// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). /* BEGIN RocksDB customizations */ #ifndef XXH_STATIC_LINKING_ONLY // Using compiled xxhash.cc #define XXH_STATIC_LINKING_ONLY 1 #endif // !defined(XXH_STATIC_LINKING_ONLY) #ifndef XXH_NAMESPACE #define XXH_NAMESPACE ROCKSDB_ #endif // !defined(XXH_NAMESPACE) // for FALLTHROUGH_INTENDED, inserted as appropriate #include "port/lang.h" /* END RocksDB customizations */ // clang-format off /* * xxHash - Extremely Fast Hash algorithm * Header File * Copyright (C) 2012-2021 Yann Collet * * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You can contact the author at: * - xxHash homepage: https://www.xxhash.com * - xxHash source repository: https://github.com/Cyan4973/xxHash */ /*! * @mainpage xxHash * * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed * limits. * * It is proposed in four flavors, in three families: * 1. @ref XXH32_family * - Classic 32-bit hash function. Simple, compact, and runs on almost all * 32-bit and 64-bit systems. * 2. @ref XXH64_family * - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most * 64-bit systems (but _not_ 32-bit systems). * 3. @ref XXH3_family * - Modern 64-bit and 128-bit hash function family which features improved * strength and performance across the board, especially on smaller data. * It benefits greatly from SIMD and 64-bit without requiring it. * * Benchmarks * --- * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04. * The open source benchmark program is compiled with clang v10.0 using -O3 flag. * * | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity | * | -------------------- | ------- | ----: | ---------------: | ------------------: | * | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 | * | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 | * | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 | * | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 | * | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 | * | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 | * | RAM sequential read | | N/A | 28.0 GB/s | N/A | * | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 | * | City64 | | 64 | 22.0 GB/s | 76.6 | * | T1ha2 | | 64 | 22.0 GB/s | 99.0 | * | City128 | | 128 | 21.7 GB/s | 57.7 | * | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 | * | XXH64() | | 64 | 19.4 GB/s | 71.0 | * | SpookyHash | | 64 | 19.3 GB/s | 53.2 | * | Mum | | 64 | 18.0 GB/s | 67.0 | * | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 | * | XXH32() | | 32 | 9.7 GB/s | 71.9 | * | City32 | | 32 | 9.1 GB/s | 66.0 | * | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 | * | Murmur3 | | 32 | 3.9 GB/s | 56.1 | * | SipHash* | | 64 | 3.0 GB/s | 43.2 | * | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 | * | HighwayHash | | 64 | 1.4 GB/s | 6.0 | * | FNV64 | | 64 | 1.2 GB/s | 62.7 | * | Blake2* | | 256 | 1.1 GB/s | 5.1 | * | SHA1* | | 160 | 0.8 GB/s | 5.6 | * | MD5* | | 128 | 0.6 GB/s | 7.8 | * @note * - Hashes which require a specific ISA extension are noted. SSE2 is also noted, * even though it is mandatory on x64. * - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic * by modern standards. * - Small data velocity is a rough average of algorithm's efficiency for small * data. For more accurate information, see the wiki. * - More benchmarks and strength tests are found on the wiki: * https://github.com/Cyan4973/xxHash/wiki * * Usage * ------ * All xxHash variants use a similar API. Changing the algorithm is a trivial * substitution. * * @pre * For functions which take an input and length parameter, the following * requirements are assumed: * - The range from [`input`, `input + length`) is valid, readable memory. * - The only exception is if the `length` is `0`, `input` may be `NULL`. * - For C++, the objects must have the *TriviallyCopyable* property, as the * functions access bytes directly as if it was an array of `unsigned char`. * * @anchor single_shot_example * **Single Shot** * * These functions are stateless functions which hash a contiguous block of memory, * immediately returning the result. They are the easiest and usually the fastest * option. * * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits() * * @code{.c} * #include * #include "xxhash.h" * * // Example for a function which hashes a null terminated string with XXH32(). * XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed) * { * // NULL pointers are only valid if the length is zero * size_t length = (string == NULL) ? 0 : strlen(string); * return XXH32(string, length, seed); * } * @endcode * * @anchor streaming_example * **Streaming** * * These groups of functions allow incremental hashing of unknown size, even * more than what would fit in a size_t. * * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset() * * @code{.c} * #include * #include * #include "xxhash.h" * // Example for a function which hashes a FILE incrementally with XXH3_64bits(). * XXH64_hash_t hashFile(FILE* f) * { * // Allocate a state struct. Do not just use malloc() or new. * XXH3_state_t* state = XXH3_createState(); * assert(state != NULL && "Out of memory!"); * // Reset the state to start a new hashing session. * XXH3_64bits_reset(state); * char buffer[4096]; * size_t count; * // Read the file in chunks * while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) { * // Run update() as many times as necessary to process the data * XXH3_64bits_update(state, buffer, count); * } * // Retrieve the finalized hash. This will not change the state. * XXH64_hash_t result = XXH3_64bits_digest(state); * // Free the state. Do not use free(). * XXH3_freeState(state); * return result; * } * @endcode * * @file xxhash.h * xxHash prototypes and implementation */ #if defined (__cplusplus) extern "C" { #endif /* **************************** * INLINE mode ******************************/ /*! * @defgroup public Public API * Contains details on the public xxHash functions. * @{ */ #ifdef XXH_DOXYGEN /*! * @brief Exposes the implementation and marks all functions as `inline`. * * Use these build macros to inline xxhash into the target unit. * Inlining improves performance on small inputs, especially when the length is * expressed as a compile-time constant: * * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html * * It also keeps xxHash symbols private to the unit, so they are not exported. * * Usage: * @code{.c} * #define XXH_INLINE_ALL * #include "xxhash.h" * @endcode * Do not compile and link xxhash.o as a separate object, as it is not useful. */ # define XXH_INLINE_ALL # undef XXH_INLINE_ALL /*! * @brief Exposes the implementation without marking functions as inline. */ # define XXH_PRIVATE_API # undef XXH_PRIVATE_API /*! * @brief Emulate a namespace by transparently prefixing all symbols. * * If you want to include _and expose_ xxHash functions from within your own * library, but also want to avoid symbol collisions with other libraries which * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE * (therefore, avoid empty or numeric values). * * Note that no change is required within the calling program as long as it * includes `xxhash.h`: Regular symbol names will be automatically translated * by this header. */ # define XXH_NAMESPACE /* YOUR NAME HERE */ # undef XXH_NAMESPACE #endif #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ && !defined(XXH_INLINE_ALL_31684351384) /* this section should be traversed only once */ # define XXH_INLINE_ALL_31684351384 /* give access to the advanced API, required to compile implementations */ # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ # define XXH_STATIC_LINKING_ONLY /* make all functions private */ # undef XXH_PUBLIC_API # if defined(__GNUC__) # define XXH_PUBLIC_API static __inline __attribute__((unused)) # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) # define XXH_PUBLIC_API static inline # elif defined(_MSC_VER) # define XXH_PUBLIC_API static __inline # else /* note: this version may generate warnings for unused static functions */ # define XXH_PUBLIC_API static # endif /* * This part deals with the special case where a unit wants to inline xxHash, * but "xxhash.h" has previously been included without XXH_INLINE_ALL, * such as part of some previously included *.h header file. * Without further action, the new include would just be ignored, * and functions would effectively _not_ be inlined (silent failure). * The following macros solve this situation by prefixing all inlined names, * avoiding naming collision with previous inclusions. */ /* Before that, we unconditionally #undef all symbols, * in case they were already defined with XXH_NAMESPACE. * They will then be redefined for XXH_INLINE_ALL */ # undef XXH_versionNumber /* XXH32 */ # undef XXH32 # undef XXH32_createState # undef XXH32_freeState # undef XXH32_reset # undef XXH32_update # undef XXH32_digest # undef XXH32_copyState # undef XXH32_canonicalFromHash # undef XXH32_hashFromCanonical /* XXH64 */ # undef XXH64 # undef XXH64_createState # undef XXH64_freeState # undef XXH64_reset # undef XXH64_update # undef XXH64_digest # undef XXH64_copyState # undef XXH64_canonicalFromHash # undef XXH64_hashFromCanonical /* XXH3_64bits */ # undef XXH3_64bits # undef XXH3_64bits_withSecret # undef XXH3_64bits_withSeed # undef XXH3_64bits_withSecretandSeed # undef XXH3_createState # undef XXH3_freeState # undef XXH3_copyState # undef XXH3_64bits_reset # undef XXH3_64bits_reset_withSeed # undef XXH3_64bits_reset_withSecret # undef XXH3_64bits_update # undef XXH3_64bits_digest # undef XXH3_generateSecret /* XXH3_128bits */ # undef XXH128 # undef XXH3_128bits # undef XXH3_128bits_withSeed # undef XXH3_128bits_withSecret # undef XXH3_128bits_reset # undef XXH3_128bits_reset_withSeed # undef XXH3_128bits_reset_withSecret # undef XXH3_128bits_reset_withSecretandSeed # undef XXH3_128bits_update # undef XXH3_128bits_digest # undef XXH128_isEqual # undef XXH128_cmp # undef XXH128_canonicalFromHash # undef XXH128_hashFromCanonical /* Finally, free the namespace itself */ # undef XXH_NAMESPACE /* employ the namespace for XXH_INLINE_ALL */ # define XXH_NAMESPACE XXH_INLINE_ /* * Some identifiers (enums, type names) are not symbols, * but they must nonetheless be renamed to avoid redeclaration. * Alternative solution: do not redeclare them. * However, this requires some #ifdefs, and has a more dispersed impact. * Meanwhile, renaming can be achieved in a single place. */ # define XXH_IPREF(Id) XXH_NAMESPACE ## Id # define XXH_OK XXH_IPREF(XXH_OK) # define XXH_ERROR XXH_IPREF(XXH_ERROR) # define XXH_errorcode XXH_IPREF(XXH_errorcode) # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) # define XXH32_state_s XXH_IPREF(XXH32_state_s) # define XXH32_state_t XXH_IPREF(XXH32_state_t) # define XXH64_state_s XXH_IPREF(XXH64_state_s) # define XXH64_state_t XXH_IPREF(XXH64_state_t) # define XXH3_state_s XXH_IPREF(XXH3_state_s) # define XXH3_state_t XXH_IPREF(XXH3_state_t) # define XXH128_hash_t XXH_IPREF(XXH128_hash_t) /* Ensure the header is parsed again, even if it was previously included */ # undef XXHASH_H_5627135585666179 # undef XXHASH_H_STATIC_13879238742 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ /* **************************************************************** * Stable API *****************************************************************/ #ifndef XXHASH_H_5627135585666179 #define XXHASH_H_5627135585666179 1 /*! @brief Marks a global symbol. */ #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) # ifdef XXH_EXPORT # define XXH_PUBLIC_API __declspec(dllexport) # elif XXH_IMPORT # define XXH_PUBLIC_API __declspec(dllimport) # endif # else # define XXH_PUBLIC_API /* do nothing */ # endif #endif #ifdef XXH_NAMESPACE # define XXH_CAT(A,B) A##B # define XXH_NAME2(A,B) XXH_CAT(A,B) # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) /* XXH32 */ # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) /* XXH64 */ # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) /* XXH3_64bits */ # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) # define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) # define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) # define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) /* XXH3_128bits */ # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) # define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) # define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) #endif /* ************************************* * Compiler specifics ***************************************/ /* specific declaration modes for Windows */ #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) # ifdef XXH_EXPORT # define XXH_PUBLIC_API __declspec(dllexport) # elif XXH_IMPORT # define XXH_PUBLIC_API __declspec(dllimport) # endif # else # define XXH_PUBLIC_API /* do nothing */ # endif #endif #if defined (__GNUC__) # define XXH_CONSTF __attribute__((const)) # define XXH_PUREF __attribute__((pure)) # define XXH_MALLOCF __attribute__((malloc)) #else # define XXH_CONSTF /* disable */ # define XXH_PUREF # define XXH_MALLOCF #endif /* ************************************* * Version ***************************************/ #define XXH_VERSION_MAJOR 0 #define XXH_VERSION_MINOR 8 #define XXH_VERSION_RELEASE 1 /*! @brief Version number, encoded as two digits each */ #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) /*! * @brief Obtains the xxHash version. * * This is mostly useful when xxHash is compiled as a shared library, * since the returned value comes from the library, as opposed to header file. * * @return @ref XXH_VERSION_NUMBER of the invoked library. */ XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void); /* **************************** * Common basic types ******************************/ #include /* size_t */ /*! * @brief Exit code for the streaming API. */ typedef enum { XXH_OK = 0, /*!< OK */ XXH_ERROR /*!< Error */ } XXH_errorcode; /*-********************************************************************** * 32-bit hash ************************************************************************/ #if defined(XXH_DOXYGEN) /* Don't show include */ /*! * @brief An unsigned 32-bit integer. * * Not necessarily defined to `uint32_t` but functionally equivalent. */ typedef uint32_t XXH32_hash_t; #elif !defined (__VMS) \ && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include typedef uint32_t XXH32_hash_t; #else # include # if UINT_MAX == 0xFFFFFFFFUL typedef unsigned int XXH32_hash_t; # elif ULONG_MAX == 0xFFFFFFFFUL typedef unsigned long XXH32_hash_t; # else # error "unsupported platform: need a 32-bit type" # endif #endif /*! * @} * * @defgroup XXH32_family XXH32 family * @ingroup public * Contains functions used in the classic 32-bit xxHash algorithm. * * @note * XXH32 is useful for older platforms, with no or poor 64-bit performance. * Note that the @ref XXH3_family provides competitive speed for both 32-bit * and 64-bit systems, and offers true 64/128 bit hash results. * * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families * @see @ref XXH32_impl for implementation details * @{ */ /*! * @brief Calculates the 32-bit hash of @p input using xxHash32. * * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s * * See @ref single_shot_example "Single Shot Example" for an example. * * @param input The block of data to be hashed, at least @p length bytes in size. * @param length The length of @p input, in bytes. * @param seed The 32-bit seed to alter the hash's output predictably. * * @pre * The memory between @p input and @p input + @p length must be valid, * readable, contiguous memory. However, if @p length is `0`, @p input may be * `NULL`. In C++, this also must be *TriviallyCopyable*. * * @return The calculated 32-bit hash value. * * @see * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): * Direct equivalents for the other variants of xxHash. * @see * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version. */ XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); #ifndef XXH_NO_STREAM /*! * Streaming functions generate the xxHash value from an incremental input. * This method is slower than single-call functions, due to state management. * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. * * An XXH state must first be allocated using `XXH*_createState()`. * * Start a new hash by initializing the state with a seed using `XXH*_reset()`. * * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. * * The function returns an error code, with 0 meaning OK, and any other value * meaning there is an error. * * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. * This function returns the nn-bits hash as an int or long long. * * It's still possible to continue inserting input into the hash state after a * digest, and generate new hash values later on by invoking `XXH*_digest()`. * * When done, release the state using `XXH*_freeState()`. * * @see streaming_example at the top of @ref xxhash.h for an example. */ /*! * @typedef struct XXH32_state_s XXH32_state_t * @brief The opaque state struct for the XXH32 streaming API. * * @see XXH32_state_s for details. */ typedef struct XXH32_state_s XXH32_state_t; /*! * @brief Allocates an @ref XXH32_state_t. * * Must be freed with XXH32_freeState(). * @return An allocated XXH32_state_t on success, `NULL` on failure. */ XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void); /*! * @brief Frees an @ref XXH32_state_t. * * Must be allocated with XXH32_createState(). * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). * @return XXH_OK. */ XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); /*! * @brief Copies one @ref XXH32_state_t to another. * * @param dst_state The state to copy to. * @param src_state The state to copy from. * @pre * @p dst_state and @p src_state must not be `NULL` and must not overlap. */ XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); /*! * @brief Resets an @ref XXH32_state_t to begin a new hash. * * This function resets and seeds a state. Call it before @ref XXH32_update(). * * @param statePtr The state struct to reset. * @param seed The 32-bit seed to alter the hash result predictably. * * @pre * @p statePtr must not be `NULL`. * * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. */ XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); /*! * @brief Consumes a block of @p input to an @ref XXH32_state_t. * * Call this to incrementally consume blocks of data. * * @param statePtr The state struct to update. * @param input The block of data to be hashed, at least @p length bytes in size. * @param length The length of @p input, in bytes. * * @pre * @p statePtr must not be `NULL`. * @pre * The memory between @p input and @p input + @p length must be valid, * readable, contiguous memory. However, if @p length is `0`, @p input may be * `NULL`. In C++, this also must be *TriviallyCopyable*. * * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. */ XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); /*! * @brief Returns the calculated hash value from an @ref XXH32_state_t. * * @note * Calling XXH32_digest() will not affect @p statePtr, so you can update, * digest, and update again. * * @param statePtr The state struct to calculate the hash from. * * @pre * @p statePtr must not be `NULL`. * * @return The calculated xxHash32 value from that state. */ XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); #endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ /* * The default return values from XXH functions are unsigned 32 and 64 bit * integers. * This the simplest and fastest format for further post-processing. * * However, this leaves open the question of what is the order on the byte level, * since little and big endian conventions will store the same number differently. * * The canonical representation settles this issue by mandating big-endian * convention, the same convention as human-readable numbers (large digits first). * * When writing hash values to storage, sending them over a network, or printing * them, it's highly recommended to use the canonical representation to ensure * portability across a wider range of systems, present and future. * * The following functions allow transformation of hash values to and from * canonical format. */ /*! * @brief Canonical (big endian) representation of @ref XXH32_hash_t. */ typedef struct { unsigned char digest[4]; /*!< Hash bytes, big endian */ } XXH32_canonical_t; /*! * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. * * @param dst The @ref XXH32_canonical_t pointer to be stored to. * @param hash The @ref XXH32_hash_t to be converted. * * @pre * @p dst must not be `NULL`. */ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); /*! * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. * * @param src The @ref XXH32_canonical_t to convert. * * @pre * @p src must not be `NULL`. * * @return The converted hash. */ XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); #ifdef __has_attribute # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) #else # define XXH_HAS_ATTRIBUTE(x) 0 #endif /* C-language Attributes are added in C23. */ #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute) # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) #else # define XXH_HAS_C_ATTRIBUTE(x) 0 #endif #if defined(__cplusplus) && defined(__has_cpp_attribute) # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define XXH_HAS_CPP_ATTRIBUTE(x) 0 #endif /* * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute * introduced in CPP17 and C23. * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough */ #if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough) # define XXH_FALLTHROUGH [[fallthrough]] #elif XXH_HAS_ATTRIBUTE(__fallthrough__) # define XXH_FALLTHROUGH __attribute__ ((__fallthrough__)) #else # define XXH_FALLTHROUGH /* fallthrough */ #endif /* * Define XXH_NOESCAPE for annotated pointers in public API. * https://clang.llvm.org/docs/AttributeReference.html#noescape * As of writing this, only supported by clang. */ #if XXH_HAS_ATTRIBUTE(noescape) # define XXH_NOESCAPE __attribute__((noescape)) #else # define XXH_NOESCAPE #endif /*! * @} * @ingroup public * @{ */ #ifndef XXH_NO_LONG_LONG /*-********************************************************************** * 64-bit hash ************************************************************************/ #if defined(XXH_DOXYGEN) /* don't include */ /*! * @brief An unsigned 64-bit integer. * * Not necessarily defined to `uint64_t` but functionally equivalent. */ typedef uint64_t XXH64_hash_t; #elif !defined (__VMS) \ && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include typedef uint64_t XXH64_hash_t; #else # include # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL /* LP64 ABI says uint64_t is unsigned long */ typedef unsigned long XXH64_hash_t; # else /* the following type must have a width of 64-bit */ typedef unsigned long long XXH64_hash_t; # endif #endif /*! * @} * * @defgroup XXH64_family XXH64 family * @ingroup public * @{ * Contains functions used in the classic 64-bit xxHash algorithm. * * @note * XXH3 provides competitive speed for both 32-bit and 64-bit systems, * and offers true 64/128 bit hash results. * It provides better speed for systems with vector processing capabilities. */ /*! * @brief Calculates the 64-bit hash of @p input using xxHash64. * * This function usually runs faster on 64-bit systems, but slower on 32-bit * systems (see benchmark). * * @param input The block of data to be hashed, at least @p length bytes in size. * @param length The length of @p input, in bytes. * @param seed The 64-bit seed to alter the hash's output predictably. * * @pre * The memory between @p input and @p input + @p length must be valid, * readable, contiguous memory. However, if @p length is `0`, @p input may be * `NULL`. In C++, this also must be *TriviallyCopyable*. * * @return The calculated 64-bit hash. * * @see * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): * Direct equivalents for the other variants of xxHash. * @see * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version. */ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); /******* Streaming *******/ #ifndef XXH_NO_STREAM /*! * @brief The opaque state struct for the XXH64 streaming API. * * @see XXH64_state_s for details. */ typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void); XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state); XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed); XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr); #endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash); XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src); #ifndef XXH_NO_XXH3 /*! * @} * ************************************************************************ * @defgroup XXH3_family XXH3 family * @ingroup public * @{ * * XXH3 is a more recent hash algorithm featuring: * - Improved speed for both small and large inputs * - True 64-bit and 128-bit outputs * - SIMD acceleration * - Improved 32-bit viability * * Speed analysis methodology is explained here: * * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html * * Compared to XXH64, expect XXH3 to run approximately * ~2x faster on large inputs and >3x faster on small ones, * exact differences vary depending on platform. * * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, * but does not require it. * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3 * at competitive speeds, even without vector support. Further details are * explained in the implementation. * * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, * ZVector and scalar targets. This can be controlled via the @ref XXH_VECTOR * macro. For the x86 family, an automatic dispatcher is included separately * in @ref xxh_x86dispatch.c. * * XXH3 implementation is portable: * it has a generic C90 formulation that can be compiled on any platform, * all implementations generage exactly the same hash value on all platforms. * Starting from v0.8.0, it's also labelled "stable", meaning that * any future version will also generate the same hash value. * * XXH3 offers 2 variants, _64bits and _128bits. * * When only 64 bits are needed, prefer invoking the _64bits variant, as it * reduces the amount of mixing, resulting in faster speed on small inputs. * It's also generally simpler to manipulate a scalar return type than a struct. * * The API supports one-shot hashing, streaming mode, and custom secrets. */ /*-********************************************************************** * XXH3 64-bit variant ************************************************************************/ /*! * @brief 64-bit unseeded variant of XXH3. * * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of 0, however * it may have slightly better performance due to constant propagation of the * defaults. * * @see * XXH32(), XXH64(), XXH3_128bits(): equivalent for the other xxHash algorithms * @see * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants * @see * XXH3_64bits_reset(), XXH3_64bits_update(), XXH3_64bits_digest(): Streaming version. */ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length); /*! * @brief 64-bit seeded variant of XXH3 * * This variant generates a custom secret on the fly based on default secret * altered using the `seed` value. * * While this operation is decently fast, note that it's not completely free. * * @note * seed == 0 produces the same results as @ref XXH3_64bits(). * * @param input The data to hash * @param length The length * @param seed The 64-bit seed to alter the state. */ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); /*! * The bare minimum size for a custom secret. * * @see * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). */ #define XXH3_SECRET_SIZE_MIN 136 /*! * @brief 64-bit variant of XXH3 with a custom "secret". * * It's possible to provide any blob of bytes as a "secret" to generate the hash. * This makes it more difficult for an external actor to prepare an intentional collision. * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). * However, the quality of the secret impacts the dispersion of the hash algorithm. * Therefore, the secret _must_ look like a bunch of random bytes. * Avoid "trivial" or structured data such as repeated sequences or a text document. * Whenever in doubt about the "randomness" of the blob of bytes, * consider employing "XXH3_generateSecret()" instead (see below). * It will generate a proper high entropy secret derived from the blob of bytes. * Another advantage of using XXH3_generateSecret() is that * it guarantees that all bits within the initial blob of bytes * will impact every bit of the output. * This is not necessarily the case when using the blob of bytes directly * because, when hashing _small_ inputs, only a portion of the secret is employed. */ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); /******* Streaming *******/ #ifndef XXH_NO_STREAM /* * Streaming requires state maintenance. * This operation costs memory and CPU. * As a consequence, streaming is slower than one-shot hashing. * For better performance, prefer one-shot functions whenever applicable. */ /*! * @brief The state struct for the XXH3 streaming API. * * @see XXH3_state_s for details. */ typedef struct XXH3_state_s XXH3_state_t; XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void); XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state); /* * XXH3_64bits_reset(): * Initialize with default parameters. * digest will be equivalent to `XXH3_64bits()`. */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); /* * XXH3_64bits_reset_withSeed(): * Generate a custom secret from `seed`, and store it into `statePtr`. * digest will be equivalent to `XXH3_64bits_withSeed()`. */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); /*! * XXH3_64bits_reset_withSecret(): * `secret` is referenced, it _must outlive_ the hash streaming session. * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, * and the quality of produced hash values depends on secret's entropy * (secret's content should look like a bunch of random bytes). * When in doubt about the randomness of a candidate `secret`, * consider employing `XXH3_generateSecret()` instead (see below). */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); #endif /* !XXH_NO_STREAM */ /* note : canonical representation of XXH3 is the same as XXH64 * since they both produce XXH64_hash_t values */ /*-********************************************************************** * XXH3 128-bit variant ************************************************************************/ /*! * @brief The return value from 128-bit hashes. * * Stored in little endian order, although the fields themselves are in native * endianness. */ typedef struct { XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ XXH64_hash_t high64; /*!< `value >> 64` */ } XXH128_hash_t; /*! * @brief Unseeded 128-bit variant of XXH3 * * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead * for shorter inputs. * * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of 0, however * it may have slightly better performance due to constant propagation of the * defaults. * * @see * XXH32(), XXH64(), XXH3_64bits(): equivalent for the other xxHash algorithms * @see * XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants * @see * XXH3_128bits_reset(), XXH3_128bits_update(), XXH3_128bits_digest(): Streaming version. */ XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len); /*! @brief Seeded 128-bit variant of XXH3. @see XXH3_64bits_withSeed(). */ XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); /*! @brief Custom secret 128-bit variant of XXH3. @see XXH3_64bits_withSecret(). */ XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); /******* Streaming *******/ #ifndef XXH_NO_STREAM /* * Streaming requires state maintenance. * This operation costs memory and CPU. * As a consequence, streaming is slower than one-shot hashing. * For better performance, prefer one-shot functions whenever applicable. * * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). * Use already declared XXH3_createState() and XXH3_freeState(). * * All reset and streaming functions have same meaning as their 64-bit counterpart. */ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); #endif /* !XXH_NO_STREAM */ /* Following helper functions make it possible to compare XXH128_hast_t values. * Since XXH128_hash_t is a structure, this capability is not offered by the language. * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ /*! * XXH128_isEqual(): * Return: 1 if `h1` and `h2` are equal, 0 if they are not. */ XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); /*! * @brief Compares two @ref XXH128_hash_t * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. * * @return: >0 if *h128_1 > *h128_2 * =0 if *h128_1 == *h128_2 * <0 if *h128_1 < *h128_2 */ XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2); /******* Canonical representation *******/ typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash); XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src); #endif /* !XXH_NO_XXH3 */ #endif /* XXH_NO_LONG_LONG */ /*! * @} */ #endif /* XXHASH_H_5627135585666179 */ #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) #define XXHASH_H_STATIC_13879238742 /* **************************************************************************** * This section contains declarations which are not guaranteed to remain stable. * They may change in future versions, becoming incompatible with a different * version of the library. * These declarations should only be used with static linking. * Never use them in association with dynamic linking! ***************************************************************************** */ /* * These definitions are only present to allow static allocation * of XXH states, on stack or in a struct, for example. * Never **ever** access their members directly. */ /*! * @internal * @brief Structure for XXH32 streaming API. * * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is * an opaque type. This allows fields to safely be changed. * * Typedef'd to @ref XXH32_state_t. * Do not access the members of this struct directly. * @see XXH64_state_s, XXH3_state_s */ struct XXH32_state_s { XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ XXH32_hash_t v[4]; /*!< Accumulator lanes */ XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */ }; /* typedef'd to XXH32_state_t */ #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ /*! * @internal * @brief Structure for XXH64 streaming API. * * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is * an opaque type. This allows fields to safely be changed. * * Typedef'd to @ref XXH64_state_t. * Do not access the members of this struct directly. * @see XXH32_state_s, XXH3_state_s */ struct XXH64_state_s { XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ XXH64_hash_t v[4]; /*!< Accumulator lanes */ XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */ }; /* typedef'd to XXH64_state_t */ #ifndef XXH_NO_XXH3 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ # include # define XXH_ALIGN(n) alignas(n) #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ /* In C++ alignas() is a keyword */ # define XXH_ALIGN(n) alignas(n) #elif defined(__GNUC__) # define XXH_ALIGN(n) __attribute__ ((aligned(n))) #elif defined(_MSC_VER) # define XXH_ALIGN(n) __declspec(align(n)) #else # define XXH_ALIGN(n) /* disabled */ #endif /* Old GCC versions only accept the attribute after the type in structures. */ #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ && defined(__GNUC__) # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) #else # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type #endif /*! * @brief The size of the internal XXH3 buffer. * * This is the optimal update size for incremental hashing. * * @see XXH3_64b_update(), XXH3_128b_update(). */ #define XXH3_INTERNALBUFFER_SIZE 256 /*! * @brief Default size of the secret buffer (and @ref XXH3_kSecret). * * This is the size used in @ref XXH3_kSecret and the seeded functions. * * Not to be confused with @ref XXH3_SECRET_SIZE_MIN. */ #define XXH3_SECRET_DEFAULT_SIZE 192 /*! * @internal * @brief Structure for XXH3 streaming API. * * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. * Otherwise it is an opaque type. * Never use this definition in combination with dynamic library. * This allows fields to safely be changed in the future. * * @note ** This structure has a strict alignment requirement of 64 bytes!! ** * Do not allocate this with `malloc()` or `new`, * it will not be sufficiently aligned. * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. * * Typedef'd to @ref XXH3_state_t. * Do never access the members of this struct directly. * * @see XXH3_INITSTATE() for stack initialization. * @see XXH3_createState(), XXH3_freeState(). * @see XXH32_state_s, XXH64_state_s */ struct XXH3_state_s { XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */ XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); /*!< Used to store a custom secret generated from a seed. */ XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); /*!< The internal buffer. @see XXH32_state_s::mem32 */ XXH32_hash_t bufferedSize; /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ XXH32_hash_t useSeed; /*!< Reserved field. Needed for padding on 64-bit. */ size_t nbStripesSoFar; /*!< Number or stripes processed. */ XXH64_hash_t totalLen; /*!< Total length hashed. 64-bit even on 32-bit targets. */ size_t nbStripesPerBlock; /*!< Number of stripes per block. */ size_t secretLimit; /*!< Size of @ref customSecret or @ref extSecret */ XXH64_hash_t seed; /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ XXH64_hash_t reserved64; /*!< Reserved field. */ const unsigned char* extSecret; /*!< Reference to an external secret for the _withSecret variants, NULL * for other variants. */ /* note: there may be some padding at the end due to alignment on 64 bytes */ }; /* typedef'd to XXH3_state_t */ #undef XXH_ALIGN_MEMBER /*! * @brief Initializes a stack-allocated `XXH3_state_s`. * * When the @ref XXH3_state_t structure is merely emplaced on stack, * it should be initialized with XXH3_INITSTATE() or a memset() * in case its first reset uses XXH3_NNbits_reset_withSeed(). * This init can be omitted if the first reset uses default or _withSecret mode. * This operation isn't necessary when the state is created with XXH3_createState(). * Note that this doesn't prepare the state for a streaming operation, * it's still necessary to use XXH3_NNbits_reset*() afterwards. */ #define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } /*! * simple alias to pre-selected XXH3_128bits variant */ XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); /* === Experimental API === */ /* Symbols defined below must be considered tied to a specific library version. */ /*! * XXH3_generateSecret(): * * Derive a high-entropy secret from any user-defined content, named customSeed. * The generated secret can be used in combination with `*_withSecret()` functions. * The `_withSecret()` variants are useful to provide a higher level of protection * than 64-bit seed, as it becomes much more difficult for an external actor to * guess how to impact the calculation logic. * * The function accepts as input a custom seed of any length and any content, * and derives from it a high-entropy secret of length @p secretSize into an * already allocated buffer @p secretBuffer. * * The generated secret can then be used with any `*_withSecret()` variant. * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(), * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret() * are part of this list. They all accept a `secret` parameter * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN) * _and_ feature very high entropy (consist of random-looking bytes). * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can * be employed to ensure proper quality. * * @p customSeed can be anything. It can have any size, even small ones, * and its content can be anything, even "poor entropy" sources such as a bunch * of zeroes. The resulting `secret` will nonetheless provide all required qualities. * * @pre * - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN * - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior. * * Example code: * @code{.c} * #include * #include * #include * #define XXH_STATIC_LINKING_ONLY // expose unstable API * #include "xxhash.h" * // Hashes argv[2] using the entropy from argv[1]. * int main(int argc, char* argv[]) * { * char secret[XXH3_SECRET_SIZE_MIN]; * if (argv != 3) { return 1; } * XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1])); * XXH64_hash_t h = XXH3_64bits_withSecret( * argv[2], strlen(argv[2]), * secret, sizeof(secret) * ); * printf("%016llx\n", (unsigned long long) h); * } * @endcode */ XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize); /*! * @brief Generate the same secret as the _withSeed() variants. * * The generated secret can be used in combination with *`*_withSecret()` and `_withSecretandSeed()` variants. * * Example C++ `std::string` hash class: * @code{.cpp} * #include * #define XXH_STATIC_LINKING_ONLY // expose unstable API * #include "xxhash.h" * // Slow, seeds each time * class HashSlow { * XXH64_hash_t seed; * public: * HashSlow(XXH64_hash_t s) : seed{s} {} * size_t operator()(const std::string& x) const { * return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)}; * } * }; * // Fast, caches the seeded secret for future uses. * class HashFast { * unsigned char secret[XXH3_SECRET_SIZE_MIN]; * public: * HashFast(XXH64_hash_t s) { * XXH3_generateSecret_fromSeed(secret, seed); * } * size_t operator()(const std::string& x) const { * return size_t{ * XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret)) * }; * } * }; * @endcode * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes * @param seed The seed to seed the state. */ XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed); /*! * These variants generate hash values using either * @p seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes) * or @p secret for "large" keys (>= XXH3_MIDSIZE_MAX). * * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. * `_withSeed()` has to generate the secret on the fly for "large" keys. * It's fast, but can be perceptible for "not so large" keys (< 1 KB). * `_withSecret()` has to generate the masks on the fly for "small" keys, * which requires more instructions than _withSeed() variants. * Therefore, _withSecretandSeed variant combines the best of both worlds. * * When @p secret has been generated by XXH3_generateSecret_fromSeed(), * this variant produces *exactly* the same results as `_withSeed()` variant, * hence offering only a pure speed benefit on "large" input, * by skipping the need to regenerate the secret for every large input. * * Another usage scenario is to hash the secret to a 64-bit hash value, * for example with XXH3_64bits(), which