#pragma once #ifndef MAVLINK_NO_CONVERSION_HELPERS /* enable math defines on Windows */ #ifdef _MSC_VER #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #endif #include #ifndef M_PI_2 #define M_PI_2 ((float)asin(1)) #endif /** * @file mavlink_conversions.h * * These conversion functions follow the NASA rotation standards definition file * available online. * * Their intent is to lower the barrier for MAVLink adopters to use gimbal-lock free * (both rotation matrices, sometimes called DCM, and quaternions are gimbal-lock free) * rotation representations. Euler angles (roll, pitch, yaw) will be phased out of the * protocol as widely as possible. * * @author James Goppert * @author Thomas Gubler */ /** * Converts a quaternion to a rotation matrix * * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) * @param dcm a 3x3 rotation matrix */ MAVLINK_HELPER void mavlink_quaternion_to_dcm(const float quaternion[4], float dcm[3][3]) { double a = quaternion[0]; double b = quaternion[1]; double c = quaternion[2]; double d = quaternion[3]; double aSq = a * a; double bSq = b * b; double cSq = c * c; double dSq = d * d; dcm[0][0] = aSq + bSq - cSq - dSq; dcm[0][1] = 2 * (b * c - a * d); dcm[0][2] = 2 * (a * c + b * d); dcm[1][0] = 2 * (b * c + a * d); dcm[1][1] = aSq - bSq + cSq - dSq; dcm[1][2] = 2 * (c * d - a * b); dcm[2][0] = 2 * (b * d - a * c); dcm[2][1] = 2 * (a * b + c * d); dcm[2][2] = aSq - bSq - cSq + dSq; } /** * Converts a rotation matrix to euler angles * * @param dcm a 3x3 rotation matrix * @param roll the roll angle in radians * @param pitch the pitch angle in radians * @param yaw the yaw angle in radians */ MAVLINK_HELPER void mavlink_dcm_to_euler(const float dcm[3][3], float* roll, float* pitch, float* yaw) { float phi, theta, psi; theta = asin(-dcm[2][0]); if (fabsf(theta - (float)M_PI_2) < 1.0e-3f) { phi = 0.0f; psi = (atan2f(dcm[1][2] - dcm[0][1], dcm[0][2] + dcm[1][1]) + phi); } else if (fabsf(theta + (float)M_PI_2) < 1.0e-3f) { phi = 0.0f; psi = atan2f(dcm[1][2] - dcm[0][1], dcm[0][2] + dcm[1][1] - phi); } else { phi = atan2f(dcm[2][1], dcm[2][2]); psi = atan2f(dcm[1][0], dcm[0][0]); } *roll = phi; *pitch = theta; *yaw = psi; } /** * Converts a quaternion to euler angles * * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) * @param roll the roll angle in radians * @param pitch the pitch angle in radians * @param yaw the yaw angle in radians */ MAVLINK_HELPER void mavlink_quaternion_to_euler(const float quaternion[4], float* roll, float* pitch, float* yaw) { float dcm[3][3]; mavlink_quaternion_to_dcm(quaternion, dcm); mavlink_dcm_to_euler((const float(*)[3])dcm, roll, pitch, yaw); } /** * Converts euler angles to a quaternion * * @param roll the roll angle in radians * @param pitch the pitch angle in radians * @param yaw the yaw angle in radians * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) */ MAVLINK_HELPER void mavlink_euler_to_quaternion(float roll, float pitch, float yaw, float quaternion[4]) { float cosPhi_2 = cosf(roll / 2); float sinPhi_2 = sinf(roll / 2); float cosTheta_2 = cosf(pitch / 2); float sinTheta_2 = sinf(pitch / 2); float cosPsi_2 = cosf(yaw / 2); float sinPsi_2 = sinf(yaw / 2); quaternion[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 + sinPhi_2 * sinTheta_2 * sinPsi_2); quaternion[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 - cosPhi_2 * sinTheta_2 * sinPsi_2); quaternion[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 + sinPhi_2 * cosTheta_2 * sinPsi_2); quaternion[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 - sinPhi_2 * sinTheta_2 * cosPsi_2); } /** * Converts a rotation matrix to a quaternion * Reference: * - Shoemake, Quaternions, * http://www.cs.ucr.edu/~vbz/resources/quatut.pdf * * @param dcm a 3x3 rotation matrix * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) */ MAVLINK_HELPER void mavlink_dcm_to_quaternion(const float dcm[3][3], float quaternion[4]) { float tr = dcm[0][0] + dcm[1][1] + dcm[2][2]; if (tr > 0.0f) { float s = sqrtf(tr + 1.0f); quaternion[0] = s * 0.5f; s = 0.5f / s; quaternion[1] = (dcm[2][1] - dcm[1][2]) * s; quaternion[2] = (dcm[0][2] - dcm[2][0]) * s; quaternion[3] = (dcm[1][0] - dcm[0][1]) * s; } else { /* Find maximum diagonal element in dcm * store index in dcm_i */ int dcm_i = 0; int i; for (i = 1; i < 3; i++) { if (dcm[i][i] > dcm[dcm_i][dcm_i]) { dcm_i = i; } } int dcm_j = (dcm_i + 1) % 3; int dcm_k = (dcm_i + 2) % 3; float s = sqrtf((dcm[dcm_i][dcm_i] - dcm[dcm_j][dcm_j] - dcm[dcm_k][dcm_k]) + 1.0f); quaternion[dcm_i + 1] = s * 0.5f; s = 0.5f / s; quaternion[dcm_j + 1] = (dcm[dcm_i][dcm_j] + dcm[dcm_j][dcm_i]) * s; quaternion[dcm_k + 1] = (dcm[dcm_k][dcm_i] + dcm[dcm_i][dcm_k]) * s; quaternion[0] = (dcm[dcm_k][dcm_j] - dcm[dcm_j][dcm_k]) * s; } } /** * Converts euler angles to a rotation matrix * * @param roll the roll angle in radians * @param pitch the pitch angle in radians * @param yaw the yaw angle in radians * @param dcm a 3x3 rotation matrix */ MAVLINK_HELPER void mavlink_euler_to_dcm(float roll, float pitch, float yaw, float dcm[3][3]) { float cosPhi = cosf(roll); float sinPhi = sinf(roll); float cosThe = cosf(pitch); float sinThe = sinf(pitch); float cosPsi = cosf(yaw); float sinPsi = sinf(yaw); dcm[0][0] = cosThe * cosPsi; dcm[0][1] = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi; dcm[0][2] = sinPhi * sinPsi + cosPhi * sinThe * cosPsi; dcm[1][0] = cosThe * sinPsi; dcm[1][1] = cosPhi * cosPsi + sinPhi * sinThe * sinPsi; dcm[1][2] = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi; dcm[2][0] = -sinThe; dcm[2][1] = sinPhi * cosThe; dcm[2][2] = cosPhi * cosThe; } #endif // MAVLINK_NO_CONVERSION_HELPERS