// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include "db/column_family.h" #include "db/db_test_util.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "rocksdb/comparator.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/memtablerep.h" #include "rocksdb/utilities/write_batch_with_index.h" #include "rocksdb/write_buffer_manager.h" #include "table/scoped_arena_iterator.h" #include "test_util/testharness.h" #include "test_util/testutil.h" #include "util/string_util.h" namespace ROCKSDB_NAMESPACE { static std::string PrintContents(WriteBatch* b, bool merge_operator_supported = true) { InternalKeyComparator cmp(BytewiseComparator()); auto factory = std::make_shared(); Options options; options.memtable_factory = factory; if (merge_operator_supported) { options.merge_operator.reset(new TestPutOperator()); } ImmutableOptions ioptions(options); WriteBufferManager wb(options.db_write_buffer_size); MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb, kMaxSequenceNumber, 0 /* column_family_id */); mem->Ref(); std::string state; ColumnFamilyMemTablesDefault cf_mems_default(mem); Status s = WriteBatchInternal::InsertInto(b, &cf_mems_default, nullptr, nullptr); uint32_t count = 0; int put_count = 0; int delete_count = 0; int single_delete_count = 0; int delete_range_count = 0; int merge_count = 0; for (int i = 0; i < 2; ++i) { Arena arena; ScopedArenaIterator arena_iter_guard; std::unique_ptr iter_guard; InternalIterator* iter; if (i == 0) { iter = mem->NewIterator(ReadOptions(), &arena); arena_iter_guard.set(iter); } else { iter = mem->NewRangeTombstoneIterator(ReadOptions(), kMaxSequenceNumber /* read_seq */, false /* immutable_memtable */); iter_guard.reset(iter); } if (iter == nullptr) { continue; } EXPECT_OK(iter->status()); for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey ikey; ikey.clear(); EXPECT_OK(ParseInternalKey(iter->key(), &ikey, true /* log_err_key */)); switch (ikey.type) { case kTypeValue: state.append("Put("); state.append(ikey.user_key.ToString()); state.append(", "); state.append(iter->value().ToString()); state.append(")"); count++; put_count++; break; case kTypeDeletion: state.append("Delete("); state.append(ikey.user_key.ToString()); state.append(")"); count++; delete_count++; break; case kTypeSingleDeletion: state.append("SingleDelete("); state.append(ikey.user_key.ToString()); state.append(")"); count++; single_delete_count++; break; case kTypeRangeDeletion: state.append("DeleteRange("); state.append(ikey.user_key.ToString()); state.append(", "); state.append(iter->value().ToString()); state.append(")"); count++; delete_range_count++; break; case kTypeMerge: state.append("Merge("); state.append(ikey.user_key.ToString()); state.append(", "); state.append(iter->value().ToString()); state.append(")"); count++; merge_count++; break; default: assert(false); break; } state.append("@"); state.append(std::to_string(ikey.sequence)); } EXPECT_OK(iter->status()); } if (s.ok()) { EXPECT_EQ(b->HasPut(), put_count > 0); EXPECT_EQ(b->HasDelete(), delete_count > 0); EXPECT_EQ(b->HasSingleDelete(), single_delete_count > 0); EXPECT_EQ(b->HasDeleteRange(), delete_range_count > 0); EXPECT_EQ(b->HasMerge(), merge_count > 0); if (count != WriteBatchInternal::Count(b)) { state.append("CountMismatch()"); } } else { state.append(s.ToString()); } delete mem->Unref(); return state; } class WriteBatchTest : public testing::Test {}; TEST_F(WriteBatchTest, Empty) { WriteBatch batch; ASSERT_EQ("", PrintContents(&batch)); ASSERT_EQ(0u, WriteBatchInternal::Count(&batch)); ASSERT_EQ(0u, batch.Count()); } TEST_F(WriteBatchTest, Multiple) { WriteBatch batch; ASSERT_OK(batch.Put(Slice("foo"), Slice("bar"))); ASSERT_OK(batch.Delete(Slice("box"))); ASSERT_OK(batch.DeleteRange(Slice("bar"), Slice("foo"))); ASSERT_OK(batch.Put(Slice("baz"), Slice("boo"))); WriteBatchInternal::SetSequence(&batch, 