then becomes the seed, * and then employ both the seed and the secret in _withSecretandSeed(). * On top of speed, an added benefit is that each bit in the secret * has a 50% chance to swap each bit in the output, via its impact to the seed. * * This is not guaranteed when using the secret directly in "small data" scenarios, * because only portions of the secret are employed for small data. */ XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed); /*! @copydoc XXH3_64bits_withSecretandSeed() */ XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64); #ifndef XXH_NO_STREAM /*! @copydoc XXH3_64bits_withSecretandSeed() */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64); /*! @copydoc XXH3_64bits_withSecretandSeed() */ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64); #endif /* !XXH_NO_STREAM */ #endif /* !XXH_NO_XXH3 */ #endif /* XXH_NO_LONG_LONG */ #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) # define XXH_IMPLEMENTATION #endif #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ /* ======================================================================== */ /* ======================================================================== */ /* ======================================================================== */ /*-********************************************************************** * xxHash implementation *-********************************************************************** * xxHash's implementation used to be hosted inside xxhash.c. * * However, inlining requires implementation to be visible to the compiler, * hence be included alongside the header. * Previously, implementation was hosted inside xxhash.c, * which was then #included when inlining was activated. * This construction created issues with a few build and install systems, * as it required xxhash.c to be stored in /include directory. * * xxHash implementation is now directly integrated within xxhash.h. * As a consequence, xxhash.c is no longer needed in /include. * * xxhash.c is still available and is still useful. * In a "normal" setup, when xxhash is not inlined, * xxhash.h only exposes the prototypes and public symbols, * while xxhash.c can be built into an object file xxhash.o * which can then be linked into the final binary. ************************************************************************/ #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) # define XXH_IMPLEM_13a8737387 /* ************************************* * Tuning parameters ***************************************/ /*! * @defgroup tuning Tuning parameters * @{ * * Various macros to control xxHash's behavior. */ #ifdef XXH_DOXYGEN /*! * @brief Define this to disable 64-bit code. * * Useful if only using the @ref XXH32_family and you have a strict C90 compiler. */ # define XXH_NO_LONG_LONG # undef XXH_NO_LONG_LONG /* don't actually */ /*! * @brief Controls how unaligned memory is accessed. * * By default, access to unaligned memory is controlled by `memcpy()`, which is * safe and portable. * * Unfortunately, on some target/compiler combinations, the generated assembly * is sub-optimal. * * The below switch allow selection of a different access method * in the search for improved performance. * * @par Possible options: * * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` * @par * Use `memcpy()`. Safe and portable. Note that most modern compilers will * eliminate the function call and treat it as an unaligned access. * * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))` * @par * Depends on compiler extensions and is therefore not portable. * This method is safe _if_ your compiler supports it, * and *generally* as fast or faster than `memcpy`. * * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast * @par * Casts directly and dereferences. This method doesn't depend on the * compiler, but it violates the C standard as it directly dereferences an * unaligned pointer. It can generate buggy code on targets which do not * support unaligned memory accesses, but in some circumstances, it's the * only known way to get the most performance. * * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift * @par * Also portable. This can generate the best code on old compilers which don't * inline small `memcpy()` calls, and it might also be faster on big-endian * systems which lack a native byteswap instruction. However, some compilers * will emit literal byteshifts even if the target supports unaligned access. * . * * @warning * Methods 1 and 2 rely on implementation-defined behavior. Use these with * care, as what works on one compiler/platform/optimization level may cause * another to read garbage data or even crash. * * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. * * Prefer these methods in priority order (0 > 3 > 1 > 2) */ # define XXH_FORCE_MEMORY_ACCESS 0 /*! * @def XXH_SIZE_OPT * @brief Controls how much xxHash optimizes for size. * * xxHash, when compiled, tends to result in a rather large binary size. This * is mostly due to heavy usage to forced inlining and constant folding of the * @ref XXH3_family to increase performance. * * However, some developers prefer size over speed. This option can * significantly reduce the size of the generated code. When using the `-Os` * or `-Oz` options on GCC or Clang, this is defined to 1 by default, * otherwise it is defined to 0. * * Most of these size optimizations can be controlled manually. * * This is a number from 0-2. * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed * comes first. * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more * conservative and disables hacks that increase code size. It implies the * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0, * and @ref XXH3_NEON_LANES == 8 if they are not already defined. * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible. * Performance may cry. For example, the single shot functions just use the * streaming API. */ # define XXH_SIZE_OPT 0 /*! * @def XXH_FORCE_ALIGN_CHECK * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() * and XXH64() only). * * This is an important performance trick for architectures without decent * unaligned memory access performance. * * It checks for input alignment, and when conditions are met, uses a "fast * path" employing direct 32-bit/64-bit reads, resulting in _dramatically * faster_ read speed. * * The check costs one initial branch per hash, which is generally negligible, * but not zero. * * Moreover, it's not useful to generate an additional code path if memory * access uses the same instruction for both aligned and unaligned * addresses (e.g. x86 and aarch64). * * In these cases, the alignment check can be removed by setting this macro to 0. * Then the code will always use unaligned memory access. * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips * which are platforms known to offer good unaligned memory accesses performance. * * It is also disabled by default when @ref XXH_SIZE_OPT >= 1. * * This option does not affect XXH3 (only XXH32 and XXH64). */ # define XXH_FORCE_ALIGN_CHECK 0 /*! * @def XXH_NO_INLINE_HINTS * @brief When non-zero, sets all functions to `static`. * * By default, xxHash tries to force the compiler to inline almost all internal * functions. * * This can usually improve performance due to reduced jumping and improved * constant folding, but significantly increases the size of the binary which * might not be favorable. * * Additionally, sometimes the forced inlining can be detrimental to performance, * depending on the architecture. * * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the * compiler full control on whether to inline or not. * * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if * @ref XXH_SIZE_OPT >= 1, this will automatically be defined. */ # define XXH_NO_INLINE_HINTS 0 /*! * @def XXH32_ENDJMP * @brief Whether to use a jump for `XXH32_finalize`. * * For performance, `XXH32_finalize` uses multiple branches in the finalizer. * This is generally preferable for performance, * but depending on exact architecture, a jmp may be preferable. * * This setting is only possibly making a difference for very small inputs. */ # define XXH32_ENDJMP 0 /*! * @internal * @brief Redefines old internal names. * * For compatibility with code that uses xxHash's internals before the names * were changed to improve namespacing. There is no other reason to use this. */ # define XXH_OLD_NAMES # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ /*! * @def XXH_NO_STREAM * @brief Disables the streaming API. * * When xxHash is not inlined and the streaming functions are not used, disabling * the streaming functions can improve code size significantly, especially with * the @ref XXH3_family which tends to make constant folded copies of itself. */ # define XXH_NO_STREAM # undef XXH_NO_STREAM /* don't actually */ #endif /* XXH_DOXYGEN */ /*! * @} */ #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ /* prefer __packed__ structures (method 1) for GCC * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy * which for some reason does unaligned loads. */ # if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED)) # define XXH_FORCE_MEMORY_ACCESS 1 # endif #endif #ifndef XXH_SIZE_OPT /* default to 1 for -Os or -Oz */ # if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__) # define XXH_SIZE_OPT 1 # else # define XXH_SIZE_OPT 0 # endif #endif #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */ # if XXH_SIZE_OPT >= 1 || \ defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \ || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) \ || defined(__loongarch64) /* visual */ # define XXH_FORCE_ALIGN_CHECK 0 # else # define XXH_FORCE_ALIGN_CHECK 1 # endif #endif #ifndef XXH_NO_INLINE_HINTS # if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */ # define XXH_NO_INLINE_HINTS 1 # else # define XXH_NO_INLINE_HINTS 0 # endif #endif #ifndef XXH32_ENDJMP /* generally preferable for performance */ # define XXH32_ENDJMP 0 #endif /*! * @defgroup impl Implementation * @{ */ /* ************************************* * Includes & Memory related functions ***************************************/ #if defined(XXH_NO_STREAM) /* nothing */ #elif defined(XXH_NO_STDLIB) /* When requesting to disable any mention of stdlib, * the library loses the ability to invoked malloc / free. * In practice, it means that functions like `XXH*_createState()` * will always fail, and return NULL. * This flag is useful in situations where * xxhash.h is integrated into some kernel, embedded or limited environment * without access to dynamic allocation. */ static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; } static void XXH_free(void* p) { (void)p; } #else /* * Modify the local functions below should you wish to use * different memory routines for malloc() and free() */ #include /*! * @internal * @brief Modify this function to use a different routine than malloc(). */ static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); } /*! * @internal * @brief Modify this function to use a different routine than free(). */ static void XXH_free(void* p) { free(p); } #endif /* XXH_NO_STDLIB */ #include /*! * @internal * @brief Modify this function to use a different routine than memcpy(). */ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } #include /* ULLONG_MAX */ /* ************************************* * Compiler Specific Options ***************************************/ #ifdef _MSC_VER /* Visual Studio warning fix */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ #endif #if XXH_NO_INLINE_HINTS /* disable inlining hints */ # if defined(__GNUC__) || defined(__clang__) # define XXH_FORCE_INLINE static __attribute__((unused)) # else # define XXH_FORCE_INLINE static # endif # define XXH_NO_INLINE static /* enable inlining hints */ #elif defined(__GNUC__) || defined(__clang__) # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) # define XXH_NO_INLINE static __attribute__((noinline)) #elif defined(_MSC_VER) /* Visual Studio */ # define XXH_FORCE_INLINE static __forceinline # define XXH_NO_INLINE static __declspec(noinline) #elif defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ # define XXH_FORCE_INLINE static inline # define XXH_NO_INLINE static #else # define XXH_FORCE_INLINE static # define XXH_NO_INLINE static #endif /* ************************************* * Debug ***************************************/ /*! * @ingroup tuning * @def XXH_DEBUGLEVEL * @brief Sets the debugging level. * * XXH_DEBUGLEVEL is expected to be defined externally, typically via the * compiler's command line options. The value must be a number. */ #ifndef XXH_DEBUGLEVEL # ifdef DEBUGLEVEL /* backwards compat */ # define XXH_DEBUGLEVEL DEBUGLEVEL # else # define XXH_DEBUGLEVEL 0 # endif #endif #if (XXH_DEBUGLEVEL>=1) # include /* note: can still be disabled with NDEBUG */ # define XXH_ASSERT(c) assert(c) #else # define XXH_ASSERT(c) XXH_ASSUME(c) #endif /* note: use after variable declarations */ #ifndef XXH_STATIC_ASSERT # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0) # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) # else # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) # endif # define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) #endif /*! * @internal * @def XXH_COMPILER_GUARD(var) * @brief Used to prevent unwanted optimizations for @p var. * * It uses an empty GCC inline assembly statement with a register constraint * which forces @p var into a general purpose register (eg eax, ebx, ecx * on x86) and marks it as modified. * * This is used in a few places to avoid unwanted autovectorization (e.g. * XXH32_round()). All vectorization we want is explicit via intrinsics, * and _usually_ isn't wanted elsewhere. * * We also use it to prevent unwanted constant folding for AArch64 in * XXH3_initCustomSecret_scalar(). */ #if defined(__GNUC__) || defined(__clang__) # define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var)) #else # define XXH_COMPILER_GUARD(var) ((void)0) #endif #if defined(__GNUC__) || defined(__clang__) # define XXH_COMPILER_GUARD_W(var) __asm__ __volatile__("" : "+w" (var)) #else # define XXH_COMPILER_GUARD_W(var) ((void)0) #endif /* ************************************* * Basic Types ***************************************/ #if !defined (__VMS) \ && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include typedef uint8_t xxh_u8; #else typedef unsigned char xxh_u8; #endif typedef XXH32_hash_t xxh_u32; #ifdef XXH_OLD_NAMES # define BYTE xxh_u8 # define U8 xxh_u8 # define U32 xxh_u32 #endif /* *** Memory access *** */ /*! * @internal * @fn xxh_u32 XXH_read32(const void* ptr) * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. * * Affected by @ref XXH_FORCE_MEMORY_ACCESS. * * @param ptr The pointer to read from. * @return The 32-bit native endian integer from the bytes at @p ptr. */ /*! * @internal * @fn xxh_u32 XXH_readLE32(const void* ptr) * @brief Reads an unaligned 32-bit little endian integer from @p ptr. * * Affected by @ref XXH_FORCE_MEMORY_ACCESS. * * @param ptr The pointer to read from. * @return The 32-bit little endian integer from the bytes at @p ptr. */ /*! * @internal * @fn xxh_u32 XXH_readBE32(const void* ptr) * @brief Reads an unaligned 32-bit big endian integer from @p ptr. * * Affected by @ref XXH_FORCE_MEMORY_ACCESS. * * @param ptr The pointer to read from. * @return The 32-bit big endian integer from the bytes at @p ptr. */ /*! * @internal * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) * @brief Like @ref XXH_readLE32(), but has an option for aligned reads. * * Affected by @ref XXH_FORCE_MEMORY_ACCESS. * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is * always @ref XXH_alignment::XXH_unaligned. * * @param ptr The pointer to read from. * @param align Whether @p ptr is aligned. * @pre * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte * aligned. * @return The 32-bit little endian integer from the bytes at @p ptr. */ #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) /* * Manual byteshift. Best for old compilers which don't inline memcpy. * We actually directly use XXH_readLE32 and XXH_readBE32. */ #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) /* * Force direct memory access. Only works on CPU which support unaligned memory * access in hardware. */ static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) /* * __attribute__((aligned(1))) is supported by gcc and clang. Originally the * documentation claimed that it only increased the alignment, but actually it * can decrease it on gcc, clang, and icc: * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, * https://gcc.godbolt.org/z/xYez1j67Y. */ #ifdef XXH_OLD_NAMES typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; #endif static xxh_u32 XXH_read32(const void* ptr) { typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32; return *((const xxh_unalign32*)ptr); } #else /* * Portable and safe solution. Generally efficient. * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html */ static xxh_u32 XXH_read32(const void* memPtr) { xxh_u32 val; XXH_memcpy(&val, memPtr, sizeof(val)); return val; } #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ /* *** Endianness *** */ /*! * @ingroup tuning * @def XXH_CPU_LITTLE_ENDIAN * @brief Whether the target is little endian. * * Defined to 1 if the target is little endian, or 0 if it is big endian. * It can be defined externally, for example on the compiler command line. * * If it is not defined, * a runtime check (which is usually constant folded) is used instead. * * @note * This is not necessarily defined to an integer constant. * * @see XXH_isLittleEndian() for the runtime check. */ #ifndef XXH_CPU_LITTLE_ENDIAN /* * Try to detect endianness automatically, to avoid the nonstandard behavior * in `XXH_isLittleEndian()` */ # if defined(_WIN32) /* Windows is always little endian */ \ || defined(__LITTLE_ENDIAN__) \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) # define XXH_CPU_LITTLE_ENDIAN 1 # elif defined(__BIG_ENDIAN__) \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) # define XXH_CPU_LITTLE_ENDIAN 0 # else /*! * @internal * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. * * Most compilers will constant fold this. */ static int XXH_isLittleEndian(void) { /* * Portable and well-defined behavior. * Don't use static: it is detrimental to performance. */ const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; return one.c[0]; } # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() # endif #endif /* **************************************** * Compiler-specific Functions and Macros ******************************************/ #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #ifdef __has_builtin # define XXH_HAS_BUILTIN(x) __has_builtin(x) #else # define XXH_HAS_BUILTIN(x) 0 #endif #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) /* C23 and future versions have standard "unreachable()" */ # include # define XXH_UNREACHABLE() unreachable() #elif defined(__cplusplus) && (__cplusplus > 202002L) /* C++23 and future versions have std::unreachable() */ # include /* std::unreachable() */ # define XXH_UNREACHABLE() std::unreachable() #elif XXH_HAS_BUILTIN(__builtin_unreachable) # define XXH_UNREACHABLE() __builtin_unreachable() #elif defined(_MSC_VER) # define XXH_UNREACHABLE() __assume(0) #else # define XXH_UNREACHABLE() #endif #define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); } /*! * @internal * @def XXH_rotl32(x,r) * @brief 32-bit rotate left. * * @param x The 32-bit integer to be rotated. * @param r The number of bits to rotate. * @pre * @p r > 0 && @p r < 32 * @note * @p x and @p r may be evaluated multiple times. * @return The rotated result. */ #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ && XXH_HAS_BUILTIN(__builtin_rotateleft64) # define XXH_rotl32 __builtin_rotateleft32 # define XXH_rotl64 __builtin_rotateleft64 /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ #elif defined(_MSC_VER) # define XXH_rotl32(x,r) _rotl(x,r) # define XXH_rotl64(x,r) _rotl64(x,r) #else # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) #endif /*! * @internal * @fn xxh_u32 XXH_swap32(xxh_u32 x) * @brief A 32-bit byteswap. * * @param x The 32-bit integer to byteswap. * @return @p x, byteswapped. */ #if defined(_MSC_VER) /* Visual Studio */ # define XXH_swap32 _byteswap_ulong #elif XXH_GCC_VERSION >= 403 # define XXH_swap32 __builtin_bswap32 #else static xxh_u32 XXH_swap32 (xxh_u32 x) { return ((x << 24) & 0xff000000 ) | ((x << 8) & 0x00ff0000 ) | ((x >> 8) & 0x0000ff00 ) | ((x >> 24) & 0x000000ff ); } #endif /* *************************** * Memory reads *****************************/ /*! * @internal * @brief Enum to indicate whether a pointer is aligned. */ typedef enum { XXH_aligned, /*!< Aligned */ XXH_unaligned /*!< Possibly unaligned */ } XXH_alignment; /* * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. * * This is ideal for older compilers which don't inline memcpy. */ #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) { const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; return bytePtr[0] | ((xxh_u32)bytePtr[1] << 8) | ((xxh_u32)bytePtr[2] << 16) | ((xxh_u32)bytePtr[3] << 24); } XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) { const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; return bytePtr[3] | ((xxh_u32)bytePtr[2] << 8) | ((xxh_u32)bytePtr[1] << 16) | ((xxh_u32)bytePtr[0] << 24); } #else XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); } static xxh_u32 XXH_readBE32(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); } #endif XXH_FORCE_INLINE xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) { if (align==XXH_unaligned) { return XXH_readLE32(ptr); } else { return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); } } /* ************************************* * Misc ***************************************/ /*! @ingroup public */ XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } /* ******************************************************************* * 32-bit hash functions *********************************************************************/ /*! * @} * @defgroup XXH32_impl XXH32 implementation * @ingroup impl * * Details on the XXH32 implementation. * @{ */ /* #define instead of static const, to be used as initializers */ #define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ #define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ #define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ #define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ #define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ #ifdef XXH_OLD_NAMES # define PRIME32_1 XXH_PRIME32_1 # define PRIME32_2 XXH_PRIME32_2 # define PRIME32_3 XXH_PRIME32_3 # define PRIME32_4 XXH_PRIME32_4 # define PRIME32_5 XXH_PRIME32_5 #endif /*! * @internal * @brief Normal stripe processing routine. * * This shuffles the bits so that any bit from @p input impacts several bits in * @p acc. * * @param acc The accumulator lane. * @param input The stripe of input to mix. * @return The mixed accumulator lane. */ static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) { acc += input * XXH_PRIME32_2; acc = XXH_rotl32(acc, 13); acc *= XXH_PRIME32_1; #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) /* * UGLY HACK: * A compiler fence is the only thing that prevents GCC and Clang from * autovectorizing the XXH32 loop (pragmas and attributes don't work for some * reason) without globally disabling SSE4.1. * * The reason we want to avoid vectorization is because despite working on * 4 integers at a time, there are multiple factors slowing XXH32 down on * SSE4: * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on * newer chips!) making it slightly slower to multiply four integers at * once compared to four integers independently. Even when pmulld was * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE * just to multiply unless doing a long operation. * * - Four instructions are required to rotate, * movqda tmp, v // not required with VEX encoding * pslld tmp, 13 // tmp <<= 13 * psrld v, 19 // x >>= 19 * por v, tmp // x |= tmp * compared to one for scalar: * roll v, 13 // reliably fast across the board * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason * * - Instruction level parallelism is actually more beneficial here because * the SIMD actually serializes this operation: While v1 is rotating, v2 * can load data, while v3 can multiply. SSE forces them to operate * together. * * This is also enabled on AArch64, as Clang autovectorizes it incorrectly * and it is pointless writing a NEON implementation that is basically the * same speed as scalar for XXH32. */ XXH_COMPILER_GUARD(acc); #endif return acc; } /*! * @internal * @brief Mixes all bits to finalize the hash. * * The final mix ensures that all input bits have a chance to impact any bit in * the output digest, resulting in an unbiased distribution. * * @param hash The hash to avalanche. * @return The avalanched hash. */ static xxh_u32 XXH32_avalanche(xxh_u32 hash) { hash ^= hash >> 15; hash *= XXH_PRIME32_2; hash ^= hash >> 13; hash *= XXH_PRIME32_3; hash ^= hash >> 16; return hash; } #define XXH_get32bits(p) XXH_readLE32_align(p, align) /*! * @internal * @brief Processes the last 0-15 bytes of @p ptr. * * There may be up to 15 bytes remaining to consume from the input. * This final stage will digest them to ensure that all input bytes are present * in the final mix. * * @param hash The hash to finalize. * @param ptr The pointer to the remaining input. * @param len The remaining length, modulo 16. * @param align Whether @p ptr is aligned. * @return The finalized hash. * @see XXH64_finalize(). */ static XXH_PUREF xxh_u32 XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) { #define XXH_PROCESS1 do { \ hash += (*ptr++) * XXH_PRIME32_5; \ hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \ } while (0) #define XXH_PROCESS4 do { \ hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \ ptr += 4; \ hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \ } while (0) if (ptr==NULL) XXH_ASSERT(len == 0); /* Compact rerolled version; generally faster */ if (!XXH32_ENDJMP) { len &= 15; while (len >= 4) { XXH_PROCESS4; len -= 4; } while (len > 0) { XXH_PROCESS1; --len; } return XXH32_avalanche(hash); } else { switch(len&15) /* or switch(bEnd - p) */ { case 12: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 8: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 4: XXH_PROCESS4; return XXH32_avalanche(hash); case 13: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 9: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 5: XXH_PROCESS4; XXH_PROCESS1; return XXH32_avalanche(hash); case 14: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 10: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 6: XXH_PROCESS4; XXH_PROCESS1; XXH_PROCESS1; return XXH32_avalanche(hash); case 15: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 11: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 7: XXH_PROCESS4; XXH_FALLTHROUGH; /* fallthrough */ case 3: XXH_PROCESS1; XXH_FALLTHROUGH; /* fallthrough */ case 2: XXH_PROCESS1; XXH_FALLTHROUGH; /* fallthrough */ case 1: XXH_PROCESS1; XXH_FALLTHROUGH; /* fallthrough */ case 0: return XXH32_avalanche(hash); } XXH_ASSERT(0); return hash; /* reaching this point is deemed impossible */ } } #ifdef XXH_OLD_NAMES # define PROCESS1 XXH_PROCESS1 # define PROCESS4 XXH_PROCESS4 #else # undef XXH_PROCESS1 # undef XXH_PROCESS4 #endif /*! * @internal * @brief The implementation for @ref XXH32(). * * @param input , len , seed Directly passed from @ref XXH32(). * @param align Whether @p input is aligned. * @return The calculated hash. */ XXH_FORCE_INLINE XXH_PUREF xxh_u32 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) { xxh_u32 h32; if (input==NULL) XXH_ASSERT(len == 0); if (len>=16) { const xxh_u8* const bEnd = input + len; const xxh_u8* const limit = bEnd - 15; xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; xxh_u32 v2 = seed + XXH_PRIME32_2; xxh_u32 v3 = seed + 0; xxh_u32 v4 = seed - XXH_PRIME32_1; do { v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; } while (input < limit); h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); } else { h32 = seed + XXH_PRIME32_5; } h32 += (xxh_u32)len; return XXH32_finalize(h32, input, len&15, align); } /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) { #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ XXH32_state_t state; XXH32_reset(&state, seed); XXH32_update(&state, (const xxh_u8*)input, len); return XXH32_digest(&state); #else if (XXH_FORCE_ALIGN_CHECK) { if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); } } return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); #endif } /******* Hash streaming *******/ #ifndef XXH_NO_STREAM /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) { return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); } /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) { XXH_free(statePtr); return XXH_OK; } /*! @ingroup XXH32_family */ XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) { XXH_memcpy(dstState, srcState, sizeof(*dstState)); } /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) { XXH_ASSERT(statePtr != NULL); memset(statePtr, 0, sizeof(*statePtr)); statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; statePtr->v[1] = seed + XXH_PRIME32_2; statePtr->v[2] = seed + 0; statePtr->v[3] = seed - XXH_PRIME32_1; return XXH_OK; } /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t* state, const void* input, size_t len) { if (input==NULL) { XXH_ASSERT(len == 0); return XXH_OK; } { const xxh_u8* p = (const xxh_u8*)input; const xxh_u8* const bEnd = p + len; state->total_len_32 += (XXH32_hash_t)len; state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); if (state->memsize + len < 16) { /* fill in tmp buffer */ XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); state->memsize += (XXH32_hash_t)len; return XXH_OK; } if (state->memsize) { /* some data left from previous update */ XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); { const xxh_u32* p32 = state->mem32; state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); } p += 16-state->memsize; state->memsize = 0; } if (p <= bEnd-16) { const xxh_u8* const limit = bEnd - 16; do { state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; } while (p<=limit); } if (p < bEnd) { XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); state->memsize = (unsigned)(bEnd-p); } } return XXH_OK; } /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) { xxh_u32 h32; if (state->large_len) { h32 = XXH_rotl32(state->v[0], 1) + XXH_rotl32(state->v[1], 7) + XXH_rotl32(state->v[2], 12) + XXH_rotl32(state->v[3], 18); } else { h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; } h32 += state->total_len_32; return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); } #endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ /*! * @ingroup XXH32_family * The default return values from XXH functions are unsigned 32 and 64 bit * integers. * * The canonical representation uses big endian convention, the same convention * as human-readable numbers (large digits first). * * This way, hash values can be written into a file or buffer, remaining * comparable across different systems. * * The following functions allow transformation of hash values to and from their * canonical format. */ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); XXH_memcpy(dst, &hash, sizeof(*dst)); } /*! @ingroup XXH32_family */ XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) { return XXH_readBE32(src); } #ifndef XXH_NO_LONG_LONG /* ******************************************************************* * 64-bit hash functions *********************************************************************/ /*! * @} * @ingroup impl * @{ */ /******* Memory access *******/ typedef XXH64_hash_t xxh_u64; #ifdef XXH_OLD_NAMES # define U64 xxh_u64 #endif #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) /* * Manual byteshift. Best for old compilers which don't inline memcpy. * We actually directly use XXH_readLE64 and XXH_readBE64. */ #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; } #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) /* * __attribute__((aligned(1))) is supported by gcc and clang. Originally the * documentation claimed that it only increased the alignment, but actually it * can decrease it on gcc, clang, and icc: * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, * https://gcc.godbolt.org/z/xYez1j67Y. */ #ifdef XXH_OLD_NAMES typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; #endif static xxh_u64 XXH_read64(const void* ptr) { typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64; return *((const xxh_unalign64*)ptr); } #else /* * Portable and safe solution. Generally efficient. * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html */ static xxh_u64 XXH_read64(const void* memPtr) { xxh_u64 val; XXH_memcpy(&val, memPtr, sizeof(val)); return val; } #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ #if defined(_MSC_VER) /* Visual Studio */ # define XXH_swap64 _byteswap_uint64 #elif XXH_GCC_VERSION >= 403 # define XXH_swap64 __builtin_bswap64 #else static xxh_u64 XXH_swap64(xxh_u64 x) { return ((x << 56) & 0xff00000000000000ULL) | ((x << 40) & 0x00ff000000000000ULL) | ((x << 24) & 0x0000ff0000000000ULL) | ((x << 8) & 0x000000ff00000000ULL) | ((x >> 8) & 0x00000000ff000000ULL) | ((x >> 24) & 0x0000000000ff0000ULL) | ((x >> 40) & 0x000000000000ff00ULL) | ((x >> 56) & 0x00000000000000ffULL); } #endif /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) { const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; return bytePtr[0] | ((xxh_u64)bytePtr[1] << 8) | ((xxh_u64)bytePtr[2] << 16) | ((xxh_u64)bytePtr[3] << 24) | ((xxh_u64)bytePtr[4] << 32) | ((xxh_u64)bytePtr[5] << 40) | ((xxh_u64)bytePtr[6] << 48) | ((xxh_u64)bytePtr[7] << 56); } XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) { const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; return bytePtr[7] | ((xxh_u64)bytePtr[6] << 8) | ((xxh_u64)bytePtr[5] << 16) | ((xxh_u64)bytePtr[4] << 24) | ((xxh_u64)bytePtr[3] << 32) | ((xxh_u64)bytePtr[2] << 40) | ((xxh_u64)bytePtr[1] << 48) | ((xxh_u64)bytePtr[0] << 56); } #else XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); } static xxh_u64 XXH_readBE64(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); } #endif XXH_FORCE_INLINE xxh_u64 XXH_readLE64_align(const void* ptr, XXH_alignment align) { if (align==XXH_unaligned) return XXH_readLE64(ptr); else return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); } /******* xxh64 *******/ /*! * @} * @defgroup XXH64_impl XXH64 implementation * @ingroup impl * * Details on the XXH64 implementation. * @{ */ /* #define rather that static const, to be used as initializers */ #define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ #define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ #define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ #define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ #define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ #ifdef XXH_OLD_NAMES # define PRIME64_1 XXH_PRIME64_1 # define PRIME64_2 XXH_PRIME64_2 # define PRIME64_3 XXH_PRIME64_3 # define PRIME64_4 XXH_PRIME64_4 # define PRIME64_5 XXH_PRIME64_5 #endif /*! @copydoc XXH32_round */ static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) { acc += input * XXH_PRIME64_2; acc = XXH_rotl64(acc, 31); acc *= XXH_PRIME64_1; return acc; } static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) { val = XXH64_round(0, val); acc ^= val; acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; return acc; } /*! @copydoc XXH32_avalanche */ static xxh_u64 XXH64_avalanche(xxh_u64 hash) { hash ^= hash >> 33; hash *= XXH_PRIME64_2; hash ^= hash >> 29; hash *= XXH_PRIME64_3; hash ^= hash >> 32; return hash; } #define XXH_get64bits(p) XXH_readLE64_align(p, align) /*! * @internal * @brief Processes the last 0-31 bytes of @p ptr. * * There may be up to 31 bytes remaining to consume from the input. * This final stage will digest them to ensure that all input bytes are present * in the final mix. * * @param hash The hash to finalize. * @param ptr The pointer to the remaining input. * @param len The remaining length, modulo 32. * @param align Whether @p ptr is aligned. * @return The finalized hash * @see XXH32_finalize(). */ static XXH_PUREF xxh_u64 XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) { if (ptr==NULL) XXH_ASSERT(len == 0); len &= 31; while (len >= 8) { xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); ptr += 8; hash ^= k1; hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4; len -= 8; } if (len >= 4) { hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; ptr += 4; hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; len -= 4; } while (len > 0) { hash ^= (*ptr++) * XXH_PRIME64_5; hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1; --len; } return XXH64_avalanche(hash); } #ifdef XXH_OLD_NAMES # define PROCESS1_64 XXH_PROCESS1_64 # define PROCESS4_64 XXH_PROCESS4_64 # define PROCESS8_64 XXH_PROCESS8_64 #else # undef XXH_PROCESS1_64 # undef XXH_PROCESS4_64 # undef XXH_PROCESS8_64 #endif /*! * @internal * @brief The implementation for @ref XXH64(). * * @param input , len , seed Directly passed from @ref XXH64(). * @param align Whether @p input is aligned. * @return The calculated hash. */ XXH_FORCE_INLINE XXH_PUREF xxh_u64 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) { xxh_u64 h64; if (input==NULL) XXH_ASSERT(len == 0); if (len>=32) { const xxh_u8* const bEnd = input + len; const xxh_u8* const limit = bEnd - 31; xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; xxh_u64 v2 = seed + XXH_PRIME64_2; xxh_u64 v3 = seed + 0; xxh_u64 v4 = seed - XXH_PRIME64_1; do { v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; } while (input= 2 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ XXH64_state_t state; XXH64_reset(&state, seed); XXH64_update(&state, (const xxh_u8*)input, len); return XXH64_digest(&state); #else if (XXH_FORCE_ALIGN_CHECK) { if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); } } return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); #endif } /******* Hash Streaming *******/ #ifndef XXH_NO_STREAM /*! @ingroup XXH64_family*/ XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) { return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); } /*! @ingroup XXH64_family */ XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) { XXH_free(statePtr); return XXH_OK; } /*! @ingroup XXH64_family */ XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState) { XXH_memcpy(dstState, srcState, sizeof(*dstState)); } /*! @ingroup XXH64_family */ XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed) { XXH_ASSERT(statePtr != NULL); memset(statePtr, 0, sizeof(*statePtr)); statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; statePtr->v[1] = seed + XXH_PRIME64_2; statePtr->v[2] = seed + 0; statePtr->v[3] = seed - XXH_PRIME64_1; return XXH_OK; } /*! @ingroup XXH64_family */ XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len) { if (input==NULL) { XXH_ASSERT(len == 0); return XXH_OK; } { const xxh_u8* p = (const xxh_u8*)input; const xxh_u8* const bEnd = p + len; state->total_len += len; if (state->memsize + len < 32) { /* fill in tmp buffer */ XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); state->memsize += (xxh_u32)len; return XXH_OK; } if (state->memsize) { /* tmp buffer is full */ XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); p += 32 - state->memsize; state->memsize = 0; } if (p+32 <= bEnd) { const xxh_u8* const limit = bEnd - 32; do { state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; } while (p<=limit); } if (p < bEnd) { XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); state->memsize = (unsigned)(bEnd-p); } } return XXH_OK; } /*! @ingroup XXH64_family */ XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state) { xxh_u64 h64; if (state->total_len >= 32) { h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); h64 = XXH64_mergeRound(h64, state->v[0]); h64 = XXH64_mergeRound(h64, state->v[1]); h64 = XXH64_mergeRound(h64, state->v[2]); h64 = XXH64_mergeRound(h64, state->v[3]); } else { h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; } h64 += (xxh_u64) state->total_len; return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); } #endif /* !XXH_NO_STREAM */ /******* Canonical representation *******/ /*! @ingroup XXH64_family */ XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); XXH_memcpy(dst, &hash, sizeof(*dst)); } /*! @ingroup XXH64_family */ XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src) { return XXH_readBE64(src); } #ifndef XXH_NO_XXH3 /* ********************************************************************* * XXH3 * New generation hash designed for speed on small keys and vectorization ************************************************************************ */ /*! * @} * @defgroup XXH3_impl XXH3 implementation * @ingroup impl * @{ */ /* === Compiler specifics === */ #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ # define XXH_RESTRICT /* disable */ #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ # define XXH_RESTRICT restrict #else /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ # define XXH_RESTRICT /* disable */ #endif #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ || defined(__clang__) # define XXH_likely(x) __builtin_expect(x, 1) # define XXH_unlikely(x) __builtin_expect(x, 0) #else # define XXH_likely(x) (x) # define XXH_unlikely(x) (x) #endif #if defined(__GNUC__) || defined(__clang__) # if defined(__ARM_FEATURE_SVE) # include # elif defined(__ARM_NEON__) || defined(__ARM_NEON) \ || defined(__aarch64__) || defined(_M_ARM) \ || defined(_M_ARM64) || defined(_M_ARM64EC) # define inline __inline__ /* circumvent a clang bug */ # include # undef inline # elif defined(__AVX2__) # include # elif defined(__SSE2__) # include # endif #endif #if defined(_MSC_VER) # include #endif /* * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while * remaining a true 64-bit/128-bit hash function. * * This is done by prioritizing a subset of 64-bit operations that can be * emulated without too many steps on the average 32-bit machine. * * For example, these two lines seem similar, and run equally fast on 64-bit: * * xxh_u64 x; * x ^= (x >> 47); // good * x ^= (x >> 13); // bad * * However, to a 32-bit machine, there is a major difference. * * x ^= (x >> 47) looks like this: * * x.lo ^= (x.hi >> (47 - 32)); * * while x ^= (x >> 13) looks like this: * * // note: funnel shifts are not usually cheap. * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); * x.hi ^= (x.hi >> 13); * * The first one is significantly faster than the second, simply because the * shift is larger than 32. This means: * - All the bits we need are in the upper 32 bits, so we can ignore the lower * 32 bits in the shift. * - The shift result will always fit in the lower 32 bits, and therefore, * we can ignore the upper 32 bits in the xor. * * Thanks to this optimization, XXH3 only requires these features to be efficient: * * - Usable unaligned access * - A 32-bit or 64-bit ALU * - If 32-bit, a decent ADC instruction * - A 32 or 64-bit multiply with a 64-bit result * - For the 128-bit variant, a decent byteswap helps short inputs. * * The first two are already required by XXH32, and almost all 32-bit and 64-bit * platforms which can run XXH32 can run XXH3 efficiently. * * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one * notable exception. * * First of all, Thumb-1 lacks support for the UMULL instruction which * performs the important long multiply. This means numerous __aeabi_lmul * calls. * * Second of all, the 8 functional registers are just not enough. * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need * Lo registers, and this shuffling results in thousands more MOVs than A32. * * A32 and T32 don't have this limitation. They can access all 14 registers, * do a 32->64 multiply with UMULL, and the flexible operand allowing free * shifts is helpful, too. * * Therefore, we do a quick sanity check. * * If compiling Thumb-1 for a target which supports ARM instructions, we will * emit a warning, as it is not a "sane" platform to compile for. * * Usually, if this happens, it is because of an accident and you probably need * to specify -march, as you likely meant to compile for a newer architecture. * * Credit: large sections of the vectorial and asm source code paths * have been contributed by @easyaspi314 */ #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) # warning "XXH3 is highly inefficient without ARM or Thumb-2." #endif /* ========================================== * Vectorization detection * ========================================== */ #ifdef XXH_DOXYGEN /*! * @ingroup tuning * @brief Overrides the vectorization implementation chosen for XXH3. * * Can be defined to 0 to disable SIMD or any of the values mentioned in * @ref XXH_VECTOR_TYPE. * * If this is not defined, it uses predefined macros to determine the best * implementation. */ # define XXH_VECTOR XXH_SCALAR /*! * @ingroup tuning * @brief Possible values for @ref XXH_VECTOR. * * Note that these are actually implemented as macros. * * If this is not defined, it is detected automatically. * @ref XXH_X86DISPATCH overrides this. */ enum XXH_VECTOR_TYPE /* fake enum */ { XXH_SCALAR = 0, /*!< Portable scalar version */ XXH_SSE2 = 1, /*!< * SSE2 for Pentium 4, Opteron, all x86_64. * * @note SSE2 is also guaranteed on Windows 10, macOS, and * Android x86. */ XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */ XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */ }; /*! * @ingroup tuning * @brief Selects the minimum alignment for XXH3's accumulators. * * When using SIMD, this should match the alignment required for said vector * type, so, for example, 32 for AVX2. * * Default: Auto detected. */ # define XXH_ACC_ALIGN 8 #endif /* Actual definition */ #ifndef XXH_DOXYGEN # define XXH_SCALAR 0 # define XXH_SSE2 1 # define XXH_AVX2 2 # define XXH_AVX512 3 # define XXH_NEON 4 # define XXH_VSX 5 # define XXH_SVE 6 #endif #ifndef XXH_VECTOR /* can be defined on command line */ # if defined(__ARM_FEATURE_SVE) # define XXH_VECTOR XXH_SVE # elif ( \ defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \ ) && ( \ defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ ) # define XXH_VECTOR XXH_NEON # elif defined(__AVX512F__) && !defined(MUST_FREE_HEAP_ALLOCATIONS) # define XXH_VECTOR XXH_AVX512 # elif defined(__AVX2__) # define XXH_VECTOR XXH_AVX2 # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) # define XXH_VECTOR XXH_SSE2 # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ || (defined(__s390x__) && defined(__VEC__)) \ && defined(__GNUC__) /* TODO: IBM XL */ # define XXH_VECTOR XXH_VSX # else # define XXH_VECTOR XXH_SCALAR # endif #endif /* __ARM_FEATURE_SVE is only supported by GCC & Clang. */ #if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE) # ifdef _MSC_VER # pragma warning(once : 4606) # else # warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead." # endif # undef XXH_VECTOR # define XXH_VECTOR XXH_SCALAR #endif /* * Controls the alignment of the accumulator, * for compatibility with aligned vector loads, which are usually faster. */ #ifndef XXH_ACC_ALIGN # if defined(XXH_X86DISPATCH) # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ # elif XXH_VECTOR == XXH_SCALAR /* scalar */ # define XXH_ACC_ALIGN 8 # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ # define XXH_ACC_ALIGN 16 # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ # define XXH_ACC_ALIGN 32 # elif XXH_VECTOR == XXH_NEON /* neon */ # define XXH_ACC_ALIGN 16 # elif XXH_VECTOR == XXH_VSX /* vsx */ # define XXH_ACC_ALIGN 16 # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ # define XXH_ACC_ALIGN 64 # elif XXH_VECTOR == XXH_SVE /* sve */ # define XXH_ACC_ALIGN 64 # endif #endif #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 # define XXH_SEC_ALIGN XXH_ACC_ALIGN #elif XXH_VECTOR == XXH_SVE # define XXH_SEC_ALIGN XXH_ACC_ALIGN #else # define XXH_SEC_ALIGN 8 #endif /* * UGLY HACK: * GCC usually generates the best code with -O3 for xxHash. * * However, when targeting AVX2, it is overzealous in its unrolling resulting * in code roughly 3/4 the speed of Clang. * * There are other issues, such as GCC splitting _mm256_loadu_si256 into * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which * only applies to Sandy and Ivy Bridge... which don't even support AVX2. * * That is why when compiling the AVX2 version, it is recommended to use either * -O2 -mavx2 -march=haswell * or * -O2 -mavx2 -mno-avx256-split-unaligned-load * for decent performance, or to use Clang instead. * * Fortunately, we can control the first one with a pragma that forces GCC into * -O2, but the other one we can't control without "failed to inline always * inline function due to target mismatch" warnings. */ #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ # pragma GCC push_options # pragma GCC optimize("-O2") #endif #if XXH_VECTOR == XXH_NEON /* * NEON's setup for vmlal_u32 is a little more complicated than it is on * SSE2, AVX2, and VSX. * * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. * * To do the same operation, the 128-bit 'Q' register needs to be split into * two 64-bit 'D' registers, performing this operation:: * * [ a | b ] * | '---------. .--------' | * | x | * | .---------' '--------. | * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] * * Due to significant changes in aarch64, the fastest method for aarch64 is * completely different than the fastest method for ARMv7-A. * * ARMv7-A treats D registers as unions overlaying Q registers, so modifying * D11 will modify the high half of Q5. This is similar to how modifying AH * will only affect bits 8-15 of AX on x86. * * VZIP takes two registers, and puts even lanes in one register and odd lanes * in the other. * * On ARMv7-A, this strangely modifies both parameters in place instead of * taking the usual 3-operand form. * * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the * lower and upper halves of the Q register to end up with the high and low * halves where we want - all in one instruction. * * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } * * Unfortunately we need inline assembly for this: Instructions modifying two * registers at once is not possible in GCC or Clang's IR, and they have to * create a copy. * * aarch64 requires a different approach. * * In order to make it easier to write a decent compiler for aarch64, many * quirks were removed, such as conditional execution. * * NEON was also affected by this. * * aarch64 cannot access the high bits of a Q-form register, and writes to a * D-form register zero the high bits, similar to how writes to W-form scalar * registers (or DWORD registers on x86_64) work. * * The formerly free vget_high intrinsics now require a vext (with a few * exceptions) * * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one * operand. * * The equivalent of the VZIP.32 on the lower and upper halves would be this * mess: * * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } * * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): * * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); * * This is available on ARMv7-A, but is less efficient than a single VZIP.32. */ /*! * Function-like macro: * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) * { * outLo = (uint32x2_t)(in & 0xFFFFFFFF); * outHi = (uint32x2_t)(in >> 32); * in = UNDEFINED; * } */ # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ && (defined(__GNUC__) || defined(__clang__)) \ && (defined(__arm__) || defined(__thumb__) || defined(_M_ARM)) # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ do { \ /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ } while (0) # else # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ do { \ (outLo) = vmovn_u64 (in); \ (outHi) = vshrn_n_u64 ((in), 32); \ } while (0) # endif /*! * @internal * @brief `vld1q_u64` but faster and alignment-safe. * * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86). * * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it * prohibits load-store optimizations. Therefore, a direct dereference is used. * * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe * unaligned load. */ #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */ { return *(uint64x2_t const*)ptr; } #else XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) { return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr)); } #endif /*! * @ingroup tuning * @brief Controls the NEON to scalar ratio for XXH3 * * On AArch64 when not optimizing for size, XXH3 will run 6 lanes using NEON and * 2 lanes on scalar by default (except on Apple platforms, as Apple CPUs benefit * from only using NEON). * * This can be set to 2, 4, 6, or 8. ARMv7 will default to all 8 NEON lanes, as the * emulated 64-bit arithmetic is too slow. * * Modern ARM CPUs are _very_ sensitive to how their pipelines are used. * * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but it can't * have more than 2 NEON (F0/F1) micro-ops. If you are only using NEON instructions, * you are only using 2/3 of the CPU bandwidth. * * This is even more noticeable on the more advanced cores like the A76 which * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once. * * Therefore, @ref XXH3_NEON_LANES lanes will be processed using NEON, and the * remaining lanes will use scalar instructions. This improves the bandwidth * and also gives the integer pipelines something to do besides twiddling loop * counters and pointers. * * This change benefits CPUs with large micro-op buffers without negatively affecting * most other CPUs: * * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. | * |:----------------------|:--------------------|----------:|-----------:|------:| * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% | * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% | * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% | * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% | * * It also seems to fix some bad codegen on GCC, making it almost as fast as clang. * * @see XXH3_accumulate_512_neon() */ # ifndef XXH3_NEON_LANES # if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \ && !defined(__APPLE__) && XXH_SIZE_OPT <= 0 # define XXH3_NEON_LANES 6 # else # define XXH3_NEON_LANES XXH_ACC_NB # endif # endif #endif /* XXH_VECTOR == XXH_NEON */ /* * VSX and Z Vector helpers. * * This is very messy, and any pull requests to clean this up are welcome. * * There are a lot of problems with supporting VSX and s390x, due to * inconsistent intrinsics, spotty coverage, and multiple endiannesses. */ #if XXH_VECTOR == XXH_VSX /* Annoyingly, these headers _may_ define three macros: `bool`, `vector`, * and `pixel`. This is a problem for obvious reasons. * * These keywords are unnecessary; the spec literally says they are * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd * after including the header. * * We use pragma push_macro/pop_macro to keep the namespace clean. */ # pragma push_macro("bool") # pragma push_macro("vector") # pragma push_macro("pixel") /* silence potential macro redefined warnings */ # undef bool # undef vector # undef pixel # if defined(__s390x__) # include # else # include # endif /* Restore the original macro values, if applicable. */ # pragma pop_macro("pixel") # pragma pop_macro("vector") # pragma pop_macro("bool") typedef __vector unsigned long long xxh_u64x2; typedef __vector unsigned char xxh_u8x16; typedef __vector unsigned xxh_u32x4; # ifndef XXH_VSX_BE # if defined(__BIG_ENDIAN__) \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) # define XXH_VSX_BE 1 # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ # warning "-maltivec=be is not recommended. Please use native endianness." # define XXH_VSX_BE 1 # else # define XXH_VSX_BE 0 # endif # endif /* !defined(XXH_VSX_BE) */ # if XXH_VSX_BE # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) # define XXH_vec_revb vec_revb # else /*! * A polyfill for POWER9's vec_revb(). */ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) { xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; return vec_perm(val, val, vByteSwap); } # endif # endif /* XXH_VSX_BE */ /*! * Performs an unaligned vector load and byte swaps it on big endian. */ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) { xxh_u64x2 ret; XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); # if XXH_VSX_BE ret = XXH_vec_revb(ret); # endif return ret; } /* * vec_mulo and vec_mule are very problematic intrinsics on PowerPC * * These intrinsics weren't added until GCC 8, despite existing for a while, * and they are endian dependent. Also, their meaning swap depending on version. * */ # if defined(__s390x__) /* s390x is always big endian, no issue on this platform */ # define XXH_vec_mulo vec_mulo # define XXH_vec_mule vec_mule # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__) /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */ # define XXH_vec_mulo __builtin_altivec_vmulouw # define XXH_vec_mule __builtin_altivec_vmuleuw # else /* gcc needs inline assembly */ /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) { xxh_u64x2 result; __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); return result; } XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) { xxh_u64x2 result; __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); return result; } # endif /* XXH_vec_mulo, XXH_vec_mule */ #endif /* XXH_VECTOR == XXH_VSX */ #if XXH_VECTOR == XXH_SVE #define ACCRND(acc, offset) \ do { \ svuint64_t input_vec = svld1_u64(mask, xinput + offset); \ svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \ svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \ svuint64_t swapped = svtbl_u64(input_vec, kSwap); \ svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \ svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \ svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \ acc = svadd_u64_x(mask, acc, mul); \ } while (0) #endif /* XXH_VECTOR == XXH_SVE */ /* prefetch * can be disabled, by declaring XXH_NO_PREFETCH build macro */ #if defined(XXH_NO_PREFETCH) # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ #else # if XXH_SIZE_OPT >= 1 # define XXH_PREFETCH(ptr) (void)(ptr) # elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ # include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) # else # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ # endif #endif /* XXH_NO_PREFETCH */ /* ========================================== * XXH3 default settings * ========================================== */ #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) # error "default keyset is not large enough" #endif /*! Pseudorandom secret taken directly from FARSH. */ XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, }; #ifdef XXH_OLD_NAMES # define kSecret XXH3_kSecret #endif #ifdef XXH_DOXYGEN /*! * @brief Calculates a 32-bit to 64-bit long multiply. * * Implemented as a macro. * * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't * need to (but it shouldn't need to anyways, it is about 7 instructions to do * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we * use that instead of the normal method. * * If you are compiling for platforms like Thumb-1 and don't have a better option, * you may also want to write your own long multiply routine here. * * @param x, y Numbers to be multiplied * @return 64-bit product of the low 32 bits of @p x and @p y. */ XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) { return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); } #elif defined(_MSC_VER) && defined(_M_IX86) # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) #else /* * Downcast + upcast is usually better than masking on older compilers like * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. * * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands * and perform a full 64x64 multiply -- entirely redundant on 32-bit. */ # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) #endif /*! * @brief Calculates a 64->128-bit long multiply. * * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar * version. * * @param lhs , rhs The 64-bit integers to be multiplied * @return The 128-bit result represented in an @ref XXH128_hash_t. */ static XXH128_hash_t XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) { /* * GCC/Clang __uint128_t method. * * On most 64-bit targets, GCC and Clang define a __uint128_t type. * This is usually the best way as it usually uses a native long 64-bit * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. * * Usually. * * Despite being a 32-bit platform, Clang (and emscripten) define this type * despite not having the arithmetic for it. This results in a laggy * compiler builtin call which calculates a full 128-bit multiply. * In that case it is best to use the portable one. * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 */ #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \ && defined(__SIZEOF_INT128__) \ || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; XXH128_hash_t r128; r128.low64 = (xxh_u64)(product); r128.high64 = (xxh_u64)(product >> 64); return r128; /* * MSVC for x64's _umul128 method. * * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); * * This compiles to single operand MUL on x64. */ #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC) #ifndef _MSC_VER # pragma intrinsic(_umul128) #endif xxh_u64 product_high; xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); XXH128_hash_t r128; r128.low64 = product_low; r128.high64 = product_high; return r128; /* * MSVC for ARM64's __umulh method. * * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. */ #elif defined(_M_ARM64) || defined(_M_ARM64EC) #ifndef _MSC_VER # pragma intrinsic(__umulh) #endif XXH128_hash_t r128; r128.low64 = lhs * rhs; r128.high64 = __umulh(lhs, rhs); return r128; #else /* * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. * * This is a fast and simple grade school multiply, which is shown below * with base 10 arithmetic instead of base 0x100000000. * * 9 3 // D2 lhs = 93 * x 7 5 // D2 rhs = 75 * ---------- * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 * --------- * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 * --------- * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 * * The reasons for adding the products like this are: * 1. It avoids manual carry tracking. Just like how * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. * This avoids a lot of complexity. * * 2. It hints for, and on Clang, compiles to, the powerful UMAAL * instruction available in ARM's Digital Signal Processing extension * in 32-bit ARMv6 and later, which is shown below: * * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) * { * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); * *RdHi = (xxh_u32)(product >> 32); * } * * This instruction was designed for efficient long multiplication, and * allows this to be calculated in only 4 instructions at speeds * comparable to some 64-bit ALUs. * * 3. It isn't terrible on other platforms. Usually this will be a couple * of 32-bit ADD/ADCs. */ /* First calculate all of the cross products. */ xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); /* Now add the products together. These will never overflow. */ xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); XXH128_hash_t r128; r128.low64 = lower; r128.high64 = upper; return r128; #endif } /*! * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. * * The reason for the separate function is to prevent passing too many structs * around by value. This will hopefully inline the multiply, but we don't force it. * * @param lhs , rhs The 64-bit integers to multiply * @return The low 64 bits of the product XOR'd by the high 64 bits. * @see XXH_mult64to128() */ static xxh_u64 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) { XXH128_hash_t product = XXH_mult64to128(lhs, rhs); return product.low64 ^ product.high64; } /*! Seems to produce slightly better code on GCC for some reason. */ XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) { XXH_ASSERT(0 <= shift && shift < 64); return v64 ^ (v64 >> shift); } /* * This is a fast avalanche stage, * suitable when input bits are already partially mixed */ static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) { h64 = XXH_xorshift64(h64, 37); h64 *= 0x165667919E3779F9ULL; h64 = XXH_xorshift64(h64, 32); return h64; } /* * This is a stronger avalanche, * inspired by Pelle Evensen's rrmxmx * preferable when input has not been previously mixed */ static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) { /* this mix is inspired by Pelle Evensen's rrmxmx */ h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); h64 *= 0x9FB21C651E98DF25ULL; h64 ^= (h64 >> 35) + len ; h64 *= 0x9FB21C651E98DF25ULL; return XXH_xorshift64(h64, 28); } /* ========================================== * Short keys * ========================================== * One of the shortcomings of XXH32 and XXH64 was that their performance was * sub-optimal on short lengths. It used an iterative algorithm which strongly * favored lengths that were a multiple of 4 or 8. * * Instead of iterating over individual inputs, we use a set of single shot * functions which piece together a range of lengths and operate in constant time. * * Additionally, the number of multiplies has been significantly reduced. This * reduces latency, especially when emulating 64-bit multiplies on 32-bit. * * Depending on the platform, this may or may not be faster than XXH32, but it * is almost guaranteed to be faster than XXH64. */ /* * At very short lengths, there isn't enough input to fully hide secrets, or use * the entire secret. * * There is also only a limited amount of mixing we can do before significantly * impacting performance. * * Therefore, we use different sections of the secret and always mix two secret * samples with an XOR. This should have no effect on performance on the * seedless or withSeed variants because everything _should_ be constant folded * by modern compilers. * * The XOR mixing hides individual parts of the secret and increases entropy. * * This adds an extra layer of strength for custom secrets. */ XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(1 <= len && len <= 3); XXH_ASSERT(secret != NULL); /* * len = 1: combined = { input[0], 0x01, input[0], input[0] } * len = 2: combined = { input[1], 0x02, input[0], input[1] } * len = 3: combined = { input[2], 0x03, input[0], input[1] } */ { xxh_u8 const c1 = input[0]; xxh_u8 const c2 = input[len >> 1]; xxh_u8 const c3 = input[len - 1]; xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; return XXH64_avalanche(keyed); } } XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(4 <= len && len <= 8); seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; { xxh_u32 const input1 = XXH_readLE32(input); xxh_u32 const input2 = XXH_readLE32(input + len - 4); xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); xxh_u64 const keyed = input64 ^ bitflip; return XXH3_rrmxmx(keyed, len); } } XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(9 <= len && len <= 16); { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; xxh_u64 const acc = len + XXH_swap64(input_lo) + input_hi + XXH3_mul128_fold64(input_lo, input_hi); return XXH3_avalanche(acc); } } XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(len <= 16); { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); if (len) return XXH3_len_1to3_64b(input, len, secret, seed); return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); } } /* * DISCLAIMER: There are known *seed-dependent* multicollisions here due to * multiplication by zero, affecting hashes of lengths 17 to 240. * * However, they are very unlikely. * * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all * unseeded non-cryptographic hashes, it does not attempt to defend itself * against specially crafted inputs, only random inputs. * * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes * cancelling out the secret is taken an arbitrary number of times (addressed * in XXH3_accumulate_512), this collision is very unlikely with random inputs * and/or proper seeding: * * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a * function that is only called up to 16 times per hash with up to 240 bytes of * input. * * This is not too bad for a non-cryptographic hash function, especially with * only 64 bit outputs. * * The 128-bit variant (which trades some speed for strength) is NOT affected * by this, although it is always a good idea to use a proper seed if you care * about strength. */ XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) { #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ /* * UGLY HACK: * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in * slower code. * * By forcing seed64 into a register, we disrupt the cost model and * cause it to scalarize. See `XXH32_round()` * * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on * GCC 9.2, despite both emitting scalar code. * * GCC generates much better scalar code than Clang for the rest of XXH3, * which is why finding a more optimal codepath is an interest. */ XXH_COMPILER_GUARD(seed64); #endif { xxh_u64 const input_lo = XXH_readLE64(input); xxh_u64 const input_hi = XXH_readLE64(input+8); return XXH3_mul128_fold64( input_lo ^ (XXH_readLE64(secret) + seed64), input_hi ^ (XXH_readLE64(secret+8) - seed64) ); } } /* For mid range keys, XXH3 uses a Mum-hash variant. */ XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(16 < len && len <= 128); { xxh_u64 acc = len * XXH_PRIME64_1, acc_end; #if XXH_SIZE_OPT >= 1 /* Smaller and cleaner, but slightly slower. */ unsigned int i = (unsigned int)(len - 1) / 32; do { acc += XXH3_mix16B(input+16 * i, secret+32*i, seed); acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed); } while (i-- != 0); acc_end = 0; #else acc += XXH3_mix16B(input+0, secret+0, seed); acc_end = XXH3_mix16B(input+len-16, secret+16, seed); if (len > 32) { acc += XXH3_mix16B(input+16, secret+32, seed); acc_end += XXH3_mix16B(input+len-32, secret+48, seed); if (len > 64) { acc += XXH3_mix16B(input+32, secret+64, seed); acc_end += XXH3_mix16B(input+len-48, secret+80, seed); if (len > 96) { acc += XXH3_mix16B(input+48, secret+96, seed); acc_end += XXH3_mix16B(input+len-64, secret+112, seed); } } } #endif return XXH3_avalanche(acc + acc_end); } } #define XXH3_MIDSIZE_MAX 240 XXH_NO_INLINE XXH_PUREF XXH64_hash_t XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); #define XXH3_MIDSIZE_STARTOFFSET 3 #define XXH3_MIDSIZE_LASTOFFSET 17 { xxh_u64 acc = len * XXH_PRIME64_1; xxh_u64 acc_end; unsigned int const nbRounds = (unsigned int)len / 16; unsigned int i; XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); for (i=0; i<8; i++) { acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); } /* last bytes */ acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); XXH_ASSERT(nbRounds >= 8); acc = XXH3_avalanche(acc); #if defined(__clang__) /* Clang */ \ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ /* * UGLY HACK: * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. * In everywhere else, it uses scalar code. * * For 64->128-bit multiplies, even if the NEON was 100% optimal, it * would still be slower than UMAAL (see XXH_mult64to128). * * Unfortunately, Clang doesn't handle the long multiplies properly and * converts them to the nonexistent "vmulq_u64" intrinsic, which is then * scalarized into an ugly mess of VMOV.32 instructions. * * This mess is difficult to avoid without turning autovectorization * off completely, but they are usually relatively minor and/or not * worth it to fix. * * This loop is the easiest to fix, as unlike XXH32, this pragma * _actually works_ because it is a loop vectorization instead of an * SLP vectorization. */ #pragma clang loop vectorize(disable) #endif for (i=8 ; i < nbRounds; i++) { /* * Prevents clang for unrolling the acc loop and interleaving with this one. */ XXH_COMPILER_GUARD(acc); acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); } return XXH3_avalanche(acc + acc_end); } } /* ======= Long Keys ======= */ #define XXH_STRIPE_LEN 64 #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) #ifdef XXH_OLD_NAMES # define STRIPE_LEN XXH_STRIPE_LEN # define ACC_NB XXH_ACC_NB #endif #ifndef XXH_PREFETCH_DIST # ifdef __clang__ # define XXH_PREFETCH_DIST 320 # else # if (XXH_VECTOR == XXH_AVX512) # define XXH_PREFETCH_DIST 512 # else # define XXH_PREFETCH_DIST 384 # endif # endif /* __clang__ */ #endif /* XXH_PREFETCH_DIST */ /* * These macros are to generate an XXH3_accumulate() function. * The two arguments select the name suffix and target attribute. * * The name of this symbol is XXH3_accumulate_() and it calls * XXH3_accumulate_512_(). * * It may be useful to hand implement this function if the compiler fails to * optimize the inline function. */ #define XXH3_ACCUMULATE_TEMPLATE(name) \ void \ XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \ const xxh_u8* XXH_RESTRICT input, \ const xxh_u8* XXH_RESTRICT secret, \ size_t nbStripes) \ { \ size_t n; \ for (n = 0; n < nbStripes; n++ ) { \ const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \ XXH_PREFETCH(in + XXH_PREFETCH_DIST); \ XXH3_accumulate_512_##name( \ acc, \ in, \ secret + n*XXH_SECRET_CONSUME_RATE); \ } \ } XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) { if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); XXH_memcpy(dst, &v64, sizeof(v64)); } /* Several intrinsic functions below are supposed to accept __int64 as argument, * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . * However, several environments do not define __int64 type, * requiring a workaround. */ #if !defined (__VMS) \ && (defined (__cplusplus) \ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) typedef int64_t xxh_i64; #else /* the following type must have a width of 64-bit */ typedef long long xxh_i64; #endif /* * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. * * It is a hardened version of UMAC, based off of FARSH's implementation. * * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD * implementations, and it is ridiculously fast. * * We harden it by mixing the original input to the accumulators as well as the product. * * This means that in the (relatively likely) case of a multiply by zero, the * original input is preserved. * * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve * cross-pollination, as otherwise the upper and lower halves would be * essentially independent. * * This doesn't matter on 64-bit hashes since they all get merged together in * the end, so we skip the extra step. * * Both XXH3_64bits and XXH3_128bits use this subroutine. */ #if (XXH_VECTOR == XXH_AVX512) \ || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) #ifndef XXH_TARGET_AVX512 # define XXH_TARGET_AVX512 /* disable attribute target */ #endif XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret) { __m512i* const xacc = (__m512i *) acc; XXH_ASSERT((((size_t)acc) & 63) == 0); XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); { /* data_vec = input[0]; */ __m512i const data_vec = _mm512_loadu_si512 (input); /* key_vec = secret[0]; */ __m512i const key_vec = _mm512_loadu_si512 (secret); /* data_key = data_vec ^ key_vec; */ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); /* xacc[0] += swap(data_vec); */ __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); __m512i const sum = _mm512_add_epi64(*xacc, data_swap); /* xacc[0] += product; */ *xacc = _mm512_add_epi64(product, sum); } } XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512) /* * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. * * Multiplication isn't perfect, as explained by Google in HighwayHash: * * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to * // varying degrees. In descending order of goodness, bytes * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. * // As expected, the upper and lower bytes are much worse. * * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 * * Since our algorithm uses a pseudorandom secret to add some variance into the * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. * * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid * extraction. * * Both XXH3_64bits and XXH3_128bits use this subroutine. */ XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 63) == 0); XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); { __m512i* const xacc = (__m512i*) acc; const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); /* xacc[0] ^= (xacc[0] >> 47) */ __m512i const acc_vec = *xacc; __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); /* xacc[0] ^= secret; */ __m512i const key_vec = _mm512_loadu_si512 (secret); __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */); /* xacc[0] *= XXH_PRIME32_1; */ __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32); __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); } } XXH_FORCE_INLINE XXH_TARGET_AVX512 void XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) { XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); XXH_ASSERT(((size_t)customSecret & 63) == 0); (void)(&XXH_writeLE64); { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64); __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos); const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); __m512i* const dest = ( __m512i*) customSecret; int i; XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ XXH_ASSERT(((size_t)dest & 63) == 0); for (i=0; i < nbRounds; ++i) { dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed); } } } #endif #if (XXH_VECTOR == XXH_AVX2) \ || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) #ifndef XXH_TARGET_AVX2 # define XXH_TARGET_AVX2 /* disable attribute target */ #endif XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 31) == 0); { __m256i* const xacc = (__m256i *) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ const __m256i* const xinput = (const __m256i *) input; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ const __m256i* const xsecret = (const __m256i *) secret; size_t i; for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { /* data_vec = xinput[i]; */ __m256i const data_vec = _mm256_loadu_si256 (xinput+i); /* key_vec = xsecret[i]; */ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); /* data_key = data_vec ^ key_vec; */ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); /* xacc[i] += swap(data_vec); */ __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); /* xacc[i] += product; */ xacc[i] = _mm256_add_epi64(product, sum); } } } XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2) XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 31) == 0); { __m256i* const xacc = (__m256i*) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ const __m256i* const xsecret = (const __m256i *) secret; const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); size_t i; for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { /* xacc[i] ^= (xacc[i] >> 47) */ __m256i const acc_vec = xacc[i]; __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); /* xacc[i] ^= xsecret; */ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* xacc[i] *= XXH_PRIME32_1; */ __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32); __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); } } } XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) { XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); (void)(&XXH_writeLE64); XXH_PREFETCH(customSecret); { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); __m256i* dest = ( __m256i*) customSecret; # if defined(__GNUC__) || defined(__clang__) /* * On GCC & Clang, marking 'dest' as modified will cause the compiler: * - do not extract the secret from sse registers in the internal loop * - use less common registers, and avoid pushing these reg into stack */ XXH_COMPILER_GUARD(dest); # endif XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ XXH_ASSERT(((size_t)dest & 31) == 0); /* GCC -O2 need unroll loop manually */ dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed); dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed); dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed); dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed); dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed); dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed); } } #endif /* x86dispatch always generates SSE2 */ #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) #ifndef XXH_TARGET_SSE2 # define XXH_TARGET_SSE2 /* disable attribute target */ #endif XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret) { /* SSE2 is just a half-scale version of the AVX2 version. */ XXH_ASSERT((((size_t)acc) & 15) == 0); { __m128i* const xacc = (__m128i *) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ const __m128i* const xinput = (const __m128i *) input; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ const __m128i* const xsecret = (const __m128i *) secret; size_t i; for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { /* data_vec = xinput[i]; */ __m128i const data_vec = _mm_loadu_si128 (xinput+i); /* key_vec = xsecret[i]; */ __m128i const key_vec = _mm_loadu_si128 (xsecret+i); /* data_key = data_vec ^ key_vec; */ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); /* xacc[i] += swap(data_vec); */ __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); __m128i const sum = _mm_add_epi64(xacc[i], data_swap); /* xacc[i] += product; */ xacc[i] = _mm_add_epi64(product, sum); } } } XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2) XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 15) == 0); { __m128i* const xacc = (__m128i*) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ const __m128i* const xsecret = (const __m128i *) secret; const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); size_t i; for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { /* xacc[i] ^= (xacc[i] >> 47) */ __m128i const acc_vec = xacc[i]; __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); /* xacc[i] ^= xsecret[i]; */ __m128i const key_vec = _mm_loadu_si128 (xsecret+i); __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); /* xacc[i] *= XXH_PRIME32_1; */ __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); } } } XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) { XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); (void)(&XXH_writeLE64); { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); # else __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); # endif int i; const void* const src16 = XXH3_kSecret; __m128i* dst16 = (__m128i*) customSecret; # if defined(__GNUC__) || defined(__clang__) /* * On GCC & Clang, marking 'dest' as modified will cause the compiler: * - do not extract the secret from sse registers in the internal loop * - use less common registers, and avoid pushing these reg into stack */ XXH_COMPILER_GUARD(dst16); # endif XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ XXH_ASSERT(((size_t)dst16 & 15) == 0); for (i=0; i < nbRounds; ++i) { dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); } } } #endif #if (XXH_VECTOR == XXH_NEON) /* forward declarations for the scalar routines */ XXH_FORCE_INLINE void XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input, void const* XXH_RESTRICT secret, size_t lane); XXH_FORCE_INLINE void XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT secret, size_t lane); /*! * @internal * @brief The bulk processing loop for NEON. * * The NEON code path is actually partially scalar when running on AArch64. This * is to optimize the pipelining and can have up to 15% speedup depending on the * CPU, and it also mitigates some GCC codegen issues. * * @see XXH3_NEON_LANES for configuring this and details about this optimization. */ XXH_FORCE_INLINE void XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 15) == 0); XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0); { uint64x2_t* const xacc = (uint64x2_t *) acc; /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ uint8_t const* const xinput = (const uint8_t *) input; uint8_t const* const xsecret = (const uint8_t *) secret; size_t i; /* AArch64 uses both scalar and neon at the same time */ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { XXH3_scalarRound(acc, input, secret, i); } i = 0; for (; i+1 < XXH3_NEON_LANES / 2; i+=2) { uint64x2_t acc_vec1 = xacc[i]; /* data_vec = xinput[i]; */ uint64x2_t data_vec1 = XXH_vld1q_u64(xinput + (i * 16)); /* key_vec = xsecret[i]; */ uint64x2_t key_vec1 = XXH_vld1q_u64(xsecret + (i * 16)); /* acc_vec_2 = swap(data_vec) */ uint64x2_t acc_vec_21 = vextq_u64(data_vec1, data_vec1, 1); /* data_key = data_vec ^ key_vec; */ uint64x2_t data_key1 = veorq_u64(data_vec1, key_vec1); uint64x2_t acc_vec2 = xacc[i+1]; /* data_vec = xinput[i]; */ uint64x2_t data_vec2 = XXH_vld1q_u64(xinput + ((i+1) * 16)); /* key_vec = xsecret[i]; */ uint64x2_t key_vec2 = XXH_vld1q_u64(xsecret + ((i+1) * 16)); /* acc_vec_2 = swap(data_vec) */ uint64x2_t acc_vec_22 = vextq_u64(data_vec2, data_vec2, 1); /* data_key = data_vec ^ key_vec; */ uint64x2_t data_key2 = veorq_u64(data_vec2, key_vec2); /* data_key_lo = {(data_key1 & 0xFFFFFFFF), (data_key2 & 0xFFFFFFFF)}; * data_key_hi = {(data_key1 >> 32), (data_key2 >> 32)}; */ uint32x4x2_t zipped = vuzpq_u32(vreinterpretq_u32_u64(data_key1), vreinterpretq_u32_u64(data_key2)); uint32x4_t data_key_lo = zipped.val[0]; uint32x4_t data_key_hi = zipped.val[1]; /* acc_vec_2 += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ acc_vec_21 = vmlal_u32 (acc_vec_21, vget_low_u32(data_key_lo), vget_low_u32(data_key_hi)); XXH_COMPILER_GUARD_W(acc_vec_21); /* xacc[i] += acc_vec_2; */ acc_vec1 = vaddq_u64 (acc_vec1, acc_vec_21); xacc[i] = acc_vec1; /* acc_vec_2 += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ acc_vec_22 = vmlal_u32 (acc_vec_22, vget_high_u32(data_key_lo), vget_high_u32(data_key_hi)); XXH_COMPILER_GUARD_W(acc_vec_22); /* xacc[i] += acc_vec_2; */ acc_vec2 = vaddq_u64 (acc_vec2, acc_vec_22); xacc[i+1] = acc_vec2; } for (; i < XXH3_NEON_LANES / 2; i++) { uint64x2_t acc_vec = xacc[i]; /* data_vec = xinput[i]; */ uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16)); /* key_vec = xsecret[i]; */ uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); uint64x2_t data_key; uint32x2_t data_key_lo, data_key_hi; /* acc_vec_2 = swap(data_vec) */ uint64x2_t acc_vec_2 = vextq_u64(data_vec, data_vec, 1); /* data_key = data_vec ^ key_vec; */ data_key = veorq_u64(data_vec, key_vec); /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); * data_key_hi = (uint32x2_t) (data_key >> 32); * data_key = UNDEFINED; */ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); /* acc_vec_2 += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ acc_vec_2 = vmlal_u32 (acc_vec_2, data_key_lo, data_key_hi); XXH_COMPILER_GUARD_W(acc_vec_2); /* xacc[i] += acc_vec_2; */ acc_vec = vaddq_u64 (acc_vec, acc_vec_2); xacc[i] = acc_vec; } } } XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon) XXH_FORCE_INLINE void XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 15) == 0); { uint64x2_t* xacc = (uint64x2_t*) acc; uint8_t const* xsecret = (uint8_t const*) secret; uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); size_t i; /* AArch64 uses both scalar and neon at the same time */ for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { XXH3_scalarScrambleRound(acc, secret, i); } for (i=0; i < XXH3_NEON_LANES / 2; i++) { /* xacc[i] ^= (xacc[i] >> 47); */ uint64x2_t acc_vec = xacc[i]; uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); /* xacc[i] ^= xsecret[i]; */ uint64x2_t key_vec = XXH_vld1q_u64 (xsecret + (i * 16)); uint64x2_t data_key = veorq_u64 (data_vec, key_vec); /* xacc[i] *= XXH_PRIME32_1 */ uint32x2_t data_key_lo, data_key_hi; /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); * data_key_hi = (uint32x2_t) (xacc[i] >> 32); * xacc[i] = UNDEFINED; */ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); { /* * prod_hi = (data_key >> 32) * XXH_PRIME32_1; * * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will * incorrectly "optimize" this: * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); * shifted = vshll_n_u32(tmp, 32); * to this: * tmp = "vmulq_u64"(a, b); // no such thing! * shifted = vshlq_n_u64(tmp, 32); * * However, unlike SSE, Clang lacks a 64-bit multiply routine * for NEON, and it scalarizes two 64-bit multiplies instead. * * vmull_u32 has the same timing as vmul_u32, and it avoids * this bug completely. * See https://bugs.llvm.org/show_bug.cgi?id=39967 */ uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); /* xacc[i] = prod_hi << 32; */ prod_hi = vshlq_n_u64(prod_hi, 32); /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ xacc[i] = vmlal_u32(prod_hi, data_key_lo, prime); } } } } #endif #if (XXH_VECTOR == XXH_VSX) XXH_FORCE_INLINE void XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret) { /* presumed aligned */ unsigned int* const xacc = (unsigned int*) acc; xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ xxh_u64x2 const v32 = { 32, 32 }; size_t i; for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { /* data_vec = xinput[i]; */ xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); /* key_vec = xsecret[i]; */ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); xxh_u64x2 const data_key = data_vec ^ key_vec; /* shuffled = (data_key << 32) | (data_key >> 32); */ xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); /* acc_vec = xacc[i]; */ xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i); acc_vec += product; /* swap high and low halves */ #ifdef __s390x__ acc_vec += vec_permi(data_vec, data_vec, 2); #else acc_vec += vec_xxpermdi(data_vec, data_vec, 2); #endif /* xacc[i] = acc_vec; */ vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i); } } XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx) XXH_FORCE_INLINE void XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { XXH_ASSERT((((size_t)acc) & 15) == 0); { xxh_u64x2* const xacc = (xxh_u64x2*) acc; const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; /* constants */ xxh_u64x2 const v32 = { 32, 32 }; xxh_u64x2 const v47 = { 47, 47 }; xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; size_t i; for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { /* xacc[i] ^= (xacc[i] >> 47); */ xxh_u64x2 const acc_vec = xacc[i]; xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); /* xacc[i] ^= xsecret[i]; */ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); xxh_u64x2 const data_key = data_vec ^ key_vec; /* xacc[i] *= XXH_PRIME32_1 */ /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); xacc[i] = prod_odd + (prod_even << v32); } } } #endif #if (XXH_VECTOR == XXH_SVE) XXH_FORCE_INLINE void XXH3_accumulate_512_sve( void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret) { uint64_t *xacc = (uint64_t *)acc; const uint64_t *xinput = (const uint64_t *)(const void *)input; const uint64_t *xsecret = (const uint64_t *)(const void *)secret; svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); uint64_t element_count = svcntd(); if (element_count >= 8) { svbool_t mask = svptrue_pat_b64(SV_VL8); svuint64_t vacc = svld1_u64(mask, xacc); ACCRND(vacc, 0); svst1_u64(mask, xacc, vacc); } else if (element_count == 2) { /* sve128 */ svbool_t mask = svptrue_pat_b64(SV_VL2); svuint64_t acc0 = svld1_u64(mask, xacc + 0); svuint64_t acc1 = svld1_u64(mask, xacc + 2); svuint64_t acc2 = svld1_u64(mask, xacc + 4); svuint64_t acc3 = svld1_u64(mask, xacc + 6); ACCRND(acc0, 0); ACCRND(acc1, 2); ACCRND(acc2, 4); ACCRND(acc3, 6); svst1_u64(mask, xacc + 0, acc0); svst1_u64(mask, xacc + 2, acc1); svst1_u64(mask, xacc + 4, acc2); svst1_u64(mask, xacc + 6, acc3); } else { svbool_t mask = svptrue_pat_b64(SV_VL4); svuint64_t acc0 = svld1_u64(mask, xacc + 0); svuint64_t acc1 = svld1_u64(mask, xacc + 4); ACCRND(acc0, 0); ACCRND(acc1, 4); svst1_u64(mask, xacc + 0, acc0); svst1_u64(mask, xacc + 4, acc1); } } XXH_FORCE_INLINE void XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT input, const xxh_u8* XXH_RESTRICT secret, size_t nbStripes) { if (nbStripes != 0) { uint64_t *xacc = (uint64_t *)acc; const uint64_t *xinput = (const uint64_t *)(const void *)input; const uint64_t *xsecret = (const uint64_t *)(const void *)secret; svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); uint64_t element_count = svcntd(); if (element_count >= 8) { svbool_t mask = svptrue_pat_b64(SV_VL8); svuint64_t vacc = svld1_u64(mask, xacc + 0); do { /* svprfd(svbool_t, void *, enum svfprop); */ svprfd(mask, xinput + 128, SV_PLDL1STRM); ACCRND(vacc, 0); xinput += 8; xsecret += 1; nbStripes--; } while (nbStripes != 0); svst1_u64(mask, xacc + 0, vacc); } else if (element_count == 2) { /* sve128 */ svbool_t mask = svptrue_pat_b64(SV_VL2); svuint64_t acc0 = svld1_u64(mask, xacc + 0); svuint64_t acc1 = svld1_u64(mask, xacc + 2); svuint64_t acc2 = svld1_u64(mask, xacc + 4); svuint64_t acc3 = svld1_u64(mask, xacc + 6); do { svprfd(mask, xinput + 128, SV_PLDL1STRM); ACCRND(acc0, 0); ACCRND(acc1, 2); ACCRND(acc2, 4); ACCRND(acc3, 6); xinput += 8; xsecret += 1; nbStripes--; } while (nbStripes != 0); svst1_u64(mask, xacc + 0, acc0); svst1_u64(mask, xacc + 2, acc1); svst1_u64(mask, xacc + 4, acc2); svst1_u64(mask, xacc + 6, acc3); } else { svbool_t mask = svptrue_pat_b64(SV_VL4); svuint64_t acc0 = svld1_u64(mask, xacc + 0); svuint64_t acc1 = svld1_u64(mask, xacc + 4); do { svprfd(mask, xinput + 128, SV_PLDL1STRM); ACCRND(acc0, 0); ACCRND(acc1, 4); xinput += 8; xsecret += 1; nbStripes--; } while (nbStripes != 0); svst1_u64(mask, xacc + 0, acc0); svst1_u64(mask, xacc + 4, acc1); } } } #endif /* scalar variants - universal */ /*! * @internal * @brief Scalar round for @ref XXH3_accumulate_512_scalar(). * * This is extracted to its own function because the NEON path uses a combination * of NEON and scalar. */ XXH_FORCE_INLINE void XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input, void const* XXH_RESTRICT secret, size_t lane) { xxh_u64* xacc = (xxh_u64*) acc; xxh_u8 const* xinput = (xxh_u8 const*) input; xxh_u8 const* xsecret = (xxh_u8 const*) secret; XXH_ASSERT(lane < XXH_ACC_NB); XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); { xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8); xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8); xacc[lane ^ 1] += data_val; /* swap adjacent lanes */ xacc[lane] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); } } /*! * @internal * @brief Processes a 64 byte block of data using the scalar path. */ XXH_FORCE_INLINE void XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret) { size_t i; /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */ #if defined(__GNUC__) && !defined(__clang__) \ && (defined(__arm__) || defined(__thumb2__)) \ && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \ && XXH_SIZE_OPT <= 0 # pragma GCC unroll 8 #endif for (i=0; i < XXH_ACC_NB; i++) { XXH3_scalarRound(acc, input, secret, i); } } XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar) /*! * @internal * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar(). * * This is extracted to its own function because the NEON path uses a combination * of NEON and scalar. */ XXH_FORCE_INLINE void XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT secret, size_t lane) { xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); XXH_ASSERT(lane < XXH_ACC_NB); { xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8); xxh_u64 acc64 = xacc[lane]; acc64 = XXH_xorshift64(acc64, 47); acc64 ^= key64; acc64 *= XXH_PRIME32_1; xacc[lane] = acc64; } } /*! * @internal * @brief Scrambles the accumulators after a large chunk has been read */ XXH_FORCE_INLINE void XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { size_t i; for (i=0; i < XXH_ACC_NB; i++) { XXH3_scalarScrambleRound(acc, secret, i); } } XXH_FORCE_INLINE void XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) { /* * We need a separate pointer for the hack below, * which requires a non-const pointer. * Any decent compiler will optimize this out otherwise. */ const xxh_u8* kSecretPtr = XXH3_kSecret; XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); #if defined(__clang__) && defined(__aarch64__) /* * UGLY HACK: * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are * placed sequentially, in order, at the top of the unrolled loop. * * While MOVK is great for generating constants (2 cycles for a 64-bit * constant compared to 4 cycles for LDR), it fights for bandwidth with * the arithmetic instructions. * * I L S * MOVK * MOVK * MOVK * MOVK * ADD * SUB STR * STR * By forcing loads from memory (as the asm line causes Clang to assume * that XXH3_kSecretPtr has been changed), the pipelines are used more * efficiently: * I L S * LDR * ADD LDR * SUB STR * STR * * See XXH3_NEON_LANES for details on the pipsline. * * XXH3_64bits_withSeed, len == 256, Snapdragon 835 * without hack: 2654.4 MB/s * with hack: 3202.9 MB/s */ XXH_COMPILER_GUARD(kSecretPtr); #endif /* * Note: in debug mode, this overrides the asm optimization * and Clang will emit MOVK chains again. */ XXH_ASSERT(kSecretPtr == XXH3_kSecret); { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; int i; for (i=0; i < nbRounds; i++) { /* * The asm hack causes Clang to assume that kSecretPtr aliases with * customSecret, and on aarch64, this prevented LDP from merging two * loads together for free. Putting the loads together before the stores * properly generates LDP. */ xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); } } } typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t); typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); // using the functions below (AVX512), cause ASAN errors during stress testing // which is why we avoid using them with MUST_FREE_HEAP_ALLOCATIONS (COMPILE_WITH_ASAN) #if (XXH_VECTOR == XXH_AVX512) #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 #define XXH3_accumulate XXH3_accumulate_avx512 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 #elif (XXH_VECTOR == XXH_AVX2) #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 #define XXH3_accumulate XXH3_accumulate_avx2 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 #elif (XXH_VECTOR == XXH_SSE2) #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 #define XXH3_accumulate XXH3_accumulate_sse2 #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 #elif (XXH_VECTOR == XXH_NEON) #define XXH3_accumulate_512 XXH3_accumulate_512_neon #define XXH3_accumulate XXH3_accumulate_neon #define XXH3_scrambleAcc XXH3_scrambleAcc_neon #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar #elif (XXH_VECTOR == XXH_VSX) #define XXH3_accumulate_512 XXH3_accumulate_512_vsx #define XXH3_accumulate XXH3_accumulate_vsx #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar #elif (XXH_VECTOR == XXH_SVE) #define XXH3_accumulate_512 XXH3_accumulate_512_sve #define XXH3_accumulate XXH3_accumulate_sve #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar #else /* scalar */ #define XXH3_accumulate_512 XXH3_accumulate_512_scalar #define XXH3_accumulate XXH3_accumulate_scalar #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar #endif #if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */ # undef XXH3_initCustomSecret # define XXH3_initCustomSecret XXH3_initCustomSecret_scalar #endif XXH_FORCE_INLINE void XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; size_t const nb_blocks = (len - 1) / block_len; size_t n; XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); for (n = 0; n < nb_blocks; n++) { f_acc(acc, input + n*block_len, secret, nbStripesPerBlock); f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); } /* last partial block */ XXH_ASSERT(len > XXH_STRIPE_LEN); { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); f_acc(acc, input + nb_blocks*block_len, secret, nbStripes); /* last stripe */ { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); } } } XXH_FORCE_INLINE xxh_u64 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) { return XXH3_mul128_fold64( acc[0] ^ XXH_readLE64(secret), acc[1] ^ XXH_readLE64(secret+8) ); } static XXH64_hash_t XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) { xxh_u64 result64 = start; size_t i = 0; for (i = 0; i < 4; i++) { result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); #if defined(__clang__) /* Clang */ \ && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ /* * UGLY HACK: * Prevent autovectorization on Clang ARMv7-a. Exact same problem as * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. * XXH3_64bits, len == 256, Snapdragon 835: * without hack: 2063.7 MB/s * with hack: 2560.7 MB/s */ XXH_COMPILER_GUARD(result64); #endif } return XXH3_avalanche(result64); } #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, const void* XXH_RESTRICT secret, size_t secretSize, XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble); /* converge into final hash */ XXH_STATIC_ASSERT(sizeof(acc) == 64); /* do not align on 8, so that the secret is different from the accumulator */ #define XXH_SECRET_MERGEACCS_START 11 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); } /* * It's important for performance to transmit secret's size (when it's static) * so that the compiler can properly optimize the vectorized loop. * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. */ XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) { (void)seed64; return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc); } /* * It's preferable for performance that XXH3_hashLong is not inlined, * as it results in a smaller function for small data, easier to the instruction cache. * Note that inside this no_inline function, we do inline the internal loop, * and provide a statically defined secret size to allow optimization of vector loop. */ XXH_NO_INLINE XXH_PUREF XXH64_hash_t XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) { (void)seed64; (void)secret; (void)secretLen; return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc); } /* * XXH3_hashLong_64b_withSeed(): * Generate a custom key based on alteration of default XXH3_kSecret with the seed, * and then use this key for long mode hashing. * * This operation is decently fast but nonetheless costs a little bit of time. * Try to avoid it whenever possible (typically when seed==0). * * It's important for performance that XXH3_hashLong is not inlined. Not sure * why (uop cache maybe?), but the difference is large and easily measurable. */ XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, XXH64_hash_t seed, XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble, XXH3_f_initCustomSecret f_initSec) { #if XXH_SIZE_OPT <= 0 if (seed == 0) return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc, f_scramble); #endif { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; f_initSec(secret, seed); return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), f_acc, f_scramble); } } /* * It's important for performance that XXH3_hashLong is not inlined. */ XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) { (void)secret; (void)secretLen; return XXH3_hashLong_64b_withSeed_internal(input, len, seed, XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); } typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); XXH_FORCE_INLINE XXH64_hash_t XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, XXH3_hashLong64_f f_hashLong) { XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); /* * If an action is to be taken if `secretLen` condition is not respected, * it should be done here. * For now, it's a contract pre-condition. * Adding a check and a branch here would cost performance at every hash. * Also, note that function signature doesn't offer room to return an error. */ if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); } /* === Public entry point === */ /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length) { return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize) { return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed) { return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); } XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) { if (length <= XXH3_MIDSIZE_MAX) return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize); } /* === XXH3 streaming === */ #ifndef XXH_NO_STREAM /* * Malloc's a pointer that is always aligned to align. * * This must be freed with `XXH_alignedFree()`. * * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. * * This underalignment previously caused a rather obvious crash which went * completely unnoticed due to XXH3_createState() not actually being tested. * Credit to RedSpah for noticing this bug. * * The alignment is done manually: Functions like posix_memalign or _mm_malloc * are avoided: To maintain portability, we would have to write a fallback * like this anyways, and besides, testing for the existence of library * functions without relying on external build tools is impossible. * * The method is simple: Overallocate, manually align, and store the offset * to the original behind the returned pointer. * * Align must be a power of 2 and 8 <= align <= 128. */ static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align) { XXH_ASSERT(align <= 128 && align >= 8); /* range check */ XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ { /* Overallocate to make room for manual realignment and an offset byte */ xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); if (base != NULL) { /* * Get the offset needed to align this pointer. * * Even if the returned pointer is aligned, there will always be * at least one byte to store the offset to the original pointer. */ size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ /* Add the offset for the now-aligned pointer */ xxh_u8* ptr = base + offset; XXH_ASSERT((size_t)ptr % align == 0); /* Store the offset immediately before the returned pointer. */ ptr[-1] = (xxh_u8)offset; return ptr; } return NULL; } } /* * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. */ static void XXH_alignedFree(void* p) { if (p != NULL) { xxh_u8* ptr = (xxh_u8*)p; /* Get the offset byte we added in XXH_malloc. */ xxh_u8 offset = ptr[-1]; /* Free the original malloc'd pointer */ xxh_u8* base = ptr - offset; XXH_free(base); } } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) { XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); if (state==NULL) return NULL; XXH3_INITSTATE(state); return state; } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) { XXH_alignedFree(statePtr); return XXH_OK; } /*! @ingroup XXH3_family */ XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state) { XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); } static void XXH3_reset_internal(XXH3_state_t* statePtr, XXH64_hash_t seed, const void* secret, size_t secretSize) { size_t const initStart = offsetof(XXH3_state_t, bufferedSize); size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); XXH_ASSERT(statePtr != NULL); /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ memset((char*)statePtr + initStart, 0, initLength); statePtr->acc[0] = XXH_PRIME32_3; statePtr->acc[1] = XXH_PRIME64_1; statePtr->acc[2] = XXH_PRIME64_2; statePtr->acc[3] = XXH_PRIME64_3; statePtr->acc[4] = XXH_PRIME64_4; statePtr->acc[5] = XXH_PRIME32_2; statePtr->acc[6] = XXH_PRIME64_5; statePtr->acc[7] = XXH_PRIME32_1; statePtr->seed = seed; statePtr->useSeed = (seed != 0); statePtr->extSecret = (const unsigned char*)secret; XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) { if (statePtr == NULL) return XXH_ERROR; XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); return XXH_OK; } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) { if (statePtr == NULL) return XXH_ERROR; XXH3_reset_internal(statePtr, 0, secret, secretSize); if (secret == NULL) return XXH_ERROR; if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; return XXH_OK; } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) { if (statePtr == NULL) return XXH_ERROR; if (seed==0) return XXH3_64bits_reset(statePtr); if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) XXH3_initCustomSecret(statePtr->customSecret, seed); XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); return XXH_OK; } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64) { if (statePtr == NULL) return XXH_ERROR; if (secret == NULL) return XXH_ERROR; if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; XXH3_reset_internal(statePtr, seed64, secret, secretSize); statePtr->useSeed = 1; /* always, even if seed64==0 */ return XXH_OK; } /* Note : when XXH3_consumeStripes() is invoked, * there must be a guarantee that at least one more byte must be consumed from input * so that the function can blindly consume all stripes using the "normal" secret segment */ XXH_FORCE_INLINE void XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, const xxh_u8* XXH_RESTRICT input, size_t nbStripes, const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { /* need a scrambling operation */ size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; f_acc(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock); f_scramble(acc, secret + secretLimit); f_acc(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock); *nbStripesSoFarPtr = nbStripesAfterBlock; } else { f_acc(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes); *nbStripesSoFarPtr += nbStripes; } } #ifndef XXH3_STREAM_USE_STACK # if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */ # define XXH3_STREAM_USE_STACK 1 # endif #endif /* * Both XXH3_64bits_update and XXH3_128bits_update use this routine. */ XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t* XXH_RESTRICT const state, const xxh_u8* XXH_RESTRICT input, size_t len, XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { if (input==NULL) { XXH_ASSERT(len == 0); return XXH_OK; } XXH_ASSERT(state != NULL); { const xxh_u8* const bEnd = input + len; const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 /* For some reason, gcc and MSVC seem to suffer greatly * when operating accumulators directly into state. * Operating into stack space seems to enable proper optimization. * clang, on the other hand, doesn't seem to need this trick */ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc)); #else xxh_u64* XXH_RESTRICT const acc = state->acc; #endif state->totalLen += len; XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); /* small input : just fill in tmp buffer */ if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { XXH_memcpy(state->buffer + state->bufferedSize, input, len); state->bufferedSize += (XXH32_hash_t)len; return XXH_OK; } /* total input is now > XXH3_INTERNALBUFFER_SIZE */ #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ /* * Internal buffer is partially filled (always, except at beginning) * Complete it, then consume it. */ if (state->bufferedSize) { size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); input += loadSize; XXH3_consumeStripes(acc, &state->nbStripesSoFar, state->nbStripesPerBlock, state->buffer, XXH3_INTERNALBUFFER_STRIPES, secret, state->secretLimit, f_acc, f_scramble); state->bufferedSize = 0; } XXH_ASSERT(input < bEnd); /* large input to consume : ingest per full block */ if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) { size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar); /* join to current block's end */ { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar; XXH_ASSERT(nbStripesToEnd <= nbStripes); f_acc(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd); f_scramble(acc, secret + state->secretLimit); state->nbStripesSoFar = 0; input += nbStripesToEnd * XXH_STRIPE_LEN; nbStripes -= nbStripesToEnd; } /* consume per entire blocks */ while(nbStripes >= state->nbStripesPerBlock) { f_acc(acc, input, secret, state->nbStripesPerBlock); f_scramble(acc, secret + state->secretLimit); input += state->nbStripesPerBlock * XXH_STRIPE_LEN; nbStripes -= state->nbStripesPerBlock; } /* consume last partial block */ f_acc(acc, input, secret, nbStripes); input += nbStripes * XXH_STRIPE_LEN; XXH_ASSERT(input < bEnd); /* at least some bytes left */ state->nbStripesSoFar = nbStripes; /* buffer predecessor of last partial stripe */ XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN); } else { /* content to consume <= block size */ /* Consume input by a multiple of internal buffer size */ if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; do { XXH3_consumeStripes(acc, &state->nbStripesSoFar, state->nbStripesPerBlock, input, XXH3_INTERNALBUFFER_STRIPES, secret, state->secretLimit, f_acc, f_scramble); input += XXH3_INTERNALBUFFER_SIZE; } while (inputbuffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); } } /* Some remaining input (always) : buffer it */ XXH_ASSERT(input < bEnd); XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); XXH_ASSERT(state->bufferedSize == 0); XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); state->bufferedSize = (XXH32_hash_t)(bEnd-input); #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 /* save stack accumulators into state */ memcpy(state->acc, acc, sizeof(acc)); #endif } return XXH_OK; } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) { return XXH3_update(state, (const xxh_u8*)input, len, XXH3_accumulate, XXH3_scrambleAcc); } XXH_FORCE_INLINE void XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, const unsigned char* secret) { /* * Digest on a local copy. This way, the state remains unaltered, and it can * continue ingesting more input afterwards. */ XXH_memcpy(acc, state->acc, sizeof(state->acc)); if (state->bufferedSize >= XXH_STRIPE_LEN) { size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; size_t nbStripesSoFar = state->nbStripesSoFar; XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock, state->buffer, nbStripes, secret, state->secretLimit, XXH3_accumulate, XXH3_scrambleAcc); /* last stripe */ XXH3_accumulate_512(acc, state->buffer + state->bufferedSize - XXH_STRIPE_LEN, secret + state->secretLimit - XXH_SECRET_LASTACC_START); } else { /* bufferedSize < XXH_STRIPE_LEN */ xxh_u8 lastStripe[XXH_STRIPE_LEN]; size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); XXH3_accumulate_512(acc, lastStripe, secret + state->secretLimit - XXH_SECRET_LASTACC_START); } } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state) { const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; if (state->totalLen > XXH3_MIDSIZE_MAX) { XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; XXH3_digest_long(acc, state, secret); return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * XXH_PRIME64_1); } /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ if (state->useSeed) return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), secret, state->secretLimit + XXH_STRIPE_LEN); } #endif /* !XXH_NO_STREAM */ /* ========================================== * XXH3 128 bits (a.k.a XXH128) * ========================================== * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, * even without counting the significantly larger output size. * * For example, extra steps are taken to avoid the seed-dependent collisions * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). * * This strength naturally comes at the cost of some speed, especially on short * lengths. Note that longer hashes are about as fast as the 64-bit version * due to it using only a slight modification of the 64-bit loop. * * XXH128 is also more oriented towards 64-bit machines. It is still extremely * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). */ XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { /* A doubled version of 1to3_64b with different constants. */ XXH_ASSERT(input != NULL); XXH_ASSERT(1 <= len && len <= 3); XXH_ASSERT(secret != NULL); /* * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } */ { xxh_u8 const c1 = input[0]; xxh_u8 const c2 = input[len >> 1]; xxh_u8 const c3 = input[len - 1]; xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; XXH128_hash_t h128; h128.low64 = XXH64_avalanche(keyed_lo); h128.high64 = XXH64_avalanche(keyed_hi); return h128; } } XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(4 <= len && len <= 8); seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; { xxh_u32 const input_lo = XXH_readLE32(input); xxh_u32 const input_hi = XXH_readLE32(input + len - 4); xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; xxh_u64 const keyed = input_64 ^ bitflip; /* Shift len to the left to ensure it is even, this avoids even multiplies. */ XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); m128.high64 += (m128.low64 << 1); m128.low64 ^= (m128.high64 >> 3); m128.low64 = XXH_xorshift64(m128.low64, 35); m128.low64 *= 0x9FB21C651E98DF25ULL; m128.low64 = XXH_xorshift64(m128.low64, 28); m128.high64 = XXH3_avalanche(m128.high64); return m128; } } XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(9 <= len && len <= 16); { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; xxh_u64 const input_lo = XXH_readLE64(input); xxh_u64 input_hi = XXH_readLE64(input + len - 8); XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); /* * Put len in the middle of m128 to ensure that the length gets mixed to * both the low and high bits in the 128x64 multiply below. */ m128.low64 += (xxh_u64)(len - 1) << 54; input_hi ^= bitfliph; /* * Add the high 32 bits of input_hi to the high 32 bits of m128, then * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to * the high 64 bits of m128. * * The best approach to this operation is different on 32-bit and 64-bit. */ if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ /* * 32-bit optimized version, which is more readable. * * On 32-bit, it removes an ADC and delays a dependency between the two * halves of m128.high64, but it generates an extra mask on 64-bit. */ m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); } else { /* * 64-bit optimized (albeit more confusing) version. * * Uses some properties of addition and multiplication to remove the mask: * * Let: * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) * c = XXH_PRIME32_2 * * a + (b * c) * Inverse Property: x + y - x == y * a + (b * (1 + c - 1)) * Distributive Property: x * (y + z) == (x * y) + (x * z) * a + (b * 1) + (b * (c - 1)) * Identity Property: x * 1 == x * a + b + (b * (c - 1)) * * Substitute a, b, and c: * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) * * Since input_hi.hi + input_hi.lo == input_hi, we get this: * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) */ m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); } /* m128 ^= XXH_swap64(m128 >> 64); */ m128.low64 ^= XXH_swap64(m128.high64); { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); h128.high64 += m128.high64 * XXH_PRIME64_2; h128.low64 = XXH3_avalanche(h128.low64); h128.high64 = XXH3_avalanche(h128.high64); return h128; } } } /* * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN */ XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(len <= 16); { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); if (len) return XXH3_len_1to3_128b(input, len, secret, seed); { XXH128_hash_t h128; xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); h128.low64 = XXH64_avalanche(seed ^ bitflipl); h128.high64 = XXH64_avalanche( seed ^ bitfliph); return h128; } } } /* * A bit slower than XXH3_mix16B, but handles multiply by zero better. */ XXH_FORCE_INLINE XXH128_hash_t XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, const xxh_u8* secret, XXH64_hash_t seed) { acc.low64 += XXH3_mix16B (input_1, secret+0, seed); acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); acc.high64 += XXH3_mix16B (input_2, secret+16, seed); acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); return acc; } XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(16 < len && len <= 128); { XXH128_hash_t acc; acc.low64 = len * XXH_PRIME64_1; acc.high64 = 0; #if XXH_SIZE_OPT >= 1 { /* Smaller, but slightly slower. */ unsigned int i = (unsigned int)(len - 1) / 32; do { acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed); } while (i-- != 0); } #else if (len > 32) { if (len > 64) { if (len > 96) { acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); } acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); } acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); } acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); #endif { XXH128_hash_t h128; h128.low64 = acc.low64 + acc.high64; h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) + ((len - seed) * XXH_PRIME64_2); h128.low64 = XXH3_avalanche(h128.low64); h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); return h128; } } } XXH_NO_INLINE XXH_PUREF XXH128_hash_t XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); { XXH128_hash_t acc; unsigned i; acc.low64 = len * XXH_PRIME64_1; acc.high64 = 0; /* * We set as `i` as offset + 32. We do this so that unchanged * `len` can be used as upper bound. This reaches a sweet spot * where both x86 and aarch64 get simple agen and good codegen * for the loop. */ for (i = 32; i < 160; i += 32) { acc = XXH128_mix32B(acc, input + i - 32, input + i - 16, secret + i - 32, seed); } acc.low64 = XXH3_avalanche(acc.low64); acc.high64 = XXH3_avalanche(acc.high64); /* * NB: `i <= len` will duplicate the last 32-bytes if * len % 32 was zero. This is an unfortunate necessity to keep * the hash result stable. */ for (i=160; i <= len; i += 32) { acc = XXH128_mix32B(acc, input + i - 32, input + i - 16, secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, seed); } /* last bytes */ acc = XXH128_mix32B(acc, input + len - 16, input + len - 32, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, (XXH64_hash_t)0 - seed); { XXH128_hash_t h128; h128.low64 = acc.low64 + acc.high64; h128.high64 = (acc.low64 * XXH_PRIME64_1) + (acc.high64 * XXH_PRIME64_4) + ((len - seed) * XXH_PRIME64_2); h128.low64 = XXH3_avalanche(h128.low64); h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); return h128; } } } XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble) { XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble); /* converge into final hash */ XXH_STATIC_ASSERT(sizeof(acc) == 64); XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); { XXH128_hash_t h128; h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); h128.high64 = XXH3_mergeAccs(acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)len * XXH_PRIME64_2)); return h128; } } /* * It's important for performance that XXH3_hashLong() is not inlined. */ XXH_NO_INLINE XXH_PUREF XXH128_hash_t XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) { (void)seed64; (void)secret; (void)secretLen; return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc); } /* * It's important for performance to pass @p secretLen (when it's static) * to the compiler, so that it can properly optimize the vectorized loop. */ XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) { (void)seed64; return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc); } XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, XXH64_hash_t seed64, XXH3_f_accumulate f_acc, XXH3_f_scrambleAcc f_scramble, XXH3_f_initCustomSecret f_initSec) { if (seed64 == 0) return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), f_acc, f_scramble); { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; f_initSec(secret, seed64); return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), f_acc, f_scramble); } } /* * It's important for performance that XXH3_hashLong is not inlined. */ XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed(const void* input, size_t len, XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) { (void)secret; (void)secretLen; return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); } typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, XXH64_hash_t, const void* XXH_RESTRICT, size_t); XXH_FORCE_INLINE XXH128_hash_t XXH3_128bits_internal(const void* input, size_t len, XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, XXH3_hashLong128_f f_hl128) { XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); /* * If an action is to be taken if `secret` conditions are not respected, * it should be done here. * For now, it's a contract pre-condition. * Adding a check and a branch here would cost performance at every hash. */ if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); return f_hl128(input, len, seed64, secret, secretLen); } /* === Public XXH128 API === */ /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len) { return XXH3_128bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_128b_default); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize) { return XXH3_128bits_internal(input, len, 0, (const xxh_u8*)secret, secretSize, XXH3_hashLong_128b_withSecret); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) { return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_128b_withSeed); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) { if (len <= XXH3_MIDSIZE_MAX) return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) { return XXH3_128bits_withSeed(input, len, seed); } /* === XXH3 128-bit streaming === */ #ifndef XXH_NO_STREAM /* * All initialization and update functions are identical to 64-bit streaming variant. * The only difference is the finalization routine. */ /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) { return XXH3_64bits_reset(statePtr); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) { return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) { return XXH3_64bits_reset_withSeed(statePtr, seed); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) { return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) { return XXH3_update(state, (const xxh_u8*)input, len, XXH3_accumulate, XXH3_scrambleAcc); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state) { const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; if (state->totalLen > XXH3_MIDSIZE_MAX) { XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; XXH3_digest_long(acc, state, secret); XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); { XXH128_hash_t h128; h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * XXH_PRIME64_1); h128.high64 = XXH3_mergeAccs(acc, secret + state->secretLimit + XXH_STRIPE_LEN - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); return h128; } } /* len <= XXH3_MIDSIZE_MAX : short code */ if (state->seed) return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), secret, state->secretLimit + XXH_STRIPE_LEN); } #endif /* !XXH_NO_STREAM */ /* 128-bit utility functions */ #include /* memcmp, memcpy */ /* return : 1 is equal, 0 if different */ /*! @ingroup XXH3_family */ XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) { /* note : XXH128_hash_t is compact, it has no padding byte */ return !(memcmp(&h1, &h2, sizeof(h1))); } /* This prototype is compatible with stdlib's qsort(). * @return : >0 if *h128_1 > *h128_2 * <0 if *h128_1 < *h128_2 * =0 if *h128_1 == *h128_2 */ /*! @ingroup XXH3_family */ XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2) { XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); /* note : bets that, in most cases, hash values are different */ if (hcmp) return hcmp; return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); } /*====== Canonical representation ======*/ /*! @ingroup XXH3_family */ XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) { hash.high64 = XXH_swap64(hash.high64); hash.low64 = XXH_swap64(hash.low64); } XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src) { XXH128_hash_t h; h.high64 = XXH_readBE64(src); h.low64 = XXH_readBE64(src->digest + 8); return h; } /* ========================================== * Secret generators * ========================================== */ #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128) { XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); } /*! @ingroup XXH3_family */ XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize) { #if (XXH_DEBUGLEVEL >= 1) XXH_ASSERT(secretBuffer != NULL); XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); #else /* production mode, assert() are disabled */ if (secretBuffer == NULL) return XXH_ERROR; if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; #endif if (customSeedSize == 0) { customSeed = XXH3_kSecret; customSeedSize = XXH_SECRET_DEFAULT_SIZE; } #if (XXH_DEBUGLEVEL >= 1) XXH_ASSERT(customSeed != NULL); #else if (customSeed == NULL) return XXH_ERROR; #endif /* Fill secretBuffer with a copy of customSeed - repeat as needed */ { size_t pos = 0; while (pos < secretSize) { size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); memcpy((char*)secretBuffer + pos, customSeed, toCopy); pos += toCopy; } } { size_t const nbSeg16 = secretSize / 16; size_t n; XXH128_canonical_t scrambler; XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); for (n=0; n