// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #include "db/external_sst_file_ingestion_job.h" #include #include #include #include #include #include "db/db_impl/db_impl.h" #include "db/version_edit.h" #include "file/file_util.h" #include "file/random_access_file_reader.h" #include "logging/logging.h" #include "table/merging_iterator.h" #include "table/scoped_arena_iterator.h" #include "table/sst_file_writer_collectors.h" #include "table/table_builder.h" #include "table/unique_id_impl.h" #include "test_util/sync_point.h" #include "util/stop_watch.h" namespace ROCKSDB_NAMESPACE { Status ExternalSstFileIngestionJob::Prepare( const std::vector& external_files_paths, const std::vector& files_checksums, const std::vector& files_checksum_func_names, const Temperature& file_temperature, uint64_t next_file_number, SuperVersion* sv) { Status status; // Read the information of files we are ingesting for (const std::string& file_path : external_files_paths) { IngestedFileInfo file_to_ingest; status = GetIngestedFileInfo(file_path, next_file_number++, &file_to_ingest, sv); if (!status.ok()) { return status; } if (file_to_ingest.cf_id != TablePropertiesCollectorFactory::Context::kUnknownColumnFamily && file_to_ingest.cf_id != cfd_->GetID()) { return Status::InvalidArgument( "External file column family id don't match"); } if (file_to_ingest.num_entries == 0 && file_to_ingest.num_range_deletions == 0) { return Status::InvalidArgument("File contain no entries"); } if (!file_to_ingest.smallest_internal_key.Valid() || !file_to_ingest.largest_internal_key.Valid()) { return Status::Corruption("Generated table have corrupted keys"); } files_to_ingest_.emplace_back(std::move(file_to_ingest)); } const Comparator* ucmp = cfd_->internal_comparator().user_comparator(); auto num_files = files_to_ingest_.size(); if (num_files == 0) { return Status::InvalidArgument("The list of files is empty"); } else if (num_files > 1) { // Verify that passed files don't have overlapping ranges autovector sorted_files; for (size_t i = 0; i < num_files; i++) { sorted_files.push_back(&files_to_ingest_[i]); } std::sort( sorted_files.begin(), sorted_files.end(), [&ucmp](const IngestedFileInfo* info1, const IngestedFileInfo* info2) { return sstableKeyCompare(ucmp, info1->smallest_internal_key, info2->smallest_internal_key) < 0; }); for (size_t i = 0; i + 1 < num_files; i++) { if (sstableKeyCompare(ucmp, sorted_files[i]->largest_internal_key, sorted_files[i + 1]->smallest_internal_key) >= 0) { files_overlap_ = true; break; } } } // Hanlde the file temperature for (size_t i = 0; i < num_files; i++) { files_to_ingest_[i].file_temperature = file_temperature; } if (ingestion_options_.ingest_behind && files_overlap_) { return Status::NotSupported("Files have overlapping ranges"); } // Copy/Move external files into DB std::unordered_set ingestion_path_ids; for (IngestedFileInfo& f : files_to_ingest_) { f.copy_file = false; const std::string path_outside_db = f.external_file_path; const std::string path_inside_db = TableFileName( cfd_->ioptions()->cf_paths, f.fd.GetNumber(), f.fd.GetPathId()); if (ingestion_options_.move_files) { status = fs_->LinkFile(path_outside_db, path_inside_db, IOOptions(), nullptr); if (status.ok()) { // It is unsafe to assume application had sync the file and file // directory before ingest the file. For integrity of RocksDB we need // to sync the file. std::unique_ptr file_to_sync; Status s = fs_->ReopenWritableFile(path_inside_db, env_options_, &file_to_sync, nullptr); TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::Prepare:Reopen", &s); // Some file systems (especially remote/distributed) don't support // reopening a file for writing and don't require reopening and // syncing the file. Ignore the NotSupported error in that case. if (!s.IsNotSupported()) { status = s; if (status.ok()) { TEST_SYNC_POINT( "ExternalSstFileIngestionJob::BeforeSyncIngestedFile"); status = SyncIngestedFile(file_to_sync.get()); TEST_SYNC_POINT( "ExternalSstFileIngestionJob::AfterSyncIngestedFile"); if (!status.ok()) { ROCKS_LOG_WARN(db_options_.info_log, "Failed to sync ingested file %s: %s", path_inside_db.c_str(), status.ToString().c_str()); } } } } else if (status.IsNotSupported() && ingestion_options_.failed_move_fall_back_to_copy) { // Original file is on a different FS, use copy instead of hard linking. f.copy_file = true; ROCKS_LOG_INFO(db_options_.info_log, "Triy to link file %s but it's not supported : %s", path_outside_db.c_str(), status.ToString().c_str()); } } else { f.copy_file = true; } if (f.copy_file) { TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::Prepare:CopyFile", nullptr); // CopyFile also sync the new file. status = CopyFile(fs_.get(), path_outside_db, path_inside_db, 0, db_options_.use_fsync, io_tracer_, Temperature::kUnknown); } TEST_SYNC_POINT("ExternalSstFileIngestionJob::Prepare:FileAdded"); if (!status.ok()) { break; } f.internal_file_path = path_inside_db; // Initialize the checksum information of ingested files. f.file_checksum = kUnknownFileChecksum; f.file_checksum_func_name = kUnknownFileChecksumFuncName; ingestion_path_ids.insert(f.fd.GetPathId()); } TEST_SYNC_POINT("ExternalSstFileIngestionJob::BeforeSyncDir"); if (status.ok()) { for (auto path_id : ingestion_path_ids) { status = directories_->GetDataDir(path_id)->FsyncWithDirOptions( IOOptions(), nullptr, DirFsyncOptions(DirFsyncOptions::FsyncReason::kNewFileSynced)); if (!status.ok()) { ROCKS_LOG_WARN(db_options_.info_log, "Failed to sync directory %" ROCKSDB_PRIszt " while ingest file: %s", path_id, status.ToString().c_str()); break; } } } TEST_SYNC_POINT("ExternalSstFileIngestionJob::AfterSyncDir"); // Generate and check the sst file checksum. Note that, if // IngestExternalFileOptions::write_global_seqno is true, we will not update // the checksum information in the files_to_ingests_ here, since the file is // upadted with the new global_seqno. After global_seqno is updated, DB will // generate the new checksum and store it in the Manifest. In all other cases // if ingestion_options_.write_global_seqno == true and // verify_file_checksum is false, we only check the checksum function name. if (status.ok() && db_options_.file_checksum_gen_factory != nullptr) { if (ingestion_options_.verify_file_checksum == false && files_checksums.size() == files_to_ingest_.size() && files_checksum_func_names.size() == files_to_ingest_.size()) { // Only when verify_file_checksum == false and the checksum for ingested // files are provided, DB will use the provided checksum and does not // generate the checksum for ingested files. need_generate_file_checksum_ = false; } else { need_generate_file_checksum_ = true; } FileChecksumGenContext gen_context; std::unique_ptr file_checksum_gen = db_options_.file_checksum_gen_factory->CreateFileChecksumGenerator( gen_context); std::vector generated_checksums; std::vector generated_checksum_func_names; // Step 1: generate the checksum for ingested sst file. if (need_generate_file_checksum_) { for (size_t i = 0; i < files_to_ingest_.size(); i++) { std::string generated_checksum; std::string generated_checksum_func_name; std::string requested_checksum_func_name; // TODO: rate limit file reads for checksum calculation during file // ingestion. IOStatus io_s = GenerateOneFileChecksum( fs_.get(), files_to_ingest_[i].internal_file_path, db_options_.file_checksum_gen_factory.get(), requested_checksum_func_name, &generated_checksum, &generated_checksum_func_name, ingestion_options_.verify_checksums_readahead_size, db_options_.allow_mmap_reads, io_tracer_, db_options_.rate_limiter.get(), Env::IO_TOTAL /* rate_limiter_priority */); if (!io_s.ok()) { status = io_s; ROCKS_LOG_WARN(db_options_.info_log, "Sst file checksum generation of file: %s failed: %s", files_to_ingest_[i].internal_file_path.c_str(), status.ToString().c_str()); break; } if (ingestion_options_.write_global_seqno == false) { files_to_ingest_[i].file_checksum = generated_checksum; files_to_ingest_[i].file_checksum_func_name = generated_checksum_func_name; } generated_checksums.push_back(generated_checksum); generated_checksum_func_names.push_back(generated_checksum_func_name); } } // Step 2: based on the verify_file_checksum and ingested checksum // information, do the verification. if (status.ok()) { if (files_checksums.size() == files_to_ingest_.size() && files_checksum_func_names.size() == files_to_ingest_.size()) { // Verify the checksum and checksum function name. if (ingestion_options_.verify_file_checksum) { for (size_t i = 0; i < files_to_ingest_.size(); i++) { if (files_checksum_func_names[i] != generated_checksum_func_names[i]) { status = Status::InvalidArgument( "Checksum function name does not match with the checksum " "function name of this DB"); ROCKS_LOG_WARN( db_options_.info_log, "Sst file checksum verification of file: %s failed: %s", external_files_paths[i].c_str(), status.ToString().c_str()); break; } if (files_checksums[i] != generated_checksums[i]) { status = Status::Corruption( "Ingested checksum does not match with the generated " "checksum"); ROCKS_LOG_WARN( db_options_.info_log, "Sst file checksum verification of file: %s failed: %s", files_to_ingest_[i].internal_file_path.c_str(), status.ToString().c_str()); break; } } } else { // If verify_file_checksum is not enabled, we only verify the // checksum function name. If it does not match, fail the ingestion. // If matches, we trust the ingested checksum information and store // in the Manifest. for (size_t i = 0; i < files_to_ingest_.size(); i++) { if (files_checksum_func_names[i] != file_checksum_gen->Name()) { status = Status::InvalidArgument( "Checksum function name does not match with the checksum " "function name of this DB"); ROCKS_LOG_WARN( db_options_.info_log, "Sst file checksum verification of file: %s failed: %s", external_files_paths[i].c_str(), status.ToString().c_str()); break; } files_to_ingest_[i].file_checksum = files_checksums[i]; files_to_ingest_[i].file_checksum_func_name = files_checksum_func_names[i]; } } } else if (files_checksums.size() != files_checksum_func_names.size() || (files_checksums.size() == files_checksum_func_names.size() && files_checksums.size() != 0)) { // The checksum or checksum function name vector are not both empty // and they are incomplete. status = Status::InvalidArgument( "The checksum information of ingested sst files are nonempty and " "the size of checksums or the size of the checksum function " "names " "does not match with the number of ingested sst files"); ROCKS_LOG_WARN( db_options_.info_log, "The ingested sst files checksum information is incomplete: %s", status.ToString().c_str()); } } } // TODO: The following is duplicated with Cleanup(). if (!status.ok()) { IOOptions io_opts; // We failed, remove all files that we copied into the db for (IngestedFileInfo& f : files_to_ingest_) { if (f.internal_file_path.empty()) { continue; } Status s = fs_->DeleteFile(f.internal_file_path, io_opts, nullptr); if (!s.ok()) { ROCKS_LOG_WARN(db_options_.info_log, "AddFile() clean up for file %s failed : %s", f.internal_file_path.c_str(), s.ToString().c_str()); } } } return status; } Status ExternalSstFileIngestionJob::NeedsFlush(bool* flush_needed, SuperVersion* super_version) { autovector ranges; autovector keys; size_t ts_sz = cfd_->user_comparator()->timestamp_size(); if (ts_sz) { // Check all ranges [begin, end] inclusively. Add maximum // timestamp to include all `begin` keys, and add minimal timestamp to // include all `end` keys. for (const IngestedFileInfo& file_to_ingest : files_to_ingest_) { std::string begin_str; std::string end_str; AppendUserKeyWithMaxTimestamp( &begin_str, file_to_ingest.smallest_internal_key.user_key(), ts_sz); AppendKeyWithMinTimestamp( &end_str, file_to_ingest.largest_internal_key.user_key(), ts_sz); keys.emplace_back(std::move(begin_str)); keys.emplace_back(std::move(end_str)); } for (size_t i = 0; i < files_to_ingest_.size(); ++i) { ranges.emplace_back(keys[2 * i], keys[2 * i + 1]); } } else { for (const IngestedFileInfo& file_to_ingest : files_to_ingest_) { ranges.emplace_back(file_to_ingest.smallest_internal_key.user_key(), file_to_ingest.largest_internal_key.user_key()); } } Status status = cfd_->RangesOverlapWithMemtables( ranges, super_version, db_options_.allow_data_in_errors, flush_needed); if (status.ok() && *flush_needed && !ingestion_options_.allow_blocking_flush) { status = Status::InvalidArgument("External file requires flush"); } return status; } // REQUIRES: we have become the only writer by entering both write_thread_ and // nonmem_write_thread_ Status ExternalSstFileIngestionJob::Run() { Status status; SuperVersion* super_version = cfd_->GetSuperVersion(); #ifndef NDEBUG // We should never run the job with a memtable that is overlapping // with the files we are ingesting bool need_flush = false; status = NeedsFlush(&need_flush, super_version); if (!status.ok()) { return status; } if (need_flush) { return Status::TryAgain(); } assert(status.ok() && need_flush == false); #endif bool force_global_seqno = false; if (ingestion_options_.snapshot_consistency && !db_snapshots_->empty()) { // We need to assign a global sequence number to all the files even // if the don't overlap with any ranges since we have snapshots force_global_seqno = true; } // It is safe to use this instead of LastAllocatedSequence since we are // the only active writer, and hence they are equal SequenceNumber last_seqno = versions_->LastSequence(); edit_.SetColumnFamily(cfd_->GetID()); // The levels that the files will be ingested into for (IngestedFileInfo& f : files_to_ingest_) { SequenceNumber assigned_seqno = 0; if (ingestion_options_.ingest_behind) { status = CheckLevelForIngestedBehindFile(&f); } else { status = AssignLevelAndSeqnoForIngestedFile( super_version, force_global_seqno, cfd_->ioptions()->compaction_style, last_seqno, &f, &assigned_seqno); } // Modify the smallest/largest internal key to include the sequence number // that we just learned. Only overwrite sequence number zero. There could // be a nonzero sequence number already to indicate a range tombstone's // exclusive endpoint. ParsedInternalKey smallest_parsed, largest_parsed; if (status.ok()) { status = ParseInternalKey(*f.smallest_internal_key.rep(), &smallest_parsed, false /* log_err_key */); } if (status.ok()) { status = ParseInternalKey(*f.largest_internal_key.rep(), &largest_parsed, false /* log_err_key */); } if (!status.ok()) { return status; } if (smallest_parsed.sequence == 0) { UpdateInternalKey(f.smallest_internal_key.rep(), assigned_seqno, smallest_parsed.type); } if (largest_parsed.sequence == 0) { UpdateInternalKey(f.largest_internal_key.rep(), assigned_seqno, largest_parsed.type); } status = AssignGlobalSeqnoForIngestedFile(&f, assigned_seqno); TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::Run", &assigned_seqno); if (assigned_seqno > last_seqno) { assert(assigned_seqno == last_seqno + 1); last_seqno = assigned_seqno; ++consumed_seqno_count_; } if (!status.ok()) { return status; } status = GenerateChecksumForIngestedFile(&f); if (!status.ok()) { return status; } // We use the import time as the ancester time. This is the time the data // is written to the database. int64_t temp_current_time = 0; uint64_t current_time = kUnknownFileCreationTime; uint64_t oldest_ancester_time = kUnknownOldestAncesterTime; if (clock_->GetCurrentTime(&temp_current_time).ok()) { current_time = oldest_ancester_time = static_cast(temp_current_time); } FileMetaData f_metadata( f.fd.GetNumber(), f.fd.GetPathId(), f.fd.GetFileSize(), f.smallest_internal_key, f.largest_internal_key, f.assigned_seqno, f.assigned_seqno, false, f.file_temperature, kInvalidBlobFileNumber, oldest_ancester_time, current_time, ingestion_options_.ingest_behind ? kReservedEpochNumberForFileIngestedBehind : cfd_->NewEpochNumber(), f.file_checksum, f.file_checksum_func_name, f.unique_id, 0); f_metadata.temperature = f.file_temperature; edit_.AddFile(f.picked_level, f_metadata); } CreateEquivalentFileIngestingCompactions(); return status; } void ExternalSstFileIngestionJob::CreateEquivalentFileIngestingCompactions() { // A map from output level to input of compactions equivalent to this // ingestion job. // TODO: simplify below logic to creating compaction per ingested file // instead of per output level, once we figure out how to treat ingested files // with adjacent range deletion tombstones to same output level in the same // job as non-overlapping compactions. std::map output_level_to_file_ingesting_compaction_input; for (const auto& pair : edit_.GetNewFiles()) { int output_level = pair.first; const FileMetaData& f_metadata = pair.second; CompactionInputFiles& input = output_level_to_file_ingesting_compaction_input[output_level]; if (input.files.empty()) { // Treat the source level of ingested files to be level 0 input.level = 0; } compaction_input_metdatas_.push_back(new FileMetaData(f_metadata)); input.files.push_back(compaction_input_metdatas_.back()); } for (const auto& pair : output_level_to_file_ingesting_compaction_input) { int output_level = pair.first; const CompactionInputFiles& input = pair.second; const auto& mutable_cf_options = *(cfd_->GetLatestMutableCFOptions()); file_ingesting_compactions_.push_back(new Compaction( cfd_->current()->storage_info(), *cfd_->ioptions(), mutable_cf_options, mutable_db_options_, {input}, output_level, MaxFileSizeForLevel( mutable_cf_options, output_level, cfd_->ioptions()->compaction_style) /* output file size limit, * not applicable */ , LLONG_MAX /* max compaction bytes, not applicable */, 0 /* output path ID, not applicable */, mutable_cf_options.compression, mutable_cf_options.compression_opts, Temperature::kUnknown, 0 /* max_subcompaction, not applicable */, {} /* grandparents, not applicable */, false /* is manual */, "" /* trim_ts */, -1 /* score, not applicable */, false /* is deletion compaction, not applicable */, files_overlap_ /* l0_files_might_overlap, not applicable */, CompactionReason::kExternalSstIngestion)); } } void ExternalSstFileIngestionJob::RegisterRange() { for (const auto& c : file_ingesting_compactions_) { cfd_->compaction_picker()->RegisterCompaction(c); } } void ExternalSstFileIngestionJob::UnregisterRange() { for (const auto& c : file_ingesting_compactions_) { cfd_->compaction_picker()->UnregisterCompaction(c); delete c; } file_ingesting_compactions_.clear(); for (const auto& f : compaction_input_metdatas_) { delete f; } compaction_input_metdatas_.clear(); } void ExternalSstFileIngestionJob::UpdateStats() { // Update internal stats for new ingested files uint64_t total_keys = 0; uint64_t total_l0_files = 0; uint64_t total_time = clock_->NowMicros() - job_start_time_; EventLoggerStream stream = event_logger_->Log(); stream << "event" << "ingest_finished"; stream << "files_ingested"; stream.StartArray(); for (IngestedFileInfo& f : files_to_ingest_) { InternalStats::CompactionStats stats( CompactionReason::kExternalSstIngestion, 1); stats.micros = total_time; // If actual copy occurred for this file, then we need to count the file // size as the actual bytes written. If the file was linked, then we ignore // the bytes written for file metadata. // TODO (yanqin) maybe account for file metadata bytes for exact accuracy? if (f.copy_file) { stats.bytes_written = f.fd.GetFileSize(); } else { stats.bytes_moved = f.fd.GetFileSize(); } stats.num_output_files = 1; cfd_->internal_stats()->AddCompactionStats(f.picked_level, Env::Priority::USER, stats); cfd_->internal_stats()->AddCFStats(InternalStats::BYTES_INGESTED_ADD_FILE, f.fd.GetFileSize()); total_keys += f.num_entries; if (f.picked_level == 0) { total_l0_files += 1; } ROCKS_LOG_INFO( db_options_.info_log, "[AddFile] External SST file %s was ingested in L%d with path %s " "(global_seqno=%" PRIu64 ")\n", f.external_file_path.c_str(), f.picked_level, f.internal_file_path.c_str(), f.assigned_seqno); stream << "file" << f.internal_file_path << "level" << f.picked_level; } stream.EndArray(); stream << "lsm_state"; stream.StartArray(); auto vstorage = cfd_->current()->storage_info(); for (int level = 0; level < vstorage->num_levels(); ++level) { stream << vstorage->NumLevelFiles(level); } stream.EndArray(); cfd_->internal_stats()->AddCFStats(InternalStats::INGESTED_NUM_KEYS_TOTAL, total_keys); cfd_->internal_stats()->AddCFStats(InternalStats::INGESTED_NUM_FILES_TOTAL, files_to_ingest_.size()); cfd_->internal_stats()->AddCFStats( InternalStats::INGESTED_LEVEL0_NUM_FILES_TOTAL, total_l0_files); } void ExternalSstFileIngestionJob::Cleanup(const Status& status) { IOOptions io_opts; if (!status.ok()) { // We failed to add the files to the database // remove all the files we copied for (IngestedFileInfo& f : files_to_ingest_) { if (f.internal_file_path.empty()) { continue; } Status s = fs_->DeleteFile(f.internal_file_path, io_opts, nullptr); if (!s.ok()) { ROCKS_LOG_WARN(db_options_.info_log, "AddFile() clean up for file %s failed : %s", f.internal_file_path.c_str(), s.ToString().c_str()); } } consumed_seqno_count_ = 0; files_overlap_ = false; } else if (status.ok() && ingestion_options_.move_files) { // The files were moved and added successfully, remove original file links for (IngestedFileInfo& f : files_to_ingest_) { Status s = fs_->DeleteFile(f.external_file_path, io_opts, nullptr); if (!s.ok()) { ROCKS_LOG_WARN( db_options_.info_log, "%s was added to DB successfully but failed to remove original " "file link : %s", f.external_file_path.c_str(), s.ToString().c_str()); } } } } Status ExternalSstFileIngestionJob::GetIngestedFileInfo( const std::string& external_file, uint64_t new_file_number, IngestedFileInfo* file_to_ingest, SuperVersion* sv) { file_to_ingest->external_file_path = external_file; // Get external file size Status status = fs_->GetFileSize(external_file, IOOptions(), &file_to_ingest->file_size, nullptr); if (!status.ok()) { return status; } // Assign FD with number file_to_ingest->fd = FileDescriptor(new_file_number, 0, file_to_ingest->file_size); // Create TableReader for external file std::unique_ptr table_reader; std::unique_ptr sst_file; std::unique_ptr sst_file_reader; status = fs_->NewRandomAccessFile(external_file, env_options_, &sst_file, nullptr); if (!status.ok()) { return status; } sst_file_reader.reset(new RandomAccessFileReader( std::move(sst_file), external_file, nullptr /*Env*/, io_tracer_)); status = cfd_->ioptions()->table_factory->NewTableReader( TableReaderOptions( *cfd_->ioptions(), sv->mutable_cf_options.prefix_extractor, env_options_, cfd_->internal_comparator(), /*skip_filters*/ false, /*immortal*/ false, /*force_direct_prefetch*/ false, /*level*/ -1, /*bottommost*/ false, /*block_cache_tracer*/ nullptr, /*max_file_size_for_l0_meta_pin*/ 0, versions_->DbSessionId(), /*cur_file_num*/ new_file_number), std::move(sst_file_reader), file_to_ingest->file_size, &table_reader); if (!status.ok()) { return status; } if (ingestion_options_.verify_checksums_before_ingest) { // If customized readahead size is needed, we can pass a user option // all the way to here. Right now we just rely on the default readahead // to keep things simple. ReadOptions ro; ro.readahead_size = ingestion_options_.verify_checksums_readahead_size; status = table_reader->VerifyChecksum( ro, TableReaderCaller::kExternalSSTIngestion); } if (!status.ok()) { return status; } // Get the external file properties auto props = table_reader->GetTableProperties(); const auto& uprops = props->user_collected_properties; // Get table version auto version_iter = uprops.find(ExternalSstFilePropertyNames::kVersion); if (version_iter == uprops.end()) { return Status::Corruption("External file version not found"); } file_to_ingest->version = DecodeFixed32(version_iter->second.c_str()); auto seqno_iter = uprops.find(ExternalSstFilePropertyNames::kGlobalSeqno); if (file_to_ingest->version == 2) { // version 2 imply that we have global sequence number if (seqno_iter == uprops.end()) { return Status::Corruption( "External file global sequence number not found"); } // Set the global sequence number file_to_ingest->original_seqno = DecodeFixed64(seqno_iter->second.c_str()); if (props->external_sst_file_global_seqno_offset == 0) { file_to_ingest->global_seqno_offset = 0; return Status::Corruption("Was not able to find file global seqno field"); } file_to_ingest->global_seqno_offset = static_cast(props->external_sst_file_global_seqno_offset); } else if (file_to_ingest->version == 1) { // SST file V1 should not have global seqno field assert(seqno_iter == uprops.end()); file_to_ingest->original_seqno = 0; if (ingestion_options_.allow_blocking_flush || ingestion_options_.allow_global_seqno) { return Status::InvalidArgument( "External SST file V1 does not support global seqno"); } } else { return Status::InvalidArgument("External file version is not supported"); } // Get number of entries in table file_to_ingest->num_entries = props->num_entries; file_to_ingest->num_range_deletions = props->num_range_deletions; ParsedInternalKey key; ReadOptions ro; std::unique_ptr iter(table_reader->NewIterator( ro, sv->mutable_cf_options.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kExternalSSTIngestion)); std::unique_ptr range_del_iter( table_reader->NewRangeTombstoneIterator(ro)); // Get first (smallest) and last (largest) key from file. file_to_ingest->smallest_internal_key = InternalKey("", 0, ValueType::kTypeValue); file_to_ingest->largest_internal_key = InternalKey("", 0, ValueType::kTypeValue); bool bounds_set = false; bool allow_data_in_errors = db_options_.allow_data_in_errors; iter->SeekToFirst(); if (iter->Valid()) { Status pik_status = ParseInternalKey(iter->key(), &key, allow_data_in_errors); if (!pik_status.ok()) { return Status::Corruption("Corrupted key in external file. ", pik_status.getState()); } if (key.sequence != 0) { return Status::Corruption("External file has non zero sequence number"); } file_to_ingest->smallest_internal_key.SetFrom(key); iter->SeekToLast(); pik_status = ParseInternalKey(iter->key(), &key, allow_data_in_errors); if (!pik_status.ok()) { return Status::Corruption("Corrupted key in external file. ", pik_status.getState()); } if (key.sequence != 0) { return Status::Corruption("External file has non zero sequence number"); } file_to_ingest->largest_internal_key.SetFrom(key); bounds_set = true; } // We may need to adjust these key bounds, depending on whether any range // deletion tombstones extend past them. const Comparator* ucmp = cfd_->internal_comparator().user_comparator(); if (range_del_iter != nullptr) { for (range_del_iter->SeekToFirst(); range_del_iter->Valid(); range_del_iter->Next()) { Status pik_status = ParseInternalKey(range_del_iter->key(), &key, allow_data_in_errors); if (!pik_status.ok()) { return Status::Corruption("Corrupted key in external file. ", pik_status.getState()); } RangeTombstone tombstone(key, range_del_iter->value()); InternalKey start_key = tombstone.SerializeKey(); if (!bounds_set || sstableKeyCompare(ucmp, start_key, file_to_ingest->smallest_internal_key) < 0) { file_to_ingest->smallest_internal_key = start_key; } InternalKey end_key = tombstone.SerializeEndKey(); if (!bounds_set || sstableKeyCompare(ucmp, end_key, file_to_ingest->largest_internal_key) > 0) { file_to_ingest->largest_internal_key = end_key; } bounds_set = true; } } file_to_ingest->cf_id = static_cast(props->column_family_id); file_to_ingest->table_properties = *props; auto s = GetSstInternalUniqueId(props->db_id, props->db_session_id, props->orig_file_number, &(file_to_ingest->unique_id)); if (!s.ok()) { ROCKS_LOG_WARN(db_options_.info_log, "Failed to get SST unique id for file %s", file_to_ingest->internal_file_path.c_str()); file_to_ingest->unique_id = kNullUniqueId64x2; } return status; } Status ExternalSstFileIngestionJob::AssignLevelAndSeqnoForIngestedFile( SuperVersion* sv, bool force_global_seqno, CompactionStyle compaction_style, SequenceNumber last_seqno, IngestedFileInfo* file_to_ingest, SequenceNumber* assigned_seqno) { Status status; *assigned_seqno = 0; if (force_global_seqno) { *assigned_seqno = last_seqno + 1; if (compaction_style == kCompactionStyleUniversal || files_overlap_) { if (ingestion_options_.fail_if_not_bottommost_level) { status = Status::TryAgain( "Files cannot be ingested to Lmax. Please make sure key range of " "Lmax does not overlap with files to ingest."); return status; } file_to_ingest->picked_level = 0; return status; } } bool overlap_with_db = false; Arena arena; ReadOptions ro; ro.total_order_seek = true; int target_level = 0; auto* vstorage = cfd_->current()->storage_info(); for (int lvl = 0; lvl < cfd_->NumberLevels(); lvl++) { if (lvl > 0 && lvl < vstorage->base_level()) { continue; } if (cfd_->RangeOverlapWithCompaction( file_to_ingest->smallest_internal_key.user_key(), file_to_ingest->largest_internal_key.user_key(), lvl)) { // We must use L0 or any level higher than `lvl` to be able to overwrite // the compaction output keys that we overlap with in this level, We also // need to assign this file a seqno to overwrite the compaction output // keys in level `lvl` overlap_with_db = true; break; } else if (vstorage->NumLevelFiles(lvl) > 0) { bool overlap_with_level = false; status = sv->current->OverlapWithLevelIterator( ro, env_options_, file_to_ingest->smallest_internal_key.user_key(), file_to_ingest->largest_internal_key.user_key(), lvl, &overlap_with_level); if (!status.ok()) { return status; } if (overlap_with_level) { // We must use L0 or any level higher than `lvl` to be able to overwrite // the keys that we overlap with in this level, We also need to assign // this file a seqno to overwrite the existing keys in level `lvl` overlap_with_db = true; break; } if (compaction_style == kCompactionStyleUniversal && lvl != 0) { const std::vector& level_files = vstorage->LevelFiles(lvl); const SequenceNumber level_largest_seqno = (*std::max_element(level_files.begin(), level_files.end(), [](FileMetaData* f1, FileMetaData* f2) { return f1->fd.largest_seqno < f2->fd.largest_seqno; })) ->fd.largest_seqno; // should only assign seqno to current level's largest seqno when // the file fits if (level_largest_seqno != 0 && IngestedFileFitInLevel(file_to_ingest, lvl)) { *assigned_seqno = level_largest_seqno; } else { continue; } } } else if (compaction_style == kCompactionStyleUniversal) { continue; } // We don't overlap with any keys in this level, but we still need to check // if our file can fit in it if (IngestedFileFitInLevel(file_to_ingest, lvl)) { target_level = lvl; } } // If files overlap, we have to ingest them at level 0 and assign the newest // sequence number if (files_overlap_) { target_level = 0; *assigned_seqno = last_seqno + 1; } if (ingestion_options_.fail_if_not_bottommost_level && target_level < cfd_->NumberLevels() - 1) { status = Status::TryAgain( "Files cannot be ingested to Lmax. Please make sure key range of Lmax " "and ongoing compaction's output to Lmax" "does not overlap with files to ingest."); return status; } TEST_SYNC_POINT_CALLBACK( "ExternalSstFileIngestionJob::AssignLevelAndSeqnoForIngestedFile", &overlap_with_db); file_to_ingest->picked_level = target_level; if (overlap_with_db && *assigned_seqno == 0) { *assigned_seqno = last_seqno + 1; } return status; } Status ExternalSstFileIngestionJob::CheckLevelForIngestedBehindFile( IngestedFileInfo* file_to_ingest) { auto* vstorage = cfd_->current()->storage_info(); // First, check if new files fit in the bottommost level int bottom_lvl = cfd_->NumberLevels() - 1; if (!IngestedFileFitInLevel(file_to_ingest, bottom_lvl)) { return Status::InvalidArgument( "Can't ingest_behind file as it doesn't fit " "at the bottommost level!"); } // Second, check if despite allow_ingest_behind=true we still have 0 seqnums // at some upper level for (int lvl = 0; lvl < cfd_->NumberLevels() - 1; lvl++) { for (auto file : vstorage->LevelFiles(lvl)) { if (file->fd.smallest_seqno == 0) { return Status::InvalidArgument( "Can't ingest_behind file as despite allow_ingest_behind=true " "there are files with 0 seqno in database at upper levels!"); } } } file_to_ingest->picked_level = bottom_lvl; return Status::OK(); } Status ExternalSstFileIngestionJob::AssignGlobalSeqnoForIngestedFile( IngestedFileInfo* file_to_ingest, SequenceNumber seqno) { if (file_to_ingest->original_seqno == seqno) { // This file already have the correct global seqno return Status::OK(); } else if (!ingestion_options_.allow_global_seqno) { return Status::InvalidArgument("Global seqno is required, but disabled"); } else if (file_to_ingest->global_seqno_offset == 0) { return Status::InvalidArgument( "Trying to set global seqno for a file that don't have a global seqno " "field"); } if (ingestion_options_.write_global_seqno) { // Determine if we can write global_seqno to a given offset of file. // If the file system does not support random write, then we should not. // Otherwise we should. std::unique_ptr rwfile; Status status = fs_->NewRandomRWFile(file_to_ingest->internal_file_path, env_options_, &rwfile, nullptr); TEST_SYNC_POINT_CALLBACK("ExternalSstFileIngestionJob::NewRandomRWFile", &status); if (status.ok()) { FSRandomRWFilePtr fsptr(std::move(rwfile), io_tracer_, file_to_ingest->internal_file_path); std::string seqno_val; PutFixed64(&seqno_val, seqno); status = fsptr->Write(file_to_ingest->global_seqno_offset, seqno_val, IOOptions(), nullptr); if (status.ok()) { TEST_SYNC_POINT("ExternalSstFileIngestionJob::BeforeSyncGlobalSeqno"); status = SyncIngestedFile(fsptr.get()); TEST_SYNC_POINT("ExternalSstFileIngestionJob::AfterSyncGlobalSeqno"); if (!status.ok()) { ROCKS_LOG_WARN(db_options_.info_log, "Failed to sync ingested file %s after writing global " "sequence number: %s", file_to_ingest->internal_file_path.c_str(), status.ToString().c_str()); } } if (!status.ok()) { return status; } } else if (!status.IsNotSupported()) { return status; } } file_to_ingest->assigned_seqno = seqno; return Status::OK(); } IOStatus ExternalSstFileIngestionJob::GenerateChecksumForIngestedFile( IngestedFileInfo* file_to_ingest) { if (db_options_.file_checksum_gen_factory == nullptr || need_generate_file_checksum_ == false || ingestion_options_.write_global_seqno == false) { // If file_checksum_gen_factory is not set, we are not able to generate // the checksum. if write_global_seqno is false, it means we will use // file checksum generated during Prepare(). This step will be skipped. return IOStatus::OK(); } std::string file_checksum; std::string file_checksum_func_name; std::string requested_checksum_func_name; // TODO: rate limit file reads for checksum calculation during file ingestion. IOStatus io_s = GenerateOneFileChecksum( fs_.get(), file_to_ingest->internal_file_path, db_options_.file_checksum_gen_factory.get(), requested_checksum_func_name, &file_checksum, &file_checksum_func_name, ingestion_options_.verify_checksums_readahead_size, db_options_.allow_mmap_reads, io_tracer_, db_options_.rate_limiter.get(), Env::IO_TOTAL /* rate_limiter_priority */); if (!io_s.ok()) { return io_s; } file_to_ingest->file_checksum = file_checksum; file_to_ingest->file_checksum_func_name = file_checksum_func_name; return IOStatus::OK(); } bool ExternalSstFileIngestionJob::IngestedFileFitInLevel( const IngestedFileInfo* file_to_ingest, int level) { if (level == 0) { // Files can always fit in L0 return true; } auto* vstorage = cfd_->current()->storage_info(); Slice file_smallest_user_key( file_to_ingest->smallest_internal_key.user_key()); Slice file_largest_user_key(file_to_ingest->largest_internal_key.user_key()); if (vstorage->OverlapInLevel(level, &file_smallest_user_key, &file_largest_user_key)) { // File overlap with another files in this level, we cannot // add it to this level return false; } // File did not overlap with level files, nor compaction output return true; } template Status ExternalSstFileIngestionJob::SyncIngestedFile(TWritableFile* file) { assert(file != nullptr); if (db_options_.use_fsync) { return file->Fsync(IOOptions(), nullptr); } else { return file->Sync(IOOptions(), nullptr); } } } // namespace ROCKSDB_NAMESPACE