100); ASSERT_EQ(100U, WriteBatchInternal::Sequence(&batch)); ASSERT_EQ(4u, WriteBatchInternal::Count(&batch)); ASSERT_EQ( "Put(baz, boo)@103" "Delete(box)@101" "Put(foo, bar)@100" "DeleteRange(bar, foo)@102", PrintContents(&batch)); ASSERT_EQ(4u, batch.Count()); } TEST_F(WriteBatchTest, Corruption) { WriteBatch batch; ASSERT_OK(batch.Put(Slice("foo"), Slice("bar"))); ASSERT_OK(batch.Delete(Slice("box"))); WriteBatchInternal::SetSequence(&batch, 200); Slice contents = WriteBatchInternal::Contents(&batch); ASSERT_OK(WriteBatchInternal::SetContents( &batch, Slice(contents.data(), contents.size() - 1))); ASSERT_EQ( "Put(foo, bar)@200" "Corruption: bad WriteBatch Delete", PrintContents(&batch)); } TEST_F(WriteBatchTest, Append) { WriteBatch b1, b2; WriteBatchInternal::SetSequence(&b1, 200); WriteBatchInternal::SetSequence(&b2, 300); ASSERT_OK(WriteBatchInternal::Append(&b1, &b2)); ASSERT_EQ("", PrintContents(&b1)); ASSERT_EQ(0u, b1.Count()); ASSERT_OK(b2.Put("a", "va")); ASSERT_OK(WriteBatchInternal::Append(&b1, &b2)); ASSERT_EQ("Put(a, va)@200", PrintContents(&b1)); ASSERT_EQ(1u, b1.Count()); b2.Clear(); ASSERT_OK(b2.Put("b", "vb")); ASSERT_OK(WriteBatchInternal::Append(&b1, &b2)); ASSERT_EQ( "Put(a, va)@200" "Put(b, vb)@201", PrintContents(&b1)); ASSERT_EQ(2u, b1.Count()); ASSERT_OK(b2.Delete("foo")); ASSERT_OK(WriteBatchInternal::Append(&b1, &b2)); ASSERT_EQ( "Put(a, va)@200" "Put(b, vb)@202" "Put(b, vb)@201" "Delete(foo)@203", PrintContents(&b1)); ASSERT_EQ(4u, b1.Count()); b2.Clear(); ASSERT_OK(b2.Put("c", "cc")); ASSERT_OK(b2.Put("d", "dd")); b2.MarkWalTerminationPoint(); ASSERT_OK(b2.Put("e", "ee")); ASSERT_OK(WriteBatchInternal::Append(&b1, &b2, /*wal only*/ true)); ASSERT_EQ( "Put(a, va)@200" "Put(b, vb)@202" "Put(b, vb)@201" "Put(c, cc)@204" "Put(d, dd)@205" "Delete(foo)@203", PrintContents(&b1)); ASSERT_EQ(6u, b1.Count()); ASSERT_EQ( "Put(c, cc)@0" "Put(d, dd)@1" "Put(e, ee)@2", PrintContents(&b2)); ASSERT_EQ(3u, b2.Count()); } TEST_F(WriteBatchTest, SingleDeletion) { WriteBatch batch; WriteBatchInternal::SetSequence(&batch, 100); ASSERT_EQ("", PrintContents(&batch)); ASSERT_EQ(0u, batch.Count()); ASSERT_OK(batch.Put("a", "va")); ASSERT_EQ("Put(a, va)@100", PrintContents(&batch)); ASSERT_EQ(1u, batch.Count()); ASSERT_OK(batch.SingleDelete("a")); ASSERT_EQ( "SingleDelete(a)@101" "Put(a, va)@100", PrintContents(&batch)); ASSERT_EQ(2u, batch.Count()); } namespace { struct TestHandler : public WriteBatch::Handler { std::string seen; Status PutCF(uint32_t column_family_id, const Slice& key, const Slice& value) override { if (column_family_id == 0) { seen += "Put(" + key.ToString() + ", " + value.ToString() + ")"; } else { seen += "PutCF(" + std::to_string(column_family_id) + ", " + key.ToString() + ", " + value.ToString() + ")"; } return Status::OK(); } Status DeleteCF(uint32_t column_family_id, const Slice& key) override { if (column_family_id == 0) { seen += "Delete(" + key.ToString() + ")"; } else { seen += "DeleteCF(" + std::to_string(column_family_id) + ", " + key.ToString() + ")"; } return Status::OK(); } Status SingleDeleteCF(uint32_t column_family_id, const Slice& key) override { if (column_family_id == 0) { seen += "SingleDelete(" + key.ToString() + ")"; } else { seen += "SingleDeleteCF(" + std::to_string(column_family_id) + ", " + key.ToString() + ")"; } return Status::OK(); } Status DeleteRangeCF(uint32_t column_family_id, const Slice& begin_key, const Slice& end_key) override { if (column_family_id == 0) { seen += "DeleteRange(" + begin_key.ToString() + ", " + end_key.ToString() + ")"; } else { seen += "DeleteRangeCF(" + std::to_string(column_family_id) + ", " + begin_key.ToString() + ", " + end_key.ToString() + ")"; } return Status::OK(); } Status MergeCF(uint32_t column_family_id, const Slice& key, const Slice& value) override { if (column_family_id == 0) { seen += "Merge(" + key.ToString() + ", " + value.ToString() + ")"; } else { seen += "MergeCF(" + std::to_string(column_family_id) + ", " + key.ToString() + ", " + value.ToString() + ")"; } return Status::OK(); } void LogData(const Slice& blob) override { seen += "LogData(" + blob.ToString() + ")"; } Status MarkBeginPrepare(bool unprepare) override { seen += "MarkBeginPrepare(" + std::string(unprepare ? "true" : "false") + ")"; return Status::OK(); } Status MarkEndPrepare(const Slice& xid) override { seen += "MarkEndPrepare(" + xid.ToString() + ")"; return Status::OK(); } Status MarkNoop(bool empty_batch) override { seen += "MarkNoop(" + std::string(empty_batch ? "true" : "false") + ")"; return Status::OK(); } Status MarkCommit(const Slice& xid) override { seen += "MarkCommit(" + xid.ToString() + ")"; return Status::OK(); } Status MarkCommitWithTimestamp(const Slice& xid, const Slice& ts) override { seen += "MarkCommitWithTimestamp(" + xid.ToString() + ", " + ts.ToString(true) + ")"; return Status::OK(); } Status MarkRollback(const Slice& xid) override { seen += "MarkRollback(" + xid.ToString() + ")"; return Status::OK(); } }; } // anonymous namespace TEST_F(WriteBatchTest, PutNotImplemented) { WriteBatch batch; ASSERT_OK(batch.Put(Slice("k1"), Slice("v1"))); ASSERT_EQ(1u, batch.Count()); ASSERT_EQ("Put(k1, v1)@0", PrintContents(&batch)); WriteBatch::Handler handler; ASSERT_OK(batch.Iterate(&handler)); } TEST_F(WriteBatchTest, DeleteNotImplemented) { WriteBatch batch; ASSERT_OK(batch.Delete(Slice("k2"))); ASSERT_EQ(1u, batch.Count()); ASSERT_EQ("Delete(k2)@0", PrintContents(&batch)); WriteBatch::Handler handler; ASSERT_OK(batch.Iterate(&handler)); } TEST_F(WriteBatchTest, SingleDeleteNotImplemented) { WriteBatch batch; ASSERT_OK(batch.SingleDelete(Slice("k2"))); ASSERT_EQ(1u, batch.Count()); ASSERT_EQ("SingleDelete(k2)@0", PrintContents(&batch)); WriteBatch::Handler handler; ASSERT_OK(batch.Iterate(&handler)); } TEST_F(WriteBatchTest, MergeNotImplemented) { WriteBatch batch; ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar"))); ASSERT_EQ(1u, batch.Count()); ASSERT_EQ("Merge(foo, bar)@0", PrintContents(&batch)); WriteBatch::Handler handler; ASSERT_OK(batch.Iterate(&handler)); } TEST_F(WriteBatchTest, MergeWithoutOperatorInsertionFailure) { WriteBatch batch; ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar"))); ASSERT_EQ(1u, batch.Count()); ASSERT_EQ( "Invalid argument: Merge requires `ColumnFamilyOptions::merge_operator " "!= nullptr`", PrintContents(&batch, false /* merge_operator_supported */)); } TEST_F(WriteBatchTest, Blob) { WriteBatch batch; ASSERT_OK(batch.Put(Slice("k1"), Slice("v1"))); ASSERT_OK(batch.Put(Slice("k2"), Slice("v2"))); ASSERT_OK(batch.Put(Slice("k3"), Slice("v3"))); ASSERT_OK(batch.PutLogData(Slice("blob1"))); ASSERT_OK(batch.Delete(Slice("k2"))); ASSERT_OK(batch.SingleDelete(Slice("k3"))); ASSERT_OK(batch.PutLogData(Slice("blob2"))); ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar"))); ASSERT_EQ(6u, batch.Count()); ASSERT_EQ( "Merge(foo, bar)@5" "Put(k1, v1)@0" "Delete(k2)@3" "Put(k2, v2)@1" "SingleDelete(k3)@4" "Put(k3, v3)@2", PrintContents(&batch)); TestHandler handler; ASSERT_OK(batch.Iterate(&handler)); ASSERT_EQ( "Put(k1, v1)" "Put(k2, v2)" "Put(k3, v3)" "LogData(blob1)" "Delete(k2)" "SingleDelete(k3)" "LogData(blob2)" "Merge(foo, bar)", handler.seen); } TEST_F(WriteBatchTest, PrepareCommit) { WriteBatch batch; ASSERT_OK(WriteBatchInternal::InsertNoop(&batch)); ASSERT_OK(batch.Put(Slice("k1"), Slice("v1"))); ASSERT_OK(batch.Put(Slice("k2"), Slice("v2"))); batch.SetSavePoint(); ASSERT_OK(WriteBatchInternal::MarkEndPrepare(&batch, Slice("xid1"))); Status s = batch.RollbackToSavePoint(); ASSERT_TRUE(s.IsNotFound()); ASSERT_OK(WriteBatchInternal::MarkCommit(&batch, Slice("xid1"))); ASSERT_OK(WriteBatchInternal::MarkRollback(&batch, Slice("xid1"))); ASSERT_EQ(2u, batch.Count()); TestHandler handler; ASSERT_OK(batch.Iterate(&handler)); ASSERT_EQ( "MarkBeginPrepare(false)" "Put(k1, v1)" "Put(k2, v2)" "MarkEndPrepare(xid1)" "MarkCommit(xid1)" "MarkRollback(xid1)", handler.seen); } // It requires more than 30GB of memory to run the test. With single memory // allocation of more than 30GB. // Not all platform can run it. Also it runs a long time. So disable it. TEST_F(WriteBatchTest, DISABLED_ManyUpdates) { // Insert key and value of 3GB and push total batch size to 12GB. static const size_t kKeyValueSize = 4u; static const uint32_t kNumUpdates = uint32_t{3} << 30; std::string raw(kKeyValueSize, 'A'); WriteBatch batch(kNumUpdates * (4 + kKeyValueSize * 2) + 1024u); char c = 'A'; for (uint32_t i = 0; i < kNumUpdates; i++) { if (c > 'Z') { c = 'A'; } raw[0] = c; raw[raw.length() - 1] = c; c++; ASSERT_OK(batch.Put(raw, raw)); } ASSERT_EQ(kNumUpdates, batch.Count()); struct NoopHandler : public WriteBatch::Handler { uint32_t num_seen = 0; char expected_char = 'A'; Status PutCF(uint32_t /*column_family_id*/, const Slice& key, const Slice& value) override { EXPECT_EQ(kKeyValueSize, key.size()); EXPECT_EQ(kKeyValueSize, value.size()); EXPECT_EQ(expected_char, key[0]); EXPECT_EQ(expected_char, value[0]); EXPECT_EQ(expected_char, key[kKeyValueSize - 1]); EXPECT_EQ(expected_char, value[kKeyValueSize - 1]); expected_char++; if (expected_char > 'Z') { expected_char = 'A'; } ++num_seen; return Status::OK(); } Status DeleteCF(uint32_t /*column_family_id*/, const Slice& /*key*/) override { ADD_FAILURE(); return Status::OK(); } Status SingleDeleteCF(uint32_t /*column_family_id*/, const Slice& /*key*/) override { ADD_FAILURE(); return Status::OK(); } Status MergeCF(uint32_t /*column_family_id*/, const Slice& /*key*/, const Slice& /*value*/) override { ADD_FAILURE(); return Status::OK(); } void LogData(const Slice& /*blob*/) override { ADD_FAILURE(); } bool Continue() override { return num_seen < kNumUpdates; } } handler; ASSERT_OK(batch.Iterate(&handler)); ASSERT_EQ(kNumUpdates, handler.num_seen); } // The test requires more than 18GB memory to run it, with single memory // allocation of more than 12GB. Not all the platform can run it. So disable it. TEST_F(WriteBatchTest, DISABLED_LargeKeyValue) { // Insert key and value of 3GB and push total batch size to 12GB. static const size_t kKeyValueSize = 3221225472u; std::string raw(kKeyValueSize, 'A'); WriteBatch batch(size_t(12884901888ull + 1024u)); for (char i = 0; i < 2; i++) { raw[0] = 'A' + i; raw[raw.length() - 1] = 'A' - i; ASSERT_OK(batch.Put(raw, raw)); } ASSERT_EQ(2u, batch.Count()); struct NoopHandler : public WriteBatch::Handler { int num_seen = 0; Status PutCF(uint32_t /*column_family_id*/, const Slice& key, const Slice& value) override { EXPECT_EQ(kKeyValueSize, key.size()); EXPECT_EQ(kKeyValueSize, value.size()); EXPECT_EQ('A' + num_seen, key[0]); EXPECT_EQ('A' + num_seen, value[0]); EXPECT_EQ('A' - num_seen, key[kKeyValueSize - 1]); EXPECT_EQ('A' - num_seen, value[kKeyValueSize - 1]); ++num_seen; return Status::OK(); } Status DeleteCF(uint32_t /*column_family_id*/, const Slice& /*key*/) override { ADD_FAILURE(); return Status::OK(); } Status SingleDeleteCF(uint32_t /*column_family_id*/, const Slice& /*key*/) override { ADD_FAILURE(); return Status::OK(); } Status MergeCF(uint32_t /*column_family_id*/, const Slice& /*key*/, const Slice& /*value*/) override { ADD_FAILURE(); return Status::OK(); } void LogData(const Slice& /*blob*/) override { ADD_FAILURE(); } bool Continue() override { return num_seen < 2; } } handler; ASSERT_OK(batch.Iterate(&handler)); ASSERT_EQ(2, handler.num_seen); } TEST_F(WriteBatchTest, Continue) { WriteBatch batch; struct Handler : public TestHandler { int num_seen = 0; Status PutCF(uint32_t column_family_id, const Slice& key, const Slice& value) override { ++num_seen; return TestHandler::PutCF(column_family_id, key, value); } Status DeleteCF(uint32_t column_family_id, const Slice& key) override { ++num_seen; return TestHandler::DeleteCF(column_family_id, key); } Status SingleDeleteCF(uint32_t column_family_id, const Slice& key) override { ++num_seen; return TestHandler::SingleDeleteCF(column_family_id, key); } Status MergeCF(uint32_t column_family_id, const Slice& key, const Slice& value) override { ++num_seen; return TestHandler::MergeCF(column_family_id, key, value); } void LogData(const Slice& blob) override { ++num_seen; TestHandler::LogData(blob); } bool Continue() override { return num_seen < 5; } } handler; ASSERT_OK(batch.Put(Slice("k1"), Slice("v1"))); ASSERT_OK(batch.Put(Slice("k2"), Slice("v2"))); ASSERT_OK(batch.PutLogData(Slice("blob1"))); ASSERT_OK(batch.Delete(Slice("k1"))); ASSERT_OK(batch.SingleDelete(Slice("k2"))); ASSERT_OK(batch.PutLogData(Slice("blob2"))); ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar"))); ASSERT_OK(batch.Iterate(&handler)); ASSERT_EQ( "Put(k1, v1)" "Put(k2, v2)" "LogData(blob1)" "Delete(k1)" "SingleDelete(k2)", handler.seen); } TEST_F(WriteBatchTest, PutGatherSlices) { WriteBatch batch; ASSERT_OK(batch.Put(Slice("foo"), Slice("bar"))); { // Try a write where the key is one slice but the value is two Slice key_slice("baz"); Slice value_slices[2] = {Slice("header"), Slice("payload")}; ASSERT_OK( batch.Put(SliceParts(&key_slice, 1), SliceParts(value_slices, 2))); } { // One where the key is composite but the value is a single slice Slice key_slices[3] = {Slice("key"), Slice("part2"), Slice("part3")}; Slice value_slice("value"); ASSERT_OK( batch.Put(SliceParts(key_slices, 3), SliceParts(&value_slice, 1))); } WriteBatchInternal::SetSequence(&batch, 100); ASSERT_EQ( "Put(baz, headerpayload)@101" "Put(foo, bar)@100" "Put(keypart2part3, value)@102", PrintContents(&batch)); ASSERT_EQ(3u, batch.Count()); } namespace { class ColumnFamilyHandleImplDummy : public ColumnFamilyHandleImpl { public: explicit ColumnFamilyHandleImplDummy(int id) : ColumnFamilyHandleImpl(nullptr, nullptr, nullptr), id_(id) {} explicit ColumnFamilyHandleImplDummy(int id, const Comparator* ucmp) : ColumnFamilyHandleImpl(nullptr, nullptr, nullptr), id_(id), ucmp_(ucmp) {} uint32_t GetID() const override { return id_; } const Comparator* GetComparator() const override { return ucmp_; } private: uint32_t id_; const Comparator* const ucmp_ = BytewiseComparator(); }; } // anonymous namespace TEST_F(WriteBatchTest, ColumnFamiliesBatchTest) { WriteBatch batch; ColumnFamilyHandleImplDummy zero(0), two(2), three(3), eight(8); ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar"))); ASSERT_OK(batch.Put(&two, Slice("twofoo"), Slice("bar2"))); ASSERT_OK(batch.Put(&eight, Slice("eightfoo"), Slice("bar8"))); ASSERT_OK(batch.Delete(&eight, Slice("eightfoo"))); ASSERT_OK(batch.SingleDelete(&two, Slice("twofoo"))); ASSERT_OK(batch.DeleteRange(&two, Slice("3foo"), Slice("4foo"))); ASSERT_OK(batch.Merge(&three, Slice("threethree"), Slice("3three"))); ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar"))); ASSERT_OK(batch.Merge(Slice("omom"), Slice("nom"))); TestHandler handler; ASSERT_OK(batch.Iterate(&handler)); ASSERT_EQ( "Put(foo, bar)" "PutCF(2, twofoo, bar2)" "PutCF(8, eightfoo, bar8)" "DeleteCF(8, eightfoo)" "SingleDeleteCF(2, twofoo)" "DeleteRangeCF(2, 3foo, 4foo)" "MergeCF(3, threethree, 3three)" "Put(foo, bar)" "Merge(omom, nom)", handler.seen); } TEST_F(WriteBatchTest, ColumnFamiliesBatchWithIndexTest) { WriteBatchWithIndex batch; ColumnFamilyHandleImplDummy zero(0), two(2), three(3), eight(8); ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar"))); ASSERT_OK(batch.Put(&two, Slice("twofoo"), Slice("bar2"))); ASSERT_OK(batch.Put(&eight, Slice("eightfoo"), Slice("bar8"))); ASSERT_OK(batch.Delete(&eight, Slice("eightfoo"))); ASSERT_OK(batch.SingleDelete(&two, Slice("twofoo"))); ASSERT_OK(batch.Merge(&three, Slice("threethree"), Slice("3three"))); ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar"))); ASSERT_OK(batch.Merge(Slice("omom"), Slice("nom"))); std::unique_ptr iter; iter.reset(batch.NewIterator(&eight)); iter->Seek("eightfoo"); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type); ASSERT_EQ("eightfoo", iter->Entry().key.ToString()); ASSERT_EQ("bar8", iter->Entry().value.