// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "rocksdb/table.h" #include #include #include #include #include #include #include #include #include #include #include "cache/lru_cache.h" #include "db/db_test_util.h" #include "db/dbformat.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "memtable/stl_wrappers.h" #include "monitoring/statistics.h" #include "options/options_helper.h" #include "port/port.h" #include "port/stack_trace.h" #include "rocksdb/cache.h" #include "rocksdb/compression_type.h" #include "rocksdb/convenience.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/file_checksum.h" #include "rocksdb/file_system.h" #include "rocksdb/filter_policy.h" #include "rocksdb/iterator.h" #include "rocksdb/memtablerep.h" #include "rocksdb/options.h" #include "rocksdb/perf_context.h" #include "rocksdb/slice_transform.h" #include "rocksdb/statistics.h" #include "rocksdb/table_properties.h" #include "rocksdb/trace_record.h" #include "rocksdb/unique_id.h" #include "rocksdb/write_buffer_manager.h" #include "table/block_based/block.h" #include "table/block_based/block_based_table_builder.h" #include "table/block_based/block_based_table_factory.h" #include "table/block_based/block_based_table_reader.h" #include "table/block_based/block_builder.h" #include "table/block_based/filter_policy_internal.h" #include "table/block_based/flush_block_policy.h" #include "table/block_fetcher.h" #include "table/format.h" #include "table/get_context.h" #include "table/internal_iterator.h" #include "table/meta_blocks.h" #include "table/plain/plain_table_factory.h" #include "table/scoped_arena_iterator.h" #include "table/sst_file_writer_collectors.h" #include "table/unique_id_impl.h" #include "test_util/sync_point.h" #include "test_util/testharness.h" #include "test_util/testutil.h" #include "util/coding_lean.h" #include "util/compression.h" #include "util/file_checksum_helper.h" #include "util/random.h" #include "util/string_util.h" #include "utilities/memory_allocators.h" #include "utilities/merge_operators.h" #include "utilities/nosync_fs.h" namespace ROCKSDB_NAMESPACE { extern const uint64_t kLegacyBlockBasedTableMagicNumber; extern const uint64_t kLegacyPlainTableMagicNumber; extern const uint64_t kBlockBasedTableMagicNumber; extern const uint64_t kPlainTableMagicNumber; namespace { const std::string kDummyValue(10000, 'o'); // DummyPropertiesCollector used to test BlockBasedTableProperties class DummyPropertiesCollector : public TablePropertiesCollector { public: const char* Name() const override { return "DummyPropertiesCollector"; } Status Finish(UserCollectedProperties* /*properties*/) override { return Status::OK(); } Status Add(const Slice& /*user_key*/, const Slice& /*value*/) override { return Status::OK(); } UserCollectedProperties GetReadableProperties() const override { return UserCollectedProperties{}; } }; class DummyPropertiesCollectorFactory1 : public TablePropertiesCollectorFactory { public: TablePropertiesCollector* CreateTablePropertiesCollector( TablePropertiesCollectorFactory::Context /*context*/) override { return new DummyPropertiesCollector(); } const char* Name() const override { return "DummyPropertiesCollectorFactory1"; } }; class DummyPropertiesCollectorFactory2 : public TablePropertiesCollectorFactory { public: TablePropertiesCollector* CreateTablePropertiesCollector( TablePropertiesCollectorFactory::Context /*context*/) override { return new DummyPropertiesCollector(); } const char* Name() const override { return "DummyPropertiesCollectorFactory2"; } }; // Return reverse of "key". // Used to test non-lexicographic comparators. std::string Reverse(const Slice& key) { auto rev = key.ToString(); std::reverse(rev.begin(), rev.end()); return rev; } class ReverseKeyComparator : public Comparator { public: const char* Name() const override { return "rocksdb.ReverseBytewiseComparator"; } int Compare(const Slice& a, const Slice& b) const override { return BytewiseComparator()->Compare(Reverse(a), Reverse(b)); } void FindShortestSeparator(std::string* start, const Slice& limit) const override { std::string s = Reverse(*start); std::string l = Reverse(limit); BytewiseComparator()->FindShortestSeparator(&s, l); *start = Reverse(s); } void FindShortSuccessor(std::string* key) const override { std::string s = Reverse(*key); BytewiseComparator()->FindShortSuccessor(&s); *key = Reverse(s); } }; ReverseKeyComparator reverse_key_comparator; void Increment(const Comparator* cmp, std::string* key) { if (cmp == BytewiseComparator()) { key->push_back('\0'); } else { assert(cmp == &reverse_key_comparator); std::string rev = Reverse(*key); rev.push_back('\0'); *key = Reverse(rev); } } const auto kUnknownColumnFamily = TablePropertiesCollectorFactory::Context::kUnknownColumnFamily; } // namespace // Helper class for tests to unify the interface between // BlockBuilder/TableBuilder and Block/Table. class Constructor { public: explicit Constructor(const Comparator* cmp) : data_(stl_wrappers::LessOfComparator(cmp)) {} virtual ~Constructor() {} void Add(const std::string& key, const Slice& value) { data_[key] = value.ToString(); } // Finish constructing the data structure with all the keys that have // been added so far. Returns the keys in sorted order in "*keys" // and stores the key/value pairs in "*kvmap" void Finish(const Options& options, const ImmutableOptions& ioptions, const MutableCFOptions& moptions, const BlockBasedTableOptions& table_options, const InternalKeyComparator& internal_comparator, std::vector* keys, stl_wrappers::KVMap* kvmap) { last_internal_comparator_ = &internal_comparator; *kvmap = data_; keys->clear(); for (const auto& kv : data_) { keys->push_back(kv.first); } data_.clear(); Status s = FinishImpl(options, ioptions, moptions, table_options, internal_comparator, *kvmap); ASSERT_TRUE(s.ok()) << s.ToString(); } // Construct the data structure from the data in "data" virtual Status FinishImpl(const Options& options, const ImmutableOptions& ioptions, const MutableCFOptions& moptions, const BlockBasedTableOptions& table_options, const InternalKeyComparator& internal_comparator, const stl_wrappers::KVMap& data) = 0; virtual InternalIterator* NewIterator( const SliceTransform* prefix_extractor = nullptr) const = 0; virtual const stl_wrappers::KVMap& data() { return data_; } virtual bool IsArenaMode() const { return false; } virtual DB* db() const { return nullptr; } // Overridden in DBConstructor virtual bool AnywayDeleteIterator() const { return false; } protected: const InternalKeyComparator* last_internal_comparator_; private: stl_wrappers::KVMap data_; }; // A helper class that converts internal format keys into user keys class KeyConvertingIterator : public InternalIterator { public: explicit KeyConvertingIterator(InternalIterator* iter, bool arena_mode = false) : iter_(iter), arena_mode_(arena_mode) {} ~KeyConvertingIterator() override { if (arena_mode_) { iter_->~InternalIterator(); } else { delete iter_; } } bool Valid() const override { return iter_->Valid() && status_.ok(); } void Seek(const Slice& target) override { ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); iter_->Seek(encoded); } void SeekForPrev(const Slice& target) override { ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); iter_->SeekForPrev(encoded); } void SeekToFirst() override { iter_->SeekToFirst(); } void SeekToLast() override { iter_->SeekToLast(); } void Next() override { iter_->Next(); } void Prev() override { iter_->Prev(); } IterBoundCheck UpperBoundCheckResult() override { return iter_->UpperBoundCheckResult(); } Slice key() const override { assert(Valid()); ParsedInternalKey parsed_key; Status pik_status = ParseInternalKey(iter_->key(), &parsed_key, true /* log_err_key */); if (!pik_status.ok()) { status_ = pik_status; return Slice(status_.getState()); } return parsed_key.user_key; } Slice value() const override { return iter_->value(); } Status status() const override { return status_.ok() ? iter_->status() : status_; } private: mutable Status status_; InternalIterator* iter_; bool arena_mode_; // No copying allowed KeyConvertingIterator(const KeyConvertingIterator&); void operator=(const KeyConvertingIterator&); }; // `BlockConstructor` APIs always accept/return user keys. class BlockConstructor : public Constructor { public: explicit BlockConstructor(const Comparator* cmp) : Constructor(cmp), comparator_(cmp), block_(nullptr) {} ~BlockConstructor() override { delete block_; } Status FinishImpl(const Options& /*options*/, const ImmutableOptions& /*ioptions*/, const MutableCFOptions& /*moptions*/, const BlockBasedTableOptions& table_options, const InternalKeyComparator& /*internal_comparator*/, const stl_wrappers::KVMap& kv_map) override { delete block_; block_ = nullptr; BlockBuilder builder(table_options.block_restart_interval); for (const auto& kv : kv_map) { // `DataBlockIter` assumes it reads only internal keys. `BlockConstructor` // clients provide user keys, so we need to convert to internal key format // before writing the data block. ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); builder.Add(encoded, kv.second); } // Open the block data_ = builder.Finish().ToString(); BlockContents contents; contents.data = data_; block_ = new Block(std::move(contents)); return Status::OK(); } InternalIterator* NewIterator( const SliceTransform* /*prefix_extractor*/) const override { // `DataBlockIter` returns the internal keys it reads. // `KeyConvertingIterator` converts them to user keys before they are // exposed to the `BlockConstructor` clients. return new KeyConvertingIterator( block_->NewDataIterator(comparator_, kDisableGlobalSequenceNumber)); } private: const Comparator* comparator_; std::string data_; Block* block_; BlockConstructor(); }; class TableConstructor : public Constructor { public: explicit TableConstructor(const Comparator* cmp, bool convert_to_internal_key = false, int level = -1, SequenceNumber largest_seqno = 0) : Constructor(cmp), largest_seqno_(largest_seqno), convert_to_internal_key_(convert_to_internal_key), level_(level) { env_ = ROCKSDB_NAMESPACE::Env::Default(); } ~TableConstructor() override { Reset(); } Status FinishImpl(const Options& options, const ImmutableOptions& ioptions, const MutableCFOptions& moptions, const BlockBasedTableOptions& /*table_options*/, const InternalKeyComparator& internal_comparator, const stl_wrappers::KVMap& kv_map) override { Reset(); soptions.use_mmap_reads = ioptions.allow_mmap_reads; std::unique_ptr sink(new test::StringSink()); file_writer_.reset(new WritableFileWriter( std::move(sink), "" /* don't care */, FileOptions())); std::unique_ptr builder; IntTblPropCollectorFactories int_tbl_prop_collector_factories; if (largest_seqno_ != 0) { // Pretend that it's an external file written by SstFileWriter. int_tbl_prop_collector_factories.emplace_back( new SstFileWriterPropertiesCollectorFactory(2 /* version */, 0 /* global_seqno*/)); } std::string column_family_name; builder.reset(ioptions.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, internal_comparator, &int_tbl_prop_collector_factories, options.compression, options.compression_opts, kUnknownColumnFamily, column_family_name, level_), file_writer_.get())); for (const auto& kv : kv_map) { if (convert_to_internal_key_) { ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); builder->Add(encoded, kv.second); } else { builder->Add(kv.first, kv.second); } EXPECT_OK(builder->status()); } Status s = builder->Finish(); EXPECT_OK(file_writer_->Flush()); EXPECT_TRUE(s.ok()) << s.ToString(); EXPECT_EQ(TEST_GetSink()->contents().size(), builder->FileSize()); // Open the table file_num_ = cur_file_num_++; return Reopen(ioptions, moptions); } InternalIterator* NewIterator( const SliceTransform* prefix_extractor) const override { InternalIterator* iter = table_reader_->NewIterator( read_options_, prefix_extractor, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized); if (convert_to_internal_key_) { return new KeyConvertingIterator(iter); } else { return iter; } } uint64_t ApproximateOffsetOf(const Slice& key) const { if (convert_to_internal_key_) { InternalKey ikey(key, kMaxSequenceNumber, kTypeValue); const Slice skey = ikey.Encode(); return table_reader_->ApproximateOffsetOf( skey, TableReaderCaller::kUncategorized); } return table_reader_->ApproximateOffsetOf( key, TableReaderCaller::kUncategorized); } virtual Status Reopen(const ImmutableOptions& ioptions, const MutableCFOptions& moptions) { std::unique_ptr source(new test::StringSource( TEST_GetSink()->contents(), file_num_, ioptions.allow_mmap_reads)); file_reader_.reset(new RandomAccessFileReader(std::move(source), "test")); return ioptions.table_factory->NewTableReader( TableReaderOptions(ioptions, moptions.prefix_extractor, soptions, *last_internal_comparator_, /*skip_filters*/ false, /*immortal*/ false, false, level_, false, &block_cache_tracer_, moptions.write_buffer_size, "", file_num_, kNullUniqueId64x2, largest_seqno_), std::move(file_reader_), TEST_GetSink()->contents().size(), &table_reader_); } virtual TableReader* GetTableReader() { return table_reader_.get(); } bool AnywayDeleteIterator() const override { return convert_to_internal_key_; } void ResetTableReader() { table_reader_.reset(); } bool ConvertToInternalKey() { return convert_to_internal_key_; } test::StringSink* TEST_GetSink() { return static_cast(file_writer_->writable_file()); } BlockCacheTracer block_cache_tracer_; private: void Reset() { file_num_ = 0; table_reader_.reset(); file_writer_.reset(); file_reader_.reset(); } const ReadOptions read_options_; uint64_t file_num_; std::unique_ptr file_writer_; std::unique_ptr file_reader_; std::unique_ptr table_reader_; SequenceNumber largest_seqno_; bool convert_to_internal_key_; int level_; TableConstructor(); static uint64_t cur_file_num_; EnvOptions soptions; Env* env_; }; uint64_t TableConstructor::cur_file_num_ = 1; class MemTableConstructor : public Constructor { public: explicit MemTableConstructor(const Comparator* cmp, WriteBufferManager* wb) : Constructor(cmp), internal_comparator_(cmp), write_buffer_manager_(wb), table_factory_(new SkipListFactory) { options_.memtable_factory = table_factory_; ImmutableOptions ioptions(options_); memtable_ = new MemTable(internal_comparator_, ioptions, MutableCFOptions(options_), wb, kMaxSequenceNumber, 0 /* column_family_id */); memtable_->Ref(); } ~MemTableConstructor() override { delete memtable_->Unref(); } Status FinishImpl(const Options&, const ImmutableOptions& ioptions, const MutableCFOptions& /*moptions*/, const BlockBasedTableOptions& /*table_options*/, const InternalKeyComparator& /*internal_comparator*/, const stl_wrappers::KVMap& kv_map) override { delete memtable_->Unref(); ImmutableOptions mem_ioptions(ioptions); memtable_ = new MemTable(internal_comparator_, mem_ioptions, MutableCFOptions(options_), write_buffer_manager_, kMaxSequenceNumber, 0 /* column_family_id */); memtable_->Ref(); int seq = 1; for (const auto& kv : kv_map) { Status s = memtable_->Add(seq, kTypeValue, kv.first, kv.second, nullptr /* kv_prot_info */); if (!s.ok()) { return s; } seq++; } return Status::OK(); } InternalIterator* NewIterator( const SliceTransform* /*prefix_extractor*/) const override { return new KeyConvertingIterator( memtable_->NewIterator(ReadOptions(), &arena_), true); } bool AnywayDeleteIterator() const override { return true; } bool IsArenaMode() const override { return true; } private: mutable Arena arena_; InternalKeyComparator internal_comparator_; Options options_; WriteBufferManager* write_buffer_manager_; MemTable* memtable_; std::shared_ptr table_factory_; }; class InternalIteratorFromIterator : public InternalIterator { public: explicit InternalIteratorFromIterator(Iterator* it) : it_(it) {} bool Valid() const override { return it_->Valid(); } void Seek(const Slice& target) override { it_->Seek(target); } void SeekForPrev(const Slice& target) override { it_->SeekForPrev(target); } void SeekToFirst() override { it_->SeekToFirst(); } void SeekToLast() override { it_->SeekToLast(); } void Next() override { it_->Next(); } void Prev() override { it_->Prev(); } Slice key() const override { return it_->key(); } Slice value() const override { return it_->value(); } Status status() const override { return it_->status(); } private: std::unique_ptr it_; }; class DBConstructor : public Constructor { public: explicit DBConstructor(const Comparator* cmp) : Constructor(cmp), comparator_(cmp) { db_ = nullptr; std::shared_ptr fs(new NoSyncFileSystem(FileSystem::Default())); env_ = NewCompositeEnv(fs); NewDB(); } ~DBConstructor() override { delete db_; } Status FinishImpl(const Options& /*options*/, const ImmutableOptions& /*ioptions*/, const MutableCFOptions& /*moptions*/, const BlockBasedTableOptions& /*table_options*/, const InternalKeyComparator& /*internal_comparator*/, const stl_wrappers::KVMap& kv_map) override { delete db_; db_ = nullptr; NewDB(); for (const auto& kv : kv_map) { WriteBatch batch; EXPECT_OK(batch.Put(kv.first, kv.second)); EXPECT_TRUE(db_->Write(WriteOptions(), &batch).ok()); } return Status::OK(); } InternalIterator* NewIterator( const SliceTransform* /*prefix_extractor*/) const override { return new InternalIteratorFromIterator(db_->NewIterator(ReadOptions())); } DB* db() const override { return db_; } private: void NewDB() { std::string name = test::PerThreadDBPath("table_testdb"); Options options; options.comparator = comparator_; options.env = env_.get(); Status status = DestroyDB(name, options); ASSERT_TRUE(status.ok()) << status.ToString(); options.create_if_missing = true; options.error_if_exists = true; options.write_buffer_size = 10000; // Something small to force merging status = DB::Open(options, name, &db_); ASSERT_TRUE(status.ok()) << status.ToString(); } const Comparator* comparator_; DB* db_; std::unique_ptr env_; }; enum TestType { BLOCK_BASED_TABLE_TEST, PLAIN_TABLE_SEMI_FIXED_PREFIX, PLAIN_TABLE_FULL_STR_PREFIX, PLAIN_TABLE_TOTAL_ORDER, BLOCK_TEST, MEMTABLE_TEST, DB_TEST }; struct TestArgs { TestType type; bool reverse_compare; int restart_interval; CompressionType compression; uint32_t compression_parallel_threads; uint32_t format_version; bool use_mmap; }; std::ostream& operator<<(std::ostream& os, const TestArgs& args) { os << "type: " << args.type << " reverse_compare: " << args.reverse_compare << " restart_interval: " << args.restart_interval << " compression: " << args.compression << " compression_parallel_threads: " << args.compression_parallel_threads << " format_version: " << args.format_version << " use_mmap: " << args.use_mmap; return os; } static std::vector GenerateArgList() { std::vector test_args; std::vector test_types = {BLOCK_BASED_TABLE_TEST, PLAIN_TABLE_SEMI_FIXED_PREFIX, PLAIN_TABLE_FULL_STR_PREFIX, PLAIN_TABLE_TOTAL_ORDER, BLOCK_TEST, MEMTABLE_TEST, DB_TEST}; std::vector reverse_compare_types = {false, true}; std::vector restart_intervals = {16, 1, 1024}; std::vector compression_parallel_threads = {1, 4}; // Only add compression if it is supported std::vector> compression_types; compression_types.emplace_back(kNoCompression, false); if (Snappy_Supported()) { compression_types.emplace_back(kSnappyCompression, false); } if (Zlib_Supported()) { compression_types.emplace_back(kZlibCompression, false); compression_types.emplace_back(kZlibCompression, true); } if (BZip2_Supported()) { compression_types.emplace_back(kBZip2Compression, false); compression_types.emplace_back(kBZip2Compression, true); } if (LZ4_Supported()) { compression_types.emplace_back(kLZ4Compression, false); compression_types.emplace_back(kLZ4Compression, true); compression_types.emplace_back(kLZ4HCCompression, false); compression_types.emplace_back(kLZ4HCCompression, true); } if (XPRESS_Supported()) { compression_types.emplace_back(kXpressCompression, false); compression_types.emplace_back(kXpressCompression, true); } if (ZSTD_Supported()) { compression_types.emplace_back(kZSTD, false); compression_types.emplace_back(kZSTD, true); } for (auto test_type : test_types) { for (auto reverse_compare : reverse_compare_types) { if (test_type == PLAIN_TABLE_SEMI_FIXED_PREFIX || test_type == PLAIN_TABLE_FULL_STR_PREFIX || test_type == PLAIN_TABLE_TOTAL_ORDER) { // Plain table doesn't use restart index or compression. TestArgs one_arg; one_arg.type = test_type; one_arg.reverse_compare = reverse_compare; one_arg.restart_interval = restart_intervals[0]; one_arg.compression = compression_types[0].first; one_arg.compression_parallel_threads = 1; one_arg.format_version = 0; one_arg.use_mmap = true; test_args.push_back(one_arg); one_arg.use_mmap = false; test_args.push_back(one_arg); continue; } for (auto restart_interval : restart_intervals) { for (auto compression_type : compression_types) { for (auto num_threads : compression_parallel_threads) { TestArgs one_arg; one_arg.type = test_type; one_arg.reverse_compare = reverse_compare; one_arg.restart_interval = restart_interval; one_arg.compression = compression_type.first; one_arg.compression_parallel_threads = num_threads; one_arg.format_version = compression_type.second ? 