// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #include "table/block_fetcher.h" #include "db/table_properties_collector.h" #include "file/file_util.h" #include "options/options_helper.h" #include "port/port.h" #include "port/stack_trace.h" #include "rocksdb/db.h" #include "rocksdb/file_system.h" #include "rocksdb/table_pinning_policy.h" #include "table/block_based/binary_search_index_reader.h" #include "table/block_based/block_based_table_builder.h" #include "table/block_based/block_based_table_factory.h" #include "table/block_based/block_based_table_reader.h" #include "table/format.h" #include "test_util/testharness.h" #include "utilities/memory_allocators.h" namespace ROCKSDB_NAMESPACE { namespace { struct MemcpyStats { int num_stack_buf_memcpy; int num_heap_buf_memcpy; int num_compressed_buf_memcpy; }; struct BufAllocationStats { int num_heap_buf_allocations; int num_compressed_buf_allocations; }; struct TestStats { MemcpyStats memcpy_stats; BufAllocationStats buf_allocation_stats; }; class BlockFetcherTest : public testing::Test { public: enum class Mode { kBufferedRead = 0, kBufferedMmap, kDirectRead, kNumModes, }; // use NumModes as array size to avoid "size of array '...' has non-integral // type" errors. const static int NumModes = static_cast(Mode::kNumModes); protected: void SetUp() override { SetupSyncPointsToMockDirectIO(); test_dir_ = test::PerThreadDBPath("block_fetcher_test"); env_ = Env::Default(); fs_ = FileSystem::Default(); ASSERT_OK(fs_->CreateDir(test_dir_, IOOptions(), nullptr)); } void TearDown() override { EXPECT_OK(DestroyDir(env_, test_dir_)); } void AssertSameBlock(const std::string& block1, const std::string& block2) { ASSERT_EQ(block1, block2); } // Creates a table with kv pairs (i, i) where i ranges from 0 to 9, inclusive. void CreateTable(const std::string& table_name, const CompressionType& compression_type) { std::unique_ptr writer; NewFileWriter(table_name, &writer); // Create table builder. ImmutableOptions ioptions(options_); InternalKeyComparator comparator(options_.comparator); ColumnFamilyOptions cf_options(options_); MutableCFOptions moptions(cf_options); IntTblPropCollectorFactories factories; std::unique_ptr table_builder(table_factory_.NewTableBuilder( TableBuilderOptions(ioptions, moptions, comparator, &factories, compression_type, CompressionOptions(), 0 /* column_family_id */, kDefaultColumnFamilyName, -1 /* level */), writer.get())); // Build table. for (int i = 0; i < 9; i++) { std::string key = ToInternalKey(std::to_string(i)); // Append "00000000" to string value to enhance compression ratio std::string value = "00000000" + std::to_string(i); table_builder->Add(key, value); } ASSERT_OK(table_builder->Finish()); } void FetchIndexBlock(const std::string& table_name, CountedMemoryAllocator* heap_buf_allocator, CountedMemoryAllocator* compressed_buf_allocator, MemcpyStats* memcpy_stats, BlockContents* index_block, std::string* result) { FileOptions fopt(options_); std::unique_ptr file; NewFileReader(table_name, fopt, &file); // Get handle of the index block. Footer footer; ReadFooter(file.get(), &footer); const BlockHandle& index_handle = footer.index_handle(); CompressionType compression_type; FetchBlock(file.get(), index_handle, BlockType::kIndex, false /* compressed */, false /* do_uncompress */, heap_buf_allocator, compressed_buf_allocator, index_block, memcpy_stats, &compression_type); ASSERT_EQ(compression_type, CompressionType::kNoCompression); result->assign(index_block->data.ToString()); } // Fetches the first data block in both direct IO and non-direct IO mode. // // compressed: whether the data blocks are compressed; // do_uncompress: whether the data blocks should be uncompressed on fetching. // compression_type: the expected compression type. // // Expects: // Block contents are the same. // Bufferr allocation and memory copy statistics are expected. void TestFetchDataBlock( const std::string& table_name_prefix, bool compressed, bool do_uncompress, std::array expected_stats_by_mode) { for (CompressionType compression_type : GetSupportedCompressions()) { bool do_compress = compression_type != kNoCompression; if (compressed != do_compress) continue; std::string compression_type_str = CompressionTypeToString(compression_type); std::string table_name = table_name_prefix + compression_type_str; CreateTable(table_name, compression_type); CompressionType expected_compression_type_after_fetch = (compressed && !do_uncompress) ? compression_type : kNoCompression; BlockContents blocks[NumModes]; std::string block_datas[NumModes]; MemcpyStats memcpy_stats[NumModes]; CountedMemoryAllocator heap_buf_allocators[NumModes]; CountedMemoryAllocator compressed_buf_allocators[NumModes]; for (int i = 0; i < NumModes; ++i) { SetMode(static_cast(i)); FetchFirstDataBlock(table_name, compressed, do_uncompress, expected_compression_type_after_fetch, &heap_buf_allocators[i], &compressed_buf_allocators[i], &blocks[i], &block_datas[i], &memcpy_stats[i]); } for (int i = 0; i < NumModes - 1; ++i) { AssertSameBlock(block_datas[i], block_datas[i + 1]); } // Check memcpy and buffer allocation statistics. for (int i = 0; i < NumModes; ++i) { const TestStats& expected_stats = expected_stats_by_mode[i]; ASSERT_EQ(memcpy_stats[i].num_stack_buf_memcpy, expected_stats.memcpy_stats.num_stack_buf_memcpy); ASSERT_EQ(memcpy_stats[i].num_heap_buf_memcpy, expected_stats.memcpy_stats.num_heap_buf_memcpy); ASSERT_EQ(memcpy_stats[i].num_compressed_buf_memcpy, expected_stats.memcpy_stats.num_compressed_buf_memcpy); if (kXpressCompression == compression_type) { // XPRESS allocates memory internally, thus does not support for // custom allocator verification continue; } else { ASSERT_EQ( heap_buf_allocators[i].GetNumAllocations(), expected_stats.buf_allocation_stats.num_heap_buf_allocations); ASSERT_EQ(compressed_buf_allocators[i].GetNumAllocations(), expected_stats.buf_allocation_stats .num_compressed_buf_allocations); // The allocated buffers are not deallocated until // the block content is deleted. ASSERT_EQ(heap_buf_allocators[i].GetNumDeallocations(), 0); ASSERT_EQ(compressed_buf_allocators[i].GetNumDeallocations(), 0); blocks[i].allocation.reset(); ASSERT_EQ( heap_buf_allocators[i].GetNumDeallocations(), expected_stats.buf_allocation_stats.num_heap_buf_allocations); ASSERT_EQ(compressed_buf_allocators[i].GetNumDeallocations(), expected_stats.buf_allocation_stats .num_compressed_buf_allocations); } } } } void SetMode(Mode mode) { switch (mode) { case Mode::kBufferedRead: options_.use_direct_reads = false; options_.allow_mmap_reads = false; break; case Mode::kBufferedMmap: options_.use_direct_reads = false; options_.allow_mmap_reads = true; break; case Mode::kDirectRead: options_.use_direct_reads = true; options_.allow_mmap_reads = false; break; case Mode::kNumModes: assert(false); } } private: std::string test_dir_; Env* env_; std::shared_ptr fs_; BlockBasedTableFactory table_factory_; Options options_; std::string Path(const std::string& fname) { return test_dir_ + "/" + fname; } void WriteToFile(const std::string& content, const std::string& filename) { std::unique_ptr f; ASSERT_OK(fs_->NewWritableFile(Path(filename), FileOptions(), &f, nullptr)); ASSERT_OK(f->Append(content, IOOptions(), nullptr)); ASSERT_OK(f->Close(IOOptions(), nullptr)); } void NewFileWriter(const std::string& filename, std::unique_ptr* writer) { std::string path = Path(filename); FileOptions file_options; ASSERT_OK(WritableFileWriter::Create(env_->GetFileSystem(), path, file_options, writer, nullptr)); } void NewFileReader(const std::string& filename, const FileOptions& opt, std::unique_ptr* reader) { std::string path = Path(filename); std::unique_ptr f; ASSERT_OK(fs_->NewRandomAccessFile(path, opt, &f, nullptr)); reader->reset(new RandomAccessFileReader(std::move(f), path, env_->GetSystemClock().get())); } void NewTableReader(const ImmutableOptions& ioptions, const FileOptions& foptions, const InternalKeyComparator& comparator, const std::string& table_name, std::unique_ptr* table) { std::unique_ptr file; NewFileReader(table_name, foptions, &file); uint64_t file_size = 0; ASSERT_OK(env_->GetFileSize(Path(table_name), &file_size)); std::unique_ptr table_reader; ReadOptions ro; const auto* table_options = table_factory_.GetOptions(); ASSERT_NE(table_options, nullptr); ASSERT_OK(BlockBasedTable::Open(ro, ioptions, EnvOptions(), *table_options, comparator, std::move(file), file_size, &table_reader)); table->reset(reinterpret_cast(table_reader.release())); } std::string ToInternalKey(const std::string& key) { InternalKey internal_key(key, 0, ValueType::kTypeValue); return internal_key.Encode().ToString(); } void ReadFooter(RandomAccessFileReader* file, Footer* footer) { uint64_t file_size = 0; ASSERT_OK(env_->GetFileSize(file->file_name(), &file_size)); IOOptions opts; ASSERT_OK(ReadFooterFromFile(opts, file, *fs_, nullptr /* prefetch_buffer */, file_size, footer, kBlockBasedTableMagicNumber)); } // NOTE: compression_type returns the compression type of the fetched block // contents, so if the block is fetched and uncompressed, then it's // kNoCompression. void FetchBlock(RandomAccessFileReader* file, const BlockHandle& block, BlockType block_type, bool compressed, bool do_uncompress, MemoryAllocator* heap_buf_allocator, MemoryAllocator* compressed_buf_allocator, BlockContents* contents, MemcpyStats* stats, CompressionType* compresstion_type) { ImmutableOptions ioptions(options_); ReadOptions roptions; PersistentCacheOptions persistent_cache_options; Footer footer; ReadFooter(file, &footer); std::unique_ptr fetcher(new BlockFetcher( file, nullptr /* prefetch_buffer */, footer, roptions, block, contents, ioptions, do_uncompress, compressed, block_type, UncompressionDict::GetEmptyDict(), persistent_cache_options, heap_buf_allocator, compressed_buf_allocator)); ASSERT_OK(fetcher->ReadBlockContents()); stats->num_stack_buf_memcpy = fetcher->TEST_GetNumStackBufMemcpy(); stats->num_heap_buf_memcpy = fetcher->TEST_GetNumHeapBufMemcpy(); stats->num_compressed_buf_memcpy = fetcher->TEST_GetNumCompressedBufMemcpy(); *compresstion_type = fetcher->get_compression_type(); } // NOTE: expected_compression_type is the expected compression // type of the fetched block content, if the block is uncompressed, // then the expected compression type is kNoCompression. void FetchFirstDataBlock(const std::string& table_name, bool compressed, bool do_uncompress, CompressionType expected_compression_type, MemoryAllocator* heap_buf_allocator, MemoryAllocator* compressed_buf_allocator, BlockContents* block, std::string* result, MemcpyStats* memcpy_stats) { ImmutableOptions ioptions(options_); InternalKeyComparator comparator(options_.comparator); FileOptions foptions(options_); // Get block handle for the first data block. std::unique_ptr table; NewTableReader(ioptions, foptions, comparator, table_name, &table); std::unique_ptr index_reader; ReadOptions ro; ASSERT_OK(BinarySearchIndexReader::Create( table.get(), ro, TablePinningOptions(), nullptr /* prefetch_buffer */, false /* use_cache */, false /* prefetch */, false /* pin */, nullptr /* lookup_context */, &index_reader)); std::unique_ptr> iter( index_reader->NewIterator( ReadOptions(), false /* disable_prefix_seek */, nullptr /* iter */, nullptr /* get_context */, nullptr /* lookup_context */)); ASSERT_OK(iter->status()); iter->SeekToFirst(); BlockHandle first_block_handle = iter->value().handle; // Fetch first data block. std::unique_ptr file; NewFileReader(table_name, foptions, &file); CompressionType compression_type; FetchBlock(file.get(), first_block_handle, BlockType::kData, compressed, do_uncompress, heap_buf_allocator, compressed_buf_allocator, block, memcpy_stats, &compression_type); ASSERT_EQ(compression_type, expected_compression_type); result->assign(block->data.ToString()); } }; // Skip the following tests in lite mode since direct I/O is unsupported. // Fetch index block under both direct IO and non-direct IO. // Expects: // the index block contents are the same for both read modes. TEST_F(BlockFetcherTest, FetchIndexBlock) { for (CompressionType compression : GetSupportedCompressions()) { std::string table_name = "FetchIndexBlock" + CompressionTypeToString(compression); CreateTable(table_name, compression); CountedMemoryAllocator allocator; MemcpyStats memcpy_stats; BlockContents indexes[NumModes]; std::string index_datas[NumModes]; for (int i = 0; i < NumModes; ++i) { SetMode(static_cast(i)); FetchIndexBlock(table_name, &allocator, &allocator, &memcpy_stats, &indexes[i], &index_datas[i]); } for (int i = 0; i < NumModes - 1; ++i) { AssertSameBlock(index_datas[i], index_datas[i + 1]); } } } // Data blocks are not compressed, // fetch data block under direct IO, mmap IO,and non-direct IO. // Expects: // 1. in non-direct IO mode, allocate a heap buffer and memcpy the block // into the buffer; // 2. in direct IO mode, allocate a heap buffer and memcpy from the // direct IO buffer to the heap buffer. TEST_F(BlockFetcherTest, FetchUncompressedDataBlock) { TestStats expected_non_mmap_stats = { { 0 /* num_stack_buf_memcpy */, 1 /* num_heap_buf_memcpy */, 0 /* num_compressed_buf_memcpy */, }, { 1 /* num_heap_buf_allocations */, 0 /* num_compressed_buf_allocations */, }}; TestStats expected_mmap_stats = {{ 0 /* num_stack_buf_memcpy */, 0 /* num_heap_buf_memcpy */, 0 /* num_compressed_buf_memcpy */, }, { 0 /* num_heap_buf_allocations */, 0 /* num_compressed_buf_allocations */, }}; std::array expected_stats_by_mode{{ expected_non_mmap_stats /* kBufferedRead */, expected_mmap_stats /* kBufferedMmap */, expected_non_mmap_stats /* kDirectRead */, }}; TestFetchDataBlock("FetchUncompressedDataBlock", false, false, expected_stats_by_mode); } // Data blocks are compressed, // fetch data block under both direct IO and non-direct IO, // but do not uncompress. // Expects: // 1. in non-direct IO mode, allocate a compressed buffer and memcpy the block // into the buffer; // 2. in direct IO mode, allocate a compressed buffer and memcpy from the // direct IO buffer to the compressed buffer. TEST_F(BlockFetcherTest, FetchCompressedDataBlock) { TestStats expected_non_mmap_stats = { { 0 /* num_stack_buf_memcpy */, 0 /* num_heap_buf_memcpy */, 1 /* num_compressed_buf_memcpy */, }, { 0 /* num_heap_buf_allocations */, 1 /* num_compressed_buf_allocations */, }}; TestStats expected_mmap_stats = {{ 0 /* num_stack_buf_memcpy */, 0 /* num_heap_buf_memcpy */, 0 /* num_compressed_buf_memcpy */, }, { 0 /* num_heap_buf_allocations */, 0 /* num_compressed_buf_allocations */, }}; std::array expected_stats_by_mode{{ expected_non_mmap_stats /* kBufferedRead */, expected_mmap_stats /* kBufferedMmap */, expected_non_mmap_stats /* kDirectRead */, }}; TestFetchDataBlock("FetchCompressedDataBlock", true, false, expected_stats_by_mode); } // Data blocks are compressed, // fetch and uncompress data block under both direct IO and non-direct IO. // Expects: // 1. in non-direct IO mode, since the block is small, so it's first memcpyed // to the stack buffer, then a heap buffer is allocated and the block is // uncompressed into the heap. // 2. in direct IO mode mode, allocate a heap buffer, then directly uncompress // and memcpy from the direct IO buffer to the heap buffer. TEST_F(BlockFetcherTest, FetchAndUncompressCompressedDataBlock) { TestStats expected_buffered_read_stats = { { 1 /* num_stack_buf_memcpy */, 1 /* num_heap_buf_memcpy */, 0 /* num_compressed_buf_memcpy */, }, { 1 /* num_heap_buf_allocations */, 0 /* num_compressed_buf_allocations */, }}; TestStats expected_mmap_stats = {{ 0 /* num_stack_buf_memcpy */, 1 /* num_heap_buf_memcpy */, 0 /* num_compressed_buf_memcpy */, }, { 1 /* num_heap_buf_allocations */, 0 /* num_compressed_buf_allocations */, }}; TestStats expected_direct_read_stats = { { 0 /* num_stack_buf_memcpy */, 1 /* num_heap_buf_memcpy */, 0 /* num_compressed_buf_memcpy */, }, { 1 /* num_heap_buf_allocations */, 0 /* num_compressed_buf_allocations */, }}; std::array expected_stats_by_mode{{ expected_buffered_read_stats, expected_mmap_stats, expected_direct_read_stats, }}; TestFetchDataBlock("FetchAndUncompressCompressedDataBlock", true, true, expected_stats_by_mode); } } // namespace } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }