#pragma once // MESSAGE OPTICAL_FLOW_RAD PACKING #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD 106 MAVPACKED( typedef struct __mavlink_optical_flow_rad_t { uint64_t time_usec; /*< Timestamp (microseconds, synced to UNIX time or since system boot)*/ uint32_t integration_time_us; /*< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.*/ float integrated_x; /*< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)*/ float integrated_y; /*< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)*/ float integrated_xgyro; /*< RH rotation around X axis (rad)*/ float integrated_ygyro; /*< RH rotation around Y axis (rad)*/ float integrated_zgyro; /*< RH rotation around Z axis (rad)*/ uint32_t time_delta_distance_us; /*< Time in microseconds since the distance was sampled.*/ float distance; /*< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.*/ int16_t temperature; /*< Temperature * 100 in centi-degrees Celsius*/ uint8_t sensor_id; /*< Sensor ID*/ uint8_t quality; /*< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality*/ }) mavlink_optical_flow_rad_t; #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN 44 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN 44 #define MAVLINK_MSG_ID_106_LEN 44 #define MAVLINK_MSG_ID_106_MIN_LEN 44 #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC 138 #define MAVLINK_MSG_ID_106_CRC 138 #if MAVLINK_COMMAND_24BIT #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \ 106, \ "OPTICAL_FLOW_RAD", \ 12, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \ { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \ { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \ { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \ { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \ { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \ { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \ { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \ { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \ { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \ { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \ { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \ } \ } #else #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \ "OPTICAL_FLOW_RAD", \ 12, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \ { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \ { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \ { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \ { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \ { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \ { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \ { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \ { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \ { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \ { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \ { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \ } \ } #endif /** * @brief Pack a optical_flow_rad message * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) * @param sensor_id Sensor ID * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) * @param integrated_xgyro RH rotation around X axis (rad) * @param integrated_ygyro RH rotation around Y axis (rad) * @param integrated_zgyro RH rotation around Z axis (rad) * @param temperature Temperature * 100 in centi-degrees Celsius * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality * @param time_delta_distance_us Time in microseconds since the distance was sampled. * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_optical_flow_rad_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint32_t(buf, 8, integration_time_us); _mav_put_float(buf, 12, integrated_x); _mav_put_float(buf, 16, integrated_y); _mav_put_float(buf, 20, integrated_xgyro); _mav_put_float(buf, 24, integrated_ygyro); _mav_put_float(buf, 28, integrated_zgyro); _mav_put_uint32_t(buf, 32, time_delta_distance_us); _mav_put_float(buf, 36, distance); _mav_put_int16_t(buf, 40, temperature); _mav_put_uint8_t(buf, 42, sensor_id); _mav_put_uint8_t(buf, 43, quality); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); #else mavlink_optical_flow_rad_t packet; packet.time_usec = time_usec; packet.integration_time_us = integration_time_us; packet.integrated_x = integrated_x; packet.integrated_y = integrated_y; packet.integrated_xgyro = integrated_xgyro; packet.integrated_ygyro = integrated_ygyro; packet.integrated_zgyro = integrated_zgyro; packet.time_delta_distance_us = time_delta_distance_us; packet.distance = distance; packet.temperature = temperature; packet.sensor_id = sensor_id; packet.quality = quality; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); #endif msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD; return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); } /** * @brief Pack a optical_flow_rad message on a channel * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) * @param sensor_id Sensor ID * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) * @param integrated_xgyro RH rotation around X axis (rad) * @param integrated_ygyro RH rotation around Y axis (rad) * @param integrated_zgyro RH rotation around Z axis (rad) * @param temperature Temperature * 100 in centi-degrees Celsius * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality * @param time_delta_distance_us Time in microseconds since the distance was sampled. * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_optical_flow_rad_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint32_t(buf, 8, integration_time_us); _mav_put_float(buf, 12, integrated_x); _mav_put_float(buf, 16, integrated_y); _mav_put_float(buf, 20, integrated_xgyro); _mav_put_float(buf, 24, integrated_ygyro); _mav_put_float(buf, 28, integrated_zgyro); _mav_put_uint32_t(buf, 32, time_delta_distance_us); _mav_put_float(buf, 36, distance); _mav_put_int16_t(buf, 40, temperature); _mav_put_uint8_t(buf, 42, sensor_id); _mav_put_uint8_t(buf, 43, quality); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); #else mavlink_optical_flow_rad_t packet; packet.time_usec = time_usec; packet.integration_time_us = integration_time_us; packet.integrated_x = integrated_x; packet.integrated_y = integrated_y; packet.integrated_xgyro = integrated_xgyro; packet.integrated_ygyro = integrated_ygyro; packet.integrated_zgyro = integrated_zgyro; packet.time_delta_distance_us = time_delta_distance_us; packet.distance = distance; packet.temperature = temperature; packet.sensor_id = sensor_id; packet.quality = quality; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); #endif msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD; return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); } /** * @brief Encode a optical_flow_rad struct * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * @param optical_flow_rad C-struct to read the message contents from */ static inline uint16_t mavlink_msg_optical_flow_rad_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad) { return mavlink_msg_optical_flow_rad_pack(system_id, component_id, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); } /** * @brief Encode a optical_flow_rad struct on a channel * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param optical_flow_rad C-struct to read the message contents from */ static inline uint16_t mavlink_msg_optical_flow_rad_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad) { return mavlink_msg_optical_flow_rad_pack_chan(system_id, component_id, chan, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); } /** * @brief Send a optical_flow_rad message * @param chan MAVLink channel to send the message * * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) * @param sensor_id Sensor ID * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) * @param integrated_xgyro RH rotation around X axis (rad) * @param integrated_ygyro RH rotation around Y axis (rad) * @param integrated_zgyro RH rotation around Z axis (rad) * @param temperature Temperature * 100 in centi-degrees Celsius * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality * @param time_delta_distance_us Time in microseconds since the distance was sampled. * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. */ #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS static inline void mavlink_msg_optical_flow_rad_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint32_t(buf, 8, integration_time_us); _mav_put_float(buf, 12, integrated_x); _mav_put_float(buf, 16, integrated_y); _mav_put_float(buf, 20, integrated_xgyro); _mav_put_float(buf, 24, integrated_ygyro); _mav_put_float(buf, 28, integrated_zgyro); _mav_put_uint32_t(buf, 32, time_delta_distance_us); _mav_put_float(buf, 36, distance); _mav_put_int16_t(buf, 40, temperature); _mav_put_uint8_t(buf, 42, sensor_id); _mav_put_uint8_t(buf, 43, quality); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); #else mavlink_optical_flow_rad_t packet; packet.time_usec = time_usec; packet.integration_time_us = integration_time_us; packet.integrated_x = integrated_x; packet.integrated_y = integrated_y; packet.integrated_xgyro = integrated_xgyro; packet.integrated_ygyro = integrated_ygyro; packet.integrated_zgyro = integrated_zgyro; packet.time_delta_distance_us = time_delta_distance_us; packet.distance = distance; packet.temperature = temperature; packet.sensor_id = sensor_id; packet.quality = quality; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); #endif } /** * @brief Send a optical_flow_rad message * @param chan MAVLink channel to send the message * @param struct The MAVLink struct to serialize */ static inline void mavlink_msg_optical_flow_rad_send_struct(mavlink_channel_t chan, const mavlink_optical_flow_rad_t* optical_flow_rad) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS mavlink_msg_optical_flow_rad_send(chan, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); #else _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)optical_flow_rad, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); #endif } #if MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN <= MAVLINK_MAX_PAYLOAD_LEN /* This varient of _send() can be used to save stack space by re-using memory from the receive buffer. The caller provides a mavlink_message_t which is the size of a full mavlink message. This is usually the receive buffer for the channel, and allows a reply to an incoming message with minimum stack space usage. */ static inline void mavlink_msg_optical_flow_rad_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char *buf = (char *)msgbuf; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint32_t(buf, 8, integration_time_us); _mav_put_float(buf, 12, integrated_x); _mav_put_float(buf, 16, integrated_y); _mav_put_float(buf, 20, integrated_xgyro); _mav_put_float(buf, 24, integrated_ygyro); _mav_put_float(buf, 28, integrated_zgyro); _mav_put_uint32_t(buf, 32, time_delta_distance_us); _mav_put_float(buf, 36, distance); _mav_put_int16_t(buf, 40, temperature); _mav_put_uint8_t(buf, 42, sensor_id); _mav_put_uint8_t(buf, 43, quality); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); #else mavlink_optical_flow_rad_t *packet = (mavlink_optical_flow_rad_t *)msgbuf; packet->time_usec = time_usec; packet->integration_time_us = integration_time_us; packet->integrated_x = integrated_x; packet->integrated_y = integrated_y; packet->integrated_xgyro = integrated_xgyro; packet->integrated_ygyro = integrated_ygyro; packet->integrated_zgyro = integrated_zgyro; packet->time_delta_distance_us = time_delta_distance_us; packet->distance = distance; packet->temperature = temperature; packet->sensor_id = sensor_id; packet->quality = quality; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); #endif } #endif #endif // MESSAGE OPTICAL_FLOW_RAD UNPACKING /** * @brief Get field time_usec from optical_flow_rad message * * @return Timestamp (microseconds, synced to UNIX time or since system boot) */ static inline uint64_t mavlink_msg_optical_flow_rad_get_time_usec(const mavlink_message_t* msg) { return _MAV_RETURN_uint64_t(msg, 0); } /** * @brief Get field sensor_id from optical_flow_rad message * * @return Sensor ID */ static inline uint8_t mavlink_msg_optical_flow_rad_get_sensor_id(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 42); } /** * @brief Get field integration_time_us from optical_flow_rad message * * @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. */ static inline uint32_t mavlink_msg_optical_flow_rad_get_integration_time_us(const mavlink_message_t* msg) { return _MAV_RETURN_uint32_t(msg, 8); } /** * @brief Get field integrated_x from optical_flow_rad message * * @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) */ static inline float mavlink_msg_optical_flow_rad_get_integrated_x(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 12); } /** * @brief Get field integrated_y from optical_flow_rad message * * @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) */ static inline float mavlink_msg_optical_flow_rad_get_integrated_y(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 16); } /** * @brief Get field integrated_xgyro from optical_flow_rad message * * @return RH rotation around X axis (rad) */ static inline float mavlink_msg_optical_flow_rad_get_integrated_xgyro(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 20); } /** * @brief Get field integrated_ygyro from optical_flow_rad message * * @return RH rotation around Y axis (rad) */ static inline float mavlink_msg_optical_flow_rad_get_integrated_ygyro(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 24); } /** * @brief Get field integrated_zgyro from optical_flow_rad message * * @return RH rotation around Z axis (rad) */ static inline float mavlink_msg_optical_flow_rad_get_integrated_zgyro(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 28); } /** * @brief Get field temperature from optical_flow_rad message * * @return Temperature * 100 in centi-degrees Celsius */ static inline int16_t mavlink_msg_optical_flow_rad_get_temperature(const mavlink_message_t* msg) { return _MAV_RETURN_int16_t(msg, 40); } /** * @brief Get field quality from optical_flow_rad message * * @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality */ static inline uint8_t mavlink_msg_optical_flow_rad_get_quality(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 43); } /** * @brief Get field time_delta_distance_us from optical_flow_rad message * * @return Time in microseconds since the distance was sampled. */ static inline uint32_t mavlink_msg_optical_flow_rad_get_time_delta_distance_us(const mavlink_message_t* msg) { return _MAV_RETURN_uint32_t(msg, 32); } /** * @brief Get field distance from optical_flow_rad message * * @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. */ static inline float mavlink_msg_optical_flow_rad_get_distance(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 36); } /** * @brief Decode a optical_flow_rad message into a struct * * @param msg The message to decode * @param optical_flow_rad C-struct to decode the message contents into */ static inline void mavlink_msg_optical_flow_rad_decode(const mavlink_message_t* msg, mavlink_optical_flow_rad_t* optical_flow_rad) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS optical_flow_rad->time_usec = mavlink_msg_optical_flow_rad_get_time_usec(msg); optical_flow_rad->integration_time_us = mavlink_msg_optical_flow_rad_get_integration_time_us(msg); optical_flow_rad->integrated_x = mavlink_msg_optical_flow_rad_get_integrated_x(msg); optical_flow_rad->integrated_y = mavlink_msg_optical_flow_rad_get_integrated_y(msg); optical_flow_rad->integrated_xgyro = mavlink_msg_optical_flow_rad_get_integrated_xgyro(msg); optical_flow_rad->integrated_ygyro = mavlink_msg_optical_flow_rad_get_integrated_ygyro(msg); optical_flow_rad->integrated_zgyro = mavlink_msg_optical_flow_rad_get_integrated_zgyro(msg); optical_flow_rad->time_delta_distance_us = mavlink_msg_optical_flow_rad_get_time_delta_distance_us(msg); optical_flow_rad->distance = mavlink_msg_optical_flow_rad_get_distance(msg); optical_flow_rad->temperature = mavlink_msg_optical_flow_rad_get_temperature(msg); optical_flow_rad->sensor_id = mavlink_msg_optical_flow_rad_get_sensor_id(msg); optical_flow_rad->quality = mavlink_msg_optical_flow_rad_get_quality(msg); #else uint8_t len = msg->len < MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN? msg->len : MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN; memset(optical_flow_rad, 0, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); memcpy(optical_flow_rad, _MAV_PAYLOAD(msg), len); #endif }