2 : 1; one_arg.use_mmap = false; test_args.push_back(one_arg); } } } } } return test_args; } // In order to make all tests run for plain table format, including // those operating on empty keys, create a new prefix transformer which // return fixed prefix if the slice is not shorter than the prefix length, // and the full slice if it is shorter. class FixedOrLessPrefixTransform : public SliceTransform { private: const size_t prefix_len_; public: explicit FixedOrLessPrefixTransform(size_t prefix_len) : prefix_len_(prefix_len) {} const char* Name() const override { return "rocksdb.FixedPrefix"; } Slice Transform(const Slice& src) const override { assert(InDomain(src)); if (src.size() < prefix_len_) { return src; } return Slice(src.data(), prefix_len_); } bool InDomain(const Slice& /*src*/) const override { return true; } bool InRange(const Slice& dst) const override { return (dst.size() <= prefix_len_); } bool FullLengthEnabled(size_t* /*len*/) const override { return false; } }; class HarnessTest : public testing::Test { public: explicit HarnessTest(const TestArgs& args) : args_(args), ioptions_(options_), moptions_(options_), write_buffer_(options_.db_write_buffer_size), support_prev_(true), only_support_prefix_seek_(false) { options_.compression = args_.compression; options_.compression_opts.parallel_threads = args_.compression_parallel_threads; // Use shorter block size for tests to exercise block boundary // conditions more. if (args_.reverse_compare) { options_.comparator = &reverse_key_comparator; } internal_comparator_.reset( new test::PlainInternalKeyComparator(options_.comparator)); options_.allow_mmap_reads = args_.use_mmap; switch (args_.type) { case BLOCK_BASED_TABLE_TEST: table_options_.flush_block_policy_factory.reset( new FlushBlockBySizePolicyFactory()); table_options_.block_size = 256; table_options_.block_restart_interval = args_.restart_interval; table_options_.index_block_restart_interval = args_.restart_interval; table_options_.format_version = args_.format_version; options_.table_factory.reset( new BlockBasedTableFactory(table_options_)); constructor_.reset(new TableConstructor( options_.comparator, true /* convert_to_internal_key_ */)); internal_comparator_.reset( new InternalKeyComparator(options_.comparator)); break; case PLAIN_TABLE_SEMI_FIXED_PREFIX: support_prev_ = false; only_support_prefix_seek_ = true; options_.prefix_extractor.reset(new FixedOrLessPrefixTransform(2)); options_.table_factory.reset(NewPlainTableFactory()); constructor_.reset(new TableConstructor( options_.comparator, true /* convert_to_internal_key_ */)); internal_comparator_.reset( new InternalKeyComparator(options_.comparator)); break; case PLAIN_TABLE_FULL_STR_PREFIX: support_prev_ = false; only_support_prefix_seek_ = true; options_.prefix_extractor.reset(NewNoopTransform()); options_.table_factory.reset(NewPlainTableFactory()); constructor_.reset(new TableConstructor( options_.comparator, true /* convert_to_internal_key_ */)); internal_comparator_.reset( new InternalKeyComparator(options_.comparator)); break; case PLAIN_TABLE_TOTAL_ORDER: support_prev_ = false; only_support_prefix_seek_ = false; options_.prefix_extractor = nullptr; { PlainTableOptions plain_table_options; plain_table_options.user_key_len = kPlainTableVariableLength; plain_table_options.bloom_bits_per_key = 0; plain_table_options.hash_table_ratio = 0; options_.table_factory.reset( NewPlainTableFactory(plain_table_options)); } constructor_.reset(new TableConstructor( options_.comparator, true /* convert_to_internal_key_ */)); internal_comparator_.reset( new InternalKeyComparator(options_.comparator)); break; case BLOCK_TEST: table_options_.block_size = 256; options_.table_factory.reset( new BlockBasedTableFactory(table_options_)); constructor_.reset(new BlockConstructor(options_.comparator)); break; case MEMTABLE_TEST: table_options_.block_size = 256; options_.table_factory.reset( new BlockBasedTableFactory(table_options_)); constructor_.reset( new MemTableConstructor(options_.comparator, &write_buffer_)); break; case DB_TEST: table_options_.block_size = 256; options_.table_factory.reset( new BlockBasedTableFactory(table_options_)); constructor_.reset(new DBConstructor(options_.comparator)); break; } ioptions_ = ImmutableOptions(options_); moptions_ = MutableCFOptions(options_); } void Add(const std::string& key, const std::string& value) { constructor_->Add(key, value); } void Test(Random* rnd) { std::vector keys; stl_wrappers::KVMap data; constructor_->Finish(options_, ioptions_, moptions_, table_options_, *internal_comparator_, &keys, &data); TestForwardScan(keys, data); if (support_prev_) { TestBackwardScan(keys, data); } TestRandomAccess(rnd, keys, data); } void TestForwardScan(const std::vector& /*keys*/, const stl_wrappers::KVMap& data) { InternalIterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); iter->SeekToFirst(); ASSERT_OK(iter->status()); for (stl_wrappers::KVMap::const_iterator model_iter = data.begin(); model_iter != data.end(); ++model_iter) { ASSERT_EQ(ToString(data, model_iter), ToString(iter)); iter->Next(); ASSERT_OK(iter->status()); } ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) { iter->~InternalIterator(); } else { delete iter; } } void TestBackwardScan(const std::vector& /*keys*/, const stl_wrappers::KVMap& data) { InternalIterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); iter->SeekToLast(); ASSERT_OK(iter->status()); for (stl_wrappers::KVMap::const_reverse_iterator model_iter = data.rbegin(); model_iter != data.rend(); ++model_iter) { ASSERT_EQ(ToString(data, model_iter), ToString(iter)); iter->Prev(); ASSERT_OK(iter->status()); } ASSERT_TRUE(!iter->Valid()); ASSERT_OK(iter->status()); if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) { iter->~InternalIterator(); } else { delete iter; } } void TestRandomAccess(Random* rnd, const std::vector& keys, const stl_wrappers::KVMap& data) { static const bool kVerbose = false; InternalIterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); stl_wrappers::KVMap::const_iterator model_iter = data.begin(); if (kVerbose) fprintf(stderr, "---\n"); for (int i = 0; i < 200; i++) { const int toss = rnd->Uniform(support_prev_ ? 5 : 3); switch (toss) { case 0: { if (iter->Valid()) { if (kVerbose) fprintf(stderr, "Next\n"); iter->Next(); ASSERT_OK(iter->status()); ++model_iter; ASSERT_EQ(ToString(data, model_iter), ToString(iter)); } break; } case 1: { if (kVerbose) fprintf(stderr, "SeekToFirst\n"); iter->SeekToFirst(); ASSERT_OK(iter->status()); model_iter = data.begin(); ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } case 2: { std::string key = PickRandomKey(rnd, keys); model_iter = data.lower_bound(key); if (kVerbose) fprintf(stderr, "Seek '%s'\n", EscapeString(key).c_str()); iter->Seek(Slice(key)); ASSERT_OK(iter->status()); ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } case 3: { if (iter->Valid()) { if (kVerbose) fprintf(stderr, "Prev\n"); iter->Prev(); ASSERT_OK(iter->status()); if (model_iter == data.begin()) { model_iter = data.end(); // Wrap around to invalid value } else { --model_iter; } ASSERT_EQ(ToString(data, model_iter), ToString(iter)); } break; } case 4: { if (kVerbose) fprintf(stderr, "SeekToLast\n"); iter->SeekToLast(); ASSERT_OK(iter->status()); if (keys.empty()) { model_iter = data.end(); } else { std::string last = data.rbegin()->first; model_iter = data.lower_bound(last); } ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } } } if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) { iter->~InternalIterator(); } else { delete iter; } } std::string ToString(const stl_wrappers::KVMap& data, const stl_wrappers::KVMap::const_iterator& it) { if (it == data.end()) { return "END"; } else { return "'" + it->first + "->" + it->second + "'"; } } std::string ToString(const stl_wrappers::KVMap& data, const stl_wrappers::KVMap::const_reverse_iterator& it) { if (it == data.rend()) { return "END"; } else { return "'" + it->first + "->" + it->second + "'"; } } std::string ToString(const InternalIterator* it) { if (!it->Valid()) { return "END"; } else { return "'" + it->key().ToString() + "->" + it->value().ToString() + "'"; } } std::string PickRandomKey(Random* rnd, const std::vector& keys) { if (keys.empty()) { return "foo"; } else { const int index = rnd->Uniform(static_cast(keys.size())); std::string result = keys[index]; switch (rnd->Uniform(support_prev_ ? 3 : 1)) { case 0: // Return an existing key break; case 1: { // Attempt to return something smaller than an existing key if (result.size() > 0 && result[result.size() - 1] > '\0' && (!only_support_prefix_seek_ || options_.prefix_extractor->Transform(result).size() < result.size())) { result[result.size() - 1]--; } break; } case 2: { // Return something larger than an existing key Increment(options_.comparator, &result); break; } } return result; } } // Returns nullptr if not running against a DB DB* db() const { return constructor_->db(); } private: TestArgs args_; Options options_; ImmutableOptions ioptions_; MutableCFOptions moptions_; BlockBasedTableOptions table_options_; std::unique_ptr constructor_; WriteBufferManager write_buffer_; bool support_prev_; bool only_support_prefix_seek_; std::shared_ptr internal_comparator_; }; class ParameterizedHarnessTest : public HarnessTest, public testing::WithParamInterface { public: ParameterizedHarnessTest() : HarnessTest(GetParam()) {} }; INSTANTIATE_TEST_CASE_P(TableTest, ParameterizedHarnessTest, ::testing::ValuesIn(GenerateArgList())); class DBHarnessTest : public HarnessTest { public: DBHarnessTest() : HarnessTest(TestArgs{DB_TEST, /* reverse_compare */ false, /* restart_interval */ 16, kNoCompression, /* compression_parallel_threads */ 1, /* format_version */ 0, /* use_mmap */ false}) {} }; static bool Between(uint64_t val, uint64_t low, uint64_t high) { bool result = (val >= low) && (val <= high); if (!result) { fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n", (unsigned long long)(val), (unsigned long long)(low), (unsigned long long)(high)); } return result; } // Tests against all kinds of tables class TableTest : public testing::Test { public: const InternalKeyComparator& GetPlainInternalComparator( const Comparator* comp) { if (!plain_internal_comparator) { plain_internal_comparator.reset( new test::PlainInternalKeyComparator(comp)); } return *plain_internal_comparator; } void IndexTest(BlockBasedTableOptions table_options); private: std::unique_ptr plain_internal_comparator; }; class GeneralTableTest : public TableTest {}; class BlockBasedTableTestBase : public TableTest {}; class BlockBasedTableTest : public BlockBasedTableTestBase, virtual public ::testing::WithParamInterface { public: BlockBasedTableTest() : format_(GetParam()) { env_ = ROCKSDB_NAMESPACE::Env::Default(); } BlockBasedTableOptions GetBlockBasedTableOptions() { BlockBasedTableOptions options; options.format_version = format_; return options; } void SetupTracingTest(TableConstructor* c) { test_path_ = test::PerThreadDBPath("block_based_table_tracing_test"); EXPECT_OK(env_->CreateDir(test_path_)); trace_file_path_ = test_path_ + "/block_cache_trace_file"; BlockCacheTraceWriterOptions trace_writer_opt; BlockCacheTraceOptions trace_opt; std::unique_ptr trace_writer; EXPECT_OK(NewFileTraceWriter(env_, EnvOptions(), trace_file_path_, &trace_writer)); std::unique_ptr block_cache_trace_writer = NewBlockCacheTraceWriter(env_->GetSystemClock().get(), trace_writer_opt, std::move(trace_writer)); ASSERT_NE(block_cache_trace_writer, nullptr); // Always return Status::OK(). assert(c->block_cache_tracer_ .StartTrace(trace_opt, std::move(block_cache_trace_writer)) .ok()); { std::string user_key = "k01"; InternalKey internal_key(user_key, 0, kTypeValue); std::string encoded_key = internal_key.Encode().ToString(); c->Add(encoded_key, kDummyValue); } { std::string user_key = "k02"; InternalKey internal_key(user_key, 0, kTypeValue); std::string encoded_key = internal_key.Encode().ToString(); c->Add(encoded_key, kDummyValue); } } void VerifyBlockAccessTrace( TableConstructor* c, const std::vector& expected_records) { c->block_cache_tracer_.EndTrace(); { std::unique_ptr trace_reader; Status s = NewFileTraceReader(env_, EnvOptions(), trace_file_path_, &trace_reader); EXPECT_OK(s); BlockCacheTraceReader reader(std::move(trace_reader)); BlockCacheTraceHeader header; EXPECT_OK(reader.ReadHeader(&header)); uint32_t index = 0; while (s.ok()) { BlockCacheTraceRecord access; s = reader.ReadAccess(&access); if (!s.ok()) { break; } ASSERT_LT(index, expected_records.size()); EXPECT_NE("", access.block_key); EXPECT_EQ(access.block_type, expected_records[index].block_type); EXPECT_GT(access.block_size, 0); EXPECT_EQ(access.caller, expected_records[index].caller); EXPECT_EQ(access.no_insert, expected_records[index].no_insert); EXPECT_EQ(access.is_cache_hit, expected_records[index].is_cache_hit); // Get if (access.caller == TableReaderCaller::kUserGet) { EXPECT_EQ(access.referenced_key, expected_records[index].referenced_key); EXPECT_EQ(access.get_id, expected_records[index].get_id); EXPECT_EQ(access.get_from_user_specified_snapshot, expected_records[index].get_from_user_specified_snapshot); if (access.block_type == TraceType::kBlockTraceDataBlock) { EXPECT_GT(access.referenced_data_size, 0); EXPECT_GT(access.num_keys_in_block, 0); EXPECT_EQ(access.referenced_key_exist_in_block, expected_records[index].referenced_key_exist_in_block); } } else { EXPECT_EQ(access.referenced_key, ""); EXPECT_EQ(access.get_id, 0); EXPECT_FALSE(access.get_from_user_specified_snapshot); EXPECT_EQ(access.referenced_data_size, 0); EXPECT_EQ(access.num_keys_in_block, 0); EXPECT_FALSE(access.referenced_key_exist_in_block); } index++; } EXPECT_EQ(index, expected_records.size()); } EXPECT_OK(env_->DeleteFile(trace_file_path_)); EXPECT_OK(env_->DeleteDir(test_path_)); } protected: uint64_t IndexUncompressedHelper(bool indexCompress); private: uint32_t format_; Env* env_; std::string trace_file_path_; std::string test_path_; }; class PlainTableTest : public TableTest {}; class TablePropertyTest : public testing::Test {}; class BBTTailPrefetchTest : public TableTest {}; // The helper class to test the file checksum class FileChecksumTestHelper { public: FileChecksumTestHelper(bool convert_to_internal_key = false) : convert_to_internal_key_(convert_to_internal_key) {} ~FileChecksumTestHelper() {} void CreateWritableFile() { sink_ = new test::StringSink(); std::unique_ptr holder(sink_); file_writer_.reset(new WritableFileWriter( std::move(holder), "" /* don't care */, FileOptions())); } void SetFileChecksumGenerator(FileChecksumGenerator* checksum_generator) { if (file_writer_ != nullptr) { file_writer_->TEST_SetFileChecksumGenerator(checksum_generator); } else { delete checksum_generator; } } WritableFileWriter* GetFileWriter() { return file_writer_.get(); } Status ResetTableBuilder(std::unique_ptr&& builder) { assert(builder != nullptr); table_builder_ = std::move(builder); return Status::OK(); } void AddKVtoKVMap(int num_entries) { Random rnd(test::RandomSeed()); for (int i = 0; i < num_entries; i++) { std::string v = rnd.RandomString(100); kv_map_[test::RandomKey(&rnd, 20)] = v; } } Status WriteKVAndFlushTable() { for (const auto& kv : kv_map_) { if (convert_to_internal_key_) { ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); table_builder_->Add(encoded, kv.second); } else { table_builder_->Add(kv.first, kv.second); } EXPECT_TRUE(table_builder_->status().ok()); } Status s = table_builder_->Finish(); EXPECT_OK(file_writer_->Flush()); EXPECT_OK(s); EXPECT_EQ(sink_->contents().size(), table_builder_->FileSize()); return s; } std::string GetFileChecksum() { EXPECT_OK(file_writer_->Close()); return table_builder_->GetFileChecksum(); } const char* GetFileChecksumFuncName() { return table_builder_->GetFileChecksumFuncName(); } Status CalculateFileChecksum(FileChecksumGenerator* file_checksum_generator, std::string* checksum) { assert(file_checksum_generator != nullptr); cur_file_num_ = checksum_file_num_++; test::StringSink* ss_rw = static_cast(file_writer_->writable_file()); std::unique_ptr source( new test::StringSource(ss_rw->contents())); file_reader_.reset(new RandomAccessFileReader(std::move(source), "test")); std::unique_ptr scratch(new char[2048]); Slice result; uint64_t offset = 0; Status s; s = file_reader_->Read(IOOptions(), offset, 2048, &result, scratch.get(), nullptr, Env::IO_TOTAL /* rate_limiter_priority */); if (!s.ok()) { return s; } while (result.size() != 0) { file_checksum_generator->Update(scratch.get(), result.size()); offset += static_cast(result.size()); s = file_reader_->Read(IOOptions(), offset, 2048, &result, scratch.get(), nullptr, Env::IO_TOTAL /* rate_limiter_priority */); if (!s.ok()) { return s; } } EXPECT_EQ(offset, static_cast(table_builder_->FileSize())); file_checksum_generator->Finalize(); *checksum = file_checksum_generator->GetChecksum(); return Status::OK(); } private: bool convert_to_internal_key_; uint64_t cur_file_num_; std::unique_ptr file_writer_; std::unique_ptr file_reader_; std::unique_ptr table_builder_; stl_wrappers::KVMap kv_map_; test::StringSink* sink_ = nullptr; static uint64_t checksum_file_num_; }; uint64_t FileChecksumTestHelper::checksum_file_num_ = 1; INSTANTIATE_TEST_CASE_P(FormatVersions, BlockBasedTableTest, testing::ValuesIn(test::kFooterFormatVersionsToTest)); // This test serves as the living tutorial for the prefix scan of user collected // properties. TEST_F(TablePropertyTest, PrefixScanTest) { UserCollectedProperties props{ {"num.111.1", "1"}, {"num.111.2", "2"}, {"num.111.3", "3"}, {"num.333.1", "1"}, {"num.333.2", "2"}, {"num.333.3", "3"}, {"num.555.1", "1"}, {"num.555.2", "2"}, {"num.555.3", "3"}, }; // prefixes that exist for (const std::string prefix : {"num.111", "num.333", "num.555"}) { int num = 0; for (auto pos = props.lower_bound(prefix); pos != props.end() && pos->first.compare(0, prefix.size(), prefix) == 0; ++pos) { ++num; auto key = prefix + "." + std::to_string(num); ASSERT_EQ(key, pos->first); ASSERT_EQ(std::to_string(num), pos->second); } ASSERT_EQ(3, num); } // prefixes that don't exist for (const std::string prefix : {"num.000", "num.222", "num.444", "num.666"}) { auto pos = props.lower_bound(prefix); ASSERT_TRUE(pos == props.end() || pos->first.compare(0, prefix.size(), prefix) != 0); } } namespace { struct TestIds { UniqueId64x3 internal_id; UniqueId64x3 external_id; }; inline bool operator==(const TestIds& lhs, const TestIds& rhs) { return lhs.internal_id == rhs.internal_id && lhs.external_id == rhs.external_id; } std::ostream& operator<<(std::ostream& os, const TestIds& ids) { return os << std::hex << "{{{ 0x" << ids.internal_id[0] << "U, 0x" << ids.internal_id[1] << "U, 0x" << ids.internal_id[2] << "U }}, {{ 0x" << ids.external_id[0] << "U, 0x" << ids.external_id[1] << "U, 0x" << ids.external_id[2] << "U }}}"; } TestIds GetUniqueId(TableProperties* tp, std::unordered_set* seen, const std::string& db_id, const std::string& db_session_id, uint64_t file_number) { // First test session id logic if (db_session_id.size() == 20) { uint64_t upper; uint64_t lower; EXPECT_OK(DecodeSessionId(db_session_id, &upper, &lower)); EXPECT_EQ(EncodeSessionId(upper, lower), db_session_id); } // Get external using public API tp->db_id = db_id; tp->db_session_id = db_session_id; tp->orig_file_number = file_number; TestIds t; { std::string euid; EXPECT_OK(GetExtendedUniqueIdFromTableProperties(*tp, &euid)); EXPECT_EQ(euid.size(), 24U); t.external_id[0] = DecodeFixed64(&euid[0]); t.external_id[1] = DecodeFixed64(&euid[8]); t.external_id[2] = DecodeFixed64(&euid[16]); std::string uid; EXPECT_OK(GetUniqueIdFromTableProperties(*tp, &uid)); EXPECT_EQ(uid.size(), 16U); EXPECT_EQ(uid, euid.substr(0, 16)); EXPECT_EQ(t.external_id[0], DecodeFixed64(&uid[0])); EXPECT_EQ(t.external_id[1], DecodeFixed64(&uid[8])); } // All these should be effectively random EXPECT_TRUE(seen->insert(t.external_id[0]).second); EXPECT_TRUE(seen->insert(t.external_id[1]).second); EXPECT_TRUE(seen->insert(t.external_id[2]).second); // Get internal with internal API EXPECT_OK(GetSstInternalUniqueId(db_id, db_session_id, file_number, &t.internal_id)); EXPECT_NE(t.internal_id, kNullUniqueId64x3); // Verify relationship UniqueId64x3 tmp = t.internal_id; InternalUniqueIdToExternal(&tmp); EXPECT_EQ(tmp, t.external_id); ExternalUniqueIdToInternal(&tmp); EXPECT_EQ(tmp, t.internal_id); // And 128-bit internal version UniqueId64x2 tmp2{}; EXPECT_OK(GetSstInternalUniqueId(db_id, db_session_id, file_number, &tmp2)); EXPECT_NE(tmp2, kNullUniqueId64x2); EXPECT_EQ(tmp2[0], t.internal_id[0]); EXPECT_EQ(tmp2[1], t.internal_id[1]); InternalUniqueIdToExternal(&tmp2); EXPECT_EQ(tmp2[0], t.external_id[0]); EXPECT_EQ(tmp2[1], t.external_id[1]); ExternalUniqueIdToInternal(&tmp2); EXPECT_EQ(tmp2[0], t.internal_id[0]); EXPECT_EQ(tmp2[1], t.internal_id[1]); return t; } } // namespace TEST_F(TablePropertyTest, UniqueIdsSchemaAndQuality) { // To ensure the computation only depends on the expected entries, we set // the rest randomly TableProperties tp; TEST_SetRandomTableProperties(&tp); // DB id is normally RFC-4122 const std::string db_id1 = "7265b6eb-4e42-4aec-86a4-0dc5e73a228d"; // Allow other forms of DB id const std::string db_id2 = "1728000184588763620"; const std::string db_id3 = "x"; // DB session id is normally 20 chars in base-36, but 13 to 24 chars // is ok, roughly 64 to 128 bits. const std::string ses_id1 = "ABCDEFGHIJ0123456789"; // Same trailing 13 digits const std::string ses_id2 = "HIJ0123456789"; const std::string ses_id3 = "0123ABCDEFGHIJ0123456789"; // Different trailing 12 digits const std::string ses_id4 = "ABCDEFGH888888888888"; // And change length const std::string ses_id5 = "ABCDEFGHIJ012"; const std::string ses_id6 = "ABCDEFGHIJ0123456789ABCD"; using T = TestIds; std::unordered_set seen; // Establish a stable schema for the unique IDs. These values must not // change for existing table files. // (Note: parens needed for macro parsing, extra braces needed for some // compilers.) EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id1, 1), T({{{0x61d7dcf415d9cf19U, 0x160d77aae90757fdU, 0x907f41dfd90724ffU}}, {{0xf0bd230365df7464U, 0xca089303f3648eb4U, 0x4b44f7e7324b2817U}}})); // Only change internal_id[1] with file number EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id1, 2), T({{{0x61d7dcf415d9cf19U, 0x160d77aae90757feU, 0x907f41dfd90724ffU}}, {{0xf13fdf7adcfebb6dU, 0x97cd2226cc033ea2U, 0x198c438182091f0eU}}})); EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id1, 123456789), T({{{0x61d7dcf415d9cf19U, 0x160d77aaee5c9ae9U, 0x907f41dfd90724ffU}}, {{0x81fbcebe1ac6c4f0U, 0x6b14a64cfdc0f1c4U, 0x7d8fb6eaf18edbb3U}}})); // Change internal_id[1] and internal_id[2] with db_id EXPECT_EQ( GetUniqueId(&tp, &seen, db_id2, ses_id1, 1), T({{{0x61d7dcf415d9cf19U, 0xf89c471f572f0d25U, 0x1f0f2a5eb0e6257eU}}, {{0x7f1d01d453616991U, 0x32ddf2afec804ab2U, 0xd10a1ee2f0c7d9c1U}}})); EXPECT_EQ( GetUniqueId(&tp, &seen, db_id3, ses_id1, 1), T({{{0x61d7dcf415d9cf19U, 0xfed297a8154a57d0U, 0x8b931b9cdebd9e8U}}, {{0x62b2f43183f6894bU, 0x897ff2b460eefad1U, 0xf4ec189fb2d15e04U}}})); // Keeping same last 13 digits of ses_id keeps same internal_id[0] EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id2, 1), T({{{0x61d7dcf415d9cf19U, 0x5f6cc4fa2d528c8U, 0x7b70845d5bfb5446U}}, {{0x96d1c83ffcc94266U, 0x82663eac0ec6e14aU, 0x94a88b49678b77f6U}}})); EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id3, 1), T({{{0x61d7dcf415d9cf19U, 0xfc7232879db37ea2U, 0xc0378d74ea4c89cdU}}, {{0xdf2ef57e98776905U, 0xda5b31c987da833bU, 0x79c1b4bd0a9e760dU}}})); // Changing last 12 digits of ses_id only changes internal_id[0] // (vs. db_id1, ses_id1, 1) EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id4, 1), T({{{0x4f07cc0d003a83a8U, 0x160d77aae90757fdU, 0x907f41dfd90724ffU}}, {{0xbcf85336a9f71f04U, 0x4f2949e2f3adb60dU, 0x9ca0def976abfa10U}}})); // ses_id can change everything. EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id5, 1), T({{{0x94b8768e43f87ce6U, 0xc2559653ac4e7c93U, 0xde6dff6bbb1223U}}, {{0x5a9537af681817fbU, 0x1afcd1fecaead5eaU, 0x767077ad9ebe0008U}}})); EXPECT_EQ( GetUniqueId(&tp, &seen, db_id1, ses_id6, 1), T({{{0x43cfb0ffa3b710edU, 0x263c580426406a1bU, 0xfacc91379a80d29dU}}, {{0xfa90547d84cb1cdbU, 0x2afe99c641992d4aU, 0x205b7f7b60e51cc2U}}})); // Now verify more thoroughly that any small change in inputs completely // changes external unique id. // (Relying on 'seen' checks etc. in GetUniqueId) std::string db_id = "00000000-0000-0000-0000-000000000000"; std::string ses_id = "000000000000000000000000"; uint64_t file_num = 1; // change db_id for (size_t i = 0; i < db_id.size(); ++i) { if (db_id[i] == '-') { continue; } for (char alt : std::string("123456789abcdef")) { db_id[i] = alt; GetUniqueId(&tp, &seen, db_id, ses_id, file_num); } db_id[i] = '0'; } // change ses_id for (size_t i = 0; i < ses_id.size(); ++i) { for (char alt : std::string("123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")) { ses_id[i] = alt; GetUniqueId(&tp, &seen, db_id, ses_id, file_num); } ses_id[i] = '0'; } // change file_num for (int i = 1; i < 64; ++i) { GetUniqueId(&tp, &seen, db_id, ses_id, file_num << i); } // Verify that "all zeros" in first 128 bits is equivalent for internal and // external IDs. This way, as long as we avoid "all zeros" in internal IDs, // we avoid it in external IDs. { UniqueId64x3 id1{{0, 0, Random::GetTLSInstance()->Next64()}}; UniqueId64x3 id2 = id1; InternalUniqueIdToExternal(&id1); EXPECT_EQ(id1, id2); ExternalUniqueIdToInternal(&id2); EXPECT_EQ(id1, id2); } } namespace { void SetGoodTableProperties(TableProperties* tp) { // To ensure the computation only depends on the expected entries, we set // the rest randomly TEST_SetRandomTableProperties(tp); tp->db_id = "7265b6eb-4e42-4aec-86a4-0dc5e73a228d"; tp->db_session_id = "ABCDEFGHIJ0123456789"; tp->orig_file_number = 1; } } // namespace TEST_F(TablePropertyTest, UniqueIdHumanStrings) { TableProperties tp; SetGoodTableProperties(&tp); std::string tmp; EXPECT_OK(GetExtendedUniqueIdFromTableProperties(tp, &tmp)); EXPECT_EQ(tmp, (std::string{{'\x64', '\x74', '\xdf', '\x65', '\x03', '\x23', '\xbd', '\xf0', '\xb4', '\x8e', '\x64', '\xf3', '\x03', '\x93', '\x08', '\xca', '\x17', '\x28', '\x4b', '\x32', '\xe7', '\xf7', '\x44', '\x4b'}})); EXPECT_EQ(UniqueIdToHumanString(tmp), "6474DF650323BDF0-B48E64F3039308CA-17284B32E7F7444B"); EXPECT_OK(GetUniqueIdFromTableProperties(tp, &tmp)); EXPECT_EQ(UniqueIdToHumanString(tmp), "6474DF650323BDF0-B48E64F3039308CA"); // including zero padding tmp = std::string(24U, '\0'); tmp[15] = '\x12'; tmp[23] = '\xAB'; EXPECT_EQ(UniqueIdToHumanString(tmp), "0000000000000000-0000000000000012-00000000000000AB"); // And shortened tmp = std::string(20U, '\0'); tmp[5] = '\x12'; tmp[10] = '\xAB'; tmp[17] = '\xEF'; EXPECT_EQ(UniqueIdToHumanString(tmp), "0000000000120000-0000AB0000000000-00EF0000"); tmp.resize(16); EXPECT_EQ(UniqueIdToHumanString(tmp), "0000000000120000-0000AB0000000000"); tmp.resize(11); EXPECT_EQ(UniqueIdToHumanString(tmp), "0000000000120000-0000AB"); tmp.resize(6); EXPECT_EQ(UniqueIdToHumanString(tmp), "000000000012"); // Also internal IDs to human string UniqueId64x3 euid = {12345, 678, 9}; EXPECT_EQ(InternalUniqueIdToHumanString(&euid), "{12345,678,9}"); UniqueId64x2 uid = {1234, 567890}; EXPECT_EQ(InternalUniqueIdToHumanString(&uid), "{1234,567890}"); } TEST_F(TablePropertyTest, UniqueIdsFailure) { TableProperties tp; std::string tmp; // Missing DB id SetGoodTableProperties(&tp); tp.db_id = ""; EXPECT_TRUE(GetUniqueIdFromTableProperties(tp, &tmp).IsNotSupported()); EXPECT_TRUE( GetExtendedUniqueIdFromTableProperties(tp, &tmp).IsNotSupported()); // Missing session id SetGoodTableProperties(&tp); tp.db_session_id = ""; EXPECT_TRUE(GetUniqueIdFromTableProperties(tp, &tmp).IsNotSupported()); EXPECT_TRUE( GetExtendedUniqueIdFromTableProperties(tp, &tmp).IsNotSupported()); // Missing file number SetGoodTableProperties(&tp); tp.orig_file_number = 0; EXPECT_TRUE(GetUniqueIdFromTableProperties(tp, &tmp).IsNotSupported()); EXPECT_TRUE( GetExtendedUniqueIdFromTableProperties(tp, &tmp).IsNotSupported()); } // This test include all the basic checks except those for index size and block // size, which will be conducted in separated unit tests. TEST_P(BlockBasedTableTest, BasicBlockBasedTableProperties) { TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("a1", "val1"); c.Add("b2", "val2"); c.Add("c3", "val3"); c.Add("d4", "val4"); c.Add("e5", "val5"); c.Add("f6", "val6"); c.Add("g7", "val7"); c.Add("h8", "val8"); c.Add("j9", "val9"); uint64_t diff_internal_user_bytes = 9 * 8; // 8 is seq size, 9 k-v totally std::vector keys; stl_wrappers::KVMap kvmap; Options options; options.compression = kNoCompression; options.statistics = CreateDBStatistics(); options.statistics->set_stats_level(StatsLevel::kAll); BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_restart_interval = 1; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); ASSERT_EQ(options.statistics->getTickerCount(NUMBER_BLOCK_NOT_COMPRESSED), 0); auto& props = *c.GetTableReader()->GetTableProperties(); ASSERT_EQ(kvmap.size(), props.num_entries); auto raw_key_size = kvmap.size() * 2ul; auto raw_value_size = kvmap.size() * 4ul; ASSERT_EQ(raw_key_size + diff_internal_user_bytes, props.raw_key_size); ASSERT_EQ(raw_value_size, props.raw_value_size); ASSERT_EQ(1ul, props.num_data_blocks); ASSERT_EQ("", props.filter_policy_name); // no filter policy is used // Verify data size. BlockBuilder block_builder(1); for (const auto& item : kvmap) { block_builder.Add(item.first, item.second); } Slice content = block_builder.Finish(); ASSERT_EQ(content.size() + BlockBasedTable::kBlockTrailerSize + diff_internal_user_bytes, props.data_size); c.ResetTableReader(); } #ifdef SNAPPY uint64_t BlockBasedTableTest::IndexUncompressedHelper(bool compressed) { TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); constexpr size_t kNumKeys = 10000; for (size_t k = 0; k < kNumKeys; ++k) { c.Add("key" + std::to_string(k), "val" + std::to_string(k)); } std::vector keys; stl_wrappers::KVMap kvmap; Options options; options.compression = kSnappyCompression; options.statistics = CreateDBStatistics(); options.statistics->set_stats_level(StatsLevel::kAll); BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_restart_interval = 1; table_options.enable_index_compression = compressed; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); c.ResetTableReader(); return options.statistics->getTickerCount(NUMBER_BLOCK_COMPRESSED); } TEST_P(BlockBasedTableTest, IndexUncompressed) { uint64_t tbl1_compressed_cnt = IndexUncompressedHelper(true); uint64_t tbl2_compressed_cnt = IndexUncompressedHelper(false); // tbl1_compressed_cnt should include 1 index block EXPECT_EQ(tbl2_compressed_cnt + 1, tbl1_compressed_cnt); } #endif // SNAPPY TEST_P(BlockBasedTableTest, BlockBasedTableProperties2) { TableConstructor c(&reverse_key_comparator); std::vector keys; stl_wrappers::KVMap kvmap; { Options options; options.compression = CompressionType::kNoCompression; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); auto& props = *c.GetTableReader()->GetTableProperties(); // Default comparator ASSERT_EQ("leveldb.BytewiseComparator", props.comparator_name); // No merge operator ASSERT_EQ("nullptr", props.merge_operator_name); // No prefix extractor ASSERT_EQ("nullptr", props.prefix_extractor_name); // No property collectors ASSERT_EQ("[]", props.property_collectors_names); // No filter policy is used ASSERT_EQ("", props.filter_policy_name); // Compression type == that set: ASSERT_EQ("NoCompression", props.compression_name); c.ResetTableReader(); } { Options options; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); options.comparator = &reverse_key_comparator; options.merge_operator = MergeOperators::CreateUInt64AddOperator(); options.prefix_extractor.reset(NewNoopTransform()); options.table_properties_collector_factories.emplace_back( new DummyPropertiesCollectorFactory1()); options.table_properties_collector_factories.emplace_back( new DummyPropertiesCollectorFactory2()); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); auto& props = *c.GetTableReader()->GetTableProperties(); ASSERT_EQ("rocksdb.ReverseBytewiseComparator", props.comparator_name); ASSERT_EQ("UInt64AddOperator", props.merge_operator_name); ASSERT_EQ("rocksdb.Noop", props.prefix_extractor_name); ASSERT_EQ( "[DummyPropertiesCollectorFactory1,DummyPropertiesCollectorFactory2]", props.property_collectors_names); ASSERT_EQ("", props.filter_policy_name); // no filter policy is used c.ResetTableReader(); } } TEST_P(BlockBasedTableTest, RangeDelBlock) { TableConstructor c(BytewiseComparator()); std::vector keys = {"1pika", "2chu"}; std::vector vals = {"p", "c"}; std::vector expected_tombstones = { {"1pika", "2chu", 0}, {"2chu", "c", 1}, {"2chu", "c", 0}, {"c", "p", 0}, }; for (int i = 0; i < 2; i++) { RangeTombstone t(keys[i], vals[i], i); std::pair p = t.Serialize(); c.Add(p.first.Encode().ToString(), p.second); } std::vector sorted_keys; stl_wrappers::KVMap kvmap; Options options; options.compression = kNoCompression; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_restart_interval = 1; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); std::unique_ptr internal_cmp( new InternalKeyComparator(options.comparator)); c.Finish(options, ioptions, moptions, table_options, *internal_cmp, &sorted_keys, &kvmap); for (int j = 0; j < 2; ++j) { std::unique_ptr iter( c.GetTableReader()->NewRangeTombstoneIterator(ReadOptions())); if (j > 0) { // For second iteration, delete the table reader object and verify the // iterator can still access its metablock's range tombstones. c.ResetTableReader(); } ASSERT_FALSE(iter->Valid()); iter->SeekToFirst(); ASSERT_TRUE(iter->Valid()); for (size_t i = 0; i < expected_tombstones.size(); i++) { ASSERT_TRUE(iter->Valid()); ParsedInternalKey parsed_key; ASSERT_OK( ParseInternalKey(iter->key(), &parsed_key, true /* log_err_key */)); RangeTombstone t(parsed_key, iter->value()); const auto& expected_t = expected_tombstones[i]; ASSERT_EQ(t.start_key_, expected_t.start_key_); ASSERT_EQ(t.end_key_, expected_t.end_key_); ASSERT_EQ(t.seq_, expected_t.seq_); iter->Next(); } ASSERT_TRUE(!iter->Valid()); } } TEST_P(BlockBasedTableTest, FilterPolicyNameProperties) { TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("a1", "val1"); std::vector keys; stl_wrappers::KVMap kvmap; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.filter_policy.reset(NewBloomFilterPolicy(10)); Options options; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); auto& props = *c.GetTableReader()->GetTableProperties(); ASSERT_EQ(table_options.filter_policy->Name(), props.filter_policy_name); c.ResetTableReader(); } // // BlockBasedTableTest::PrefetchTest // void AssertKeysInCache(BlockBasedTable* table_reader, const std::vector& keys_in_cache, const std::vector& keys_not_in_cache, bool convert = false) { if (convert) { for (auto key : keys_in_cache) { InternalKey ikey(key, kMaxSequenceNumber, kTypeValue); ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode())); } for (auto key : keys_not_in_cache) { InternalKey ikey(key, kMaxSequenceNumber, kTypeValue); ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode())); } } else { for (auto key : keys_in_cache) { ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), key)); } for (auto key : keys_not_in_cache) { ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), key)); } } } void PrefetchRange(TableConstructor* c, Options* opt, BlockBasedTableOptions* table_options, const char* key_begin, const char* key_end, const std::vector& keys_in_cache, const std::vector& keys_not_in_cache, const Status expected_status = Status::OK()) { // reset the cache and reopen the table table_options->block_cache = NewLRUCache(16 * 1024 * 1024, 4); opt->table_factory.reset(NewBlockBasedTableFactory(*table_options)); const ImmutableOptions ioptions2(*opt); const MutableCFOptions moptions(*opt); ASSERT_OK(c->Reopen(ioptions2, moptions)); // prefetch auto* table_reader = dynamic_cast(c->GetTableReader()); Status s; std::unique_ptr begin, end; std::unique_ptr i_begin, i_end; if (key_begin != nullptr) { if (c->ConvertToInternalKey()) { i_begin.reset(new InternalKey(key_begin, kMaxSequenceNumber, kTypeValue)); begin.reset(new Slice(i_begin->Encode())); } else { begin.reset(new Slice(key_begin)); } } if (key_end != nullptr) { if (c->ConvertToInternalKey()) { i_end.reset(new InternalKey(key_end, kMaxSequenceNumber, kTypeValue)); end.reset(new Slice(i_end->Encode())); } else { end.reset(new Slice(key_end)); } } s = table_reader->Prefetch(begin.get(), end.get()); ASSERT_TRUE(s.code() == expected_status.code()); // assert our expectation in cache warmup AssertKeysInCache(table_reader, keys_in_cache, keys_not_in_cache, c->ConvertToInternalKey()); c->ResetTableReader(); } TEST_P(BlockBasedTableTest, PrefetchTest) { // The purpose of this test is to test the prefetching operation built into // BlockBasedTable. Options opt; std::unique_ptr ikc; ikc.reset(new test::PlainInternalKeyComparator(opt.comparator)); opt.compression = kNoCompression; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_size = 1024; // big enough so we don't ever lose cached values. table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4); opt.table_factory.reset(NewBlockBasedTableFactory(table_options)); TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", std::string(10000, 'x')); c.Add("k04", std::string(200000, 'x')); c.Add("k05", std::string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", std::string(100000, 'x')); std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(opt); const MutableCFOptions moptions(opt); c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap); c.ResetTableReader(); // We get the following data spread : // // Data block Index // ======================== // [ k01 k02 k03 ] k03 // [ k04 ] k04 // [ k05 ] k05 // [ k06 k07 ] k07 // Simple PrefetchRange(&c, &opt, &table_options, /*key_range=*/"k01", "k05", /*keys_in_cache=*/{"k01", "k02", "k03", "k04", "k05"}, /*keys_not_in_cache=*/{"k06", "k07"}); PrefetchRange(&c, &opt, &table_options, "k01", "k01", {"k01", "k02", "k03"}, {"k04", "k05", "k06", "k07"}); // odd PrefetchRange(&c, &opt, &table_options, "a", "z", {"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {}); PrefetchRange(&c, &opt, &table_options, "k00", "k00", {"k01", "k02", "k03"}, {"k04", "k05", "k06", "k07"}); // Edge cases PrefetchRange(&c, &opt, &table_options, "k00", "k06", {"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {}); PrefetchRange(&c, &opt, &table_options, "k00", "zzz", {"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {}); // null keys PrefetchRange(&c, &opt, &table_options, nullptr, nullptr, {"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {}); PrefetchRange(&c, &opt, &table_options, "k04", nullptr, {"k04", "k05", "k06", "k07"}, {"k01", "k02", "k03"}); PrefetchRange(&c, &opt, &table_options, nullptr, "k05", {"k01", "k02", "k03", "k04", "k05"}, {"k06", "k07"}); // invalid PrefetchRange(&c, &opt, &table_options, "k06", "k00", {}, {}, Status::InvalidArgument(Slice("k06 "), Slice("k07"))); c.ResetTableReader(); } TEST_P(BlockBasedTableTest, TotalOrderSeekOnHashIndex) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); for (int i = 0; i <= 4; ++i) { Options options; // Make each key/value an individual block table_options.block_size = 64; switch (i) { case 0: // Binary search index table_options.index_type = BlockBasedTableOptions::kBinarySearch; options.table_factory.reset(new BlockBasedTableFactory(table_options)); break; case 1: // Hash search index table_options.index_type = BlockBasedTableOptions::kHashSearch; options.table_factory.reset(new BlockBasedTableFactory(table_options)); options.prefix_extractor.reset(NewFixedPrefixTransform(4)); break; case 2: // Hash search index with filter policy table_options.index_type = BlockBasedTableOptions::kHashSearch; table_options.filter_policy.reset(NewBloomFilterPolicy(10)); options.table_factory.reset(new BlockBasedTableFactory(table_options)); options.prefix_extractor.reset(NewFixedPrefixTransform(4)); break; case 3: // Two-level index table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch; options.table_factory.reset(new BlockBasedTableFactory(table_options)); break; case 4: // Binary search with first key table_options.index_type = BlockBasedTableOptions::kBinarySearchWithFirstKey; options.table_factory.reset(new BlockBasedTableFactory(table_options)); break; } TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("aaaa1", std::string('a', 56)); c.Add("bbaa1", std::string('a', 56)); c.Add("cccc1", std::string('a', 56)); c.Add("bbbb1", std::string('a', 56)); c.Add("baaa1", std::string('a', 56)); c.Add("abbb1", std::string('a', 56)); c.Add("cccc2", std::string('a', 56)); std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); auto props = c.GetTableReader()->GetTableProperties(); ASSERT_EQ(7u, props->num_data_blocks); auto* reader = c.GetTableReader(); ReadOptions ro; ro.total_order_seek = true; std::unique_ptr iter(reader->NewIterator( ro, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); iter->Seek(InternalKey("b", 0, kTypeValue).Encode()); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("baaa1", ExtractUserKey(iter->key()).ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString()); iter->Seek(InternalKey("bb", 0, kTypeValue).Encode()); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString()); iter->Seek(InternalKey("bbb", 0, kTypeValue).Encode()); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString()); iter->Next(); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("cccc1", ExtractUserKey(iter->key()).ToString()); } } TEST_P(BlockBasedTableTest, NoopTransformSeek) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.filter_policy.reset(NewBloomFilterPolicy(10)); Options options; options.comparator = BytewiseComparator(); options.table_factory.reset(new BlockBasedTableFactory(table_options)); options.prefix_extractor.reset(NewNoopTransform()); TableConstructor c(options.comparator); // To tickle the PrefixMayMatch bug it is important that the // user-key is a single byte so that the index key exactly matches // the user-key. InternalKey key("a", 1, kTypeValue); c.Add(key.Encode().ToString(), "b"); std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); const InternalKeyComparator internal_comparator(options.comparator); c.Finish(options, ioptions, moptions, table_options, internal_comparator, &keys, &kvmap); auto* reader = c.GetTableReader(); for (int i = 0; i < 2; ++i) { ReadOptions ro; ro.total_order_seek = (i == 0); std::unique_ptr iter(reader->NewIterator( ro, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); iter->Seek(key.Encode()); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("a", ExtractUserKey(iter->key()).ToString()); } } TEST_P(BlockBasedTableTest, SkipPrefixBloomFilter) { // if DB is opened with a prefix extractor of a different name, // prefix bloom is skipped when read the file BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.filter_policy.reset(NewBloomFilterPolicy(2)); table_options.whole_key_filtering = false; Options options; options.comparator = BytewiseComparator(); options.table_factory.reset(new BlockBasedTableFactory(table_options)); options.prefix_extractor.reset(NewFixedPrefixTransform(1)); TableConstructor c(options.comparator); InternalKey key("abcdefghijk", 1, kTypeValue); c.Add(key.Encode().ToString(), "test"); std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); const InternalKeyComparator internal_comparator(options.comparator); c.Finish(options, ioptions, moptions, table_options, internal_comparator, &keys, &kvmap); // TODO(Zhongyi): update test to use MutableCFOptions options.prefix_extractor.reset(NewFixedPrefixTransform(9)); const ImmutableOptions new_ioptions(options); const MutableCFOptions new_moptions(options); ASSERT_OK(c.Reopen(new_ioptions, new_moptions)); auto reader = c.GetTableReader(); ReadOptions read_options; std::unique_ptr db_iter(reader->NewIterator( read_options, new_moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); // Test point lookup // only one kv for (auto& kv : kvmap) { db_iter->Seek(kv.first); ASSERT_TRUE(db_iter->Valid()); ASSERT_OK(db_iter->status()); ASSERT_EQ(db_iter->key(), kv.first); ASSERT_EQ(db_iter->value(), kv.second); } } TEST_P(BlockBasedTableTest, BadChecksumType) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); Options options; options.comparator = BytewiseComparator(); options.table_factory.reset(new BlockBasedTableFactory(table_options)); TableConstructor c(options.comparator); InternalKey key("abc", 1, kTypeValue); c.Add(key.Encode().ToString(), "test"); std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); const InternalKeyComparator internal_comparator(options.comparator); c.Finish(options, ioptions, moptions, table_options, internal_comparator, &keys, &kvmap); // Corrupt checksum type (123 is invalid) auto& sink = *c.TEST_GetSink(); size_t len = sink.contents_.size(); ASSERT_EQ(sink.contents_[len - Footer::kNewVersionsEncodedLength], table_options.checksum); sink.contents_[len - Footer::kNewVersionsEncodedLength] = char{123}; // (Re-)Open table file with bad checksum type const ImmutableOptions new_ioptions(options); const MutableCFOptions new_moptions(options); Status s = c.Reopen(new_ioptions, new_moptions); ASSERT_NOK(s); // "test" is file name ASSERT_EQ(s.ToString(), "Corruption: Corrupt or unsupported checksum type: 123 in test"); } class BuiltinChecksumTest : public testing::Test, public testing::WithParamInterface {}; INSTANTIATE_TEST_CASE_P(SupportedChecksums, BuiltinChecksumTest, testing::ValuesIn(GetSupportedChecksums())); namespace { std::string ChecksumAsString(const std::string& data, ChecksumType checksum_type) { uint32_t v = ComputeBuiltinChecksum(checksum_type, data.data(), data.size()); // Verify consistency with other function if (data.size() >= 1) { EXPECT_EQ(v, ComputeBuiltinChecksumWithLastByte( checksum_type, data.data(), data.size() - 1, data.back())); } // Little endian as in file std::array raw_bytes; EncodeFixed32(raw_bytes.data(), v); return Slice(raw_bytes.data(), raw_bytes.size()).ToString(/*hex*/ true); } std::string ChecksumAsString(std::string* data, char new_last_byte, ChecksumType checksum_type) { data->back() = new_last_byte; return ChecksumAsString(*data, checksum_type); } } // namespace // Make sure that checksum values don't change in later versions, even if // consistent within current version. TEST_P(BuiltinChecksumTest, ChecksumSchemas) { // Trailing 'x' chars will be replaced by compression type. Specifically, // the first byte of a block trailer is compression type, which is part of // the checksum input. This test does not deal with storing or parsing // checksums from the trailer (next 4 bytes of trailer). std::string b0 = "x"; std::string b1 = "This is a short block!x"; std::string b2; for (int i = 0; i < 100; ++i) { b2.append("This is a long block!"); } b2.append("x"); std::string empty; char ct1 = kNoCompression; char ct2 = kSnappyCompression; char ct3 = kZSTD; ChecksumType t = GetParam(); switch (t) { case kNoChecksum: EXPECT_EQ(ChecksumAsString(empty, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b0, ct1, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b0, ct2, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b0, ct3, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b1, ct1, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b1, ct2, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b1, ct3, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b2, ct1, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b2, ct2, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b2, ct3, t), "00000000"); break; case kCRC32c: EXPECT_EQ(ChecksumAsString(empty, t), "D8EA82A2"); EXPECT_EQ(ChecksumAsString(&b0, ct1, t), "D28F2549"); EXPECT_EQ(ChecksumAsString(&b0, ct2, t), "052B2843"); EXPECT_EQ(ChecksumAsString(&b0, ct3, t), "46F8F711"); EXPECT_EQ(ChecksumAsString(&b1, ct1, t), "583F0355"); EXPECT_EQ(ChecksumAsString(&b1, ct2, t), "2F9B0A57"); EXPECT_EQ(ChecksumAsString(&b1, ct3, t), "ECE7DA1D"); EXPECT_EQ(ChecksumAsString(&b2, ct1, t), "943EF0AB"); EXPECT_EQ(ChecksumAsString(&b2, ct2, t), "43A2EDB1"); EXPECT_EQ(ChecksumAsString(&b2, ct3, t), "00E53D63"); break; case kxxHash: EXPECT_EQ(ChecksumAsString(empty, t), "055DCC02"); EXPECT_EQ(ChecksumAsString(&b0, ct1, t), "3EB065CF"); EXPECT_EQ(ChecksumAsString(&b0, ct2, t), "31F79238"); EXPECT_EQ(ChecksumAsString(&b0, ct3, t), "320D2E00"); EXPECT_EQ(ChecksumAsString(&b1, ct1, t), "4A2E5FB0"); EXPECT_EQ(ChecksumAsString(&b1, ct2, t), "0BD9F652"); EXPECT_EQ(ChecksumAsString(&b1, ct3, t), "B4107E50"); EXPECT_EQ(ChecksumAsString(&b2, ct1, t), "20F4D4BA"); EXPECT_EQ(ChecksumAsString(&b2, ct2, t), "8F1A1F99"); EXPECT_EQ(ChecksumAsString(&b2, ct3, t), "A191A338"); break; case kxxHash64: EXPECT_EQ(ChecksumAsString(empty, t), "99E9D851"); EXPECT_EQ(ChecksumAsString(&b0, ct1, t), "682705DB"); EXPECT_EQ(ChecksumAsString(&b0, ct2, t), "30E7211B"); EXPECT_EQ(ChecksumAsString(&b0, ct3, t), "B7BB58E8"); EXPECT_EQ(ChecksumAsString(&b1, ct1, t), "B74655EF"); EXPECT_EQ(ChecksumAsString(&b1, ct2, t), "B6C8BBBE"); EXPECT_EQ(ChecksumAsString(&b1, ct3, t), "AED9E3B4"); EXPECT_EQ(ChecksumAsString(&b2, ct1, t), "0D4999FE"); EXPECT_EQ(ChecksumAsString(&b2, ct2, t), "F5932423"); EXPECT_EQ(ChecksumAsString(&b2, ct3, t), "6B31BAB1"); break; case kXXH3: EXPECT_EQ(ChecksumAsString(empty, t), "00000000"); EXPECT_EQ(ChecksumAsString(&b0, ct1, t), "C294D338"); EXPECT_EQ(ChecksumAsString(&b0, ct2, t), "1B174353"); EXPECT_EQ(ChecksumAsString(&b0, ct3, t), "2D0E20C8"); EXPECT_EQ(ChecksumAsString(&b1, ct1, t), "B37FB5E6"); EXPECT_EQ(ChecksumAsString(&b1, ct2, t), "6AFC258D"); EXPECT_EQ(ChecksumAsString(&b1, ct3, t), "5CE54616"); EXPECT_EQ(ChecksumAsString(&b2, ct1, t), "FA2D482E"); EXPECT_EQ(ChecksumAsString(&b2, ct2, t), "23AED845"); EXPECT_EQ(ChecksumAsString(&b2, ct3, t), "15B7BBDE"); break; default: // Force this test to be updated on new ChecksumTypes assert(false); break; } } TEST_P(BuiltinChecksumTest, ChecksumZeroInputs) { // Verify that no reasonably sized "all zeros" inputs produce "all zeros" // output. Otherwise, "wiped" data could appear to be well-formed. // Assuming essentially random assignment of output values, the likelihood // of encountering checksum == 0 for an input not specifically crafted is // 1 in 4 billion. if (GetParam() == kNoChecksum) { return; } // "Thorough" case is too slow for continouous testing bool thorough = getenv("ROCKSDB_THOROUGH_CHECKSUM_TEST") != nullptr; // Verified through 10M size_t kMaxZerosLen = thorough ? 10000000 : 20000; std::string zeros(kMaxZerosLen, '\0'); for (size_t len = 0; len < kMaxZerosLen; ++len) { if (thorough && (len & 0xffffU) == 0) { fprintf(stderr, "t=%u len=%u\n", (unsigned)GetParam(), (unsigned)len); } uint32_t v = ComputeBuiltinChecksum(GetParam(), zeros.data(), len); if (v == 0U) { // One exception case: if (GetParam() == kXXH3 && len == 0) { // This is not a big deal because assuming the block length is known // from the block handle, which comes from a checksum-verified block, // there is nothing to corrupt in a zero-length block. And when there // is a block trailer with compression byte (as in block-based table), // zero length checksummed data never arises. continue; } // Only compute this on failure SCOPED_TRACE("len=" + std::to_string(len)); ASSERT_NE(v, 0U); } } } void AddInternalKey(TableConstructor* c, const std::string& prefix, std::string value = "v", int /*suffix_len*/ = 800) { static Random rnd(1023); InternalKey k(prefix + rnd.RandomString(800), 0, kTypeValue); c->Add(k.Encode().ToString(), value); } void TableTest::IndexTest(BlockBasedTableOptions table_options) { TableConstructor c(BytewiseComparator()); // keys with prefix length 3, make sure the key/value is big enough to fill // one block AddInternalKey(&c, "0015"); AddInternalKey(&c, "0035"); AddInternalKey(&c, "0054"); AddInternalKey(&c, "0055"); AddInternalKey(&c, "0056"); AddInternalKey(&c, "0057"); AddInternalKey(&c, "0058"); AddInternalKey(&c, "0075"); AddInternalKey(&c, "0076"); AddInternalKey(&c, "0095"); std::vector keys; stl_wrappers::KVMap kvmap; Options options; options.prefix_extractor.reset(NewFixedPrefixTransform(3)); table_options.block_size = 1700; table_options.block_cache = NewLRUCache(1024, 4); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); std::unique_ptr comparator( new InternalKeyComparator(BytewiseComparator())); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, *comparator, &keys, &kvmap); auto reader = c.GetTableReader(); auto props = reader->GetTableProperties(); ASSERT_EQ(5u, props->num_data_blocks); // TODO(Zhongyi): update test to use MutableCFOptions ReadOptions read_options; std::unique_ptr index_iter(reader->NewIterator( read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); // -- Find keys do not exist, but have common prefix. std::vector prefixes = {"001", "003", "005", "007", "009"}; std::vector lower_bound = { keys[0], keys[1], keys[2], keys[7], keys[9], }; // find the lower bound of the prefix for (size_t i = 0; i < prefixes.size(); ++i) { index_iter->Seek(InternalKey(prefixes[i], 0, kTypeValue).Encode()); ASSERT_OK(index_iter->status()); ASSERT_TRUE(index_iter->Valid()); // seek the first element in the block ASSERT_EQ(lower_bound[i], index_iter->key().ToString()); ASSERT_EQ("v", index_iter->value().ToString()); } // find the upper bound of prefixes std::vector upper_bound = { keys[1], keys[2], keys[7], keys[9], }; // find existing keys for (const auto& item : kvmap) { auto ukey = ExtractUserKey(item.first).ToString(); index_iter->Seek(ukey); // ASSERT_OK(regular_iter->status()); ASSERT_OK(index_iter->status()); // ASSERT_TRUE(regular_iter->Valid()); ASSERT_TRUE(index_iter->Valid()); ASSERT_EQ(item.first, index_iter->key().ToString()); ASSERT_EQ(item.second, index_iter->value().ToString()); } for (size_t i = 0; i < prefixes.size(); ++i) { // the key is greater than any existing keys. auto key = prefixes[i] + "9"; index_iter->Seek(InternalKey(key, 0, kTypeValue).Encode()); ASSERT_TRUE(index_iter->status().ok() || index_iter->status().IsNotFound()); ASSERT_TRUE(!index_iter->status().IsNotFound() || !index_iter->Valid()); if (i == prefixes.size() - 1) { // last key ASSERT_TRUE(!index_iter->Valid()); } else { ASSERT_TRUE(index_iter->Valid()); // seek the first element in the block ASSERT_EQ(upper_bound[i], index_iter->key().ToString()); ASSERT_EQ("v", index_iter->value().ToString()); } } // find keys with prefix that don't match any of the existing prefixes. std::vector non_exist_prefixes = {"002", "004", "006", "008"}; for (const auto& prefix : non_exist_prefixes) { index_iter->Seek(InternalKey(prefix, 0, kTypeValue).Encode()); // regular_iter->Seek(prefix); ASSERT_OK(index_iter->status()); // Seek to non-existing prefixes should yield either invalid, or a // key with prefix greater than the target. if (index_iter->Valid()) { Slice ukey = ExtractUserKey(index_iter->key()); Slice ukey_prefix = options.prefix_extractor->Transform(ukey); ASSERT_TRUE(BytewiseComparator()->Compare(prefix, ukey_prefix) < 0); } } for (const auto& prefix : non_exist_prefixes) { index_iter->SeekForPrev(InternalKey(prefix, 0, kTypeValue).Encode()); // regular_iter->Seek(prefix); ASSERT_OK(index_iter->status()); // Seek to non-existing prefixes should yield either invalid, or a // key with prefix greater than the target. if (index_iter->Valid()) { Slice ukey = ExtractUserKey(index_iter->key()); Slice ukey_prefix = options.prefix_extractor->Transform(ukey); ASSERT_TRUE(BytewiseComparator()->Compare(prefix, ukey_prefix) > 0); } } { // Test reseek case. It should impact partitioned index more. ReadOptions ro; ro.total_order_seek = true; std::unique_ptr index_iter2(reader->NewIterator( ro, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); // Things to cover in partitioned index: // 1. Both of Seek() and SeekToLast() has optimization to prevent // rereek leaf index block if it remains to the same one, and // they reuse the same variable. // 2. When Next() or Prev() is called, the block moves, so the // optimization should kick in only with the current one. index_iter2->Seek(InternalKey("0055", 0, kTypeValue).Encode()); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0055", index_iter2->key().ToString().substr(0, 4)); index_iter2->SeekToLast(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4)); index_iter2->Seek(InternalKey("0055", 0, kTypeValue).Encode()); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0055", index_iter2->key().ToString().substr(0, 4)); index_iter2->SeekToLast(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4)); index_iter2->Prev(); ASSERT_TRUE(index_iter2->Valid()); index_iter2->Prev(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4)); index_iter2->Seek(InternalKey("0095", 0, kTypeValue).Encode()); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4)); index_iter2->Prev(); ASSERT_TRUE(index_iter2->Valid()); index_iter2->Prev(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4)); index_iter2->SeekToLast(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4)); index_iter2->Seek(InternalKey("0095", 0, kTypeValue).Encode()); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4)); index_iter2->Prev(); ASSERT_TRUE(index_iter2->Valid()); index_iter2->Prev(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4)); index_iter2->Seek(InternalKey("0075", 0, kTypeValue).Encode()); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4)); index_iter2->Next(); ASSERT_TRUE(index_iter2->Valid()); index_iter2->Next(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4)); index_iter2->SeekToLast(); ASSERT_TRUE(index_iter2->Valid()); ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4)); } c.ResetTableReader(); } TEST_P(BlockBasedTableTest, BinaryIndexTest) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.index_type = BlockBasedTableOptions::kBinarySearch; IndexTest(table_options); } TEST_P(BlockBasedTableTest, HashIndexTest) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.index_type = BlockBasedTableOptions::kHashSearch; IndexTest(table_options); } TEST_P(BlockBasedTableTest, PartitionIndexTest) { const int max_index_keys = 5; const int est_max_index_key_value_size = 32; const int est_max_index_size = max_index_keys * est_max_index_key_value_size; for (int i = 1; i <= est_max_index_size + 1; i++) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch; table_options.metadata_block_size = i; IndexTest(table_options); } } TEST_P(BlockBasedTableTest, IndexSeekOptimizationIncomplete) { std::unique_ptr comparator( new InternalKeyComparator(BytewiseComparator())); BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); Options options; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); TableConstructor c(BytewiseComparator()); AddInternalKey(&c, "pika"); std::vector keys; stl_wrappers::KVMap kvmap; c.Finish(options, ioptions, moptions, table_options, *comparator, &keys, &kvmap); ASSERT_EQ(1, keys.size()); auto reader = c.GetTableReader(); ReadOptions ropt; ropt.read_tier = ReadTier::kBlockCacheTier; std::unique_ptr iter(reader->NewIterator( ropt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); auto ikey = [](Slice user_key) { return InternalKey(user_key, 0, kTypeValue).Encode().ToString(); }; iter->Seek(ikey("pika")); ASSERT_FALSE(iter->Valid()); ASSERT_TRUE(iter->status().IsIncomplete()); // This used to crash at some point. iter->Seek(ikey("pika")); ASSERT_FALSE(iter->Valid()); ASSERT_TRUE(iter->status().IsIncomplete()); } TEST_P(BlockBasedTableTest, BinaryIndexWithFirstKey1) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.index_type = BlockBasedTableOptions::kBinarySearchWithFirstKey; IndexTest(table_options); } class CustomFlushBlockPolicy : public FlushBlockPolicyFactory, public FlushBlockPolicy { public: explicit CustomFlushBlockPolicy(std::vector keys_per_block) : keys_per_block_(keys_per_block) {} const char* Name() const override { return "CustomFlushBlockPolicy"; } FlushBlockPolicy* NewFlushBlockPolicy(const BlockBasedTableOptions&, const BlockBuilder&) const override { return new CustomFlushBlockPolicy(keys_per_block_); } bool Update(const Slice&, const Slice&) override { if (keys_in_current_block_ >= keys_per_block_.at(current_block_idx_)) { ++current_block_idx_; keys_in_current_block_ = 1; return true; } ++keys_in_current_block_; return false; } std::vector keys_per_block_; int current_block_idx_ = 0; int keys_in_current_block_ = 0; }; TEST_P(BlockBasedTableTest, BinaryIndexWithFirstKey2) { for (int use_first_key = 0; use_first_key < 2; ++use_first_key) { SCOPED_TRACE("use_first_key = " + std::to_string(use_first_key)); BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.index_type = use_first_key ? BlockBasedTableOptions::kBinarySearchWithFirstKey : BlockBasedTableOptions::kBinarySearch; table_options.block_cache = NewLRUCache(10000); // fits all blocks table_options.index_shortening = BlockBasedTableOptions::IndexShorteningMode::kNoShortening; table_options.flush_block_policy_factory = std::make_shared(std::vector{2, 1, 3, 2}); Options options; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); options.statistics = CreateDBStatistics(); Statistics* stats = options.statistics.get(); std::unique_ptr comparator( new InternalKeyComparator(BytewiseComparator())); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); TableConstructor c(BytewiseComparator()); // Block 0. AddInternalKey(&c, "aaaa", "v0"); AddInternalKey(&c, "aaac", "v1"); // Block 1. AddInternalKey(&c, "aaca", "v2"); // Block 2. AddInternalKey(&c, "caaa", "v3"); AddInternalKey(&c, "caac", "v4"); AddInternalKey(&c, "caae", "v5"); // Block 3. AddInternalKey(&c, "ccaa", "v6"); AddInternalKey(&c, "ccac", "v7"); // Write the file. std::vector keys; stl_wrappers::KVMap kvmap; c.Finish(options, ioptions, moptions, table_options, *comparator, &keys, &kvmap); ASSERT_EQ(8, keys.size()); auto reader = c.GetTableReader(); auto props = reader->GetTableProperties(); ASSERT_EQ(4u, props->num_data_blocks); ReadOptions read_options; std::unique_ptr iter(reader->NewIterator( read_options, /*prefix_extractor=*/nullptr, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized, /*compaction_readahead_size=*/0, /*allow_unprepared_value=*/true)); // Shouldn't have read data blocks before iterator is seeked. EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); auto ikey = [](Slice user_key) { return InternalKey(user_key, 0, kTypeValue).Encode().ToString(); }; // Seek to a key between blocks. If index contains first key, we shouldn't // read any data blocks until value is requested. iter->Seek(ikey("aaba")); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[2], iter->key().ToString()); EXPECT_EQ(use_first_key ? 0 : 1, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v2", iter->value().ToString()); EXPECT_EQ(1, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Seek to the middle of a block. The block should be read right away. iter->Seek(ikey("caab")); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[4], iter->key().ToString()); EXPECT_EQ(2, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v4", iter->value().ToString()); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Seek to just before the same block and don't access value. // The iterator should keep pinning the block contents. iter->Seek(ikey("baaa")); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[3], iter->key().ToString()); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Seek to the same block again to check that the block is still pinned. iter->Seek(ikey("caae")); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[5], iter->key().ToString()); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v5", iter->value().ToString()); EXPECT_EQ(2, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Step forward and fall through to the next block. Don't access value. iter->Next(); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[6], iter->key().ToString()); EXPECT_EQ(use_first_key ? 2 : 3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Step forward again. Block should be read. iter->Next(); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[7], iter->key().ToString()); EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v7", iter->value().ToString()); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Step forward and reach the end. iter->Next(); EXPECT_FALSE(iter->Valid()); EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Seek to a single-key block and step forward without accessing value. iter->Seek(ikey("aaca")); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[2], iter->key().ToString()); EXPECT_EQ(use_first_key ? 0 : 1, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); iter->Next(); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[3], iter->key().ToString()); EXPECT_EQ(use_first_key ? 1 : 2, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v3", iter->value().ToString()); EXPECT_EQ(2, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); // Seek between blocks and step back without accessing value. iter->Seek(ikey("aaca")); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[2], iter->key().ToString()); EXPECT_EQ(use_first_key ? 2 : 3, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); iter->Prev(); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[1], iter->key().ToString()); EXPECT_EQ(use_first_key ? 2 : 3, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // All blocks are in cache now, there'll be no more misses ever. EXPECT_EQ(4, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v1", iter->value().ToString()); // Next into the next block again. iter->Next(); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[2], iter->key().ToString()); EXPECT_EQ(use_first_key ? 2 : 4, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Seek to first and step back without accessing value. iter->SeekToFirst(); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[0], iter->key().ToString()); EXPECT_EQ(use_first_key ? 2 : 5, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); iter->Prev(); EXPECT_FALSE(iter->Valid()); EXPECT_EQ(use_first_key ? 2 : 5, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); // Do some SeekForPrev() and SeekToLast() just to cover all methods. iter->SeekForPrev(ikey("caad")); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[4], iter->key().ToString()); EXPECT_EQ(use_first_key ? 3 : 6, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v4", iter->value().ToString()); EXPECT_EQ(use_first_key ? 3 : 6, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); iter->SeekToLast(); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(keys[7], iter->key().ToString()); EXPECT_EQ(use_first_key ? 4 : 7, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("v7", iter->value().ToString()); EXPECT_EQ(use_first_key ? 4 : 7, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); EXPECT_EQ(4, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); c.ResetTableReader(); } } TEST_P(BlockBasedTableTest, BinaryIndexWithFirstKeyGlobalSeqno) { BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.index_type = BlockBasedTableOptions::kBinarySearchWithFirstKey; table_options.block_cache = NewLRUCache(10000); Options options; options.statistics = CreateDBStatistics(); Statistics* stats = options.statistics.get(); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); std::unique_ptr comparator( new InternalKeyComparator(BytewiseComparator())); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); TableConstructor c(BytewiseComparator(), /* convert_to_internal_key */ false, /* level */ -1, /* largest_seqno */ 42); c.Add(InternalKey("b", 0, kTypeValue).Encode().ToString(), "x"); c.Add(InternalKey("c", 0, kTypeValue).Encode().ToString(), "y"); std::vector keys; stl_wrappers::KVMap kvmap; c.Finish(options, ioptions, moptions, table_options, *comparator, &keys, &kvmap); ASSERT_EQ(2, keys.size()); auto reader = c.GetTableReader(); auto props = reader->GetTableProperties(); ASSERT_EQ(1u, props->num_data_blocks); ReadOptions read_options; std::unique_ptr iter(reader->NewIterator( read_options, /*prefix_extractor=*/nullptr, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized, /*compaction_readahead_size=*/0, /*allow_unprepared_value=*/true)); iter->Seek(InternalKey("a", 0, kTypeValue).Encode().ToString()); ASSERT_TRUE(iter->Valid()); EXPECT_EQ(InternalKey("b", 42, kTypeValue).Encode().ToString(), iter->key().ToString()); EXPECT_NE(keys[0], iter->key().ToString()); // Key should have been served from index, without reading data blocks. EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); ASSERT_TRUE(iter->PrepareValue()); EXPECT_EQ("x", iter->value().ToString()); EXPECT_EQ(1, stats->getTickerCount(BLOCK_CACHE_DATA_MISS)); EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT)); EXPECT_EQ(InternalKey("b", 42, kTypeValue).Encode().ToString(), iter->key().ToString()); c.ResetTableReader(); } // It's very hard to figure out the index block size of a block accurately. // To make sure we get the index size, we just make sure as key number // grows, the filter block size also grows. TEST_P(BlockBasedTableTest, IndexSizeStat) { uint64_t last_index_size = 0; // we need to use random keys since the pure human readable texts // may be well compressed, resulting insignifcant change of index // block size. Random rnd(test::RandomSeed()); std::vector keys; for (int i = 0; i < 100; ++i) { keys.push_back(rnd.RandomString(10000)); } // Each time we load one more key to the table. the table index block // size is expected to be larger than last time's. for (size_t i = 1; i < keys.size(); ++i) { TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); for (size_t j = 0; j < i; ++j) { c.Add(keys[j], "val"); } std::vector ks; stl_wrappers::KVMap kvmap; Options options; options.compression = kNoCompression; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_restart_interval = 1; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &ks, &kvmap); auto index_size = c.GetTableReader()->GetTableProperties()->index_size; ASSERT_GT(index_size, last_index_size); last_index_size = index_size; c.ResetTableReader(); } } TEST_P(BlockBasedTableTest, NumBlockStat) { Random rnd(test::RandomSeed()); TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); Options options; options.compression = kNoCompression; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_restart_interval = 1; table_options.block_size = 1000; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); for (int i = 0; i < 10; ++i) { // the key/val are slightly smaller than block size, so that each block // holds roughly one key/value pair. c.Add(rnd.RandomString(900), "val"); } std::vector ks; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &ks, &kvmap); ASSERT_EQ(kvmap.size(), c.GetTableReader()->GetTableProperties()->num_data_blocks); c.ResetTableReader(); } TEST_P(BlockBasedTableTest, TracingGetTest) { TableConstructor c(BytewiseComparator()); Options options; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); options.create_if_missing = true; table_options.block_cache = NewLRUCache(1024 * 1024, 0); table_options.cache_index_and_filter_blocks = true; table_options.filter_policy.reset(NewBloomFilterPolicy(10)); options.table_factory.reset(new BlockBasedTableFactory(table_options)); SetupTracingTest(&c); std::vector keys; stl_wrappers::KVMap kvmap; ImmutableOptions ioptions(options); MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); std::string user_key = "k01"; InternalKey internal_key(user_key, 0, kTypeValue); std::string encoded_key = internal_key.Encode().ToString(); for (uint32_t i = 1; i <= 2; i++) { PinnableSlice value; GetContext get_context(options.comparator, nullptr, nullptr, nullptr, GetContext::kNotFound, user_key, &value, nullptr, nullptr, nullptr, true, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, /*tracing_get_id=*/i); get_perf_context()->Reset(); ASSERT_OK(c.GetTableReader()->Get(ReadOptions(), encoded_key, &get_context, moptions.prefix_extractor.get())); ASSERT_EQ(get_context.State(), GetContext::kFound); ASSERT_EQ(value.ToString(), kDummyValue); } // Verify traces. std::vector expected_records; // The first two records should be prefetching index and filter blocks. BlockCacheTraceRecord record; record.block_type = TraceType::kBlockTraceIndexBlock; record.caller = TableReaderCaller::kPrefetch; record.is_cache_hit = false; record.no_insert = false; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceFilterBlock; expected_records.push_back(record); // Then we should have three records for one index, one filter, and one data // block access. record.get_id = 1; record.block_type = TraceType::kBlockTraceFilterBlock; record.caller = TableReaderCaller::kUserGet; record.get_from_user_specified_snapshot = false; record.referenced_key = encoded_key; record.referenced_key_exist_in_block = true; record.is_cache_hit = true; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceIndexBlock; expected_records.push_back(record); record.is_cache_hit = false; record.block_type = TraceType::kBlockTraceDataBlock; expected_records.push_back(record); // The second get should all observe cache hits. record.is_cache_hit = true; record.get_id = 2; record.block_type = TraceType::kBlockTraceFilterBlock; record.caller = TableReaderCaller::kUserGet; record.get_from_user_specified_snapshot = false; record.referenced_key = encoded_key; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceIndexBlock; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceDataBlock; expected_records.push_back(record); VerifyBlockAccessTrace(&c, expected_records); c.ResetTableReader(); } TEST_P(BlockBasedTableTest, TracingApproximateOffsetOfTest) { TableConstructor c(BytewiseComparator()); Options options; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); options.create_if_missing = true; table_options.block_cache = NewLRUCache(1024 * 1024, 0); table_options.cache_index_and_filter_blocks = true; table_options.filter_policy.reset(NewBloomFilterPolicy(10, true)); options.table_factory.reset(new BlockBasedTableFactory(table_options)); SetupTracingTest(&c); std::vector keys; stl_wrappers::KVMap kvmap; ImmutableOptions ioptions(options); MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); for (uint32_t i = 1; i <= 2; i++) { std::string user_key = "k01"; InternalKey internal_key(user_key, 0, kTypeValue); std::string encoded_key = internal_key.Encode().ToString(); c.GetTableReader()->ApproximateOffsetOf( encoded_key, TableReaderCaller::kUserApproximateSize); } // Verify traces. std::vector expected_records; // The first two records should be prefetching index and filter blocks. BlockCacheTraceRecord record; record.block_type = TraceType::kBlockTraceIndexBlock; record.caller = TableReaderCaller::kPrefetch; record.is_cache_hit = false; record.no_insert = false; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceFilterBlock; expected_records.push_back(record); // Then we should have two records for only index blocks. record.block_type = TraceType::kBlockTraceIndexBlock; record.caller = TableReaderCaller::kUserApproximateSize; record.is_cache_hit = true; expected_records.push_back(record); expected_records.push_back(record); VerifyBlockAccessTrace(&c, expected_records); c.ResetTableReader(); } TEST_P(BlockBasedTableTest, TracingIterator) { TableConstructor c(BytewiseComparator()); Options options; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); options.create_if_missing = true; table_options.block_cache = NewLRUCache(1024 * 1024, 0); table_options.cache_index_and_filter_blocks = true; table_options.filter_policy.reset(NewBloomFilterPolicy(10, true)); options.table_factory.reset(new BlockBasedTableFactory(table_options)); SetupTracingTest(&c); std::vector keys; stl_wrappers::KVMap kvmap; ImmutableOptions ioptions(options); MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); for (uint32_t i = 1; i <= 2; i++) { ReadOptions read_options; std::unique_ptr iter(c.GetTableReader()->NewIterator( read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUserIterator)); iter->SeekToFirst(); while (iter->Valid()) { iter->key(); iter->value(); iter->Next(); } ASSERT_OK(iter->status()); iter.reset(); } // Verify traces. std::vector expected_records; // The first two records should be prefetching index and filter blocks. BlockCacheTraceRecord record; record.block_type = TraceType::kBlockTraceIndexBlock; record.caller = TableReaderCaller::kPrefetch; record.is_cache_hit = false; record.no_insert = false; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceFilterBlock; expected_records.push_back(record); // Then we should have three records for index and two data block access. record.block_type = TraceType::kBlockTraceIndexBlock; record.caller = TableReaderCaller::kUserIterator; record.is_cache_hit = true; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceDataBlock; record.is_cache_hit = false; expected_records.push_back(record); expected_records.push_back(record); // When we iterate this file for the second time, we should observe all cache // hits. record.block_type = TraceType::kBlockTraceIndexBlock; record.is_cache_hit = true; expected_records.push_back(record); record.block_type = TraceType::kBlockTraceDataBlock; expected_records.push_back(record); expected_records.push_back(record); VerifyBlockAccessTrace(&c, expected_records); c.ResetTableReader(); } // A simple tool that takes the snapshot of block cache statistics. class BlockCachePropertiesSnapshot { public: explicit BlockCachePropertiesSnapshot(Statistics* statistics) { block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_MISS); block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_HIT); index_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_INDEX_MISS); index_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_INDEX_HIT); data_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_DATA_MISS); data_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_DATA_HIT); filter_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_FILTER_MISS); filter_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_FILTER_HIT); block_cache_bytes_read = statistics->getTickerCount(BLOCK_CACHE_BYTES_READ); block_cache_bytes_write = statistics->getTickerCount(BLOCK_CACHE_BYTES_WRITE); } void AssertIndexBlockStat(int64_t expected_index_block_cache_miss, int64_t expected_index_block_cache_hit) { ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss); ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit); } void AssertFilterBlockStat(int64_t expected_filter_block_cache_miss, int64_t expected_filter_block_cache_hit) { ASSERT_EQ(expected_filter_block_cache_miss, filter_block_cache_miss); ASSERT_EQ(expected_filter_block_cache_hit, filter_block_cache_hit); } // Check if the fetched props matches the expected ones. // TODO(kailiu) Use this only when you disabled filter policy! void AssertEqual(int64_t expected_index_block_cache_miss, int64_t expected_index_block_cache_hit, int64_t expected_data_block_cache_miss, int64_t expected_data_block_cache_hit) const { ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss); ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit); ASSERT_EQ(expected_data_block_cache_miss, data_block_cache_miss); ASSERT_EQ(expected_data_block_cache_hit, data_block_cache_hit); ASSERT_EQ(expected_index_block_cache_miss + expected_data_block_cache_miss, block_cache_miss); ASSERT_EQ(expected_index_block_cache_hit + expected_data_block_cache_hit, block_cache_hit); } int64_t GetCacheBytesRead() { return block_cache_bytes_read; } int64_t GetCacheBytesWrite() { return block_cache_bytes_write; } private: int64_t block_cache_miss = 0; int64_t block_cache_hit = 0; int64_t index_block_cache_miss = 0; int64_t index_block_cache_hit = 0; int64_t data_block_cache_miss = 0; int64_t data_block_cache_hit = 0; int64_t filter_block_cache_miss = 0; int64_t filter_block_cache_hit = 0; int64_t block_cache_bytes_read = 0; int64_t block_cache_bytes_write = 0; }; // Make sure, by default, index/filter blocks were pre-loaded (meaning we won't // use block cache to store them). TEST_P(BlockBasedTableTest, BlockCacheDisabledTest) { Options options; options.create_if_missing = true; options.statistics = CreateDBStatistics(); BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_cache = NewLRUCache(1024, 4); table_options.filter_policy.reset(NewBloomFilterPolicy(10)); options.table_factory.reset(new BlockBasedTableFactory(table_options)); std::vector keys; stl_wrappers::KVMap kvmap; TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("key", "value"); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); // preloading filter/index blocks is enabled. auto reader = dynamic_cast(c.GetTableReader()); ASSERT_FALSE(reader->TEST_FilterBlockInCache()); ASSERT_FALSE(reader->TEST_IndexBlockInCache()); { // nothing happens in the beginning BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertIndexBlockStat(0, 0); props.AssertFilterBlockStat(0, 0); } { GetContext get_context(options.comparator, nullptr, nullptr, nullptr, GetContext::kNotFound, Slice(), nullptr, nullptr, nullptr, nullptr, true, nullptr, nullptr); // a hack that just to trigger BlockBasedTable::GetFilter. ASSERT_OK(reader->Get(ReadOptions(), "non-exist-key", &get_context, moptions.prefix_extractor.get())); BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertIndexBlockStat(0, 0); props.AssertFilterBlockStat(0, 0); } } // Due to the difficulities of the intersaction between statistics, this test // only tests the case when "index block is put to block cache" TEST_P(BlockBasedTableTest, FilterBlockInBlockCache) { // -- Table construction Options options; options.create_if_missing = true; options.statistics = CreateDBStatistics(); // Enable the cache for index/filter blocks BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); LRUCacheOptions co; co.capacity = 2048; co.num_shard_bits = 2; co.metadata_charge_policy = kDontChargeCacheMetadata; table_options.block_cache = NewLRUCache(co); table_options.cache_index_and_filter_blocks = true; options.table_factory.reset(new BlockBasedTableFactory(table_options)); std::vector keys; stl_wrappers::KVMap kvmap; TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("key", "value"); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); // preloading filter/index blocks is prohibited. auto* reader = dynamic_cast(c.GetTableReader()); ASSERT_FALSE(reader->TEST_FilterBlockInCache()); ASSERT_TRUE(reader->TEST_IndexBlockInCache()); // -- PART 1: Open with regular block cache. // Since block_cache is disabled, no cache activities will be involved. std::unique_ptr iter; int64_t last_cache_bytes_read = 0; // At first, no block will be accessed. { BlockCachePropertiesSnapshot props(options.statistics.get()); // index will be added to block cache. props.AssertEqual(1, // index block miss 0, 0, 0); ASSERT_EQ(props.GetCacheBytesRead(), 0); ASSERT_EQ(props.GetCacheBytesWrite(), static_cast(table_options.block_cache->GetUsage())); last_cache_bytes_read = props.GetCacheBytesRead(); } // Only index block will be accessed { iter.reset(c.NewIterator(moptions.prefix_extractor.get())); BlockCachePropertiesSnapshot props(options.statistics.get()); // NOTE: to help better highlight the "detla" of each ticker, I use // + to indicate the increment of changed // value; other numbers remain the same. props.AssertEqual(1, 0 + 1, // index block hit 0, 0); // Cache hit, bytes read from cache should increase ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read); ASSERT_EQ(props.GetCacheBytesWrite(), static_cast(table_options.block_cache->GetUsage())); last_cache_bytes_read = props.GetCacheBytesRead(); } // Only data block will be accessed { iter->SeekToFirst(); ASSERT_OK(iter->status()); BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertEqual(1, 1, 0 + 1, // data block miss 0); // Cache miss, Bytes read from cache should not change ASSERT_EQ(props.GetCacheBytesRead(), last_cache_bytes_read); ASSERT_EQ(props.GetCacheBytesWrite(), static_cast(table_options.block_cache->GetUsage())); last_cache_bytes_read = props.GetCacheBytesRead(); } // Data block will be in cache { iter.reset(c.NewIterator(moptions.prefix_extractor.get())); iter->SeekToFirst(); ASSERT_OK(iter->status()); BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertEqual(1, 1 + 1, /* index block hit */ 1, 0 + 1 /* data block hit */); // Cache hit, bytes read from cache should increase ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read); ASSERT_EQ(props.GetCacheBytesWrite(), static_cast(table_options.block_cache->GetUsage())); } // release the iterator so that the block cache can reset correctly. iter.reset(); c.ResetTableReader(); // -- PART 2: Open with very small block cache // In this test, no block will ever get hit since the block cache is // too small to fit even one entry. table_options.block_cache = NewLRUCache(1, 4); options.statistics = CreateDBStatistics(); options.table_factory.reset(new BlockBasedTableFactory(table_options)); const ImmutableOptions ioptions2(options); const MutableCFOptions moptions2(options); ASSERT_OK(c.Reopen(ioptions2, moptions2)); { BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertEqual(1, // index block miss 0, 0, 0); // Cache miss, Bytes read from cache should not change ASSERT_EQ(props.GetCacheBytesRead(), 0); } { // Both index and data block get accessed. // It first cache index block then data block. But since the cache size // is only 1, index block will be purged after data block is inserted. iter.reset(c.NewIterator(moptions2.prefix_extractor.get())); BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertEqual(1 + 1, // index block miss 0, 0, // data block miss 0); // Cache hit, bytes read from cache should increase ASSERT_EQ(props.GetCacheBytesRead(), 0); } { // SeekToFirst() accesses data block. With similar reason, we expect data // block's cache miss. iter->SeekToFirst(); ASSERT_OK(iter->status()); BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertEqual(2, 0, 0 + 1, // data block miss 0); // Cache miss, Bytes read from cache should not change ASSERT_EQ(props.GetCacheBytesRead(), 0); } iter.reset(); c.ResetTableReader(); // -- PART 3: Open table with bloom filter enabled but not in SST file table_options.block_cache = NewLRUCache(4096, 4); table_options.cache_index_and_filter_blocks = false; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); TableConstructor c3(BytewiseComparator()); std::string user_key = "k01"; InternalKey internal_key(user_key, 0, kTypeValue); c3.Add(internal_key.Encode().ToString(), "hello"); ImmutableOptions ioptions3(options); MutableCFOptions moptions3(options); // Generate table without filter policy c3.Finish(options, ioptions3, moptions3, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); c3.ResetTableReader(); // Open table with filter policy table_options.filter_policy.reset(NewBloomFilterPolicy(1)); options.table_factory.reset(new BlockBasedTableFactory(table_options)); options.statistics = CreateDBStatistics(); ImmutableOptions ioptions4(options); MutableCFOptions moptions4(options); ASSERT_OK(c3.Reopen(ioptions4, moptions4)); reader = dynamic_cast(c3.GetTableReader()); ASSERT_FALSE(reader->TEST_FilterBlockInCache()); PinnableSlice value; GetContext get_context(options.comparator, nullptr, nullptr, nullptr, GetContext::kNotFound, user_key, &value, nullptr, nullptr, nullptr, true, nullptr, nullptr); ASSERT_OK(reader->Get(ReadOptions(), internal_key.Encode(), &get_context, moptions4.prefix_extractor.get())); ASSERT_STREQ(value.data(), "hello"); BlockCachePropertiesSnapshot props(options.statistics.get()); props.AssertFilterBlockStat(0, 0); c3.ResetTableReader(); } void ValidateBlockSizeDeviation(int value, int expected) { BlockBasedTableOptions table_options; table_options.block_size_deviation = value; BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options); const BlockBasedTableOptions* normalized_table_options = factory->GetOptions(); ASSERT_EQ(normalized_table_options->block_size_deviation, expected); delete factory; } void ValidateBlockRestartInterval(int value, int expected) { BlockBasedTableOptions table_options; table_options.block_restart_interval = value; BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options); const BlockBasedTableOptions* normalized_table_options = factory->GetOptions(); ASSERT_EQ(normalized_table_options->block_restart_interval, expected); delete factory; } TEST_P(BlockBasedTableTest, InvalidOptions) { // invalid values for block_size_deviation (<0 or >100) are silently set to 0 ValidateBlockSizeDeviation(-10, 0); ValidateBlockSizeDeviation(-1, 0); ValidateBlockSizeDeviation(0, 0); ValidateBlockSizeDeviation(1, 1); ValidateBlockSizeDeviation(99, 99); ValidateBlockSizeDeviation(100, 100); ValidateBlockSizeDeviation(101, 0); ValidateBlockSizeDeviation(1000, 0); // invalid values for block_restart_interval (<1) are silently set to 1 ValidateBlockRestartInterval(-10, 1); ValidateBlockRestartInterval(-1, 1); ValidateBlockRestartInterval(0, 1); ValidateBlockRestartInterval(1, 1); ValidateBlockRestartInterval(2, 2); ValidateBlockRestartInterval(1000, 1000); } TEST_P(BlockBasedTableTest, BlockReadCountTest) { // bloom_filter_type = 1 -- full filter using use_block_based_builder=false // bloom_filter_type = 2 -- full filter using use_block_based_builder=true // because of API change to hide block-based filter for (int bloom_filter_type = 1; bloom_filter_type <= 2; ++bloom_filter_type) { for (int index_and_filter_in_cache = 0; index_and_filter_in_cache < 2; ++index_and_filter_in_cache) { Options options; options.create_if_missing = true; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_cache = NewLRUCache(1, 0); table_options.cache_index_and_filter_blocks = index_and_filter_in_cache; table_options.filter_policy.reset( NewBloomFilterPolicy(10, bloom_filter_type == 2)); options.table_factory.reset(new BlockBasedTableFactory(table_options)); std::vector keys; stl_wrappers::KVMap kvmap; TableConstructor c(BytewiseComparator()); std::string user_key = "k04"; InternalKey internal_key(user_key, 0, kTypeValue); std::string encoded_key = internal_key.Encode().ToString(); c.Add(encoded_key, "hello"); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); // Generate table with filter policy c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); auto reader = c.GetTableReader(); PinnableSlice value; { GetContext get_context(options.comparator, nullptr, nullptr, nullptr, GetContext::kNotFound, user_key, &value, nullptr, nullptr, nullptr, true, nullptr, nullptr); get_perf_context()->Reset(); ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context, moptions.prefix_extractor.get())); if (index_and_filter_in_cache) { // data, index and filter block ASSERT_EQ(get_perf_context()->block_read_count, 3); ASSERT_EQ(get_perf_context()->index_block_read_count, 1); ASSERT_EQ(get_perf_context()->filter_block_read_count, 1); } else { // just the data block ASSERT_EQ(get_perf_context()->block_read_count, 1); } ASSERT_EQ(get_context.State(), GetContext::kFound); ASSERT_STREQ(value.data(), "hello"); } // Get non-existing key user_key = "does-not-exist"; internal_key = InternalKey(user_key, 0, kTypeValue); encoded_key = internal_key.Encode().ToString(); value.Reset(); { GetContext get_context(options.comparator, nullptr, nullptr, nullptr, GetContext::kNotFound, user_key, &value, nullptr, nullptr, nullptr, true, nullptr, nullptr); get_perf_context()->Reset(); ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context, moptions.prefix_extractor.get())); ASSERT_EQ(get_context.State(), GetContext::kNotFound); } if (index_and_filter_in_cache) { if (bloom_filter_type == 0) { // with block-based, we read index and then the filter ASSERT_EQ(get_perf_context()->block_read_count, 2); ASSERT_EQ(get_perf_context()->index_block_read_count, 1); ASSERT_EQ(get_perf_context()->filter_block_read_count, 1); } else { // with full-filter, we read filter first and then we stop ASSERT_EQ(get_perf_context()->block_read_count, 1); ASSERT_EQ(get_perf_context()->filter_block_read_count, 1); } } else { // filter is already in memory and it figures out that the key doesn't // exist ASSERT_EQ(get_perf_context()->block_read_count, 0); } } } } TEST_P(BlockBasedTableTest, BlockCacheLeak) { // Check that when we reopen a table we don't lose access to blocks already // in the cache. This test checks whether the Table actually makes use of the // unique ID from the file. Options opt; std::unique_ptr ikc; ikc.reset(new test::PlainInternalKeyComparator(opt.comparator)); opt.compression = kNoCompression; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.block_size = 1024; // big enough so we don't ever lose cached values. table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4); opt.table_factory.reset(NewBlockBasedTableFactory(table_options)); TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", std::string(10000, 'x')); c.Add("k04", std::string(200000, 'x')); c.Add("k05", std::string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", std::string(100000, 'x')); std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(opt); const MutableCFOptions moptions(opt); c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap); std::unique_ptr iter( c.NewIterator(moptions.prefix_extractor.get())); iter->SeekToFirst(); while (iter->Valid()) { iter->key(); iter->value(); iter->Next(); } ASSERT_OK(iter->status()); iter.reset(); const ImmutableOptions ioptions1(opt); const MutableCFOptions moptions1(opt); ASSERT_OK(c.Reopen(ioptions1, moptions1)); auto table_reader = dynamic_cast(c.GetTableReader()); for (const std::string& key : keys) { InternalKey ikey(key, kMaxSequenceNumber, kTypeValue); ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode())); } c.ResetTableReader(); // rerun with different block cache table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4); opt.table_factory.reset(NewBlockBasedTableFactory(table_options)); const ImmutableOptions ioptions2(opt); const MutableCFOptions moptions2(opt); ASSERT_OK(c.Reopen(ioptions2, moptions2)); table_reader = dynamic_cast(c.GetTableReader()); for (const std::string& key : keys) { InternalKey ikey(key, kMaxSequenceNumber, kTypeValue); ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode())); } c.ResetTableReader(); } TEST_P(BlockBasedTableTest, MemoryAllocator) { auto default_memory_allocator = std::make_shared(); auto custom_memory_allocator = std::make_shared(default_memory_allocator); { Options opt; std::unique_ptr ikc; ikc.reset(new test::PlainInternalKeyComparator(opt.comparator)); opt.compression = kNoCompression; BlockBasedTableOptions table_options; table_options.block_size = 1024; LRUCacheOptions lruOptions; lruOptions.memory_allocator = custom_memory_allocator; lruOptions.capacity = 16 * 1024 * 1024; lruOptions.num_shard_bits = 4; table_options.block_cache = NewLRUCache(std::move(lruOptions)); opt.table_factory.reset(NewBlockBasedTableFactory(table_options)); TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", std::string(10000, 'x')); c.Add("k04", std::string(200000, 'x')); c.Add("k05", std::string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", std::string(100000, 'x')); std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(opt); const MutableCFOptions moptions(opt); c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap); std::unique_ptr iter( c.NewIterator(moptions.prefix_extractor.get())); iter->SeekToFirst(); while (iter->Valid()) { iter->key(); iter->value(); iter->Next(); } ASSERT_OK(iter->status()); } // out of scope, block cache should have been deleted, all allocations // deallocated EXPECT_EQ(custom_memory_allocator->GetNumAllocations(), custom_memory_allocator->GetNumDeallocations()); // make sure that allocations actually happened through the cache allocator EXPECT_GT(custom_memory_allocator->GetNumAllocations(), 0); } // Test the file checksum of block based table TEST_P(BlockBasedTableTest, NoFileChecksum) { Options options; ImmutableOptions ioptions(options); MutableCFOptions moptions(options); BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); std::unique_ptr comparator( new InternalKeyComparator(BytewiseComparator())); int level = 0; IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::string column_family_name; FileChecksumTestHelper f(true); f.CreateWritableFile(); std::unique_ptr builder; builder.reset(ioptions.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, *comparator, &int_tbl_prop_collector_factories, options.compression, options.compression_opts, kUnknownColumnFamily, column_family_name, level), f.GetFileWriter())); ASSERT_OK(f.ResetTableBuilder(std::move(builder))); f.AddKVtoKVMap(1000); ASSERT_OK(f.WriteKVAndFlushTable()); ASSERT_STREQ(f.GetFileChecksumFuncName(), kUnknownFileChecksumFuncName); ASSERT_STREQ(f.GetFileChecksum().c_str(), kUnknownFileChecksum); } TEST_P(BlockBasedTableTest, Crc32cFileChecksum) { FileChecksumGenCrc32cFactory* file_checksum_gen_factory = new FileChecksumGenCrc32cFactory(); Options options; options.file_checksum_gen_factory.reset(file_checksum_gen_factory); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); std::unique_ptr comparator( new InternalKeyComparator(BytewiseComparator())); int level = 0; IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::string column_family_name; FileChecksumGenContext gen_context; gen_context.file_name = "db/tmp"; std::unique_ptr checksum_crc32c_gen1 = options.file_checksum_gen_factory->CreateFileChecksumGenerator( gen_context); FileChecksumTestHelper f(true); f.CreateWritableFile(); f.SetFileChecksumGenerator(checksum_crc32c_gen1.release()); std::unique_ptr builder; builder.reset(ioptions.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, *comparator, &int_tbl_prop_collector_factories, options.compression, options.compression_opts, kUnknownColumnFamily, column_family_name, level), f.GetFileWriter())); ASSERT_OK(f.ResetTableBuilder(std::move(builder))); f.AddKVtoKVMap(1000); ASSERT_OK(f.WriteKVAndFlushTable()); ASSERT_STREQ(f.GetFileChecksumFuncName(), "FileChecksumCrc32c"); std::unique_ptr checksum_crc32c_gen2 = options.file_checksum_gen_factory->CreateFileChecksumGenerator( gen_context); std::string checksum; ASSERT_OK(f.CalculateFileChecksum(checksum_crc32c_gen2.get(), &checksum)); ASSERT_STREQ(f.GetFileChecksum().c_str(), checksum.c_str()); // Unit test the generator itself for schema stability std::unique_ptr checksum_crc32c_gen3 = options.file_checksum_gen_factory->CreateFileChecksumGenerator( gen_context); const char data[] = "here is some data"; checksum_crc32c_gen3->Update(data, sizeof(data)); checksum_crc32c_gen3->Finalize(); checksum = checksum_crc32c_gen3->GetChecksum(); ASSERT_STREQ(checksum.c_str(), "\345\245\277\110"); } TEST_F(PlainTableTest, BasicPlainTableProperties) { PlainTableOptions plain_table_options; plain_table_options.user_key_len = 8; plain_table_options.bloom_bits_per_key = 8; plain_table_options.hash_table_ratio = 0; PlainTableFactory factory(plain_table_options); std::unique_ptr sink(new test::StringSink()); std::unique_ptr file_writer(new WritableFileWriter( std::move(sink), "" /* don't care */, FileOptions())); Options options; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::string column_family_name; int unknown_level = -1; std::unique_ptr builder(factory.NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kNoCompression, CompressionOptions(), kUnknownColumnFamily, column_family_name, unknown_level), file_writer.get())); for (char c = 'a'; c <= 'z'; ++c) { std::string key(8, c); key.append("\1 "); // PlainTable expects internal key structure std::string value(28, c + 42); builder->Add(key, value); } ASSERT_OK(builder->Finish()); ASSERT_OK(file_writer->Flush()); test::StringSink* ss = static_cast(file_writer->writable_file()); std::unique_ptr source( new test::StringSource(ss->contents(), 72242, true)); std::unique_ptr file_reader( new RandomAccessFileReader(std::move(source), "test")); std::unique_ptr props; auto s = ReadTableProperties(file_reader.get(), ss->contents().size(), kPlainTableMagicNumber, ioptions, &props); ASSERT_OK(s); ASSERT_EQ(0ul, props->index_size); ASSERT_EQ(0ul, props->filter_size); ASSERT_EQ(16ul * 26, props->raw_key_size); ASSERT_EQ(28ul * 26, props->raw_value_size); ASSERT_EQ(26ul, props->num_entries); ASSERT_EQ(1ul, props->num_data_blocks); } TEST_F(PlainTableTest, NoFileChecksum) { PlainTableOptions plain_table_options; plain_table_options.user_key_len = 20; plain_table_options.bloom_bits_per_key = 8; plain_table_options.hash_table_ratio = 0; PlainTableFactory factory(plain_table_options); Options options; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::string column_family_name; int unknown_level = -1; FileChecksumTestHelper f(true); f.CreateWritableFile(); std::unique_ptr builder(factory.NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kNoCompression, CompressionOptions(), kUnknownColumnFamily, column_family_name, unknown_level), f.GetFileWriter())); ASSERT_OK(f.ResetTableBuilder(std::move(builder))); f.AddKVtoKVMap(1000); ASSERT_OK(f.WriteKVAndFlushTable()); ASSERT_STREQ(f.GetFileChecksumFuncName(), kUnknownFileChecksumFuncName); EXPECT_EQ(f.GetFileChecksum(), kUnknownFileChecksum); } TEST_F(PlainTableTest, Crc32cFileChecksum) { PlainTableOptions plain_table_options; plain_table_options.user_key_len = 20; plain_table_options.bloom_bits_per_key = 8; plain_table_options.hash_table_ratio = 0; PlainTableFactory factory(plain_table_options); FileChecksumGenCrc32cFactory* file_checksum_gen_factory = new FileChecksumGenCrc32cFactory(); Options options; options.file_checksum_gen_factory.reset(file_checksum_gen_factory); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::string column_family_name; int unknown_level = -1; FileChecksumGenContext gen_context; gen_context.file_name = "db/tmp"; std::unique_ptr checksum_crc32c_gen1 = options.file_checksum_gen_factory->CreateFileChecksumGenerator( gen_context); FileChecksumTestHelper f(true); f.CreateWritableFile(); f.SetFileChecksumGenerator(checksum_crc32c_gen1.release()); std::unique_ptr builder(factory.NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kNoCompression, CompressionOptions(), kUnknownColumnFamily, column_family_name, unknown_level), f.GetFileWriter())); ASSERT_OK(f.ResetTableBuilder(std::move(builder))); f.AddKVtoKVMap(1000); ASSERT_OK(f.WriteKVAndFlushTable()); ASSERT_STREQ(f.GetFileChecksumFuncName(), "FileChecksumCrc32c"); std::unique_ptr checksum_crc32c_gen2 = options.file_checksum_gen_factory->CreateFileChecksumGenerator( gen_context); std::string checksum; ASSERT_OK(f.CalculateFileChecksum(checksum_crc32c_gen2.get(), &checksum)); EXPECT_STREQ(f.GetFileChecksum().c_str(), checksum.c_str()); } TEST_F(GeneralTableTest, ApproximateOffsetOfPlain) { TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", std::string(10000, 'x')); c.Add("k04", std::string(200000, 'x')); c.Add("k05", std::string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", std::string(100000, 'x')); std::vector keys; stl_wrappers::KVMap kvmap; Options options; options.db_host_id = ""; test::PlainInternalKeyComparator internal_comparator(options.comparator); options.compression = kNoCompression; BlockBasedTableOptions table_options; table_options.block_size = 1024; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, internal_comparator, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000)); // k04 and k05 will be in two consecutive blocks, the index is // an arbitrary slice between k04 and k05, either before or after k04a ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 10000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 612000)); c.ResetTableReader(); } static void DoCompressionTest(CompressionType comp) { Random rnd(301); TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); std::string tmp; c.Add("k01", "hello"); c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); c.Add("k03", "hello3"); c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); std::vector keys; stl_wrappers::KVMap kvmap; Options options; test::PlainInternalKeyComparator ikc(options.comparator); options.compression = comp; BlockBasedTableOptions table_options; table_options.block_size = 1024; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, ikc, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3525)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3525)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 7075)); c.ResetTableReader(); } TEST_F(GeneralTableTest, ApproximateOffsetOfCompressed) { std::vector compression_state; if (!Snappy_Supported()) { fprintf(stderr, "skipping snappy compression tests\n"); } else { compression_state.push_back(kSnappyCompression); } if (!Zlib_Supported()) { fprintf(stderr, "skipping zlib compression tests\n"); } else { compression_state.push_back(kZlibCompression); } // TODO(kailiu) DoCompressionTest() doesn't work with BZip2. /* if (!BZip2_Supported()) { fprintf(stderr, "skipping bzip2 compression tests\n"); } else { compression_state.push_back(kBZip2Compression); } */ if (!LZ4_Supported()) { fprintf(stderr, "skipping lz4 and lz4hc compression tests\n"); } else { compression_state.push_back(kLZ4Compression); compression_state.push_back(kLZ4HCCompression); } if (!XPRESS_Supported()) { fprintf(stderr, "skipping xpress and xpress compression tests\n"); } else { compression_state.push_back(kXpressCompression); } for (auto state : compression_state) { DoCompressionTest(state); } } TEST_F(GeneralTableTest, ApproximateKeyAnchors) { Random rnd(301); TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); std::string tmp; for (int i = 1000; i < 9000; i++) { c.Add(std::to_string(i), rnd.RandomString(2000)); } std::vector keys; stl_wrappers::KVMap kvmap; Options options; InternalKeyComparator ikc(options.comparator); options.compression = kNoCompression; BlockBasedTableOptions table_options; table_options.block_size = 4096; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, ikc, &keys, &kvmap); std::vector anchors; ASSERT_OK(c.GetTableReader()->ApproximateKeyAnchors(ReadOptions(), anchors)); // The target is 128 anchors. But in reality it can be slightly more or fewer. ASSERT_GT(anchors.size(), 120); ASSERT_LT(anchors.size(), 140); // We have around 8000 keys. With 128 anchors, in average 62.5 keys per // anchor. Here we take a rough range and estimate the distance between // anchors is between 50 and 100. // Total data size is about 18,000,000, so each anchor range is about // 140,625. We also take a rough range. int prev_num = 1000; // Non-last anchor for (size_t i = 0; i + 1 < anchors.size(); i++) { auto& anchor = anchors[i]; ASSERT_GT(anchor.range_size, 100000); ASSERT_LT(anchor.range_size, 200000); // Key might be shortened, so fill 0 in the end if it is the case. std::string key_cpy = anchor.user_key; key_cpy.append(4 - key_cpy.size(), '0'); int num = std::stoi(key_cpy); ASSERT_GT(num - prev_num, 50); ASSERT_LT(num - prev_num, 100); prev_num = num; } ASSERT_EQ("8999", anchors.back().user_key); ASSERT_LT(anchors.back().range_size, 200000); c.ResetTableReader(); } #if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN) TEST_P(ParameterizedHarnessTest, RandomizedHarnessTest) { Random rnd(test::RandomSeed() + 5); for (int num_entries = 0; num_entries < 2000; num_entries += (num_entries < 50 ? 1 : 200)) { for (int e = 0; e < num_entries; e++) { Add(test::RandomKey(&rnd, rnd.Skewed(4)), rnd.RandomString(rnd.Skewed(5))); } Test(&rnd); } } TEST_F(DBHarnessTest, RandomizedLongDB) { Random rnd(test::RandomSeed()); int num_entries = 100000; for (int e = 0; e < num_entries; e++) { std::string v; Add(test::RandomKey(&rnd, rnd.Skewed(4)), rnd.RandomString(rnd.Skewed(5))); } Test(&rnd); // We must have created enough data to force merging int files = 0; for (int level = 0; level < db()->NumberLevels(); level++) { std::string value; char name[100]; snprintf(name, sizeof(name), "rocksdb.num-files-at-level%d", level); ASSERT_TRUE(db()->GetProperty(name, &value)); files += atoi(value.c_str()); } ASSERT_GT(files, 0); } #endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN) class MemTableTest : public testing::Test { public: MemTableTest() { InternalKeyComparator cmp(BytewiseComparator()); auto table_factory = std::make_shared(); options_.memtable_factory = table_factory; ImmutableOptions ioptions(options_); wb_ = new WriteBufferManager(options_.db_write_buffer_size); memtable_ = new MemTable(cmp, ioptions, MutableCFOptions(options_), wb_, kMaxSequenceNumber, 0 /* column_family_id */); memtable_->Ref(); } ~MemTableTest() { delete memtable_->Unref(); delete wb_; } MemTable* GetMemTable() { return memtable_; } private: MemTable* memtable_; Options options_; WriteBufferManager* wb_; }; TEST_F(MemTableTest, Simple) { WriteBatch batch; WriteBatchInternal::SetSequence(&batch, 100); ASSERT_OK(batch.Put(std::string("k1"), std::string("v1"))); ASSERT_OK(batch.Put(std::string("k2"), std::string("v2"))); ASSERT_OK(batch.Put(std::string("k3"), std::string("v3"))); ASSERT_OK(batch.Put(std::string("largekey"), std::string("vlarge"))); ASSERT_OK(batch.DeleteRange(std::string("chi"), std::string("xigua"))); ASSERT_OK(batch.DeleteRange(std::string("begin"), std::string("end"))); ColumnFamilyMemTablesDefault cf_mems_default(GetMemTable()); ASSERT_TRUE( WriteBatchInternal::InsertInto(&batch, &cf_mems_default, nullptr, nullptr) .ok()); for (int i = 0; i < 2; ++i) { Arena arena; ScopedArenaIterator arena_iter_guard; std::unique_ptr iter_guard; InternalIterator* iter; if (i == 0) { iter = GetMemTable()->NewIterator(ReadOptions(), &arena); arena_iter_guard.set(iter); } else { iter = GetMemTable()->NewRangeTombstoneIterator( ReadOptions(), kMaxSequenceNumber /* read_seq */, false /* immutable_memtable */); iter_guard.reset(iter); } if (iter == nullptr) { continue; } iter->SeekToFirst(); while (iter->Valid()) { fprintf(stderr, "key: '%s' -> '%s'\n", iter->key().ToString().c_str(), iter->value().ToString().c_str()); iter->Next(); } } } // Test the empty key TEST_P(ParameterizedHarnessTest, SimpleEmptyKey) { Random rnd(test::RandomSeed() + 1); Add("", "v"); Test(&rnd); } TEST_P(ParameterizedHarnessTest, SimpleSingle) { Random rnd(test::RandomSeed() + 2); Add("abc", "v"); Test(&rnd); } TEST_P(ParameterizedHarnessTest, SimpleMulti) { Random rnd(test::RandomSeed() + 3); Add("abc", "v"); Add("abcd", "v"); Add("ac", "v2"); Test(&rnd); } TEST_P(ParameterizedHarnessTest, SimpleSpecialKey) { Random rnd(test::RandomSeed() + 4); Add("\xff\xff", "v3"); Test(&rnd); } TEST(TableTest, FooterTests) { Random* r = Random::GetTLSInstance(); uint64_t data_size = (uint64_t{1} << r->Uniform(40)) + r->Uniform(100); uint64_t index_size = r->Uniform(1000000000); uint64_t metaindex_size = r->Uniform(1000000); // 5 == block trailer size BlockHandle index(data_size + 5, index_size); BlockHandle meta_index(data_size + index_size + 2 * 5, metaindex_size); uint64_t footer_offset = data_size + metaindex_size + index_size + 3 * 5; { // legacy block based FooterBuilder footer; footer.Build(kBlockBasedTableMagicNumber, /* format_version */ 0, footer_offset, kCRC32c, meta_index, index); Footer decoded_footer; ASSERT_OK(decoded_footer.DecodeFrom(footer.GetSlice(), footer_offset)); ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber); ASSERT_EQ(decoded_footer.checksum_type(), kCRC32c); ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset()); ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size()); ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset()); ASSERT_EQ(decoded_footer.index_handle().size(), index.size()); ASSERT_EQ(decoded_footer.format_version(), 0U); ASSERT_EQ(decoded_footer.GetBlockTrailerSize(), 5U); // Ensure serialized with legacy magic ASSERT_EQ( DecodeFixed64(footer.GetSlice().data() + footer.GetSlice().size() - 8), kLegacyBlockBasedTableMagicNumber); } // block based, various checksums, various versions for (auto t : GetSupportedChecksums()) { for (uint32_t fv = 1; IsSupportedFormatVersion(fv); ++fv) { FooterBuilder footer; footer.Build(kBlockBasedTableMagicNumber, fv, footer_offset, t, meta_index, index); Footer decoded_footer; ASSERT_OK(decoded_footer.DecodeFrom(footer.GetSlice(), footer_offset)); ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber); ASSERT_EQ(decoded_footer.checksum_type(), t); ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset()); ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size()); ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset()); ASSERT_EQ(decoded_footer.index_handle().size(), index.size()); ASSERT_EQ(decoded_footer.format_version(), fv); ASSERT_EQ(decoded_footer.GetBlockTrailerSize(), 5U); } } { // legacy plain table FooterBuilder footer; footer.Build(kPlainTableMagicNumber, /* format_version */ 0, footer_offset, kNoChecksum, meta_index); Footer decoded_footer; ASSERT_OK(decoded_footer.DecodeFrom(footer.GetSlice(), footer_offset)); ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber); ASSERT_EQ(decoded_footer.checksum_type(), kCRC32c); ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset()); ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size()); ASSERT_EQ(decoded_footer.index_handle().offset(), 0U); ASSERT_EQ(decoded_footer.index_handle().size(), 0U); ASSERT_EQ(decoded_footer.format_version(), 0U); ASSERT_EQ(decoded_footer.GetBlockTrailerSize(), 0U); // Ensure serialized with legacy magic ASSERT_EQ( DecodeFixed64(footer.GetSlice().data() + footer.GetSlice().size() - 8), kLegacyPlainTableMagicNumber); } { // xxhash plain table (not currently used) FooterBuilder footer; footer.Build(kPlainTableMagicNumber, /* format_version */ 1, footer_offset, kxxHash, meta_index); Footer decoded_footer; ASSERT_OK(decoded_footer.DecodeFrom(footer.GetSlice(), footer_offset)); ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber); ASSERT_EQ(decoded_footer.checksum_type(), kxxHash); ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset()); ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size()); ASSERT_EQ(decoded_footer.index_handle().offset(), 0U); ASSERT_EQ(decoded_footer.index_handle().size(), 0U); ASSERT_EQ(decoded_footer.format_version(), 1U); ASSERT_EQ(decoded_footer.GetBlockTrailerSize(), 0U); } } class IndexBlockRestartIntervalTest : public TableTest, public ::testing::WithParamInterface> { public: static std::vector> GetRestartValues() { return {{-1, false}, {0, false}, {1, false}, {8, false}, {16, false}, {32, false}, {-1, true}, {0, true}, {1, true}, {8, true}, {16, true}, {32, true}}; } }; INSTANTIATE_TEST_CASE_P( IndexBlockRestartIntervalTest, IndexBlockRestartIntervalTest, ::testing::ValuesIn(IndexBlockRestartIntervalTest::GetRestartValues())); TEST_P(IndexBlockRestartIntervalTest, IndexBlockRestartInterval) { const int kKeysInTable = 10000; const int kKeySize = 100; const int kValSize = 500; const int index_block_restart_interval = std::get<0>(GetParam()); const bool value_delta_encoding = std::get<1>(GetParam()); Options options; BlockBasedTableOptions table_options; table_options.block_size = 64; // small block size to get big index block table_options.index_block_restart_interval = index_block_restart_interval; if (value_delta_encoding) { table_options.format_version = 4; } else { table_options.format_version = 3; } options.table_factory.reset(new BlockBasedTableFactory(table_options)); TableConstructor c(BytewiseComparator()); static Random rnd(301); for (int i = 0; i < kKeysInTable; i++) { InternalKey k(rnd.RandomString(kKeySize), 0, kTypeValue); c.Add(k.Encode().ToString(), rnd.RandomString(kValSize)); } std::vector keys; stl_wrappers::KVMap kvmap; std::unique_ptr comparator( new InternalKeyComparator(BytewiseComparator())); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_options, *comparator, &keys, &kvmap); auto reader = c.GetTableReader(); ReadOptions read_options; std::unique_ptr db_iter(reader->NewIterator( read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); // Test point lookup for (auto& kv : kvmap) { db_iter->Seek(kv.first); ASSERT_TRUE(db_iter->Valid()); ASSERT_OK(db_iter->status()); ASSERT_EQ(db_iter->key(), kv.first); ASSERT_EQ(db_iter->value(), kv.second); } // Test iterating auto kv_iter = kvmap.begin(); for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) { ASSERT_EQ(db_iter->key(), kv_iter->first); ASSERT_EQ(db_iter->value(), kv_iter->second); kv_iter++; } ASSERT_EQ(kv_iter, kvmap.end()); c.ResetTableReader(); } class PrefixTest : public testing::Test { public: PrefixTest() : testing::Test() {} ~PrefixTest() override {} }; namespace { // A simple PrefixExtractor that only works for test PrefixAndWholeKeyTest class TestPrefixExtractor : public ROCKSDB_NAMESPACE::SliceTransform { public: ~TestPrefixExtractor() override{}; const char* Name() const override { return "TestPrefixExtractor"; } ROCKSDB_NAMESPACE::Slice Transform( const ROCKSDB_NAMESPACE::Slice& src) const override { assert(IsValid(src)); return ROCKSDB_NAMESPACE::Slice(src.data(), 3); } bool InDomain(const ROCKSDB_NAMESPACE::Slice& src) const override { return IsValid(src); } bool InRange(const ROCKSDB_NAMESPACE::Slice& /*dst*/) const override { return true; } bool IsValid(const ROCKSDB_NAMESPACE::Slice& src) const { if (src.size() != 4) { return false; } if (src[0] != '[') { return false; } if (src[1] < '0' || src[1] > '9') { return false; } if (src[2] != ']') { return false; } if (src[3] < '0' || src[3] > '9') { return false; } return true; } }; } // namespace TEST_F(PrefixTest, PrefixAndWholeKeyTest) { ROCKSDB_NAMESPACE::Options options; options.compaction_style = ROCKSDB_NAMESPACE::kCompactionStyleUniversal; options.num_levels = 20; options.create_if_missing = true; options.optimize_filters_for_hits = false; options.target_file_size_base = 268435456; options.prefix_extractor = std::make_shared(); ROCKSDB_NAMESPACE::BlockBasedTableOptions bbto; bbto.filter_policy.reset(ROCKSDB_NAMESPACE::NewBloomFilterPolicy(10)); bbto.block_size = 262144; bbto.whole_key_filtering = true; const std::string kDBPath = test::PerThreadDBPath("table_prefix_test"); options.table_factory.reset(NewBlockBasedTableFactory(bbto)); ASSERT_OK(DestroyDB(kDBPath, options)); ROCKSDB_NAMESPACE::DB* db; ASSERT_OK(ROCKSDB_NAMESPACE::DB::Open(options, kDBPath, &db)); // Create a bunch of keys with 10 filters. for (int i = 0; i < 10; i++) { std::string prefix = "[" + std::to_string(i) + "]"; for (int j = 0; j < 10; j++) { std::string key = prefix + std::to_string(j); ASSERT_OK(db->Put(ROCKSDB_NAMESPACE::WriteOptions(), key, "1")); } } // Trigger compaction. ASSERT_OK(db->CompactRange(CompactRangeOptions(), nullptr, nullptr)); delete db; // In the second round, turn whole_key_filtering off and expect // rocksdb still works. } /* * Disable TableWithGlobalSeqno since RocksDB does not store global_seqno in * the SST file any more. Instead, RocksDB deduces global_seqno from the * MANIFEST while reading from an SST. Therefore, it's not possible to test the * functionality of global_seqno in a single, isolated unit test without the * involvement of Version, VersionSet, etc. */ TEST_P(BlockBasedTableTest, DISABLED_TableWithGlobalSeqno) { BlockBasedTableOptions bbto = GetBlockBasedTableOptions(); test::StringSink* sink = new test::StringSink(); std::unique_ptr holder(sink); std::unique_ptr file_writer(new WritableFileWriter( std::move(holder), "" /* don't care */, FileOptions())); Options options; options.table_factory.reset(NewBlockBasedTableFactory(bbto)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; int_tbl_prop_collector_factories.emplace_back( new SstFileWriterPropertiesCollectorFactory(2 /* version */, 0 /* global_seqno*/)); std::string column_family_name; std::unique_ptr builder(options.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kNoCompression, CompressionOptions(), kUnknownColumnFamily, column_family_name, -1), file_writer.get())); for (char c = 'a'; c <= 'z'; ++c) { std::string key(8, c); std::string value = key; InternalKey ik(key, 0, kTypeValue); builder->Add(ik.Encode(), value); } ASSERT_OK(builder->Finish()); ASSERT_OK(file_writer->Flush()); test::RandomRWStringSink ss_rw(sink); uint32_t version; uint64_t global_seqno; uint64_t global_seqno_offset; // Helper function to get version, global_seqno, global_seqno_offset std::function GetVersionAndGlobalSeqno = [&]() { std::unique_ptr source( new test::StringSource(ss_rw.contents(), 73342, true)); std::unique_ptr file_reader( new RandomAccessFileReader(std::move(source), "")); std::unique_ptr props; ASSERT_OK(ReadTableProperties(file_reader.get(), ss_rw.contents().size(), kBlockBasedTableMagicNumber, ioptions, &props)); UserCollectedProperties user_props = props->user_collected_properties; version = DecodeFixed32( user_props[ExternalSstFilePropertyNames::kVersion].c_str()); global_seqno = DecodeFixed64( user_props[ExternalSstFilePropertyNames::kGlobalSeqno].c_str()); global_seqno_offset = props->external_sst_file_global_seqno_offset; }; // Helper function to update the value of the global seqno in the file std::function SetGlobalSeqno = [&](uint64_t val) { std::string new_global_seqno; PutFixed64(&new_global_seqno, val); ASSERT_OK(ss_rw.Write(global_seqno_offset, new_global_seqno, IOOptions(), nullptr)); }; // Helper function to get the contents of the table InternalIterator std::unique_ptr table_reader; const ReadOptions read_options; std::function GetTableInternalIter = [&]() { std::unique_ptr source( new test::StringSource(ss_rw.contents(), 73342, true)); std::unique_ptr file_reader( new RandomAccessFileReader(std::move(source), "")); options.table_factory->NewTableReader( TableReaderOptions(ioptions, moptions.prefix_extractor, EnvOptions(), ikc), std::move(file_reader), ss_rw.contents().size(), &table_reader); return table_reader->NewIterator( read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized); }; GetVersionAndGlobalSeqno(); ASSERT_EQ(2u, version); ASSERT_EQ(0u, global_seqno); InternalIterator* iter = GetTableInternalIter(); char current_c = 'a'; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey pik; ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */)); ASSERT_EQ(pik.type, ValueType::kTypeValue); ASSERT_EQ(pik.sequence, 0); ASSERT_EQ(pik.user_key, iter->value()); ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c)); current_c++; } ASSERT_EQ(current_c, 'z' + 1); delete iter; // Update global sequence number to 10 SetGlobalSeqno(10); GetVersionAndGlobalSeqno(); ASSERT_EQ(2u, version); ASSERT_EQ(10u, global_seqno); iter = GetTableInternalIter(); current_c = 'a'; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey pik; ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */)); ASSERT_EQ(pik.type, ValueType::kTypeValue); ASSERT_EQ(pik.sequence, 10); ASSERT_EQ(pik.user_key, iter->value()); ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c)); current_c++; } ASSERT_EQ(current_c, 'z' + 1); // Verify Seek for (char c = 'a'; c <= 'z'; c++) { std::string k = std::string(8, c); InternalKey ik(k, 10, kValueTypeForSeek); iter->Seek(ik.Encode()); ASSERT_TRUE(iter->Valid()); ParsedInternalKey pik; ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */)); ASSERT_EQ(pik.type, ValueType::kTypeValue); ASSERT_EQ(pik.sequence, 10); ASSERT_EQ(pik.user_key.ToString(), k); ASSERT_EQ(iter->value().ToString(), k); } delete iter; // Update global sequence number to 3 SetGlobalSeqno(3); GetVersionAndGlobalSeqno(); ASSERT_EQ(2u, version); ASSERT_EQ(3u, global_seqno); iter = GetTableInternalIter(); current_c = 'a'; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { ParsedInternalKey pik; ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */)); ASSERT_EQ(pik.type, ValueType::kTypeValue); ASSERT_EQ(pik.sequence, 3); ASSERT_EQ(pik.user_key, iter->value()); ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c)); current_c++; } ASSERT_EQ(current_c, 'z' + 1); // Verify Seek for (char c = 'a'; c <= 'z'; c++) { std::string k = std::string(8, c); // seqno=4 is less than 3 so we still should get our key InternalKey ik(k, 4, kValueTypeForSeek); iter->Seek(ik.Encode()); ASSERT_TRUE(iter->Valid()); ParsedInternalKey pik; ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */)); ASSERT_EQ(pik.type, ValueType::kTypeValue); ASSERT_EQ(pik.sequence, 3); ASSERT_EQ(pik.user_key.ToString(), k); ASSERT_EQ(iter->value().ToString(), k); } delete iter; } TEST_P(BlockBasedTableTest, BlockAlignTest) { BlockBasedTableOptions bbto = GetBlockBasedTableOptions(); bbto.block_align = true; test::StringSink* sink = new test::StringSink(); std::unique_ptr holder(sink); std::unique_ptr file_writer(new WritableFileWriter( std::move(holder), "" /* don't care */, FileOptions())); Options options; options.compression = kNoCompression; options.table_factory.reset(NewBlockBasedTableFactory(bbto)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::string column_family_name; std::unique_ptr builder(options.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kNoCompression, CompressionOptions(), kUnknownColumnFamily, column_family_name, -1), file_writer.get())); for (int i = 1; i <= 10000; ++i) { std::ostringstream ostr; ostr << std::setfill('0') << std::setw(5) << i; std::string key = ostr.str(); std::string value = "val"; InternalKey ik(key, 0, kTypeValue); builder->Add(ik.Encode(), value); } ASSERT_OK(builder->Finish()); ASSERT_OK(file_writer->Flush()); std::unique_ptr source( new test::StringSource(sink->contents(), 73342, false)); std::unique_ptr file_reader( new RandomAccessFileReader(std::move(source), "test")); // Helper function to get version, global_seqno, global_seqno_offset std::function VerifyBlockAlignment = [&]() { std::unique_ptr props; ASSERT_OK(ReadTableProperties(file_reader.get(), sink->contents().size(), kBlockBasedTableMagicNumber, ioptions, &props)); uint64_t data_block_size = props->data_size / props->num_data_blocks; ASSERT_EQ(data_block_size, 4096); ASSERT_EQ(props->data_size, data_block_size * props->num_data_blocks); }; VerifyBlockAlignment(); // The below block of code verifies that we can read back the keys. Set // block_align to false when creating the reader to ensure we can flip between // the two modes without any issues std::unique_ptr table_reader; bbto.block_align = false; Options options2; options2.table_factory.reset(NewBlockBasedTableFactory(bbto)); ImmutableOptions ioptions2(options2); const MutableCFOptions moptions2(options2); ASSERT_OK(ioptions.table_factory->NewTableReader( TableReaderOptions(ioptions2, moptions2.prefix_extractor, EnvOptions(), GetPlainInternalComparator(options2.comparator)), std::move(file_reader), sink->contents().size(), &table_reader)); ReadOptions read_options; std::unique_ptr db_iter(table_reader->NewIterator( read_options, moptions2.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); int expected_key = 1; for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) { std::ostringstream ostr; ostr << std::setfill('0') << std::setw(5) << expected_key++; std::string key = ostr.str(); std::string value = "val"; ASSERT_OK(db_iter->status()); ASSERT_EQ(ExtractUserKey(db_iter->key()).ToString(), key); ASSERT_EQ(db_iter->value().ToString(), value); } expected_key--; ASSERT_EQ(expected_key, 10000); table_reader.reset(); } TEST_P(BlockBasedTableTest, PropertiesBlockRestartPointTest) { BlockBasedTableOptions bbto = GetBlockBasedTableOptions(); bbto.block_align = true; test::StringSink* sink = new test::StringSink(); std::unique_ptr holder(sink); std::unique_ptr file_writer(new WritableFileWriter( std::move(holder), "" /* don't care */, FileOptions())); Options options; options.compression = kNoCompression; options.table_factory.reset(NewBlockBasedTableFactory(bbto)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::string column_family_name; std::unique_ptr builder(options.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kNoCompression, CompressionOptions(), kUnknownColumnFamily, column_family_name, -1), file_writer.get())); for (int i = 1; i <= 10000; ++i) { std::ostringstream ostr; ostr << std::setfill('0') << std::setw(5) << i; std::string key = ostr.str(); std::string value = "val"; InternalKey ik(key, 0, kTypeValue); builder->Add(ik.Encode(), value); } ASSERT_OK(builder->Finish()); ASSERT_OK(file_writer->Flush()); std::unique_ptr source( new test::StringSource(sink->contents(), 73342, true)); std::unique_ptr file_reader( new RandomAccessFileReader(std::move(source), "test")); { RandomAccessFileReader* file = file_reader.get(); uint64_t file_size = sink->contents().size(); Footer footer; IOOptions opts; ASSERT_OK(ReadFooterFromFile(opts, file, *FileSystem::Default(), nullptr /* prefetch_buffer */, file_size, &footer, kBlockBasedTableMagicNumber)); auto BlockFetchHelper = [&](const BlockHandle& handle, BlockType block_type, BlockContents* contents) { ReadOptions read_options; read_options.verify_checksums = false; PersistentCacheOptions cache_options; BlockFetcher block_fetcher( file, nullptr /* prefetch_buffer */, footer, read_options, handle, contents, ioptions, false /* decompress */, false /*maybe_compressed*/, block_type, UncompressionDict::GetEmptyDict(), cache_options); ASSERT_OK(block_fetcher.ReadBlockContents()); }; // -- Read metaindex block auto metaindex_handle = footer.metaindex_handle(); BlockContents metaindex_contents; BlockFetchHelper(metaindex_handle, BlockType::kMetaIndex, &metaindex_contents); Block metaindex_block(std::move(metaindex_contents)); std::unique_ptr meta_iter(metaindex_block.NewDataIterator( BytewiseComparator(), kDisableGlobalSequenceNumber)); // -- Read properties block BlockHandle properties_handle; ASSERT_OK(FindOptionalMetaBlock(meta_iter.get(), kPropertiesBlockName, &properties_handle)); ASSERT_FALSE(properties_handle.IsNull()); BlockContents properties_contents; BlockFetchHelper(properties_handle, BlockType::kProperties, &properties_contents); Block properties_block(std::move(properties_contents)); ASSERT_EQ(properties_block.NumRestarts(), 1u); } } TEST_P(BlockBasedTableTest, PropertiesMetaBlockLast) { // The properties meta-block should come at the end since we always need to // read it when opening a file, unlike index/filter/other meta-blocks, which // are sometimes read depending on the user's configuration. This ordering // allows us to do a small readahead on the end of the file to read properties // and meta-index blocks with one I/O. TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("a1", "val1"); c.Add("b2", "val2"); c.Add("c3", "val3"); c.Add("d4", "val4"); c.Add("e5", "val5"); c.Add("f6", "val6"); c.Add("g7", "val7"); c.Add("h8", "val8"); c.Add("j9", "val9"); // write an SST file Options options; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.filter_policy.reset(NewBloomFilterPolicy( 8 /* bits_per_key */, false /* use_block_based_filter */)); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); std::vector keys; stl_wrappers::KVMap kvmap; c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); // get file reader test::StringSink* table_sink = c.TEST_GetSink(); std::unique_ptr source(new test::StringSource( table_sink->contents(), 0 /* unique_id */, false /* allow_mmap_reads */)); std::unique_ptr table_reader( new RandomAccessFileReader(std::move(source), "test")); size_t table_size = table_sink->contents().size(); // read footer Footer footer; IOOptions opts; ASSERT_OK(ReadFooterFromFile(opts, table_reader.get(), *FileSystem::Default(), nullptr /* prefetch_buffer */, table_size, &footer, kBlockBasedTableMagicNumber)); // read metaindex auto metaindex_handle = footer.metaindex_handle(); BlockContents metaindex_contents; PersistentCacheOptions pcache_opts; BlockFetcher block_fetcher( table_reader.get(), nullptr /* prefetch_buffer */, footer, ReadOptions(), metaindex_handle, &metaindex_contents, ioptions, false /* decompress */, false /*maybe_compressed*/, BlockType::kMetaIndex, UncompressionDict::GetEmptyDict(), pcache_opts, nullptr /*memory_allocator*/); ASSERT_OK(block_fetcher.ReadBlockContents()); Block metaindex_block(std::move(metaindex_contents)); // verify properties block comes last std::unique_ptr metaindex_iter{ metaindex_block.NewMetaIterator()}; uint64_t max_offset = 0; std::string key_at_max_offset; for (metaindex_iter->SeekToFirst(); metaindex_iter->Valid(); metaindex_iter->Next()) { BlockHandle handle; Slice value = metaindex_iter->value(); ASSERT_OK(handle.DecodeFrom(&value)); if (handle.offset() > max_offset) { max_offset = handle.offset(); key_at_max_offset = metaindex_iter->key().ToString(); } } ASSERT_EQ(kPropertiesBlockName, key_at_max_offset); // index handle is stored in footer rather than metaindex block, so need // separate logic to verify it comes before properties block. ASSERT_GT(max_offset, footer.index_handle().offset()); c.ResetTableReader(); } TEST_P(BlockBasedTableTest, SeekMetaBlocks) { TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */); c.Add("foo_a1", "val1"); c.Add("foo_b2", "val2"); c.Add("foo_c3", "val3"); c.Add("foo_d4", "val4"); c.Add("foo_e5", "val5"); c.Add("foo_f6", "val6"); c.Add("foo_g7", "val7"); c.Add("foo_h8", "val8"); c.Add("foo_j9", "val9"); // write an SST file Options options; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.index_type = BlockBasedTableOptions::kHashSearch; table_options.filter_policy.reset(NewBloomFilterPolicy( 8 /* bits_per_key */, false /* use_block_based_filter */)); options.prefix_extractor.reset(NewFixedPrefixTransform(4)); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); std::vector keys; stl_wrappers::KVMap kvmap; c.Finish(options, ioptions, moptions, table_options, GetPlainInternalComparator(options.comparator), &keys, &kvmap); // get file reader test::StringSink* table_sink = c.TEST_GetSink(); std::unique_ptr source(new test::StringSource( table_sink->contents(), 0 /* unique_id */, false /* allow_mmap_reads */)); std::unique_ptr table_reader( new RandomAccessFileReader(std::move(source), "test")); size_t table_size = table_sink->contents().size(); // read footer Footer footer; IOOptions opts; ASSERT_OK(ReadFooterFromFile(opts, table_reader.get(), *FileSystem::Default(), nullptr /* prefetch_buffer */, table_size, &footer, kBlockBasedTableMagicNumber)); // read metaindex auto metaindex_handle = footer.metaindex_handle(); BlockContents metaindex_contents; PersistentCacheOptions pcache_opts; BlockFetcher block_fetcher( table_reader.get(), nullptr /* prefetch_buffer */, footer, ReadOptions(), metaindex_handle, &metaindex_contents, ioptions, false /* decompress */, false /*maybe_compressed*/, BlockType::kMetaIndex, UncompressionDict::GetEmptyDict(), pcache_opts, nullptr /*memory_allocator*/); ASSERT_OK(block_fetcher.ReadBlockContents()); Block metaindex_block(std::move(metaindex_contents)); // verify properties block comes last std::unique_ptr metaindex_iter( metaindex_block.NewMetaIterator()); bool has_hash_prefixes = false; bool has_hash_metadata = false; for (metaindex_iter->SeekToFirst(); metaindex_iter->Valid(); metaindex_iter->Next()) { if (metaindex_iter->key().ToString() == kHashIndexPrefixesBlock) { has_hash_prefixes = true; } else if (metaindex_iter->key().ToString() == kHashIndexPrefixesMetadataBlock) { has_hash_metadata = true; } } if (has_hash_metadata) { metaindex_iter->Seek(kHashIndexPrefixesMetadataBlock); ASSERT_TRUE(metaindex_iter->Valid()); ASSERT_EQ(kHashIndexPrefixesMetadataBlock, metaindex_iter->key().ToString()); } if (has_hash_prefixes) { metaindex_iter->Seek(kHashIndexPrefixesBlock); ASSERT_TRUE(metaindex_iter->Valid()); ASSERT_EQ(kHashIndexPrefixesBlock, metaindex_iter->key().ToString()); } c.ResetTableReader(); } TEST_P(BlockBasedTableTest, BadOptions) { ROCKSDB_NAMESPACE::Options options; options.compression = kNoCompression; BlockBasedTableOptions bbto = GetBlockBasedTableOptions(); bbto.block_size = 4000; bbto.block_align = true; const std::string kDBPath = test::PerThreadDBPath("block_based_table_bad_options_test"); options.table_factory.reset(NewBlockBasedTableFactory(bbto)); ASSERT_OK(DestroyDB(kDBPath, options)); ROCKSDB_NAMESPACE::DB* db; ASSERT_NOK(ROCKSDB_NAMESPACE::DB::Open(options, kDBPath, &db)); bbto.block_size = 4096; options.compression = kSnappyCompression; options.table_factory.reset(NewBlockBasedTableFactory(bbto)); ASSERT_NOK(ROCKSDB_NAMESPACE::DB::Open(options, kDBPath, &db)); } TEST_F(BBTTailPrefetchTest, TestTailPrefetchStats) { TailPrefetchStats tpstats; ASSERT_EQ(0, tpstats.GetSuggestedPrefetchSize()); tpstats.RecordEffectiveSize(size_t{1000}); tpstats.RecordEffectiveSize(size_t{1005}); tpstats.RecordEffectiveSize(size_t{1002}); ASSERT_EQ(1005, tpstats.GetSuggestedPrefetchSize()); // One single super large value shouldn't influence much tpstats.RecordEffectiveSize(size_t{1002000}); tpstats.RecordEffectiveSize(size_t{999}); ASSERT_LE(1005, tpstats.GetSuggestedPrefetchSize()); ASSERT_GT(1200, tpstats.GetSuggestedPrefetchSize()); // Only history of 32 is kept for (int i = 0; i < 32; i++) { tpstats.RecordEffectiveSize(size_t{100}); } ASSERT_EQ(100, tpstats.GetSuggestedPrefetchSize()); // 16 large values and 16 small values. The result should be closer // to the small value as the algorithm. for (int i = 0; i < 16; i++) { tpstats.RecordEffectiveSize(size_t{1000}); } tpstats.RecordEffectiveSize(size_t{10}); tpstats.RecordEffectiveSize(size_t{20}); for (int i = 0; i < 6; i++) { tpstats.RecordEffectiveSize(size_t{100}); } ASSERT_LE(80, tpstats.GetSuggestedPrefetchSize()); ASSERT_GT(200, tpstats.GetSuggestedPrefetchSize()); } TEST_F(BBTTailPrefetchTest, FilePrefetchBufferMinOffset) { TailPrefetchStats tpstats; FilePrefetchBuffer buffer(0 /* readahead_size */, 0 /* max_readahead_size */, false /* enable */, true /* track_min_offset */); IOOptions opts; buffer.TryReadFromCache(opts, nullptr /* reader */, 500 /* offset */, 10 /* n */, nullptr /* result */, nullptr /* status */, Env::IO_TOTAL /* rate_limiter_priority */); buffer.TryReadFromCache(opts, nullptr /* reader */, 480 /* offset */, 10 /* n */, nullptr /* result */, nullptr /* status */, Env::IO_TOTAL /* rate_limiter_priority */); buffer.TryReadFromCache(opts, nullptr /* reader */, 490 /* offset */, 10 /* n */, nullptr /* result */, nullptr /* status */, Env::IO_TOTAL /* rate_limiter_priority */); ASSERT_EQ(480, buffer.min_offset_read()); } TEST_P(BlockBasedTableTest, DataBlockHashIndex) { const int kNumKeys = 500; const int kKeySize = 8; const int kValSize = 40; BlockBasedTableOptions table_options = GetBlockBasedTableOptions(); table_options.data_block_index_type = BlockBasedTableOptions::kDataBlockBinaryAndHash; Options options; options.comparator = BytewiseComparator(); options.table_factory.reset(new BlockBasedTableFactory(table_options)); TableConstructor c(options.comparator); static Random rnd(1048); for (int i = 0; i < kNumKeys; i++) { // padding one "0" to mark existent keys. std::string random_key(rnd.RandomString(kKeySize - 1) + "1"); InternalKey k(random_key, 0, kTypeValue); c.Add(k.Encode().ToString(), rnd.RandomString(kValSize)); } std::vector keys; stl_wrappers::KVMap kvmap; const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); const InternalKeyComparator internal_comparator(options.comparator); c.Finish(options, ioptions, moptions, table_options, internal_comparator, &keys, &kvmap); auto reader = c.GetTableReader(); std::unique_ptr seek_iter; ReadOptions read_options; seek_iter.reset(reader->NewIterator( read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized)); for (int i = 0; i < 2; ++i) { ReadOptions ro; // for every kv, we seek using two method: Get() and Seek() // Get() will use the SuffixIndexHash in Block. For non-existent key it // will invalidate the iterator // Seek() will use the default BinarySeek() in Block. So for non-existent // key it will land at the closest key that is large than target. // Search for existent keys for (auto& kv : kvmap) { if (i == 0) { // Search using Seek() seek_iter->Seek(kv.first); ASSERT_OK(seek_iter->status()); ASSERT_TRUE(seek_iter->Valid()); ASSERT_EQ(seek_iter->key(), kv.first); ASSERT_EQ(seek_iter->value(), kv.second); } else { // Search using Get() PinnableSlice value; std::string user_key = ExtractUserKey(kv.first).ToString(); GetContext get_context(options.comparator, nullptr, nullptr, nullptr, GetContext::kNotFound, user_key, &value, nullptr, nullptr, nullptr, true, nullptr, nullptr); ASSERT_OK(reader->Get(ro, kv.first, &get_context, moptions.prefix_extractor.get())); ASSERT_EQ(get_context.State(), GetContext::kFound); ASSERT_EQ(value, Slice(kv.second)); value.Reset(); } } // Search for non-existent keys for (auto& kv : kvmap) { std::string user_key = ExtractUserKey(kv.first).ToString(); user_key.back() = '0'; // make it non-existent key InternalKey internal_key(user_key, 0, kTypeValue); std::string encoded_key = internal_key.Encode().ToString(); if (i == 0) { // Search using Seek() seek_iter->Seek(encoded_key); ASSERT_OK(seek_iter->status()); if (seek_iter->Valid()) { ASSERT_TRUE(BytewiseComparator()->Compare( user_key, ExtractUserKey(seek_iter->key())) < 0); } } else { // Search using Get() PinnableSlice value; GetContext get_context(options.comparator, nullptr, nullptr, nullptr, GetContext::kNotFound, user_key, &value, nullptr, nullptr, nullptr, true, nullptr, nullptr); ASSERT_OK(reader->Get(ro, encoded_key, &get_context, moptions.prefix_extractor.get())); ASSERT_EQ(get_context.State(), GetContext::kNotFound); value.Reset(); } } } } // BlockBasedTableIterator should invalidate itself and return // OutOfBound()=true immediately after Seek(), to allow LevelIterator // filter out corresponding level. TEST_P(BlockBasedTableTest, OutOfBoundOnSeek) { TableConstructor c(BytewiseComparator(), true /*convert_to_internal_key*/); c.Add("foo", "v1"); std::vector keys; stl_wrappers::KVMap kvmap; Options options; BlockBasedTableOptions table_opt(GetBlockBasedTableOptions()); options.table_factory.reset(NewBlockBasedTableFactory(table_opt)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_opt, GetPlainInternalComparator(BytewiseComparator()), &keys, &kvmap); auto* reader = c.GetTableReader(); ReadOptions read_opt; std::string upper_bound = "bar"; Slice upper_bound_slice(upper_bound); read_opt.iterate_upper_bound = &upper_bound_slice; std::unique_ptr iter; iter.reset(new KeyConvertingIterator(reader->NewIterator( read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized))); iter->SeekToFirst(); ASSERT_FALSE(iter->Valid()); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound); iter.reset(new KeyConvertingIterator(reader->NewIterator( read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized))); iter->Seek("foo"); ASSERT_FALSE(iter->Valid()); ASSERT_OK(iter->status()); ASSERT_TRUE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound); } // BlockBasedTableIterator should invalidate itself and return // OutOfBound()=true after Next(), if it finds current index key is no smaller // than upper bound, unless it is pointing to the last data block. TEST_P(BlockBasedTableTest, OutOfBoundOnNext) { TableConstructor c(BytewiseComparator(), true /*convert_to_internal_key*/); c.Add("bar", "v"); c.Add("foo", "v"); std::vector keys; stl_wrappers::KVMap kvmap; Options options; BlockBasedTableOptions table_opt(GetBlockBasedTableOptions()); table_opt.flush_block_policy_factory = std::make_shared(); options.table_factory.reset(NewBlockBasedTableFactory(table_opt)); const ImmutableOptions ioptions(options); const MutableCFOptions moptions(options); c.Finish(options, ioptions, moptions, table_opt, GetPlainInternalComparator(BytewiseComparator()), &keys, &kvmap); auto* reader = c.GetTableReader(); ReadOptions read_opt; std::string ub1 = "bar_after"; Slice ub_slice1(ub1); read_opt.iterate_upper_bound = &ub_slice1; std::unique_ptr iter; iter.reset(new KeyConvertingIterator(reader->NewIterator( read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized))); iter->Seek("bar"); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("bar", iter->key()); iter->Next(); ASSERT_FALSE(iter->Valid()); ASSERT_TRUE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound); std::string ub2 = "foo_after"; Slice ub_slice2(ub2); read_opt.iterate_upper_bound = &ub_slice2; iter.reset(new KeyConvertingIterator(reader->NewIterator( read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr, /*skip_filters=*/false, TableReaderCaller::kUncategorized))); iter->Seek("foo"); ASSERT_TRUE(iter->Valid()); ASSERT_EQ("foo", iter->key()); iter->Next(); ASSERT_FALSE(iter->Valid()); ASSERT_FALSE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound); } class ChargeCompressionDictionaryBuildingBufferTest : public BlockBasedTableTestBase {}; TEST_F(ChargeCompressionDictionaryBuildingBufferTest, Basic) { constexpr std::size_t kSizeDummyEntry = 256 * 1024; constexpr std::size_t kMetaDataChargeOverhead = 10000; constexpr std::size_t kCacheCapacity = 8 * 1024 * 1024; constexpr std::size_t kMaxDictBytes = 1024; constexpr std::size_t kMaxDictBufferBytes = 1024; for (CacheEntryRoleOptions::Decision charge_compression_dictionary_building_buffer : {CacheEntryRoleOptions::Decision::kEnabled, CacheEntryRoleOptions::Decision::kDisabled}) { BlockBasedTableOptions table_options; LRUCacheOptions lo; lo.capacity = kCacheCapacity; lo.num_shard_bits = 0; // 2^0 shard lo.strict_capacity_limit = true; std::shared_ptr cache(NewLRUCache(lo)); table_options.block_cache = cache; table_options.flush_block_policy_factory = std::make_shared(); table_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kCompressionDictionaryBuildingBuffer, {/*.charged = */ charge_compression_dictionary_building_buffer}}); Options options; options.compression = kSnappyCompression; options.compression_opts.max_dict_bytes = kMaxDictBytes; options.compression_opts.max_dict_buffer_bytes = kMaxDictBufferBytes; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); test::StringSink* sink = new test::StringSink(); std::unique_ptr holder(sink); std::unique_ptr file_writer(new WritableFileWriter( std::move(holder), "test_file_name", FileOptions())); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::unique_ptr builder( options.table_factory->NewTableBuilder( TableBuilderOptions( ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kSnappyCompression, options.compression_opts, kUnknownColumnFamily, "test_cf", -1 /* level */), file_writer.get())); std::string key1 = "key1"; std::string value1 = "val1"; InternalKey ik1(key1, 0 /* sequnce number */, kTypeValue); // Adding the first key won't trigger a flush by FlushBlockEveryKeyPolicy // therefore won't trigger any data block's buffering builder->Add(ik1.Encode(), value1); ASSERT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); std::string key2 = "key2"; std::string value2 = "val2"; InternalKey ik2(key2, 1 /* sequnce number */, kTypeValue); // Adding the second key will trigger a flush of the last data block (the // one containing key1 and value1) by FlushBlockEveryKeyPolicy and hence // trigger buffering of that data block. builder->Add(ik2.Encode(), value2); // Cache charging will increase for last buffered data block (the one // containing key1 and value1) since the buffer limit is not exceeded after // that buffering and the cache will not be full after this reservation if (charge_compression_dictionary_building_buffer == CacheEntryRoleOptions::Decision::kEnabled) { EXPECT_GE(cache->GetPinnedUsage(), 1 * kSizeDummyEntry); EXPECT_LT(cache->GetPinnedUsage(), 1 * kSizeDummyEntry + kMetaDataChargeOverhead); } else { EXPECT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); } ASSERT_OK(builder->Finish()); EXPECT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); } } TEST_F(ChargeCompressionDictionaryBuildingBufferTest, BasicWithBufferLimitExceed) { constexpr std::size_t kSizeDummyEntry = 256 * 1024; constexpr std::size_t kMetaDataChargeOverhead = 10000; constexpr std::size_t kCacheCapacity = 8 * 1024 * 1024; constexpr std::size_t kMaxDictBytes = 1024; constexpr std::size_t kMaxDictBufferBytes = 2 * kSizeDummyEntry; // `CacheEntryRoleOptions::charged` is enabled by default for // CacheEntryRole::kCompressionDictionaryBuildingBuffer BlockBasedTableOptions table_options; LRUCacheOptions lo; lo.capacity = kCacheCapacity; lo.num_shard_bits = 0; // 2^0 shard lo.strict_capacity_limit = true; std::shared_ptr cache(NewLRUCache(lo)); table_options.block_cache = cache; table_options.flush_block_policy_factory = std::make_shared(); Options options; options.compression = kSnappyCompression; options.compression_opts.max_dict_bytes = kMaxDictBytes; options.compression_opts.max_dict_buffer_bytes = kMaxDictBufferBytes; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); test::StringSink* sink = new test::StringSink(); std::unique_ptr holder(sink); std::unique_ptr file_writer(new WritableFileWriter( std::move(holder), "test_file_name", FileOptions())); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::unique_ptr builder(options.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kSnappyCompression, options.compression_opts, kUnknownColumnFamily, "test_cf", -1 /* level */), file_writer.get())); std::string key1 = "key1"; std::string value1(kSizeDummyEntry, '0'); InternalKey ik1(key1, 0 /* sequnce number */, kTypeValue); // Adding the first key won't trigger a flush by FlushBlockEveryKeyPolicy // therefore won't trigger any data block's buffering builder->Add(ik1.Encode(), value1); ASSERT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); std::string key2 = "key2"; std::string value2(kSizeDummyEntry, '0'); InternalKey ik2(key2, 1 /* sequnce number */, kTypeValue); // Adding the second key will trigger a flush of the last data block (the one // containing key1 and value1) by FlushBlockEveryKeyPolicy and hence trigger // buffering of the last data block. builder->Add(ik2.Encode(), value2); // Cache charging will increase for last buffered data block (the one // containing key1 and value1) since the buffer limit is not exceeded after // the buffering and the cache will not be full after this reservation EXPECT_GE(cache->GetPinnedUsage(), 2 * kSizeDummyEntry); EXPECT_LT(cache->GetPinnedUsage(), 2 * kSizeDummyEntry + kMetaDataChargeOverhead); std::string key3 = "key3"; std::string value3 = "val3"; InternalKey ik3(key3, 2 /* sequnce number */, kTypeValue); // Adding the third key will trigger a flush of the last data block (the one // containing key2 and value2) by FlushBlockEveryKeyPolicy and hence trigger // buffering of the last data block. builder->Add(ik3.Encode(), value3); // Cache charging will decrease since the buffer limit is now exceeded // after the last buffering and EnterUnbuffered() is triggered EXPECT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); ASSERT_OK(builder->Finish()); EXPECT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); } TEST_F(ChargeCompressionDictionaryBuildingBufferTest, BasicWithCacheFull) { constexpr std::size_t kSizeDummyEntry = 256 * 1024; constexpr std::size_t kMetaDataChargeOverhead = 10000; // A small kCacheCapacity is chosen so that increase cache charging for // buffering two data blocks, each containing key1/value1, key2/a big // value2, will cause cache full constexpr std::size_t kCacheCapacity = 1 * kSizeDummyEntry + kSizeDummyEntry / 2; constexpr std::size_t kMaxDictBytes = 1024; // A big kMaxDictBufferBytes is chosen so that adding a big key value pair // (key2, value2) won't exceed the buffer limit constexpr std::size_t kMaxDictBufferBytes = 1024 * 1024 * 1024; // `CacheEntryRoleOptions::charged` is enabled by default for // CacheEntryRole::kCompressionDictionaryBuildingBuffer BlockBasedTableOptions table_options; LRUCacheOptions lo; lo.capacity = kCacheCapacity; lo.num_shard_bits = 0; // 2^0 shard lo.strict_capacity_limit = true; std::shared_ptr cache(NewLRUCache(lo)); table_options.block_cache = cache; table_options.flush_block_policy_factory = std::make_shared(); Options options; options.compression = kSnappyCompression; options.compression_opts.max_dict_bytes = kMaxDictBytes; options.compression_opts.max_dict_buffer_bytes = kMaxDictBufferBytes; options.table_factory.reset(NewBlockBasedTableFactory(table_options)); test::StringSink* sink = new test::StringSink(); std::unique_ptr holder(sink); std::unique_ptr file_writer(new WritableFileWriter( std::move(holder), "test_file_name", FileOptions())); ImmutableOptions ioptions(options); MutableCFOptions moptions(options); InternalKeyComparator ikc(options.comparator); IntTblPropCollectorFactories int_tbl_prop_collector_factories; std::unique_ptr builder(options.table_factory->NewTableBuilder( TableBuilderOptions(ioptions, moptions, ikc, &int_tbl_prop_collector_factories, kSnappyCompression, options.compression_opts, kUnknownColumnFamily, "test_cf", -1 /* level */), file_writer.get())); std::string key1 = "key1"; std::string value1 = "val1"; InternalKey ik1(key1, 0 /* sequnce number */, kTypeValue); // Adding the first key won't trigger a flush by FlushBlockEveryKeyPolicy // therefore won't trigger any data block's buffering builder->Add(ik1.Encode(), value1); ASSERT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); std::string key2 = "key2"; std::string value2(kSizeDummyEntry, '0'); InternalKey ik2(key2, 1 /* sequnce number */, kTypeValue); // Adding the second key will trigger a flush of the last data block (the one // containing key1 and value1) by FlushBlockEveryKeyPolicy and hence trigger // buffering of the last data block. builder->Add(ik2.Encode(), value2); // Cache charging will increase for the last buffered data block (the one // containing key1 and value1) since the buffer limit is not exceeded after // the buffering and the cache will not be full after this reservation EXPECT_GE(cache->GetPinnedUsage(), 1 * kSizeDummyEntry); EXPECT_LT(cache->GetPinnedUsage(), 1 * kSizeDummyEntry + kMetaDataChargeOverhead); std::string key3 = "key3"; std::string value3 = "value3"; InternalKey ik3(key3, 2 /* sequnce number */, kTypeValue); // Adding the third key will trigger a flush of the last data block (the one // containing key2 and value2) by FlushBlockEveryKeyPolicy and hence trigger // buffering of the last data block. builder->Add(ik3.Encode(), value3); // Cache charging will decrease since the cache is now full after // increasing reservation for the last buffered block and EnterUnbuffered() is // triggered EXPECT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); ASSERT_OK(builder->Finish()); EXPECT_EQ(cache->GetPinnedUsage(), 0 * kSizeDummyEntry); } class CacheUsageOptionsOverridesTest : public DBTestBase { public: CacheUsageOptionsOverridesTest() : DBTestBase("cache_usage_options_overrides_test", /*env_do_fsync=*/false) {} }; TEST_F(CacheUsageOptionsOverridesTest, SanitizeAndValidateOptions) { // To test `cache_usage_options.options_overrides` is sanitized // where `cache_usage_options.options` is used when there is no entry in // `cache_usage_options.options_overrides` Options options; options.create_if_missing = true; BlockBasedTableOptions table_options = BlockBasedTableOptions(); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); Destroy(options); Status s = TryReopen(options); EXPECT_TRUE(s.ok()); const auto* sanitized_table_options = options.table_factory->GetOptions(); const auto sanitized_options_overrides = sanitized_table_options->cache_usage_options.options_overrides; EXPECT_EQ(sanitized_options_overrides.size(), kNumCacheEntryRoles); for (auto options_overrides_iter = sanitized_options_overrides.cbegin(); options_overrides_iter != sanitized_options_overrides.cend(); ++options_overrides_iter) { CacheEntryRoleOptions role_options = options_overrides_iter->second; CacheEntryRoleOptions default_options = sanitized_table_options->cache_usage_options.options; EXPECT_TRUE(role_options == default_options); } Destroy(options); // To test option validation on unsupported CacheEntryRole table_options = BlockBasedTableOptions(); table_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kDataBlock, {/*.charged = */ CacheEntryRoleOptions::Decision::kDisabled}}); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); Destroy(options); s = TryReopen(options); EXPECT_TRUE(s.IsNotSupported()); EXPECT_TRUE( s.ToString().find("Enable/Disable CacheEntryRoleOptions::charged") != std::string::npos); EXPECT_TRUE( s.ToString().find(kCacheEntryRoleToCamelString[static_cast( CacheEntryRole::kDataBlock)]) != std::string::npos); Destroy(options); // To test option validation on existence of block cache table_options = BlockBasedTableOptions(); table_options.no_block_cache = true; table_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kFilterConstruction, {/*.charged = */ CacheEntryRoleOptions::Decision::kEnabled}}); options.table_factory.reset(NewBlockBasedTableFactory(table_options)); Destroy(options); s = TryReopen(options); EXPECT_TRUE(s.IsInvalidArgument()); EXPECT_TRUE(s.ToString().find("Enable CacheEntryRoleOptions::charged") != std::string::npos); EXPECT_TRUE( s.ToString().find(kCacheEntryRoleToCamelString[static_cast( CacheEntryRole::kFilterConstruction)]) != std::string::npos); EXPECT_TRUE(s.ToString().find("block cache is disabled") != std::string::npos); Destroy(options); } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }