = quality; packet.flow_rate_x = flow_rate_x; packet.flow_rate_y = flow_rate_y; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN); #endif msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW; return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC); } /** * @brief Pack a optical_flow message on a channel * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param time_usec Timestamp (UNIX) * @param sensor_id Sensor ID * @param flow_x Flow in pixels * 10 in x-sensor direction (dezi-pixels) * @param flow_y Flow in pixels * 10 in y-sensor direction (dezi-pixels) * @param flow_comp_m_x Flow in meters in x-sensor direction, angular-speed compensated * @param flow_comp_m_y Flow in meters in y-sensor direction, angular-speed compensated * @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality * @param ground_distance Ground distance in meters. Positive value: distance known. Negative value: Unknown distance * @param flow_rate_x Flow rate in radians/second about X axis * @param flow_rate_y Flow rate in radians/second about Y axis * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_optical_flow_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, uint64_t time_usec,uint8_t sensor_id,int16_t flow_x,int16_t flow_y,float flow_comp_m_x,float flow_comp_m_y,uint8_t quality,float ground_distance,float flow_rate_x,float flow_rate_y) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, flow_comp_m_x); _mav_put_float(buf, 12, flow_comp_m_y); _mav_put_float(buf, 16, ground_distance); _mav_put_int16_t(buf, 20, flow_x); _mav_put_int16_t(buf, 22, flow_y); _mav_put_uint8_t(buf, 24, sensor_id); _mav_put_uint8_t(buf, 25, quality); _mav_put_float(buf, 26, flow_rate_x); _mav_put_float(buf, 30, flow_rate_y); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN); #else mavlink_optical_flow_t packet; packet.time_usec = time_usec; packet.flow_comp_m_x = flow_comp_m_x; packet.flow_comp_m_y = flow_comp_m_y; packet.ground_distance = ground_distance; packet.flow_x = flow_x; packet.flow_y = flow_y; packet.sensor_id = sensor_id; packet.quality = quality; packet.flow_rate_x = flow_rate_x; packet.flow_rate_y = flow_rate_y; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN); #endif msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW; return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC); } /** * @brief Encode a optical_flow struct * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * @param optical_flow C-struct to read the message contents from */ static inline uint16_t mavlink_msg_optical_flow_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_t* optical_flow) { return mavlink_msg_optical_flow_pack(system_id, component_id, msg, optical_flow->time_usec, optical_flow->sensor_id, optical_flow->flow_x, optical_flow->flow_y, optical_flow->flow_comp_m_x, optical_flow->flow_comp_m_y, optical_flow->quality, optical_flow->ground_distance, optical_flow->flow_rate_x, optical_flow->flow_rate_y); } /** * @brief Encode a optical_flow struct on a channel * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param optical_flow C-struct to read the message contents from */ static inline uint16_t mavlink_msg_optical_flow_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_t* optical_flow) { return mavlink_msg_optical_flow_pack_chan(system_id, component_id, chan, msg, optical_flow->time_usec, optical_flow->sensor_id, optical_flow->flow_x, optical_flow->flow_y, optical_flow->flow_comp_m_x, optical_flow->flow_comp_m_y, optical_flow->quality, optical_flow->ground_distance, optical_flow->flow_rate_x, optical_flow->flow_rate_y); } /** * @brief Send a optical_flow message * @param chan MAVLink channel to send the message * * @param time_usec Timestamp (UNIX) * @param sensor_id Sensor ID * @param flow_x Flow in pixels * 10 in x-sensor direction (dezi-pixels) * @param flow_y Flow in pixels * 10 in y-sensor direction (dezi-pixels) * @param flow_comp_m_x Flow in meters in x-sensor direction, angular-speed compensated * @param flow_comp_m_y Flow in meters in y-sensor direction, angular-speed compensated * @param quality Optical flow quality / confidence. 0: bad, 255: maximum quality * @param ground_distance Ground distance in meters. Positive value: distance known. Negative value: Unknown distance * @param flow_rate_x Flow rate in radians/second about X axis * @param flow_rate_y Flow rate in radians/second about Y axis */ #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS static inline void mavlink_msg_optical_flow_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, int16_t flow_x, int16_t flow_y, float flow_comp_m_x, float flow_comp_m_y, uint8_t quality, float ground_distance, float flow_rate_x, float flow_rate_y) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, flow_comp_m_x); _mav_put_float(buf, 12, flow_comp_m_y); _mav_put_float(buf, 16, ground_distance); _mav_put_int16_t(buf, 20, flow_x); _mav_put_int16_t(buf, 22, flow_y); _mav_put_uint8_t(buf, 24, sensor_id); _mav_put_uint8_t(buf, 25, quality); _mav_put_float(buf, 26, flow_rate_x); _mav_put_float(buf, 30, flow_rate_y); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC); #else mavlink_optical_flow_t packet; packet.time_usec = time_usec; packet.flow_comp_m_x = flow_comp_m_x; packet.flow_comp_m_y = flow_comp_m_y; packet.ground_distance = ground_distance; packet.flow_x = flow_x; packet.flow_y = flow_y; packet.sensor_id = sensor_id; packet.quality = quality; packet.flow_rate_x = flow_rate_x; packet.flow_rate_y = flow_rate_y; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC); #endif } /** * @brief Send a optical_flow message * @param chan MAVLink channel to send the message * @param struct The MAVLink struct to serialize */ static inline void mavlink_msg_optical_flow_send_struct(mavlink_channel_t chan, const mavlink_optical_flow_t* optical_flow) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS mavlink_msg_optical_flow_send(chan, optical_flow->time_usec, optical_flow->sensor_id, optical_flow->flow_x, optical_flow->flow_y, optical_flow->flow_comp_m_x, optical_flow->flow_comp_m_y, optical_flow->quality, optical_flow->ground_distance, optical_flow->flow_rate_x, optical_flow->flow_rate_y); #else _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, (const char *)optical_flow, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC); #endif } #if MAVLINK_MSG_ID_OPTICAL_FLOW_LEN <= MAVLINK_MAX_PAYLOAD_LEN /* This varient of _send() can be used to save stack space by re-using memory from the receive buffer. The caller provides a mavlink_message_t which is the size of a full mavlink message. This is usually the receive buffer for the channel, and allows a reply to an incoming message with minimum stack space usage. */ static inline void mavlink_msg_optical_flow_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, int16_t flow_x, int16_t flow_y, float flow_comp_m_x, float flow_comp_m_y, uint8_t quality, float ground_distance, float flow_rate_x, float flow_rate_y) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char *buf = (char *)msgbuf; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, flow_comp_m_x); _mav_put_float(buf, 12, flow_comp_m_y); _mav_put_float(buf, 16, ground_distance); _mav_put_int16_t(buf, 20, flow_x); _mav_put_int16_t(buf, 22, flow_y); _mav_put_uint8_t(buf, 24, sensor_id); _mav_put_uint8_t(buf, 25, quality); _mav_put_float(buf, 26, flow_rate_x); _mav_put_float(buf, 30, flow_rate_y); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC); #else mavlink_optical_flow_t *packet = (mavlink_optical_flow_t *)msgbuf; packet->time_usec = time_usec; packet->flow_comp_m_x = flow_comp_m_x; packet->flow_comp_m_y = flow_comp_m_y; packet->ground_distance = ground_distance; packet->flow_x = flow_x; packet->flow_y = flow_y; packet->sensor_id = sensor_id; packet->quality = quality; packet->flow_rate_x = flow_rate_x; packet->flow_rate_y = flow_rate_y; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_CRC); #endif } #endif #endif // MESSAGE OPTICAL_FLOW UNPACKING /** * @brief Get field time_usec from optical_flow message * * @return Timestamp (UNIX) */ static inline uint64_t mavlink_msg_optical_flow_get_time_usec(const mavlink_message_t* msg) { return _MAV_RETURN_uint64_t(msg, 0); } /** * @brief Get field sensor_id from optical_flow message * * @return Sensor ID */ static inline uint8_t mavlink_msg_optical_flow_get_sensor_id(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 24); } /** * @brief Get field flow_x from optical_flow message * * @return Flow in pixels * 10 in x-sensor direction (dezi-pixels) */ static inline int16_t mavlink_msg_optical_flow_get_flow_x(const mavlink_message_t* msg) { return _MAV_RETURN_int16_t(msg, 20); } /** * @brief Get field flow_y from optical_flow message * * @return Flow in pixels * 10 in y-sensor direction (dezi-pixels) */ static inline int16_t mavlink_msg_optical_flow_get_flow_y(const mavlink_message_t* msg) { return _MAV_RETURN_int16_t(msg, 22); } /** * @brief Get field flow_comp_m_x from optical_flow message * * @return Flow in meters in x-sensor direction, angular-speed compensated */ static inline float mavlink_msg_optical_flow_get_flow_comp_m_x(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 8); } /** * @brief Get field flow_comp_m_y from optical_flow message * * @return Flow in meters in y-sensor direction, angular-speed compensated */ static inline float mavlink_msg_optical_flow_get_flow_comp_m_y(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 12); } /** * @brief Get field quality from optical_flow message * * @return Optical flow quality / confidence. 0: bad, 255: maximum quality */ static inline uint8_t mavlink_msg_optical_flow_get_quality(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 25); } /** * @brief Get field ground_distance from optical_flow message * * @return Ground distance in meters. Positive value: distance known. Negative value: Unknown distance */ static inline float mavlink_msg_optical_flow_get_ground_distance(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 16); } /** * @brief Get field flow_rate_x from optical_flow message * * @return Flow rate in radians/second about X axis */ static inline float mavlink_msg_optical_flow_get_flow_rate_x(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 26); } /** * @brief Get field flow_rate_y from optical_flow message * * @return Flow rate in radians/second about Y axis */ static inline float mavlink_msg_optical_flow_get_flow_rate_y(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 30); } /** * @brief Decode a optical_flow message into a struct * * @param msg The message to decode * @param optical_flow C-struct to decode the message contents into */ static inline void mavlink_msg_optical_flow_decode(const mavlink_message_t* msg, mavlink_optical_flow_t* optical_flow) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS optical_flow->time_usec = mavlink_msg_optical_flow_get_time_usec(msg); optical_flow->flow_comp_m_x = mavlink_msg_optical_flow_get_flow_comp_m_x(msg); optical_flow->flow_comp_m_y = mavlink_msg_optical_flow_get_flow_comp_m_y(msg); optical_flow->ground_distance = mavlink_msg_optical_flow_get_ground_distance(msg); optical_flow->flow_x = mavlink_msg_optical_flow_get_flow_x(msg); optical_flow->flow_y = mavlink_msg_optical_flow_get_flow_y(msg); optical_flow->sensor_id = mavlink_msg_optical_flow_get_sensor_id(msg); optical_flow->quality = mavlink_msg_optical_flow_get_quality(msg); optical_flow->flow_rate_x = mavlink_msg_optical_flow_get_flow_rate_x(msg); optical_flow->flow_rate_y = mavlink_msg_optical_flow_get_flow_rate_y(msg); #else uint8_t len = msg->len < MAVLINK_MSG_ID_OPTICAL_FLOW_LEN? msg->len : MAVLINK_MSG_ID_OPTICAL_FLOW_LEN; memset(optical_flow, 0, MAVLINK_MSG_ID_OPTICAL_FLOW_LEN); memcpy(optical_flow, _MAV_PAYLOAD(msg), len); #endif }