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kDeleteRecord, iter->Entry().type); ASSERT_EQ("eightfoo", iter->Entry().key.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(!iter->Valid()); iter.reset(batch.NewIterator(&two)); iter->Seek("twofoo"); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type); ASSERT_EQ("twofoo", iter->Entry().key.ToString()); ASSERT_EQ("bar2", iter->Entry().value.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kSingleDeleteRecord, iter->Entry().type); ASSERT_EQ("twofoo", iter->Entry().key.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(!iter->Valid()); iter.reset(batch.NewIterator()); iter->Seek("gggg"); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kMergeRecord, iter->Entry().type); ASSERT_EQ("omom", iter->Entry().key.ToString()); ASSERT_EQ("nom", iter->Entry().value.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(!iter->Valid()); iter.reset(batch.NewIterator(&zero)); iter->Seek("foo"); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type); ASSERT_EQ("foo", iter->Entry().key.ToString()); ASSERT_EQ("bar", iter->Entry().value.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type); ASSERT_EQ("foo", iter->Entry().key.ToString()); ASSERT_EQ("bar", iter->Entry().value.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ(WriteType::kMergeRecord, iter->Entry().type); ASSERT_EQ("omom", iter->Entry().key.ToString()); ASSERT_EQ("nom", iter->Entry().value.ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(!iter->Valid()); TestHandler handler; ASSERT_OK(batch.GetWriteBatch()->Iterate(&handler)); ASSERT_EQ( "Put(foo, bar)" "PutCF(2, twofoo, bar2)" "PutCF(8, eightfoo, bar8)" "DeleteCF(8, eightfoo)" "SingleDeleteCF(2, twofoo)" "MergeCF(3, threethree, 3three)" "Put(foo, bar)" "Merge(omom, nom)", handler.seen); } TEST_F(WriteBatchTest, SavePointTest) { Status s; WriteBatch batch; batch.SetSavePoint(); ASSERT_OK(batch.Put("A", "a")); ASSERT_OK(batch.Put("B", "b")); batch.SetSavePoint(); ASSERT_OK(batch.Put("C", "c")); ASSERT_OK(batch.Delete("A")); batch.SetSavePoint(); batch.SetSavePoint(); ASSERT_OK(batch.RollbackToSavePoint()); ASSERT_EQ( "Delete(A)@3" "Put(A, a)@0" "Put(B, b)@1" "Put(C, c)@2", PrintContents(&batch)); ASSERT_OK(batch.RollbackToSavePoint()); ASSERT_OK(batch.RollbackToSavePoint()); ASSERT_EQ( "Put(A, a)@0" "Put(B, b)@1", PrintContents(&batch)); ASSERT_OK(batch.Delete("A")); ASSERT_OK(batch.Put("B", "bb")); ASSERT_OK(batch.RollbackToSavePoint()); ASSERT_EQ("", PrintContents(&batch)); s = batch.RollbackToSavePoint(); ASSERT_TRUE(s.IsNotFound()); ASSERT_EQ("", PrintContents(&batch)); ASSERT_OK(batch.Put("D", "d")); ASSERT_OK(batch.Delete("A")); batch.SetSavePoint(); ASSERT_OK(batch.Put("A", "aaa")); ASSERT_OK(batch.RollbackToSavePoint()); ASSERT_EQ( "Delete(A)@1" "Put(D, d)@0", PrintContents(&batch)); batch.SetSavePoint(); ASSERT_OK(batch.Put("D", "d")); ASSERT_OK(batch.Delete("A")); ASSERT_OK(batch.RollbackToSavePoint()); ASSERT_EQ( "Delete(A)@1" "Put(D, d)@0", PrintContents(&batch)); s = batch.RollbackToSavePoint(); ASSERT_TRUE(s.IsNotFound()); ASSERT_EQ( "Delete(A)@1" "Put(D, d)@0", PrintContents(&batch)); WriteBatch batch2; s = batch2.RollbackToSavePoint(); ASSERT_TRUE(s.IsNotFound()); ASSERT_EQ("", PrintContents(&batch2)); ASSERT_OK(batch2.Delete("A")); batch2.SetSavePoint(); s = batch2.RollbackToSavePoint(); ASSERT_OK(s); ASSERT_EQ("Delete(A)@0", PrintContents(&batch2)); batch2.Clear(); ASSERT_EQ("", PrintContents(&batch2)); batch2.SetSavePoint(); ASSERT_OK(batch2.Delete("B")); ASSERT_EQ("Delete(B)@0", PrintContents(&batch2)); batch2.SetSavePoint(); s = batch2.RollbackToSavePoint(); ASSERT_OK(s); ASSERT_EQ("Delete(B)@0", PrintContents(&batch2)); s = batch2.RollbackToSavePoint(); ASSERT_OK(s); ASSERT_EQ("", PrintContents(&batch2)); s = batch2.RollbackToSavePoint(); ASSERT_TRUE(s.IsNotFound()); ASSERT_EQ("", PrintContents(&batch2)); WriteBatch batch3; s = batch3.PopSavePoint(); ASSERT_TRUE(s.IsNotFound()); ASSERT_EQ("", PrintContents(&batch3)); batch3.SetSavePoint(); ASSERT_OK(batch3.Delete("A")); s = batch3.PopSavePoint(); ASSERT_OK(s); ASSERT_EQ("Delete(A)@0", PrintContents(&batch3)); } TEST_F(WriteBatchTest, MemoryLimitTest) { Status s; // The header size is 12 bytes. The two Puts take 8 bytes which gives total // of 12 + 8 * 2 = 28 bytes. WriteBatch batch(0, 28); ASSERT_OK(batch.Put("a", "....")); ASSERT_OK(batch.Put("b", "....")); s = batch.Put("c", "...."); ASSERT_TRUE(s.IsMemoryLimit()); } namespace { class TimestampChecker : public WriteBatch::Handler { public: explicit TimestampChecker( std::unordered_map cf_to_ucmps, Slice ts) : cf_to_ucmps_(std::move(cf_to_ucmps)), timestamp_(std::move(ts)) {} Status PutCF(uint32_t cf, const Slice& key, const Slice& /*value*/) override { auto cf_iter = cf_to_ucmps_.find(cf); if (cf_iter == cf_to_ucmps_.end()) { return Status::Corruption(); } const Comparator* const ucmp = cf_iter->second; assert(ucmp); size_t ts_sz = ucmp->timestamp_size(); if (ts_sz == 0) { return Status::OK(); } if (key.size() < ts_sz) { return Status::Corruption(); } Slice ts = ExtractTimestampFromUserKey(key, ts_sz); if (ts.compare(timestamp_) != 0) { return Status::Corruption(); } return Status::OK(); } private: std::unordered_map cf_to_ucmps_; Slice timestamp_; }; Status CheckTimestampsInWriteBatch( WriteBatch& wb, Slice timestamp, std::unordered_map cf_to_ucmps) { TimestampChecker ts_checker(cf_to_ucmps, timestamp); return wb.Iterate(&ts_checker); } } // anonymous namespace TEST_F(WriteBatchTest, SanityChecks) { ColumnFamilyHandleImplDummy cf0(0, test::BytewiseComparatorWithU64TsWrapper()); ColumnFamilyHandleImplDummy cf4(4); WriteBatch wb(0, 0, 0, /*default_cf_ts_sz=*/sizeof(uint64_t)); // Sanity checks for the new WriteBatch APIs with extra 'ts' arg. ASSERT_TRUE(wb.Put(nullptr, "key", "ts", "value").IsInvalidArgument()); ASSERT_TRUE(wb.Delete(nullptr, "key", "ts").IsInvalidArgument()); ASSERT_TRUE(wb.SingleDelete(nullptr, "key", "ts").IsInvalidArgument()); ASSERT_TRUE(wb.Merge(nullptr, "key", "ts", "value").IsInvalidArgument()); ASSERT_TRUE(wb.DeleteRange(nullptr, "begin_key", "end_key", "ts") .IsInvalidArgument()); ASSERT_TRUE(wb.Put(&cf4, "key", "ts", "value").IsInvalidArgument()); ASSERT_TRUE(wb.Delete(&cf4, "key", "ts").IsInvalidArgument()); ASSERT_TRUE(wb.SingleDelete(&cf4, "key", "ts").IsInvalidArgument()); ASSERT_TRUE(wb.Merge(&cf4, "key", "ts", "value").IsInvalidArgument()); ASSERT_TRUE( wb.DeleteRange(&cf4, "begin_key", "end_key", "ts").IsInvalidArgument()); constexpr size_t wrong_ts_sz = 1 + sizeof(uint64_t); std::string ts(wrong_ts_sz, '\0'); ASSERT_TRUE(wb.Put(&cf0, "key", ts, "value").IsInvalidArgument()); ASSERT_TRUE(wb.Delete(&cf0, "key", ts).IsInvalidArgument()); ASSERT_TRUE(wb.SingleDelete(&cf0, "key", ts).IsInvalidArgument()); ASSERT_TRUE(wb.Merge(&cf0, "key", ts, "value").IsInvalidArgument()); ASSERT_TRUE( wb.DeleteRange(&cf0, "begin_key", "end_key", ts).IsInvalidArgument()); // Sanity checks for the new WriteBatch APIs without extra 'ts' arg. WriteBatch wb1(0, 0, 0, wrong_ts_sz); ASSERT_TRUE(wb1.Put(&cf0, "key", "value").IsInvalidArgument()); ASSERT_TRUE(wb1.Delete(&cf0, "key").IsInvalidArgument()); ASSERT_TRUE(wb1.SingleDelete(&cf0, "key").IsInvalidArgument()); ASSERT_TRUE(wb1.Merge(&cf0, "key", "value").IsInvalidArgument()); ASSERT_TRUE( wb1.DeleteRange(&cf0, "begin_key", "end_key").IsInvalidArgument()); } TEST_F(WriteBatchTest, UpdateTimestamps) { // We assume the last eight bytes of each key is reserved for timestamps. // Therefore, we must make sure each key is longer than eight bytes. constexpr size_t key_size = 16; constexpr size_t num_of_keys = 10; std::vector key_strs(num_of_keys, std::string(key_size, '\0')); ColumnFamilyHandleImplDummy cf0(0); ColumnFamilyHandleImplDummy cf4(4, test::BytewiseComparatorWithU64TsWrapper()); ColumnFamilyHandleImplDummy cf5(5, test::BytewiseComparatorWithU64TsWrapper()); const std::unordered_map cf_to_ucmps = { {0, cf0.GetComparator()}, {4, cf4.GetComparator()}, {5, cf5.GetComparator()}}; static constexpr size_t timestamp_size = sizeof(uint64_t); { WriteBatch wb1, wb2, wb3, wb4, wb5, wb6, wb7; ASSERT_OK(wb1.Put(&cf0, "key", "value")); ASSERT_FALSE(WriteBatchInternal::HasKeyWithTimestamp(wb1)); ASSERT_OK(wb2.Put(&cf4, "key", "value")); ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb2)); ASSERT_OK(wb3.Put(&cf4, "key", /*ts=*/std::string(timestamp_size, '\xfe'), "value")); ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb3)); ASSERT_OK(wb4.Delete(&cf4, "key", /*ts=*/std::string(timestamp_size, '\xfe'))); ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb4)); ASSERT_OK(wb5.Delete(&cf4, "key")); ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb5)); ASSERT_OK(wb6.SingleDelete(&cf4, "key")); ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb6)); ASSERT_OK(wb7.SingleDelete(&cf4, "key", /*ts=*/std::string(timestamp_size, '\xfe'))); ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb7)); } WriteBatch batch; // Write to the batch. We will assign timestamps later. for (const auto& key_str : key_strs) { ASSERT_OK(batch.Put(&cf0, key_str, "value")); ASSERT_OK(batch.Put(&cf4, key_str, "value")); ASSERT_OK(batch.Put(&cf5, key_str, "value")); } const auto checker1 = [](uint32_t cf) { if (cf == 4 || cf == 5) { return timestamp_size; } else if (cf == 0) { return static_cast(0); } else { return std::numeric_limits::max(); } }; ASSERT_OK( batch.UpdateTimestamps(std::string(timestamp_size, '\xfe'), checker1)); ASSERT_OK(CheckTimestampsInWriteBatch( batch, std::string(timestamp_size, '\xfe'), cf_to_ucmps)); // We use indexed_cf_to_ucmps, non_indexed_cfs_with_ts and timestamp_size to // simulate the case in which a transaction enables indexing for some writes // while disables indexing for other writes. A transaction uses a // WriteBatchWithIndex object to buffer writes (we consider Write-committed // policy only). If indexing is enabled, then writes go through // WriteBatchWithIndex API populating a WBWI internal data structure, i.e. a // mapping from cf to user comparators. If indexing is disabled, a transaction // writes directly to the underlying raw WriteBatch. We will need to track the // comparator information for the column families to which un-indexed writes // are performed. When calling UpdateTimestamp API of WriteBatch, we need // indexed_cf_to_ucmps, non_indexed_cfs_with_ts, and timestamp_size to perform // checking. std::unordered_map indexed_cf_to_ucmps = { {0, cf0.GetComparator()}, {4, cf4.GetComparator()}}; std::unordered_set non_indexed_cfs_with_ts = {cf5.GetID()}; const auto checker2 = [&indexed_cf_to_ucmps, &non_indexed_cfs_with_ts](uint32_t cf) { if (non_indexed_cfs_with_ts.count(cf) > 0) { return timestamp_size; } auto cf_iter = indexed_cf_to_ucmps.find(cf); if (cf_iter == indexed_cf_to_ucmps.end()) { assert(false); return std::numeric_limits::max(); } const Comparator* const ucmp = cf_iter->second; assert(ucmp); return ucmp->timestamp_size(); }; ASSERT_OK( batch.UpdateTimestamps(std::string(timestamp_size, '\xef'), checker2)); ASSERT_OK(CheckTimestampsInWriteBatch( batch, std::string(timestamp_size, '\xef'), cf_to_ucmps)); } TEST_F(WriteBatchTest, CommitWithTimestamp) { WriteBatch wb; const std::string txn_name = "xid1"; std::string ts; constexpr uint64_t commit_ts = 23; PutFixed64(&ts, commit_ts); ASSERT_OK(WriteBatchInternal::MarkCommitWithTimestamp(&wb, txn_name, ts)); TestHandler handler; ASSERT_OK(wb.Iterate(&handler)); ASSERT_EQ("MarkCommitWithTimestamp(" + txn_name + ", " + Slice(ts).ToString(true) + ")", handler.seen); } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }