/****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite ** version 3.45.3. By combining all the individual C code files into this ** single large file, the entire code can be compiled as a single translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements ** of 5% or more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other ** programs, you need this file and the "sqlite3.h" header file that defines ** the programming interface to the SQLite library. (If you do not have ** the "sqlite3.h" header file at hand, you will find a copy embedded within ** the text of this file. Search for "Begin file sqlite3.h" to find the start ** of the embedded sqlite3.h header file.) Additional code files may be needed ** if you want a wrapper to interface SQLite with your choice of programming ** language. The code for the "sqlite3" command-line shell is also in a ** separate file. This file contains only code for the core SQLite library. ** ** The content in this amalgamation comes from Fossil check-in ** 8653b758870e6ef0c98d46b3ace27849054a with changes in files: ** ** .fossil-settings/empty-dirs ** .fossil-settings/ignore-glob ** LICENSE.md ** Makefile.in ** Makefile.msc ** README.md ** aclocal.m4 ** configure ** configure.ac ** ltmain.sh ** sqlite3.1 ** sqlite3.pc.in ** sqlite_cfg.h.in ** src/attach.c ** src/backup.c ** src/ctime.c ** src/func.c ** src/global.c ** src/main.c ** src/malloc.c ** src/pager.c ** src/pager.h ** src/pragma.c ** src/pragma.h ** src/shell.c.in ** src/sqlite.h.in ** src/sqliteInt.h ** src/tclsqlite.c ** src/test1.c ** src/test_config.c ** src/test_thread.c ** src/util.c ** src/vacuum.c ** src/wal.c ** tool/mkpragmatab.tcl ** tool/mksqlite3c.tcl */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1 #ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static #endif /************** Begin file sqliteInt.h ***************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** */ #ifndef SQLITEINT_H #define SQLITEINT_H /* Special Comments: ** ** Some comments have special meaning to the tools that measure test ** coverage: ** ** NO_TEST - The branches on this line are not ** measured by branch coverage. This is ** used on lines of code that actually ** implement parts of coverage testing. ** ** OPTIMIZATION-IF-TRUE - This branch is allowed to always be false ** and the correct answer is still obtained, ** though perhaps more slowly. ** ** OPTIMIZATION-IF-FALSE - This branch is allowed to always be true ** and the correct answer is still obtained, ** though perhaps more slowly. ** ** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread ** that would be harmless and undetectable ** if it did occur. ** ** In all cases, the special comment must be enclosed in the usual ** slash-asterisk...asterisk-slash comment marks, with no spaces between the ** asterisks and the comment text. */ /* ** Make sure the Tcl calling convention macro is defined. This macro is ** only used by test code and Tcl integration code. */ #ifndef SQLITE_TCLAPI # define SQLITE_TCLAPI #endif /* ** Include the header file used to customize the compiler options for MSVC. ** This should be done first so that it can successfully prevent spurious ** compiler warnings due to subsequent content in this file and other files ** that are included by this file. */ /************** Include msvc.h in the middle of sqliteInt.h ******************/ /************** Begin file msvc.h ********************************************/ /* ** 2015 January 12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to MSVC. */ #ifndef SQLITE_MSVC_H #define SQLITE_MSVC_H #if defined(_MSC_VER) #pragma warning(disable : 4054) #pragma warning(disable : 4055) #pragma warning(disable : 4100) #pragma warning(disable : 4127) #pragma warning(disable : 4130) #pragma warning(disable : 4152) #pragma warning(disable : 4189) #pragma warning(disable : 4206) #pragma warning(disable : 4210) #pragma warning(disable : 4232) #pragma warning(disable : 4244) #pragma warning(disable : 4305) #pragma warning(disable : 4306) #pragma warning(disable : 4702) #pragma warning(disable : 4706) #endif /* defined(_MSC_VER) */ #if defined(_MSC_VER) && !defined(_WIN64) #undef SQLITE_4_BYTE_ALIGNED_MALLOC #define SQLITE_4_BYTE_ALIGNED_MALLOC #endif /* defined(_MSC_VER) && !defined(_WIN64) */ #if !defined(HAVE_LOG2) && defined(_MSC_VER) && _MSC_VER<1800 #define HAVE_LOG2 0 #endif /* !defined(HAVE_LOG2) && defined(_MSC_VER) && _MSC_VER<1800 */ #endif /* SQLITE_MSVC_H */ /************** End of msvc.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* ** Special setup for VxWorks */ /************** Include vxworks.h in the middle of sqliteInt.h ***************/ /************** Begin file vxworks.h *****************************************/ /* ** 2015-03-02 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to Wind River's VxWorks */ #if defined(__RTP__) || defined(_WRS_KERNEL) /* This is VxWorks. Set up things specially for that OS */ #include #include /* amalgamator: dontcache */ #define OS_VXWORKS 1 #define SQLITE_OS_OTHER 0 #define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1 #define SQLITE_OMIT_LOAD_EXTENSION 1 #define SQLITE_ENABLE_LOCKING_STYLE 0 #define HAVE_UTIME 1 #else /* This is not VxWorks. */ #define OS_VXWORKS 0 #define HAVE_FCHOWN 1 #define HAVE_READLINK 1 #define HAVE_LSTAT 1 #endif /* defined(_WRS_KERNEL) */ /************** End of vxworks.h *********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. ** ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any ** system #includes. Hence, this block of code must be the very first ** code in all source files. ** ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch ** on the compiler command line. This is necessary if you are compiling ** on a recent machine (ex: Red Hat 7.2) but you want your code to work ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 ** without this option, LFS is enable. But LFS does not exist in the kernel ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary ** portability you should omit LFS. ** ** The previous paragraph was written in 2005. (This paragraph is written ** on 2008-11-28.) These days, all Linux kernels support large files, so ** you should probably leave LFS enabled. But some embedded platforms might ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. ** ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. */ #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* The GCC_VERSION and MSVC_VERSION macros are used to ** conditionally include optimizations for each of these compilers. A ** value of 0 means that compiler is not being used. The ** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific ** optimizations, and hence set all compiler macros to 0 ** ** There was once also a CLANG_VERSION macro. However, we learn that the ** version numbers in clang are for "marketing" only and are inconsistent ** and unreliable. Fortunately, all versions of clang also recognize the ** gcc version numbers and have reasonable settings for gcc version numbers, ** so the GCC_VERSION macro will be set to a correct non-zero value even ** when compiling with clang. */ #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif /* ** Some C99 functions in "math.h" are only present for MSVC when its version ** is associated with Visual Studio 2013 or higher. */ #ifndef SQLITE_HAVE_C99_MATH_FUNCS # if MSVC_VERSION==0 || MSVC_VERSION>=1800 # define SQLITE_HAVE_C99_MATH_FUNCS (1) # else # define SQLITE_HAVE_C99_MATH_FUNCS (0) # endif #endif /* Needed for various definitions... */ #if defined(__GNUC__) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) # define _BSD_SOURCE #endif /* ** Macro to disable warnings about missing "break" at the end of a "case". */ #if GCC_VERSION>=7000000 # define deliberate_fall_through __attribute__((fallthrough)); #else # define deliberate_fall_through #endif /* ** For MinGW, check to see if we can include the header file containing its ** version information, among other things. Normally, this internal MinGW ** header file would [only] be included automatically by other MinGW header ** files; however, the contained version information is now required by this ** header file to work around binary compatibility issues (see below) and ** this is the only known way to reliably obtain it. This entire #if block ** would be completely unnecessary if there was any other way of detecting ** MinGW via their preprocessor (e.g. if they customized their GCC to define ** some MinGW-specific macros). When compiling for MinGW, either the ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be ** defined; otherwise, detection of conditions specific to MinGW will be ** disabled. */ #if defined(_HAVE_MINGW_H) # include "mingw.h" #elif defined(_HAVE__MINGW_H) # include "_mingw.h" #endif /* ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T ** define is required to maintain binary compatibility with the MSVC runtime ** library in use (e.g. for Windows XP). */ #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ defined(_WIN32) && !defined(_WIN64) && \ defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ defined(__MSVCRT__) # define _USE_32BIT_TIME_T #endif /* Optionally #include a user-defined header, whereby compilation options ** may be set prior to where they take effect, but after platform setup. ** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include ** file. */ #ifdef SQLITE_CUSTOM_INCLUDE # define INC_STRINGIFY_(f) #f # define INC_STRINGIFY(f) INC_STRINGIFY_(f) # include INC_STRINGIFY(SQLITE_CUSTOM_INCLUDE) #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for ** MinGW. */ /************** Include sqlite3.h in the middle of sqliteInt.h ***************/ /************** Begin file sqlite3.h *****************************************/ /* ** 2001-09-15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. If a C-function, structure, datatype, ** or constant definition does not appear in this file, then it is ** not a published API of SQLite, is subject to change without ** notice, and should not be referenced by programs that use SQLite. ** ** Some of the definitions that are in this file are marked as ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source ** on how SQLite interfaces are supposed to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. */ #ifndef SQLITE3_H #define SQLITE3_H #include /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. */ #if 0 extern "C" { #endif /* ** Facilitate override of interface linkage and calling conventions. ** Be aware that these macros may not be used within this particular ** translation of the amalgamation and its associated header file. ** ** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the ** compiler that the target identifier should have external linkage. ** ** The SQLITE_CDECL macro is used to set the calling convention for ** public functions that accept a variable number of arguments. ** ** The SQLITE_APICALL macro is used to set the calling convention for ** public functions that accept a fixed number of arguments. ** ** The SQLITE_STDCALL macro is no longer used and is now deprecated. ** ** The SQLITE_CALLBACK macro is used to set the calling convention for ** function pointers. ** ** The SQLITE_SYSAPI macro is used to set the calling convention for ** functions provided by the operating system. ** ** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and ** SQLITE_SYSAPI macros are used only when building for environments ** that require non-default calling conventions. */ #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern #endif #ifndef SQLITE_API # define SQLITE_API #endif #ifndef SQLITE_CDECL # define SQLITE_CDECL #endif #ifndef SQLITE_APICALL # define SQLITE_APICALL #endif #ifndef SQLITE_STDCALL # define SQLITE_STDCALL SQLITE_APICALL #endif #ifndef SQLITE_CALLBACK # define SQLITE_CALLBACK #endif #ifndef SQLITE_SYSAPI # define SQLITE_SYSAPI #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications ** should not use deprecated interfaces - they are supported for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. ** ** These macros used to resolve to various kinds of compiler magic that ** would generate warning messages when they were used. But that ** compiler magic ended up generating such a flurry of bug reports ** that we have taken it all out and gone back to using simple ** noop macros. */ #define SQLITE_DEPRECATED #define SQLITE_EXPERIMENTAL /* ** Ensure these symbols were not defined by some previous header file. */ #ifdef SQLITE_VERSION # undef SQLITE_VERSION #endif #ifdef SQLITE_VERSION_NUMBER # undef SQLITE_VERSION_NUMBER #endif /* ** CAPI3REF: Compile-Time Library Version Numbers ** ** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header ** evaluates to a string literal that is the SQLite version in the ** format "X.Y.Z" where X is the major version number (always 3 for ** SQLite3) and Y is the minor version number and Z is the release number.)^ ** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer ** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same ** numbers used in [SQLITE_VERSION].)^ ** The SQLITE_VERSION_NUMBER for any given release of SQLite will also ** be larger than the release from which it is derived. Either Y will ** be held constant and Z will be incremented or else Y will be incremented ** and Z will be reset to zero. ** ** Since [version 3.6.18] ([dateof:3.6.18]), ** SQLite source code has been stored in the ** Fossil configuration management ** system. ^The SQLITE_SOURCE_ID macro evaluates to ** a string which identifies a particular check-in of SQLite ** within its configuration management system. ^The SQLITE_SOURCE_ID ** string contains the date and time of the check-in (UTC) and a SHA1 ** or SHA3-256 hash of the entire source tree. If the source code has ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.45.3" #define SQLITE_VERSION_NUMBER 3045003 #define SQLITE_SOURCE_ID "2024-04-15 13:34:05 8653b758870e6ef0c98d46b3ace27849054af85da891eb121e9aaa537f1ealt1" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros ** but are associated with the library instead of the header file. ^(Cautious ** programmers might include assert() statements in their application to ** verify that values returned by these interfaces match the macros in ** the header, and thus ensure that the application is ** compiled with matching library and header files. ** **
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
** 
)^ ** ** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION] ** macro. ^The sqlite3_libversion() function returns a pointer to the ** to the sqlite3_version[] string constant. The sqlite3_libversion() ** function is provided for use in DLLs since DLL users usually do not have ** direct access to string constants within the DLL. ^The ** sqlite3_libversion_number() function returns an integer equal to ** [SQLITE_VERSION_NUMBER]. ^(The sqlite3_sourceid() function returns ** a pointer to a string constant whose value is the same as the ** [SQLITE_SOURCE_ID] C preprocessor macro. Except if SQLite is built ** using an edited copy of [the amalgamation], then the last four characters ** of the hash might be different from [SQLITE_SOURCE_ID].)^ ** ** See also: [sqlite_version()] and [sqlite_source_id()]. */ SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; SQLITE_API const char *sqlite3_libversion(void); SQLITE_API const char *sqlite3_sourceid(void); SQLITE_API int sqlite3_libversion_number(void); /* ** CAPI3REF: Run-Time Library Compilation Options Diagnostics ** ** ^The sqlite3_compileoption_used() function returns 0 or 1 ** indicating whether the specified option was defined at ** compile time. ^The SQLITE_ prefix may be omitted from the ** option name passed to sqlite3_compileoption_used(). ** ** ^The sqlite3_compileoption_get() function allows iterating ** over the list of options that were defined at compile time by ** returning the N-th compile time option string. ^If N is out of range, ** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_ ** prefix is omitted from any strings returned by ** sqlite3_compileoption_get(). ** ** ^Support for the diagnostic functions sqlite3_compileoption_used() ** and sqlite3_compileoption_get() may be omitted by specifying the ** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time. ** ** See also: SQL functions [sqlite_compileoption_used()] and ** [sqlite_compileoption_get()] and the [compile_options pragma]. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS SQLITE_API int sqlite3_compileoption_used(const char *zOptName); SQLITE_API const char *sqlite3_compileoption_get(int N); #else # define sqlite3_compileoption_used(X) 0 # define sqlite3_compileoption_get(X) ((void*)0) #endif /* ** CAPI3REF: Test To See If The Library Is Threadsafe ** ** ^The sqlite3_threadsafe() function returns zero if and only if ** SQLite was compiled with mutexing code omitted due to the ** [SQLITE_THREADSAFE] compile-time option being set to 0. ** ** SQLite can be compiled with or without mutexes. When ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes ** are enabled and SQLite is threadsafe. When the ** [SQLITE_THREADSAFE] macro is 0, ** the mutexes are omitted. Without the mutexes, it is not safe ** to use SQLite concurrently from more than one thread. ** ** Enabling mutexes incurs a measurable performance penalty. ** So if speed is of utmost importance, it makes sense to disable ** the mutexes. But for maximum safety, mutexes should be enabled. ** ^The default behavior is for mutexes to be enabled. ** ** This interface can be used by an application to make sure that the ** version of SQLite that it is linking against was compiled with ** the desired setting of the [SQLITE_THREADSAFE] macro. ** ** This interface only reports on the compile-time mutex setting ** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with ** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but ** can be fully or partially disabled using a call to [sqlite3_config()] ** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD], ** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the ** sqlite3_threadsafe() function shows only the compile-time setting of ** thread safety, not any run-time changes to that setting made by ** sqlite3_config(). In other words, the return value from sqlite3_threadsafe() ** is unchanged by calls to sqlite3_config().)^ ** ** See the [threading mode] documentation for additional information. */ SQLITE_API int sqlite3_threadsafe(void); /* ** CAPI3REF: Database Connection Handle ** KEYWORDS: {database connection} {database connections} ** ** Each open SQLite database is represented by a pointer to an instance of ** the opaque structure named "sqlite3". It is useful to think of an sqlite3 ** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and ** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()] ** and [sqlite3_close_v2()] are its destructors. There are many other ** interfaces (such as ** [sqlite3_prepare_v2()], [sqlite3_create_function()], and ** [sqlite3_busy_timeout()] to name but three) that are methods on an ** sqlite3 object. */ typedef struct sqlite3 sqlite3; /* ** CAPI3REF: 64-Bit Integer Types ** KEYWORDS: sqlite_int64 sqlite_uint64 ** ** Because there is no cross-platform way to specify 64-bit integer types ** SQLite includes typedefs for 64-bit signed and unsigned integers. ** ** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions. ** The sqlite_int64 and sqlite_uint64 types are supported for backwards ** compatibility only. ** ** ^The sqlite3_int64 and sqlite_int64 types can store integer values ** between -9223372036854775808 and +9223372036854775807 inclusive. ^The ** sqlite3_uint64 and sqlite_uint64 types can store integer values ** between 0 and +18446744073709551615 inclusive. */ #ifdef SQLITE_INT64_TYPE typedef SQLITE_INT64_TYPE sqlite_int64; # ifdef SQLITE_UINT64_TYPE typedef SQLITE_UINT64_TYPE sqlite_uint64; # else typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; # endif #elif defined(_MSC_VER) || defined(__BORLANDC__) typedef __int64 sqlite_int64; typedef unsigned __int64 sqlite_uint64; #else typedef long long int sqlite_int64; typedef unsigned long long int sqlite_uint64; #endif typedef sqlite_int64 sqlite3_int64; typedef sqlite_uint64 sqlite3_uint64; /* ** If compiling for a processor that lacks floating point support, ** substitute integer for floating-point. */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite3_int64 #endif /* ** CAPI3REF: Closing A Database Connection ** DESTRUCTOR: sqlite3 ** ** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors ** for the [sqlite3] object. ** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if ** the [sqlite3] object is successfully destroyed and all associated ** resources are deallocated. ** ** Ideally, applications should [sqlite3_finalize | finalize] all ** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and ** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated ** with the [sqlite3] object prior to attempting to close the object. ** ^If the database connection is associated with unfinalized prepared ** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then ** sqlite3_close() will leave the database connection open and return ** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared ** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups, ** it returns [SQLITE_OK] regardless, but instead of deallocating the database ** connection immediately, it marks the database connection as an unusable ** "zombie" and makes arrangements to automatically deallocate the database ** connection after all prepared statements are finalized, all BLOB handles ** are closed, and all backups have finished. The sqlite3_close_v2() interface ** is intended for use with host languages that are garbage collected, and ** where the order in which destructors are called is arbitrary. ** ** ^If an [sqlite3] object is destroyed while a transaction is open, ** the transaction is automatically rolled back. ** ** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)] ** must be either a NULL ** pointer or an [sqlite3] object pointer obtained ** from [sqlite3_open()], [sqlite3_open16()], or ** [sqlite3_open_v2()], and not previously closed. ** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer ** argument is a harmless no-op. */ SQLITE_API int sqlite3_close(sqlite3*); SQLITE_API int sqlite3_close_v2(sqlite3*); /* ** The type for a callback function. ** This is legacy and deprecated. It is included for historical ** compatibility and is not documented. */ typedef int (*sqlite3_callback)(void*,int,char**, char**); /* ** CAPI3REF: One-Step Query Execution Interface ** METHOD: sqlite3 ** ** The sqlite3_exec() interface is a convenience wrapper around ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], ** that allows an application to run multiple statements of SQL ** without having to use a lot of C code. ** ** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, ** semicolon-separate SQL statements passed into its 2nd argument, ** in the context of the [database connection] passed in as its 1st ** argument. ^If the callback function of the 3rd argument to ** sqlite3_exec() is not NULL, then it is invoked for each result row ** coming out of the evaluated SQL statements. ^The 4th argument to ** sqlite3_exec() is relayed through to the 1st argument of each ** callback invocation. ^If the callback pointer to sqlite3_exec() ** is NULL, then no callback is ever invoked and result rows are ** ignored. ** ** ^If an error occurs while evaluating the SQL statements passed into ** sqlite3_exec(), then execution of the current statement stops and ** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec() ** is not NULL then any error message is written into memory obtained ** from [sqlite3_malloc()] and passed back through the 5th parameter. ** To avoid memory leaks, the application should invoke [sqlite3_free()] ** on error message strings returned through the 5th parameter of ** sqlite3_exec() after the error message string is no longer needed. ** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors ** occur, then sqlite3_exec() sets the pointer in its 5th parameter to ** NULL before returning. ** ** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec() ** routine returns SQLITE_ABORT without invoking the callback again and ** without running any subsequent SQL statements. ** ** ^The 2nd argument to the sqlite3_exec() callback function is the ** number of columns in the result. ^The 3rd argument to the sqlite3_exec() ** callback is an array of pointers to strings obtained as if from ** [sqlite3_column_text()], one for each column. ^If an element of a ** result row is NULL then the corresponding string pointer for the ** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the ** sqlite3_exec() callback is an array of pointers to strings where each ** entry represents the name of corresponding result column as obtained ** from [sqlite3_column_name()]. ** ** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer ** to an empty string, or a pointer that contains only whitespace and/or ** SQL comments, then no SQL statements are evaluated and the database ** is not changed. ** ** Restrictions: ** **
    **
  • The application must ensure that the 1st parameter to sqlite3_exec() ** is a valid and open [database connection]. **
  • The application must not close the [database connection] specified by ** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running. **
  • The application must not modify the SQL statement text passed into ** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running. **
  • The application must not dereference the arrays or string pointers ** passed as the 3rd and 4th callback parameters after it returns. **
*/ SQLITE_API int sqlite3_exec( sqlite3*, /* An open database */ const char *sql, /* SQL to be evaluated */ int (*callback)(void*,int,char**,char**), /* Callback function */ void *, /* 1st argument to callback */ char **errmsg /* Error msg written here */ ); /* ** CAPI3REF: Result Codes ** KEYWORDS: {result code definitions} ** ** Many SQLite functions return an integer result code from the set shown ** here in order to indicate success or failure. ** ** New error codes may be added in future versions of SQLite. ** ** See also: [extended result code definitions] */ #define SQLITE_OK 0 /* Successful result */ /* beginning-of-error-codes */ #define SQLITE_ERROR 1 /* Generic error */ #define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ #define SQLITE_PERM 3 /* Access permission denied */ #define SQLITE_ABORT 4 /* Callback routine requested an abort */ #define SQLITE_BUSY 5 /* The database file is locked */ #define SQLITE_LOCKED 6 /* A table in the database is locked */ #define SQLITE_NOMEM 7 /* A malloc() failed */ #define SQLITE_READONLY 8 /* Attempt to write a readonly database */ #define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ #define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ #define SQLITE_CORRUPT 11 /* The database disk image is malformed */ #define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */ #define SQLITE_FULL 13 /* Insertion failed because database is full */ #define SQLITE_CANTOPEN 14 /* Unable to open the database file */ #define SQLITE_PROTOCOL 15 /* Database lock protocol error */ #define SQLITE_EMPTY 16 /* Internal use only */ #define SQLITE_SCHEMA 17 /* The database schema changed */ #define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ #define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ #define SQLITE_MISMATCH 20 /* Data type mismatch */ #define SQLITE_MISUSE 21 /* Library used incorrectly */ #define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ #define SQLITE_AUTH 23 /* Authorization denied */ #define SQLITE_FORMAT 24 /* Not used */ #define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ #define SQLITE_NOTADB 26 /* File opened that is not a database file */ #define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */ #define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */ #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ /* end-of-error-codes */ /* ** CAPI3REF: Extended Result Codes ** KEYWORDS: {extended result code definitions} ** ** In its default configuration, SQLite API routines return one of 30 integer ** [result codes]. However, experience has shown that many of ** these result codes are too coarse-grained. They do not provide as ** much information about problems as programmers might like. In an effort to ** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8] ** and later) include ** support for additional result codes that provide more detailed information ** about errors. These [extended result codes] are enabled or disabled ** on a per database connection basis using the ** [sqlite3_extended_result_codes()] API. Or, the extended code for ** the most recent error can be obtained using ** [sqlite3_extended_errcode()]. */ #define SQLITE_ERROR_MISSING_COLLSEQ (SQLITE_ERROR | (1<<8)) #define SQLITE_ERROR_RETRY (SQLITE_ERROR | (2<<8)) #define SQLITE_ERROR_SNAPSHOT (SQLITE_ERROR | (3<<8)) #define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) #define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) #define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) #define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) #define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) #define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) #define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) #define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) #define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) #define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) #define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) #define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) #define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8)) #define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8)) #define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8)) #define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8)) #define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8)) #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) #define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) #define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8)) #define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8)) #define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) #define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8)) #define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8)) #define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8)) #define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8)) #define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8)) #define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8)) #define SQLITE_IOERR_IN_PAGE (SQLITE_IOERR | (34<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) #define SQLITE_CANTOPEN_DIRTYWAL (SQLITE_CANTOPEN | (5<<8)) /* Not Used */ #define SQLITE_CANTOPEN_SYMLINK (SQLITE_CANTOPEN | (6<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_CORRUPT_SEQUENCE (SQLITE_CORRUPT | (2<<8)) #define SQLITE_CORRUPT_INDEX (SQLITE_CORRUPT | (3<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) #define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8)) #define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) #define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) #define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) #define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) #define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) #define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) #define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) #define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) #define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) #define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8)) #define SQLITE_CONSTRAINT_PINNED (SQLITE_CONSTRAINT |(11<<8)) #define SQLITE_CONSTRAINT_DATATYPE (SQLITE_CONSTRAINT |(12<<8)) #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) #define SQLITE_NOTICE_RBU (SQLITE_NOTICE | (3<<8)) #define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8)) #define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8)) #define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8)) #define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) /* internal use only */ /* ** CAPI3REF: Flags For File Open Operations ** ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the [sqlite3_vfs.xOpen] method. ** ** Only those flags marked as "Ok for sqlite3_open_v2()" may be ** used as the third argument to the [sqlite3_open_v2()] interface. ** The other flags have historically been ignored by sqlite3_open_v2(), ** though future versions of SQLite might change so that an error is ** raised if any of the disallowed bits are passed into sqlite3_open_v2(). ** Applications should not depend on the historical behavior. ** ** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into ** [sqlite3_open_v2()] does *not* cause the underlying database file ** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into ** [sqlite3_open_v2()] has historically be a no-op and might become an ** error in future versions of SQLite. */ #define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */ #define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */ #define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */ #define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */ #define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */ #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */ #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */ #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */ #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */ #define SQLITE_OPEN_SUPER_JOURNAL 0x00004000 /* VFS only */ #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */ #define SQLITE_OPEN_NOFOLLOW 0x01000000 /* Ok for sqlite3_open_v2() */ #define SQLITE_OPEN_EXRESCODE 0x02000000 /* Extended result codes */ /* Reserved: 0x00F00000 */ /* Legacy compatibility: */ #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */ /* ** CAPI3REF: Device Characteristics ** ** The xDeviceCharacteristics method of the [sqlite3_io_methods] ** object returns an integer which is a vector of these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] ** refers to. ** ** The SQLITE_IOCAP_ATOMIC property means that all writes of ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls ** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that ** after reboot following a crash or power loss, the only bytes in a ** file that were written at the application level might have changed ** and that adjacent bytes, even bytes within the same sector are ** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN ** flag indicates that a file cannot be deleted when open. The ** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on ** read-only media and cannot be changed even by processes with ** elevated privileges. ** ** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying ** filesystem supports doing multiple write operations atomically when those ** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and ** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. */ #define SQLITE_IOCAP_ATOMIC 0x00000001 #define SQLITE_IOCAP_ATOMIC512 0x00000002 #define SQLITE_IOCAP_ATOMIC1K 0x00000004 #define SQLITE_IOCAP_ATOMIC2K 0x00000008 #define SQLITE_IOCAP_ATOMIC4K 0x00000010 #define SQLITE_IOCAP_ATOMIC8K 0x00000020 #define SQLITE_IOCAP_ATOMIC16K 0x00000040 #define SQLITE_IOCAP_ATOMIC32K 0x00000080 #define SQLITE_IOCAP_ATOMIC64K 0x00000100 #define SQLITE_IOCAP_SAFE_APPEND 0x00000200 #define SQLITE_IOCAP_SEQUENTIAL 0x00000400 #define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800 #define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000 #define SQLITE_IOCAP_IMMUTABLE 0x00002000 #define SQLITE_IOCAP_BATCH_ATOMIC 0x00004000 /* ** CAPI3REF: File Locking Levels ** ** SQLite uses one of these integer values as the second ** argument to calls it makes to the xLock() and xUnlock() methods ** of an [sqlite3_io_methods] object. These values are ordered from ** lest restrictive to most restrictive. ** ** The argument to xLock() is always SHARED or higher. The argument to ** xUnlock is either SHARED or NONE. */ #define SQLITE_LOCK_NONE 0 /* xUnlock() only */ #define SQLITE_LOCK_SHARED 1 /* xLock() or xUnlock() */ #define SQLITE_LOCK_RESERVED 2 /* xLock() only */ #define SQLITE_LOCK_PENDING 3 /* xLock() only */ #define SQLITE_LOCK_EXCLUSIVE 4 /* xLock() only */ /* ** CAPI3REF: Synchronization Type Flags ** ** When SQLite invokes the xSync() method of an ** [sqlite3_io_methods] object it uses a combination of ** these integer values as the second argument. ** ** When the SQLITE_SYNC_DATAONLY flag is used, it means that the ** sync operation only needs to flush data to mass storage. Inode ** information need not be flushed. If the lower four bits of the flag ** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics. ** If the lower four bits equal SQLITE_SYNC_FULL, that means ** to use Mac OS X style fullsync instead of fsync(). ** ** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags ** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL ** settings. The [synchronous pragma] determines when calls to the ** xSync VFS method occur and applies uniformly across all platforms. ** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how ** energetic or rigorous or forceful the sync operations are and ** only make a difference on Mac OSX for the default SQLite code. ** (Third-party VFS implementations might also make the distinction ** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the ** operating systems natively supported by SQLite, only Mac OSX ** cares about the difference.) */ #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 /* ** CAPI3REF: OS Interface Open File Handle ** ** An [sqlite3_file] object represents an open file in the ** [sqlite3_vfs | OS interface layer]. Individual OS interface ** implementations will ** want to subclass this object by appending additional fields ** for their own use. The pMethods entry is a pointer to an ** [sqlite3_io_methods] object that defines methods for performing ** I/O operations on the open file. */ typedef struct sqlite3_file sqlite3_file; struct sqlite3_file { const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ }; /* ** CAPI3REF: OS Interface File Virtual Methods Object ** ** Every file opened by the [sqlite3_vfs.xOpen] method populates an ** [sqlite3_file] object (or, more commonly, a subclass of the ** [sqlite3_file] object) with a pointer to an instance of this object. ** This object defines the methods used to perform various operations ** against the open file represented by the [sqlite3_file] object. ** ** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element ** to a non-NULL pointer, then the sqlite3_io_methods.xClose method ** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The ** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen] ** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element ** to NULL. ** ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or ** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). ** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY] ** flag may be ORed in to indicate that only the data of the file ** and not its inode needs to be synced. ** ** The integer values to xLock() and xUnlock() are one of **
    **
  • [SQLITE_LOCK_NONE], **
  • [SQLITE_LOCK_SHARED], **
  • [SQLITE_LOCK_RESERVED], **
  • [SQLITE_LOCK_PENDING], or **
  • [SQLITE_LOCK_EXCLUSIVE]. **
** xLock() upgrades the database file lock. In other words, xLock() moves the ** database file lock in the direction NONE toward EXCLUSIVE. The argument to ** xLock() is always on of SHARED, RESERVED, PENDING, or EXCLUSIVE, never ** SQLITE_LOCK_NONE. If the database file lock is already at or above the ** requested lock, then the call to xLock() is a no-op. ** xUnlock() downgrades the database file lock to either SHARED or NONE. * If the lock is already at or below the requested lock state, then the call ** to xUnlock() is a no-op. ** The xCheckReservedLock() method checks whether any database connection, ** either in this process or in some other process, is holding a RESERVED, ** PENDING, or EXCLUSIVE lock on the file. It returns true ** if such a lock exists and false otherwise. ** ** The xFileControl() method is a generic interface that allows custom ** VFS implementations to directly control an open file using the ** [sqlite3_file_control()] interface. The second "op" argument is an ** integer opcode. The third argument is a generic pointer intended to ** point to a structure that may contain arguments or space in which to ** write return values. Potential uses for xFileControl() might be ** functions to enable blocking locks with timeouts, to change the ** locking strategy (for example to use dot-file locks), to inquire ** about the status of a lock, or to break stale locks. The SQLite ** core reserves all opcodes less than 100 for its own use. ** A [file control opcodes | list of opcodes] less than 100 is available. ** Applications that define a custom xFileControl method should use opcodes ** greater than 100 to avoid conflicts. VFS implementations should ** return [SQLITE_NOTFOUND] for file control opcodes that they do not ** recognize. ** ** The xSectorSize() method returns the sector size of the ** device that underlies the file. The sector size is the ** minimum write that can be performed without disturbing ** other bytes in the file. The xDeviceCharacteristics() ** method returns a bit vector describing behaviors of the ** underlying device: ** **
    **
  • [SQLITE_IOCAP_ATOMIC] **
  • [SQLITE_IOCAP_ATOMIC512] **
  • [SQLITE_IOCAP_ATOMIC1K] **
  • [SQLITE_IOCAP_ATOMIC2K] **
  • [SQLITE_IOCAP_ATOMIC4K] **
  • [SQLITE_IOCAP_ATOMIC8K] **
  • [SQLITE_IOCAP_ATOMIC16K] **
  • [SQLITE_IOCAP_ATOMIC32K] **
  • [SQLITE_IOCAP_ATOMIC64K] **
  • [SQLITE_IOCAP_SAFE_APPEND] **
  • [SQLITE_IOCAP_SEQUENTIAL] **
  • [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN] **
  • [SQLITE_IOCAP_POWERSAFE_OVERWRITE] **
  • [SQLITE_IOCAP_IMMUTABLE] **
  • [SQLITE_IOCAP_BATCH_ATOMIC] **
** ** The SQLITE_IOCAP_ATOMIC property means that all writes of ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls ** to xWrite(). ** ** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill ** in the unread portions of the buffer with zeros. A VFS that ** fails to zero-fill short reads might seem to work. However, ** failure to zero-fill short reads will eventually lead to ** database corruption. */ typedef struct sqlite3_io_methods sqlite3_io_methods; struct sqlite3_io_methods { int iVersion; int (*xClose)(sqlite3_file*); int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); int (*xSync)(sqlite3_file*, int flags); int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); int (*xLock)(sqlite3_file*, int); int (*xUnlock)(sqlite3_file*, int); int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); int (*xFileControl)(sqlite3_file*, int op, void *pArg); int (*xSectorSize)(sqlite3_file*); int (*xDeviceCharacteristics)(sqlite3_file*); /* Methods above are valid for version 1 */ int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**); int (*xShmLock)(sqlite3_file*, int offset, int n, int flags); void (*xShmBarrier)(sqlite3_file*); int (*xShmUnmap)(sqlite3_file*, int deleteFlag); /* Methods above are valid for version 2 */ int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp); int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p); /* Methods above are valid for version 3 */ /* Additional methods may be added in future releases */ }; /* ** CAPI3REF: Standard File Control Opcodes ** KEYWORDS: {file control opcodes} {file control opcode} ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] ** interface. ** **
    **
  • [[SQLITE_FCNTL_LOCKSTATE]] ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This ** opcode causes the xFileControl method to write the current state of ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) ** into an integer that the pArg argument points to. ** This capability is only available if SQLite is compiled with [SQLITE_DEBUG]. ** **
  • [[SQLITE_FCNTL_SIZE_HINT]] ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS ** layer a hint of how large the database file will grow to be during the ** current transaction. This hint is not guaranteed to be accurate but it ** is often close. The underlying VFS might choose to preallocate database ** file space based on this hint in order to help writes to the database ** file run faster. ** **
  • [[SQLITE_FCNTL_SIZE_LIMIT]] ** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that ** implements [sqlite3_deserialize()] to set an upper bound on the size ** of the in-memory database. The argument is a pointer to a [sqlite3_int64]. ** If the integer pointed to is negative, then it is filled in with the ** current limit. Otherwise the limit is set to the larger of the value ** of the integer pointed to and the current database size. The integer ** pointed to is set to the new limit. ** **
  • [[SQLITE_FCNTL_CHUNK_SIZE]] ** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS ** extends and truncates the database file in chunks of a size specified ** by the user. The fourth argument to [sqlite3_file_control()] should ** point to an integer (type int) containing the new chunk-size to use ** for the nominated database. Allocating database file space in large ** chunks (say 1MB at a time), may reduce file-system fragmentation and ** improve performance on some systems. ** **
  • [[SQLITE_FCNTL_FILE_POINTER]] ** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer ** to the [sqlite3_file] object associated with a particular database ** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER]. ** **
  • [[SQLITE_FCNTL_JOURNAL_POINTER]] ** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer ** to the [sqlite3_file] object associated with the journal file (either ** the [rollback journal] or the [write-ahead log]) for a particular database ** connection. See also [SQLITE_FCNTL_FILE_POINTER]. ** **
  • [[SQLITE_FCNTL_SYNC_OMITTED]] ** No longer in use. ** **
  • [[SQLITE_FCNTL_SYNC]] ** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and ** sent to the VFS immediately before the xSync method is invoked on a ** database file descriptor. Or, if the xSync method is not invoked ** because the user has configured SQLite with ** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place ** of the xSync method. In most cases, the pointer argument passed with ** this file-control is NULL. However, if the database file is being synced ** as part of a multi-database commit, the argument points to a nul-terminated ** string containing the transactions super-journal file name. VFSes that ** do not need this signal should silently ignore this opcode. Applications ** should not call [sqlite3_file_control()] with this opcode as doing so may ** disrupt the operation of the specialized VFSes that do require it. ** **
  • [[SQLITE_FCNTL_COMMIT_PHASETWO]] ** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite ** and sent to the VFS after a transaction has been committed immediately ** but before the database is unlocked. VFSes that do not need this signal ** should silently ignore this opcode. Applications should not call ** [sqlite3_file_control()] with this opcode as doing so may disrupt the ** operation of the specialized VFSes that do require it. ** **
  • [[SQLITE_FCNTL_WIN32_AV_RETRY]] ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic ** retry counts and intervals for certain disk I/O operations for the ** windows [VFS] in order to provide robustness in the presence of ** anti-virus programs. By default, the windows VFS will retry file read, ** file write, and file delete operations up to 10 times, with a delay ** of 25 milliseconds before the first retry and with the delay increasing ** by an additional 25 milliseconds with each subsequent retry. This ** opcode allows these two values (10 retries and 25 milliseconds of delay) ** to be adjusted. The values are changed for all database connections ** within the same process. The argument is a pointer to an array of two ** integers where the first integer is the new retry count and the second ** integer is the delay. If either integer is negative, then the setting ** is not changed but instead the prior value of that setting is written ** into the array entry, allowing the current retry settings to be ** interrogated. The zDbName parameter is ignored. ** **
  • [[SQLITE_FCNTL_PERSIST_WAL]] ** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the ** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary ** write ahead log ([WAL file]) and shared memory ** files used for transaction control ** are automatically deleted when the latest connection to the database ** closes. Setting persistent WAL mode causes those files to persist after ** close. Persisting the files is useful when other processes that do not ** have write permission on the directory containing the database file want ** to read the database file, as the WAL and shared memory files must exist ** in order for the database to be readable. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable persistent WAL mode or 1 to enable persistent ** WAL mode. If the integer is -1, then it is overwritten with the current ** WAL persistence setting. ** **
  • [[SQLITE_FCNTL_POWERSAFE_OVERWRITE]] ** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the ** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting ** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the ** xDeviceCharacteristics methods. The fourth parameter to ** [sqlite3_file_control()] for this opcode should be a pointer to an integer. ** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage ** mode. If the integer is -1, then it is overwritten with the current ** zero-damage mode setting. ** **
  • [[SQLITE_FCNTL_OVERWRITE]] ** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening ** a write transaction to indicate that, unless it is rolled back for some ** reason, the entire database file will be overwritten by the current ** transaction. This is used by VACUUM operations. ** **
  • [[SQLITE_FCNTL_VFSNAME]] ** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of ** all [VFSes] in the VFS stack. The names are of all VFS shims and the ** final bottom-level VFS are written into memory obtained from ** [sqlite3_malloc()] and the result is stored in the char* variable ** that the fourth parameter of [sqlite3_file_control()] points to. ** The caller is responsible for freeing the memory when done. As with ** all file-control actions, there is no guarantee that this will actually ** do anything. Callers should initialize the char* variable to a NULL ** pointer in case this file-control is not implemented. This file-control ** is intended for diagnostic use only. ** **
  • [[SQLITE_FCNTL_VFS_POINTER]] ** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level ** [VFSes] currently in use. ^(The argument X in ** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be ** of type "[sqlite3_vfs] **". This opcodes will set *X ** to a pointer to the top-level VFS.)^ ** ^When there are multiple VFS shims in the stack, this opcode finds the ** upper-most shim only. ** **
  • [[SQLITE_FCNTL_PRAGMA]] ** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] ** file control is sent to the open [sqlite3_file] object corresponding ** to the database file to which the pragma statement refers. ^The argument ** to the [SQLITE_FCNTL_PRAGMA] file control is an array of ** pointers to strings (char**) in which the second element of the array ** is the name of the pragma and the third element is the argument to the ** pragma or NULL if the pragma has no argument. ^The handler for an ** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element ** of the char** argument point to a string obtained from [sqlite3_mprintf()] ** or the equivalent and that string will become the result of the pragma or ** the error message if the pragma fails. ^If the ** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal ** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA] ** file control returns [SQLITE_OK], then the parser assumes that the ** VFS has handled the PRAGMA itself and the parser generates a no-op ** prepared statement if result string is NULL, or that returns a copy ** of the result string if the string is non-NULL. ** ^If the [SQLITE_FCNTL_PRAGMA] file control returns ** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means ** that the VFS encountered an error while handling the [PRAGMA] and the ** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] ** file control occurs at the beginning of pragma statement analysis and so ** it is able to override built-in [PRAGMA] statements. ** **
  • [[SQLITE_FCNTL_BUSYHANDLER]] ** ^The [SQLITE_FCNTL_BUSYHANDLER] ** file-control may be invoked by SQLite on the database file handle ** shortly after it is opened in order to provide a custom VFS with access ** to the connection's busy-handler callback. The argument is of type (void**) ** - an array of two (void *) values. The first (void *) actually points ** to a function of type (int (*)(void *)). In order to invoke the connection's ** busy-handler, this function should be invoked with the second (void *) in ** the array as the only argument. If it returns non-zero, then the operation ** should be retried. If it returns zero, the custom VFS should abandon the ** current operation. ** **
  • [[SQLITE_FCNTL_TEMPFILENAME]] ** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control ** to have SQLite generate a ** temporary filename using the same algorithm that is followed to generate ** temporary filenames for TEMP tables and other internal uses. The ** argument should be a char** which will be filled with the filename ** written into memory obtained from [sqlite3_malloc()]. The caller should ** invoke [sqlite3_free()] on the result to avoid a memory leak. ** **
  • [[SQLITE_FCNTL_MMAP_SIZE]] ** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the ** maximum number of bytes that will be used for memory-mapped I/O. ** The argument is a pointer to a value of type sqlite3_int64 that ** is an advisory maximum number of bytes in the file to memory map. The ** pointer is overwritten with the old value. The limit is not changed if ** the value originally pointed to is negative, and so the current limit ** can be queried by passing in a pointer to a negative number. This ** file-control is used internally to implement [PRAGMA mmap_size]. ** **
  • [[SQLITE_FCNTL_TRACE]] ** The [SQLITE_FCNTL_TRACE] file control provides advisory information ** to the VFS about what the higher layers of the SQLite stack are doing. ** This file control is used by some VFS activity tracing [shims]. ** The argument is a zero-terminated string. Higher layers in the ** SQLite stack may generate instances of this file control if ** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled. ** **
  • [[SQLITE_FCNTL_HAS_MOVED]] ** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a ** pointer to an integer and it writes a boolean into that integer depending ** on whether or not the file has been renamed, moved, or deleted since it ** was first opened. ** **
  • [[SQLITE_FCNTL_WIN32_GET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the ** underlying native file handle associated with a file handle. This file ** control interprets its argument as a pointer to a native file handle and ** writes the resulting value there. ** **
  • [[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** **
  • [[SQLITE_FCNTL_WAL_BLOCK]] ** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might ** be advantageous to block on the next WAL lock if the lock is not immediately ** available. The WAL subsystem issues this signal during rare ** circumstances in order to fix a problem with priority inversion. ** Applications should not use this file-control. ** **
  • [[SQLITE_FCNTL_ZIPVFS]] ** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other ** VFS should return SQLITE_NOTFOUND for this opcode. ** **
  • [[SQLITE_FCNTL_RBU]] ** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by ** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for ** this opcode. ** **
  • [[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]] ** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then ** the file descriptor is placed in "batch write mode", which ** means all subsequent write operations will be deferred and done ** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. Systems ** that do not support batch atomic writes will return SQLITE_NOTFOUND. ** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to ** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or ** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make ** no VFS interface calls on the same [sqlite3_file] file descriptor ** except for calls to the xWrite method and the xFileControl method ** with [SQLITE_FCNTL_SIZE_HINT]. ** **
  • [[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]] ** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write ** operations since the previous successful call to ** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically. ** This file control returns [SQLITE_OK] if and only if the writes were ** all performed successfully and have been committed to persistent storage. ** ^Regardless of whether or not it is successful, this file control takes ** the file descriptor out of batch write mode so that all subsequent ** write operations are independent. ** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without ** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]. ** **
  • [[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]] ** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write ** operations since the previous successful call to ** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back. ** ^This file control takes the file descriptor out of batch write mode ** so that all subsequent write operations are independent. ** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without ** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]. ** **
  • [[SQLITE_FCNTL_LOCK_TIMEOUT]] ** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS ** to block for up to M milliseconds before failing when attempting to ** obtain a file lock using the xLock or xShmLock methods of the VFS. ** The parameter is a pointer to a 32-bit signed integer that contains ** the value that M is to be set to. Before returning, the 32-bit signed ** integer is overwritten with the previous value of M. ** **
  • [[SQLITE_FCNTL_DATA_VERSION]] ** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to ** a database file. The argument is a pointer to a 32-bit unsigned integer. ** The "data version" for the pager is written into the pointer. The ** "data version" changes whenever any change occurs to the corresponding ** database file, either through SQL statements on the same database ** connection or through transactions committed by separate database ** connections possibly in other processes. The [sqlite3_total_changes()] ** interface can be used to find if any database on the connection has changed, ** but that interface responds to changes on TEMP as well as MAIN and does ** not provide a mechanism to detect changes to MAIN only. Also, the ** [sqlite3_total_changes()] interface responds to internal changes only and ** omits changes made by other database connections. The ** [PRAGMA data_version] command provides a mechanism to detect changes to ** a single attached database that occur due to other database connections, ** but omits changes implemented by the database connection on which it is ** called. This file control is the only mechanism to detect changes that ** happen either internally or externally and that are associated with ** a particular attached database. ** **
  • [[SQLITE_FCNTL_CKPT_START]] ** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint ** in wal mode before the client starts to copy pages from the wal ** file to the database file. ** **
  • [[SQLITE_FCNTL_CKPT_DONE]] ** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint ** in wal mode after the client has finished copying pages from the wal ** file to the database file, but before the *-shm file is updated to ** record the fact that the pages have been checkpointed. ** **
  • [[SQLITE_FCNTL_EXTERNAL_READER]] ** The EXPERIMENTAL [SQLITE_FCNTL_EXTERNAL_READER] opcode is used to detect ** whether or not there is a database client in another process with a wal-mode ** transaction open on the database or not. It is only available on unix.The ** (void*) argument passed with this file-control should be a pointer to a ** value of type (int). The integer value is set to 1 if the database is a wal ** mode database and there exists at least one client in another process that ** currently has an SQL transaction open on the database. It is set to 0 if ** the database is not a wal-mode db, or if there is no such connection in any ** other process. This opcode cannot be used to detect transactions opened ** by clients within the current process, only within other processes. ** **
  • [[SQLITE_FCNTL_CKSM_FILE]] ** The [SQLITE_FCNTL_CKSM_FILE] opcode is for use internally by the ** [checksum VFS shim] only. ** **
  • [[SQLITE_FCNTL_RESET_CACHE]] ** If there is currently no transaction open on the database, and the ** database is not a temp db, then the [SQLITE_FCNTL_RESET_CACHE] file-control ** purges the contents of the in-memory page cache. If there is an open ** transaction, or if the db is a temp-db, this opcode is a no-op, not an error. **
*/ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_FCNTL_GET_LOCKPROXYFILE 2 #define SQLITE_FCNTL_SET_LOCKPROXYFILE 3 #define SQLITE_FCNTL_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 #define SQLITE_FCNTL_FILE_POINTER 7 #define SQLITE_FCNTL_SYNC_OMITTED 8 #define SQLITE_FCNTL_WIN32_AV_RETRY 9 #define SQLITE_FCNTL_PERSIST_WAL 10 #define SQLITE_FCNTL_OVERWRITE 11 #define SQLITE_FCNTL_VFSNAME 12 #define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13 #define SQLITE_FCNTL_PRAGMA 14 #define SQLITE_FCNTL_BUSYHANDLER 15 #define SQLITE_FCNTL_TEMPFILENAME 16 #define SQLITE_FCNTL_MMAP_SIZE 18 #define SQLITE_FCNTL_TRACE 19 #define SQLITE_FCNTL_HAS_MOVED 20 #define SQLITE_FCNTL_SYNC 21 #define SQLITE_FCNTL_COMMIT_PHASETWO 22 #define SQLITE_FCNTL_WIN32_SET_HANDLE 23 #define SQLITE_FCNTL_WAL_BLOCK 24 #define SQLITE_FCNTL_ZIPVFS 25 #define SQLITE_FCNTL_RBU 26 #define SQLITE_FCNTL_VFS_POINTER 27 #define SQLITE_FCNTL_JOURNAL_POINTER 28 #define SQLITE_FCNTL_WIN32_GET_HANDLE 29 #define SQLITE_FCNTL_PDB 30 #define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE 31 #define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE 32 #define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE 33 #define SQLITE_FCNTL_LOCK_TIMEOUT 34 #define SQLITE_FCNTL_DATA_VERSION 35 #define SQLITE_FCNTL_SIZE_LIMIT 36 #define SQLITE_FCNTL_CKPT_DONE 37 #define SQLITE_FCNTL_RESERVE_BYTES 38 #define SQLITE_FCNTL_CKPT_START 39 #define SQLITE_FCNTL_EXTERNAL_READER 40 #define SQLITE_FCNTL_CKSM_FILE 41 #define SQLITE_FCNTL_RESET_CACHE 42 /* deprecated names */ #define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE #define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE #define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO /* ** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only ** deals with pointers to the [sqlite3_mutex] object. ** ** Mutexes are created using [sqlite3_mutex_alloc()]. */ typedef struct sqlite3_mutex sqlite3_mutex; /* ** CAPI3REF: Loadable Extension Thunk ** ** A pointer to the opaque sqlite3_api_routines structure is passed as ** the third parameter to entry points of [loadable extensions]. This ** structure must be typedefed in order to work around compiler warnings ** on some platforms. */ typedef struct sqlite3_api_routines sqlite3_api_routines; /* ** CAPI3REF: File Name ** ** Type [sqlite3_filename] is used by SQLite to pass filenames to the ** xOpen method of a [VFS]. It may be cast to (const char*) and treated ** as a normal, nul-terminated, UTF-8 buffer containing the filename, but ** may also be passed to special APIs such as: ** **
    **
  • sqlite3_filename_database() **
  • sqlite3_filename_journal() **
  • sqlite3_filename_wal() **
  • sqlite3_uri_parameter() **
  • sqlite3_uri_boolean() **
  • sqlite3_uri_int64() **
  • sqlite3_uri_key() **
*/ typedef const char *sqlite3_filename; /* ** CAPI3REF: OS Interface Object ** ** An instance of the sqlite3_vfs object defines the interface between ** the SQLite core and the underlying operating system. The "vfs" ** in the name of the object stands for "virtual file system". See ** the [VFS | VFS documentation] for further information. ** ** The VFS interface is sometimes extended by adding new methods onto ** the end. Each time such an extension occurs, the iVersion field ** is incremented. The iVersion value started out as 1 in ** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2 ** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased ** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6]. Additional fields ** may be appended to the sqlite3_vfs object and the iVersion value ** may increase again in future versions of SQLite. ** Note that due to an oversight, the structure ** of the sqlite3_vfs object changed in the transition from ** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0] ** and yet the iVersion field was not increased. ** ** The szOsFile field is the size of the subclassed [sqlite3_file] ** structure used by this VFS. mxPathname is the maximum length of ** a pathname in this VFS. ** ** Registered sqlite3_vfs objects are kept on a linked list formed by ** the pNext pointer. The [sqlite3_vfs_register()] ** and [sqlite3_vfs_unregister()] interfaces manage this list ** in a thread-safe way. The [sqlite3_vfs_find()] interface ** searches the list. Neither the application code nor the VFS ** implementation should use the pNext pointer. ** ** The pNext field is the only field in the sqlite3_vfs ** structure that SQLite will ever modify. SQLite will only access ** or modify this field while holding a particular static mutex. ** The application should never modify anything within the sqlite3_vfs ** object once the object has been registered. ** ** The zName field holds the name of the VFS module. The name must ** be unique across all VFS modules. ** ** [[sqlite3_vfs.xOpen]] ** ^SQLite guarantees that the zFilename parameter to xOpen ** is either a NULL pointer or string obtained ** from xFullPathname() with an optional suffix added. ** ^If a suffix is added to the zFilename parameter, it will ** consist of a single "-" character followed by no more than ** 11 alphanumeric and/or "-" characters. ** ^SQLite further guarantees that ** the string will be valid and unchanged until xClose() is ** called. Because of the previous sentence, ** the [sqlite3_file] can safely store a pointer to the ** filename if it needs to remember the filename for some reason. ** If the zFilename parameter to xOpen is a NULL pointer then xOpen ** must invent its own temporary name for the file. ^Whenever the ** xFilename parameter is NULL it will also be the case that the ** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE]. ** ** The flags argument to xOpen() includes all bits set in ** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] ** or [sqlite3_open16()] is used, then flags includes at least ** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. ** If xOpen() opens a file read-only then it sets *pOutFlags to ** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set. ** ** ^(SQLite will also add one of the following flags to the xOpen() ** call, depending on the object being opened: ** **
    **
  • [SQLITE_OPEN_MAIN_DB] **
  • [SQLITE_OPEN_MAIN_JOURNAL] **
  • [SQLITE_OPEN_TEMP_DB] **
  • [SQLITE_OPEN_TEMP_JOURNAL] **
  • [SQLITE_OPEN_TRANSIENT_DB] **
  • [SQLITE_OPEN_SUBJOURNAL] **
  • [SQLITE_OPEN_SUPER_JOURNAL] **
  • [SQLITE_OPEN_WAL] **
)^ ** ** The file I/O implementation can use the object type flags to ** change the way it deals with files. For example, an application ** that does not care about crash recovery or rollback might make ** the open of a journal file a no-op. Writes to this journal would ** also be no-ops, and any attempt to read the journal would return ** SQLITE_IOERR. Or the implementation might recognize that a database ** file will be doing page-aligned sector reads and writes in a random ** order and set up its I/O subsystem accordingly. ** ** SQLite might also add one of the following flags to the xOpen method: ** **
    **
  • [SQLITE_OPEN_DELETEONCLOSE] **
  • [SQLITE_OPEN_EXCLUSIVE] **
** ** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be ** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE] ** will be set for TEMP databases and their journals, transient ** databases, and subjournals. ** ** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction ** with the [SQLITE_OPEN_CREATE] flag, which are both directly ** analogous to the O_EXCL and O_CREAT flags of the POSIX open() ** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the ** SQLITE_OPEN_CREATE, is used to indicate that file should always ** be created, and that it is an error if it already exists. ** It is not used to indicate the file should be opened ** for exclusive access. ** ** ^At least szOsFile bytes of memory are allocated by SQLite ** to hold the [sqlite3_file] structure passed as the third ** argument to xOpen. The xOpen method does not have to ** allocate the structure; it should just fill it in. Note that ** the xOpen method must set the sqlite3_file.pMethods to either ** a valid [sqlite3_io_methods] object or to NULL. xOpen must do ** this even if the open fails. SQLite expects that the sqlite3_file.pMethods ** element will be valid after xOpen returns regardless of the success ** or failure of the xOpen call. ** ** [[sqlite3_vfs.xAccess]] ** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] ** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to ** test whether a file is readable and writable, or [SQLITE_ACCESS_READ] ** to test whether a file is at least readable. The SQLITE_ACCESS_READ ** flag is never actually used and is not implemented in the built-in ** VFSes of SQLite. The file is named by the second argument and can be a ** directory. The xAccess method returns [SQLITE_OK] on success or some ** non-zero error code if there is an I/O error or if the name of ** the file given in the second argument is illegal. If SQLITE_OK ** is returned, then non-zero or zero is written into *pResOut to indicate ** whether or not the file is accessible. ** ** ^SQLite will always allocate at least mxPathname+1 bytes for the ** output buffer xFullPathname. The exact size of the output buffer ** is also passed as a parameter to both methods. If the output buffer ** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is ** handled as a fatal error by SQLite, vfs implementations should endeavor ** to prevent this by setting mxPathname to a sufficiently large value. ** ** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64() ** interfaces are not strictly a part of the filesystem, but they are ** included in the VFS structure for completeness. ** The xRandomness() function attempts to return nBytes bytes ** of good-quality randomness into zOut. The return value is ** the actual number of bytes of randomness obtained. ** The xSleep() method causes the calling thread to sleep for at ** least the number of microseconds given. ^The xCurrentTime() ** method returns a Julian Day Number for the current date and time as ** a floating point value. ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian ** Day Number multiplied by 86400000 (the number of milliseconds in ** a 24-hour day). ** ^SQLite will use the xCurrentTimeInt64() method to get the current ** date and time if that method is available (if iVersion is 2 or ** greater and the function pointer is not NULL) and will fall back ** to xCurrentTime() if xCurrentTimeInt64() is unavailable. ** ** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces ** are not used by the SQLite core. These optional interfaces are provided ** by some VFSes to facilitate testing of the VFS code. By overriding ** system calls with functions under its control, a test program can ** simulate faults and error conditions that would otherwise be difficult ** or impossible to induce. The set of system calls that can be overridden ** varies from one VFS to another, and from one version of the same VFS to the ** next. Applications that use these interfaces must be prepared for any ** or all of these interfaces to be NULL or for their behavior to change ** from one release to the next. Applications must not attempt to access ** any of these methods if the iVersion of the VFS is less than 3. */ typedef struct sqlite3_vfs sqlite3_vfs; typedef void (*sqlite3_syscall_ptr)(void); struct sqlite3_vfs { int iVersion; /* Structure version number (currently 3) */ int szOsFile; /* Size of subclassed sqlite3_file */ int mxPathname; /* Maximum file pathname length */ sqlite3_vfs *pNext; /* Next registered VFS */ const char *zName; /* Name of this virtual file system */ void *pAppData; /* Pointer to application-specific data */ int (*xOpen)(sqlite3_vfs*, sqlite3_filename zName, sqlite3_file*, int flags, int *pOutFlags); int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut); int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void); void (*xDlClose)(sqlite3_vfs*, void*); int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); int (*xSleep)(sqlite3_vfs*, int microseconds); int (*xCurrentTime)(sqlite3_vfs*, double*); int (*xGetLastError)(sqlite3_vfs*, int, char *); /* ** The methods above are in version 1 of the sqlite_vfs object ** definition. Those that follow are added in version 2 or later */ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*); /* ** The methods above are in versions 1 and 2 of the sqlite_vfs object. ** Those below are for version 3 and greater. */ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr); sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName); const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName); /* ** The methods above are in versions 1 through 3 of the sqlite_vfs object. ** New fields may be appended in future versions. The iVersion ** value will increment whenever this happens. */ }; /* ** CAPI3REF: Flags for the xAccess VFS method ** ** These integer constants can be used as the third parameter to ** the xAccess method of an [sqlite3_vfs] object. They determine ** what kind of permissions the xAccess method is looking for. ** With SQLITE_ACCESS_EXISTS, the xAccess method ** simply checks whether the file exists. ** With SQLITE_ACCESS_READWRITE, the xAccess method ** checks whether the named directory is both readable and writable ** (in other words, if files can be added, removed, and renamed within ** the directory). ** The SQLITE_ACCESS_READWRITE constant is currently used only by the ** [temp_store_directory pragma], though this could change in a future ** release of SQLite. ** With SQLITE_ACCESS_READ, the xAccess method ** checks whether the file is readable. The SQLITE_ACCESS_READ constant is ** currently unused, though it might be used in a future release of ** SQLite. */ #define SQLITE_ACCESS_EXISTS 0 #define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */ #define SQLITE_ACCESS_READ 2 /* Unused */ /* ** CAPI3REF: Flags for the xShmLock VFS method ** ** These integer constants define the various locking operations ** allowed by the xShmLock method of [sqlite3_io_methods]. The ** following are the only legal combinations of flags to the ** xShmLock method: ** **
    **
  • SQLITE_SHM_LOCK | SQLITE_SHM_SHARED **
  • SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE **
  • SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED **
  • SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE **
** ** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as ** was given on the corresponding lock. ** ** The xShmLock method can transition between unlocked and SHARED or ** between unlocked and EXCLUSIVE. It cannot transition between SHARED ** and EXCLUSIVE. */ #define SQLITE_SHM_UNLOCK 1 #define SQLITE_SHM_LOCK 2 #define SQLITE_SHM_SHARED 4 #define SQLITE_SHM_EXCLUSIVE 8 /* ** CAPI3REF: Maximum xShmLock index ** ** The xShmLock method on [sqlite3_io_methods] may use values ** between 0 and this upper bound as its "offset" argument. ** The SQLite core will never attempt to acquire or release a ** lock outside of this range */ #define SQLITE_SHM_NLOCK 8 /* ** CAPI3REF: Initialize The SQLite Library ** ** ^The sqlite3_initialize() routine initializes the ** SQLite library. ^The sqlite3_shutdown() routine ** deallocates any resources that were allocated by sqlite3_initialize(). ** These routines are designed to aid in process initialization and ** shutdown on embedded systems. Workstation applications using ** SQLite normally do not need to invoke either of these routines. ** ** A call to sqlite3_initialize() is an "effective" call if it is ** the first time sqlite3_initialize() is invoked during the lifetime of ** the process, or if it is the first time sqlite3_initialize() is invoked ** following a call to sqlite3_shutdown(). ^(Only an effective call ** of sqlite3_initialize() does any initialization. All other calls ** are harmless no-ops.)^ ** ** A call to sqlite3_shutdown() is an "effective" call if it is the first ** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only ** an effective call to sqlite3_shutdown() does any deinitialization. ** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^ ** ** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown() ** is not. The sqlite3_shutdown() interface must only be called from a ** single thread. All open [database connections] must be closed and all ** other SQLite resources must be deallocated prior to invoking ** sqlite3_shutdown(). ** ** Among other things, ^sqlite3_initialize() will invoke ** sqlite3_os_init(). Similarly, ^sqlite3_shutdown() ** will invoke sqlite3_os_end(). ** ** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success. ** ^If for some reason, sqlite3_initialize() is unable to initialize ** the library (perhaps it is unable to allocate a needed resource such ** as a mutex) it returns an [error code] other than [SQLITE_OK]. ** ** ^The sqlite3_initialize() routine is called internally by many other ** SQLite interfaces so that an application usually does not need to ** invoke sqlite3_initialize() directly. For example, [sqlite3_open()] ** calls sqlite3_initialize() so the SQLite library will be automatically ** initialized when [sqlite3_open()] is called if it has not be initialized ** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT] ** compile-time option, then the automatic calls to sqlite3_initialize() ** are omitted and the application must call sqlite3_initialize() directly ** prior to using any other SQLite interface. For maximum portability, ** it is recommended that applications always invoke sqlite3_initialize() ** directly prior to using any other SQLite interface. Future releases ** of SQLite may require this. In other words, the behavior exhibited ** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the ** default behavior in some future release of SQLite. ** ** The sqlite3_os_init() routine does operating-system specific ** initialization of the SQLite library. The sqlite3_os_end() ** routine undoes the effect of sqlite3_os_init(). Typical tasks ** performed by these routines include allocation or deallocation ** of static resources, initialization of global variables, ** setting up a default [sqlite3_vfs] module, or setting up ** a default configuration using [sqlite3_config()]. ** ** The application should never invoke either sqlite3_os_init() ** or sqlite3_os_end() directly. The application should only invoke ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init() ** interface is called automatically by sqlite3_initialize() and ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate ** implementations for sqlite3_os_init() and sqlite3_os_end() ** are built into SQLite when it is compiled for Unix, Windows, or OS/2. ** When [custom builds | built for other platforms] ** (using the [SQLITE_OS_OTHER=1] compile-time ** option) the application must supply a suitable implementation for ** sqlite3_os_init() and sqlite3_os_end(). An application-supplied ** implementation of sqlite3_os_init() or sqlite3_os_end() ** must return [SQLITE_OK] on success and some other [error code] upon ** failure. */ SQLITE_API int sqlite3_initialize(void); SQLITE_API int sqlite3_shutdown(void); SQLITE_API int sqlite3_os_init(void); SQLITE_API int sqlite3_os_end(void); /* ** CAPI3REF: Configuring The SQLite Library ** ** The sqlite3_config() interface is used to make global configuration ** changes to SQLite in order to tune SQLite to the specific needs of ** the application. The default configuration is recommended for most ** applications and so this routine is usually not necessary. It is ** provided to support rare applications with unusual needs. ** ** The sqlite3_config() interface is not threadsafe. The application ** must ensure that no other SQLite interfaces are invoked by other ** threads while sqlite3_config() is running. ** ** The first argument to sqlite3_config() is an integer ** [configuration option] that determines ** what property of SQLite is to be configured. Subsequent arguments ** vary depending on the [configuration option] ** in the first argument. ** ** For most configuration options, the sqlite3_config() interface ** may only be invoked prior to library initialization using ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()]. ** The exceptional configuration options that may be invoked at any time ** are called "anytime configuration options". ** ^If sqlite3_config() is called after [sqlite3_initialize()] and before ** [sqlite3_shutdown()] with a first argument that is not an anytime ** configuration option, then the sqlite3_config() call will return SQLITE_MISUSE. ** Note, however, that ^sqlite3_config() can be called as part of the ** implementation of an application-defined [sqlite3_os_init()]. ** ** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK]. ** ^If the option is unknown or SQLite is unable to set the option ** then this routine returns a non-zero [error code]. */ SQLITE_API int sqlite3_config(int, ...); /* ** CAPI3REF: Configure database connections ** METHOD: sqlite3 ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single ** [database connection] (specified in the first argument). ** ** The second argument to sqlite3_db_config(D,V,...) is the ** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code ** that indicates what aspect of the [database connection] is being configured. ** Subsequent arguments vary depending on the configuration verb. ** ** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if ** the call is considered successful. */ SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...); /* ** CAPI3REF: Memory Allocation Routines ** ** An instance of this object defines the interface between SQLite ** and low-level memory allocation routines. ** ** This object is used in only one place in the SQLite interface. ** A pointer to an instance of this object is the argument to ** [sqlite3_config()] when the configuration option is ** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC]. ** By creating an instance of this object ** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC]) ** during configuration, an application can specify an alternative ** memory allocation subsystem for SQLite to use for all of its ** dynamic memory needs. ** ** Note that SQLite comes with several [built-in memory allocators] ** that are perfectly adequate for the overwhelming majority of applications ** and that this object is only useful to a tiny minority of applications ** with specialized memory allocation requirements. This object is ** also used during testing of SQLite in order to specify an alternative ** memory allocator that simulates memory out-of-memory conditions in ** order to verify that SQLite recovers gracefully from such ** conditions. ** ** The xMalloc, xRealloc, and xFree methods must work like the ** malloc(), realloc() and free() functions from the standard C library. ** ^SQLite guarantees that the second argument to ** xRealloc is always a value returned by a prior call to xRoundup. ** ** xSize should return the allocated size of a memory allocation ** previously obtained from xMalloc or xRealloc. The allocated size ** is always at least as big as the requested size but may be larger. ** ** The xRoundup method returns what would be the allocated size of ** a memory allocation given a particular requested size. Most memory ** allocators round up memory allocations at least to the next multiple ** of 8. Some allocators round up to a larger multiple or to a power of 2. ** Every memory allocation request coming in through [sqlite3_malloc()] ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0, ** that causes the corresponding memory allocation to fail. ** ** The xInit method initializes the memory allocator. For example, ** it might allocate any required mutexes or initialize internal data ** structures. The xShutdown method is invoked (indirectly) by ** [sqlite3_shutdown()] and should deallocate any resources acquired ** by xInit. The pAppData pointer is used as the only parameter to ** xInit and xShutdown. ** ** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes ** the xInit method, so the xInit method need not be threadsafe. The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. For all other methods, SQLite ** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the ** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which ** it is by default) and so the methods are automatically serialized. ** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other ** methods must be threadsafe or else make their own arrangements for ** serialization. ** ** SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). */ typedef struct sqlite3_mem_methods sqlite3_mem_methods; struct sqlite3_mem_methods { void *(*xMalloc)(int); /* Memory allocation function */ void (*xFree)(void*); /* Free a prior allocation */ void *(*xRealloc)(void*,int); /* Resize an allocation */ int (*xSize)(void*); /* Return the size of an allocation */ int (*xRoundup)(int); /* Round up request size to allocation size */ int (*xInit)(void*); /* Initialize the memory allocator */ void (*xShutdown)(void*); /* Deinitialize the memory allocator */ void *pAppData; /* Argument to xInit() and xShutdown() */ }; /* ** CAPI3REF: Configuration Options ** KEYWORDS: {configuration option} ** ** These constants are the available integer configuration options that ** can be passed as the first argument to the [sqlite3_config()] interface. ** ** Most of the configuration options for sqlite3_config() ** will only work if invoked prior to [sqlite3_initialize()] or after ** [sqlite3_shutdown()]. The few exceptions to this rule are called ** "anytime configuration options". ** ^Calling [sqlite3_config()] with a first argument that is not an ** anytime configuration option in between calls to [sqlite3_initialize()] and ** [sqlite3_shutdown()] is a no-op that returns SQLITE_MISUSE. ** ** The set of anytime configuration options can change (by insertions ** and/or deletions) from one release of SQLite to the next. ** As of SQLite version 3.42.0, the complete set of anytime configuration ** options is: **
    **
  • SQLITE_CONFIG_LOG **
  • SQLITE_CONFIG_PCACHE_HDRSZ **
** ** New configuration options may be added in future releases of SQLite. ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_config()] to make sure that ** the call worked. The [sqlite3_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** **
** [[SQLITE_CONFIG_SINGLETHREAD]]
SQLITE_CONFIG_SINGLETHREAD
**
There are no arguments to this option. ^This option sets the ** [threading mode] to Single-thread. In other words, it disables ** all mutexing and puts SQLite into a mode where it can only be used ** by a single thread. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to change the [threading mode] from its default ** value of Single-thread and so [sqlite3_config()] will return ** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD ** configuration option.
** ** [[SQLITE_CONFIG_MULTITHREAD]]
SQLITE_CONFIG_MULTITHREAD
**
There are no arguments to this option. ^This option sets the ** [threading mode] to Multi-thread. In other words, it disables ** mutexing on [database connection] and [prepared statement] objects. ** The application is responsible for serializing access to ** [database connections] and [prepared statements]. But other mutexes ** are enabled so that SQLite will be safe to use in a multi-threaded ** environment as long as no two threads attempt to use the same ** [database connection] at the same time. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to set the Multi-thread [threading mode] and ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the ** SQLITE_CONFIG_MULTITHREAD configuration option.
** ** [[SQLITE_CONFIG_SERIALIZED]]
SQLITE_CONFIG_SERIALIZED
**
There are no arguments to this option. ^This option sets the ** [threading mode] to Serialized. In other words, this option enables ** all mutexes including the recursive ** mutexes on [database connection] and [prepared statement] objects. ** In this mode (which is the default when SQLite is compiled with ** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access ** to [database connections] and [prepared statements] so that the ** application is free to use the same [database connection] or the ** same [prepared statement] in different threads at the same time. ** ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to set the Serialized [threading mode] and ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the ** SQLITE_CONFIG_SERIALIZED configuration option.
** ** [[SQLITE_CONFIG_MALLOC]]
SQLITE_CONFIG_MALLOC
**
^(The SQLITE_CONFIG_MALLOC option takes a single argument which is ** a pointer to an instance of the [sqlite3_mem_methods] structure. ** The argument specifies ** alternative low-level memory allocation routines to be used in place of ** the memory allocation routines built into SQLite.)^ ^SQLite makes ** its own private copy of the content of the [sqlite3_mem_methods] structure ** before the [sqlite3_config()] call returns.
** ** [[SQLITE_CONFIG_GETMALLOC]]
SQLITE_CONFIG_GETMALLOC
**
^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which ** is a pointer to an instance of the [sqlite3_mem_methods] structure. ** The [sqlite3_mem_methods] ** structure is filled with the currently defined memory allocation routines.)^ ** This option can be used to overload the default memory allocation ** routines with a wrapper that simulations memory allocation failure or ** tracks memory usage, for example.
** ** [[SQLITE_CONFIG_SMALL_MALLOC]]
SQLITE_CONFIG_SMALL_MALLOC
**
^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of ** type int, interpreted as a boolean, which if true provides a hint to ** SQLite that it should avoid large memory allocations if possible. ** SQLite will run faster if it is free to make large memory allocations, ** but some application might prefer to run slower in exchange for ** guarantees about memory fragmentation that are possible if large ** allocations are avoided. This hint is normally off. **
** ** [[SQLITE_CONFIG_MEMSTATUS]]
SQLITE_CONFIG_MEMSTATUS
**
^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int, ** interpreted as a boolean, which enables or disables the collection of ** memory allocation statistics. ^(When memory allocation statistics are ** disabled, the following SQLite interfaces become non-operational: **
    **
  • [sqlite3_hard_heap_limit64()] **
  • [sqlite3_memory_used()] **
  • [sqlite3_memory_highwater()] **
  • [sqlite3_soft_heap_limit64()] **
  • [sqlite3_status64()] **
)^ ** ^Memory allocation statistics are enabled by default unless SQLite is ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. **
** ** [[SQLITE_CONFIG_SCRATCH]]
SQLITE_CONFIG_SCRATCH
**
The SQLITE_CONFIG_SCRATCH option is no longer used. **
** ** [[SQLITE_CONFIG_PAGECACHE]]
SQLITE_CONFIG_PAGECACHE
**
^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool ** that SQLite can use for the database page cache with the default page ** cache implementation. ** This configuration option is a no-op if an application-defined page ** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]. ** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to ** 8-byte aligned memory (pMem), the size of each page cache line (sz), ** and the number of cache lines (N). ** The sz argument should be the size of the largest database page ** (a power of two between 512 and 65536) plus some extra bytes for each ** page header. ^The number of extra bytes needed by the page header ** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ]. ** ^It is harmless, apart from the wasted memory, ** for the sz parameter to be larger than necessary. The pMem ** argument must be either a NULL pointer or a pointer to an 8-byte ** aligned block of memory of at least sz*N bytes, otherwise ** subsequent behavior is undefined. ** ^When pMem is not NULL, SQLite will strive to use the memory provided ** to satisfy page cache needs, falling back to [sqlite3_malloc()] if ** a page cache line is larger than sz bytes or if all of the pMem buffer ** is exhausted. ** ^If pMem is NULL and N is non-zero, then each database connection ** does an initial bulk allocation for page cache memory ** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or ** of -1024*N bytes if N is negative, . ^If additional ** page cache memory is needed beyond what is provided by the initial ** allocation, then SQLite goes to [sqlite3_malloc()] separately for each ** additional cache line.
** ** [[SQLITE_CONFIG_HEAP]]
SQLITE_CONFIG_HEAP
**
^The SQLITE_CONFIG_HEAP option specifies a static memory buffer ** that SQLite will use for all of its dynamic memory allocation needs ** beyond those provided for by [SQLITE_CONFIG_PAGECACHE]. ** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled ** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns ** [SQLITE_ERROR] if invoked otherwise. ** ^There are three arguments to SQLITE_CONFIG_HEAP: ** An 8-byte aligned pointer to the memory, ** the number of bytes in the memory buffer, and the minimum allocation size. ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte ** boundary or subsequent behavior of SQLite will be undefined. ** The minimum allocation size is capped at 2**12. Reasonable values ** for the minimum allocation size are 2**5 through 2**8.
** ** [[SQLITE_CONFIG_MUTEX]]
SQLITE_CONFIG_MUTEX
**
^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a ** pointer to an instance of the [sqlite3_mutex_methods] structure. ** The argument specifies alternative low-level mutex routines to be used ** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of ** the content of the [sqlite3_mutex_methods] structure before the call to ** [sqlite3_config()] returns. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to ** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will ** return [SQLITE_ERROR].
** ** [[SQLITE_CONFIG_GETMUTEX]]
SQLITE_CONFIG_GETMUTEX
**
^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which ** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The ** [sqlite3_mutex_methods] ** structure is filled with the currently defined mutex routines.)^ ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance ** profiling or testing, for example. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to ** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will ** return [SQLITE_ERROR].
** ** [[SQLITE_CONFIG_LOOKASIDE]]
SQLITE_CONFIG_LOOKASIDE
**
^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine ** the default size of lookaside memory on each [database connection]. ** The first argument is the ** size of each lookaside buffer slot and the second is the number of ** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE ** sets the default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] ** option to [sqlite3_db_config()] can be used to change the lookaside ** configuration on individual connections.)^
** ** [[SQLITE_CONFIG_PCACHE2]]
SQLITE_CONFIG_PCACHE2
**
^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is ** a pointer to an [sqlite3_pcache_methods2] object. This object specifies ** the interface to a custom page cache implementation.)^ ** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.
** ** [[SQLITE_CONFIG_GETPCACHE2]]
SQLITE_CONFIG_GETPCACHE2
**
^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which ** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of ** the current page cache implementation into that object.)^
** ** [[SQLITE_CONFIG_LOG]]
SQLITE_CONFIG_LOG
**
The SQLITE_CONFIG_LOG option is used to configure the SQLite ** global [error log]. ** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a ** function with a call signature of void(*)(void*,int,const char*), ** and a pointer to void. ^If the function pointer is not NULL, it is ** invoked by [sqlite3_log()] to process each logging event. ^If the ** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op. ** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is ** passed through as the first parameter to the application-defined logger ** function whenever that function is invoked. ^The second parameter to ** the logger function is a copy of the first parameter to the corresponding ** [sqlite3_log()] call and is intended to be a [result code] or an ** [extended result code]. ^The third parameter passed to the logger is ** log message after formatting via [sqlite3_snprintf()]. ** The SQLite logging interface is not reentrant; the logger function ** supplied by the application must not invoke any SQLite interface. ** In a multi-threaded application, the application-defined logger ** function must be threadsafe.
** ** [[SQLITE_CONFIG_URI]]
SQLITE_CONFIG_URI **
^(The SQLITE_CONFIG_URI option takes a single argument of type int. ** If non-zero, then URI handling is globally enabled. If the parameter is zero, ** then URI handling is globally disabled.)^ ^If URI handling is globally ** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()], ** [sqlite3_open16()] or ** specified as part of [ATTACH] commands are interpreted as URIs, regardless ** of whether or not the [SQLITE_OPEN_URI] flag is set when the database ** connection is opened. ^If it is globally disabled, filenames are ** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the ** database connection is opened. ^(By default, URI handling is globally ** disabled. The default value may be changed by compiling with the ** [SQLITE_USE_URI] symbol defined.)^ ** ** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]]
SQLITE_CONFIG_COVERING_INDEX_SCAN **
^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer ** argument which is interpreted as a boolean in order to enable or disable ** the use of covering indices for full table scans in the query optimizer. ** ^The default setting is determined ** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on" ** if that compile-time option is omitted. ** The ability to disable the use of covering indices for full table scans ** is because some incorrectly coded legacy applications might malfunction ** when the optimization is enabled. Providing the ability to ** disable the optimization allows the older, buggy application code to work ** without change even with newer versions of SQLite. ** ** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]] **
SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE **
These options are obsolete and should not be used by new code. ** They are retained for backwards compatibility but are now no-ops. **
** ** [[SQLITE_CONFIG_SQLLOG]] **
SQLITE_CONFIG_SQLLOG **
This option is only available if sqlite is compiled with the ** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should ** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int). ** The second should be of type (void*). The callback is invoked by the library ** in three separate circumstances, identified by the value passed as the ** fourth parameter. If the fourth parameter is 0, then the database connection ** passed as the second argument has just been opened. The third argument ** points to a buffer containing the name of the main database file. If the ** fourth parameter is 1, then the SQL statement that the third parameter ** points to has just been executed. Or, if the fourth parameter is 2, then ** the connection being passed as the second parameter is being closed. The ** third parameter is passed NULL In this case. An example of using this ** configuration option can be seen in the "test_sqllog.c" source file in ** the canonical SQLite source tree.
** ** [[SQLITE_CONFIG_MMAP_SIZE]] **
SQLITE_CONFIG_MMAP_SIZE **
^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values ** that are the default mmap size limit (the default setting for ** [PRAGMA mmap_size]) and the maximum allowed mmap size limit. ** ^The default setting can be overridden by each database connection using ** either the [PRAGMA mmap_size] command, or by using the ** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size ** will be silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the ** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^ ** ^If either argument to this option is negative, then that argument is ** changed to its compile-time default. ** ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] **
SQLITE_CONFIG_WIN32_HEAPSIZE **
^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is ** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro ** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value ** that specifies the maximum size of the created heap. ** ** [[SQLITE_CONFIG_PCACHE_HDRSZ]] **
SQLITE_CONFIG_PCACHE_HDRSZ **
^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which ** is a pointer to an integer and writes into that integer the number of extra ** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. ** The amount of extra space required can change depending on the compiler, ** target platform, and SQLite version. ** ** [[SQLITE_CONFIG_PMASZ]] **
SQLITE_CONFIG_PMASZ **
^The SQLITE_CONFIG_PMASZ option takes a single parameter which ** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded ** sorter to that integer. The default minimum PMA Size is set by the ** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched ** to help with sort operations when multithreaded sorting ** is enabled (using the [PRAGMA threads] command) and the amount of content ** to be sorted exceeds the page size times the minimum of the ** [PRAGMA cache_size] setting and this value. ** ** [[SQLITE_CONFIG_STMTJRNL_SPILL]] **
SQLITE_CONFIG_STMTJRNL_SPILL **
^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which ** becomes the [statement journal] spill-to-disk threshold. ** [Statement journals] are held in memory until their size (in bytes) ** exceeds this threshold, at which point they are written to disk. ** Or if the threshold is -1, statement journals are always held ** exclusively in memory. ** Since many statement journals never become large, setting the spill ** threshold to a value such as 64KiB can greatly reduce the amount of ** I/O required to support statement rollback. ** The default value for this setting is controlled by the ** [SQLITE_STMTJRNL_SPILL] compile-time option. ** ** [[SQLITE_CONFIG_SORTERREF_SIZE]] **
SQLITE_CONFIG_SORTERREF_SIZE **
The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter ** of type (int) - the new value of the sorter-reference size threshold. ** Usually, when SQLite uses an external sort to order records according ** to an ORDER BY clause, all fields required by the caller are present in the ** sorted records. However, if SQLite determines based on the declared type ** of a table column that its values are likely to be very large - larger ** than the configured sorter-reference size threshold - then a reference ** is stored in each sorted record and the required column values loaded ** from the database as records are returned in sorted order. The default ** value for this option is to never use this optimization. Specifying a ** negative value for this option restores the default behavior. ** This option is only available if SQLite is compiled with the ** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option. ** ** [[SQLITE_CONFIG_MEMDB_MAXSIZE]] **
SQLITE_CONFIG_MEMDB_MAXSIZE **
The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter ** [sqlite3_int64] parameter which is the default maximum size for an in-memory ** database created using [sqlite3_deserialize()]. This default maximum ** size can be adjusted up or down for individual databases using the ** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control]. If this ** configuration setting is never used, then the default maximum is determined ** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option. If that ** compile-time option is not set, then the default maximum is 1073741824. ** ** [[SQLITE_CONFIG_ROWID_IN_VIEW]] **
SQLITE_CONFIG_ROWID_IN_VIEW **
The SQLITE_CONFIG_ROWID_IN_VIEW option enables or disables the ability ** for VIEWs to have a ROWID. The capability can only be enabled if SQLite is ** compiled with -DSQLITE_ALLOW_ROWID_IN_VIEW, in which case the capability ** defaults to on. This configuration option queries the current setting or ** changes the setting to off or on. The argument is a pointer to an integer. ** If that integer initially holds a value of 1, then the ability for VIEWs to ** have ROWIDs is activated. If the integer initially holds zero, then the ** ability is deactivated. Any other initial value for the integer leaves the ** setting unchanged. After changes, if any, the integer is written with ** a 1 or 0, if the ability for VIEWs to have ROWIDs is on or off. If SQLite ** is compiled without -DSQLITE_ALLOW_ROWID_IN_VIEW (which is the usual and ** recommended case) then the integer is always filled with zero, regardless ** if its initial value. **
*/ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ #define SQLITE_CONFIG_SERIALIZED 3 /* nil */ #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_SCRATCH 6 /* No longer used */ #define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */ #define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */ #define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */ #define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */ #define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */ /* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ #define SQLITE_CONFIG_LOOKASIDE 13 /* int int */ #define SQLITE_CONFIG_PCACHE 14 /* no-op */ #define SQLITE_CONFIG_GETPCACHE 15 /* no-op */ #define SQLITE_CONFIG_LOG 16 /* xFunc, void* */ #define SQLITE_CONFIG_URI 17 /* int */ #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ #define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */ #define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */ #define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */ #define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */ #define SQLITE_CONFIG_SORTERREF_SIZE 28 /* int nByte */ #define SQLITE_CONFIG_MEMDB_MAXSIZE 29 /* sqlite3_int64 */ #define SQLITE_CONFIG_ROWID_IN_VIEW 30 /* int* */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** ** New configuration options may be added in future releases of SQLite. ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_db_config()] to make sure that ** the call worked. ^The [sqlite3_db_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** **
** [[SQLITE_DBCONFIG_LOOKASIDE]] **
SQLITE_DBCONFIG_LOOKASIDE
**
^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the ** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the ** size of each lookaside buffer slot. ^The third argument is the number of ** slots. The size of the buffer in the first argument must be greater than ** or equal to the product of the second and third arguments. The buffer ** must be aligned to an 8-byte boundary. ^If the second argument to ** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally ** rounded down to the next smaller multiple of 8. ^(The lookaside memory ** configuration for a database connection can only be changed when that ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_DBSTATUS_LOOKASIDE_USED],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^
** ** [[SQLITE_DBCONFIG_ENABLE_FKEY]] **
SQLITE_DBCONFIG_ENABLE_FKEY
**
^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back.
** ** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]] **
SQLITE_DBCONFIG_ENABLE_TRIGGER
**
^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. ** **

Originally this option disabled all triggers. ^(However, since ** SQLite version 3.35.0, TEMP triggers are still allowed even if ** this option is off. So, in other words, this option now only disables ** triggers in the main database schema or in the schemas of ATTACH-ed ** databases.)^

** ** [[SQLITE_DBCONFIG_ENABLE_VIEW]] **
SQLITE_DBCONFIG_ENABLE_VIEW
**
^This option is used to enable or disable [CREATE VIEW | views]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable views, ** positive to enable views or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether views are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the view setting is not reported back. ** **

Originally this option disabled all views. ^(However, since ** SQLite version 3.35.0, TEMP views are still allowed even if ** this option is off. So, in other words, this option now only disables ** views in the main database schema or in the schemas of ATTACH-ed ** databases.)^

** ** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]] **
SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER
**
^This option is used to enable or disable the ** [fts3_tokenizer()] function which is part of the ** [FTS3] full-text search engine extension. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable fts3_tokenizer() or ** positive to enable fts3_tokenizer() or negative to leave the setting ** unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the new setting is not reported back.
** ** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]] **
SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION
**
^This option is used to enable or disable the [sqlite3_load_extension()] ** interface independently of the [load_extension()] SQL function. ** The [sqlite3_enable_load_extension()] API enables or disables both the ** C-API [sqlite3_load_extension()] and the SQL function [load_extension()]. ** There should be two additional arguments. ** When the first argument to this interface is 1, then only the C-API is ** enabled and the SQL function remains disabled. If the first argument to ** this interface is 0, then both the C-API and the SQL function are disabled. ** If the first argument is -1, then no changes are made to state of either the ** C-API or the SQL function. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface ** is disabled or enabled following this call. The second parameter may ** be a NULL pointer, in which case the new setting is not reported back. **
** ** [[SQLITE_DBCONFIG_MAINDBNAME]]
SQLITE_DBCONFIG_MAINDBNAME
**
^This option is used to change the name of the "main" database ** schema. ^The sole argument is a pointer to a constant UTF8 string ** which will become the new schema name in place of "main". ^SQLite ** does not make a copy of the new main schema name string, so the application ** must ensure that the argument passed into this DBCONFIG option is unchanged ** until after the database connection closes. **
** ** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]] **
SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE
**
Usually, when a database in wal mode is closed or detached from a ** database handle, SQLite checks if this will mean that there are now no ** connections at all to the database. If so, it performs a checkpoint ** operation before closing the connection. This option may be used to ** override this behavior. The first parameter passed to this operation ** is an integer - positive to disable checkpoints-on-close, or zero (the ** default) to enable them, and negative to leave the setting unchanged. ** The second parameter is a pointer to an integer ** into which is written 0 or 1 to indicate whether checkpoints-on-close ** have been disabled - 0 if they are not disabled, 1 if they are. **
** ** [[SQLITE_DBCONFIG_ENABLE_QPSG]]
SQLITE_DBCONFIG_ENABLE_QPSG
**
^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates ** the [query planner stability guarantee] (QPSG). When the QPSG is active, ** a single SQL query statement will always use the same algorithm regardless ** of values of [bound parameters].)^ The QPSG disables some query optimizations ** that look at the values of bound parameters, which can make some queries ** slower. But the QPSG has the advantage of more predictable behavior. With ** the QPSG active, SQLite will always use the same query plan in the field as ** was used during testing in the lab. ** The first argument to this setting is an integer which is 0 to disable ** the QPSG, positive to enable QPSG, or negative to leave the setting ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether the QPSG is disabled or enabled ** following this call. **
** ** [[SQLITE_DBCONFIG_TRIGGER_EQP]]
SQLITE_DBCONFIG_TRIGGER_EQP
**
By default, the output of EXPLAIN QUERY PLAN commands does not ** include output for any operations performed by trigger programs. This ** option is used to set or clear (the default) a flag that governs this ** behavior. The first parameter passed to this operation is an integer - ** positive to enable output for trigger programs, or zero to disable it, ** or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which is written ** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if ** it is not disabled, 1 if it is. **
** ** [[SQLITE_DBCONFIG_RESET_DATABASE]]
SQLITE_DBCONFIG_RESET_DATABASE
**
Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run ** [VACUUM] in order to reset a database back to an empty database ** with no schema and no content. The following process works even for ** a badly corrupted database file: **
    **
  1. If the database connection is newly opened, make sure it has read the ** database schema by preparing then discarding some query against the ** database, or calling sqlite3_table_column_metadata(), ignoring any ** errors. This step is only necessary if the application desires to keep ** the database in WAL mode after the reset if it was in WAL mode before ** the reset. **
  2. sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0); **
  3. [sqlite3_exec](db, "[VACUUM]", 0, 0, 0); **
  4. sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0); **
** Because resetting a database is destructive and irreversible, the ** process requires the use of this obscure API and multiple steps to ** help ensure that it does not happen by accident. Because this ** feature must be capable of resetting corrupt databases, and ** shutting down virtual tables may require access to that corrupt ** storage, the library must abandon any installed virtual tables ** without calling their xDestroy() methods. ** ** [[SQLITE_DBCONFIG_DEFENSIVE]]
SQLITE_DBCONFIG_DEFENSIVE
**
The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the ** "defensive" flag for a database connection. When the defensive ** flag is enabled, language features that allow ordinary SQL to ** deliberately corrupt the database file are disabled. The disabled ** features include but are not limited to the following: **
    **
  • The [PRAGMA writable_schema=ON] statement. **
  • The [PRAGMA journal_mode=OFF] statement. **
  • The [PRAGMA schema_version=N] statement. **
  • Writes to the [sqlite_dbpage] virtual table. **
  • Direct writes to [shadow tables]. **
**
** ** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]]
SQLITE_DBCONFIG_WRITABLE_SCHEMA
**
The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the ** "writable_schema" flag. This has the same effect and is logically equivalent ** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF]. ** The first argument to this setting is an integer which is 0 to disable ** the writable_schema, positive to enable writable_schema, or negative to ** leave the setting unchanged. The second parameter is a pointer to an ** integer into which is written 0 or 1 to indicate whether the writable_schema ** is enabled or disabled following this call. **
** ** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]] **
SQLITE_DBCONFIG_LEGACY_ALTER_TABLE
**
The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates ** the legacy behavior of the [ALTER TABLE RENAME] command such it ** behaves as it did prior to [version 3.24.0] (2018-06-04). See the ** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for ** additional information. This feature can also be turned on and off ** using the [PRAGMA legacy_alter_table] statement. **
** ** [[SQLITE_DBCONFIG_DQS_DML]] **
SQLITE_DBCONFIG_DQS_DML
**
The SQLITE_DBCONFIG_DQS_DML option activates or deactivates ** the legacy [double-quoted string literal] misfeature for DML statements ** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The ** default value of this setting is determined by the [-DSQLITE_DQS] ** compile-time option. **
** ** [[SQLITE_DBCONFIG_DQS_DDL]] **
SQLITE_DBCONFIG_DQS_DDL
**
The SQLITE_DBCONFIG_DQS option activates or deactivates ** the legacy [double-quoted string literal] misfeature for DDL statements, ** such as CREATE TABLE and CREATE INDEX. The ** default value of this setting is determined by the [-DSQLITE_DQS] ** compile-time option. **
** ** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]] **
SQLITE_DBCONFIG_TRUSTED_SCHEMA
**
The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to ** assume that database schemas are untainted by malicious content. ** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite ** takes additional defensive steps to protect the application from harm ** including: **
    **
  • Prohibit the use of SQL functions inside triggers, views, ** CHECK constraints, DEFAULT clauses, expression indexes, ** partial indexes, or generated columns ** unless those functions are tagged with [SQLITE_INNOCUOUS]. **
  • Prohibit the use of virtual tables inside of triggers or views ** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS]. **
** This setting defaults to "on" for legacy compatibility, however ** all applications are advised to turn it off if possible. This setting ** can also be controlled using the [PRAGMA trusted_schema] statement. **
** ** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]] **
SQLITE_DBCONFIG_LEGACY_FILE_FORMAT
**
The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates ** the legacy file format flag. When activated, this flag causes all newly ** created database file to have a schema format version number (the 4-byte ** integer found at offset 44 into the database header) of 1. This in turn ** means that the resulting database file will be readable and writable by ** any SQLite version back to 3.0.0 ([dateof:3.0.0]). Without this setting, ** newly created databases are generally not understandable by SQLite versions ** prior to 3.3.0 ([dateof:3.3.0]). As these words are written, there ** is now scarcely any need to generate database files that are compatible ** all the way back to version 3.0.0, and so this setting is of little ** practical use, but is provided so that SQLite can continue to claim the ** ability to generate new database files that are compatible with version ** 3.0.0. **

Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on, ** the [VACUUM] command will fail with an obscure error when attempting to ** process a table with generated columns and a descending index. This is ** not considered a bug since SQLite versions 3.3.0 and earlier do not support ** either generated columns or descending indexes. **

** ** [[SQLITE_DBCONFIG_STMT_SCANSTATUS]] **
SQLITE_DBCONFIG_STMT_SCANSTATUS
**
The SQLITE_DBCONFIG_STMT_SCANSTATUS option is only useful in ** SQLITE_ENABLE_STMT_SCANSTATUS builds. In this case, it sets or clears ** a flag that enables collection of the sqlite3_stmt_scanstatus_v2() ** statistics. For statistics to be collected, the flag must be set on ** the database handle both when the SQL statement is prepared and when it ** is stepped. The flag is set (collection of statistics is enabled) ** by default. This option takes two arguments: an integer and a pointer to ** an integer.. The first argument is 1, 0, or -1 to enable, disable, or ** leave unchanged the statement scanstatus option. If the second argument ** is not NULL, then the value of the statement scanstatus setting after ** processing the first argument is written into the integer that the second ** argument points to. **
** ** [[SQLITE_DBCONFIG_REVERSE_SCANORDER]] **
SQLITE_DBCONFIG_REVERSE_SCANORDER
**
The SQLITE_DBCONFIG_REVERSE_SCANORDER option changes the default order ** in which tables and indexes are scanned so that the scans start at the end ** and work toward the beginning rather than starting at the beginning and ** working toward the end. Setting SQLITE_DBCONFIG_REVERSE_SCANORDER is the ** same as setting [PRAGMA reverse_unordered_selects]. This option takes ** two arguments which are an integer and a pointer to an integer. The first ** argument is 1, 0, or -1 to enable, disable, or leave unchanged the ** reverse scan order flag, respectively. If the second argument is not NULL, ** then 0 or 1 is written into the integer that the second argument points to ** depending on if the reverse scan order flag is set after processing the ** first argument. **
** **
*/ #define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */ #define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */ #define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */ #define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */ #define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */ #define SQLITE_DBCONFIG_WRITABLE_SCHEMA 1011 /* int int* */ #define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE 1012 /* int int* */ #define SQLITE_DBCONFIG_DQS_DML 1013 /* int int* */ #define SQLITE_DBCONFIG_DQS_DDL 1014 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_VIEW 1015 /* int int* */ #define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT 1016 /* int int* */ #define SQLITE_DBCONFIG_TRUSTED_SCHEMA 1017 /* int int* */ #define SQLITE_DBCONFIG_STMT_SCANSTATUS 1018 /* int int* */ #define SQLITE_DBCONFIG_REVERSE_SCANORDER 1019 /* int int* */ #define SQLITE_DBCONFIG_MAX 1019 /* Largest DBCONFIG */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** METHOD: sqlite3 ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result ** codes are disabled by default for historical compatibility. */ SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff); /* ** CAPI3REF: Last Insert Rowid ** METHOD: sqlite3 ** ** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables) ** has a unique 64-bit signed ** integer key called the [ROWID | "rowid"]. ^The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those ** names are not also used by explicitly declared columns. ^If ** the table has a column of type [INTEGER PRIMARY KEY] then that column ** is another alias for the rowid. ** ** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of ** the most recent successful [INSERT] into a rowid table or [virtual table] ** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not ** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred ** on the database connection D, then sqlite3_last_insert_rowid(D) returns ** zero. ** ** As well as being set automatically as rows are inserted into database ** tables, the value returned by this function may be set explicitly by ** [sqlite3_set_last_insert_rowid()] ** ** Some virtual table implementations may INSERT rows into rowid tables as ** part of committing a transaction (e.g. to flush data accumulated in memory ** to disk). In this case subsequent calls to this function return the rowid ** associated with these internal INSERT operations, which leads to ** unintuitive results. Virtual table implementations that do write to rowid ** tables in this way can avoid this problem by restoring the original ** rowid value using [sqlite3_set_last_insert_rowid()] before returning ** control to the user. ** ** ^(If an [INSERT] occurs within a trigger then this routine will ** return the [rowid] of the inserted row as long as the trigger is ** running. Once the trigger program ends, the value returned ** by this routine reverts to what it was before the trigger was fired.)^ ** ** ^An [INSERT] that fails due to a constraint violation is not a ** successful [INSERT] and does not change the value returned by this ** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, ** and INSERT OR ABORT make no changes to the return value of this ** routine when their insertion fails. ^(When INSERT OR REPLACE ** encounters a constraint violation, it does not fail. The ** INSERT continues to completion after deleting rows that caused ** the constraint problem so INSERT OR REPLACE will always change ** the return value of this interface.)^ ** ** ^For the purposes of this routine, an [INSERT] is considered to ** be successful even if it is subsequently rolled back. ** ** This function is accessible to SQL statements via the ** [last_insert_rowid() SQL function]. ** ** If a separate thread performs a new [INSERT] on the same ** database connection while the [sqlite3_last_insert_rowid()] ** function is running and thus changes the last insert [rowid], ** then the value returned by [sqlite3_last_insert_rowid()] is ** unpredictable and might not equal either the old or the new ** last insert [rowid]. */ SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* ** CAPI3REF: Set the Last Insert Rowid value. ** METHOD: sqlite3 ** ** The sqlite3_set_last_insert_rowid(D, R) method allows the application to ** set the value returned by calling sqlite3_last_insert_rowid(D) to R ** without inserting a row into the database. */ SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64); /* ** CAPI3REF: Count The Number Of Rows Modified ** METHOD: sqlite3 ** ** ^These functions return the number of rows modified, inserted or ** deleted by the most recently completed INSERT, UPDATE or DELETE ** statement on the database connection specified by the only parameter. ** The two functions are identical except for the type of the return value ** and that if the number of rows modified by the most recent INSERT, UPDATE ** or DELETE is greater than the maximum value supported by type "int", then ** the return value of sqlite3_changes() is undefined. ^Executing any other ** type of SQL statement does not modify the value returned by these functions. ** ** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are ** considered - auxiliary changes caused by [CREATE TRIGGER | triggers], ** [foreign key actions] or [REPLACE] constraint resolution are not counted. ** ** Changes to a view that are intercepted by ** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value ** returned by sqlite3_changes() immediately after an INSERT, UPDATE or ** DELETE statement run on a view is always zero. Only changes made to real ** tables are counted. ** ** Things are more complicated if the sqlite3_changes() function is ** executed while a trigger program is running. This may happen if the ** program uses the [changes() SQL function], or if some other callback ** function invokes sqlite3_changes() directly. Essentially: ** **
    **
  • ^(Before entering a trigger program the value returned by ** sqlite3_changes() function is saved. After the trigger program ** has finished, the original value is restored.)^ ** **
  • ^(Within a trigger program each INSERT, UPDATE and DELETE ** statement sets the value returned by sqlite3_changes() ** upon completion as normal. Of course, this value will not include ** any changes performed by sub-triggers, as the sqlite3_changes() ** value will be saved and restored after each sub-trigger has run.)^ **
** ** ^This means that if the changes() SQL function (or similar) is used ** by the first INSERT, UPDATE or DELETE statement within a trigger, it ** returns the value as set when the calling statement began executing. ** ^If it is used by the second or subsequent such statement within a trigger ** program, the value returned reflects the number of rows modified by the ** previous INSERT, UPDATE or DELETE statement within the same trigger. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_changes()] is running then the value returned ** is unpredictable and not meaningful. ** ** See also: **
    **
  • the [sqlite3_total_changes()] interface **
  • the [count_changes pragma] **
  • the [changes() SQL function] **
  • the [data_version pragma] **
*/ SQLITE_API int sqlite3_changes(sqlite3*); SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified ** METHOD: sqlite3 ** ** ^These functions return the total number of rows inserted, modified or ** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed ** since the database connection was opened, including those executed as ** part of trigger programs. The two functions are identical except for the ** type of the return value and that if the number of rows modified by the ** connection exceeds the maximum value supported by type "int", then ** the return value of sqlite3_total_changes() is undefined. ^Executing ** any other type of SQL statement does not affect the value returned by ** sqlite3_total_changes(). ** ** ^Changes made as part of [foreign key actions] are included in the ** count, but those made as part of REPLACE constraint resolution are ** not. ^Changes to a view that are intercepted by INSTEAD OF triggers ** are not counted. ** ** The [sqlite3_total_changes(D)] interface only reports the number ** of rows that changed due to SQL statement run against database ** connection D. Any changes by other database connections are ignored. ** To detect changes against a database file from other database ** connections use the [PRAGMA data_version] command or the ** [SQLITE_FCNTL_DATA_VERSION] [file control]. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_total_changes()] is running then the value ** returned is unpredictable and not meaningful. ** ** See also: **
    **
  • the [sqlite3_changes()] interface **
  • the [count_changes pragma] **
  • the [changes() SQL function] **
  • the [data_version pragma] **
  • the [SQLITE_FCNTL_DATA_VERSION] [file control] **
*/ SQLITE_API int sqlite3_total_changes(sqlite3*); SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*); /* ** CAPI3REF: Interrupt A Long-Running Query ** METHOD: sqlite3 ** ** ^This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. ** ** ^It is safe to call this routine from a thread different from the ** thread that is currently running the database operation. But it ** is not safe to call this routine with a [database connection] that ** is closed or might close before sqlite3_interrupt() returns. ** ** ^If an SQL operation is very nearly finished at the time when ** sqlite3_interrupt() is called, then it might not have an opportunity ** to be interrupted and might continue to completion. ** ** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT]. ** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE ** that is inside an explicit transaction, then the entire transaction ** will be rolled back automatically. ** ** ^The sqlite3_interrupt(D) call is in effect until all currently running ** SQL statements on [database connection] D complete. ^Any new SQL statements ** that are started after the sqlite3_interrupt() call and before the ** running statement count reaches zero are interrupted as if they had been ** running prior to the sqlite3_interrupt() call. ^New SQL statements ** that are started after the running statement count reaches zero are ** not effected by the sqlite3_interrupt(). ** ^A call to sqlite3_interrupt(D) that occurs when there are no running ** SQL statements is a no-op and has no effect on SQL statements ** that are started after the sqlite3_interrupt() call returns. ** ** ^The [sqlite3_is_interrupted(D)] interface can be used to determine whether ** or not an interrupt is currently in effect for [database connection] D. ** It returns 1 if an interrupt is currently in effect, or 0 otherwise. */ SQLITE_API void sqlite3_interrupt(sqlite3*); SQLITE_API int sqlite3_is_interrupted(sqlite3*); /* ** CAPI3REF: Determine If An SQL Statement Is Complete ** ** These routines are useful during command-line input to determine if the ** currently entered text seems to form a complete SQL statement or ** if additional input is needed before sending the text into ** SQLite for parsing. ^These routines return 1 if the input string ** appears to be a complete SQL statement. ^A statement is judged to be ** complete if it ends with a semicolon token and is not a prefix of a ** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within ** string literals or quoted identifier names or comments are not ** independent tokens (they are part of the token in which they are ** embedded) and thus do not count as a statement terminator. ^Whitespace ** and comments that follow the final semicolon are ignored. ** ** ^These routines return 0 if the statement is incomplete. ^If a ** memory allocation fails, then SQLITE_NOMEM is returned. ** ** ^These routines do not parse the SQL statements thus ** will not detect syntactically incorrect SQL. ** ** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior ** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked ** automatically by sqlite3_complete16(). If that initialization fails, ** then the return value from sqlite3_complete16() will be non-zero ** regardless of whether or not the input SQL is complete.)^ ** ** The input to [sqlite3_complete()] must be a zero-terminated ** UTF-8 string. ** ** The input to [sqlite3_complete16()] must be a zero-terminated ** UTF-16 string in native byte order. */ SQLITE_API int sqlite3_complete(const char *sql); SQLITE_API int sqlite3_complete16(const void *sql); /* ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors ** KEYWORDS: {busy-handler callback} {busy handler} ** METHOD: sqlite3 ** ** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X ** that might be invoked with argument P whenever ** an attempt is made to access a database table associated with ** [database connection] D when another thread ** or process has the table locked. ** The sqlite3_busy_handler() interface is used to implement ** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout]. ** ** ^If the busy callback is NULL, then [SQLITE_BUSY] ** is returned immediately upon encountering the lock. ^If the busy callback ** is not NULL, then the callback might be invoked with two arguments. ** ** ^The first argument to the busy handler is a copy of the void* pointer which ** is the third argument to sqlite3_busy_handler(). ^The second argument to ** the busy handler callback is the number of times that the busy handler has ** been invoked previously for the same locking event. ^If the ** busy callback returns 0, then no additional attempts are made to ** access the database and [SQLITE_BUSY] is returned ** to the application. ** ^If the callback returns non-zero, then another attempt ** is made to access the database and the cycle repeats. ** ** The presence of a busy handler does not guarantee that it will be invoked ** when there is lock contention. ^If SQLite determines that invoking the busy ** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY] ** to the application instead of invoking the ** busy handler. ** Consider a scenario where one process is holding a read lock that ** it is trying to promote to a reserved lock and ** a second process is holding a reserved lock that it is trying ** to promote to an exclusive lock. The first process cannot proceed ** because it is blocked by the second and the second process cannot ** proceed because it is blocked by the first. If both processes ** invoke the busy handlers, neither will make any progress. Therefore, ** SQLite returns [SQLITE_BUSY] for the first process, hoping that this ** will induce the first process to release its read lock and allow ** the second process to proceed. ** ** ^The default busy callback is NULL. ** ** ^(There can only be a single busy handler defined for each ** [database connection]. Setting a new busy handler clears any ** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] ** or evaluating [PRAGMA busy_timeout=N] will change the ** busy handler and thus clear any previously set busy handler. ** ** The busy callback should not take any actions which modify the ** database connection that invoked the busy handler. In other words, ** the busy handler is not reentrant. Any such actions ** result in undefined behavior. ** ** A busy handler must not close the database connection ** or [prepared statement] that invoked the busy handler. */ SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*); /* ** CAPI3REF: Set A Busy Timeout ** METHOD: sqlite3 ** ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps ** for a specified amount of time when a table is locked. ^The handler ** will sleep multiple times until at least "ms" milliseconds of sleeping ** have accumulated. ^After at least "ms" milliseconds of sleeping, ** the handler returns 0 which causes [sqlite3_step()] to return ** [SQLITE_BUSY]. ** ** ^Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** ** ^(There can only be a single busy handler for a particular ** [database connection] at any given moment. If another busy handler ** was defined (using [sqlite3_busy_handler()]) prior to calling ** this routine, that other busy handler is cleared.)^ ** ** See also: [PRAGMA busy_timeout] */ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); /* ** CAPI3REF: Convenience Routines For Running Queries ** METHOD: sqlite3 ** ** This is a legacy interface that is preserved for backwards compatibility. ** Use of this interface is not recommended. ** ** Definition: A result table is memory data structure created by the ** [sqlite3_get_table()] interface. A result table records the ** complete query results from one or more queries. ** ** The table conceptually has a number of rows and columns. But ** these numbers are not part of the result table itself. These ** numbers are obtained separately. Let N be the number of rows ** and M be the number of columns. ** ** A result table is an array of pointers to zero-terminated UTF-8 strings. ** There are (N+1)*M elements in the array. The first M pointers point ** to zero-terminated strings that contain the names of the columns. ** The remaining entries all point to query results. NULL values result ** in NULL pointers. All other values are in their UTF-8 zero-terminated ** string representation as returned by [sqlite3_column_text()]. ** ** A result table might consist of one or more memory allocations. ** It is not safe to pass a result table directly to [sqlite3_free()]. ** A result table should be deallocated using [sqlite3_free_table()]. ** ** ^(As an example of the result table format, suppose a query result ** is as follows: ** **
**        Name        | Age
**        -----------------------
**        Alice       | 43
**        Bob         | 28
**        Cindy       | 21
** 
** ** There are two columns (M==2) and three rows (N==3). Thus the ** result table has 8 entries. Suppose the result table is stored ** in an array named azResult. Then azResult holds this content: ** **
**        azResult[0] = "Name";
**        azResult[1] = "Age";
**        azResult[2] = "Alice";
**        azResult[3] = "43";
**        azResult[4] = "Bob";
**        azResult[5] = "28";
**        azResult[6] = "Cindy";
**        azResult[7] = "21";
** 
)^ ** ** ^The sqlite3_get_table() function evaluates one or more ** semicolon-separated SQL statements in the zero-terminated UTF-8 ** string of its 2nd parameter and returns a result table to the ** pointer given in its 3rd parameter. ** ** After the application has finished with the result from sqlite3_get_table(), ** it must pass the result table pointer to sqlite3_free_table() in order to ** release the memory that was malloced. Because of the way the ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling ** function must not try to call [sqlite3_free()] directly. Only ** [sqlite3_free_table()] is able to release the memory properly and safely. ** ** The sqlite3_get_table() interface is implemented as a wrapper around ** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access ** to any internal data structures of SQLite. It uses only the public ** interface defined here. As a consequence, errors that occur in the ** wrapper layer outside of the internal [sqlite3_exec()] call are not ** reflected in subsequent calls to [sqlite3_errcode()] or ** [sqlite3_errmsg()]. */ SQLITE_API int sqlite3_get_table( sqlite3 *db, /* An open database */ const char *zSql, /* SQL to be evaluated */ char ***pazResult, /* Results of the query */ int *pnRow, /* Number of result rows written here */ int *pnColumn, /* Number of result columns written here */ char **pzErrmsg /* Error msg written here */ ); SQLITE_API void sqlite3_free_table(char **result); /* ** CAPI3REF: Formatted String Printing Functions ** ** These routines are work-alikes of the "printf()" family of functions ** from the standard C library. ** These routines understand most of the common formatting options from ** the standard library printf() ** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]). ** See the [built-in printf()] documentation for details. ** ** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc64()]. ** The strings returned by these two routines should be ** released by [sqlite3_free()]. ^Both routines return a ** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough ** memory to hold the resulting string. ** ** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from ** the standard C library. The result is written into the ** buffer supplied as the second parameter whose size is given by ** the first parameter. Note that the order of the ** first two parameters is reversed from snprintf().)^ This is an ** historical accident that cannot be fixed without breaking ** backwards compatibility. ^(Note also that sqlite3_snprintf() ** returns a pointer to its buffer instead of the number of ** characters actually written into the buffer.)^ We admit that ** the number of characters written would be a more useful return ** value but we cannot change the implementation of sqlite3_snprintf() ** now without breaking compatibility. ** ** ^As long as the buffer size is greater than zero, sqlite3_snprintf() ** guarantees that the buffer is always zero-terminated. ^The first ** parameter "n" is the total size of the buffer, including space for ** the zero terminator. So the longest string that can be completely ** written will be n-1 characters. ** ** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf(). ** ** See also: [built-in printf()], [printf() SQL function] */ SQLITE_API char *sqlite3_mprintf(const char*,...); SQLITE_API char *sqlite3_vmprintf(const char*, va_list); SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...); SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list); /* ** CAPI3REF: Memory Allocation Subsystem ** ** The SQLite core uses these three routines for all of its own ** internal memory allocation needs. "Core" in the previous sentence ** does not include operating-system specific [VFS] implementation. The ** Windows VFS uses native malloc() and free() for some operations. ** ** ^The sqlite3_malloc() routine returns a pointer to a block ** of memory at least N bytes in length, where N is the parameter. ** ^If sqlite3_malloc() is unable to obtain sufficient free ** memory, it returns a NULL pointer. ^If the parameter N to ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns ** a NULL pointer. ** ** ^The sqlite3_malloc64(N) routine works just like ** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead ** of a signed 32-bit integer. ** ** ^Calling sqlite3_free() with a pointer previously returned ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so ** that it might be reused. ^The sqlite3_free() routine is ** a no-op if is called with a NULL pointer. Passing a NULL pointer ** to sqlite3_free() is harmless. After being freed, memory ** should neither be read nor written. Even reading previously freed ** memory might result in a segmentation fault or other severe error. ** Memory corruption, a segmentation fault, or other severe error ** might result if sqlite3_free() is called with a non-NULL pointer that ** was not obtained from sqlite3_malloc() or sqlite3_realloc(). ** ** ^The sqlite3_realloc(X,N) interface attempts to resize a ** prior memory allocation X to be at least N bytes. ** ^If the X parameter to sqlite3_realloc(X,N) ** is a NULL pointer then its behavior is identical to calling ** sqlite3_malloc(N). ** ^If the N parameter to sqlite3_realloc(X,N) is zero or ** negative then the behavior is exactly the same as calling ** sqlite3_free(X). ** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation ** of at least N bytes in size or NULL if insufficient memory is available. ** ^If M is the size of the prior allocation, then min(N,M) bytes ** of the prior allocation are copied into the beginning of buffer returned ** by sqlite3_realloc(X,N) and the prior allocation is freed. ** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the ** prior allocation is not freed. ** ** ^The sqlite3_realloc64(X,N) interfaces works the same as ** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead ** of a 32-bit signed integer. ** ** ^If X is a memory allocation previously obtained from sqlite3_malloc(), ** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then ** sqlite3_msize(X) returns the size of that memory allocation in bytes. ** ^The value returned by sqlite3_msize(X) might be larger than the number ** of bytes requested when X was allocated. ^If X is a NULL pointer then ** sqlite3_msize(X) returns zero. If X points to something that is not ** the beginning of memory allocation, or if it points to a formerly ** valid memory allocation that has now been freed, then the behavior ** of sqlite3_msize(X) is undefined and possibly harmful. ** ** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(), ** sqlite3_malloc64(), and sqlite3_realloc64() ** is always aligned to at least an 8 byte boundary, or to a ** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time ** option is used. ** ** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] ** must be either NULL or else pointers obtained from a prior ** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have ** not yet been released. ** ** The application must not read or write any part of ** a block of memory after it has been released using ** [sqlite3_free()] or [sqlite3_realloc()]. */ SQLITE_API void *sqlite3_malloc(int); SQLITE_API void *sqlite3_malloc64(sqlite3_uint64); SQLITE_API void *sqlite3_realloc(void*, int); SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64); SQLITE_API void sqlite3_free(void*); SQLITE_API sqlite3_uint64 sqlite3_msize(void*); /* ** CAPI3REF: Memory Allocator Statistics ** ** SQLite provides these two interfaces for reporting on the status ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] ** routines, which form the built-in memory allocation subsystem. ** ** ^The [sqlite3_memory_used()] routine returns the number of bytes ** of memory currently outstanding (malloced but not freed). ** ^The [sqlite3_memory_highwater()] routine returns the maximum ** value of [sqlite3_memory_used()] since the high-water mark ** was last reset. ^The values returned by [sqlite3_memory_used()] and ** [sqlite3_memory_highwater()] include any overhead ** added by SQLite in its implementation of [sqlite3_malloc()], ** but not overhead added by the any underlying system library ** routines that [sqlite3_malloc()] may call. ** ** ^The memory high-water mark is reset to the current value of ** [sqlite3_memory_used()] if and only if the parameter to ** [sqlite3_memory_highwater()] is true. ^The value returned ** by [sqlite3_memory_highwater(1)] is the high-water mark ** prior to the reset. */ SQLITE_API sqlite3_int64 sqlite3_memory_used(void); SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag); /* ** CAPI3REF: Pseudo-Random Number Generator ** ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to ** select random [ROWID | ROWIDs] when inserting new records into a table that ** already uses the largest possible [ROWID]. The PRNG is also used for ** the built-in random() and randomblob() SQL functions. This interface allows ** applications to access the same PRNG for other purposes. ** ** ^A call to this routine stores N bytes of randomness into buffer P. ** ^The P parameter can be a NULL pointer. ** ** ^If this routine has not been previously called or if the previous ** call had N less than one or a NULL pointer for P, then the PRNG is ** seeded using randomness obtained from the xRandomness method of ** the default [sqlite3_vfs] object. ** ^If the previous call to this routine had an N of 1 or more and a ** non-NULL P then the pseudo-randomness is generated ** internally and without recourse to the [sqlite3_vfs] xRandomness ** method. */ SQLITE_API void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** METHOD: sqlite3 ** KEYWORDS: {authorizer callback} ** ** ^This routine registers an authorizer callback with a particular ** [database connection], supplied in the first argument. ** ^The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], ** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()], ** and [sqlite3_prepare16_v3()]. ^At various ** points during the compilation process, as logic is being created ** to perform various actions, the authorizer callback is invoked to ** see if those actions are allowed. ^The authorizer callback should ** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the ** specific action but allow the SQL statement to continue to be ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be ** rejected with an error. ^If the authorizer callback returns ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] ** then the [sqlite3_prepare_v2()] or equivalent call that triggered ** the authorizer will fail with an error message. ** ** When the callback returns [SQLITE_OK], that means the operation ** requested is ok. ^When the callback returns [SQLITE_DENY], the ** [sqlite3_prepare_v2()] or equivalent call that triggered the ** authorizer will fail with an error message explaining that ** access is denied. ** ** ^The first parameter to the authorizer callback is a copy of the third ** parameter to the sqlite3_set_authorizer() interface. ^The second parameter ** to the callback is an integer [SQLITE_COPY | action code] that specifies ** the particular action to be authorized. ^The third through sixth parameters ** to the callback are either NULL pointers or zero-terminated strings ** that contain additional details about the action to be authorized. ** Applications must always be prepared to encounter a NULL pointer in any ** of the third through the sixth parameters of the authorization callback. ** ** ^If the action code is [SQLITE_READ] ** and the callback returns [SQLITE_IGNORE] then the ** [prepared statement] statement is constructed to substitute ** a NULL value in place of the table column that would have ** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] ** return can be used to deny an untrusted user access to individual ** columns of a table. ** ^When a table is referenced by a [SELECT] but no column values are ** extracted from that table (for example in a query like ** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback ** is invoked once for that table with a column name that is an empty string. ** ^If the action code is [SQLITE_DELETE] and the callback returns ** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the ** [truncate optimization] is disabled and all rows are deleted individually. ** ** An authorizer is used when [sqlite3_prepare | preparing] ** SQL statements from an untrusted source, to ensure that the SQL statements ** do not try to access data they are not allowed to see, or that they do not ** try to execute malicious statements that damage the database. For ** example, an application may allow a user to enter arbitrary ** SQL queries for evaluation by a database. But the application does ** not want the user to be able to make arbitrary changes to the ** database. An authorizer could then be put in place while the ** user-entered SQL is being [sqlite3_prepare | prepared] that ** disallows everything except [SELECT] statements. ** ** Applications that need to process SQL from untrusted sources ** might also consider lowering resource limits using [sqlite3_limit()] ** and limiting database size using the [max_page_count] [PRAGMA] ** in addition to using an authorizer. ** ** ^(Only a single authorizer can be in place on a database connection ** at a time. Each call to sqlite3_set_authorizer overrides the ** previous call.)^ ^Disable the authorizer by installing a NULL callback. ** The authorizer is disabled by default. ** ** The authorizer callback must not do anything that will modify ** the database connection that invoked the authorizer callback. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the ** statement might be re-prepared during [sqlite3_step()] due to a ** schema change. Hence, the application should ensure that the ** correct authorizer callback remains in place during the [sqlite3_step()]. ** ** ^Note that the authorizer callback is invoked only during ** [sqlite3_prepare()] or its variants. Authorization is not ** performed during statement evaluation in [sqlite3_step()], unless ** as stated in the previous paragraph, sqlite3_step() invokes ** sqlite3_prepare_v2() to reprepare a statement after a schema change. */ SQLITE_API int sqlite3_set_authorizer( sqlite3*, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pUserData ); /* ** CAPI3REF: Authorizer Return Codes ** ** The [sqlite3_set_authorizer | authorizer callback function] must ** return either [SQLITE_OK] or one of these two constants in order ** to signal SQLite whether or not the action is permitted. See the ** [sqlite3_set_authorizer | authorizer documentation] for additional ** information. ** ** Note that SQLITE_IGNORE is also used as a [conflict resolution mode] ** returned from the [sqlite3_vtab_on_conflict()] interface. */ #define SQLITE_DENY 1 /* Abort the SQL statement with an error */ #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ /* ** CAPI3REF: Authorizer Action Codes ** ** The [sqlite3_set_authorizer()] interface registers a callback function ** that is invoked to authorize certain SQL statement actions. The ** second parameter to the callback is an integer code that specifies ** what action is being authorized. These are the integer action codes that ** the authorizer callback may be passed. ** ** These action code values signify what kind of operation is to be ** authorized. The 3rd and 4th parameters to the authorization ** callback function will be parameters or NULL depending on which of these ** codes is used as the second parameter. ^(The 5th parameter to the ** authorizer callback is the name of the database ("main", "temp", ** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback ** is the name of the inner-most trigger or view that is responsible for ** the access attempt or NULL if this access attempt is directly from ** top-level SQL code. */ /******************************************* 3rd ************ 4th ***********/ #define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ #define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ #define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ #define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ #define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ #define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ #define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ #define SQLITE_CREATE_VIEW 8 /* View Name NULL */ #define SQLITE_DELETE 9 /* Table Name NULL */ #define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ #define SQLITE_DROP_TABLE 11 /* Table Name NULL */ #define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ #define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ #define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ #define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ #define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ #define SQLITE_DROP_VIEW 17 /* View Name NULL */ #define SQLITE_INSERT 18 /* Table Name NULL */ #define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ #define SQLITE_READ 20 /* Table Name Column Name */ #define SQLITE_SELECT 21 /* NULL NULL */ #define SQLITE_TRANSACTION 22 /* Operation NULL */ #define SQLITE_UPDATE 23 /* Table Name Column Name */ #define SQLITE_ATTACH 24 /* Filename NULL */ #define SQLITE_DETACH 25 /* Database Name NULL */ #define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ #define SQLITE_REINDEX 27 /* Index Name NULL */ #define SQLITE_ANALYZE 28 /* Table Name NULL */ #define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ #define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ #define SQLITE_FUNCTION 31 /* NULL Function Name */ #define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ #define SQLITE_COPY 0 /* No longer used */ #define SQLITE_RECURSIVE 33 /* NULL NULL */ /* ** CAPI3REF: Tracing And Profiling Functions ** METHOD: sqlite3 ** ** These routines are deprecated. Use the [sqlite3_trace_v2()] interface ** instead of the routines described here. ** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** ** ^The callback function registered by sqlite3_trace() is invoked at ** various times when an SQL statement is being run by [sqlite3_step()]. ** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the ** SQL statement text as the statement first begins executing. ** ^(Additional sqlite3_trace() callbacks might occur ** as each triggered subprogram is entered. The callbacks for triggers ** contain a UTF-8 SQL comment that identifies the trigger.)^ ** ** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit ** the length of [bound parameter] expansion in the output of sqlite3_trace(). ** ** ^The callback function registered by sqlite3_profile() is invoked ** as each SQL statement finishes. ^The profile callback contains ** the original statement text and an estimate of wall-clock time ** of how long that statement took to run. ^The profile callback ** time is in units of nanoseconds, however the current implementation ** is only capable of millisecond resolution so the six least significant ** digits in the time are meaningless. Future versions of SQLite ** might provide greater resolution on the profiler callback. Invoking ** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the ** profile callback. */ SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* ** CAPI3REF: SQL Trace Event Codes ** KEYWORDS: SQLITE_TRACE ** ** These constants identify classes of events that can be monitored ** using the [sqlite3_trace_v2()] tracing logic. The M argument ** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of ** the following constants. ^The first argument to the trace callback ** is one of the following constants. ** ** New tracing constants may be added in future releases. ** ** ^A trace callback has four arguments: xCallback(T,C,P,X). ** ^The T argument is one of the integer type codes above. ** ^The C argument is a copy of the context pointer passed in as the ** fourth argument to [sqlite3_trace_v2()]. ** The P and X arguments are pointers whose meanings depend on T. ** **
** [[SQLITE_TRACE_STMT]]
SQLITE_TRACE_STMT
**
^An SQLITE_TRACE_STMT callback is invoked when a prepared statement ** first begins running and possibly at other times during the ** execution of the prepared statement, such as at the start of each ** trigger subprogram. ^The P argument is a pointer to the ** [prepared statement]. ^The X argument is a pointer to a string which ** is the unexpanded SQL text of the prepared statement or an SQL comment ** that indicates the invocation of a trigger. ^The callback can compute ** the same text that would have been returned by the legacy [sqlite3_trace()] ** interface by using the X argument when X begins with "--" and invoking ** [sqlite3_expanded_sql(P)] otherwise. ** ** [[SQLITE_TRACE_PROFILE]]
SQLITE_TRACE_PROFILE
**
^An SQLITE_TRACE_PROFILE callback provides approximately the same ** information as is provided by the [sqlite3_profile()] callback. ** ^The P argument is a pointer to the [prepared statement] and the ** X argument points to a 64-bit integer which is approximately ** the number of nanoseconds that the prepared statement took to run. ** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes. ** ** [[SQLITE_TRACE_ROW]]
SQLITE_TRACE_ROW
**
^An SQLITE_TRACE_ROW callback is invoked whenever a prepared ** statement generates a single row of result. ** ^The P argument is a pointer to the [prepared statement] and the ** X argument is unused. ** ** [[SQLITE_TRACE_CLOSE]]
SQLITE_TRACE_CLOSE
**
^An SQLITE_TRACE_CLOSE callback is invoked when a database ** connection closes. ** ^The P argument is a pointer to the [database connection] object ** and the X argument is unused. **
*/ #define SQLITE_TRACE_STMT 0x01 #define SQLITE_TRACE_PROFILE 0x02 #define SQLITE_TRACE_ROW 0x04 #define SQLITE_TRACE_CLOSE 0x08 /* ** CAPI3REF: SQL Trace Hook ** METHOD: sqlite3 ** ** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback ** function X against [database connection] D, using property mask M ** and context pointer P. ^If the X callback is ** NULL or if the M mask is zero, then tracing is disabled. The ** M argument should be the bitwise OR-ed combination of ** zero or more [SQLITE_TRACE] constants. ** ** ^Each call to either sqlite3_trace(D,X,P) or sqlite3_trace_v2(D,M,X,P) ** overrides (cancels) all prior calls to sqlite3_trace(D,X,P) or ** sqlite3_trace_v2(D,M,X,P) for the [database connection] D. Each ** database connection may have at most one trace callback. ** ** ^The X callback is invoked whenever any of the events identified by ** mask M occur. ^The integer return value from the callback is currently ** ignored, though this may change in future releases. Callback ** implementations should return zero to ensure future compatibility. ** ** ^A trace callback is invoked with four arguments: callback(T,C,P,X). ** ^The T argument is one of the [SQLITE_TRACE] ** constants to indicate why the callback was invoked. ** ^The C argument is a copy of the context pointer. ** The P and X arguments are pointers whose meanings depend on T. ** ** The sqlite3_trace_v2() interface is intended to replace the legacy ** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which ** are deprecated. */ SQLITE_API int sqlite3_trace_v2( sqlite3*, unsigned uMask, int(*xCallback)(unsigned,void*,void*,void*), void *pCtx ); /* ** CAPI3REF: Query Progress Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_step()] and [sqlite3_prepare()] and similar for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** ** ^The parameter P is passed through as the only parameter to the ** callback function X. ^The parameter N is the approximate number of ** [virtual machine instructions] that are evaluated between successive ** invocations of the callback X. ^If N is less than one then the progress ** handler is disabled. ** ** ^Only a single progress handler may be defined at one time per ** [database connection]; setting a new progress handler cancels the ** old one. ^Setting parameter X to NULL disables the progress handler. ** ^The progress handler is also disabled by setting N to a value less ** than 1. ** ** ^If the progress callback returns non-zero, the operation is ** interrupted. This feature can be used to implement a ** "Cancel" button on a GUI progress dialog box. ** ** The progress handler callback must not do anything that will modify ** the database connection that invoked the progress handler. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** The progress handler callback would originally only be invoked from the ** bytecode engine. It still might be invoked during [sqlite3_prepare()] ** and similar because those routines might force a reparse of the schema ** which involves running the bytecode engine. However, beginning with ** SQLite version 3.41.0, the progress handler callback might also be ** invoked directly from [sqlite3_prepare()] while analyzing and generating ** code for complex queries. */ SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); /* ** CAPI3REF: Opening A New Database Connection ** CONSTRUCTOR: sqlite3 ** ** ^These routines open an SQLite database file as specified by the ** filename argument. ^The filename argument is interpreted as UTF-8 for ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte ** order for sqlite3_open16(). ^(A [database connection] handle is usually ** returned in *ppDb, even if an error occurs. The only exception is that ** if SQLite is unable to allocate memory to hold the [sqlite3] object, ** a NULL will be written into *ppDb instead of a pointer to the [sqlite3] ** object.)^ ^(If the database is opened (and/or created) successfully, then ** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The ** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain ** an English language description of the error following a failure of any ** of the sqlite3_open() routines. ** ** ^The default encoding will be UTF-8 for databases created using ** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases ** created using sqlite3_open16() will be UTF-16 in the native byte order. ** ** Whether or not an error occurs when it is opened, resources ** associated with the [database connection] handle should be released by ** passing it to [sqlite3_close()] when it is no longer required. ** ** The sqlite3_open_v2() interface works like sqlite3_open() ** except that it accepts two additional parameters for additional control ** over the new database connection. ^(The flags parameter to ** sqlite3_open_v2() must include, at a minimum, one of the following ** three flag combinations:)^ ** **
** ^(
[SQLITE_OPEN_READONLY]
**
The database is opened in read-only mode. If the database does ** not already exist, an error is returned.
)^ ** ** ^(
[SQLITE_OPEN_READWRITE]
**
The database is opened for reading and writing if possible, or ** reading only if the file is write protected by the operating ** system. In either case the database must already exist, otherwise ** an error is returned. For historical reasons, if opening in ** read-write mode fails due to OS-level permissions, an attempt is ** made to open it in read-only mode. [sqlite3_db_readonly()] can be ** used to determine whether the database is actually ** read-write.
)^ ** ** ^(
[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
**
The database is opened for reading and writing, and is created if ** it does not already exist. This is the behavior that is always used for ** sqlite3_open() and sqlite3_open16().
)^ **
** ** In addition to the required flags, the following optional flags are ** also supported: ** **
** ^(
[SQLITE_OPEN_URI]
**
The filename can be interpreted as a URI if this flag is set.
)^ ** ** ^(
[SQLITE_OPEN_MEMORY]
**
The database will be opened as an in-memory database. The database ** is named by the "filename" argument for the purposes of cache-sharing, ** if shared cache mode is enabled, but the "filename" is otherwise ignored. **
)^ ** ** ^(
[SQLITE_OPEN_NOMUTEX]
**
The new database connection will use the "multi-thread" ** [threading mode].)^ This means that separate threads are allowed ** to use SQLite at the same time, as long as each thread is using ** a different [database connection]. ** ** ^(
[SQLITE_OPEN_FULLMUTEX]
**
The new database connection will use the "serialized" ** [threading mode].)^ This means the multiple threads can safely ** attempt to use the same database connection at the same time. ** (Mutexes will block any actual concurrency, but in this mode ** there is no harm in trying.) ** ** ^(
[SQLITE_OPEN_SHAREDCACHE]
**
The database is opened [shared cache] enabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** The [use of shared cache mode is discouraged] and hence shared cache ** capabilities may be omitted from many builds of SQLite. In such cases, ** this option is a no-op. ** ** ^(
[SQLITE_OPEN_PRIVATECACHE]
**
The database is opened [shared cache] disabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** ** [[OPEN_EXRESCODE]] ^(
[SQLITE_OPEN_EXRESCODE]
**
The database connection comes up in "extended result code mode". ** In other words, the database behaves has if ** [sqlite3_extended_result_codes(db,1)] where called on the database ** connection as soon as the connection is created. In addition to setting ** the extended result code mode, this flag also causes [sqlite3_open_v2()] ** to return an extended result code.
** ** [[OPEN_NOFOLLOW]] ^(
[SQLITE_OPEN_NOFOLLOW]
**
The database filename is not allowed to contain a symbolic link
**
)^ ** ** If the 3rd parameter to sqlite3_open_v2() is not one of the ** required combinations shown above optionally combined with other ** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits] ** then the behavior is undefined. Historic versions of SQLite ** have silently ignored surplus bits in the flags parameter to ** sqlite3_open_v2(), however that behavior might not be carried through ** into future versions of SQLite and so applications should not rely ** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op ** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause ** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE ** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not ** by sqlite3_open_v2(). ** ** ^The fourth parameter to sqlite3_open_v2() is the name of the ** [sqlite3_vfs] object that defines the operating system interface that ** the new database connection should use. ^If the fourth parameter is ** a NULL pointer then the default [sqlite3_vfs] object is used. ** ** ^If the filename is ":memory:", then a private, temporary in-memory database ** is created for the connection. ^This in-memory database will vanish when ** the database connection is closed. Future versions of SQLite might ** make use of additional special filenames that begin with the ":" character. ** It is recommended that when a database filename actually does begin with ** a ":" character you should prefix the filename with a pathname such as ** "./" to avoid ambiguity. ** ** ^If the filename is an empty string, then a private, temporary ** on-disk database will be created. ^This private database will be ** automatically deleted as soon as the database connection is closed. ** ** [[URI filenames in sqlite3_open()]]

URI Filenames

** ** ^If [URI filename] interpretation is enabled, and the filename argument ** begins with "file:", then the filename is interpreted as a URI. ^URI ** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is ** set in the third argument to sqlite3_open_v2(), or if it has ** been enabled globally using the [SQLITE_CONFIG_URI] option with the ** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option. ** URI filename interpretation is turned off ** by default, but future releases of SQLite might enable URI filename ** interpretation by default. See "[URI filenames]" for additional ** information. ** ** URI filenames are parsed according to RFC 3986. ^If the URI contains an ** authority, then it must be either an empty string or the string ** "localhost". ^If the authority is not an empty string or "localhost", an ** error is returned to the caller. ^The fragment component of a URI, if ** present, is ignored. ** ** ^SQLite uses the path component of the URI as the name of the disk file ** which contains the database. ^If the path begins with a '/' character, ** then it is interpreted as an absolute path. ^If the path does not begin ** with a '/' (meaning that the authority section is omitted from the URI) ** then the path is interpreted as a relative path. ** ^(On windows, the first component of an absolute path ** is a drive specification (e.g. "C:").)^ ** ** [[core URI query parameters]] ** The query component of a URI may contain parameters that are interpreted ** either by SQLite itself, or by a [VFS | custom VFS implementation]. ** SQLite and its built-in [VFSes] interpret the ** following query parameters: ** **
    **
  • vfs: ^The "vfs" parameter may be used to specify the name of ** a VFS object that provides the operating system interface that should ** be used to access the database file on disk. ^If this option is set to ** an empty string the default VFS object is used. ^Specifying an unknown ** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is ** present, then the VFS specified by the option takes precedence over ** the value passed as the fourth parameter to sqlite3_open_v2(). ** **
  • mode: ^(The mode parameter may be set to either "ro", "rw", ** "rwc", or "memory". Attempting to set it to any other value is ** an error)^. ** ^If "ro" is specified, then the database is opened for read-only ** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the ** third argument to sqlite3_open_v2(). ^If the mode option is set to ** "rw", then the database is opened for read-write (but not create) ** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had ** been set. ^Value "rwc" is equivalent to setting both ** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is ** set to "memory" then a pure [in-memory database] that never reads ** or writes from disk is used. ^It is an error to specify a value for ** the mode parameter that is less restrictive than that specified by ** the flags passed in the third parameter to sqlite3_open_v2(). ** **
  • cache: ^The cache parameter may be set to either "shared" or ** "private". ^Setting it to "shared" is equivalent to setting the ** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to ** sqlite3_open_v2(). ^Setting the cache parameter to "private" is ** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit. ** ^If sqlite3_open_v2() is used and the "cache" parameter is present in ** a URI filename, its value overrides any behavior requested by setting ** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag. ** **
  • psow: ^The psow parameter indicates whether or not the ** [powersafe overwrite] property does or does not apply to the ** storage media on which the database file resides. ** **
  • nolock: ^The nolock parameter is a boolean query parameter ** which if set disables file locking in rollback journal modes. This ** is useful for accessing a database on a filesystem that does not ** support locking. Caution: Database corruption might result if two ** or more processes write to the same database and any one of those ** processes uses nolock=1. ** **
  • immutable: ^The immutable parameter is a boolean query ** parameter that indicates that the database file is stored on ** read-only media. ^When immutable is set, SQLite assumes that the ** database file cannot be changed, even by a process with higher ** privilege, and so the database is opened read-only and all locking ** and change detection is disabled. Caution: Setting the immutable ** property on a database file that does in fact change can result ** in incorrect query results and/or [SQLITE_CORRUPT] errors. ** See also: [SQLITE_IOCAP_IMMUTABLE]. ** **
** ** ^Specifying an unknown parameter in the query component of a URI is not an ** error. Future versions of SQLite might understand additional query ** parameters. See "[query parameters with special meaning to SQLite]" for ** additional information. ** ** [[URI filename examples]]

URI filename examples

** ** **
URI filenames Results **
file:data.db ** Open the file "data.db" in the current directory. **
file:/home/fred/data.db
** file:///home/fred/data.db
** file://localhost/home/fred/data.db
** Open the database file "/home/fred/data.db". **
file://darkstar/home/fred/data.db ** An error. "darkstar" is not a recognized authority. **
** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db ** Windows only: Open the file "data.db" on fred's desktop on drive ** C:. Note that the %20 escaping in this example is not strictly ** necessary - space characters can be used literally ** in URI filenames. **
file:data.db?mode=ro&cache=private ** Open file "data.db" in the current directory for read-only access. ** Regardless of whether or not shared-cache mode is enabled by ** default, use a private cache. **
file:/home/fred/data.db?vfs=unix-dotfile ** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile" ** that uses dot-files in place of posix advisory locking. **
file:data.db?mode=readonly ** An error. "readonly" is not a valid option for the "mode" parameter. ** Use "ro" instead: "file:data.db?mode=ro". **
** ** ^URI hexadecimal escape sequences (%HH) are supported within the path and ** query components of a URI. A hexadecimal escape sequence consists of a ** percent sign - "%" - followed by exactly two hexadecimal digits ** specifying an octet value. ^Before the path or query components of a ** URI filename are interpreted, they are encoded using UTF-8 and all ** hexadecimal escape sequences replaced by a single byte containing the ** corresponding octet. If this process generates an invalid UTF-8 encoding, ** the results are undefined. ** ** Note to Windows users: The encoding used for the filename argument ** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever ** codepage is currently defined. Filenames containing international ** characters must be converted to UTF-8 prior to passing them into ** sqlite3_open() or sqlite3_open_v2(). ** ** Note to Windows Runtime users: The temporary directory must be set ** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various ** features that require the use of temporary files may fail. ** ** See also: [sqlite3_temp_directory] */ SQLITE_API int sqlite3_open( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb /* OUT: SQLite db handle */ ); SQLITE_API int sqlite3_open16( const void *filename, /* Database filename (UTF-16) */ sqlite3 **ppDb /* OUT: SQLite db handle */ ); SQLITE_API int sqlite3_open_v2( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb, /* OUT: SQLite db handle */ int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ); /* ** CAPI3REF: Obtain Values For URI Parameters ** ** These are utility routines, useful to [VFS|custom VFS implementations], ** that check if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of that query parameter. ** ** The first parameter to these interfaces (hereafter referred to ** as F) must be one of: **
    **
  • A database filename pointer created by the SQLite core and ** passed into the xOpen() method of a VFS implementation, or **
  • A filename obtained from [sqlite3_db_filename()], or **
  • A new filename constructed using [sqlite3_create_filename()]. **
** If the F parameter is not one of the above, then the behavior is ** undefined and probably undesirable. Older versions of SQLite were ** more tolerant of invalid F parameters than newer versions. ** ** If F is a suitable filename (as described in the previous paragraph) ** and if P is the name of the query parameter, then ** sqlite3_uri_parameter(F,P) returns the value of the P ** parameter if it exists or a NULL pointer if P does not appear as a ** query parameter on F. If P is a query parameter of F and it ** has no explicit value, then sqlite3_uri_parameter(F,P) returns ** a pointer to an empty string. ** ** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean ** parameter and returns true (1) or false (0) according to the value ** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the ** value of query parameter P is one of "yes", "true", or "on" in any ** case or if the value begins with a non-zero number. The ** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of ** query parameter P is one of "no", "false", or "off" in any case or ** if the value begins with a numeric zero. If P is not a query ** parameter on F or if the value of P does not match any of the ** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0). ** ** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a ** 64-bit signed integer and returns that integer, or D if P does not ** exist. If the value of P is something other than an integer, then ** zero is returned. ** ** The sqlite3_uri_key(F,N) returns a pointer to the name (not ** the value) of the N-th query parameter for filename F, or a NULL ** pointer if N is less than zero or greater than the number of query ** parameters minus 1. The N value is zero-based so N should be 0 to obtain ** the name of the first query parameter, 1 for the second parameter, and ** so forth. ** ** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and ** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and ** is not a database file pathname pointer that the SQLite core passed ** into the xOpen VFS method, then the behavior of this routine is undefined ** and probably undesirable. ** ** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F ** parameter can also be the name of a rollback journal file or WAL file ** in addition to the main database file. Prior to version 3.31.0, these ** routines would only work if F was the name of the main database file. ** When the F parameter is the name of the rollback journal or WAL file, ** it has access to all the same query parameters as were found on the ** main database file. ** ** See the [URI filename] documentation for additional information. */ SQLITE_API const char *sqlite3_uri_parameter(sqlite3_filename z, const char *zParam); SQLITE_API int sqlite3_uri_boolean(sqlite3_filename z, const char *zParam, int bDefault); SQLITE_API sqlite3_int64 sqlite3_uri_int64(sqlite3_filename, const char*, sqlite3_int64); SQLITE_API const char *sqlite3_uri_key(sqlite3_filename z, int N); /* ** CAPI3REF: Translate filenames ** ** These routines are available to [VFS|custom VFS implementations] for ** translating filenames between the main database file, the journal file, ** and the WAL file. ** ** If F is the name of an sqlite database file, journal file, or WAL file ** passed by the SQLite core into the VFS, then sqlite3_filename_database(F) ** returns the name of the corresponding database file. ** ** If F is the name of an sqlite database file, journal file, or WAL file ** passed by the SQLite core into the VFS, or if F is a database filename ** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F) ** returns the name of the corresponding rollback journal file. ** ** If F is the name of an sqlite database file, journal file, or WAL file ** that was passed by the SQLite core into the VFS, or if F is a database ** filename obtained from [sqlite3_db_filename()], then ** sqlite3_filename_wal(F) returns the name of the corresponding ** WAL file. ** ** In all of the above, if F is not the name of a database, journal or WAL ** filename passed into the VFS from the SQLite core and F is not the ** return value from [sqlite3_db_filename()], then the result is ** undefined and is likely a memory access violation. */ SQLITE_API const char *sqlite3_filename_database(sqlite3_filename); SQLITE_API const char *sqlite3_filename_journal(sqlite3_filename); SQLITE_API const char *sqlite3_filename_wal(sqlite3_filename); /* ** CAPI3REF: Database File Corresponding To A Journal ** ** ^If X is the name of a rollback or WAL-mode journal file that is ** passed into the xOpen method of [sqlite3_vfs], then ** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file] ** object that represents the main database file. ** ** This routine is intended for use in custom [VFS] implementations ** only. It is not a general-purpose interface. ** The argument sqlite3_file_object(X) must be a filename pointer that ** has been passed into [sqlite3_vfs].xOpen method where the ** flags parameter to xOpen contains one of the bits ** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use ** of this routine results in undefined and probably undesirable ** behavior. */ SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*); /* ** CAPI3REF: Create and Destroy VFS Filenames ** ** These interfaces are provided for use by [VFS shim] implementations and ** are not useful outside of that context. ** ** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of ** database filename D with corresponding journal file J and WAL file W and ** with N URI parameters key/values pairs in the array P. The result from ** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that ** is safe to pass to routines like: **
    **
  • [sqlite3_uri_parameter()], **
  • [sqlite3_uri_boolean()], **
  • [sqlite3_uri_int64()], **
  • [sqlite3_uri_key()], **
  • [sqlite3_filename_database()], **
  • [sqlite3_filename_journal()], or **
  • [sqlite3_filename_wal()]. **
** If a memory allocation error occurs, sqlite3_create_filename() might ** return a NULL pointer. The memory obtained from sqlite3_create_filename(X) ** must be released by a corresponding call to sqlite3_free_filename(Y). ** ** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array ** of 2*N pointers to strings. Each pair of pointers in this array corresponds ** to a key and value for a query parameter. The P parameter may be a NULL ** pointer if N is zero. None of the 2*N pointers in the P array may be ** NULL pointers and key pointers should not be empty strings. ** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may ** be NULL pointers, though they can be empty strings. ** ** The sqlite3_free_filename(Y) routine releases a memory allocation ** previously obtained from sqlite3_create_filename(). Invoking ** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op. ** ** If the Y parameter to sqlite3_free_filename(Y) is anything other ** than a NULL pointer or a pointer previously acquired from ** sqlite3_create_filename(), then bad things such as heap ** corruption or segfaults may occur. The value Y should not be ** used again after sqlite3_free_filename(Y) has been called. This means ** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y, ** then the corresponding [sqlite3_module.xClose() method should also be ** invoked prior to calling sqlite3_free_filename(Y). */ SQLITE_API sqlite3_filename sqlite3_create_filename( const char *zDatabase, const char *zJournal, const char *zWal, int nParam, const char **azParam ); SQLITE_API void sqlite3_free_filename(sqlite3_filename); /* ** CAPI3REF: Error Codes And Messages ** METHOD: sqlite3 ** ** ^If the most recent sqlite3_* API call associated with ** [database connection] D failed, then the sqlite3_errcode(D) interface ** returns the numeric [result code] or [extended result code] for that ** API call. ** ^The sqlite3_extended_errcode() ** interface is the same except that it always returns the ** [extended result code] even when extended result codes are ** disabled. ** ** The values returned by sqlite3_errcode() and/or ** sqlite3_extended_errcode() might change with each API call. ** Except, there are some interfaces that are guaranteed to never ** change the value of the error code. The error-code preserving ** interfaces include the following: ** **
    **
  • sqlite3_errcode() **
  • sqlite3_extended_errcode() **
  • sqlite3_errmsg() **
  • sqlite3_errmsg16() **
  • sqlite3_error_offset() **
** ** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language ** text that describes the error, as either UTF-8 or UTF-16 respectively, ** or NULL if no error message is available. ** (See how SQLite handles [invalid UTF] for exceptions to this rule.) ** ^(Memory to hold the error message string is managed internally. ** The application does not need to worry about freeing the result. ** However, the error string might be overwritten or deallocated by ** subsequent calls to other SQLite interface functions.)^ ** ** ^The sqlite3_errstr(E) interface returns the English-language text ** that describes the [result code] E, as UTF-8, or NULL if E is not an ** result code for which a text error message is available. ** ^(Memory to hold the error message string is managed internally ** and must not be freed by the application)^. ** ** ^If the most recent error references a specific token in the input ** SQL, the sqlite3_error_offset() interface returns the byte offset ** of the start of that token. ^The byte offset returned by ** sqlite3_error_offset() assumes that the input SQL is UTF8. ** ^If the most recent error does not reference a specific token in the input ** SQL, then the sqlite3_error_offset() function returns -1. ** ** When the serialized [threading mode] is in use, it might be the ** case that a second error occurs on a separate thread in between ** the time of the first error and the call to these interfaces. ** When that happens, the second error will be reported since these ** interfaces always report the most recent result. To avoid ** this, each thread can obtain exclusive use of the [database connection] D ** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning ** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after ** all calls to the interfaces listed here are completed. ** ** If an interface fails with SQLITE_MISUSE, that means the interface ** was invoked incorrectly by the application. In that case, the ** error code and message may or may not be set. */ SQLITE_API int sqlite3_errcode(sqlite3 *db); SQLITE_API int sqlite3_extended_errcode(sqlite3 *db); SQLITE_API const char *sqlite3_errmsg(sqlite3*); SQLITE_API const void *sqlite3_errmsg16(sqlite3*); SQLITE_API const char *sqlite3_errstr(int); SQLITE_API int sqlite3_error_offset(sqlite3 *db); /* ** CAPI3REF: Prepared Statement Object ** KEYWORDS: {prepared statement} {prepared statements} ** ** An instance of this object represents a single SQL statement that ** has been compiled into binary form and is ready to be evaluated. ** ** Think of each SQL statement as a separate computer program. The ** original SQL text is source code. A prepared statement object ** is the compiled object code. All SQL must be converted into a ** prepared statement before it can be run. ** ** The life-cycle of a prepared statement object usually goes like this: ** **
    **
  1. Create the prepared statement object using [sqlite3_prepare_v2()]. **
  2. Bind values to [parameters] using the sqlite3_bind_*() ** interfaces. **
  3. Run the SQL by calling [sqlite3_step()] one or more times. **
  4. Reset the prepared statement using [sqlite3_reset()] then go back ** to step 2. Do this zero or more times. **
  5. Destroy the object using [sqlite3_finalize()]. **
*/ typedef struct sqlite3_stmt sqlite3_stmt; /* ** CAPI3REF: Run-time Limits ** METHOD: sqlite3 ** ** ^(This interface allows the size of various constructs to be limited ** on a connection by connection basis. The first parameter is the ** [database connection] whose limit is to be set or queried. The ** second parameter is one of the [limit categories] that define a ** class of constructs to be size limited. The third parameter is the ** new limit for that construct.)^ ** ** ^If the new limit is a negative number, the limit is unchanged. ** ^(For each limit category SQLITE_LIMIT_NAME there is a ** [limits | hard upper bound] ** set at compile-time by a C preprocessor macro called ** [limits | SQLITE_MAX_NAME]. ** (The "_LIMIT_" in the name is changed to "_MAX_".))^ ** ^Attempts to increase a limit above its hard upper bound are ** silently truncated to the hard upper bound. ** ** ^Regardless of whether or not the limit was changed, the ** [sqlite3_limit()] interface returns the prior value of the limit. ** ^Hence, to find the current value of a limit without changing it, ** simply invoke this interface with the third parameter set to -1. ** ** Run-time limits are intended for use in applications that manage ** both their own internal database and also databases that are controlled ** by untrusted external sources. An example application might be a ** web browser that has its own databases for storing history and ** separate databases controlled by JavaScript applications downloaded ** off the Internet. The internal databases can be given the ** large, default limits. Databases managed by external sources can ** be given much smaller limits designed to prevent a denial of service ** attack. Developers might also want to use the [sqlite3_set_authorizer()] ** interface to further control untrusted SQL. The size of the database ** created by an untrusted script can be contained using the ** [max_page_count] [PRAGMA]. ** ** New run-time limit categories may be added in future releases. */ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); /* ** CAPI3REF: Run-Time Limit Categories ** KEYWORDS: {limit category} {*limit categories} ** ** These constants define various performance limits ** that can be lowered at run-time using [sqlite3_limit()]. ** The synopsis of the meanings of the various limits is shown below. ** Additional information is available at [limits | Limits in SQLite]. ** **
** [[SQLITE_LIMIT_LENGTH]] ^(
SQLITE_LIMIT_LENGTH
**
The maximum size of any string or BLOB or table row, in bytes.
)^ ** ** [[SQLITE_LIMIT_SQL_LENGTH]] ^(
SQLITE_LIMIT_SQL_LENGTH
**
The maximum length of an SQL statement, in bytes.
)^ ** ** [[SQLITE_LIMIT_COLUMN]] ^(
SQLITE_LIMIT_COLUMN
**
The maximum number of columns in a table definition or in the ** result set of a [SELECT] or the maximum number of columns in an index ** or in an ORDER BY or GROUP BY clause.
)^ ** ** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(
SQLITE_LIMIT_EXPR_DEPTH
**
The maximum depth of the parse tree on any expression.
)^ ** ** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(
SQLITE_LIMIT_COMPOUND_SELECT
**
The maximum number of terms in a compound SELECT statement.
)^ ** ** [[SQLITE_LIMIT_VDBE_OP]] ^(
SQLITE_LIMIT_VDBE_OP
**
The maximum number of instructions in a virtual machine program ** used to implement an SQL statement. If [sqlite3_prepare_v2()] or ** the equivalent tries to allocate space for more than this many opcodes ** in a single prepared statement, an SQLITE_NOMEM error is returned.
)^ ** ** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(
SQLITE_LIMIT_FUNCTION_ARG
**
The maximum number of arguments on a function.
)^ ** ** [[SQLITE_LIMIT_ATTACHED]] ^(
SQLITE_LIMIT_ATTACHED
**
The maximum number of [ATTACH | attached databases].)^
** ** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]] ** ^(
SQLITE_LIMIT_LIKE_PATTERN_LENGTH
**
The maximum length of the pattern argument to the [LIKE] or ** [GLOB] operators.
)^ ** ** [[SQLITE_LIMIT_VARIABLE_NUMBER]] ** ^(
SQLITE_LIMIT_VARIABLE_NUMBER
**
The maximum index number of any [parameter] in an SQL statement.)^ ** ** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(
SQLITE_LIMIT_TRIGGER_DEPTH
**
The maximum depth of recursion for triggers.
)^ ** ** [[SQLITE_LIMIT_WORKER_THREADS]] ^(
SQLITE_LIMIT_WORKER_THREADS
**
The maximum number of auxiliary worker threads that a single ** [prepared statement] may start.
)^ **
*/ #define SQLITE_LIMIT_LENGTH 0 #define SQLITE_LIMIT_SQL_LENGTH 1 #define SQLITE_LIMIT_COLUMN 2 #define SQLITE_LIMIT_EXPR_DEPTH 3 #define SQLITE_LIMIT_COMPOUND_SELECT 4 #define SQLITE_LIMIT_VDBE_OP 5 #define SQLITE_LIMIT_FUNCTION_ARG 6 #define SQLITE_LIMIT_ATTACHED 7 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 #define SQLITE_LIMIT_VARIABLE_NUMBER 9 #define SQLITE_LIMIT_TRIGGER_DEPTH 10 #define SQLITE_LIMIT_WORKER_THREADS 11 /* ** CAPI3REF: Prepare Flags ** ** These constants define various flags that can be passed into ** "prepFlags" parameter of the [sqlite3_prepare_v3()] and ** [sqlite3_prepare16_v3()] interfaces. ** ** New flags may be added in future releases of SQLite. ** **
** [[SQLITE_PREPARE_PERSISTENT]] ^(
SQLITE_PREPARE_PERSISTENT
**
The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner ** that the prepared statement will be retained for a long time and ** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()] ** and [sqlite3_prepare16_v3()] assume that the prepared statement will ** be used just once or at most a few times and then destroyed using ** [sqlite3_finalize()] relatively soon. The current implementation acts ** on this hint by avoiding the use of [lookaside memory] so as not to ** deplete the limited store of lookaside memory. Future versions of ** SQLite may act on this hint differently. ** ** [[SQLITE_PREPARE_NORMALIZE]]
SQLITE_PREPARE_NORMALIZE
**
The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used ** to be required for any prepared statement that wanted to use the ** [sqlite3_normalized_sql()] interface. However, the ** [sqlite3_normalized_sql()] interface is now available to all ** prepared statements, regardless of whether or not they use this ** flag. ** ** [[SQLITE_PREPARE_NO_VTAB]]
SQLITE_PREPARE_NO_VTAB
**
The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler ** to return an error (error code SQLITE_ERROR) if the statement uses ** any virtual tables. **
*/ #define SQLITE_PREPARE_PERSISTENT 0x01 #define SQLITE_PREPARE_NORMALIZE 0x02 #define SQLITE_PREPARE_NO_VTAB 0x04 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_stmt ** ** To execute an SQL statement, it must first be compiled into a byte-code ** program using one of these routines. Or, in other words, these routines ** are constructors for the [prepared statement] object. ** ** The preferred routine to use is [sqlite3_prepare_v2()]. The ** [sqlite3_prepare()] interface is legacy and should be avoided. ** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used ** for special purposes. ** ** The use of the UTF-8 interfaces is preferred, as SQLite currently ** does all parsing using UTF-8. The UTF-16 interfaces are provided ** as a convenience. The UTF-16 interfaces work by converting the ** input text into UTF-8, then invoking the corresponding UTF-8 interface. ** ** The first argument, "db", is a [database connection] obtained from a ** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or ** [sqlite3_open16()]. The database connection must not have been closed. ** ** The second argument, "zSql", is the statement to be compiled, encoded ** as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(), ** and sqlite3_prepare_v3() ** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(), ** and sqlite3_prepare16_v3() use UTF-16. ** ** ^If the nByte argument is negative, then zSql is read up to the ** first zero terminator. ^If nByte is positive, then it is the ** number of bytes read from zSql. ^If nByte is zero, then no prepared ** statement is generated. ** If the caller knows that the supplied string is nul-terminated, then ** there is a small performance advantage to passing an nByte parameter that ** is the number of bytes in the input string including ** the nul-terminator. ** ** ^If pzTail is not NULL then *pzTail is made to point to the first byte ** past the end of the first SQL statement in zSql. These routines only ** compile the first statement in zSql, so *pzTail is left pointing to ** what remains uncompiled. ** ** ^*ppStmt is left pointing to a compiled [prepared statement] that can be ** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set ** to NULL. ^If the input text contains no SQL (if the input is an empty ** string or a comment) then *ppStmt is set to NULL. ** The calling procedure is responsible for deleting the compiled ** SQL statement using [sqlite3_finalize()] after it has finished with it. ** ppStmt may not be NULL. ** ** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK]; ** otherwise an [error code] is returned. ** ** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(), ** and sqlite3_prepare16_v3() interfaces are recommended for all new programs. ** The older interfaces (sqlite3_prepare() and sqlite3_prepare16()) ** are retained for backwards compatibility, but their use is discouraged. ** ^In the "vX" interfaces, the prepared statement ** that is returned (the [sqlite3_stmt] object) contains a copy of the ** original SQL text. This causes the [sqlite3_step()] interface to ** behave differently in three ways: ** **
    **
  1. ** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it ** always used to do, [sqlite3_step()] will automatically recompile the SQL ** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY] ** retries will occur before sqlite3_step() gives up and returns an error. **
  2. ** **
  3. ** ^When an error occurs, [sqlite3_step()] will return one of the detailed ** [error codes] or [extended error codes]. ^The legacy behavior was that ** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code ** and the application would have to make a second call to [sqlite3_reset()] ** in order to find the underlying cause of the problem. With the "v2" prepare ** interfaces, the underlying reason for the error is returned immediately. **
  4. ** **
  5. ** ^If the specific value bound to a [parameter | host parameter] in the ** WHERE clause might influence the choice of query plan for a statement, ** then the statement will be automatically recompiled, as if there had been ** a schema change, on the first [sqlite3_step()] call following any change ** to the [sqlite3_bind_text | bindings] of that [parameter]. ** ^The specific value of a WHERE-clause [parameter] might influence the ** choice of query plan if the parameter is the left-hand side of a [LIKE] ** or [GLOB] operator or if the parameter is compared to an indexed column ** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled. **
  6. **
** **

^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having ** the extra prepFlags parameter, which is a bit array consisting of zero or ** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The ** sqlite3_prepare_v2() interface works exactly the same as ** sqlite3_prepare_v3() with a zero prepFlags parameter. */ SQLITE_API int sqlite3_prepare( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const char **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare_v2( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const char **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare_v3( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const char **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare16( sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare16_v2( sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); SQLITE_API int sqlite3_prepare16_v3( sqlite3 *db, /* Database handle */ const void *zSql, /* SQL statement, UTF-16 encoded */ int nByte, /* Maximum length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** CAPI3REF: Retrieving Statement SQL ** METHOD: sqlite3_stmt ** ** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8 ** SQL text used to create [prepared statement] P if P was ** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8 ** string containing the SQL text of prepared statement P with ** [bound parameters] expanded. ** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8 ** string containing the normalized SQL text of prepared statement P. The ** semantics used to normalize a SQL statement are unspecified and subject ** to change. At a minimum, literal values will be replaced with suitable ** placeholders. ** ** ^(For example, if a prepared statement is created using the SQL ** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345 ** and parameter :xyz is unbound, then sqlite3_sql() will return ** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql() ** will return "SELECT 2345,NULL".)^ ** ** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory ** is available to hold the result, or if the result would exceed the ** the maximum string length determined by the [SQLITE_LIMIT_LENGTH]. ** ** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of ** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time ** option causes sqlite3_expanded_sql() to always return NULL. ** ** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P) ** are managed by SQLite and are automatically freed when the prepared ** statement is finalized. ** ^The string returned by sqlite3_expanded_sql(P), on the other hand, ** is obtained from [sqlite3_malloc()] and must be freed by the application ** by passing it to [sqlite3_free()]. ** ** ^The sqlite3_normalized_sql() interface is only available if ** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt); #endif /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to ** the content of the database file. ** ** Note that [application-defined SQL functions] or ** [virtual tables] might change the database indirectly as a side effect. ** ^(For example, if an application defines a function "eval()" that ** calls [sqlite3_exec()], then the following SQL statement would ** change the database file through side-effects: ** **

**    SELECT eval('DELETE FROM t1') FROM t2;
** 
** ** But because the [SELECT] statement does not change the database file ** directly, sqlite3_stmt_readonly() would still return true.)^ ** ** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK], ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, ** since the statements themselves do not actually modify the database but ** rather they control the timing of when other statements modify the ** database. ^The [ATTACH] and [DETACH] statements also cause ** sqlite3_stmt_readonly() to return true since, while those statements ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. ** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since ** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and ** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so ** sqlite3_stmt_readonly() returns false for those commands. ** ** ^This routine returns false if there is any possibility that the ** statement might change the database file. ^A false return does ** not guarantee that the statement will change the database file. ** ^For example, an UPDATE statement might have a WHERE clause that ** makes it a no-op, but the sqlite3_stmt_readonly() result would still ** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a ** read-only no-op if the table already exists, but ** sqlite3_stmt_readonly() still returns false for such a statement. ** ** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN] ** statement, then sqlite3_stmt_readonly(X) returns the same value as ** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the ** prepared statement S is an EXPLAIN statement, or 2 if the ** statement S is an EXPLAIN QUERY PLAN. ** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is ** an ordinary statement or a NULL pointer. */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt); /* ** CAPI3REF: Change The EXPLAIN Setting For A Prepared Statement ** METHOD: sqlite3_stmt ** ** The sqlite3_stmt_explain(S,E) interface changes the EXPLAIN ** setting for [prepared statement] S. If E is zero, then S becomes ** a normal prepared statement. If E is 1, then S behaves as if ** its SQL text began with "[EXPLAIN]". If E is 2, then S behaves as if ** its SQL text began with "[EXPLAIN QUERY PLAN]". ** ** Calling sqlite3_stmt_explain(S,E) might cause S to be reprepared. ** SQLite tries to avoid a reprepare, but a reprepare might be necessary ** on the first transition into EXPLAIN or EXPLAIN QUERY PLAN mode. ** ** Because of the potential need to reprepare, a call to ** sqlite3_stmt_explain(S,E) will fail with SQLITE_ERROR if S cannot be ** reprepared because it was created using [sqlite3_prepare()] instead of ** the newer [sqlite3_prepare_v2()] or [sqlite3_prepare_v3()] interfaces and ** hence has no saved SQL text with which to reprepare. ** ** Changing the explain setting for a prepared statement does not change ** the original SQL text for the statement. Hence, if the SQL text originally ** began with EXPLAIN or EXPLAIN QUERY PLAN, but sqlite3_stmt_explain(S,0) ** is called to convert the statement into an ordinary statement, the EXPLAIN ** or EXPLAIN QUERY PLAN keywords will still appear in the sqlite3_sql(S) ** output, even though the statement now acts like a normal SQL statement. ** ** This routine returns SQLITE_OK if the explain mode is successfully ** changed, or an error code if the explain mode could not be changed. ** The explain mode cannot be changed while a statement is active. ** Hence, it is good practice to call [sqlite3_reset(S)] ** immediately prior to calling sqlite3_stmt_explain(S,E). */ SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using ** [sqlite3_step(S)] but has neither run to completion (returned ** [SQLITE_DONE] from [sqlite3_step(S)]) nor ** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) ** interface returns false if S is a NULL pointer. If S is not a ** NULL pointer and is not a pointer to a valid [prepared statement] ** object, then the behavior is undefined and probably undesirable. ** ** This interface can be used in combination [sqlite3_next_stmt()] ** to locate all prepared statements associated with a database ** connection that are in need of being reset. This can be used, ** for example, in diagnostic routines to search for prepared ** statements that are holding a transaction open. */ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*); /* ** CAPI3REF: Dynamically Typed Value Object ** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} ** ** SQLite uses the sqlite3_value object to represent all values ** that can be stored in a database table. SQLite uses dynamic typing ** for the values it stores. ^Values stored in sqlite3_value objects ** can be integers, floating point values, strings, BLOBs, or NULL. ** ** An sqlite3_value object may be either "protected" or "unprotected". ** Some interfaces require a protected sqlite3_value. Other interfaces ** will accept either a protected or an unprotected sqlite3_value. ** Every interface that accepts sqlite3_value arguments specifies ** whether or not it requires a protected sqlite3_value. The ** [sqlite3_value_dup()] interface can be used to construct a new ** protected sqlite3_value from an unprotected sqlite3_value. ** ** The terms "protected" and "unprotected" refer to whether or not ** a mutex is held. An internal mutex is held for a protected ** sqlite3_value object but no mutex is held for an unprotected ** sqlite3_value object. If SQLite is compiled to be single-threaded ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0) ** or if SQLite is run in one of reduced mutex modes ** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD] ** then there is no distinction between protected and unprotected ** sqlite3_value objects and they can be used interchangeably. However, ** for maximum code portability it is recommended that applications ** still make the distinction between protected and unprotected ** sqlite3_value objects even when not strictly required. ** ** ^The sqlite3_value objects that are passed as parameters into the ** implementation of [application-defined SQL functions] are protected. ** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()] ** are protected. ** ^The sqlite3_value object returned by ** [sqlite3_column_value()] is unprotected. ** Unprotected sqlite3_value objects may only be used as arguments ** to [sqlite3_result_value()], [sqlite3_bind_value()], and ** [sqlite3_value_dup()]. ** The [sqlite3_value_blob | sqlite3_value_type()] family of ** interfaces require protected sqlite3_value objects. */ typedef struct sqlite3_value sqlite3_value; /* ** CAPI3REF: SQL Function Context Object ** ** The context in which an SQL function executes is stored in an ** sqlite3_context object. ^A pointer to an sqlite3_context object ** is always first parameter to [application-defined SQL functions]. ** The application-defined SQL function implementation will pass this ** pointer through into calls to [sqlite3_result_int | sqlite3_result()], ** [sqlite3_aggregate_context()], [sqlite3_user_data()], ** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()], ** and/or [sqlite3_set_auxdata()]. */ typedef struct sqlite3_context sqlite3_context; /* ** CAPI3REF: Binding Values To Prepared Statements ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** METHOD: sqlite3_stmt ** ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, ** literals may be replaced by a [parameter] that matches one of following ** templates: ** **
    **
  • ? **
  • ?NNN **
  • :VVV **
  • @VVV **
  • $VVV **
** ** In the templates above, NNN represents an integer literal, ** and VVV represents an alphanumeric identifier.)^ ^The values of these ** parameters (also called "host parameter names" or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** ** ^The first argument to the sqlite3_bind_*() routines is always ** a pointer to the [sqlite3_stmt] object returned from ** [sqlite3_prepare_v2()] or its variants. ** ** ^The second argument is the index of the SQL parameter to be set. ** ^The leftmost SQL parameter has an index of 1. ^When the same named ** SQL parameter is used more than once, second and subsequent ** occurrences have the same index as the first occurrence. ** ^The index for named parameters can be looked up using the ** [sqlite3_bind_parameter_index()] API if desired. ^The index ** for "?NNN" parameters is the value of NNN. ** ^The NNN value must be between 1 and the [sqlite3_limit()] ** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766). ** ** ^The third argument is the value to bind to the parameter. ** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16() ** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter ** is ignored and the end result is the same as sqlite3_bind_null(). ** ^If the third parameter to sqlite3_bind_text() is not NULL, then ** it should be a pointer to well-formed UTF8 text. ** ^If the third parameter to sqlite3_bind_text16() is not NULL, then ** it should be a pointer to well-formed UTF16 text. ** ^If the third parameter to sqlite3_bind_text64() is not NULL, then ** it should be a pointer to a well-formed unicode string that is ** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16 ** otherwise. ** ** [[byte-order determination rules]] ^The byte-order of ** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF) ** found in first character, which is removed, or in the absence of a BOM ** the byte order is the native byte order of the host ** machine for sqlite3_bind_text16() or the byte order specified in ** the 6th parameter for sqlite3_bind_text64().)^ ** ^If UTF16 input text contains invalid unicode ** characters, then SQLite might change those invalid characters ** into the unicode replacement character: U+FFFD. ** ** ^(In those routines that have a fourth argument, its value is the ** number of bytes in the parameter. To be clear: the value is the ** number of bytes in the value, not the number of characters.)^ ** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16() ** is negative, then the length of the string is ** the number of bytes up to the first zero terminator. ** If the fourth parameter to sqlite3_bind_blob() is negative, then ** the behavior is undefined. ** If a non-negative fourth parameter is provided to sqlite3_bind_text() ** or sqlite3_bind_text16() or sqlite3_bind_text64() then ** that parameter must be the byte offset ** where the NUL terminator would occur assuming the string were NUL ** terminated. If any NUL characters occurs at byte offsets less than ** the value of the fourth parameter then the resulting string value will ** contain embedded NULs. The result of expressions involving strings ** with embedded NULs is undefined. ** ** ^The fifth argument to the BLOB and string binding interfaces controls ** or indicates the lifetime of the object referenced by the third parameter. ** These three options exist: ** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished ** with it may be passed. ^It is called to dispose of the BLOB or string even ** if the call to the bind API fails, except the destructor is not called if ** the third parameter is a NULL pointer or the fourth parameter is negative. ** ^ (2) The special constant, [SQLITE_STATIC], may be passed to indicate that ** the application remains responsible for disposing of the object. ^In this ** case, the object and the provided pointer to it must remain valid until ** either the prepared statement is finalized or the same SQL parameter is ** bound to something else, whichever occurs sooner. ** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the ** object is to be copied prior to the return from sqlite3_bind_*(). ^The ** object and pointer to it must remain valid until then. ^SQLite will then ** manage the lifetime of its private copy. ** ** ^The sixth argument to sqlite3_bind_text64() must be one of ** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE] ** to specify the encoding of the text in the third parameter. If ** the sixth argument to sqlite3_bind_text64() is not one of the ** allowed values shown above, or if the text encoding is different ** from the encoding specified by the sixth parameter, then the behavior ** is undefined. ** ** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that ** is filled with zeroes. ^A zeroblob uses a fixed amount of memory ** (just an integer to hold its size) while it is being processed. ** Zeroblobs are intended to serve as placeholders for BLOBs whose ** content is later written using ** [sqlite3_blob_open | incremental BLOB I/O] routines. ** ^A negative value for the zeroblob results in a zero-length BLOB. ** ** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in ** [prepared statement] S to have an SQL value of NULL, but to also be ** associated with the pointer P of type T. ^D is either a NULL pointer or ** a pointer to a destructor function for P. ^SQLite will invoke the ** destructor D with a single argument of P when it is finished using ** P. The T parameter should be a static string, preferably a string ** literal. The sqlite3_bind_pointer() routine is part of the ** [pointer passing interface] added for SQLite 3.20.0. ** ** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer ** for the [prepared statement] or with a prepared statement for which ** [sqlite3_step()] has been called more recently than [sqlite3_reset()], ** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_() ** routine is passed a [prepared statement] that has been finalized, the ** result is undefined and probably harmful. ** ** ^Bindings are not cleared by the [sqlite3_reset()] routine. ** ^Unbound parameters are interpreted as NULL. ** ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an ** [error code] if anything goes wrong. ** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB ** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or ** [SQLITE_MAX_LENGTH]. ** ^[SQLITE_RANGE] is returned if the parameter ** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. ** ** See also: [sqlite3_bind_parameter_count()], ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. */ SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64, void(*)(void*)); SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double); SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int); SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int); SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*)); SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64, void(*)(void*), unsigned char encoding); SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*)); SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64); /* ** CAPI3REF: Number Of SQL Parameters ** METHOD: sqlite3_stmt ** ** ^This routine can be used to find the number of [SQL parameters] ** in a [prepared statement]. SQL parameters are tokens of the ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as ** placeholders for values that are [sqlite3_bind_blob | bound] ** to the parameters at a later time. ** ** ^(This routine actually returns the index of the largest (rightmost) ** parameter. For all forms except ?NNN, this will correspond to the ** number of unique parameters. If parameters of the ?NNN form are used, ** there may be gaps in the list.)^ ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_name()], and ** [sqlite3_bind_parameter_index()]. */ SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*); /* ** CAPI3REF: Name Of A Host Parameter ** METHOD: sqlite3_stmt ** ** ^The sqlite3_bind_parameter_name(P,N) interface returns ** the name of the N-th [SQL parameter] in the [prepared statement] P. ** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" ** respectively. ** In other words, the initial ":" or "$" or "@" or "?" ** is included as part of the name.)^ ** ^Parameters of the form "?" without a following integer have no name ** and are referred to as "nameless" or "anonymous parameters". ** ** ^The first host parameter has an index of 1, not 0. ** ** ^If the value N is out of range or if the N-th parameter is ** nameless, then NULL is returned. ^The returned string is ** always in UTF-8 encoding even if the named parameter was ** originally specified as UTF-16 in [sqlite3_prepare16()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. */ SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); /* ** CAPI3REF: Index Of A Parameter With A Given Name ** METHOD: sqlite3_stmt ** ** ^Return the index of an SQL parameter given its name. ^The ** index value returned is suitable for use as the second ** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero ** is returned if no matching parameter is found. ^The parameter ** name must be given in UTF-8 even if the original statement ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or ** [sqlite3_prepare16_v3()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_name()]. */ SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* ** CAPI3REF: Reset All Bindings On A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset ** the [sqlite3_bind_blob | bindings] on a [prepared statement]. ** ^Use this routine to reset all host parameters to NULL. */ SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*); /* ** CAPI3REF: Number Of Columns In A Result Set ** METHOD: sqlite3_stmt ** ** ^Return the number of columns in the result set returned by the ** [prepared statement]. ^If this routine returns 0, that means the ** [prepared statement] returns no data (for example an [UPDATE]). ** ^However, just because this routine returns a positive number does not ** mean that one or more rows of data will be returned. ^A SELECT statement ** will always have a positive sqlite3_column_count() but depending on the ** WHERE clause constraints and the table content, it might return no rows. ** ** See also: [sqlite3_data_count()] */ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Column Names In A Result Set ** METHOD: sqlite3_stmt ** ** ^These routines return the name assigned to a particular column ** in the result set of a [SELECT] statement. ^The sqlite3_column_name() ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the ** column number. ^The leftmost column is number 0. ** ** ^The returned string pointer is valid until either the [prepared statement] ** is destroyed by [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the next call to ** sqlite3_column_name() or sqlite3_column_name16() on the same column. ** ** ^If sqlite3_malloc() fails during the processing of either routine ** (for example during a conversion from UTF-8 to UTF-16) then a ** NULL pointer is returned. ** ** ^The name of a result column is the value of the "AS" clause for ** that column, if there is an AS clause. If there is no AS clause ** then the name of the column is unspecified and may change from ** one release of SQLite to the next. */ SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N); SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N); /* ** CAPI3REF: Source Of Data In A Query Result ** METHOD: sqlite3_stmt ** ** ^These routines provide a means to determine the database, table, and ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. ** ^The returned string is valid until the [prepared statement] is destroyed ** using [sqlite3_finalize()] or until the statement is automatically ** reprepared by the first call to [sqlite3_step()] for a particular run ** or until the same information is requested ** again in a different encoding. ** ** ^The names returned are the original un-aliased names of the ** database, table, and column. ** ** ^The first argument to these interfaces is a [prepared statement]. ** ^These functions return information about the Nth result column returned by ** the statement, where N is the second function argument. ** ^The left-most column is column 0 for these routines. ** ** ^If the Nth column returned by the statement is an expression or ** subquery and is not a column value, then all of these functions return ** NULL. ^These routines might also return NULL if a memory allocation error ** occurs. ^Otherwise, they return the name of the attached database, table, ** or column that query result column was extracted from. ** ** ^As with all other SQLite APIs, those whose names end with "16" return ** UTF-16 encoded strings and the other functions return UTF-8. ** ** ^These APIs are only available if the library was compiled with the ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol. ** ** If two or more threads call one or more ** [sqlite3_column_database_name | column metadata interfaces] ** for the same [prepared statement] and result column ** at the same time then the results are undefined. */ SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int); SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int); SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); /* ** CAPI3REF: Declared Datatype Of A Query Result ** METHOD: sqlite3_stmt ** ** ^(The first parameter is a [prepared statement]. ** If this statement is a [SELECT] statement and the Nth column of the ** returned result set of that [SELECT] is a table column (not an ** expression or subquery) then the declared type of the table ** column is returned.)^ ^If the Nth column of the result set is an ** expression or subquery, then a NULL pointer is returned. ** ^The returned string is always UTF-8 encoded. ** ** ^(For example, given the database schema: ** ** CREATE TABLE t1(c1 VARIANT); ** ** and the following statement to be compiled: ** ** SELECT c1 + 1, c1 FROM t1; ** ** this routine would return the string "VARIANT" for the second result ** column (i==1), and a NULL pointer for the first result column (i==0).)^ ** ** ^SQLite uses dynamic run-time typing. ^So just because a column ** is declared to contain a particular type does not mean that the ** data stored in that column is of the declared type. SQLite is ** strongly typed, but the typing is dynamic not static. ^Type ** is associated with individual values, not with the containers ** used to hold those values. */ SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int); SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); /* ** CAPI3REF: Evaluate An SQL Statement ** METHOD: sqlite3_stmt ** ** After a [prepared statement] has been prepared using any of ** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()], ** or [sqlite3_prepare16_v3()] or one of the legacy ** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function ** must be called one or more times to evaluate the statement. ** ** The details of the behavior of the sqlite3_step() interface depend ** on whether the statement was prepared using the newer "vX" interfaces ** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()], ** [sqlite3_prepare16_v2()] or the older legacy ** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the ** new "vX" interface is recommended for new applications but the legacy ** interface will continue to be supported. ** ** ^In the legacy interface, the return value will be either [SQLITE_BUSY], ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. ** ^With the "v2" interface, any of the other [result codes] or ** [extended result codes] might be returned as well. ** ** ^[SQLITE_BUSY] means that the database engine was unable to acquire the ** database locks it needs to do its job. ^If the statement is a [COMMIT] ** or occurs outside of an explicit transaction, then you can retry the ** statement. If the statement is not a [COMMIT] and occurs within an ** explicit transaction then you should rollback the transaction before ** continuing. ** ** ^[SQLITE_DONE] means that the statement has finished executing ** successfully. sqlite3_step() should not be called again on this virtual ** machine without first calling [sqlite3_reset()] to reset the virtual ** machine back to its initial state. ** ** ^If the SQL statement being executed returns any data, then [SQLITE_ROW] ** is returned each time a new row of data is ready for processing by the ** caller. The values may be accessed using the [column access functions]. ** sqlite3_step() is called again to retrieve the next row of data. ** ** ^[SQLITE_ERROR] means that a run-time error (such as a constraint ** violation) has occurred. sqlite3_step() should not be called again on ** the VM. More information may be found by calling [sqlite3_errmsg()]. ** ^With the legacy interface, a more specific error code (for example, ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) ** can be obtained by calling [sqlite3_reset()] on the ** [prepared statement]. ^In the "v2" interface, ** the more specific error code is returned directly by sqlite3_step(). ** ** [SQLITE_MISUSE] means that the this routine was called inappropriately. ** Perhaps it was called on a [prepared statement] that has ** already been [sqlite3_finalize | finalized] or on one that had ** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could ** be the case that the same database connection is being used by two or ** more threads at the same moment in time. ** ** For all versions of SQLite up to and including 3.6.23.1, a call to ** [sqlite3_reset()] was required after sqlite3_step() returned anything ** other than [SQLITE_ROW] before any subsequent invocation of ** sqlite3_step(). Failure to reset the prepared statement using ** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from ** sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1], ** sqlite3_step() began ** calling [sqlite3_reset()] automatically in this circumstance rather ** than returning [SQLITE_MISUSE]. This is not considered a compatibility ** break because any application that ever receives an SQLITE_MISUSE error ** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option ** can be used to restore the legacy behavior. ** ** Goofy Interface Alert: In the legacy interface, the sqlite3_step() ** API always returns a generic error code, [SQLITE_ERROR], following any ** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call ** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the ** specific [error codes] that better describes the error. ** We admit that this is a goofy design. The problem has been fixed ** with the "v2" interface. If you prepare all of your SQL statements ** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()] ** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces, ** then the more specific [error codes] are returned directly ** by sqlite3_step(). The use of the "vX" interfaces is recommended. */ SQLITE_API int sqlite3_step(sqlite3_stmt*); /* ** CAPI3REF: Number of columns in a result set ** METHOD: sqlite3_stmt ** ** ^The sqlite3_data_count(P) interface returns the number of columns in the ** current row of the result set of [prepared statement] P. ** ^If prepared statement P does not have results ready to return ** (via calls to the [sqlite3_column_int | sqlite3_column()] family of ** interfaces) then sqlite3_data_count(P) returns 0. ** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer. ** ^The sqlite3_data_count(P) routine returns 0 if the previous call to ** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P) ** will return non-zero if previous call to [sqlite3_step](P) returned ** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum] ** where it always returns zero since each step of that multi-step ** pragma returns 0 columns of data. ** ** See also: [sqlite3_column_count()] */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Fundamental Datatypes ** KEYWORDS: SQLITE_TEXT ** ** ^(Every value in SQLite has one of five fundamental datatypes: ** **
    **
  • 64-bit signed integer **
  • 64-bit IEEE floating point number **
  • string **
  • BLOB **
  • NULL **
)^ ** ** These constants are codes for each of those types. ** ** Note that the SQLITE_TEXT constant was also used in SQLite version 2 ** for a completely different meaning. Software that links against both ** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not ** SQLITE_TEXT. */ #define SQLITE_INTEGER 1 #define SQLITE_FLOAT 2 #define SQLITE_BLOB 4 #define SQLITE_NULL 5 #ifdef SQLITE_TEXT # undef SQLITE_TEXT #else # define SQLITE_TEXT 3 #endif #define SQLITE3_TEXT 3 /* ** CAPI3REF: Result Values From A Query ** KEYWORDS: {column access functions} ** METHOD: sqlite3_stmt ** ** Summary: **
**
sqlite3_column_blobBLOB result **
sqlite3_column_doubleREAL result **
sqlite3_column_int32-bit INTEGER result **
sqlite3_column_int6464-bit INTEGER result **
sqlite3_column_textUTF-8 TEXT result **
sqlite3_column_text16UTF-16 TEXT result **
sqlite3_column_valueThe result as an ** [sqlite3_value|unprotected sqlite3_value] object. **
    **
sqlite3_column_bytesSize of a BLOB ** or a UTF-8 TEXT result in bytes **
sqlite3_column_bytes16   ** →  Size of UTF-16 ** TEXT in bytes **
sqlite3_column_typeDefault ** datatype of the result **
** ** Details: ** ** ^These routines return information about a single column of the current ** result row of a query. ^In every case the first argument is a pointer ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] ** that was returned from [sqlite3_prepare_v2()] or one of its variants) ** and the second argument is the index of the column for which information ** should be returned. ^The leftmost column of the result set has the index 0. ** ^The number of columns in the result can be determined using ** [sqlite3_column_count()]. ** ** If the SQL statement does not currently point to a valid row, or if the ** column index is out of range, the result is undefined. ** These routines may only be called when the most recent call to ** [sqlite3_step()] has returned [SQLITE_ROW] and neither ** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently. ** If any of these routines are called after [sqlite3_reset()] or ** [sqlite3_finalize()] or after [sqlite3_step()] has returned ** something other than [SQLITE_ROW], the results are undefined. ** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] ** are called from a different thread while any of these routines ** are pending, then the results are undefined. ** ** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16) ** each return the value of a result column in a specific data format. If ** the result column is not initially in the requested format (for example, ** if the query returns an integer but the sqlite3_column_text() interface ** is used to extract the value) then an automatic type conversion is performed. ** ** ^The sqlite3_column_type() routine returns the ** [SQLITE_INTEGER | datatype code] for the initial data type ** of the result column. ^The returned value is one of [SQLITE_INTEGER], ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. ** The return value of sqlite3_column_type() can be used to decide which ** of the first six interface should be used to extract the column value. ** The value returned by sqlite3_column_type() is only meaningful if no ** automatic type conversions have occurred for the value in question. ** After a type conversion, the result of calling sqlite3_column_type() ** is undefined, though harmless. Future ** versions of SQLite may change the behavior of sqlite3_column_type() ** following a type conversion. ** ** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes() ** or sqlite3_column_bytes16() interfaces can be used to determine the size ** of that BLOB or string. ** ** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() ** routine returns the number of bytes in that BLOB or string. ** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts ** the string to UTF-8 and then returns the number of bytes. ** ^If the result is a numeric value then sqlite3_column_bytes() uses ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns ** the number of bytes in that string. ** ^If the result is NULL, then sqlite3_column_bytes() returns zero. ** ** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16() ** routine returns the number of bytes in that BLOB or string. ** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts ** the string to UTF-16 and then returns the number of bytes. ** ^If the result is a numeric value then sqlite3_column_bytes16() uses ** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns ** the number of bytes in that string. ** ^If the result is NULL, then sqlite3_column_bytes16() returns zero. ** ** ^The values returned by [sqlite3_column_bytes()] and ** [sqlite3_column_bytes16()] do not include the zero terminators at the end ** of the string. ^For clarity: the values returned by ** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of ** bytes in the string, not the number of characters. ** ** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(), ** even empty strings, are always zero-terminated. ^The return ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer. ** ** ^Strings returned by sqlite3_column_text16() always have the endianness ** which is native to the platform, regardless of the text encoding set ** for the database. ** ** Warning: ^The object returned by [sqlite3_column_value()] is an ** [unprotected sqlite3_value] object. In a multithreaded environment, ** an unprotected sqlite3_value object may only be used safely with ** [sqlite3_bind_value()] and [sqlite3_result_value()]. ** If the [unprotected sqlite3_value] object returned by ** [sqlite3_column_value()] is used in any other way, including calls ** to routines like [sqlite3_value_int()], [sqlite3_value_text()], ** or [sqlite3_value_bytes()], the behavior is not threadsafe. ** Hence, the sqlite3_column_value() interface ** is normally only useful within the implementation of ** [application-defined SQL functions] or [virtual tables], not within ** top-level application code. ** ** These routines may attempt to convert the datatype of the result. ** ^For example, if the internal representation is FLOAT and a text result ** is requested, [sqlite3_snprintf()] is used internally to perform the ** conversion automatically. ^(The following table details the conversions ** that are applied: ** **
** **
Internal
Type
Requested
Type
Conversion ** **
NULL INTEGER Result is 0 **
NULL FLOAT Result is 0.0 **
NULL TEXT Result is a NULL pointer **
NULL BLOB Result is a NULL pointer **
INTEGER FLOAT Convert from integer to float **
INTEGER TEXT ASCII rendering of the integer **
INTEGER BLOB Same as INTEGER->TEXT **
FLOAT INTEGER [CAST] to INTEGER **
FLOAT TEXT ASCII rendering of the float **
FLOAT BLOB [CAST] to BLOB **
TEXT INTEGER [CAST] to INTEGER **
TEXT FLOAT [CAST] to REAL **
TEXT BLOB No change **
BLOB INTEGER [CAST] to INTEGER **
BLOB FLOAT [CAST] to REAL **
BLOB TEXT [CAST] to TEXT, ensure zero terminator **
**
)^ ** ** Note that when type conversions occur, pointers returned by prior ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or ** sqlite3_column_text16() may be invalidated. ** Type conversions and pointer invalidations might occur ** in the following cases: ** **
    **
  • The initial content is a BLOB and sqlite3_column_text() or ** sqlite3_column_text16() is called. A zero-terminator might ** need to be added to the string.
  • **
  • The initial content is UTF-8 text and sqlite3_column_bytes16() or ** sqlite3_column_text16() is called. The content must be converted ** to UTF-16.
  • **
  • The initial content is UTF-16 text and sqlite3_column_bytes() or ** sqlite3_column_text() is called. The content must be converted ** to UTF-8.
  • **
** ** ^Conversions between UTF-16be and UTF-16le are always done in place and do ** not invalidate a prior pointer, though of course the content of the buffer ** that the prior pointer references will have been modified. Other kinds ** of conversion are done in place when it is possible, but sometimes they ** are not possible and in those cases prior pointers are invalidated. ** ** The safest policy is to invoke these routines ** in one of the following ways: ** **
    **
  • sqlite3_column_text() followed by sqlite3_column_bytes()
  • **
  • sqlite3_column_blob() followed by sqlite3_column_bytes()
  • **
  • sqlite3_column_text16() followed by sqlite3_column_bytes16()
  • **
** ** In other words, you should call sqlite3_column_text(), ** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result ** into the desired format, then invoke sqlite3_column_bytes() or ** sqlite3_column_bytes16() to find the size of the result. Do not mix calls ** to sqlite3_column_text() or sqlite3_column_blob() with calls to ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16() ** with calls to sqlite3_column_bytes(). ** ** ^The pointers returned are valid until a type conversion occurs as ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or ** [sqlite3_finalize()] is called. ^The memory space used to hold strings ** and BLOBs is freed automatically. Do not pass the pointers returned ** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into ** [sqlite3_free()]. ** ** As long as the input parameters are correct, these routines will only ** fail if an out-of-memory error occurs during a format conversion. ** Only the following subset of interfaces are subject to out-of-memory ** errors: ** **
    **
  • sqlite3_column_blob() **
  • sqlite3_column_text() **
  • sqlite3_column_text16() **
  • sqlite3_column_bytes() **
  • sqlite3_column_bytes16() **
** ** If an out-of-memory error occurs, then the return value from these ** routines is the same as if the column had contained an SQL NULL value. ** Valid SQL NULL returns can be distinguished from out-of-memory errors ** by invoking the [sqlite3_errcode()] immediately after the suspect ** return value is obtained and before any ** other SQLite interface is called on the same [database connection]. */ SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol); SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol); /* ** CAPI3REF: Destroy A Prepared Statement Object ** DESTRUCTOR: sqlite3_stmt ** ** ^The sqlite3_finalize() function is called to delete a [prepared statement]. ** ^If the most recent evaluation of the statement encountered no errors ** or if the statement is never been evaluated, then sqlite3_finalize() returns ** SQLITE_OK. ^If the most recent evaluation of statement S failed, then ** sqlite3_finalize(S) returns the appropriate [error code] or ** [extended error code]. ** ** ^The sqlite3_finalize(S) routine can be called at any point during ** the life cycle of [prepared statement] S: ** before statement S is ever evaluated, after ** one or more calls to [sqlite3_reset()], or after any call ** to [sqlite3_step()] regardless of whether or not the statement has ** completed execution. ** ** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op. ** ** The application must finalize every [prepared statement] in order to avoid ** resource leaks. It is a grievous error for the application to try to use ** a prepared statement after it has been finalized. Any use of a prepared ** statement after it has been finalized can result in undefined and ** undesirable behavior such as segfaults and heap corruption. */ SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt); /* ** CAPI3REF: Reset A Prepared Statement Object ** METHOD: sqlite3_stmt ** ** The sqlite3_reset() function is called to reset a [prepared statement] ** object back to its initial state, ready to be re-executed. ** ^Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** ** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S ** back to the beginning of its program. ** ** ^The return code from [sqlite3_reset(S)] indicates whether or not ** the previous evaluation of prepared statement S completed successfully. ** ^If [sqlite3_step(S)] has never before been called on S or if ** [sqlite3_step(S)] has not been called since the previous call ** to [sqlite3_reset(S)], then [sqlite3_reset(S)] will return ** [SQLITE_OK]. ** ** ^If the most recent call to [sqlite3_step(S)] for the ** [prepared statement] S indicated an error, then ** [sqlite3_reset(S)] returns an appropriate [error code]. ** ^The [sqlite3_reset(S)] interface might also return an [error code] ** if there were no prior errors but the process of resetting ** the prepared statement caused a new error. ^For example, if an ** [INSERT] statement with a [RETURNING] clause is only stepped one time, ** that one call to [sqlite3_step(S)] might return SQLITE_ROW but ** the overall statement might still fail and the [sqlite3_reset(S)] call ** might return SQLITE_BUSY if locking constraints prevent the ** database change from committing. Therefore, it is important that ** applications check the return code from [sqlite3_reset(S)] even if ** no prior call to [sqlite3_step(S)] indicated a problem. ** ** ^The [sqlite3_reset(S)] interface does not change the values ** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. */ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt); /* ** CAPI3REF: Create Or Redefine SQL Functions ** KEYWORDS: {function creation routines} ** METHOD: sqlite3 ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** the three "sqlite3_create_function*" routines are the text encoding ** expected for the second parameter (the name of the function being ** created) and the presence or absence of a destructor callback for ** the application data pointer. Function sqlite3_create_window_function() ** is similar, but allows the user to supply the extra callback functions ** needed by [aggregate window functions]. ** ** ^The first parameter is the [database connection] to which the SQL ** function is to be added. ^If an application uses more than one database ** connection then application-defined SQL functions must be added ** to each database connection separately. ** ** ^The second parameter is the name of the SQL function to be created or ** redefined. ^The length of the name is limited to 255 bytes in a UTF-8 ** representation, exclusive of the zero-terminator. ^Note that the name ** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes. ** ^Any attempt to create a function with a longer name ** will result in [SQLITE_MISUSE] being returned. ** ** ^The third parameter (nArg) ** is the number of arguments that the SQL function or ** aggregate takes. ^If this parameter is -1, then the SQL function or ** aggregate may take any number of arguments between 0 and the limit ** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third ** parameter is less than -1 or greater than 127 then the behavior is ** undefined. ** ** ^The fourth parameter, eTextRep, specifies what ** [SQLITE_UTF8 | text encoding] this SQL function prefers for ** its parameters. The application should set this parameter to ** [SQLITE_UTF16LE] if the function implementation invokes ** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the ** implementation invokes [sqlite3_value_text16be()] on an input, or ** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8] ** otherwise. ^The same SQL function may be registered multiple times using ** different preferred text encodings, with different implementations for ** each encoding. ** ^When multiple implementations of the same function are available, SQLite ** will pick the one that involves the least amount of data conversion. ** ** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC] ** to signal that the function will always return the same result given ** the same inputs within a single SQL statement. Most SQL functions are ** deterministic. The built-in [random()] SQL function is an example of a ** function that is not deterministic. The SQLite query planner is able to ** perform additional optimizations on deterministic functions, so use ** of the [SQLITE_DETERMINISTIC] flag is recommended where possible. ** ** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY] ** flag, which if present prevents the function from being invoked from ** within VIEWs, TRIGGERs, CHECK constraints, generated column expressions, ** index expressions, or the WHERE clause of partial indexes. ** ** For best security, the [SQLITE_DIRECTONLY] flag is recommended for ** all application-defined SQL functions that do not need to be ** used inside of triggers, view, CHECK constraints, or other elements of ** the database schema. This flags is especially recommended for SQL ** functions that have side effects or reveal internal application state. ** Without this flag, an attacker might be able to modify the schema of ** a database file to include invocations of the function with parameters ** chosen by the attacker, which the application will then execute when ** the database file is opened and read. ** ** ^(The fifth parameter is an arbitrary pointer. The implementation of the ** function can gain access to this pointer using [sqlite3_user_data()].)^ ** ** ^The sixth, seventh and eighth parameters passed to the three ** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are ** pointers to C-language functions that implement the SQL function or ** aggregate. ^A scalar SQL function requires an implementation of the xFunc ** callback only; NULL pointers must be passed as the xStep and xFinal ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue ** and xInverse) passed to sqlite3_create_window_function are pointers to ** C-language callbacks that implement the new function. xStep and xFinal ** must both be non-NULL. xValue and xInverse may either both be NULL, in ** which case a regular aggregate function is created, or must both be ** non-NULL, in which case the new function may be used as either an aggregate ** or aggregate window function. More details regarding the implementation ** of aggregate window functions are ** [user-defined window functions|available here]. ** ** ^(If the final parameter to sqlite3_create_function_v2() or ** sqlite3_create_window_function() is not NULL, then it is destructor for ** the application data pointer. The destructor is invoked when the function ** is deleted, either by being overloaded or when the database connection ** closes.)^ ^The destructor is also invoked if the call to ** sqlite3_create_function_v2() fails. ^When the destructor callback is ** invoked, it is passed a single argument which is a copy of the application ** data pointer which was the fifth parameter to sqlite3_create_function_v2(). ** ** ^It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing preferred text encodings. ^SQLite will use ** the implementation that most closely matches the way in which the ** SQL function is used. ^A function implementation with a non-negative ** nArg parameter is a better match than a function implementation with ** a negative nArg. ^A function where the preferred text encoding ** matches the database encoding is a better ** match than a function where the encoding is different. ** ^A function where the encoding difference is between UTF16le and UTF16be ** is a closer match than a function where the encoding difference is ** between UTF8 and UTF16. ** ** ^Built-in functions may be overloaded by new application-defined functions. ** ** ^An application-defined function is permitted to call other ** SQLite interfaces. However, such calls must not ** close the database connection nor finalize or reset the prepared ** statement in which the function is running. */ SQLITE_API int sqlite3_create_function( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); SQLITE_API int sqlite3_create_function16( sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); SQLITE_API int sqlite3_create_function_v2( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void(*xDestroy)(void*) ); SQLITE_API int sqlite3_create_window_function( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*) ); /* ** CAPI3REF: Text Encodings ** ** These constant define integer codes that represent the various ** text encodings supported by SQLite. */ #define SQLITE_UTF8 1 /* IMP: R-37514-35566 */ #define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */ #define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */ #define SQLITE_UTF16 4 /* Use native byte order */ #define SQLITE_ANY 5 /* Deprecated */ #define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ /* ** CAPI3REF: Function Flags ** ** These constants may be ORed together with the ** [SQLITE_UTF8 | preferred text encoding] as the fourth argument ** to [sqlite3_create_function()], [sqlite3_create_function16()], or ** [sqlite3_create_function_v2()]. ** **
** [[SQLITE_DETERMINISTIC]]
SQLITE_DETERMINISTIC
** The SQLITE_DETERMINISTIC flag means that the new function always gives ** the same output when the input parameters are the same. ** The [abs|abs() function] is deterministic, for example, but ** [randomblob|randomblob()] is not. Functions must ** be deterministic in order to be used in certain contexts such as ** with the WHERE clause of [partial indexes] or in [generated columns]. ** SQLite might also optimize deterministic functions by factoring them ** out of inner loops. **
** ** [[SQLITE_DIRECTONLY]]
SQLITE_DIRECTONLY
** The SQLITE_DIRECTONLY flag means that the function may only be invoked ** from top-level SQL, and cannot be used in VIEWs or TRIGGERs nor in ** schema structures such as [CHECK constraints], [DEFAULT clauses], ** [expression indexes], [partial indexes], or [generated columns]. **

** The SQLITE_DIRECTONLY flag is recommended for any ** [application-defined SQL function] ** that has side-effects or that could potentially leak sensitive information. ** This will prevent attacks in which an application is tricked ** into using a database file that has had its schema surreptitiously ** modified to invoke the application-defined function in ways that are ** harmful. **

** Some people say it is good practice to set SQLITE_DIRECTONLY on all ** [application-defined SQL functions], regardless of whether or not they ** are security sensitive, as doing so prevents those functions from being used ** inside of the database schema, and thus ensures that the database ** can be inspected and modified using generic tools (such as the [CLI]) ** that do not have access to the application-defined functions. **

** ** [[SQLITE_INNOCUOUS]]
SQLITE_INNOCUOUS
** The SQLITE_INNOCUOUS flag means that the function is unlikely ** to cause problems even if misused. An innocuous function should have ** no side effects and should not depend on any values other than its ** input parameters. The [abs|abs() function] is an example of an ** innocuous function. ** The [load_extension() SQL function] is not innocuous because of its ** side effects. **

SQLITE_INNOCUOUS is similar to SQLITE_DETERMINISTIC, but is not ** exactly the same. The [random|random() function] is an example of a ** function that is innocuous but not deterministic. **

Some heightened security settings ** ([SQLITE_DBCONFIG_TRUSTED_SCHEMA] and [PRAGMA trusted_schema=OFF]) ** disable the use of SQL functions inside views and triggers and in ** schema structures such as [CHECK constraints], [DEFAULT clauses], ** [expression indexes], [partial indexes], and [generated columns] unless ** the function is tagged with SQLITE_INNOCUOUS. Most built-in functions ** are innocuous. Developers are advised to avoid using the ** SQLITE_INNOCUOUS flag for application-defined functions unless the ** function has been carefully audited and found to be free of potentially ** security-adverse side-effects and information-leaks. **

** ** [[SQLITE_SUBTYPE]]
SQLITE_SUBTYPE
** The SQLITE_SUBTYPE flag indicates to SQLite that a function might call ** [sqlite3_value_subtype()] to inspect the sub-types of its arguments. ** This flag instructs SQLite to omit some corner-case optimizations that ** might disrupt the operation of the [sqlite3_value_subtype()] function, ** causing it to return zero rather than the correct subtype(). ** SQL functions that invokes [sqlite3_value_subtype()] should have this ** property. If the SQLITE_SUBTYPE property is omitted, then the return ** value from [sqlite3_value_subtype()] might sometimes be zero even though ** a non-zero subtype was specified by the function argument expression. ** ** [[SQLITE_RESULT_SUBTYPE]]
SQLITE_RESULT_SUBTYPE
** The SQLITE_RESULT_SUBTYPE flag indicates to SQLite that a function might call ** [sqlite3_result_subtype()] to cause a sub-type to be associated with its ** result. ** Every function that invokes [sqlite3_result_subtype()] should have this ** property. If it does not, then the call to [sqlite3_result_subtype()] ** might become a no-op if the function is used as term in an ** [expression index]. On the other hand, SQL functions that never invoke ** [sqlite3_result_subtype()] should avoid setting this property, as the ** purpose of this property is to disable certain optimizations that are ** incompatible with subtypes. **
**
*/ #define SQLITE_DETERMINISTIC 0x000000800 #define SQLITE_DIRECTONLY 0x000080000 #define SQLITE_SUBTYPE 0x000100000 #define SQLITE_INNOCUOUS 0x000200000 #define SQLITE_RESULT_SUBTYPE 0x001000000 /* ** CAPI3REF: Deprecated Functions ** DEPRECATED ** ** These functions are [deprecated]. In order to maintain ** backwards compatibility with older code, these functions continue ** to be supported. However, new applications should avoid ** the use of these functions. To encourage programmers to avoid ** these functions, we will not explain what they do. */ #ifndef SQLITE_OMIT_DEPRECATED SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*); SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*); SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void); SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int), void*,sqlite3_int64); #endif /* ** CAPI3REF: Obtaining SQL Values ** METHOD: sqlite3_value ** ** Summary: **
**
sqlite3_value_blobBLOB value **
sqlite3_value_doubleREAL value **
sqlite3_value_int32-bit INTEGER value **
sqlite3_value_int6464-bit INTEGER value **
sqlite3_value_pointerPointer value **
sqlite3_value_textUTF-8 TEXT value **
sqlite3_value_text16UTF-16 TEXT value in ** the native byteorder **
sqlite3_value_text16beUTF-16be TEXT value **
sqlite3_value_text16leUTF-16le TEXT value **
    **
sqlite3_value_bytesSize of a BLOB ** or a UTF-8 TEXT in bytes **
sqlite3_value_bytes16   ** →  Size of UTF-16 ** TEXT in bytes **
sqlite3_value_typeDefault ** datatype of the value **
sqlite3_value_numeric_type   ** →  Best numeric datatype of the value **
sqlite3_value_nochange   ** →  True if the column is unchanged in an UPDATE ** against a virtual table. **
sqlite3_value_frombind   ** →  True if value originated from a [bound parameter] **
** ** Details: ** ** These routines extract type, size, and content information from ** [protected sqlite3_value] objects. Protected sqlite3_value objects ** are used to pass parameter information into the functions that ** implement [application-defined SQL functions] and [virtual tables]. ** ** These routines work only with [protected sqlite3_value] objects. ** Any attempt to use these routines on an [unprotected sqlite3_value] ** is not threadsafe. ** ** ^These routines work just like the corresponding [column access functions] ** except that these routines take a single [protected sqlite3_value] object ** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. ** ** ^The sqlite3_value_text16() interface extracts a UTF-16 string ** in the native byte-order of the host machine. ^The ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces ** extract UTF-16 strings as big-endian and little-endian respectively. ** ** ^If [sqlite3_value] object V was initialized ** using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)] ** and if X and Y are strings that compare equal according to strcmp(X,Y), ** then sqlite3_value_pointer(V,Y) will return the pointer P. ^Otherwise, ** sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer() ** routine is part of the [pointer passing interface] added for SQLite 3.20.0. ** ** ^(The sqlite3_value_type(V) interface returns the ** [SQLITE_INTEGER | datatype code] for the initial datatype of the ** [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER], ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^ ** Other interfaces might change the datatype for an sqlite3_value object. ** For example, if the datatype is initially SQLITE_INTEGER and ** sqlite3_value_text(V) is called to extract a text value for that ** integer, then subsequent calls to sqlite3_value_type(V) might return ** SQLITE_TEXT. Whether or not a persistent internal datatype conversion ** occurs is undefined and may change from one release of SQLite to the next. ** ** ^(The sqlite3_value_numeric_type() interface attempts to apply ** numeric affinity to the value. This means that an attempt is ** made to convert the value to an integer or floating point. If ** such a conversion is possible without loss of information (in other ** words, if the value is a string that looks like a number) ** then the conversion is performed. Otherwise no conversion occurs. ** The [SQLITE_INTEGER | datatype] after conversion is returned.)^ ** ** ^Within the [xUpdate] method of a [virtual table], the ** sqlite3_value_nochange(X) interface returns true if and only if ** the column corresponding to X is unchanged by the UPDATE operation ** that the xUpdate method call was invoked to implement and if ** and the prior [xColumn] method call that was invoked to extracted ** the value for that column returned without setting a result (probably ** because it queried [sqlite3_vtab_nochange()] and found that the column ** was unchanging). ^Within an [xUpdate] method, any value for which ** sqlite3_value_nochange(X) is true will in all other respects appear ** to be a NULL value. If sqlite3_value_nochange(X) is invoked anywhere other ** than within an [xUpdate] method call for an UPDATE statement, then ** the return value is arbitrary and meaningless. ** ** ^The sqlite3_value_frombind(X) interface returns non-zero if the ** value X originated from one of the [sqlite3_bind_int|sqlite3_bind()] ** interfaces. ^If X comes from an SQL literal value, or a table column, ** or an expression, then sqlite3_value_frombind(X) returns zero. ** ** Please pay particular attention to the fact that the pointer returned ** from [sqlite3_value_blob()], [sqlite3_value_text()], or ** [sqlite3_value_text16()] can be invalidated by a subsequent call to ** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], ** or [sqlite3_value_text16()]. ** ** These routines must be called from the same thread as ** the SQL function that supplied the [sqlite3_value*] parameters. ** ** As long as the input parameter is correct, these routines can only ** fail if an out-of-memory error occurs during a format conversion. ** Only the following subset of interfaces are subject to out-of-memory ** errors: ** **
    **
  • sqlite3_value_blob() **
  • sqlite3_value_text() **
  • sqlite3_value_text16() **
  • sqlite3_value_text16le() **
  • sqlite3_value_text16be() **
  • sqlite3_value_bytes() **
  • sqlite3_value_bytes16() **
** ** If an out-of-memory error occurs, then the return value from these ** routines is the same as if the column had contained an SQL NULL value. ** Valid SQL NULL returns can be distinguished from out-of-memory errors ** by invoking the [sqlite3_errcode()] immediately after the suspect ** return value is obtained and before any ** other SQLite interface is called on the same [database connection]. */ SQLITE_API const void *sqlite3_value_blob(sqlite3_value*); SQLITE_API double sqlite3_value_double(sqlite3_value*); SQLITE_API int sqlite3_value_int(sqlite3_value*); SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*); SQLITE_API void *sqlite3_value_pointer(sqlite3_value*, const char*); SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*); SQLITE_API const void *sqlite3_value_text16(sqlite3_value*); SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*); SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*); SQLITE_API int sqlite3_value_bytes(sqlite3_value*); SQLITE_API int sqlite3_value_bytes16(sqlite3_value*); SQLITE_API int sqlite3_value_type(sqlite3_value*); SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*); SQLITE_API int sqlite3_value_nochange(sqlite3_value*); SQLITE_API int sqlite3_value_frombind(sqlite3_value*); /* ** CAPI3REF: Report the internal text encoding state of an sqlite3_value object ** METHOD: sqlite3_value ** ** ^(The sqlite3_value_encoding(X) interface returns one of [SQLITE_UTF8], ** [SQLITE_UTF16BE], or [SQLITE_UTF16LE] according to the current text encoding ** of the value X, assuming that X has type TEXT.)^ If sqlite3_value_type(X) ** returns something other than SQLITE_TEXT, then the return value from ** sqlite3_value_encoding(X) is meaningless. ^Calls to ** [sqlite3_value_text(X)], [sqlite3_value_text16(X)], [sqlite3_value_text16be(X)], ** [sqlite3_value_text16le(X)], [sqlite3_value_bytes(X)], or ** [sqlite3_value_bytes16(X)] might change the encoding of the value X and ** thus change the return from subsequent calls to sqlite3_value_encoding(X). ** ** This routine is intended for used by applications that test and validate ** the SQLite implementation. This routine is inquiring about the opaque ** internal state of an [sqlite3_value] object. Ordinary applications should ** not need to know what the internal state of an sqlite3_value object is and ** hence should not need to use this interface. */ SQLITE_API int sqlite3_value_encoding(sqlite3_value*); /* ** CAPI3REF: Finding The Subtype Of SQL Values ** METHOD: sqlite3_value ** ** The sqlite3_value_subtype(V) function returns the subtype for ** an [application-defined SQL function] argument V. The subtype ** information can be used to pass a limited amount of context from ** one SQL function to another. Use the [sqlite3_result_subtype()] ** routine to set the subtype for the return value of an SQL function. ** ** Every [application-defined SQL function] that invoke this interface ** should include the [SQLITE_SUBTYPE] property in the text ** encoding argument when the function is [sqlite3_create_function|registered]. ** If the [SQLITE_SUBTYPE] property is omitted, then sqlite3_value_subtype() ** might return zero instead of the upstream subtype in some corner cases. */ SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value*); /* ** CAPI3REF: Copy And Free SQL Values ** METHOD: sqlite3_value ** ** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value] ** object D and returns a pointer to that copy. ^The [sqlite3_value] returned ** is a [protected sqlite3_value] object even if the input is not. ** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a ** memory allocation fails. ^If V is a [pointer value], then the result ** of sqlite3_value_dup(V) is a NULL value. ** ** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object ** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer ** then sqlite3_value_free(V) is a harmless no-op. */ SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value*); SQLITE_API void sqlite3_value_free(sqlite3_value*); /* ** CAPI3REF: Obtain Aggregate Function Context ** METHOD: sqlite3_context ** ** Implementations of aggregate SQL functions use this ** routine to allocate memory for storing their state. ** ** ^The first time the sqlite3_aggregate_context(C,N) routine is called ** for a particular aggregate function, SQLite allocates ** N bytes of memory, zeroes out that memory, and returns a pointer ** to the new memory. ^On second and subsequent calls to ** sqlite3_aggregate_context() for the same aggregate function instance, ** the same buffer is returned. Sqlite3_aggregate_context() is normally ** called once for each invocation of the xStep callback and then one ** last time when the xFinal callback is invoked. ^(When no rows match ** an aggregate query, the xStep() callback of the aggregate function ** implementation is never called and xFinal() is called exactly once. ** In those cases, sqlite3_aggregate_context() might be called for the ** first time from within xFinal().)^ ** ** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer ** when first called if N is less than or equal to zero or if a memory ** allocation error occurs. ** ** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is ** determined by the N parameter on first successful call. Changing the ** value of N in any subsequent call to sqlite3_aggregate_context() within ** the same aggregate function instance will not resize the memory ** allocation.)^ Within the xFinal callback, it is customary to set ** N=0 in calls to sqlite3_aggregate_context(C,N) so that no ** pointless memory allocations occur. ** ** ^SQLite automatically frees the memory allocated by ** sqlite3_aggregate_context() when the aggregate query concludes. ** ** The first parameter must be a copy of the ** [sqlite3_context | SQL function context] that is the first parameter ** to the xStep or xFinal callback routine that implements the aggregate ** function. ** ** This routine must be called from the same thread in which ** the aggregate SQL function is running. */ SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); /* ** CAPI3REF: User Data For Functions ** METHOD: sqlite3_context ** ** ^The sqlite3_user_data() interface returns a copy of ** the pointer that was the pUserData parameter (the 5th parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. ** ** This routine must be called from the same thread in which ** the application-defined function is running. */ SQLITE_API void *sqlite3_user_data(sqlite3_context*); /* ** CAPI3REF: Database Connection For Functions ** METHOD: sqlite3_context ** ** ^The sqlite3_context_db_handle() interface returns a copy of ** the pointer to the [database connection] (the 1st parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** METHOD: sqlite3_context ** ** These functions may be used by (non-aggregate) SQL functions to ** associate auxiliary data with argument values. If the same argument ** value is passed to multiple invocations of the same SQL function during ** query execution, under some circumstances the associated auxiliary data ** might be preserved. An example of where this might be useful is in a ** regular-expression matching function. The compiled version of the regular ** expression can be stored as auxiliary data associated with the pattern string. ** Then as long as the pattern string remains the same, ** the compiled regular expression can be reused on multiple ** invocations of the same function. ** ** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the auxiliary data ** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument ** value to the application-defined function. ^N is zero for the left-most ** function argument. ^If there is no auxiliary data ** associated with the function argument, the sqlite3_get_auxdata(C,N) interface ** returns a NULL pointer. ** ** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as auxiliary data for the ** N-th argument of the application-defined function. ^Subsequent ** calls to sqlite3_get_auxdata(C,N) return P from the most recent ** sqlite3_set_auxdata(C,N,P,X) call if the auxiliary data is still valid or ** NULL if the auxiliary data has been discarded. ** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL, ** SQLite will invoke the destructor function X with parameter P exactly ** once, when the auxiliary data is discarded. ** SQLite is free to discard the auxiliary data at any time, including:
    **
  • ^(when the corresponding function parameter changes)^, or **
  • ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the ** SQL statement)^, or **
  • ^(when sqlite3_set_auxdata() is invoked again on the same ** parameter)^, or **
  • ^(during the original sqlite3_set_auxdata() call when a memory ** allocation error occurs.)^ **
  • ^(during the original sqlite3_set_auxdata() call if the function ** is evaluated during query planning instead of during query execution, ** as sometimes happens with [SQLITE_ENABLE_STAT4].)^
** ** Note the last two bullets in particular. The destructor X in ** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the ** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata() ** should be called near the end of the function implementation and the ** function implementation should not make any use of P after ** sqlite3_set_auxdata() has been called. Furthermore, a call to ** sqlite3_get_auxdata() that occurs immediately after a corresponding call ** to sqlite3_set_auxdata() might still return NULL if an out-of-memory ** condition occurred during the sqlite3_set_auxdata() call or if the ** function is being evaluated during query planning rather than during ** query execution. ** ** ^(In practice, auxiliary data is preserved between function calls for ** function parameters that are compile-time constants, including literal ** values and [parameters] and expressions composed from the same.)^ ** ** The value of the N parameter to these interfaces should be non-negative. ** Future enhancements may make use of negative N values to define new ** kinds of function caching behavior. ** ** These routines must be called from the same thread in which ** the SQL function is running. ** ** See also: [sqlite3_get_clientdata()] and [sqlite3_set_clientdata()]. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); /* ** CAPI3REF: Database Connection Client Data ** METHOD: sqlite3 ** ** These functions are used to associate one or more named pointers ** with a [database connection]. ** A call to sqlite3_set_clientdata(D,N,P,X) causes the pointer P ** to be attached to [database connection] D using name N. Subsequent ** calls to sqlite3_get_clientdata(D,N) will return a copy of pointer P ** or a NULL pointer if there were no prior calls to ** sqlite3_set_clientdata() with the same values of D and N. ** Names are compared using strcmp() and are thus case sensitive. ** ** If P and X are both non-NULL, then the destructor X is invoked with ** argument P on the first of the following occurrences: **
    **
  • An out-of-memory error occurs during the call to ** sqlite3_set_clientdata() which attempts to register pointer P. **
  • A subsequent call to sqlite3_set_clientdata(D,N,P,X) is made ** with the same D and N parameters. **
  • The database connection closes. SQLite does not make any guarantees ** about the order in which destructors are called, only that all ** destructors will be called exactly once at some point during the ** database connection closing process. **
** ** SQLite does not do anything with client data other than invoke ** destructors on the client data at the appropriate time. The intended ** use for client data is to provide a mechanism for wrapper libraries ** to store additional information about an SQLite database connection. ** ** There is no limit (other than available memory) on the number of different ** client data pointers (with different names) that can be attached to a ** single database connection. However, the implementation is optimized ** for the case of having only one or two different client data names. ** Applications and wrapper libraries are discouraged from using more than ** one client data name each. ** ** There is no way to enumerate the client data pointers ** associated with a database connection. The N parameter can be thought ** of as a secret key such that only code that knows the secret key is able ** to access the associated data. ** ** Security Warning: These interfaces should not be exposed in scripting ** languages or in other circumstances where it might be possible for an ** an attacker to invoke them. Any agent that can invoke these interfaces ** can probably also take control of the process. ** ** Database connection client data is only available for SQLite ** version 3.44.0 ([dateof:3.44.0]) and later. ** ** See also: [sqlite3_set_auxdata()] and [sqlite3_get_auxdata()]. */ SQLITE_API void *sqlite3_get_clientdata(sqlite3*,const char*); SQLITE_API int sqlite3_set_clientdata(sqlite3*, const char*, void*, void(*)(void*)); /* ** CAPI3REF: Constants Defining Special Destructor Behavior ** ** These are special values for the destructor that is passed in as the ** final argument to routines like [sqlite3_result_blob()]. ^If the destructor ** argument is SQLITE_STATIC, it means that the content pointer is constant ** and will never change. It does not need to be destroyed. ^The ** SQLITE_TRANSIENT value means that the content will likely change in ** the near future and that SQLite should make its own private copy of ** the content before returning. ** ** The typedef is necessary to work around problems in certain ** C++ compilers. */ typedef void (*sqlite3_destructor_type)(void*); #define SQLITE_STATIC ((sqlite3_destructor_type)0) #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) /* ** CAPI3REF: Setting The Result Of An SQL Function ** METHOD: sqlite3_context ** ** These routines are used by the xFunc or xFinal callbacks that ** implement SQL functions and aggregates. See ** [sqlite3_create_function()] and [sqlite3_create_function16()] ** for additional information. ** ** These functions work very much like the [parameter binding] family of ** functions used to bind values to host parameters in prepared statements. ** Refer to the [SQL parameter] documentation for additional information. ** ** ^The sqlite3_result_blob() interface sets the result from ** an application-defined function to be the BLOB whose content is pointed ** to by the second parameter and which is N bytes long where N is the ** third parameter. ** ** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N) ** interfaces set the result of the application-defined function to be ** a BLOB containing all zero bytes and N bytes in size. ** ** ^The sqlite3_result_double() interface sets the result from ** an application-defined function to be a floating point value specified ** by its 2nd argument. ** ** ^The sqlite3_result_error() and sqlite3_result_error16() functions ** cause the implemented SQL function to throw an exception. ** ^SQLite uses the string pointed to by the ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() ** as the text of an error message. ^SQLite interprets the error ** message string from sqlite3_result_error() as UTF-8. ^SQLite ** interprets the string from sqlite3_result_error16() as UTF-16 using ** the same [byte-order determination rules] as [sqlite3_bind_text16()]. ** ^If the third parameter to sqlite3_result_error() ** or sqlite3_result_error16() is negative then SQLite takes as the error ** message all text up through the first zero character. ** ^If the third parameter to sqlite3_result_error() or ** sqlite3_result_error16() is non-negative then SQLite takes that many ** bytes (not characters) from the 2nd parameter as the error message. ** ^The sqlite3_result_error() and sqlite3_result_error16() ** routines make a private copy of the error message text before ** they return. Hence, the calling function can deallocate or ** modify the text after they return without harm. ** ^The sqlite3_result_error_code() function changes the error code ** returned by SQLite as a result of an error in a function. ^By default, ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error() ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. ** ** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an ** error indicating that a string or BLOB is too long to represent. ** ** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an ** error indicating that a memory allocation failed. ** ** ^The sqlite3_result_int() interface sets the return value ** of the application-defined function to be the 32-bit signed integer ** value given in the 2nd argument. ** ^The sqlite3_result_int64() interface sets the return value ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. ** ** ^The sqlite3_result_null() interface sets the return value ** of the application-defined function to be NULL. ** ** ^The sqlite3_result_text(), sqlite3_result_text16(), ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces ** set the return value of the application-defined function to be ** a text string which is represented as UTF-8, UTF-16 native byte order, ** UTF-16 little endian, or UTF-16 big endian, respectively. ** ^The sqlite3_result_text64() interface sets the return value of an ** application-defined function to be a text string in an encoding ** specified by the fifth (and last) parameter, which must be one ** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]. ** ^SQLite takes the text result from the application from ** the 2nd parameter of the sqlite3_result_text* interfaces. ** ^If the 3rd parameter to any of the sqlite3_result_text* interfaces ** other than sqlite3_result_text64() is negative, then SQLite computes ** the string length itself by searching the 2nd parameter for the first ** zero character. ** ^If the 3rd parameter to the sqlite3_result_text* interfaces ** is non-negative, then as many bytes (not characters) of the text ** pointed to by the 2nd parameter are taken as the application-defined ** function result. If the 3rd parameter is non-negative, then it ** must be the byte offset into the string where the NUL terminator would ** appear if the string where NUL terminated. If any NUL characters occur ** in the string at a byte offset that is less than the value of the 3rd ** parameter, then the resulting string will contain embedded NULs and the ** result of expressions operating on strings with embedded NULs is undefined. ** ^If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that ** function as the destructor on the text or BLOB result when it has ** finished using that result. ** ^If the 4th parameter to the sqlite3_result_text* interfaces or to ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite ** assumes that the text or BLOB result is in constant space and does not ** copy the content of the parameter nor call a destructor on the content ** when it has finished using that result. ** ^If the 4th parameter to the sqlite3_result_text* interfaces ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT ** then SQLite makes a copy of the result into space obtained ** from [sqlite3_malloc()] before it returns. ** ** ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and ** sqlite3_result_text16be() routines, and for sqlite3_result_text64() ** when the encoding is not UTF8, if the input UTF16 begins with a ** byte-order mark (BOM, U+FEFF) then the BOM is removed from the ** string and the rest of the string is interpreted according to the ** byte-order specified by the BOM. ^The byte-order specified by ** the BOM at the beginning of the text overrides the byte-order ** specified by the interface procedure. ^So, for example, if ** sqlite3_result_text16le() is invoked with text that begins ** with bytes 0xfe, 0xff (a big-endian byte-order mark) then the ** first two bytes of input are skipped and the remaining input ** is interpreted as UTF16BE text. ** ** ^For UTF16 input text to the sqlite3_result_text16(), ** sqlite3_result_text16be(), sqlite3_result_text16le(), and ** sqlite3_result_text64() routines, if the text contains invalid ** UTF16 characters, the invalid characters might be converted ** into the unicode replacement character, U+FFFD. ** ** ^The sqlite3_result_value() interface sets the result of ** the application-defined function to be a copy of the ** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The ** sqlite3_result_value() interface makes a copy of the [sqlite3_value] ** so that the [sqlite3_value] specified in the parameter may change or ** be deallocated after sqlite3_result_value() returns without harm. ** ^A [protected sqlite3_value] object may always be used where an ** [unprotected sqlite3_value] object is required, so either ** kind of [sqlite3_value] object can be used with this interface. ** ** ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an ** SQL NULL value, just like [sqlite3_result_null(C)], except that it ** also associates the host-language pointer P or type T with that ** NULL value such that the pointer can be retrieved within an ** [application-defined SQL function] using [sqlite3_value_pointer()]. ** ^If the D parameter is not NULL, then it is a pointer to a destructor ** for the P parameter. ^SQLite invokes D with P as its only argument ** when SQLite is finished with P. The T parameter should be a static ** string and preferably a string literal. The sqlite3_result_pointer() ** routine is part of the [pointer passing interface] added for SQLite 3.20.0. ** ** If these routines are called from within the different thread ** than the one containing the application-defined function that received ** the [sqlite3_context] pointer, the results are undefined. */ SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*, sqlite3_uint64,void(*)(void*)); SQLITE_API void sqlite3_result_double(sqlite3_context*, double); SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int); SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int); SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*); SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*); SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int); SQLITE_API void sqlite3_result_int(sqlite3_context*, int); SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); SQLITE_API void sqlite3_result_null(sqlite3_context*); SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64, void(*)(void*), unsigned char encoding); SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*); SQLITE_API void sqlite3_result_pointer(sqlite3_context*, void*,const char*,void(*)(void*)); SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n); SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n); /* ** CAPI3REF: Setting The Subtype Of An SQL Function ** METHOD: sqlite3_context ** ** The sqlite3_result_subtype(C,T) function causes the subtype of ** the result from the [application-defined SQL function] with ** [sqlite3_context] C to be the value T. Only the lower 8 bits ** of the subtype T are preserved in current versions of SQLite; ** higher order bits are discarded. ** The number of subtype bytes preserved by SQLite might increase ** in future releases of SQLite. ** ** Every [application-defined SQL function] that invokes this interface ** should include the [SQLITE_RESULT_SUBTYPE] property in its ** text encoding argument when the SQL function is ** [sqlite3_create_function|registered]. If the [SQLITE_RESULT_SUBTYPE] ** property is omitted from the function that invokes sqlite3_result_subtype(), ** then in some cases the sqlite3_result_subtype() might fail to set ** the result subtype. ** ** If SQLite is compiled with -DSQLITE_STRICT_SUBTYPE=1, then any ** SQL function that invokes the sqlite3_result_subtype() interface ** and that does not have the SQLITE_RESULT_SUBTYPE property will raise ** an error. Future versions of SQLite might enable -DSQLITE_STRICT_SUBTYPE=1 ** by default. */ SQLITE_API void sqlite3_result_subtype(sqlite3_context*,unsigned int); /* ** CAPI3REF: Define New Collating Sequences ** METHOD: sqlite3 ** ** ^These functions add, remove, or modify a [collation] associated ** with the [database connection] specified as the first argument. ** ** ^The name of the collation is a UTF-8 string ** for sqlite3_create_collation() and sqlite3_create_collation_v2() ** and a UTF-16 string in native byte order for sqlite3_create_collation16(). ** ^Collation names that compare equal according to [sqlite3_strnicmp()] are ** considered to be the same name. ** ** ^(The third argument (eTextRep) must be one of the constants: **
    **
  • [SQLITE_UTF8], **
  • [SQLITE_UTF16LE], **
  • [SQLITE_UTF16BE], **
  • [SQLITE_UTF16], or **
  • [SQLITE_UTF16_ALIGNED]. **
)^ ** ^The eTextRep argument determines the encoding of strings passed ** to the collating function callback, xCompare. ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep ** force strings to be UTF16 with native byte order. ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin ** on an even byte address. ** ** ^The fourth argument, pArg, is an application data pointer that is passed ** through as the first argument to the collating function callback. ** ** ^The fifth argument, xCompare, is a pointer to the collating function. ** ^Multiple collating functions can be registered using the same name but ** with different eTextRep parameters and SQLite will use whichever ** function requires the least amount of data transformation. ** ^If the xCompare argument is NULL then the collating function is ** deleted. ^When all collating functions having the same name are deleted, ** that collation is no longer usable. ** ** ^The collating function callback is invoked with a copy of the pArg ** application data pointer and with two strings in the encoding specified ** by the eTextRep argument. The two integer parameters to the collating ** function callback are the length of the two strings, in bytes. The collating ** function must return an integer that is negative, zero, or positive ** if the first string is less than, equal to, or greater than the second, ** respectively. A collating function must always return the same answer ** given the same inputs. If two or more collating functions are registered ** to the same collation name (using different eTextRep values) then all ** must give an equivalent answer when invoked with equivalent strings. ** The collating function must obey the following properties for all ** strings A, B, and C: ** **
    **
  1. If A==B then B==A. **
  2. If A==B and B==C then A==C. **
  3. If A<B THEN B>A. **
  4. If A<B and B<C then A<C. **
** ** If a collating function fails any of the above constraints and that ** collating function is registered and used, then the behavior of SQLite ** is undefined. ** ** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation() ** with the addition that the xDestroy callback is invoked on pArg when ** the collating function is deleted. ** ^Collating functions are deleted when they are overridden by later ** calls to the collation creation functions or when the ** [database connection] is closed using [sqlite3_close()]. ** ** ^The xDestroy callback is not called if the ** sqlite3_create_collation_v2() function fails. Applications that invoke ** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should ** check the return code and dispose of the application data pointer ** themselves rather than expecting SQLite to deal with it for them. ** This is different from every other SQLite interface. The inconsistency ** is unfortunate but cannot be changed without breaking backwards ** compatibility. ** ** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()]. */ SQLITE_API int sqlite3_create_collation( sqlite3*, const char *zName, int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); SQLITE_API int sqlite3_create_collation_v2( sqlite3*, const char *zName, int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDestroy)(void*) ); SQLITE_API int sqlite3_create_collation16( sqlite3*, const void *zName, int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); /* ** CAPI3REF: Collation Needed Callbacks ** METHOD: sqlite3 ** ** ^To avoid having to register all collation sequences before a database ** can be used, a single callback function may be registered with the ** [database connection] to be invoked whenever an undefined collation ** sequence is required. ** ** ^If the function is registered using the sqlite3_collation_needed() API, ** then it is passed the names of undefined collation sequences as strings ** encoded in UTF-8. ^If sqlite3_collation_needed16() is used, ** the names are passed as UTF-16 in machine native byte order. ** ^A call to either function replaces the existing collation-needed callback. ** ** ^(When the callback is invoked, the first argument passed is a copy ** of the second argument to sqlite3_collation_needed() or ** sqlite3_collation_needed16(). The second argument is the database ** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE], ** or [SQLITE_UTF16LE], indicating the most desirable form of the collation ** sequence function required. The fourth parameter is the name of the ** required collation sequence.)^ ** ** The callback function should register the desired collation using ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or ** [sqlite3_create_collation_v2()]. */ SQLITE_API int sqlite3_collation_needed( sqlite3*, void*, void(*)(void*,sqlite3*,int eTextRep,const char*) ); SQLITE_API int sqlite3_collation_needed16( sqlite3*, void*, void(*)(void*,sqlite3*,int eTextRep,const void*) ); /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* ** Specify the key for an encrypted database. This routine should be ** called right after sqlite3_open(). ** ** The code to implement this API is not available in the public release ** of SQLite. */ SQLITE_API int sqlite3_key( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The key */ ); SQLITE_API int sqlite3_key_v2( sqlite3 *db, /* Database to be rekeyed */ const char *zDbName, /* Name of the database */ const void *pKey, int nKey /* The key */ ); /* ** Change the key on an open database. If the current database is not ** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the ** database is decrypted. ** ** The code to implement this API is not available in the public release ** of SQLite. */ /* SQLCipher usage note: If the current database is plaintext SQLCipher will NOT encrypt it. If the current database is encrypted and pNew==0 or nNew==0, SQLCipher will NOT decrypt it. This routine will ONLY work on an already encrypted database in order to change the key. Conversion from plaintext-to-encrypted or encrypted-to-plaintext should use an ATTACHed database and the sqlcipher_export() convenience function as per the SQLCipher Documentation. */ SQLITE_API int sqlite3_rekey( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The new key */ ); SQLITE_API int sqlite3_rekey_v2( sqlite3 *db, /* Database to be rekeyed */ const char *zDbName, /* Name of the database */ const void *pKey, int nKey /* The new key */ ); /* ** Specify the activation key for a SEE database. Unless ** activated, none of the SEE routines will work. */ SQLITE_API void sqlite3_activate_see( const char *zPassPhrase /* Activation phrase */ ); #endif /* END SQLCIPHER */ #ifdef SQLITE_ENABLE_CEROD /* ** Specify the activation key for a CEROD database. Unless ** activated, none of the CEROD routines will work. */ SQLITE_API void sqlite3_activate_cerod( const char *zPassPhrase /* Activation phrase */ ); #endif /* ** CAPI3REF: Suspend Execution For A Short Time ** ** The sqlite3_sleep() function causes the current thread to suspend execution ** for at least a number of milliseconds specified in its parameter. ** ** If the operating system does not support sleep requests with ** millisecond time resolution, then the time will be rounded up to ** the nearest second. The number of milliseconds of sleep actually ** requested from the operating system is returned. ** ** ^SQLite implements this interface by calling the xSleep() ** method of the default [sqlite3_vfs] object. If the xSleep() method ** of the default VFS is not implemented correctly, or not implemented at ** all, then the behavior of sqlite3_sleep() may deviate from the description ** in the previous paragraphs. ** ** If a negative argument is passed to sqlite3_sleep() the results vary by ** VFS and operating system. Some system treat a negative argument as an ** instruction to sleep forever. Others understand it to mean do not sleep ** at all. ^In SQLite version 3.42.0 and later, a negative ** argument passed into sqlite3_sleep() is changed to zero before it is relayed ** down into the xSleep method of the VFS. */ SQLITE_API int sqlite3_sleep(int); /* ** CAPI3REF: Name Of The Folder Holding Temporary Files ** ** ^(If this global variable is made to point to a string which is ** the name of a folder (a.k.a. directory), then all temporary files ** created by SQLite when using a built-in [sqlite3_vfs | VFS] ** will be placed in that directory.)^ ^If this variable ** is a NULL pointer, then SQLite performs a search for an appropriate ** temporary file directory. ** ** Applications are strongly discouraged from using this global variable. ** It is required to set a temporary folder on Windows Runtime (WinRT). ** But for all other platforms, it is highly recommended that applications ** neither read nor write this variable. This global variable is a relic ** that exists for backwards compatibility of legacy applications and should ** be avoided in new projects. ** ** It is not safe to read or modify this variable in more than one ** thread at a time. It is not safe to read or modify this variable ** if a [database connection] is being used at the same time in a separate ** thread. ** It is intended that this variable be set once ** as part of process initialization and before any SQLite interface ** routines have been called and that this variable remain unchanged ** thereafter. ** ** ^The [temp_store_directory pragma] may modify this variable and cause ** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, ** the [temp_store_directory pragma] always assumes that any string ** that this variable points to is held in memory obtained from ** [sqlite3_malloc] and the pragma may attempt to free that memory ** using [sqlite3_free]. ** Hence, if this variable is modified directly, either it should be ** made NULL or made to point to memory obtained from [sqlite3_malloc] ** or else the use of the [temp_store_directory pragma] should be avoided. ** Except when requested by the [temp_store_directory pragma], SQLite ** does not free the memory that sqlite3_temp_directory points to. If ** the application wants that memory to be freed, it must do ** so itself, taking care to only do so after all [database connection] ** objects have been destroyed. ** ** Note to Windows Runtime users: The temporary directory must be set ** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various ** features that require the use of temporary files may fail. Here is an ** example of how to do this using C++ with the Windows Runtime: ** **
** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
**       TemporaryFolder->Path->Data();
** char zPathBuf[MAX_PATH + 1];
** memset(zPathBuf, 0, sizeof(zPathBuf));
** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
**       NULL, NULL);
** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
** 
*/ SQLITE_API char *sqlite3_temp_directory; /* ** CAPI3REF: Name Of The Folder Holding Database Files ** ** ^(If this global variable is made to point to a string which is ** the name of a folder (a.k.a. directory), then all database files ** specified with a relative pathname and created or accessed by ** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed ** to be relative to that directory.)^ ^If this variable is a NULL ** pointer, then SQLite assumes that all database files specified ** with a relative pathname are relative to the current directory ** for the process. Only the windows VFS makes use of this global ** variable; it is ignored by the unix VFS. ** ** Changing the value of this variable while a database connection is ** open can result in a corrupt database. ** ** It is not safe to read or modify this variable in more than one ** thread at a time. It is not safe to read or modify this variable ** if a [database connection] is being used at the same time in a separate ** thread. ** It is intended that this variable be set once ** as part of process initialization and before any SQLite interface ** routines have been called and that this variable remain unchanged ** thereafter. ** ** ^The [data_store_directory pragma] may modify this variable and cause ** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore, ** the [data_store_directory pragma] always assumes that any string ** that this variable points to is held in memory obtained from ** [sqlite3_malloc] and the pragma may attempt to free that memory ** using [sqlite3_free]. ** Hence, if this variable is modified directly, either it should be ** made NULL or made to point to memory obtained from [sqlite3_malloc] ** or else the use of the [data_store_directory pragma] should be avoided. */ SQLITE_API char *sqlite3_data_directory; /* ** CAPI3REF: Win32 Specific Interface ** ** These interfaces are available only on Windows. The ** [sqlite3_win32_set_directory] interface is used to set the value associated ** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to ** zValue, depending on the value of the type parameter. The zValue parameter ** should be NULL to cause the previous value to be freed via [sqlite3_free]; ** a non-NULL value will be copied into memory obtained from [sqlite3_malloc] ** prior to being used. The [sqlite3_win32_set_directory] interface returns ** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported, ** or [SQLITE_NOMEM] if memory could not be allocated. The value of the ** [sqlite3_data_directory] variable is intended to act as a replacement for ** the current directory on the sub-platforms of Win32 where that concept is ** not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and ** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the ** sqlite3_win32_set_directory interface except the string parameter must be ** UTF-8 or UTF-16, respectively. */ SQLITE_API int sqlite3_win32_set_directory( unsigned long type, /* Identifier for directory being set or reset */ void *zValue /* New value for directory being set or reset */ ); SQLITE_API int sqlite3_win32_set_directory8(unsigned long type, const char *zValue); SQLITE_API int sqlite3_win32_set_directory16(unsigned long type, const void *zValue); /* ** CAPI3REF: Win32 Directory Types ** ** These macros are only available on Windows. They define the allowed values ** for the type argument to the [sqlite3_win32_set_directory] interface. */ #define SQLITE_WIN32_DATA_DIRECTORY_TYPE 1 #define SQLITE_WIN32_TEMP_DIRECTORY_TYPE 2 /* ** CAPI3REF: Test For Auto-Commit Mode ** KEYWORDS: {autocommit mode} ** METHOD: sqlite3 ** ** ^The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, ** respectively. ^Autocommit mode is on by default. ** ^Autocommit mode is disabled by a [BEGIN] statement. ** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. ** ** If certain kinds of errors occur on a statement within a multi-statement ** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR], ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the ** transaction might be rolled back automatically. The only way to ** find out whether SQLite automatically rolled back the transaction after ** an error is to use this function. ** ** If another thread changes the autocommit status of the database ** connection while this routine is running, then the return value ** is undefined. */ SQLITE_API int sqlite3_get_autocommit(sqlite3*); /* ** CAPI3REF: Find The Database Handle Of A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^The sqlite3_db_handle interface returns the [database connection] handle ** to which a [prepared statement] belongs. ^The [database connection] ** returned by sqlite3_db_handle is the same [database connection] ** that was the first argument ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to ** create the statement in the first place. */ SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*); /* ** CAPI3REF: Return The Schema Name For A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_name(D,N) interface returns a pointer to the schema name ** for the N-th database on database connection D, or a NULL pointer of N is ** out of range. An N value of 0 means the main database file. An N of 1 is ** the "temp" schema. Larger values of N correspond to various ATTACH-ed ** databases. ** ** Space to hold the string that is returned by sqlite3_db_name() is managed ** by SQLite itself. The string might be deallocated by any operation that ** changes the schema, including [ATTACH] or [DETACH] or calls to ** [sqlite3_serialize()] or [sqlite3_deserialize()], even operations that ** occur on a different thread. Applications that need to ** remember the string long-term should make their own copy. Applications that ** are accessing the same database connection simultaneously on multiple ** threads should mutex-protect calls to this API and should make their own ** private copy of the result prior to releasing the mutex. */ SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N); /* ** CAPI3REF: Return The Filename For A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename ** associated with database N of connection D. ** ^If there is no attached database N on the database ** connection D, or if database N is a temporary or in-memory database, then ** this function will return either a NULL pointer or an empty string. ** ** ^The string value returned by this routine is owned and managed by ** the database connection. ^The value will be valid until the database N ** is [DETACH]-ed or until the database connection closes. ** ** ^The filename returned by this function is the output of the ** xFullPathname method of the [VFS]. ^In other words, the filename ** will be an absolute pathname, even if the filename used ** to open the database originally was a URI or relative pathname. ** ** If the filename pointer returned by this routine is not NULL, then it ** can be used as the filename input parameter to these routines: **
    **
  • [sqlite3_uri_parameter()] **
  • [sqlite3_uri_boolean()] **
  • [sqlite3_uri_int64()] **
  • [sqlite3_filename_database()] **
  • [sqlite3_filename_journal()] **
  • [sqlite3_filename_wal()] **
*/ SQLITE_API sqlite3_filename sqlite3_db_filename(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Determine if a database is read-only ** METHOD: sqlite3 ** ** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N ** of connection D is read-only, 0 if it is read/write, or -1 if N is not ** the name of a database on connection D. */ SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Determine the transaction state of a database ** METHOD: sqlite3 ** ** ^The sqlite3_txn_state(D,S) interface returns the current ** [transaction state] of schema S in database connection D. ^If S is NULL, ** then the highest transaction state of any schema on database connection D ** is returned. Transaction states are (in order of lowest to highest): **
    **
  1. SQLITE_TXN_NONE **
  2. SQLITE_TXN_READ **
  3. SQLITE_TXN_WRITE **
** ^If the S argument to sqlite3_txn_state(D,S) is not the name of ** a valid schema, then -1 is returned. */ SQLITE_API int sqlite3_txn_state(sqlite3*,const char *zSchema); /* ** CAPI3REF: Allowed return values from sqlite3_txn_state() ** KEYWORDS: {transaction state} ** ** These constants define the current transaction state of a database file. ** ^The [sqlite3_txn_state(D,S)] interface returns one of these ** constants in order to describe the transaction state of schema S ** in [database connection] D. ** **
** [[SQLITE_TXN_NONE]]
SQLITE_TXN_NONE
**
The SQLITE_TXN_NONE state means that no transaction is currently ** pending.
** ** [[SQLITE_TXN_READ]]
SQLITE_TXN_READ
**
The SQLITE_TXN_READ state means that the database is currently ** in a read transaction. Content has been read from the database file ** but nothing in the database file has changed. The transaction state ** will advanced to SQLITE_TXN_WRITE if any changes occur and there are ** no other conflicting concurrent write transactions. The transaction ** state will revert to SQLITE_TXN_NONE following a [ROLLBACK] or ** [COMMIT].
** ** [[SQLITE_TXN_WRITE]]
SQLITE_TXN_WRITE
**
The SQLITE_TXN_WRITE state means that the database is currently ** in a write transaction. Content has been written to the database file ** but has not yet committed. The transaction state will change to ** to SQLITE_TXN_NONE at the next [ROLLBACK] or [COMMIT].
*/ #define SQLITE_TXN_NONE 0 #define SQLITE_TXN_READ 1 #define SQLITE_TXN_WRITE 2 /* ** CAPI3REF: Find the next prepared statement ** METHOD: sqlite3 ** ** ^This interface returns a pointer to the next [prepared statement] after ** pStmt associated with the [database connection] pDb. ^If pStmt is NULL ** then this interface returns a pointer to the first prepared statement ** associated with the database connection pDb. ^If no prepared statement ** satisfies the conditions of this routine, it returns NULL. ** ** The [database connection] pointer D in a call to ** [sqlite3_next_stmt(D,S)] must refer to an open database ** connection and in particular must not be a NULL pointer. */ SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); /* ** CAPI3REF: Commit And Rollback Notification Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_commit_hook() interface registers a callback ** function to be invoked whenever a transaction is [COMMIT | committed]. ** ^Any callback set by a previous call to sqlite3_commit_hook() ** for the same database connection is overridden. ** ^The sqlite3_rollback_hook() interface registers a callback ** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. ** ^Any callback set by a previous call to sqlite3_rollback_hook() ** for the same database connection is overridden. ** ^The pArg argument is passed through to the callback. ** ^If the callback on a commit hook function returns non-zero, ** then the commit is converted into a rollback. ** ** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions ** return the P argument from the previous call of the same function ** on the same [database connection] D, or NULL for ** the first call for each function on D. ** ** The commit and rollback hook callbacks are not reentrant. ** The callback implementation must not do anything that will modify ** the database connection that invoked the callback. Any actions ** to modify the database connection must be deferred until after the ** completion of the [sqlite3_step()] call that triggered the commit ** or rollback hook in the first place. ** Note that running any other SQL statements, including SELECT statements, ** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify ** the database connections for the meaning of "modify" in this paragraph. ** ** ^Registering a NULL function disables the callback. ** ** ^When the commit hook callback routine returns zero, the [COMMIT] ** operation is allowed to continue normally. ^If the commit hook ** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK]. ** ^The rollback hook is invoked on a rollback that results from a commit ** hook returning non-zero, just as it would be with any other rollback. ** ** ^For the purposes of this API, a transaction is said to have been ** rolled back if an explicit "ROLLBACK" statement is executed, or ** an error or constraint causes an implicit rollback to occur. ** ^The rollback callback is not invoked if a transaction is ** automatically rolled back because the database connection is closed. ** ** See also the [sqlite3_update_hook()] interface. */ SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); /* ** CAPI3REF: Autovacuum Compaction Amount Callback ** METHOD: sqlite3 ** ** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback ** function C that is invoked prior to each autovacuum of the database ** file. ^The callback is passed a copy of the generic data pointer (P), ** the schema-name of the attached database that is being autovacuumed, ** the size of the database file in pages, the number of free pages, ** and the number of bytes per page, respectively. The callback should ** return the number of free pages that should be removed by the ** autovacuum. ^If the callback returns zero, then no autovacuum happens. ** ^If the value returned is greater than or equal to the number of ** free pages, then a complete autovacuum happens. ** **

^If there are multiple ATTACH-ed database files that are being ** modified as part of a transaction commit, then the autovacuum pages ** callback is invoked separately for each file. ** **

The callback is not reentrant. The callback function should ** not attempt to invoke any other SQLite interface. If it does, bad ** things may happen, including segmentation faults and corrupt database ** files. The callback function should be a simple function that ** does some arithmetic on its input parameters and returns a result. ** ** ^The X parameter to sqlite3_autovacuum_pages(D,C,P,X) is an optional ** destructor for the P parameter. ^If X is not NULL, then X(P) is ** invoked whenever the database connection closes or when the callback ** is overwritten by another invocation of sqlite3_autovacuum_pages(). ** **

^There is only one autovacuum pages callback per database connection. ** ^Each call to the sqlite3_autovacuum_pages() interface overrides all ** previous invocations for that database connection. ^If the callback ** argument (C) to sqlite3_autovacuum_pages(D,C,P,X) is a NULL pointer, ** then the autovacuum steps callback is canceled. The return value ** from sqlite3_autovacuum_pages() is normally SQLITE_OK, but might ** be some other error code if something goes wrong. The current ** implementation will only return SQLITE_OK or SQLITE_MISUSE, but other ** return codes might be added in future releases. ** **

If no autovacuum pages callback is specified (the usual case) or ** a NULL pointer is provided for the callback, ** then the default behavior is to vacuum all free pages. So, in other ** words, the default behavior is the same as if the callback function ** were something like this: ** **

**     unsigned int demonstration_autovac_pages_callback(
**       void *pClientData,
**       const char *zSchema,
**       unsigned int nDbPage,
**       unsigned int nFreePage,
**       unsigned int nBytePerPage
**     ){
**       return nFreePage;
**     }
** 
*/ SQLITE_API int sqlite3_autovacuum_pages( sqlite3 *db, unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int), void*, void(*)(void*) ); /* ** CAPI3REF: Data Change Notification Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_update_hook() interface registers a callback function ** with the [database connection] identified by the first argument ** to be invoked whenever a row is updated, inserted or deleted in ** a [rowid table]. ** ^Any callback set by a previous call to this function ** for the same database connection is overridden. ** ** ^The second argument is a pointer to the function to invoke when a ** row is updated, inserted or deleted in a rowid table. ** ^The first argument to the callback is a copy of the third argument ** to sqlite3_update_hook(). ** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE], ** or [SQLITE_UPDATE], depending on the operation that caused the callback ** to be invoked. ** ^The third and fourth arguments to the callback contain pointers to the ** database and table name containing the affected row. ** ^The final callback parameter is the [rowid] of the row. ** ^In the case of an update, this is the [rowid] after the update takes place. ** ** ^(The update hook is not invoked when internal system tables are ** modified (i.e. sqlite_sequence).)^ ** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified. ** ** ^In the current implementation, the update hook ** is not invoked when conflicting rows are deleted because of an ** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook ** invoked when rows are deleted using the [truncate optimization]. ** The exceptions defined in this paragraph might change in a future ** release of SQLite. ** ** The update hook implementation must not do anything that will modify ** the database connection that invoked the update hook. Any actions ** to modify the database connection must be deferred until after the ** completion of the [sqlite3_step()] call that triggered the update hook. ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their ** database connections for the meaning of "modify" in this paragraph. ** ** ^The sqlite3_update_hook(D,C,P) function ** returns the P argument from the previous call ** on the same [database connection] D, or NULL for ** the first call on D. ** ** See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()], ** and [sqlite3_preupdate_hook()] interfaces. */ SQLITE_API void *sqlite3_update_hook( sqlite3*, void(*)(void *,int ,char const *,char const *,sqlite3_int64), void* ); /* ** CAPI3REF: Enable Or Disable Shared Pager Cache ** ** ^(This routine enables or disables the sharing of the database cache ** and schema data structures between [database connection | connections] ** to the same database. Sharing is enabled if the argument is true ** and disabled if the argument is false.)^ ** ** This interface is omitted if SQLite is compiled with ** [-DSQLITE_OMIT_SHARED_CACHE]. The [-DSQLITE_OMIT_SHARED_CACHE] ** compile-time option is recommended because the ** [use of shared cache mode is discouraged]. ** ** ^Cache sharing is enabled and disabled for an entire process. ** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]). ** In prior versions of SQLite, ** sharing was enabled or disabled for each thread separately. ** ** ^(The cache sharing mode set by this interface effects all subsequent ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. ** Existing database connections continue to use the sharing mode ** that was in effect at the time they were opened.)^ ** ** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled ** successfully. An [error code] is returned otherwise.)^ ** ** ^Shared cache is disabled by default. It is recommended that it stay ** that way. In other words, do not use this routine. This interface ** continues to be provided for historical compatibility, but its use is ** discouraged. Any use of shared cache is discouraged. If shared cache ** must be used, it is recommended that shared cache only be enabled for ** individual database connections using the [sqlite3_open_v2()] interface ** with the [SQLITE_OPEN_SHAREDCACHE] flag. ** ** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0 ** and will always return SQLITE_MISUSE. On those systems, ** shared cache mode should be enabled per-database connection via ** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE]. ** ** This interface is threadsafe on processors where writing a ** 32-bit integer is atomic. ** ** See Also: [SQLite Shared-Cache Mode] */ SQLITE_API int sqlite3_enable_shared_cache(int); /* ** CAPI3REF: Attempt To Free Heap Memory ** ** ^The sqlite3_release_memory() interface attempts to free N bytes ** of heap memory by deallocating non-essential memory allocations ** held by the database library. Memory used to cache database ** pages to improve performance is an example of non-essential memory. ** ^sqlite3_release_memory() returns the number of bytes actually freed, ** which might be more or less than the amount requested. ** ^The sqlite3_release_memory() routine is a no-op returning zero ** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT]. ** ** See also: [sqlite3_db_release_memory()] */ SQLITE_API int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap ** memory as possible from database connection D. Unlike the ** [sqlite3_release_memory()] interface, this interface is in effect even ** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is ** omitted. ** ** See also: [sqlite3_release_memory()] */ SQLITE_API int sqlite3_db_release_memory(sqlite3*); /* ** CAPI3REF: Impose A Limit On Heap Size ** ** These interfaces impose limits on the amount of heap memory that will be ** by all database connections within a single process. ** ** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the ** soft limit on the amount of heap memory that may be allocated by SQLite. ** ^SQLite strives to keep heap memory utilization below the soft heap ** limit by reducing the number of pages held in the page cache ** as heap memory usages approaches the limit. ** ^The soft heap limit is "soft" because even though SQLite strives to stay ** below the limit, it will exceed the limit rather than generate ** an [SQLITE_NOMEM] error. In other words, the soft heap limit ** is advisory only. ** ** ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of ** N bytes on the amount of memory that will be allocated. ^The ** sqlite3_hard_heap_limit64(N) interface is similar to ** sqlite3_soft_heap_limit64(N) except that memory allocations will fail ** when the hard heap limit is reached. ** ** ^The return value from both sqlite3_soft_heap_limit64() and ** sqlite3_hard_heap_limit64() is the size of ** the heap limit prior to the call, or negative in the case of an ** error. ^If the argument N is negative ** then no change is made to the heap limit. Hence, the current ** size of heap limits can be determined by invoking ** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1). ** ** ^Setting the heap limits to zero disables the heap limiter mechanism. ** ** ^The soft heap limit may not be greater than the hard heap limit. ** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N) ** is invoked with a value of N that is greater than the hard heap limit, ** the soft heap limit is set to the value of the hard heap limit. ** ^The soft heap limit is automatically enabled whenever the hard heap ** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and ** the soft heap limit is outside the range of 1..N, then the soft heap ** limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the ** hard heap limit is enabled makes the soft heap limit equal to the ** hard heap limit. ** ** The memory allocation limits can also be adjusted using ** [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit]. ** ** ^(The heap limits are not enforced in the current implementation ** if one or more of following conditions are true: ** **
    **
  • The limit value is set to zero. **
  • Memory accounting is disabled using a combination of the ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option. **
  • An alternative page cache implementation is specified using ** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...). **
  • The page cache allocates from its own memory pool supplied ** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than ** from the heap. **
)^ ** ** The circumstances under which SQLite will enforce the heap limits may ** changes in future releases of SQLite. */ SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N); SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 N); /* ** CAPI3REF: Deprecated Soft Heap Limit Interface ** DEPRECATED ** ** This is a deprecated version of the [sqlite3_soft_heap_limit64()] ** interface. This routine is provided for historical compatibility ** only. All new applications should use the ** [sqlite3_soft_heap_limit64()] interface rather than this one. */ SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N); /* ** CAPI3REF: Extract Metadata About A Column Of A Table ** METHOD: sqlite3 ** ** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns ** information about column C of table T in database D ** on [database connection] X.)^ ^The sqlite3_table_column_metadata() ** interface returns SQLITE_OK and fills in the non-NULL pointers in ** the final five arguments with appropriate values if the specified ** column exists. ^The sqlite3_table_column_metadata() interface returns ** SQLITE_ERROR if the specified column does not exist. ** ^If the column-name parameter to sqlite3_table_column_metadata() is a ** NULL pointer, then this routine simply checks for the existence of the ** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it ** does not. If the table name parameter T in a call to ** sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is ** undefined behavior. ** ** ^The column is identified by the second, third and fourth parameters to ** this function. ^(The second parameter is either the name of the database ** (i.e. "main", "temp", or an attached database) containing the specified ** table or NULL.)^ ^If it is NULL, then all attached databases are searched ** for the table using the same algorithm used by the database engine to ** resolve unqualified table references. ** ** ^The third and fourth parameters to this function are the table and column ** name of the desired column, respectively. ** ** ^Metadata is returned by writing to the memory locations passed as the 5th ** and subsequent parameters to this function. ^Any of these arguments may be ** NULL, in which case the corresponding element of metadata is omitted. ** ** ^(
** **
Parameter Output
Type
Description ** **
5th const char* Data type **
6th const char* Name of default collation sequence **
7th int True if column has a NOT NULL constraint **
8th int True if column is part of the PRIMARY KEY **
9th int True if column is [AUTOINCREMENT] **
**
)^ ** ** ^The memory pointed to by the character pointers returned for the ** declaration type and collation sequence is valid until the next ** call to any SQLite API function. ** ** ^If the specified table is actually a view, an [error code] is returned. ** ** ^If the specified column is "rowid", "oid" or "_rowid_" and the table ** is not a [WITHOUT ROWID] table and an ** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output ** parameters are set for the explicitly declared column. ^(If there is no ** [INTEGER PRIMARY KEY] column, then the outputs ** for the [rowid] are set as follows: ** **
**     data type: "INTEGER"
**     collation sequence: "BINARY"
**     not null: 0
**     primary key: 1
**     auto increment: 0
** 
)^ ** ** ^This function causes all database schemas to be read from disk and ** parsed, if that has not already been done, and returns an error if ** any errors are encountered while loading the schema. */ SQLITE_API int sqlite3_table_column_metadata( sqlite3 *db, /* Connection handle */ const char *zDbName, /* Database name or NULL */ const char *zTableName, /* Table name */ const char *zColumnName, /* Column name */ char const **pzDataType, /* OUTPUT: Declared data type */ char const **pzCollSeq, /* OUTPUT: Collation sequence name */ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if column is auto-increment */ ); /* ** CAPI3REF: Load An Extension ** METHOD: sqlite3 ** ** ^This interface loads an SQLite extension library from the named file. ** ** ^The sqlite3_load_extension() interface attempts to load an ** [SQLite extension] library contained in the file zFile. If ** the file cannot be loaded directly, attempts are made to load ** with various operating-system specific extensions added. ** So for example, if "samplelib" cannot be loaded, then names like ** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might ** be tried also. ** ** ^The entry point is zProc. ** ^(zProc may be 0, in which case SQLite will try to come up with an ** entry point name on its own. It first tries "sqlite3_extension_init". ** If that does not work, it constructs a name "sqlite3_X_init" where the ** X is consists of the lower-case equivalent of all ASCII alphabetic ** characters in the filename from the last "/" to the first following ** "." and omitting any initial "lib".)^ ** ^The sqlite3_load_extension() interface returns ** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. ** ^If an error occurs and pzErrMsg is not 0, then the ** [sqlite3_load_extension()] interface shall attempt to ** fill *pzErrMsg with error message text stored in memory ** obtained from [sqlite3_malloc()]. The calling function ** should free this memory by calling [sqlite3_free()]. ** ** ^Extension loading must be enabled using ** [sqlite3_enable_load_extension()] or ** [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL) ** prior to calling this API, ** otherwise an error will be returned. ** ** Security warning: It is recommended that the ** [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this ** interface. The use of the [sqlite3_enable_load_extension()] interface ** should be avoided. This will keep the SQL function [load_extension()] ** disabled and prevent SQL injections from giving attackers ** access to extension loading capabilities. ** ** See also the [load_extension() SQL function]. */ SQLITE_API int sqlite3_load_extension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Derived from zFile if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ); /* ** CAPI3REF: Enable Or Disable Extension Loading ** METHOD: sqlite3 ** ** ^So as not to open security holes in older applications that are ** unprepared to deal with [extension loading], and as a means of disabling ** [extension loading] while evaluating user-entered SQL, the following API ** is provided to turn the [sqlite3_load_extension()] mechanism on and off. ** ** ^Extension loading is off by default. ** ^Call the sqlite3_enable_load_extension() routine with onoff==1 ** to turn extension loading on and call it with onoff==0 to turn ** it back off again. ** ** ^This interface enables or disables both the C-API ** [sqlite3_load_extension()] and the SQL function [load_extension()]. ** ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..) ** to enable or disable only the C-API.)^ ** ** Security warning: It is recommended that extension loading ** be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method ** rather than this interface, so the [load_extension()] SQL function ** remains disabled. This will prevent SQL injections from giving attackers ** access to extension loading capabilities. */ SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff); /* ** CAPI3REF: Automatically Load Statically Linked Extensions ** ** ^This interface causes the xEntryPoint() function to be invoked for ** each new [database connection] that is created. The idea here is that ** xEntryPoint() is the entry point for a statically linked [SQLite extension] ** that is to be automatically loaded into all new database connections. ** ** ^(Even though the function prototype shows that xEntryPoint() takes ** no arguments and returns void, SQLite invokes xEntryPoint() with three ** arguments and expects an integer result as if the signature of the ** entry point where as follows: ** **
**    int xEntryPoint(
**      sqlite3 *db,
**      const char **pzErrMsg,
**      const struct sqlite3_api_routines *pThunk
**    );
** 
)^ ** ** If the xEntryPoint routine encounters an error, it should make *pzErrMsg ** point to an appropriate error message (obtained from [sqlite3_mprintf()]) ** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg ** is NULL before calling the xEntryPoint(). ^SQLite will invoke ** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. ** ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already ** on the list of automatic extensions is a harmless no-op. ^No entry point ** will be called more than once for each database connection that is opened. ** ** See also: [sqlite3_reset_auto_extension()] ** and [sqlite3_cancel_auto_extension()] */ SQLITE_API int sqlite3_auto_extension(void(*xEntryPoint)(void)); /* ** CAPI3REF: Cancel Automatic Extension Loading ** ** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the ** initialization routine X that was registered using a prior call to ** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)] ** routine returns 1 if initialization routine X was successfully ** unregistered and it returns 0 if X was not on the list of initialization ** routines. */ SQLITE_API int sqlite3_cancel_auto_extension(void(*xEntryPoint)(void)); /* ** CAPI3REF: Reset Automatic Extension Loading ** ** ^This interface disables all automatic extensions previously ** registered using [sqlite3_auto_extension()]. */ SQLITE_API void sqlite3_reset_auto_extension(void); /* ** Structures used by the virtual table interface */ typedef struct sqlite3_vtab sqlite3_vtab; typedef struct sqlite3_index_info sqlite3_index_info; typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; typedef struct sqlite3_module sqlite3_module; /* ** CAPI3REF: Virtual Table Object ** KEYWORDS: sqlite3_module {virtual table module} ** ** This structure, sometimes called a "virtual table module", ** defines the implementation of a [virtual table]. ** This structure consists mostly of methods for the module. ** ** ^A virtual table module is created by filling in a persistent ** instance of this structure and passing a pointer to that instance ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()]. ** ^The registration remains valid until it is replaced by a different ** module or until the [database connection] closes. The content ** of this structure must not change while it is registered with ** any database connection. */ struct sqlite3_module { int iVersion; int (*xCreate)(sqlite3*, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char**); int (*xConnect)(sqlite3*, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char**); int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); int (*xDisconnect)(sqlite3_vtab *pVTab); int (*xDestroy)(sqlite3_vtab *pVTab); int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); int (*xClose)(sqlite3_vtab_cursor*); int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, int argc, sqlite3_value **argv); int (*xNext)(sqlite3_vtab_cursor*); int (*xEof)(sqlite3_vtab_cursor*); int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); int (*xBegin)(sqlite3_vtab *pVTab); int (*xSync)(sqlite3_vtab *pVTab); int (*xCommit)(sqlite3_vtab *pVTab); int (*xRollback)(sqlite3_vtab *pVTab); int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); /* The methods above are in version 1 of the sqlite_module object. Those ** below are for version 2 and greater. */ int (*xSavepoint)(sqlite3_vtab *pVTab, int); int (*xRelease)(sqlite3_vtab *pVTab, int); int (*xRollbackTo)(sqlite3_vtab *pVTab, int); /* The methods above are in versions 1 and 2 of the sqlite_module object. ** Those below are for version 3 and greater. */ int (*xShadowName)(const char*); /* The methods above are in versions 1 through 3 of the sqlite_module object. ** Those below are for version 4 and greater. */ int (*xIntegrity)(sqlite3_vtab *pVTab, const char *zSchema, const char *zTabName, int mFlags, char **pzErr); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part ** of the [virtual table] interface to ** pass information into and receive the reply from the [xBestIndex] ** method of a [virtual table module]. The fields under **Inputs** are the ** inputs to xBestIndex and are read-only. xBestIndex inserts its ** results into the **Outputs** fields. ** ** ^(The aConstraint[] array records WHERE clause constraints of the form: ** **
column OP expr
** ** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is ** stored in aConstraint[].op using one of the ** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^ ** ^(The index of the column is stored in ** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the ** expr on the right-hand side can be evaluated (and thus the constraint ** is usable) and false if it cannot.)^ ** ** ^The optimizer automatically inverts terms of the form "expr OP column" ** and makes other simplifications to the WHERE clause in an attempt to ** get as many WHERE clause terms into the form shown above as possible. ** ^The aConstraint[] array only reports WHERE clause terms that are ** relevant to the particular virtual table being queried. ** ** ^Information about the ORDER BY clause is stored in aOrderBy[]. ** ^Each term of aOrderBy records a column of the ORDER BY clause. ** ** The colUsed field indicates which columns of the virtual table may be ** required by the current scan. Virtual table columns are numbered from ** zero in the order in which they appear within the CREATE TABLE statement ** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62), ** the corresponding bit is set within the colUsed mask if the column may be ** required by SQLite. If the table has at least 64 columns and any column ** to the right of the first 63 is required, then bit 63 of colUsed is also ** set. In other words, column iCol may be required if the expression ** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to ** non-zero. ** ** The [xBestIndex] method must fill aConstraintUsage[] with information ** about what parameters to pass to xFilter. ^If argvIndex>0 then ** the right-hand side of the corresponding aConstraint[] is evaluated ** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit ** is true, then the constraint is assumed to be fully handled by the ** virtual table and might not be checked again by the byte code.)^ ^(The ** aConstraintUsage[].omit flag is an optimization hint. When the omit flag ** is left in its default setting of false, the constraint will always be ** checked separately in byte code. If the omit flag is change to true, then ** the constraint may or may not be checked in byte code. In other words, ** when the omit flag is true there is no guarantee that the constraint will ** not be checked again using byte code.)^ ** ** ^The idxNum and idxStr values are recorded and passed into the ** [xFilter] method. ** ^[sqlite3_free()] is used to free idxStr if and only if ** needToFreeIdxStr is true. ** ** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in ** the correct order to satisfy the ORDER BY clause so that no separate ** sorting step is required. ** ** ^The estimatedCost value is an estimate of the cost of a particular ** strategy. A cost of N indicates that the cost of the strategy is similar ** to a linear scan of an SQLite table with N rows. A cost of log(N) ** indicates that the expense of the operation is similar to that of a ** binary search on a unique indexed field of an SQLite table with N rows. ** ** ^The estimatedRows value is an estimate of the number of rows that ** will be returned by the strategy. ** ** The xBestIndex method may optionally populate the idxFlags field with a ** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag - ** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite ** assumes that the strategy may visit at most one row. ** ** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then ** SQLite also assumes that if a call to the xUpdate() method is made as ** part of the same statement to delete or update a virtual table row and the ** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback ** any database changes. In other words, if the xUpdate() returns ** SQLITE_CONSTRAINT, the database contents must be exactly as they were ** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not ** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by ** the xUpdate method are automatically rolled back by SQLite. ** ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info ** structure for SQLite [version 3.8.2] ([dateof:3.8.2]). ** If a virtual table extension is ** used with an SQLite version earlier than 3.8.2, the results of attempting ** to read or write the estimatedRows field are undefined (but are likely ** to include crashing the application). The estimatedRows field should ** therefore only be used if [sqlite3_libversion_number()] returns a ** value greater than or equal to 3008002. Similarly, the idxFlags field ** was added for [version 3.9.0] ([dateof:3.9.0]). ** It may therefore only be used if ** sqlite3_libversion_number() returns a value greater than or equal to ** 3009000. */ struct sqlite3_index_info { /* Inputs */ int nConstraint; /* Number of entries in aConstraint */ struct sqlite3_index_constraint { int iColumn; /* Column constrained. -1 for ROWID */ unsigned char op; /* Constraint operator */ unsigned char usable; /* True if this constraint is usable */ int iTermOffset; /* Used internally - xBestIndex should ignore */ } *aConstraint; /* Table of WHERE clause constraints */ int nOrderBy; /* Number of terms in the ORDER BY clause */ struct sqlite3_index_orderby { int iColumn; /* Column number */ unsigned char desc; /* True for DESC. False for ASC. */ } *aOrderBy; /* The ORDER BY clause */ /* Outputs */ struct sqlite3_index_constraint_usage { int argvIndex; /* if >0, constraint is part of argv to xFilter */ unsigned char omit; /* Do not code a test for this constraint */ } *aConstraintUsage; int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ /* Fields below are only available in SQLite 3.8.2 and later */ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ /* Fields below are only available in SQLite 3.9.0 and later */ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */ /* Fields below are only available in SQLite 3.10.0 and later */ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */ }; /* ** CAPI3REF: Virtual Table Scan Flags ** ** Virtual table implementations are allowed to set the ** [sqlite3_index_info].idxFlags field to some combination of ** these bits. */ #define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */ /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros define the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents ** an operator that is part of a constraint term in the WHERE clause of ** a query that uses a [virtual table]. ** ** ^The left-hand operand of the operator is given by the corresponding ** aConstraint[].iColumn field. ^An iColumn of -1 indicates the left-hand ** operand is the rowid. ** The SQLITE_INDEX_CONSTRAINT_LIMIT and SQLITE_INDEX_CONSTRAINT_OFFSET ** operators have no left-hand operand, and so for those operators the ** corresponding aConstraint[].iColumn is meaningless and should not be ** used. ** ** All operator values from SQLITE_INDEX_CONSTRAINT_FUNCTION through ** value 255 are reserved to represent functions that are overloaded ** by the [xFindFunction|xFindFunction method] of the virtual table ** implementation. ** ** The right-hand operands for each constraint might be accessible using ** the [sqlite3_vtab_rhs_value()] interface. Usually the right-hand ** operand is only available if it appears as a single constant literal ** in the input SQL. If the right-hand operand is another column or an ** expression (even a constant expression) or a parameter, then the ** sqlite3_vtab_rhs_value() probably will not be able to extract it. ** ^The SQLITE_INDEX_CONSTRAINT_ISNULL and ** SQLITE_INDEX_CONSTRAINT_ISNOTNULL operators have no right-hand operand ** and hence calls to sqlite3_vtab_rhs_value() for those operators will ** always return SQLITE_NOTFOUND. ** ** The collating sequence to be used for comparison can be found using ** the [sqlite3_vtab_collation()] interface. For most real-world virtual ** tables, the collating sequence of constraints does not matter (for example ** because the constraints are numeric) and so the sqlite3_vtab_collation() ** interface is not commonly needed. */ #define SQLITE_INDEX_CONSTRAINT_EQ 2 #define SQLITE_INDEX_CONSTRAINT_GT 4 #define SQLITE_INDEX_CONSTRAINT_LE 8 #define SQLITE_INDEX_CONSTRAINT_LT 16 #define SQLITE_INDEX_CONSTRAINT_GE 32 #define SQLITE_INDEX_CONSTRAINT_MATCH 64 #define SQLITE_INDEX_CONSTRAINT_LIKE 65 #define SQLITE_INDEX_CONSTRAINT_GLOB 66 #define SQLITE_INDEX_CONSTRAINT_REGEXP 67 #define SQLITE_INDEX_CONSTRAINT_NE 68 #define SQLITE_INDEX_CONSTRAINT_ISNOT 69 #define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70 #define SQLITE_INDEX_CONSTRAINT_ISNULL 71 #define SQLITE_INDEX_CONSTRAINT_IS 72 #define SQLITE_INDEX_CONSTRAINT_LIMIT 73 #define SQLITE_INDEX_CONSTRAINT_OFFSET 74 #define SQLITE_INDEX_CONSTRAINT_FUNCTION 150 /* ** CAPI3REF: Register A Virtual Table Implementation ** METHOD: sqlite3 ** ** ^These routines are used to register a new [virtual table module] name. ** ^Module names must be registered before ** creating a new [virtual table] using the module and before using a ** preexisting [virtual table] for the module. ** ** ^The module name is registered on the [database connection] specified ** by the first parameter. ^The name of the module is given by the ** second parameter. ^The third parameter is a pointer to ** the implementation of the [virtual table module]. ^The fourth ** parameter is an arbitrary client data pointer that is passed through ** into the [xCreate] and [xConnect] methods of the virtual table module ** when a new virtual table is be being created or reinitialized. ** ** ^The sqlite3_create_module_v2() interface has a fifth parameter which ** is a pointer to a destructor for the pClientData. ^SQLite will ** invoke the destructor function (if it is not NULL) when SQLite ** no longer needs the pClientData pointer. ^The destructor will also ** be invoked if the call to sqlite3_create_module_v2() fails. ** ^The sqlite3_create_module() ** interface is equivalent to sqlite3_create_module_v2() with a NULL ** destructor. ** ** ^If the third parameter (the pointer to the sqlite3_module object) is ** NULL then no new module is created and any existing modules with the ** same name are dropped. ** ** See also: [sqlite3_drop_modules()] */ SQLITE_API int sqlite3_create_module( sqlite3 *db, /* SQLite connection to register module with */ const char *zName, /* Name of the module */ const sqlite3_module *p, /* Methods for the module */ void *pClientData /* Client data for xCreate/xConnect */ ); SQLITE_API int sqlite3_create_module_v2( sqlite3 *db, /* SQLite connection to register module with */ const char *zName, /* Name of the module */ const sqlite3_module *p, /* Methods for the module */ void *pClientData, /* Client data for xCreate/xConnect */ void(*xDestroy)(void*) /* Module destructor function */ ); /* ** CAPI3REF: Remove Unnecessary Virtual Table Implementations ** METHOD: sqlite3 ** ** ^The sqlite3_drop_modules(D,L) interface removes all virtual ** table modules from database connection D except those named on list L. ** The L parameter must be either NULL or a pointer to an array of pointers ** to strings where the array is terminated by a single NULL pointer. ** ^If the L parameter is NULL, then all virtual table modules are removed. ** ** See also: [sqlite3_create_module()] */ SQLITE_API int sqlite3_drop_modules( sqlite3 *db, /* Remove modules from this connection */ const char **azKeep /* Except, do not remove the ones named here */ ); /* ** CAPI3REF: Virtual Table Instance Object ** KEYWORDS: sqlite3_vtab ** ** Every [virtual table module] implementation uses a subclass ** of this object to describe a particular instance ** of the [virtual table]. Each subclass will ** be tailored to the specific needs of the module implementation. ** The purpose of this superclass is to define certain fields that are ** common to all module implementations. ** ** ^Virtual tables methods can set an error message by assigning a ** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should ** take care that any prior string is freed by a call to [sqlite3_free()] ** prior to assigning a new string to zErrMsg. ^After the error message ** is delivered up to the client application, the string will be automatically ** freed by sqlite3_free() and the zErrMsg field will be zeroed. */ struct sqlite3_vtab { const sqlite3_module *pModule; /* The module for this virtual table */ int nRef; /* Number of open cursors */ char *zErrMsg; /* Error message from sqlite3_mprintf() */ /* Virtual table implementations will typically add additional fields */ }; /* ** CAPI3REF: Virtual Table Cursor Object ** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor} ** ** Every [virtual table module] implementation uses a subclass of the ** following structure to describe cursors that point into the ** [virtual table] and are used ** to loop through the virtual table. Cursors are created using the ** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed ** by the [sqlite3_module.xClose | xClose] method. Cursors are used ** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods ** of the module. Each module implementation will define ** the content of a cursor structure to suit its own needs. ** ** This superclass exists in order to define fields of the cursor that ** are common to all implementations. */ struct sqlite3_vtab_cursor { sqlite3_vtab *pVtab; /* Virtual table of this cursor */ /* Virtual table implementations will typically add additional fields */ }; /* ** CAPI3REF: Declare The Schema Of A Virtual Table ** ** ^The [xCreate] and [xConnect] methods of a ** [virtual table module] call this interface ** to declare the format (the names and datatypes of the columns) of ** the virtual tables they implement. */ SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL); /* ** CAPI3REF: Overload A Function For A Virtual Table ** METHOD: sqlite3 ** ** ^(Virtual tables can provide alternative implementations of functions ** using the [xFindFunction] method of the [virtual table module]. ** But global versions of those functions ** must exist in order to be overloaded.)^ ** ** ^(This API makes sure a global version of a function with a particular ** name and number of parameters exists. If no such function exists ** before this API is called, a new function is created.)^ ^The implementation ** of the new function always causes an exception to be thrown. So ** the new function is not good for anything by itself. Its only ** purpose is to be a placeholder function that can be overloaded ** by a [virtual table]. */ SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); /* ** CAPI3REF: A Handle To An Open BLOB ** KEYWORDS: {BLOB handle} {BLOB handles} ** ** An instance of this object represents an open BLOB on which ** [sqlite3_blob_open | incremental BLOB I/O] can be performed. ** ^Objects of this type are created by [sqlite3_blob_open()] ** and destroyed by [sqlite3_blob_close()]. ** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces ** can be used to read or write small subsections of the BLOB. ** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. */ typedef struct sqlite3_blob sqlite3_blob; /* ** CAPI3REF: Open A BLOB For Incremental I/O ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_blob ** ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located ** in row iRow, column zColumn, table zTable in database zDb; ** in other words, the same BLOB that would be selected by: ** **
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** 
)^ ** ** ^(Parameter zDb is not the filename that contains the database, but ** rather the symbolic name of the database. For attached databases, this is ** the name that appears after the AS keyword in the [ATTACH] statement. ** For the main database file, the database name is "main". For TEMP ** tables, the database name is "temp".)^ ** ** ^If the flags parameter is non-zero, then the BLOB is opened for read ** and write access. ^If the flags parameter is zero, the BLOB is opened for ** read-only access. ** ** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored ** in *ppBlob. Otherwise an [error code] is returned and, unless the error ** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided ** the API is not misused, it is always safe to call [sqlite3_blob_close()] ** on *ppBlob after this function it returns. ** ** This function fails with SQLITE_ERROR if any of the following are true: **
    **
  • ^(Database zDb does not exist)^, **
  • ^(Table zTable does not exist within database zDb)^, **
  • ^(Table zTable is a WITHOUT ROWID table)^, **
  • ^(Column zColumn does not exist)^, **
  • ^(Row iRow is not present in the table)^, **
  • ^(The specified column of row iRow contains a value that is not ** a TEXT or BLOB value)^, **
  • ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE ** constraint and the blob is being opened for read/write access)^, **
  • ^([foreign key constraints | Foreign key constraints] are enabled, ** column zColumn is part of a [child key] definition and the blob is ** being opened for read/write access)^. **
** ** ^Unless it returns SQLITE_MISUSE, this function sets the ** [database connection] error code and message accessible via ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. ** ** A BLOB referenced by sqlite3_blob_open() may be read using the ** [sqlite3_blob_read()] interface and modified by using ** [sqlite3_blob_write()]. The [BLOB handle] can be moved to a ** different row of the same table using the [sqlite3_blob_reopen()] ** interface. However, the column, table, or database of a [BLOB handle] ** cannot be changed after the [BLOB handle] is opened. ** ** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column ** other than the one the BLOB handle is open on.)^ ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for ** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. ** ^(Changes written into a BLOB prior to the BLOB expiring are not ** rolled back by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion.)^ ** ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. ^The size of a blob may not be changed by this ** interface. Use the [UPDATE] SQL command to change the size of a ** blob. ** ** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces ** and the built-in [zeroblob] SQL function may be used to create a ** zero-filled blob to read or write using the incremental-blob interface. ** ** To avoid a resource leak, every open [BLOB handle] should eventually ** be released by a call to [sqlite3_blob_close()]. ** ** See also: [sqlite3_blob_close()], ** [sqlite3_blob_reopen()], [sqlite3_blob_read()], ** [sqlite3_blob_bytes()], [sqlite3_blob_write()]. */ SQLITE_API int sqlite3_blob_open( sqlite3*, const char *zDb, const char *zTable, const char *zColumn, sqlite3_int64 iRow, int flags, sqlite3_blob **ppBlob ); /* ** CAPI3REF: Move a BLOB Handle to a New Row ** METHOD: sqlite3_blob ** ** ^This function is used to move an existing [BLOB handle] so that it points ** to a different row of the same database table. ^The new row is identified ** by the rowid value passed as the second argument. Only the row can be ** changed. ^The database, table and column on which the blob handle is open ** remain the same. Moving an existing [BLOB handle] to a new row is ** faster than closing the existing handle and opening a new one. ** ** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] - ** it must exist and there must be either a blob or text value stored in ** the nominated column.)^ ^If the new row is not present in the table, or if ** it does not contain a blob or text value, or if another error occurs, an ** SQLite error code is returned and the blob handle is considered aborted. ** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or ** [sqlite3_blob_reopen()] on an aborted blob handle immediately return ** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle ** always returns zero. ** ** ^This function sets the database handle error code and message. */ SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle ** DESTRUCTOR: sqlite3_blob ** ** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed ** unconditionally. Even if this routine returns an error code, the ** handle is still closed.)^ ** ** ^If the blob handle being closed was opened for read-write access, and if ** the database is in auto-commit mode and there are no other open read-write ** blob handles or active write statements, the current transaction is ** committed. ^If an error occurs while committing the transaction, an error ** code is returned and the transaction rolled back. ** ** Calling this function with an argument that is not a NULL pointer or an ** open blob handle results in undefined behavior. ^Calling this routine ** with a null pointer (such as would be returned by a failed call to ** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function ** is passed a valid open blob handle, the values returned by the ** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning. */ SQLITE_API int sqlite3_blob_close(sqlite3_blob *); /* ** CAPI3REF: Return The Size Of An Open BLOB ** METHOD: sqlite3_blob ** ** ^Returns the size in bytes of the BLOB accessible via the ** successfully opened [BLOB handle] in its only argument. ^The ** incremental blob I/O routines can only read or overwriting existing ** blob content; they cannot change the size of a blob. ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. */ SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *); /* ** CAPI3REF: Read Data From A BLOB Incrementally ** METHOD: sqlite3_blob ** ** ^(This function is used to read data from an open [BLOB handle] into a ** caller-supplied buffer. N bytes of data are copied into buffer Z ** from the open BLOB, starting at offset iOffset.)^ ** ** ^If offset iOffset is less than N bytes from the end of the BLOB, ** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is ** less than zero, [SQLITE_ERROR] is returned and no data is read. ** ^The size of the blob (and hence the maximum value of N+iOffset) ** can be determined using the [sqlite3_blob_bytes()] interface. ** ** ^An attempt to read from an expired [BLOB handle] fails with an ** error code of [SQLITE_ABORT]. ** ** ^(On success, sqlite3_blob_read() returns SQLITE_OK. ** Otherwise, an [error code] or an [extended error code] is returned.)^ ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. ** ** See also: [sqlite3_blob_write()]. */ SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* ** CAPI3REF: Write Data Into A BLOB Incrementally ** METHOD: sqlite3_blob ** ** ^(This function is used to write data into an open [BLOB handle] from a ** caller-supplied buffer. N bytes of data are copied from the buffer Z ** into the open BLOB, starting at offset iOffset.)^ ** ** ^(On success, sqlite3_blob_write() returns SQLITE_OK. ** Otherwise, an [error code] or an [extended error code] is returned.)^ ** ^Unless SQLITE_MISUSE is returned, this function sets the ** [database connection] error code and message accessible via ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. ** ** ^If the [BLOB handle] passed as the first argument was not opened for ** writing (the flags parameter to [sqlite3_blob_open()] was zero), ** this function returns [SQLITE_READONLY]. ** ** This function may only modify the contents of the BLOB; it is ** not possible to increase the size of a BLOB using this API. ** ^If offset iOffset is less than N bytes from the end of the BLOB, ** [SQLITE_ERROR] is returned and no data is written. The size of the ** BLOB (and hence the maximum value of N+iOffset) can be determined ** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less ** than zero [SQLITE_ERROR] is returned and no data is written. ** ** ^An attempt to write to an expired [BLOB handle] fails with an ** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred ** before the [BLOB handle] expired are not rolled back by the ** expiration of the handle, though of course those changes might ** have been overwritten by the statement that expired the BLOB handle ** or by other independent statements. ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. ** ** See also: [sqlite3_blob_read()]. */ SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); /* ** CAPI3REF: Virtual File System Objects ** ** A virtual filesystem (VFS) is an [sqlite3_vfs] object ** that SQLite uses to interact ** with the underlying operating system. Most SQLite builds come with a ** single default VFS that is appropriate for the host computer. ** New VFSes can be registered and existing VFSes can be unregistered. ** The following interfaces are provided. ** ** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name. ** ^Names are case sensitive. ** ^Names are zero-terminated UTF-8 strings. ** ^If there is no match, a NULL pointer is returned. ** ^If zVfsName is NULL then the default VFS is returned. ** ** ^New VFSes are registered with sqlite3_vfs_register(). ** ^Each new VFS becomes the default VFS if the makeDflt flag is set. ** ^The same VFS can be registered multiple times without injury. ** ^To make an existing VFS into the default VFS, register it again ** with the makeDflt flag set. If two different VFSes with the ** same name are registered, the behavior is undefined. If a ** VFS is registered with a name that is NULL or an empty string, ** then the behavior is undefined. ** ** ^Unregister a VFS with the sqlite3_vfs_unregister() interface. ** ^(If the default VFS is unregistered, another VFS is chosen as ** the default. The choice for the new VFS is arbitrary.)^ */ SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); /* ** CAPI3REF: Mutexes ** ** The SQLite core uses these routines for thread ** synchronization. Though they are intended for internal ** use by SQLite, code that links against SQLite is ** permitted to use any of these routines. ** ** The SQLite source code contains multiple implementations ** of these mutex routines. An appropriate implementation ** is selected automatically at compile-time. The following ** implementations are available in the SQLite core: ** **
    **
  • SQLITE_MUTEX_PTHREADS **
  • SQLITE_MUTEX_W32 **
  • SQLITE_MUTEX_NOOP **
** ** The SQLITE_MUTEX_NOOP implementation is a set of routines ** that does no real locking and is appropriate for use in ** a single-threaded application. The SQLITE_MUTEX_PTHREADS and ** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix ** and Windows. ** ** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex ** implementation is included with the library. In this case the ** application must supply a custom mutex implementation using the ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function ** before calling sqlite3_initialize() or any other public sqlite3_ ** function that calls sqlite3_initialize(). ** ** ^The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc() ** routine returns NULL if it is unable to allocate the requested ** mutex. The argument to sqlite3_mutex_alloc() must one of these ** integer constants: ** **
    **
  • SQLITE_MUTEX_FAST **
  • SQLITE_MUTEX_RECURSIVE **
  • SQLITE_MUTEX_STATIC_MAIN **
  • SQLITE_MUTEX_STATIC_MEM **
  • SQLITE_MUTEX_STATIC_OPEN **
  • SQLITE_MUTEX_STATIC_PRNG **
  • SQLITE_MUTEX_STATIC_LRU **
  • SQLITE_MUTEX_STATIC_PMEM **
  • SQLITE_MUTEX_STATIC_APP1 **
  • SQLITE_MUTEX_STATIC_APP2 **
  • SQLITE_MUTEX_STATIC_APP3 **
  • SQLITE_MUTEX_STATIC_VFS1 **
  • SQLITE_MUTEX_STATIC_VFS2 **
  • SQLITE_MUTEX_STATIC_VFS3 **
** ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) ** cause sqlite3_mutex_alloc() to create ** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other ** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return ** a pointer to a static preexisting mutex. ^Nine static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. ^For the static ** mutex types, the same mutex is returned on every call that has ** the same type number. ** ** ^The sqlite3_mutex_free() routine deallocates a previously ** allocated dynamic mutex. Attempting to deallocate a static ** mutex results in undefined behavior. ** ** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. ^If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] ** upon successful entry. ^(Mutexes created using ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. ** In such cases, the ** mutex must be exited an equal number of times before another thread ** can enter.)^ If the same thread tries to enter any mutex other ** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined. ** ** ^(Some systems (for example, Windows 95) do not support the operation ** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() ** will always return SQLITE_BUSY. In most cases the SQLite core only uses ** sqlite3_mutex_try() as an optimization, so this is acceptable ** behavior. The exceptions are unix builds that set the ** SQLITE_ENABLE_SETLK_TIMEOUT build option. In that case a working ** sqlite3_mutex_try() is required.)^ ** ** ^The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered by the ** calling thread or is not currently allocated. ** ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), ** sqlite3_mutex_leave(), or sqlite3_mutex_free() is a NULL pointer, ** then any of the four routines behaves as a no-op. ** ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. */ SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int); SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*); SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*); SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*); SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); /* ** CAPI3REF: Mutex Methods Object ** ** An instance of this structure defines the low-level routines ** used to allocate and use mutexes. ** ** Usually, the default mutex implementations provided by SQLite are ** sufficient, however the application has the option of substituting a custom ** implementation for specialized deployments or systems for which SQLite ** does not provide a suitable implementation. In this case, the application ** creates and populates an instance of this structure to pass ** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. ** Additionally, an instance of this structure can be used as an ** output variable when querying the system for the current mutex ** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. ** ** ^The xMutexInit method defined by this structure is invoked as ** part of system initialization by the sqlite3_initialize() function. ** ^The xMutexInit routine is called by SQLite exactly once for each ** effective call to [sqlite3_initialize()]. ** ** ^The xMutexEnd method defined by this structure is invoked as ** part of system shutdown by the sqlite3_shutdown() function. The ** implementation of this method is expected to release all outstanding ** resources obtained by the mutex methods implementation, especially ** those obtained by the xMutexInit method. ^The xMutexEnd() ** interface is invoked exactly once for each call to [sqlite3_shutdown()]. ** ** ^(The remaining seven methods defined by this structure (xMutexAlloc, ** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and ** xMutexNotheld) implement the following interfaces (respectively): ** **
    **
  • [sqlite3_mutex_alloc()]
  • **
  • [sqlite3_mutex_free()]
  • **
  • [sqlite3_mutex_enter()]
  • **
  • [sqlite3_mutex_try()]
  • **
  • [sqlite3_mutex_leave()]
  • **
  • [sqlite3_mutex_held()]
  • **
  • [sqlite3_mutex_notheld()]
  • **
)^ ** ** The only difference is that the public sqlite3_XXX functions enumerated ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case. The results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** ** The xMutexInit() method must be threadsafe. It must be harmless to ** invoke xMutexInit() multiple times within the same process and without ** intervening calls to xMutexEnd(). Second and subsequent calls to ** xMutexInit() must be no-ops. ** ** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] ** and its associates). Similarly, xMutexAlloc() must not use SQLite memory ** allocation for a static mutex. ^However xMutexAlloc() may use SQLite ** memory allocation for a fast or recursive mutex. ** ** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is ** called, but only if the prior call to xMutexInit returned SQLITE_OK. ** If xMutexInit fails in any way, it is expected to clean up after itself ** prior to returning. */ typedef struct sqlite3_mutex_methods sqlite3_mutex_methods; struct sqlite3_mutex_methods { int (*xMutexInit)(void); int (*xMutexEnd)(void); sqlite3_mutex *(*xMutexAlloc)(int); void (*xMutexFree)(sqlite3_mutex *); void (*xMutexEnter)(sqlite3_mutex *); int (*xMutexTry)(sqlite3_mutex *); void (*xMutexLeave)(sqlite3_mutex *); int (*xMutexHeld)(sqlite3_mutex *); int (*xMutexNotheld)(sqlite3_mutex *); }; /* ** CAPI3REF: Mutex Verification Routines ** ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines ** are intended for use inside assert() statements. The SQLite core ** never uses these routines except inside an assert() and applications ** are advised to follow the lead of the core. The SQLite core only ** provides implementations for these routines when it is compiled ** with the SQLITE_DEBUG flag. External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** ** These routines should return true if the mutex in their argument ** is held or not held, respectively, by the calling thread. ** ** The implementation is not required to provide versions of these ** routines that actually work. If the implementation does not provide working ** versions of these routines, it should at least provide stubs that always ** return true so that one does not get spurious assertion failures. ** ** If the argument to sqlite3_mutex_held() is a NULL pointer then ** the routine should return 1. This seems counter-intuitive since ** clearly the mutex cannot be held if it does not exist. But ** the reason the mutex does not exist is because the build is not ** using mutexes. And we do not want the assert() containing the ** call to sqlite3_mutex_held() to fail, so a non-zero return is ** the appropriate thing to do. The sqlite3_mutex_notheld() ** interface should also return 1 when given a NULL pointer. */ #ifndef NDEBUG SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); #endif /* ** CAPI3REF: Mutex Types ** ** The [sqlite3_mutex_alloc()] interface takes a single argument ** which is one of these integer constants. ** ** The set of static mutexes may change from one SQLite release to the ** next. Applications that override the built-in mutex logic must be ** prepared to accommodate additional static mutexes. */ #define SQLITE_MUTEX_FAST 0 #define SQLITE_MUTEX_RECURSIVE 1 #define SQLITE_MUTEX_STATIC_MAIN 2 #define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ #define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */ #define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */ #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_randomness() */ #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */ #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ #define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */ #define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */ #define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */ /* Legacy compatibility: */ #define SQLITE_MUTEX_STATIC_MASTER 2 /* ** CAPI3REF: Retrieve the mutex for a database connection ** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument ** when the [threading mode] is Serialized. ** ^If the [threading mode] is Single-thread or Multi-thread then this ** routine returns a NULL pointer. */ SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*); /* ** CAPI3REF: Low-Level Control Of Database Files ** METHOD: sqlite3 ** KEYWORDS: {file control} ** ** ^The [sqlite3_file_control()] interface makes a direct call to the ** xFileControl method for the [sqlite3_io_methods] object associated ** with a particular database identified by the second argument. ^The ** name of the database is "main" for the main database or "temp" for the ** TEMP database, or the name that appears after the AS keyword for ** databases that are added using the [ATTACH] SQL command. ** ^A NULL pointer can be used in place of "main" to refer to the ** main database file. ** ^The third and fourth parameters to this routine ** are passed directly through to the second and third parameters of ** the xFileControl method. ^The return value of the xFileControl ** method becomes the return value of this routine. ** ** A few opcodes for [sqlite3_file_control()] are handled directly ** by the SQLite core and never invoke the ** sqlite3_io_methods.xFileControl method. ** ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes ** a pointer to the underlying [sqlite3_file] object to be written into ** the space pointed to by the 4th parameter. The ** [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns ** the [sqlite3_file] object associated with the journal file instead of ** the main database. The [SQLITE_FCNTL_VFS_POINTER] opcode returns ** a pointer to the underlying [sqlite3_vfs] object for the file. ** The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter ** from the pager. ** ** ^If the second parameter (zDbName) does not match the name of any ** open database file, then SQLITE_ERROR is returned. ^This error ** code is not remembered and will not be recalled by [sqlite3_errcode()] ** or [sqlite3_errmsg()]. The underlying xFileControl method might ** also return SQLITE_ERROR. There is no way to distinguish between ** an incorrect zDbName and an SQLITE_ERROR return from the underlying ** xFileControl method. ** ** See also: [file control opcodes] */ SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); /* ** CAPI3REF: Testing Interface ** ** ^The sqlite3_test_control() interface is used to read out internal ** state of SQLite and to inject faults into SQLite for testing ** purposes. ^The first parameter is an operation code that determines ** the number, meaning, and operation of all subsequent parameters. ** ** This interface is not for use by applications. It exists solely ** for verifying the correct operation of the SQLite library. Depending ** on how the SQLite library is compiled, this interface might not exist. ** ** The details of the operation codes, their meanings, the parameters ** they take, and what they do are all subject to change without notice. ** Unlike most of the SQLite API, this function is not guaranteed to ** operate consistently from one release to the next. */ SQLITE_API int sqlite3_test_control(int op, ...); /* ** CAPI3REF: Testing Interface Operation Codes ** ** These constants are the valid operation code parameters used ** as the first argument to [sqlite3_test_control()]. ** ** These parameters and their meanings are subject to change ** without notice. These values are for testing purposes only. ** Applications should not use any of these parameters or the ** [sqlite3_test_control()] interface. */ #define SQLITE_TESTCTRL_FIRST 5 #define SQLITE_TESTCTRL_PRNG_SAVE 5 #define SQLITE_TESTCTRL_PRNG_RESTORE 6 #define SQLITE_TESTCTRL_PRNG_RESET 7 /* NOT USED */ #define SQLITE_TESTCTRL_FK_NO_ACTION 7 #define SQLITE_TESTCTRL_BITVEC_TEST 8 #define SQLITE_TESTCTRL_FAULT_INSTALL 9 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 /* NOT USED */ #define SQLITE_TESTCTRL_JSON_SELFCHECK 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */ #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */ #define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ #define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 #define SQLITE_TESTCTRL_SORTER_MMAP 24 #define SQLITE_TESTCTRL_IMPOSTER 25 #define SQLITE_TESTCTRL_PARSER_COVERAGE 26 #define SQLITE_TESTCTRL_RESULT_INTREAL 27 #define SQLITE_TESTCTRL_PRNG_SEED 28 #define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29 #define SQLITE_TESTCTRL_SEEK_COUNT 30 #define SQLITE_TESTCTRL_TRACEFLAGS 31 #define SQLITE_TESTCTRL_TUNE 32 #define SQLITE_TESTCTRL_LOGEST 33 #define SQLITE_TESTCTRL_USELONGDOUBLE 34 #define SQLITE_TESTCTRL_LAST 34 /* Largest TESTCTRL */ /* ** CAPI3REF: SQL Keyword Checking ** ** These routines provide access to the set of SQL language keywords ** recognized by SQLite. Applications can uses these routines to determine ** whether or not a specific identifier needs to be escaped (for example, ** by enclosing in double-quotes) so as not to confuse the parser. ** ** The sqlite3_keyword_count() interface returns the number of distinct ** keywords understood by SQLite. ** ** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and ** makes *Z point to that keyword expressed as UTF8 and writes the number ** of bytes in the keyword into *L. The string that *Z points to is not ** zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns ** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z ** or L are NULL or invalid pointers then calls to ** sqlite3_keyword_name(N,Z,L) result in undefined behavior. ** ** The sqlite3_keyword_check(Z,L) interface checks to see whether or not ** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero ** if it is and zero if not. ** ** The parser used by SQLite is forgiving. It is often possible to use ** a keyword as an identifier as long as such use does not result in a ** parsing ambiguity. For example, the statement ** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and ** creates a new table named "BEGIN" with three columns named ** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid ** using keywords as identifiers. Common techniques used to avoid keyword ** name collisions include: **
    **
  • Put all identifier names inside double-quotes. This is the official ** SQL way to escape identifier names. **
  • Put identifier names inside [...]. This is not standard SQL, ** but it is what SQL Server does and so lots of programmers use this ** technique. **
  • Begin every identifier with the letter "Z" as no SQL keywords start ** with "Z". **
  • Include a digit somewhere in every identifier name. **
** ** Note that the number of keywords understood by SQLite can depend on ** compile-time options. For example, "VACUUM" is not a keyword if ** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also, ** new keywords may be added to future releases of SQLite. */ SQLITE_API int sqlite3_keyword_count(void); SQLITE_API int sqlite3_keyword_name(int,const char**,int*); SQLITE_API int sqlite3_keyword_check(const char*,int); /* ** CAPI3REF: Dynamic String Object ** KEYWORDS: {dynamic string} ** ** An instance of the sqlite3_str object contains a dynamically-sized ** string under construction. ** ** The lifecycle of an sqlite3_str object is as follows: **
    **
  1. ^The sqlite3_str object is created using [sqlite3_str_new()]. **
  2. ^Text is appended to the sqlite3_str object using various ** methods, such as [sqlite3_str_appendf()]. **
  3. ^The sqlite3_str object is destroyed and the string it created ** is returned using the [sqlite3_str_finish()] interface. **
*/ typedef struct sqlite3_str sqlite3_str; /* ** CAPI3REF: Create A New Dynamic String Object ** CONSTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_new(D)] interface allocates and initializes ** a new [sqlite3_str] object. To avoid memory leaks, the object returned by ** [sqlite3_str_new()] must be freed by a subsequent call to ** [sqlite3_str_finish(X)]. ** ** ^The [sqlite3_str_new(D)] interface always returns a pointer to a ** valid [sqlite3_str] object, though in the event of an out-of-memory ** error the returned object might be a special singleton that will ** silently reject new text, always return SQLITE_NOMEM from ** [sqlite3_str_errcode()], always return 0 for ** [sqlite3_str_length()], and always return NULL from ** [sqlite3_str_finish(X)]. It is always safe to use the value ** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter ** to any of the other [sqlite3_str] methods. ** ** The D parameter to [sqlite3_str_new(D)] may be NULL. If the ** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum ** length of the string contained in the [sqlite3_str] object will be ** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead ** of [SQLITE_MAX_LENGTH]. */ SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*); /* ** CAPI3REF: Finalize A Dynamic String ** DESTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X ** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()] ** that contains the constructed string. The calling application should ** pass the returned value to [sqlite3_free()] to avoid a memory leak. ** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any ** errors were encountered during construction of the string. ^The ** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the ** string in [sqlite3_str] object X is zero bytes long. */ SQLITE_API char *sqlite3_str_finish(sqlite3_str*); /* ** CAPI3REF: Add Content To A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces add content to an sqlite3_str object previously obtained ** from [sqlite3_str_new()]. ** ** ^The [sqlite3_str_appendf(X,F,...)] and ** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf] ** functionality of SQLite to append formatted text onto the end of ** [sqlite3_str] object X. ** ** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S ** onto the end of the [sqlite3_str] object X. N must be non-negative. ** S must contain at least N non-zero bytes of content. To append a ** zero-terminated string in its entirety, use the [sqlite3_str_appendall()] ** method instead. ** ** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of ** zero-terminated string S onto the end of [sqlite3_str] object X. ** ** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the ** single-byte character C onto the end of [sqlite3_str] object X. ** ^This method can be used, for example, to add whitespace indentation. ** ** ^The [sqlite3_str_reset(X)] method resets the string under construction ** inside [sqlite3_str] object X back to zero bytes in length. ** ** These methods do not return a result code. ^If an error occurs, that fact ** is recorded in the [sqlite3_str] object and can be recovered by a ** subsequent call to [sqlite3_str_errcode(X)]. */ SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...); SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list); SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N); SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn); SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C); SQLITE_API void sqlite3_str_reset(sqlite3_str*); /* ** CAPI3REF: Status Of A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces return the current status of an [sqlite3_str] object. ** ** ^If any prior errors have occurred while constructing the dynamic string ** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return ** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns ** [SQLITE_NOMEM] following any out-of-memory error, or ** [SQLITE_TOOBIG] if the size of the dynamic string exceeds ** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors. ** ** ^The [sqlite3_str_length(X)] method returns the current length, in bytes, ** of the dynamic string under construction in [sqlite3_str] object X. ** ^The length returned by [sqlite3_str_length(X)] does not include the ** zero-termination byte. ** ** ^The [sqlite3_str_value(X)] method returns a pointer to the current ** content of the dynamic string under construction in X. The value ** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X ** and might be freed or altered by any subsequent method on the same ** [sqlite3_str] object. Applications must not used the pointer returned ** [sqlite3_str_value(X)] after any subsequent method call on the same ** object. ^Applications may change the content of the string returned ** by [sqlite3_str_value(X)] as long as they do not write into any bytes ** outside the range of 0 to [sqlite3_str_length(X)] and do not read or ** write any byte after any subsequent sqlite3_str method call. */ SQLITE_API int sqlite3_str_errcode(sqlite3_str*); SQLITE_API int sqlite3_str_length(sqlite3_str*); SQLITE_API char *sqlite3_str_value(sqlite3_str*); /* ** CAPI3REF: SQLite Runtime Status ** ** ^These interfaces are used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes ** are of the form [status parameters | SQLITE_STATUS_...].)^ ** ^The current value of the parameter is returned into *pCurrent. ** ^The highest recorded value is returned in *pHighwater. ^If the ** resetFlag is true, then the highest record value is reset after ** *pHighwater is written. ^(Some parameters do not record the highest ** value. For those parameters ** nothing is written into *pHighwater and the resetFlag is ignored.)^ ** ^(Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent.)^ ** ** ^The sqlite3_status() and sqlite3_status64() routines return ** SQLITE_OK on success and a non-zero [error code] on failure. ** ** If either the current value or the highwater mark is too large to ** be represented by a 32-bit integer, then the values returned by ** sqlite3_status() are undefined. ** ** See also: [sqlite3_db_status()] */ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); SQLITE_API int sqlite3_status64( int op, sqlite3_int64 *pCurrent, sqlite3_int64 *pHighwater, int resetFlag ); /* ** CAPI3REF: Status Parameters ** KEYWORDS: {status parameters} ** ** These integer constants designate various run-time status parameters ** that can be returned by [sqlite3_status()]. ** **
** [[SQLITE_STATUS_MEMORY_USED]] ^(
SQLITE_STATUS_MEMORY_USED
**
This parameter is the current amount of memory checked out ** using [sqlite3_malloc()], either directly or indirectly. The ** figure includes calls made to [sqlite3_malloc()] by the application ** and internal memory usage by the SQLite library. Auxiliary page-cache ** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in ** this parameter. The amount returned is the sum of the allocation ** sizes as reported by the xSize method in [sqlite3_mem_methods].
)^ ** ** [[SQLITE_STATUS_MALLOC_SIZE]] ^(
SQLITE_STATUS_MALLOC_SIZE
**
This parameter records the largest memory allocation request ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their ** internal equivalents). Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. ** The value written into the *pCurrent parameter is undefined.
)^ ** ** [[SQLITE_STATUS_MALLOC_COUNT]] ^(
SQLITE_STATUS_MALLOC_COUNT
**
This parameter records the number of separate memory allocations ** currently checked out.
)^ ** ** [[SQLITE_STATUS_PAGECACHE_USED]] ^(
SQLITE_STATUS_PAGECACHE_USED
**
This parameter returns the number of pages used out of the ** [pagecache memory allocator] that was configured using ** [SQLITE_CONFIG_PAGECACHE]. The ** value returned is in pages, not in bytes.
)^ ** ** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]] ** ^(
SQLITE_STATUS_PAGECACHE_OVERFLOW
**
This parameter returns the number of bytes of page cache ** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE] ** buffer and where forced to overflow to [sqlite3_malloc()]. The ** returned value includes allocations that overflowed because they ** where too large (they were larger than the "sz" parameter to ** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because ** no space was left in the page cache.
)^ ** ** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(
SQLITE_STATUS_PAGECACHE_SIZE
**
This parameter records the largest memory allocation request ** handed to the [pagecache memory allocator]. Only the value returned in the ** *pHighwater parameter to [sqlite3_status()] is of interest. ** The value written into the *pCurrent parameter is undefined.
)^ ** ** [[SQLITE_STATUS_SCRATCH_USED]]
SQLITE_STATUS_SCRATCH_USED
**
No longer used.
** ** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(
SQLITE_STATUS_SCRATCH_OVERFLOW
**
No longer used.
** ** [[SQLITE_STATUS_SCRATCH_SIZE]]
SQLITE_STATUS_SCRATCH_SIZE
**
No longer used.
** ** [[SQLITE_STATUS_PARSER_STACK]] ^(
SQLITE_STATUS_PARSER_STACK
**
The *pHighwater parameter records the deepest parser stack. ** The *pCurrent value is undefined. The *pHighwater value is only ** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
)^ **
** ** New status parameters may be added from time to time. */ #define SQLITE_STATUS_MEMORY_USED 0 #define SQLITE_STATUS_PAGECACHE_USED 1 #define SQLITE_STATUS_PAGECACHE_OVERFLOW 2 #define SQLITE_STATUS_SCRATCH_USED 3 /* NOT USED */ #define SQLITE_STATUS_SCRATCH_OVERFLOW 4 /* NOT USED */ #define SQLITE_STATUS_MALLOC_SIZE 5 #define SQLITE_STATUS_PARSER_STACK 6 #define SQLITE_STATUS_PAGECACHE_SIZE 7 #define SQLITE_STATUS_SCRATCH_SIZE 8 /* NOT USED */ #define SQLITE_STATUS_MALLOC_COUNT 9 /* ** CAPI3REF: Database Connection Status ** METHOD: sqlite3 ** ** ^This interface is used to retrieve runtime status information ** about a single [database connection]. ^The first argument is the ** database connection object to be interrogated. ^The second argument ** is an integer constant, taken from the set of ** [SQLITE_DBSTATUS options], that ** determines the parameter to interrogate. The set of ** [SQLITE_DBSTATUS options] is likely ** to grow in future releases of SQLite. ** ** ^The current value of the requested parameter is written into *pCur ** and the highest instantaneous value is written into *pHiwtr. ^If ** the resetFlg is true, then the highest instantaneous value is ** reset back down to the current value. ** ** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a ** non-zero [error code] on failure. ** ** See also: [sqlite3_status()] and [sqlite3_stmt_status()]. */ SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg); /* ** CAPI3REF: Status Parameters for database connections ** KEYWORDS: {SQLITE_DBSTATUS options} ** ** These constants are the available integer "verbs" that can be passed as ** the second argument to the [sqlite3_db_status()] interface. ** ** New verbs may be added in future releases of SQLite. Existing verbs ** might be discontinued. Applications should check the return code from ** [sqlite3_db_status()] to make sure that the call worked. ** The [sqlite3_db_status()] interface will return a non-zero error code ** if a discontinued or unsupported verb is invoked. ** **
** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(
SQLITE_DBSTATUS_LOOKASIDE_USED
**
This parameter returns the number of lookaside memory slots currently ** checked out.
)^ ** ** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(
SQLITE_DBSTATUS_LOOKASIDE_HIT
**
This parameter returns the number of malloc attempts that were ** satisfied using lookaside memory. Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]] ** ^(
SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE
**
This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to the amount of ** memory requested being larger than the lookaside slot size. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]] ** ^(
SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL
**
This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to all lookaside ** memory already being in use. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_CACHE_USED]] ^(
SQLITE_DBSTATUS_CACHE_USED
**
This parameter returns the approximate number of bytes of heap ** memory used by all pager caches associated with the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. ** ** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]] ** ^(
SQLITE_DBSTATUS_CACHE_USED_SHARED
**
This parameter is similar to DBSTATUS_CACHE_USED, except that if a ** pager cache is shared between two or more connections the bytes of heap ** memory used by that pager cache is divided evenly between the attached ** connections.)^ In other words, if none of the pager caches associated ** with the database connection are shared, this request returns the same ** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are ** shared, the value returned by this call will be smaller than that returned ** by DBSTATUS_CACHE_USED. ^The highwater mark associated with ** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0. ** ** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(
SQLITE_DBSTATUS_SCHEMA_USED
**
This parameter returns the approximate number of bytes of heap ** memory used to store the schema for all databases associated ** with the connection - main, temp, and any [ATTACH]-ed databases.)^ ** ^The full amount of memory used by the schemas is reported, even if the ** schema memory is shared with other database connections due to ** [shared cache mode] being enabled. ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. ** ** [[SQLITE_DBSTATUS_STMT_USED]] ^(
SQLITE_DBSTATUS_STMT_USED
**
This parameter returns the approximate number of bytes of heap ** and lookaside memory used by all prepared statements associated with ** the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(
SQLITE_DBSTATUS_CACHE_HIT
**
This parameter returns the number of pager cache hits that have ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT ** is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(
SQLITE_DBSTATUS_CACHE_MISS
**
This parameter returns the number of pager cache misses that have ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS ** is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(
SQLITE_DBSTATUS_CACHE_WRITE
**
This parameter returns the number of dirty cache entries that have ** been written to disk. Specifically, the number of pages written to the ** wal file in wal mode databases, or the number of pages written to the ** database file in rollback mode databases. Any pages written as part of ** transaction rollback or database recovery operations are not included. ** If an IO or other error occurs while writing a page to disk, the effect ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. **
** ** [[SQLITE_DBSTATUS_CACHE_SPILL]] ^(
SQLITE_DBSTATUS_CACHE_SPILL
**
This parameter returns the number of dirty cache entries that have ** been written to disk in the middle of a transaction due to the page ** cache overflowing. Transactions are more efficient if they are written ** to disk all at once. When pages spill mid-transaction, that introduces ** additional overhead. This parameter can be used help identify ** inefficiencies that can be resolved by increasing the cache size. **
** ** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(
SQLITE_DBSTATUS_DEFERRED_FKS
**
This parameter returns zero for the current value if and only if ** all foreign key constraints (deferred or immediate) have been ** resolved.)^ ^The highwater mark is always 0. **
**
*/ #define SQLITE_DBSTATUS_LOOKASIDE_USED 0 #define SQLITE_DBSTATUS_CACHE_USED 1 #define SQLITE_DBSTATUS_SCHEMA_USED 2 #define SQLITE_DBSTATUS_STMT_USED 3 #define SQLITE_DBSTATUS_LOOKASIDE_HIT 4 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 #define SQLITE_DBSTATUS_CACHE_HIT 7 #define SQLITE_DBSTATUS_CACHE_MISS 8 #define SQLITE_DBSTATUS_CACHE_WRITE 9 #define SQLITE_DBSTATUS_DEFERRED_FKS 10 #define SQLITE_DBSTATUS_CACHE_USED_SHARED 11 #define SQLITE_DBSTATUS_CACHE_SPILL 12 #define SQLITE_DBSTATUS_MAX 12 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status ** METHOD: sqlite3_stmt ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS counters] that measure the number ** of times it has performed specific operations.)^ These counters can ** be used to monitor the performance characteristics of the prepared ** statements. For example, if the number of table steps greatly exceeds ** the number of table searches or result rows, that would tend to indicate ** that the prepared statement is using a full table scan rather than ** an index. ** ** ^(This interface is used to retrieve and reset counter values from ** a [prepared statement]. The first argument is the prepared statement ** object to be interrogated. The second argument ** is an integer code for a specific [SQLITE_STMTSTATUS counter] ** to be interrogated.)^ ** ^The current value of the requested counter is returned. ** ^If the resetFlg is true, then the counter is reset to zero after this ** interface call returns. ** ** See also: [sqlite3_status()] and [sqlite3_db_status()]. */ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg); /* ** CAPI3REF: Status Parameters for prepared statements ** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters} ** ** These preprocessor macros define integer codes that name counter ** values associated with the [sqlite3_stmt_status()] interface. ** The meanings of the various counters are as follows: ** **
** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]]
SQLITE_STMTSTATUS_FULLSCAN_STEP
**
^This is the number of times that SQLite has stepped forward in ** a table as part of a full table scan. Large numbers for this counter ** may indicate opportunities for performance improvement through ** careful use of indices.
** ** [[SQLITE_STMTSTATUS_SORT]]
SQLITE_STMTSTATUS_SORT
**
^This is the number of sort operations that have occurred. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance through careful use of indices.
** ** [[SQLITE_STMTSTATUS_AUTOINDEX]]
SQLITE_STMTSTATUS_AUTOINDEX
**
^This is the number of rows inserted into transient indices that ** were created automatically in order to help joins run faster. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance by adding permanent indices that do not ** need to be reinitialized each time the statement is run.
** ** [[SQLITE_STMTSTATUS_VM_STEP]]
SQLITE_STMTSTATUS_VM_STEP
**
^This is the number of virtual machine operations executed ** by the prepared statement if that number is less than or equal ** to 2147483647. The number of virtual machine operations can be ** used as a proxy for the total work done by the prepared statement. ** If the number of virtual machine operations exceeds 2147483647 ** then the value returned by this statement status code is undefined. ** ** [[SQLITE_STMTSTATUS_REPREPARE]]
SQLITE_STMTSTATUS_REPREPARE
**
^This is the number of times that the prepare statement has been ** automatically regenerated due to schema changes or changes to ** [bound parameters] that might affect the query plan. ** ** [[SQLITE_STMTSTATUS_RUN]]
SQLITE_STMTSTATUS_RUN
**
^This is the number of times that the prepared statement has ** been run. A single "run" for the purposes of this counter is one ** or more calls to [sqlite3_step()] followed by a call to [sqlite3_reset()]. ** The counter is incremented on the first [sqlite3_step()] call of each ** cycle. ** ** [[SQLITE_STMTSTATUS_FILTER_MISS]] ** [[SQLITE_STMTSTATUS_FILTER HIT]] **
SQLITE_STMTSTATUS_FILTER_HIT
** SQLITE_STMTSTATUS_FILTER_MISS
**
^SQLITE_STMTSTATUS_FILTER_HIT is the number of times that a join ** step was bypassed because a Bloom filter returned not-found. The ** corresponding SQLITE_STMTSTATUS_FILTER_MISS value is the number of ** times that the Bloom filter returned a find, and thus the join step ** had to be processed as normal. ** ** [[SQLITE_STMTSTATUS_MEMUSED]]
SQLITE_STMTSTATUS_MEMUSED
**
^This is the approximate number of bytes of heap memory ** used to store the prepared statement. ^This value is not actually ** a counter, and so the resetFlg parameter to sqlite3_stmt_status() ** is ignored when the opcode is SQLITE_STMTSTATUS_MEMUSED. **
**
*/ #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 #define SQLITE_STMTSTATUS_SORT 2 #define SQLITE_STMTSTATUS_AUTOINDEX 3 #define SQLITE_STMTSTATUS_VM_STEP 4 #define SQLITE_STMTSTATUS_REPREPARE 5 #define SQLITE_STMTSTATUS_RUN 6 #define SQLITE_STMTSTATUS_FILTER_MISS 7 #define SQLITE_STMTSTATUS_FILTER_HIT 8 #define SQLITE_STMTSTATUS_MEMUSED 99 /* ** CAPI3REF: Custom Page Cache Object ** ** The sqlite3_pcache type is opaque. It is implemented by ** the pluggable module. The SQLite core has no knowledge of ** its size or internal structure and never deals with the ** sqlite3_pcache object except by holding and passing pointers ** to the object. ** ** See [sqlite3_pcache_methods2] for additional information. */ typedef struct sqlite3_pcache sqlite3_pcache; /* ** CAPI3REF: Custom Page Cache Object ** ** The sqlite3_pcache_page object represents a single page in the ** page cache. The page cache will allocate instances of this ** object. Various methods of the page cache use pointers to instances ** of this object as parameters or as their return value. ** ** See [sqlite3_pcache_methods2] for additional information. */ typedef struct sqlite3_pcache_page sqlite3_pcache_page; struct sqlite3_pcache_page { void *pBuf; /* The content of the page */ void *pExtra; /* Extra information associated with the page */ }; /* ** CAPI3REF: Application Defined Page Cache. ** KEYWORDS: {page cache} ** ** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can ** register an alternative page cache implementation by passing in an ** instance of the sqlite3_pcache_methods2 structure.)^ ** In many applications, most of the heap memory allocated by ** SQLite is used for the page cache. ** By implementing a ** custom page cache using this API, an application can better control ** the amount of memory consumed by SQLite, the way in which ** that memory is allocated and released, and the policies used to ** determine exactly which parts of a database file are cached and for ** how long. ** ** The alternative page cache mechanism is an ** extreme measure that is only needed by the most demanding applications. ** The built-in page cache is recommended for most uses. ** ** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an ** internal buffer by SQLite within the call to [sqlite3_config]. Hence ** the application may discard the parameter after the call to ** [sqlite3_config()] returns.)^ ** ** [[the xInit() page cache method]] ** ^(The xInit() method is called once for each effective ** call to [sqlite3_initialize()])^ ** (usually only once during the lifetime of the process). ^(The xInit() ** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^ ** The intent of the xInit() method is to set up global data structures ** required by the custom page cache implementation. ** ^(If the xInit() method is NULL, then the ** built-in default page cache is used instead of the application defined ** page cache.)^ ** ** [[the xShutdown() page cache method]] ** ^The xShutdown() method is called by [sqlite3_shutdown()]. ** It can be used to clean up ** any outstanding resources before process shutdown, if required. ** ^The xShutdown() method may be NULL. ** ** ^SQLite automatically serializes calls to the xInit method, ** so the xInit method need not be threadsafe. ^The ** xShutdown method is only called from [sqlite3_shutdown()] so it does ** not need to be threadsafe either. All other methods must be threadsafe ** in multithreaded applications. ** ** ^SQLite will never invoke xInit() more than once without an intervening ** call to xShutdown(). ** ** [[the xCreate() page cache methods]] ** ^SQLite invokes the xCreate() method to construct a new cache instance. ** SQLite will typically create one cache instance for each open database file, ** though this is not guaranteed. ^The ** first parameter, szPage, is the size in bytes of the pages that must ** be allocated by the cache. ^szPage will always a power of two. ^The ** second parameter szExtra is a number of bytes of extra storage ** associated with each page cache entry. ^The szExtra parameter will ** a number less than 250. SQLite will use the ** extra szExtra bytes on each page to store metadata about the underlying ** database page on disk. The value passed into szExtra depends ** on the SQLite version, the target platform, and how SQLite was compiled. ** ^The third argument to xCreate(), bPurgeable, is true if the cache being ** created will be used to cache database pages of a file stored on disk, or ** false if it is used for an in-memory database. The cache implementation ** does not have to do anything special based with the value of bPurgeable; ** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will ** never invoke xUnpin() except to deliberately delete a page. ** ^In other words, calls to xUnpin() on a cache with bPurgeable set to ** false will always have the "discard" flag set to true. ** ^Hence, a cache created with bPurgeable false will ** never contain any unpinned pages. ** ** [[the xCachesize() page cache method]] ** ^(The xCachesize() method may be called at any time by SQLite to set the ** suggested maximum cache-size (number of pages stored by) the cache ** instance passed as the first argument. This is the value configured using ** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable ** parameter, the implementation is not required to do anything with this ** value; it is advisory only. ** ** [[the xPagecount() page cache methods]] ** The xPagecount() method must return the number of pages currently ** stored in the cache, both pinned and unpinned. ** ** [[the xFetch() page cache methods]] ** The xFetch() method locates a page in the cache and returns a pointer to ** an sqlite3_pcache_page object associated with that page, or a NULL pointer. ** The pBuf element of the returned sqlite3_pcache_page object will be a ** pointer to a buffer of szPage bytes used to store the content of a ** single database page. The pExtra element of sqlite3_pcache_page will be ** a pointer to the szExtra bytes of extra storage that SQLite has requested ** for each entry in the page cache. ** ** The page to be fetched is determined by the key. ^The minimum key value ** is 1. After it has been retrieved using xFetch, the page is considered ** to be "pinned". ** ** If the requested page is already in the page cache, then the page cache ** implementation must return a pointer to the page buffer with its content ** intact. If the requested page is not already in the cache, then the ** cache implementation should use the value of the createFlag ** parameter to help it determined what action to take: ** ** **
createFlag Behavior when page is not already in cache **
0 Do not allocate a new page. Return NULL. **
1 Allocate a new page if it easy and convenient to do so. ** Otherwise return NULL. **
2 Make every effort to allocate a new page. Only return ** NULL if allocating a new page is effectively impossible. **
** ** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite ** will only use a createFlag of 2 after a prior call with a createFlag of 1 ** failed.)^ In between the xFetch() calls, SQLite may ** attempt to unpin one or more cache pages by spilling the content of ** pinned pages to disk and synching the operating system disk cache. ** ** [[the xUnpin() page cache method]] ** ^xUnpin() is called by SQLite with a pointer to a currently pinned page ** as its second argument. If the third parameter, discard, is non-zero, ** then the page must be evicted from the cache. ** ^If the discard parameter is ** zero, then the page may be discarded or retained at the discretion of ** page cache implementation. ^The page cache implementation ** may choose to evict unpinned pages at any time. ** ** The cache must not perform any reference counting. A single ** call to xUnpin() unpins the page regardless of the number of prior calls ** to xFetch(). ** ** [[the xRekey() page cache methods]] ** The xRekey() method is used to change the key value associated with the ** page passed as the second argument. If the cache ** previously contains an entry associated with newKey, it must be ** discarded. ^Any prior cache entry associated with newKey is guaranteed not ** to be pinned. ** ** When SQLite calls the xTruncate() method, the cache must discard all ** existing cache entries with page numbers (keys) greater than or equal ** to the value of the iLimit parameter passed to xTruncate(). If any ** of these pages are pinned, they are implicitly unpinned, meaning that ** they can be safely discarded. ** ** [[the xDestroy() page cache method]] ** ^The xDestroy() method is used to delete a cache allocated by xCreate(). ** All resources associated with the specified cache should be freed. ^After ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*] ** handle invalid, and will not use it with any other sqlite3_pcache_methods2 ** functions. ** ** [[the xShrink() page cache method]] ** ^SQLite invokes the xShrink() method when it wants the page cache to ** free up as much of heap memory as possible. The page cache implementation ** is not obligated to free any memory, but well-behaved implementations should ** do their best. */ typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2; struct sqlite3_pcache_methods2 { int iVersion; void *pArg; int (*xInit)(void*); void (*xShutdown)(void*); sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable); void (*xCachesize)(sqlite3_pcache*, int nCachesize); int (*xPagecount)(sqlite3_pcache*); sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard); void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*, unsigned oldKey, unsigned newKey); void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); void (*xDestroy)(sqlite3_pcache*); void (*xShrink)(sqlite3_pcache*); }; /* ** This is the obsolete pcache_methods object that has now been replaced ** by sqlite3_pcache_methods2. This object is not used by SQLite. It is ** retained in the header file for backwards compatibility only. */ typedef struct sqlite3_pcache_methods sqlite3_pcache_methods; struct sqlite3_pcache_methods { void *pArg; int (*xInit)(void*); void (*xShutdown)(void*); sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable); void (*xCachesize)(sqlite3_pcache*, int nCachesize); int (*xPagecount)(sqlite3_pcache*); void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag); void (*xUnpin)(sqlite3_pcache*, void*, int discard); void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey); void (*xTruncate)(sqlite3_pcache*, unsigned iLimit); void (*xDestroy)(sqlite3_pcache*); }; /* ** CAPI3REF: Online Backup Object ** ** The sqlite3_backup object records state information about an ongoing ** online backup operation. ^The sqlite3_backup object is created by ** a call to [sqlite3_backup_init()] and is destroyed by a call to ** [sqlite3_backup_finish()]. ** ** See Also: [Using the SQLite Online Backup API] */ typedef struct sqlite3_backup sqlite3_backup; /* ** CAPI3REF: Online Backup API. ** ** The backup API copies the content of one database into another. ** It is useful either for creating backups of databases or ** for copying in-memory databases to or from persistent files. ** ** See Also: [Using the SQLite Online Backup API] ** ** ^SQLite holds a write transaction open on the destination database file ** for the duration of the backup operation. ** ^The source database is read-locked only while it is being read; ** it is not locked continuously for the entire backup operation. ** ^Thus, the backup may be performed on a live source database without ** preventing other database connections from ** reading or writing to the source database while the backup is underway. ** ** ^(To perform a backup operation: **
    **
  1. sqlite3_backup_init() is called once to initialize the ** backup, **
  2. sqlite3_backup_step() is called one or more times to transfer ** the data between the two databases, and finally **
  3. sqlite3_backup_finish() is called to release all resources ** associated with the backup operation. **
)^ ** There should be exactly one call to sqlite3_backup_finish() for each ** successful call to sqlite3_backup_init(). ** ** [[sqlite3_backup_init()]] sqlite3_backup_init() ** ** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the ** [database connection] associated with the destination database ** and the database name, respectively. ** ^The database name is "main" for the main database, "temp" for the ** temporary database, or the name specified after the AS keyword in ** an [ATTACH] statement for an attached database. ** ^The S and M arguments passed to ** sqlite3_backup_init(D,N,S,M) identify the [database connection] ** and database name of the source database, respectively. ** ^The source and destination [database connections] (parameters S and D) ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with ** an error. ** ** ^A call to sqlite3_backup_init() will fail, returning NULL, if ** there is already a read or read-write transaction open on the ** destination database. ** ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is ** returned and an error code and error message are stored in the ** destination [database connection] D. ** ^The error code and message for the failed call to sqlite3_backup_init() ** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or ** [sqlite3_errmsg16()] functions. ** ^A successful call to sqlite3_backup_init() returns a pointer to an ** [sqlite3_backup] object. ** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and ** sqlite3_backup_finish() functions to perform the specified backup ** operation. ** ** [[sqlite3_backup_step()]] sqlite3_backup_step() ** ** ^Function sqlite3_backup_step(B,N) will copy up to N pages between ** the source and destination databases specified by [sqlite3_backup] object B. ** ^If N is negative, all remaining source pages are copied. ** ^If sqlite3_backup_step(B,N) successfully copies N pages and there ** are still more pages to be copied, then the function returns [SQLITE_OK]. ** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages ** from source to destination, then it returns [SQLITE_DONE]. ** ^If an error occurs while running sqlite3_backup_step(B,N), ** then an [error code] is returned. ^As well as [SQLITE_OK] and ** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY], ** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code. ** ** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if **
    **
  1. the destination database was opened read-only, or **
  2. the destination database is using write-ahead-log journaling ** and the destination and source page sizes differ, or **
  3. the destination database is an in-memory database and the ** destination and source page sizes differ. **
)^ ** ** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then ** the [sqlite3_busy_handler | busy-handler function] ** is invoked (if one is specified). ^If the ** busy-handler returns non-zero before the lock is available, then ** [SQLITE_BUSY] is returned to the caller. ^In this case the call to ** sqlite3_backup_step() can be retried later. ^If the source ** [database connection] ** is being used to write to the source database when sqlite3_backup_step() ** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this ** case the call to sqlite3_backup_step() can be retried later on. ^(If ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or ** [SQLITE_READONLY] is returned, then ** there is no point in retrying the call to sqlite3_backup_step(). These ** errors are considered fatal.)^ The application must accept ** that the backup operation has failed and pass the backup operation handle ** to the sqlite3_backup_finish() to release associated resources. ** ** ^The first call to sqlite3_backup_step() obtains an exclusive lock ** on the destination file. ^The exclusive lock is not released until either ** sqlite3_backup_finish() is called or the backup operation is complete ** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to ** sqlite3_backup_step() obtains a [shared lock] on the source database that ** lasts for the duration of the sqlite3_backup_step() call. ** ^Because the source database is not locked between calls to ** sqlite3_backup_step(), the source database may be modified mid-way ** through the backup process. ^If the source database is modified by an ** external process or via a database connection other than the one being ** used by the backup operation, then the backup will be automatically ** restarted by the next call to sqlite3_backup_step(). ^If the source ** database is modified by the using the same database connection as is used ** by the backup operation, then the backup database is automatically ** updated at the same time. ** ** [[sqlite3_backup_finish()]] sqlite3_backup_finish() ** ** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the ** application wishes to abandon the backup operation, the application ** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish(). ** ^The sqlite3_backup_finish() interfaces releases all ** resources associated with the [sqlite3_backup] object. ** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any ** active write-transaction on the destination database is rolled back. ** The [sqlite3_backup] object is invalid ** and may not be used following a call to sqlite3_backup_finish(). ** ** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no ** sqlite3_backup_step() errors occurred, regardless or whether or not ** sqlite3_backup_step() completed. ** ^If an out-of-memory condition or IO error occurred during any prior ** sqlite3_backup_step() call on the same [sqlite3_backup] object, then ** sqlite3_backup_finish() returns the corresponding [error code]. ** ** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() ** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** ** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]] ** sqlite3_backup_remaining() and sqlite3_backup_pagecount() ** ** ^The sqlite3_backup_remaining() routine returns the number of pages still ** to be backed up at the conclusion of the most recent sqlite3_backup_step(). ** ^The sqlite3_backup_pagecount() routine returns the total number of pages ** in the source database at the conclusion of the most recent ** sqlite3_backup_step(). ** ^(The values returned by these functions are only updated by ** sqlite3_backup_step(). If the source database is modified in a way that ** changes the size of the source database or the number of pages remaining, ** those changes are not reflected in the output of sqlite3_backup_pagecount() ** and sqlite3_backup_remaining() until after the next ** sqlite3_backup_step().)^ ** ** Concurrent Usage of Database Handles ** ** ^The source [database connection] may be used by the application for other ** purposes while a backup operation is underway or being initialized. ** ^If SQLite is compiled and configured to support threadsafe database ** connections, then the source database connection may be used concurrently ** from within other threads. ** ** However, the application must guarantee that the destination ** [database connection] is not passed to any other API (by any thread) after ** sqlite3_backup_init() is called and before the corresponding call to ** sqlite3_backup_finish(). SQLite does not currently check to see ** if the application incorrectly accesses the destination [database connection] ** and so no error code is reported, but the operations may malfunction ** nevertheless. Use of the destination database connection while a ** backup is in progress might also cause a mutex deadlock. ** ** If running in [shared cache mode], the application must ** guarantee that the shared cache used by the destination database ** is not accessed while the backup is running. In practice this means ** that the application must guarantee that the disk file being ** backed up to is not accessed by any connection within the process, ** not just the specific connection that was passed to sqlite3_backup_init(). ** ** The [sqlite3_backup] object itself is partially threadsafe. Multiple ** threads may safely make multiple concurrent calls to sqlite3_backup_step(). ** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount() ** APIs are not strictly speaking threadsafe. If they are invoked at the ** same time as another thread is invoking sqlite3_backup_step() it is ** possible that they return invalid values. */ SQLITE_API sqlite3_backup *sqlite3_backup_init( sqlite3 *pDest, /* Destination database handle */ const char *zDestName, /* Destination database name */ sqlite3 *pSource, /* Source database handle */ const char *zSourceName /* Source database name */ ); SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage); SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p); SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p); SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p); /* ** CAPI3REF: Unlock Notification ** METHOD: sqlite3 ** ** ^When running in shared-cache mode, a database operation may fail with ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or ** individual tables within the shared-cache cannot be obtained. See ** [SQLite Shared-Cache Mode] for a description of shared-cache locking. ** ^This API may be used to register a callback that SQLite will invoke ** when the connection currently holding the required lock relinquishes it. ** ^This API is only available if the library was compiled with the ** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined. ** ** See Also: [Using the SQLite Unlock Notification Feature]. ** ** ^Shared-cache locks are released when a database connection concludes ** its current transaction, either by committing it or rolling it back. ** ** ^When a connection (known as the blocked connection) fails to obtain a ** shared-cache lock and SQLITE_LOCKED is returned to the caller, the ** identity of the database connection (the blocking connection) that ** has locked the required resource is stored internally. ^After an ** application receives an SQLITE_LOCKED error, it may call the ** sqlite3_unlock_notify() method with the blocked connection handle as ** the first argument to register for a callback that will be invoked ** when the blocking connections current transaction is concluded. ^The ** callback is invoked from within the [sqlite3_step] or [sqlite3_close] ** call that concludes the blocking connection's transaction. ** ** ^(If sqlite3_unlock_notify() is called in a multi-threaded application, ** there is a chance that the blocking connection will have already ** concluded its transaction by the time sqlite3_unlock_notify() is invoked. ** If this happens, then the specified callback is invoked immediately, ** from within the call to sqlite3_unlock_notify().)^ ** ** ^If the blocked connection is attempting to obtain a write-lock on a ** shared-cache table, and more than one other connection currently holds ** a read-lock on the same table, then SQLite arbitrarily selects one of ** the other connections to use as the blocking connection. ** ** ^(There may be at most one unlock-notify callback registered by a ** blocked connection. If sqlite3_unlock_notify() is called when the ** blocked connection already has a registered unlock-notify callback, ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is ** called with a NULL pointer as its second argument, then any existing ** unlock-notify callback is canceled. ^The blocked connections ** unlock-notify callback may also be canceled by closing the blocked ** connection using [sqlite3_close()]. ** ** The unlock-notify callback is not reentrant. If an application invokes ** any sqlite3_xxx API functions from within an unlock-notify callback, a ** crash or deadlock may be the result. ** ** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always ** returns SQLITE_OK. ** ** Callback Invocation Details ** ** When an unlock-notify callback is registered, the application provides a ** single void* pointer that is passed to the callback when it is invoked. ** However, the signature of the callback function allows SQLite to pass ** it an array of void* context pointers. The first argument passed to ** an unlock-notify callback is a pointer to an array of void* pointers, ** and the second is the number of entries in the array. ** ** When a blocking connection's transaction is concluded, there may be ** more than one blocked connection that has registered for an unlock-notify ** callback. ^If two or more such blocked connections have specified the ** same callback function, then instead of invoking the callback function ** multiple times, it is invoked once with the set of void* context pointers ** specified by the blocked connections bundled together into an array. ** This gives the application an opportunity to prioritize any actions ** related to the set of unblocked database connections. ** ** Deadlock Detection ** ** Assuming that after registering for an unlock-notify callback a ** database waits for the callback to be issued before taking any further ** action (a reasonable assumption), then using this API may cause the ** application to deadlock. For example, if connection X is waiting for ** connection Y's transaction to be concluded, and similarly connection ** Y is waiting on connection X's transaction, then neither connection ** will proceed and the system may remain deadlocked indefinitely. ** ** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock ** detection. ^If a given call to sqlite3_unlock_notify() would put the ** system in a deadlocked state, then SQLITE_LOCKED is returned and no ** unlock-notify callback is registered. The system is said to be in ** a deadlocked state if connection A has registered for an unlock-notify ** callback on the conclusion of connection B's transaction, and connection ** B has itself registered for an unlock-notify callback when connection ** A's transaction is concluded. ^Indirect deadlock is also detected, so ** the system is also considered to be deadlocked if connection B has ** registered for an unlock-notify callback on the conclusion of connection ** C's transaction, where connection C is waiting on connection A. ^Any ** number of levels of indirection are allowed. ** ** The "DROP TABLE" Exception ** ** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost ** always appropriate to call sqlite3_unlock_notify(). There is however, ** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement, ** SQLite checks if there are any currently executing SELECT statements ** that belong to the same connection. If there are, SQLITE_LOCKED is ** returned. In this case there is no "blocking connection", so invoking ** sqlite3_unlock_notify() results in the unlock-notify callback being ** invoked immediately. If the application then re-attempts the "DROP TABLE" ** or "DROP INDEX" query, an infinite loop might be the result. ** ** One way around this problem is to check the extended error code returned ** by an sqlite3_step() call. ^(If there is a blocking connection, then the ** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in ** the special "DROP TABLE/INDEX" case, the extended error code is just ** SQLITE_LOCKED.)^ */ SQLITE_API int sqlite3_unlock_notify( sqlite3 *pBlocked, /* Waiting connection */ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */ void *pNotifyArg /* Argument to pass to xNotify */ ); /* ** CAPI3REF: String Comparison ** ** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications ** and extensions to compare the contents of two buffers containing UTF-8 ** strings in a case-independent fashion, using the same definition of "case ** independence" that SQLite uses internally when comparing identifiers. */ SQLITE_API int sqlite3_stricmp(const char *, const char *); SQLITE_API int sqlite3_strnicmp(const char *, const char *, int); /* ** CAPI3REF: String Globbing * ** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if ** string X matches the [GLOB] pattern P. ** ^The definition of [GLOB] pattern matching used in ** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the ** SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function ** is case sensitive. ** ** Note that this routine returns zero on a match and non-zero if the strings ** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()]. ** ** See also: [sqlite3_strlike()]. */ SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr); /* ** CAPI3REF: String LIKE Matching * ** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if ** string X matches the [LIKE] pattern P with escape character E. ** ^The definition of [LIKE] pattern matching used in ** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E" ** operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without ** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0. ** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case ** insensitive - equivalent upper and lower case ASCII characters match ** one another. ** ** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though ** only ASCII characters are case folded. ** ** Note that this routine returns zero on a match and non-zero if the strings ** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()]. ** ** See also: [sqlite3_strglob()]. */ SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc); /* ** CAPI3REF: Error Logging Interface ** ** ^The [sqlite3_log()] interface writes a message into the [error log] ** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()]. ** ^If logging is enabled, the zFormat string and subsequent arguments are ** used with [sqlite3_snprintf()] to generate the final output string. ** ** The sqlite3_log() interface is intended for use by extensions such as ** virtual tables, collating functions, and SQL functions. While there is ** nothing to prevent an application from calling sqlite3_log(), doing so ** is considered bad form. ** ** The zFormat string must not be NULL. ** ** To avoid deadlocks and other threading problems, the sqlite3_log() routine ** will not use dynamically allocated memory. The log message is stored in ** a fixed-length buffer on the stack. If the log message is longer than ** a few hundred characters, it will be truncated to the length of the ** buffer. */ SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...); /* ** CAPI3REF: Write-Ahead Log Commit Hook ** METHOD: sqlite3 ** ** ^The [sqlite3_wal_hook()] function is used to register a callback that ** is invoked each time data is committed to a database in wal mode. ** ** ^(The callback is invoked by SQLite after the commit has taken place and ** the associated write-lock on the database released)^, so the implementation ** may read, write or [checkpoint] the database as required. ** ** ^The first parameter passed to the callback function when it is invoked ** is a copy of the third parameter passed to sqlite3_wal_hook() when ** registering the callback. ^The second is a copy of the database handle. ** ^The third parameter is the name of the database that was written to - ** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter ** is the number of pages currently in the write-ahead log file, ** including those that were just committed. ** ** The callback function should normally return [SQLITE_OK]. ^If an error ** code is returned, that error will propagate back up through the ** SQLite code base to cause the statement that provoked the callback ** to report an error, though the commit will have still occurred. If the ** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value ** that does not correspond to any valid SQLite error code, the results ** are undefined. ** ** A single database handle may have at most a single write-ahead log callback ** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any ** previously registered write-ahead log callback. ^The return value is ** a copy of the third parameter from the previous call, if any, or 0. ** ^Note that the [sqlite3_wal_autocheckpoint()] interface and the ** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will ** overwrite any prior [sqlite3_wal_hook()] settings. */ SQLITE_API void *sqlite3_wal_hook( sqlite3*, int(*)(void *,sqlite3*,const char*,int), void* ); /* ** CAPI3REF: Configure an auto-checkpoint ** METHOD: sqlite3 ** ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around ** [sqlite3_wal_hook()] that causes any database on [database connection] D ** to automatically [checkpoint] ** after committing a transaction if there are N or ** more frames in the [write-ahead log] file. ^Passing zero or ** a negative value as the nFrame parameter disables automatic ** checkpoints entirely. ** ** ^The callback registered by this function replaces any existing callback ** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback ** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism ** configured by this function. ** ** ^The [wal_autocheckpoint pragma] can be used to invoke this interface ** from SQL. ** ** ^Checkpoints initiated by this mechanism are ** [sqlite3_wal_checkpoint_v2|PASSIVE]. ** ** ^Every new [database connection] defaults to having the auto-checkpoint ** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT] ** pages. The use of this interface ** is only necessary if the default setting is found to be suboptimal ** for a particular application. */ SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); /* ** CAPI3REF: Checkpoint a database ** METHOD: sqlite3 ** ** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to ** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^ ** ** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the ** [write-ahead log] for database X on [database connection] D to be ** transferred into the database file and for the write-ahead log to ** be reset. See the [checkpointing] documentation for addition ** information. ** ** This interface used to be the only way to cause a checkpoint to ** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()] ** interface was added. This interface is retained for backwards ** compatibility and as a convenience for applications that need to manually ** start a callback but which do not need the full power (and corresponding ** complication) of [sqlite3_wal_checkpoint_v2()]. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database ** METHOD: sqlite3 ** ** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint ** operation on database X of [database connection] D in mode M. Status ** information is written back into integers pointed to by L and C.)^ ** ^(The M parameter must be a valid [checkpoint mode]:)^ ** **
**
SQLITE_CHECKPOINT_PASSIVE
** ^Checkpoint as many frames as possible without waiting for any database ** readers or writers to finish, then sync the database file if all frames ** in the log were checkpointed. ^The [busy-handler callback] ** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode. ** ^On the other hand, passive mode might leave the checkpoint unfinished ** if there are concurrent readers or writers. ** **
SQLITE_CHECKPOINT_FULL
** ^This mode blocks (it invokes the ** [sqlite3_busy_handler|busy-handler callback]) until there is no ** database writer and all readers are reading from the most recent database ** snapshot. ^It then checkpoints all frames in the log file and syncs the ** database file. ^This mode blocks new database writers while it is pending, ** but new database readers are allowed to continue unimpeded. ** **
SQLITE_CHECKPOINT_RESTART
** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition ** that after checkpointing the log file it blocks (calls the ** [busy-handler callback]) ** until all readers are reading from the database file only. ^This ensures ** that the next writer will restart the log file from the beginning. ** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new ** database writer attempts while it is pending, but does not impede readers. ** **
SQLITE_CHECKPOINT_TRUNCATE
** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the ** addition that it also truncates the log file to zero bytes just prior ** to a successful return. **
** ** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in ** the log file or to -1 if the checkpoint could not run because ** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not ** NULL,then *pnCkpt is set to the total number of checkpointed frames in the ** log file (including any that were already checkpointed before the function ** was called) or to -1 if the checkpoint could not run due to an error or ** because the database is not in WAL mode. ^Note that upon successful ** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been ** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero. ** ** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If ** any other process is running a checkpoint operation at the same time, the ** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a ** busy-handler configured, it will not be invoked in this case. ** ** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the ** exclusive "writer" lock on the database file. ^If the writer lock cannot be ** obtained immediately, and a busy-handler is configured, it is invoked and ** the writer lock retried until either the busy-handler returns 0 or the lock ** is successfully obtained. ^The busy-handler is also invoked while waiting for ** database readers as described above. ^If the busy-handler returns 0 before ** the writer lock is obtained or while waiting for database readers, the ** checkpoint operation proceeds from that point in the same way as ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible ** without blocking any further. ^SQLITE_BUSY is returned in this case. ** ** ^If parameter zDb is NULL or points to a zero length string, then the ** specified operation is attempted on all WAL databases [attached] to ** [database connection] db. In this case the ** values written to output parameters *pnLog and *pnCkpt are undefined. ^If ** an SQLITE_BUSY error is encountered when processing one or more of the ** attached WAL databases, the operation is still attempted on any remaining ** attached databases and SQLITE_BUSY is returned at the end. ^If any other ** error occurs while processing an attached database, processing is abandoned ** and the error code is returned to the caller immediately. ^If no error ** (SQLITE_BUSY or otherwise) is encountered while processing the attached ** databases, SQLITE_OK is returned. ** ** ^If database zDb is the name of an attached database that is not in WAL ** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If ** zDb is not NULL (or a zero length string) and is not the name of any ** attached database, SQLITE_ERROR is returned to the caller. ** ** ^Unless it returns SQLITE_MISUSE, ** the sqlite3_wal_checkpoint_v2() interface ** sets the error information that is queried by ** [sqlite3_errcode()] and [sqlite3_errmsg()]. ** ** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface ** from SQL. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of attached database (or NULL) */ int eMode, /* SQLITE_CHECKPOINT_* value */ int *pnLog, /* OUT: Size of WAL log in frames */ int *pnCkpt /* OUT: Total number of frames checkpointed */ ); /* ** CAPI3REF: Checkpoint Mode Values ** KEYWORDS: {checkpoint mode} ** ** These constants define all valid values for the "checkpoint mode" passed ** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface. ** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the ** meaning of each of these checkpoint modes. */ #define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */ #define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */ #define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for readers */ #define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */ /* ** CAPI3REF: Virtual Table Interface Configuration ** ** This function may be called by either the [xConnect] or [xCreate] method ** of a [virtual table] implementation to configure ** various facets of the virtual table interface. ** ** If this interface is invoked outside the context of an xConnect or ** xCreate virtual table method then the behavior is undefined. ** ** In the call sqlite3_vtab_config(D,C,...) the D parameter is the ** [database connection] in which the virtual table is being created and ** which is passed in as the first argument to the [xConnect] or [xCreate] ** method that is invoking sqlite3_vtab_config(). The C parameter is one ** of the [virtual table configuration options]. The presence and meaning ** of parameters after C depend on which [virtual table configuration option] ** is used. */ SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...); /* ** CAPI3REF: Virtual Table Configuration Options ** KEYWORDS: {virtual table configuration options} ** KEYWORDS: {virtual table configuration option} ** ** These macros define the various options to the ** [sqlite3_vtab_config()] interface that [virtual table] implementations ** can use to customize and optimize their behavior. ** **
** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]] **
SQLITE_VTAB_CONSTRAINT_SUPPORT
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, ** where X is an integer. If X is zero, then the [virtual table] whose ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not ** support constraints. In this configuration (which is the default) if ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire ** statement is rolled back as if [ON CONFLICT | OR ABORT] had been ** specified as part of the users SQL statement, regardless of the actual ** ON CONFLICT mode specified. ** ** If X is non-zero, then the virtual table implementation guarantees ** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before ** any modifications to internal or persistent data structures have been made. ** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite ** is able to roll back a statement or database transaction, and abandon ** or continue processing the current SQL statement as appropriate. ** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns ** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode ** had been ABORT. ** ** Virtual table implementations that are required to handle OR REPLACE ** must do so within the [xUpdate] method. If a call to the ** [sqlite3_vtab_on_conflict()] function indicates that the current ON ** CONFLICT policy is REPLACE, the virtual table implementation should ** silently replace the appropriate rows within the xUpdate callback and ** return SQLITE_OK. Or, if this is not possible, it may return ** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT ** constraint handling. **
** ** [[SQLITE_VTAB_DIRECTONLY]]
SQLITE_VTAB_DIRECTONLY
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the ** the [xConnect] or [xCreate] methods of a [virtual table] implementation ** prohibits that virtual table from being used from within triggers and ** views. **
** ** [[SQLITE_VTAB_INNOCUOUS]]
SQLITE_VTAB_INNOCUOUS
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the ** the [xConnect] or [xCreate] methods of a [virtual table] implementation ** identify that virtual table as being safe to use from within triggers ** and views. Conceptually, the SQLITE_VTAB_INNOCUOUS tag means that the ** virtual table can do no serious harm even if it is controlled by a ** malicious hacker. Developers should avoid setting the SQLITE_VTAB_INNOCUOUS ** flag unless absolutely necessary. **
** ** [[SQLITE_VTAB_USES_ALL_SCHEMAS]]
SQLITE_VTAB_USES_ALL_SCHEMAS
**
Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_USES_ALL_SCHEMA) from within the ** the [xConnect] or [xCreate] methods of a [virtual table] implementation ** instruct the query planner to begin at least a read transaction on ** all schemas ("main", "temp", and any ATTACH-ed databases) whenever the ** virtual table is used. **
**
*/ #define SQLITE_VTAB_CONSTRAINT_SUPPORT 1 #define SQLITE_VTAB_INNOCUOUS 2 #define SQLITE_VTAB_DIRECTONLY 3 #define SQLITE_VTAB_USES_ALL_SCHEMAS 4 /* ** CAPI3REF: Determine The Virtual Table Conflict Policy ** ** This function may only be called from within a call to the [xUpdate] method ** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The ** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL], ** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode ** of the SQL statement that triggered the call to the [xUpdate] method of the ** [virtual table]. */ SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *); /* ** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE ** ** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn] ** method of a [virtual table], then it might return true if the ** column is being fetched as part of an UPDATE operation during which the ** column value will not change. The virtual table implementation can use ** this hint as permission to substitute a return value that is less ** expensive to compute and that the corresponding ** [xUpdate] method understands as a "no-change" value. ** ** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that ** the column is not changed by the UPDATE statement, then the xColumn ** method can optionally return without setting a result, without calling ** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces]. ** In that case, [sqlite3_value_nochange(X)] will return true for the ** same column in the [xUpdate] method. ** ** The sqlite3_vtab_nochange() routine is an optimization. Virtual table ** implementations should continue to give a correct answer even if the ** sqlite3_vtab_nochange() interface were to always return false. In the ** current implementation, the sqlite3_vtab_nochange() interface does always ** returns false for the enhanced [UPDATE FROM] statement. */ SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*); /* ** CAPI3REF: Determine The Collation For a Virtual Table Constraint ** METHOD: sqlite3_index_info ** ** This function may only be called from within a call to the [xBestIndex] ** method of a [virtual table]. This function returns a pointer to a string ** that is the name of the appropriate collation sequence to use for text ** comparisons on the constraint identified by its arguments. ** ** The first argument must be the pointer to the [sqlite3_index_info] object ** that is the first parameter to the xBestIndex() method. The second argument ** must be an index into the aConstraint[] array belonging to the ** sqlite3_index_info structure passed to xBestIndex. ** ** Important: ** The first parameter must be the same pointer that is passed into the ** xBestMethod() method. The first parameter may not be a pointer to a ** different [sqlite3_index_info] object, even an exact copy. ** ** The return value is computed as follows: ** **
    **
  1. If the constraint comes from a WHERE clause expression that contains ** a [COLLATE operator], then the name of the collation specified by ** that COLLATE operator is returned. **

  2. If there is no COLLATE operator, but the column that is the subject ** of the constraint specifies an alternative collating sequence via ** a [COLLATE clause] on the column definition within the CREATE TABLE ** statement that was passed into [sqlite3_declare_vtab()], then the ** name of that alternative collating sequence is returned. **

  3. Otherwise, "BINARY" is returned. **

*/ SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info*,int); /* ** CAPI3REF: Determine if a virtual table query is DISTINCT ** METHOD: sqlite3_index_info ** ** This API may only be used from within an [xBestIndex|xBestIndex method] ** of a [virtual table] implementation. The result of calling this ** interface from outside of xBestIndex() is undefined and probably harmful. ** ** ^The sqlite3_vtab_distinct() interface returns an integer between 0 and ** 3. The integer returned by sqlite3_vtab_distinct() ** gives the virtual table additional information about how the query ** planner wants the output to be ordered. As long as the virtual table ** can meet the ordering requirements of the query planner, it may set ** the "orderByConsumed" flag. ** **
  1. ** ^If the sqlite3_vtab_distinct() interface returns 0, that means ** that the query planner needs the virtual table to return all rows in the ** sort order defined by the "nOrderBy" and "aOrderBy" fields of the ** [sqlite3_index_info] object. This is the default expectation. If the ** virtual table outputs all rows in sorted order, then it is always safe for ** the xBestIndex method to set the "orderByConsumed" flag, regardless of ** the return value from sqlite3_vtab_distinct(). **

  2. ** ^(If the sqlite3_vtab_distinct() interface returns 1, that means ** that the query planner does not need the rows to be returned in sorted order ** as long as all rows with the same values in all columns identified by the ** "aOrderBy" field are adjacent.)^ This mode is used when the query planner ** is doing a GROUP BY. **

  3. ** ^(If the sqlite3_vtab_distinct() interface returns 2, that means ** that the query planner does not need the rows returned in any particular ** order, as long as rows with the same values in all "aOrderBy" columns ** are adjacent.)^ ^(Furthermore, only a single row for each particular ** combination of values in the columns identified by the "aOrderBy" field ** needs to be returned.)^ ^It is always ok for two or more rows with the same ** values in all "aOrderBy" columns to be returned, as long as all such rows ** are adjacent. ^The virtual table may, if it chooses, omit extra rows ** that have the same value for all columns identified by "aOrderBy". ** ^However omitting the extra rows is optional. ** This mode is used for a DISTINCT query. **

  4. ** ^(If the sqlite3_vtab_distinct() interface returns 3, that means ** that the query planner needs only distinct rows but it does need the ** rows to be sorted.)^ ^The virtual table implementation is free to omit ** rows that are identical in all aOrderBy columns, if it wants to, but ** it is not required to omit any rows. This mode is used for queries ** that have both DISTINCT and ORDER BY clauses. **

** ** ^For the purposes of comparing virtual table output values to see if the ** values are same value for sorting purposes, two NULL values are considered ** to be the same. In other words, the comparison operator is "IS" ** (or "IS NOT DISTINCT FROM") and not "==". ** ** If a virtual table implementation is unable to meet the requirements ** specified above, then it must not set the "orderByConsumed" flag in the ** [sqlite3_index_info] object or an incorrect answer may result. ** ** ^A virtual table implementation is always free to return rows in any order ** it wants, as long as the "orderByConsumed" flag is not set. ^When the ** the "orderByConsumed" flag is unset, the query planner will add extra ** [bytecode] to ensure that the final results returned by the SQL query are ** ordered correctly. The use of the "orderByConsumed" flag and the ** sqlite3_vtab_distinct() interface is merely an optimization. ^Careful ** use of the sqlite3_vtab_distinct() interface and the "orderByConsumed" ** flag might help queries against a virtual table to run faster. Being ** overly aggressive and setting the "orderByConsumed" flag when it is not ** valid to do so, on the other hand, might cause SQLite to return incorrect ** results. */ SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info*); /* ** CAPI3REF: Identify and handle IN constraints in xBestIndex ** ** This interface may only be used from within an ** [xBestIndex|xBestIndex() method] of a [virtual table] implementation. ** The result of invoking this interface from any other context is ** undefined and probably harmful. ** ** ^(A constraint on a virtual table of the form ** "[IN operator|column IN (...)]" is ** communicated to the xBestIndex method as a ** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use ** this constraint, it must set the corresponding ** aConstraintUsage[].argvIndex to a positive integer. ^(Then, under ** the usual mode of handling IN operators, SQLite generates [bytecode] ** that invokes the [xFilter|xFilter() method] once for each value ** on the right-hand side of the IN operator.)^ Thus the virtual table ** only sees a single value from the right-hand side of the IN operator ** at a time. ** ** In some cases, however, it would be advantageous for the virtual ** table to see all values on the right-hand of the IN operator all at ** once. The sqlite3_vtab_in() interfaces facilitates this in two ways: ** **
    **
  1. ** ^A call to sqlite3_vtab_in(P,N,-1) will return true (non-zero) ** if and only if the [sqlite3_index_info|P->aConstraint][N] constraint ** is an [IN operator] that can be processed all at once. ^In other words, ** sqlite3_vtab_in() with -1 in the third argument is a mechanism ** by which the virtual table can ask SQLite if all-at-once processing ** of the IN operator is even possible. ** **

  2. ** ^A call to sqlite3_vtab_in(P,N,F) with F==1 or F==0 indicates ** to SQLite that the virtual table does or does not want to process ** the IN operator all-at-once, respectively. ^Thus when the third ** parameter (F) is non-negative, this interface is the mechanism by ** which the virtual table tells SQLite how it wants to process the ** IN operator. **

** ** ^The sqlite3_vtab_in(P,N,F) interface can be invoked multiple times ** within the same xBestIndex method call. ^For any given P,N pair, ** the return value from sqlite3_vtab_in(P,N,F) will always be the same ** within the same xBestIndex call. ^If the interface returns true ** (non-zero), that means that the constraint is an IN operator ** that can be processed all-at-once. ^If the constraint is not an IN ** operator or cannot be processed all-at-once, then the interface returns ** false. ** ** ^(All-at-once processing of the IN operator is selected if both of the ** following conditions are met: ** **
    **
  1. The P->aConstraintUsage[N].argvIndex value is set to a positive ** integer. This is how the virtual table tells SQLite that it wants to ** use the N-th constraint. ** **

  2. The last call to sqlite3_vtab_in(P,N,F) for which F was ** non-negative had F>=1. **

)^ ** ** ^If either or both of the conditions above are false, then SQLite uses ** the traditional one-at-a-time processing strategy for the IN constraint. ** ^If both conditions are true, then the argvIndex-th parameter to the ** xFilter method will be an [sqlite3_value] that appears to be NULL, ** but which can be passed to [sqlite3_vtab_in_first()] and ** [sqlite3_vtab_in_next()] to find all values on the right-hand side ** of the IN constraint. */ SQLITE_API int sqlite3_vtab_in(sqlite3_index_info*, int iCons, int bHandle); /* ** CAPI3REF: Find all elements on the right-hand side of an IN constraint. ** ** These interfaces are only useful from within the ** [xFilter|xFilter() method] of a [virtual table] implementation. ** The result of invoking these interfaces from any other context ** is undefined and probably harmful. ** ** The X parameter in a call to sqlite3_vtab_in_first(X,P) or ** sqlite3_vtab_in_next(X,P) should be one of the parameters to the ** xFilter method which invokes these routines, and specifically ** a parameter that was previously selected for all-at-once IN constraint ** processing use the [sqlite3_vtab_in()] interface in the ** [xBestIndex|xBestIndex method]. ^(If the X parameter is not ** an xFilter argument that was selected for all-at-once IN constraint ** processing, then these routines return [SQLITE_ERROR].)^ ** ** ^(Use these routines to access all values on the right-hand side ** of the IN constraint using code like the following: ** **
**    for(rc=sqlite3_vtab_in_first(pList, &pVal);
**        rc==SQLITE_OK && pVal;
**        rc=sqlite3_vtab_in_next(pList, &pVal)
**    ){
**      // do something with pVal
**    }
**    if( rc!=SQLITE_OK ){
**      // an error has occurred
**    }
** 
)^ ** ** ^On success, the sqlite3_vtab_in_first(X,P) and sqlite3_vtab_in_next(X,P) ** routines return SQLITE_OK and set *P to point to the first or next value ** on the RHS of the IN constraint. ^If there are no more values on the ** right hand side of the IN constraint, then *P is set to NULL and these ** routines return [SQLITE_DONE]. ^The return value might be ** some other value, such as SQLITE_NOMEM, in the event of a malfunction. ** ** The *ppOut values returned by these routines are only valid until the ** next call to either of these routines or until the end of the xFilter ** method from which these routines were called. If the virtual table ** implementation needs to retain the *ppOut values for longer, it must make ** copies. The *ppOut values are [protected sqlite3_value|protected]. */ SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut); SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut); /* ** CAPI3REF: Constraint values in xBestIndex() ** METHOD: sqlite3_index_info ** ** This API may only be used from within the [xBestIndex|xBestIndex method] ** of a [virtual table] implementation. The result of calling this interface ** from outside of an xBestIndex method are undefined and probably harmful. ** ** ^When the sqlite3_vtab_rhs_value(P,J,V) interface is invoked from within ** the [xBestIndex] method of a [virtual table] implementation, with P being ** a copy of the [sqlite3_index_info] object pointer passed into xBestIndex and ** J being a 0-based index into P->aConstraint[], then this routine ** attempts to set *V to the value of the right-hand operand of ** that constraint if the right-hand operand is known. ^If the ** right-hand operand is not known, then *V is set to a NULL pointer. ** ^The sqlite3_vtab_rhs_value(P,J,V) interface returns SQLITE_OK if ** and only if *V is set to a value. ^The sqlite3_vtab_rhs_value(P,J,V) ** inteface returns SQLITE_NOTFOUND if the right-hand side of the J-th ** constraint is not available. ^The sqlite3_vtab_rhs_value() interface ** can return an result code other than SQLITE_OK or SQLITE_NOTFOUND if ** something goes wrong. ** ** The sqlite3_vtab_rhs_value() interface is usually only successful if ** the right-hand operand of a constraint is a literal value in the original ** SQL statement. If the right-hand operand is an expression or a reference ** to some other column or a [host parameter], then sqlite3_vtab_rhs_value() ** will probably return [SQLITE_NOTFOUND]. ** ** ^(Some constraints, such as [SQLITE_INDEX_CONSTRAINT_ISNULL] and ** [SQLITE_INDEX_CONSTRAINT_ISNOTNULL], have no right-hand operand. For such ** constraints, sqlite3_vtab_rhs_value() always returns SQLITE_NOTFOUND.)^ ** ** ^The [sqlite3_value] object returned in *V is a protected sqlite3_value ** and remains valid for the duration of the xBestIndex method call. ** ^When xBestIndex returns, the sqlite3_value object returned by ** sqlite3_vtab_rhs_value() is automatically deallocated. ** ** The "_rhs_" in the name of this routine is an abbreviation for ** "Right-Hand Side". */ SQLITE_API int sqlite3_vtab_rhs_value(sqlite3_index_info*, int, sqlite3_value **ppVal); /* ** CAPI3REF: Conflict resolution modes ** KEYWORDS: {conflict resolution mode} ** ** These constants are returned by [sqlite3_vtab_on_conflict()] to ** inform a [virtual table] implementation what the [ON CONFLICT] mode ** is for the SQL statement being evaluated. ** ** Note that the [SQLITE_IGNORE] constant is also used as a potential ** return value from the [sqlite3_set_authorizer()] callback and that ** [SQLITE_ABORT] is also a [result code]. */ #define SQLITE_ROLLBACK 1 /* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */ #define SQLITE_FAIL 3 /* #define SQLITE_ABORT 4 // Also an error code */ #define SQLITE_REPLACE 5 /* ** CAPI3REF: Prepared Statement Scan Status Opcodes ** KEYWORDS: {scanstatus options} ** ** The following constants can be used for the T parameter to the ** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a ** different metric for sqlite3_stmt_scanstatus() to return. ** ** When the value returned to V is a string, space to hold that string is ** managed by the prepared statement S and will be automatically freed when ** S is finalized. ** ** Not all values are available for all query elements. When a value is ** not available, the output variable is set to -1 if the value is numeric, ** or to NULL if it is a string (SQLITE_SCANSTAT_NAME). ** **
** [[SQLITE_SCANSTAT_NLOOP]]
SQLITE_SCANSTAT_NLOOP
**
^The [sqlite3_int64] variable pointed to by the V parameter will be ** set to the total number of times that the X-th loop has run.
** ** [[SQLITE_SCANSTAT_NVISIT]]
SQLITE_SCANSTAT_NVISIT
**
^The [sqlite3_int64] variable pointed to by the V parameter will be set ** to the total number of rows examined by all iterations of the X-th loop.
** ** [[SQLITE_SCANSTAT_EST]]
SQLITE_SCANSTAT_EST
**
^The "double" variable pointed to by the V parameter will be set to the ** query planner's estimate for the average number of rows output from each ** iteration of the X-th loop. If the query planner's estimates was accurate, ** then this value will approximate the quotient NVISIT/NLOOP and the ** product of this value for all prior loops with the same SELECTID will ** be the NLOOP value for the current loop. ** ** [[SQLITE_SCANSTAT_NAME]]
SQLITE_SCANSTAT_NAME
**
^The "const char *" variable pointed to by the V parameter will be set ** to a zero-terminated UTF-8 string containing the name of the index or table ** used for the X-th loop. ** ** [[SQLITE_SCANSTAT_EXPLAIN]]
SQLITE_SCANSTAT_EXPLAIN
**
^The "const char *" variable pointed to by the V parameter will be set ** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN] ** description for the X-th loop. ** ** [[SQLITE_SCANSTAT_SELECTID]]
SQLITE_SCANSTAT_SELECTID
**
^The "int" variable pointed to by the V parameter will be set to the ** id for the X-th query plan element. The id value is unique within the ** statement. The select-id is the same value as is output in the first ** column of an [EXPLAIN QUERY PLAN] query. ** ** [[SQLITE_SCANSTAT_PARENTID]]
SQLITE_SCANSTAT_PARENTID
**
The "int" variable pointed to by the V parameter will be set to the ** the id of the parent of the current query element, if applicable, or ** to zero if the query element has no parent. This is the same value as ** returned in the second column of an [EXPLAIN QUERY PLAN] query. ** ** [[SQLITE_SCANSTAT_NCYCLE]]
SQLITE_SCANSTAT_NCYCLE
**
The sqlite3_int64 output value is set to the number of cycles, ** according to the processor time-stamp counter, that elapsed while the ** query element was being processed. This value is not available for ** all query elements - if it is unavailable the output variable is ** set to -1. **
*/ #define SQLITE_SCANSTAT_NLOOP 0 #define SQLITE_SCANSTAT_NVISIT 1 #define SQLITE_SCANSTAT_EST 2 #define SQLITE_SCANSTAT_NAME 3 #define SQLITE_SCANSTAT_EXPLAIN 4 #define SQLITE_SCANSTAT_SELECTID 5 #define SQLITE_SCANSTAT_PARENTID 6 #define SQLITE_SCANSTAT_NCYCLE 7 /* ** CAPI3REF: Prepared Statement Scan Status ** METHOD: sqlite3_stmt ** ** These interfaces return information about the predicted and measured ** performance for pStmt. Advanced applications can use this ** interface to compare the predicted and the measured performance and ** issue warnings and/or rerun [ANALYZE] if discrepancies are found. ** ** Since this interface is expected to be rarely used, it is only ** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS] ** compile-time option. ** ** The "iScanStatusOp" parameter determines which status information to return. ** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior ** of this interface is undefined. ^The requested measurement is written into ** a variable pointed to by the "pOut" parameter. ** ** The "flags" parameter must be passed a mask of flags. At present only ** one flag is defined - SQLITE_SCANSTAT_COMPLEX. If SQLITE_SCANSTAT_COMPLEX ** is specified, then status information is available for all elements ** of a query plan that are reported by "EXPLAIN QUERY PLAN" output. If ** SQLITE_SCANSTAT_COMPLEX is not specified, then only query plan elements ** that correspond to query loops (the "SCAN..." and "SEARCH..." elements of ** the EXPLAIN QUERY PLAN output) are available. Invoking API ** sqlite3_stmt_scanstatus() is equivalent to calling ** sqlite3_stmt_scanstatus_v2() with a zeroed flags parameter. ** ** Parameter "idx" identifies the specific query element to retrieve statistics ** for. Query elements are numbered starting from zero. A value of -1 may be ** to query for statistics regarding the entire query. ^If idx is out of range ** - less than -1 or greater than or equal to the total number of query ** elements used to implement the statement - a non-zero value is returned and ** the variable that pOut points to is unchanged. ** ** See also: [sqlite3_stmt_scanstatus_reset()] */ SQLITE_API int sqlite3_stmt_scanstatus( sqlite3_stmt *pStmt, /* Prepared statement for which info desired */ int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ void *pOut /* Result written here */ ); SQLITE_API int sqlite3_stmt_scanstatus_v2( sqlite3_stmt *pStmt, /* Prepared statement for which info desired */ int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ int flags, /* Mask of flags defined below */ void *pOut /* Result written here */ ); /* ** CAPI3REF: Prepared Statement Scan Status ** KEYWORDS: {scan status flags} */ #define SQLITE_SCANSTAT_COMPLEX 0x0001 /* ** CAPI3REF: Zero Scan-Status Counters ** METHOD: sqlite3_stmt ** ** ^Zero all [sqlite3_stmt_scanstatus()] related event counters. ** ** This API is only available if the library is built with pre-processor ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. */ SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); /* ** CAPI3REF: Flush caches to disk mid-transaction ** METHOD: sqlite3 ** ** ^If a write-transaction is open on [database connection] D when the ** [sqlite3_db_cacheflush(D)] interface invoked, any dirty ** pages in the pager-cache that are not currently in use are written out ** to disk. A dirty page may be in use if a database cursor created by an ** active SQL statement is reading from it, or if it is page 1 of a database ** file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)] ** interface flushes caches for all schemas - "main", "temp", and ** any [attached] databases. ** ** ^If this function needs to obtain extra database locks before dirty pages ** can be flushed to disk, it does so. ^If those locks cannot be obtained ** immediately and there is a busy-handler callback configured, it is invoked ** in the usual manner. ^If the required lock still cannot be obtained, then ** the database is skipped and an attempt made to flush any dirty pages ** belonging to the next (if any) database. ^If any databases are skipped ** because locks cannot be obtained, but no other error occurs, this ** function returns SQLITE_BUSY. ** ** ^If any other error occurs while flushing dirty pages to disk (for ** example an IO error or out-of-memory condition), then processing is ** abandoned and an SQLite [error code] is returned to the caller immediately. ** ** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK. ** ** ^This function does not set the database handle error code or message ** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions. */ SQLITE_API int sqlite3_db_cacheflush(sqlite3*); /* ** CAPI3REF: The pre-update hook. ** METHOD: sqlite3 ** ** ^These interfaces are only available if SQLite is compiled using the ** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option. ** ** ^The [sqlite3_preupdate_hook()] interface registers a callback function ** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation ** on a database table. ** ^At most one preupdate hook may be registered at a time on a single ** [database connection]; each call to [sqlite3_preupdate_hook()] overrides ** the previous setting. ** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()] ** with a NULL pointer as the second parameter. ** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as ** the first parameter to callbacks. ** ** ^The preupdate hook only fires for changes to real database tables; the ** preupdate hook is not invoked for changes to [virtual tables] or to ** system tables like sqlite_sequence or sqlite_stat1. ** ** ^The second parameter to the preupdate callback is a pointer to ** the [database connection] that registered the preupdate hook. ** ^The third parameter to the preupdate callback is one of the constants ** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the ** kind of update operation that is about to occur. ** ^(The fourth parameter to the preupdate callback is the name of the ** database within the database connection that is being modified. This ** will be "main" for the main database or "temp" for TEMP tables or ** the name given after the AS keyword in the [ATTACH] statement for attached ** databases.)^ ** ^The fifth parameter to the preupdate callback is the name of the ** table that is being modified. ** ** For an UPDATE or DELETE operation on a [rowid table], the sixth ** parameter passed to the preupdate callback is the initial [rowid] of the ** row being modified or deleted. For an INSERT operation on a rowid table, ** or any operation on a WITHOUT ROWID table, the value of the sixth ** parameter is undefined. For an INSERT or UPDATE on a rowid table the ** seventh parameter is the final rowid value of the row being inserted ** or updated. The value of the seventh parameter passed to the callback ** function is not defined for operations on WITHOUT ROWID tables, or for ** DELETE operations on rowid tables. ** ** ^The sqlite3_preupdate_hook(D,C,P) function returns the P argument from ** the previous call on the same [database connection] D, or NULL for ** the first call on D. ** ** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()], ** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces ** provide additional information about a preupdate event. These routines ** may only be called from within a preupdate callback. Invoking any of ** these routines from outside of a preupdate callback or with a ** [database connection] pointer that is different from the one supplied ** to the preupdate callback results in undefined and probably undesirable ** behavior. ** ** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns ** in the row that is being inserted, updated, or deleted. ** ** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to ** a [protected sqlite3_value] that contains the value of the Nth column of ** the table row before it is updated. The N parameter must be between 0 ** and one less than the number of columns or the behavior will be ** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE ** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the ** behavior is undefined. The [sqlite3_value] that P points to ** will be destroyed when the preupdate callback returns. ** ** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to ** a [protected sqlite3_value] that contains the value of the Nth column of ** the table row after it is updated. The N parameter must be between 0 ** and one less than the number of columns or the behavior will be ** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE ** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the ** behavior is undefined. The [sqlite3_value] that P points to ** will be destroyed when the preupdate callback returns. ** ** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate ** callback was invoked as a result of a direct insert, update, or delete ** operation; or 1 for inserts, updates, or deletes invoked by top-level ** triggers; or 2 for changes resulting from triggers called by top-level ** triggers; and so forth. ** ** When the [sqlite3_blob_write()] API is used to update a blob column, ** the pre-update hook is invoked with SQLITE_DELETE. This is because the ** in this case the new values are not available. In this case, when a ** callback made with op==SQLITE_DELETE is actually a write using the ** sqlite3_blob_write() API, the [sqlite3_preupdate_blobwrite()] returns ** the index of the column being written. In other cases, where the ** pre-update hook is being invoked for some other reason, including a ** regular DELETE, sqlite3_preupdate_blobwrite() returns -1. ** ** See also: [sqlite3_update_hook()] */ #if defined(SQLITE_ENABLE_PREUPDATE_HOOK) SQLITE_API void *sqlite3_preupdate_hook( sqlite3 *db, void(*xPreUpdate)( void *pCtx, /* Copy of third arg to preupdate_hook() */ sqlite3 *db, /* Database handle */ int op, /* SQLITE_UPDATE, DELETE or INSERT */ char const *zDb, /* Database name */ char const *zName, /* Table name */ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ ), void* ); SQLITE_API int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **); SQLITE_API int sqlite3_preupdate_count(sqlite3 *); SQLITE_API int sqlite3_preupdate_depth(sqlite3 *); SQLITE_API int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **); SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *); #endif /* ** CAPI3REF: Low-level system error code ** METHOD: sqlite3 ** ** ^Attempt to return the underlying operating system error code or error ** number that caused the most recent I/O error or failure to open a file. ** The return value is OS-dependent. For example, on unix systems, after ** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be ** called to get back the underlying "errno" that caused the problem, such ** as ENOSPC, EAUTH, EISDIR, and so forth. */ SQLITE_API int sqlite3_system_errno(sqlite3*); /* ** CAPI3REF: Database Snapshot ** KEYWORDS: {snapshot} {sqlite3_snapshot} ** ** An instance of the snapshot object records the state of a [WAL mode] ** database for some specific point in history. ** ** In [WAL mode], multiple [database connections] that are open on the ** same database file can each be reading a different historical version ** of the database file. When a [database connection] begins a read ** transaction, that connection sees an unchanging copy of the database ** as it existed for the point in time when the transaction first started. ** Subsequent changes to the database from other connections are not seen ** by the reader until a new read transaction is started. ** ** The sqlite3_snapshot object records state information about an historical ** version of the database file so that it is possible to later open a new read ** transaction that sees that historical version of the database rather than ** the most recent version. */ typedef struct sqlite3_snapshot { unsigned char hidden[48]; } sqlite3_snapshot; /* ** CAPI3REF: Record A Database Snapshot ** CONSTRUCTOR: sqlite3_snapshot ** ** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a ** new [sqlite3_snapshot] object that records the current state of ** schema S in database connection D. ^On success, the ** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly ** created [sqlite3_snapshot] object into *P and returns SQLITE_OK. ** If there is not already a read-transaction open on schema S when ** this function is called, one is opened automatically. ** ** The following must be true for this function to succeed. If any of ** the following statements are false when sqlite3_snapshot_get() is ** called, SQLITE_ERROR is returned. The final value of *P is undefined ** in this case. ** **
    **
  • The database handle must not be in [autocommit mode]. ** **
  • Schema S of [database connection] D must be a [WAL mode] database. ** **
  • There must not be a write transaction open on schema S of database ** connection D. ** **
  • One or more transactions must have been written to the current wal ** file since it was created on disk (by any connection). This means ** that a snapshot cannot be taken on a wal mode database with no wal ** file immediately after it is first opened. At least one transaction ** must be written to it first. **
** ** This function may also return SQLITE_NOMEM. If it is called with the ** database handle in autocommit mode but fails for some other reason, ** whether or not a read transaction is opened on schema S is undefined. ** ** The [sqlite3_snapshot] object returned from a successful call to ** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()] ** to avoid a memory leak. ** ** The [sqlite3_snapshot_get()] interface is only available when the ** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get( sqlite3 *db, const char *zSchema, sqlite3_snapshot **ppSnapshot ); /* ** CAPI3REF: Start a read transaction on an historical snapshot ** METHOD: sqlite3_snapshot ** ** ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read ** transaction or upgrades an existing one for schema S of ** [database connection] D such that the read transaction refers to ** historical [snapshot] P, rather than the most recent change to the ** database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK ** on success or an appropriate [error code] if it fails. ** ** ^In order to succeed, the database connection must not be in ** [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there ** is already a read transaction open on schema S, then the database handle ** must have no active statements (SELECT statements that have been passed ** to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()). ** SQLITE_ERROR is returned if either of these conditions is violated, or ** if schema S does not exist, or if the snapshot object is invalid. ** ** ^A call to sqlite3_snapshot_open() will fail to open if the specified ** snapshot has been overwritten by a [checkpoint]. In this case ** SQLITE_ERROR_SNAPSHOT is returned. ** ** If there is already a read transaction open when this function is ** invoked, then the same read transaction remains open (on the same ** database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT ** is returned. If another error code - for example SQLITE_PROTOCOL or an ** SQLITE_IOERR error code - is returned, then the final state of the ** read transaction is undefined. If SQLITE_OK is returned, then the ** read transaction is now open on database snapshot P. ** ** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the ** database connection D does not know that the database file for ** schema S is in [WAL mode]. A database connection might not know ** that the database file is in [WAL mode] if there has been no prior ** I/O on that database connection, or if the database entered [WAL mode] ** after the most recent I/O on the database connection.)^ ** (Hint: Run "[PRAGMA application_id]" against a newly opened ** database connection in order to make it ready to use snapshots.) ** ** The [sqlite3_snapshot_open()] interface is only available when the ** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open( sqlite3 *db, const char *zSchema, sqlite3_snapshot *pSnapshot ); /* ** CAPI3REF: Destroy a snapshot ** DESTRUCTOR: sqlite3_snapshot ** ** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P. ** The application must eventually free every [sqlite3_snapshot] object ** using this routine to avoid a memory leak. ** ** The [sqlite3_snapshot_free()] interface is only available when the ** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used. */ SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*); /* ** CAPI3REF: Compare the ages of two snapshot handles. ** METHOD: sqlite3_snapshot ** ** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages ** of two valid snapshot handles. ** ** If the two snapshot handles are not associated with the same database ** file, the result of the comparison is undefined. ** ** Additionally, the result of the comparison is only valid if both of the ** snapshot handles were obtained by calling sqlite3_snapshot_get() since the ** last time the wal file was deleted. The wal file is deleted when the ** database is changed back to rollback mode or when the number of database ** clients drops to zero. If either snapshot handle was obtained before the ** wal file was last deleted, the value returned by this function ** is undefined. ** ** Otherwise, this API returns a negative value if P1 refers to an older ** snapshot than P2, zero if the two handles refer to the same database ** snapshot, and a positive value if P1 is a newer snapshot than P2. ** ** This interface is only available if SQLite is compiled with the ** [SQLITE_ENABLE_SNAPSHOT] option. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp( sqlite3_snapshot *p1, sqlite3_snapshot *p2 ); /* ** CAPI3REF: Recover snapshots from a wal file ** METHOD: sqlite3_snapshot ** ** If a [WAL file] remains on disk after all database connections close ** (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control] ** or because the last process to have the database opened exited without ** calling [sqlite3_close()]) and a new connection is subsequently opened ** on that database and [WAL file], the [sqlite3_snapshot_open()] interface ** will only be able to open the last transaction added to the WAL file ** even though the WAL file contains other valid transactions. ** ** This function attempts to scan the WAL file associated with database zDb ** of database handle db and make all valid snapshots available to ** sqlite3_snapshot_open(). It is an error if there is already a read ** transaction open on the database, or if the database is not a WAL mode ** database. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. ** ** This interface is only available if SQLite is compiled with the ** [SQLITE_ENABLE_SNAPSHOT] option. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Serialize a database ** ** The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory ** that is a serialization of the S database on [database connection] D. ** If P is not a NULL pointer, then the size of the database in bytes ** is written into *P. ** ** For an ordinary on-disk database file, the serialization is just a ** copy of the disk file. For an in-memory database or a "TEMP" database, ** the serialization is the same sequence of bytes which would be written ** to disk if that database where backed up to disk. ** ** The usual case is that sqlite3_serialize() copies the serialization of ** the database into memory obtained from [sqlite3_malloc64()] and returns ** a pointer to that memory. The caller is responsible for freeing the ** returned value to avoid a memory leak. However, if the F argument ** contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations ** are made, and the sqlite3_serialize() function will return a pointer ** to the contiguous memory representation of the database that SQLite ** is currently using for that database, or NULL if the no such contiguous ** memory representation of the database exists. A contiguous memory ** representation of the database will usually only exist if there has ** been a prior call to [sqlite3_deserialize(D,S,...)] with the same ** values of D and S. ** The size of the database is written into *P even if the ** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy ** of the database exists. ** ** After the call, if the SQLITE_SERIALIZE_NOCOPY bit had been set, ** the returned buffer content will remain accessible and unchanged ** until either the next write operation on the connection or when ** the connection is closed, and applications must not modify the ** buffer. If the bit had been clear, the returned buffer will not ** be accessed by SQLite after the call. ** ** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the ** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory ** allocation error occurs. ** ** This interface is omitted if SQLite is compiled with the ** [SQLITE_OMIT_DESERIALIZE] option. */ SQLITE_API unsigned char *sqlite3_serialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which DB to serialize. ex: "main", "temp", ... */ sqlite3_int64 *piSize, /* Write size of the DB here, if not NULL */ unsigned int mFlags /* Zero or more SQLITE_SERIALIZE_* flags */ ); /* ** CAPI3REF: Flags for sqlite3_serialize ** ** Zero or more of the following constants can be OR-ed together for ** the F argument to [sqlite3_serialize(D,S,P,F)]. ** ** SQLITE_SERIALIZE_NOCOPY means that [sqlite3_serialize()] will return ** a pointer to contiguous in-memory database that it is currently using, ** without making a copy of the database. If SQLite is not currently using ** a contiguous in-memory database, then this option causes ** [sqlite3_serialize()] to return a NULL pointer. SQLite will only be ** using a contiguous in-memory database if it has been initialized by a ** prior call to [sqlite3_deserialize()]. */ #define SQLITE_SERIALIZE_NOCOPY 0x001 /* Do no memory allocations */ /* ** CAPI3REF: Deserialize a database ** ** The sqlite3_deserialize(D,S,P,N,M,F) interface causes the ** [database connection] D to disconnect from database S and then ** reopen S as an in-memory database based on the serialization contained ** in P. The serialized database P is N bytes in size. M is the size of ** the buffer P, which might be larger than N. If M is larger than N, and ** the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is ** permitted to add content to the in-memory database as long as the total ** size does not exceed M bytes. ** ** If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will ** invoke sqlite3_free() on the serialization buffer when the database ** connection closes. If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then ** SQLite will try to increase the buffer size using sqlite3_realloc64() ** if writes on the database cause it to grow larger than M bytes. ** ** Applications must not modify the buffer P or invalidate it before ** the database connection D is closed. ** ** The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the ** database is currently in a read transaction or is involved in a backup ** operation. ** ** It is not possible to deserialized into the TEMP database. If the ** S argument to sqlite3_deserialize(D,S,P,N,M,F) is "temp" then the ** function returns SQLITE_ERROR. ** ** The deserialized database should not be in [WAL mode]. If the database ** is in WAL mode, then any attempt to use the database file will result ** in an [SQLITE_CANTOPEN] error. The application can set the ** [file format version numbers] (bytes 18 and 19) of the input database P ** to 0x01 prior to invoking sqlite3_deserialize(D,S,P,N,M,F) to force the ** database file into rollback mode and work around this limitation. ** ** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the ** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then ** [sqlite3_free()] is invoked on argument P prior to returning. ** ** This interface is omitted if SQLite is compiled with the ** [SQLITE_OMIT_DESERIALIZE] option. */ SQLITE_API int sqlite3_deserialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which DB to reopen with the deserialization */ unsigned char *pData, /* The serialized database content */ sqlite3_int64 szDb, /* Number bytes in the deserialization */ sqlite3_int64 szBuf, /* Total size of buffer pData[] */ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */ ); /* ** CAPI3REF: Flags for sqlite3_deserialize() ** ** The following are allowed values for 6th argument (the F argument) to ** the [sqlite3_deserialize(D,S,P,N,M,F)] interface. ** ** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization ** in the P argument is held in memory obtained from [sqlite3_malloc64()] ** and that SQLite should take ownership of this memory and automatically ** free it when it has finished using it. Without this flag, the caller ** is responsible for freeing any dynamically allocated memory. ** ** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to ** grow the size of the database using calls to [sqlite3_realloc64()]. This ** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used. ** Without this flag, the deserialized database cannot increase in size beyond ** the number of bytes specified by the M parameter. ** ** The SQLITE_DESERIALIZE_READONLY flag means that the deserialized database ** should be treated as read-only. */ #define SQLITE_DESERIALIZE_FREEONCLOSE 1 /* Call sqlite3_free() on close */ #define SQLITE_DESERIALIZE_RESIZEABLE 2 /* Resize using sqlite3_realloc64() */ #define SQLITE_DESERIALIZE_READONLY 4 /* Database is read-only */ /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #if defined(__wasi__) # undef SQLITE_WASI # define SQLITE_WASI 1 # undef SQLITE_OMIT_WAL # define SQLITE_OMIT_WAL 1/* because it requires shared memory APIs */ # ifndef SQLITE_OMIT_LOAD_EXTENSION # define SQLITE_OMIT_LOAD_EXTENSION # endif # ifndef SQLITE_THREADSAFE # define SQLITE_THREADSAFE 0 # endif #endif #if 0 } /* End of the 'extern "C"' block */ #endif #endif /* SQLITE3_H */ /******** Begin file sqlite3rtree.h *********/ /* ** 2010 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ #ifndef _SQLITE3RTREE_H_ #define _SQLITE3RTREE_H_ #if 0 extern "C" { #endif typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry; typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info; /* The double-precision datatype used by RTree depends on the ** SQLITE_RTREE_INT_ONLY compile-time option. */ #ifdef SQLITE_RTREE_INT_ONLY typedef sqlite3_int64 sqlite3_rtree_dbl; #else typedef double sqlite3_rtree_dbl; #endif /* ** Register a geometry callback named zGeom that can be used as part of an ** R-Tree geometry query as follows: ** ** SELECT ... FROM WHERE MATCH $zGeom(... params ...) */ SQLITE_API int sqlite3_rtree_geometry_callback( sqlite3 *db, const char *zGeom, int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*), void *pContext ); /* ** A pointer to a structure of the following type is passed as the first ** argument to callbacks registered using rtree_geometry_callback(). */ struct sqlite3_rtree_geometry { void *pContext; /* Copy of pContext passed to s_r_g_c() */ int nParam; /* Size of array aParam[] */ sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */ void *pUser; /* Callback implementation user data */ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */ }; /* ** Register a 2nd-generation geometry callback named zScore that can be ** used as part of an R-Tree geometry query as follows: ** ** SELECT ... FROM WHERE MATCH $zQueryFunc(... params ...) */ SQLITE_API int sqlite3_rtree_query_callback( sqlite3 *db, const char *zQueryFunc, int (*xQueryFunc)(sqlite3_rtree_query_info*), void *pContext, void (*xDestructor)(void*) ); /* ** A pointer to a structure of the following type is passed as the ** argument to scored geometry callback registered using ** sqlite3_rtree_query_callback(). ** ** Note that the first 5 fields of this structure are identical to ** sqlite3_rtree_geometry. This structure is a subclass of ** sqlite3_rtree_geometry. */ struct sqlite3_rtree_query_info { void *pContext; /* pContext from when function registered */ int nParam; /* Number of function parameters */ sqlite3_rtree_dbl *aParam; /* value of function parameters */ void *pUser; /* callback can use this, if desired */ void (*xDelUser)(void*); /* function to free pUser */ sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */ unsigned int *anQueue; /* Number of pending entries in the queue */ int nCoord; /* Number of coordinates */ int iLevel; /* Level of current node or entry */ int mxLevel; /* The largest iLevel value in the tree */ sqlite3_int64 iRowid; /* Rowid for current entry */ sqlite3_rtree_dbl rParentScore; /* Score of parent node */ int eParentWithin; /* Visibility of parent node */ int eWithin; /* OUT: Visibility */ sqlite3_rtree_dbl rScore; /* OUT: Write the score here */ /* The following fields are only available in 3.8.11 and later */ sqlite3_value **apSqlParam; /* Original SQL values of parameters */ }; /* ** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin. */ #define NOT_WITHIN 0 /* Object completely outside of query region */ #define PARTLY_WITHIN 1 /* Object partially overlaps query region */ #define FULLY_WITHIN 2 /* Object fully contained within query region */ #if 0 } /* end of the 'extern "C"' block */ #endif #endif /* ifndef _SQLITE3RTREE_H_ */ /******** End of sqlite3rtree.h *********/ /******** Begin file sqlite3session.h *********/ #if !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) #define __SQLITESESSION_H_ 1 /* ** Make sure we can call this stuff from C++. */ #if 0 extern "C" { #endif /* ** CAPI3REF: Session Object Handle ** ** An instance of this object is a [session] that can be used to ** record changes to a database. */ typedef struct sqlite3_session sqlite3_session; /* ** CAPI3REF: Changeset Iterator Handle ** ** An instance of this object acts as a cursor for iterating ** over the elements of a [changeset] or [patchset]. */ typedef struct sqlite3_changeset_iter sqlite3_changeset_iter; /* ** CAPI3REF: Create A New Session Object ** CONSTRUCTOR: sqlite3_session ** ** Create a new session object attached to database handle db. If successful, ** a pointer to the new object is written to *ppSession and SQLITE_OK is ** returned. If an error occurs, *ppSession is set to NULL and an SQLite ** error code (e.g. SQLITE_NOMEM) is returned. ** ** It is possible to create multiple session objects attached to a single ** database handle. ** ** Session objects created using this function should be deleted using the ** [sqlite3session_delete()] function before the database handle that they ** are attached to is itself closed. If the database handle is closed before ** the session object is deleted, then the results of calling any session ** module function, including [sqlite3session_delete()] on the session object ** are undefined. ** ** Because the session module uses the [sqlite3_preupdate_hook()] API, it ** is not possible for an application to register a pre-update hook on a ** database handle that has one or more session objects attached. Nor is ** it possible to create a session object attached to a database handle for ** which a pre-update hook is already defined. The results of attempting ** either of these things are undefined. ** ** The session object will be used to create changesets for tables in ** database zDb, where zDb is either "main", or "temp", or the name of an ** attached database. It is not an error if database zDb is not attached ** to the database when the session object is created. */ SQLITE_API int sqlite3session_create( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (e.g. "main") */ sqlite3_session **ppSession /* OUT: New session object */ ); /* ** CAPI3REF: Delete A Session Object ** DESTRUCTOR: sqlite3_session ** ** Delete a session object previously allocated using ** [sqlite3session_create()]. Once a session object has been deleted, the ** results of attempting to use pSession with any other session module ** function are undefined. ** ** Session objects must be deleted before the database handle to which they ** are attached is closed. Refer to the documentation for ** [sqlite3session_create()] for details. */ SQLITE_API void sqlite3session_delete(sqlite3_session *pSession); /* ** CAPI3REF: Configure a Session Object ** METHOD: sqlite3_session ** ** This method is used to configure a session object after it has been ** created. At present the only valid values for the second parameter are ** [SQLITE_SESSION_OBJCONFIG_SIZE] and [SQLITE_SESSION_OBJCONFIG_ROWID]. ** */ SQLITE_API int sqlite3session_object_config(sqlite3_session*, int op, void *pArg); /* ** CAPI3REF: Options for sqlite3session_object_config ** ** The following values may passed as the the 2nd parameter to ** sqlite3session_object_config(). ** **
SQLITE_SESSION_OBJCONFIG_SIZE
** This option is used to set, clear or query the flag that enables ** the [sqlite3session_changeset_size()] API. Because it imposes some ** computational overhead, this API is disabled by default. Argument ** pArg must point to a value of type (int). If the value is initially ** 0, then the sqlite3session_changeset_size() API is disabled. If it ** is greater than 0, then the same API is enabled. Or, if the initial ** value is less than zero, no change is made. In all cases the (int) ** variable is set to 1 if the sqlite3session_changeset_size() API is ** enabled following the current call, or 0 otherwise. ** ** It is an error (SQLITE_MISUSE) to attempt to modify this setting after ** the first table has been attached to the session object. ** **
SQLITE_SESSION_OBJCONFIG_ROWID
** This option is used to set, clear or query the flag that enables ** collection of data for tables with no explicit PRIMARY KEY. ** ** Normally, tables with no explicit PRIMARY KEY are simply ignored ** by the sessions module. However, if this flag is set, it behaves ** as if such tables have a column "_rowid_ INTEGER PRIMARY KEY" inserted ** as their leftmost columns. ** ** It is an error (SQLITE_MISUSE) to attempt to modify this setting after ** the first table has been attached to the session object. */ #define SQLITE_SESSION_OBJCONFIG_SIZE 1 #define SQLITE_SESSION_OBJCONFIG_ROWID 2 /* ** CAPI3REF: Enable Or Disable A Session Object ** METHOD: sqlite3_session ** ** Enable or disable the recording of changes by a session object. When ** enabled, a session object records changes made to the database. When ** disabled - it does not. A newly created session object is enabled. ** Refer to the documentation for [sqlite3session_changeset()] for further ** details regarding how enabling and disabling a session object affects ** the eventual changesets. ** ** Passing zero to this function disables the session. Passing a value ** greater than zero enables it. Passing a value less than zero is a ** no-op, and may be used to query the current state of the session. ** ** The return value indicates the final state of the session object: 0 if ** the session is disabled, or 1 if it is enabled. */ SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable); /* ** CAPI3REF: Set Or Clear the Indirect Change Flag ** METHOD: sqlite3_session ** ** Each change recorded by a session object is marked as either direct or ** indirect. A change is marked as indirect if either: ** **
    **
  • The session object "indirect" flag is set when the change is ** made, or **
  • The change is made by an SQL trigger or foreign key action ** instead of directly as a result of a users SQL statement. **
** ** If a single row is affected by more than one operation within a session, ** then the change is considered indirect if all operations meet the criteria ** for an indirect change above, or direct otherwise. ** ** This function is used to set, clear or query the session object indirect ** flag. If the second argument passed to this function is zero, then the ** indirect flag is cleared. If it is greater than zero, the indirect flag ** is set. Passing a value less than zero does not modify the current value ** of the indirect flag, and may be used to query the current state of the ** indirect flag for the specified session object. ** ** The return value indicates the final state of the indirect flag: 0 if ** it is clear, or 1 if it is set. */ SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect); /* ** CAPI3REF: Attach A Table To A Session Object ** METHOD: sqlite3_session ** ** If argument zTab is not NULL, then it is the name of a table to attach ** to the session object passed as the first argument. All subsequent changes ** made to the table while the session object is enabled will be recorded. See ** documentation for [sqlite3session_changeset()] for further details. ** ** Or, if argument zTab is NULL, then changes are recorded for all tables ** in the database. If additional tables are added to the database (by ** executing "CREATE TABLE" statements) after this call is made, changes for ** the new tables are also recorded. ** ** Changes can only be recorded for tables that have a PRIMARY KEY explicitly ** defined as part of their CREATE TABLE statement. It does not matter if the ** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY ** KEY may consist of a single column, or may be a composite key. ** ** It is not an error if the named table does not exist in the database. Nor ** is it an error if the named table does not have a PRIMARY KEY. However, ** no changes will be recorded in either of these scenarios. ** ** Changes are not recorded for individual rows that have NULL values stored ** in one or more of their PRIMARY KEY columns. ** ** SQLITE_OK is returned if the call completes without error. Or, if an error ** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. ** **

Special sqlite_stat1 Handling

** ** As of SQLite version 3.22.0, the "sqlite_stat1" table is an exception to ** some of the rules above. In SQLite, the schema of sqlite_stat1 is: **
**        CREATE TABLE sqlite_stat1(tbl,idx,stat)
**  
** ** Even though sqlite_stat1 does not have a PRIMARY KEY, changes are ** recorded for it as if the PRIMARY KEY is (tbl,idx). Additionally, changes ** are recorded for rows for which (idx IS NULL) is true. However, for such ** rows a zero-length blob (SQL value X'') is stored in the changeset or ** patchset instead of a NULL value. This allows such changesets to be ** manipulated by legacy implementations of sqlite3changeset_invert(), ** concat() and similar. ** ** The sqlite3changeset_apply() function automatically converts the ** zero-length blob back to a NULL value when updating the sqlite_stat1 ** table. However, if the application calls sqlite3changeset_new(), ** sqlite3changeset_old() or sqlite3changeset_conflict on a changeset ** iterator directly (including on a changeset iterator passed to a ** conflict-handler callback) then the X'' value is returned. The application ** must translate X'' to NULL itself if required. ** ** Legacy (older than 3.22.0) versions of the sessions module cannot capture ** changes made to the sqlite_stat1 table. Legacy versions of the ** sqlite3changeset_apply() function silently ignore any modifications to the ** sqlite_stat1 table that are part of a changeset or patchset. */ SQLITE_API int sqlite3session_attach( sqlite3_session *pSession, /* Session object */ const char *zTab /* Table name */ ); /* ** CAPI3REF: Set a table filter on a Session Object. ** METHOD: sqlite3_session ** ** The second argument (xFilter) is the "filter callback". For changes to rows ** in tables that are not attached to the Session object, the filter is called ** to determine whether changes to the table's rows should be tracked or not. ** If xFilter returns 0, changes are not tracked. Note that once a table is ** attached, xFilter will not be called again. */ SQLITE_API void sqlite3session_table_filter( sqlite3_session *pSession, /* Session object */ int(*xFilter)( void *pCtx, /* Copy of third arg to _filter_table() */ const char *zTab /* Table name */ ), void *pCtx /* First argument passed to xFilter */ ); /* ** CAPI3REF: Generate A Changeset From A Session Object ** METHOD: sqlite3_session ** ** Obtain a changeset containing changes to the tables attached to the ** session object passed as the first argument. If successful, ** set *ppChangeset to point to a buffer containing the changeset ** and *pnChangeset to the size of the changeset in bytes before returning ** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to ** zero and return an SQLite error code. ** ** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes, ** each representing a change to a single row of an attached table. An INSERT ** change contains the values of each field of a new database row. A DELETE ** contains the original values of each field of a deleted database row. An ** UPDATE change contains the original values of each field of an updated ** database row along with the updated values for each updated non-primary-key ** column. It is not possible for an UPDATE change to represent a change that ** modifies the values of primary key columns. If such a change is made, it ** is represented in a changeset as a DELETE followed by an INSERT. ** ** Changes are not recorded for rows that have NULL values stored in one or ** more of their PRIMARY KEY columns. If such a row is inserted or deleted, ** no corresponding change is present in the changesets returned by this ** function. If an existing row with one or more NULL values stored in ** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL, ** only an INSERT is appears in the changeset. Similarly, if an existing row ** with non-NULL PRIMARY KEY values is updated so that one or more of its ** PRIMARY KEY columns are set to NULL, the resulting changeset contains a ** DELETE change only. ** ** The contents of a changeset may be traversed using an iterator created ** using the [sqlite3changeset_start()] API. A changeset may be applied to ** a database with a compatible schema using the [sqlite3changeset_apply()] ** API. ** ** Within a changeset generated by this function, all changes related to a ** single table are grouped together. In other words, when iterating through ** a changeset or when applying a changeset to a database, all changes related ** to a single table are processed before moving on to the next table. Tables ** are sorted in the same order in which they were attached (or auto-attached) ** to the sqlite3_session object. The order in which the changes related to ** a single table are stored is undefined. ** ** Following a successful call to this function, it is the responsibility of ** the caller to eventually free the buffer that *ppChangeset points to using ** [sqlite3_free()]. ** **

Changeset Generation

** ** Once a table has been attached to a session object, the session object ** records the primary key values of all new rows inserted into the table. ** It also records the original primary key and other column values of any ** deleted or updated rows. For each unique primary key value, data is only ** recorded once - the first time a row with said primary key is inserted, ** updated or deleted in the lifetime of the session. ** ** There is one exception to the previous paragraph: when a row is inserted, ** updated or deleted, if one or more of its primary key columns contain a ** NULL value, no record of the change is made. ** ** The session object therefore accumulates two types of records - those ** that consist of primary key values only (created when the user inserts ** a new record) and those that consist of the primary key values and the ** original values of other table columns (created when the users deletes ** or updates a record). ** ** When this function is called, the requested changeset is created using ** both the accumulated records and the current contents of the database ** file. Specifically: ** **
    **
  • For each record generated by an insert, the database is queried ** for a row with a matching primary key. If one is found, an INSERT ** change is added to the changeset. If no such row is found, no change ** is added to the changeset. ** **
  • For each record generated by an update or delete, the database is ** queried for a row with a matching primary key. If such a row is ** found and one or more of the non-primary key fields have been ** modified from their original values, an UPDATE change is added to ** the changeset. Or, if no such row is found in the table, a DELETE ** change is added to the changeset. If there is a row with a matching ** primary key in the database, but all fields contain their original ** values, no change is added to the changeset. **
** ** This means, amongst other things, that if a row is inserted and then later ** deleted while a session object is active, neither the insert nor the delete ** will be present in the changeset. Or if a row is deleted and then later a ** row with the same primary key values inserted while a session object is ** active, the resulting changeset will contain an UPDATE change instead of ** a DELETE and an INSERT. ** ** When a session object is disabled (see the [sqlite3session_enable()] API), ** it does not accumulate records when rows are inserted, updated or deleted. ** This may appear to have some counter-intuitive effects if a single row ** is written to more than once during a session. For example, if a row ** is inserted while a session object is enabled, then later deleted while ** the same session object is disabled, no INSERT record will appear in the ** changeset, even though the delete took place while the session was disabled. ** Or, if one field of a row is updated while a session is disabled, and ** another field of the same row is updated while the session is enabled, the ** resulting changeset will contain an UPDATE change that updates both fields. */ SQLITE_API int sqlite3session_changeset( sqlite3_session *pSession, /* Session object */ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ void **ppChangeset /* OUT: Buffer containing changeset */ ); /* ** CAPI3REF: Return An Upper-limit For The Size Of The Changeset ** METHOD: sqlite3_session ** ** By default, this function always returns 0. For it to return ** a useful result, the sqlite3_session object must have been configured ** to enable this API using sqlite3session_object_config() with the ** SQLITE_SESSION_OBJCONFIG_SIZE verb. ** ** When enabled, this function returns an upper limit, in bytes, for the size ** of the changeset that might be produced if sqlite3session_changeset() were ** called. The final changeset size might be equal to or smaller than the ** size in bytes returned by this function. */ SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession); /* ** CAPI3REF: Load The Difference Between Tables Into A Session ** METHOD: sqlite3_session ** ** If it is not already attached to the session object passed as the first ** argument, this function attaches table zTbl in the same manner as the ** [sqlite3session_attach()] function. If zTbl does not exist, or if it ** does not have a primary key, this function is a no-op (but does not return ** an error). ** ** Argument zFromDb must be the name of a database ("main", "temp" etc.) ** attached to the same database handle as the session object that contains ** a table compatible with the table attached to the session by this function. ** A table is considered compatible if it: ** **
    **
  • Has the same name, **
  • Has the same set of columns declared in the same order, and **
  • Has the same PRIMARY KEY definition. **
** ** If the tables are not compatible, SQLITE_SCHEMA is returned. If the tables ** are compatible but do not have any PRIMARY KEY columns, it is not an error ** but no changes are added to the session object. As with other session ** APIs, tables without PRIMARY KEYs are simply ignored. ** ** This function adds a set of changes to the session object that could be ** used to update the table in database zFrom (call this the "from-table") ** so that its content is the same as the table attached to the session ** object (call this the "to-table"). Specifically: ** **
    **
  • For each row (primary key) that exists in the to-table but not in ** the from-table, an INSERT record is added to the session object. ** **
  • For each row (primary key) that exists in the to-table but not in ** the from-table, a DELETE record is added to the session object. ** **
  • For each row (primary key) that exists in both tables, but features ** different non-PK values in each, an UPDATE record is added to the ** session. **
** ** To clarify, if this function is called and then a changeset constructed ** using [sqlite3session_changeset()], then after applying that changeset to ** database zFrom the contents of the two compatible tables would be ** identical. ** ** It an error if database zFrom does not exist or does not contain the ** required compatible table. ** ** If the operation is successful, SQLITE_OK is returned. Otherwise, an SQLite ** error code. In this case, if argument pzErrMsg is not NULL, *pzErrMsg ** may be set to point to a buffer containing an English language error ** message. It is the responsibility of the caller to free this buffer using ** sqlite3_free(). */ SQLITE_API int sqlite3session_diff( sqlite3_session *pSession, const char *zFromDb, const char *zTbl, char **pzErrMsg ); /* ** CAPI3REF: Generate A Patchset From A Session Object ** METHOD: sqlite3_session ** ** The differences between a patchset and a changeset are that: ** **
    **
  • DELETE records consist of the primary key fields only. The ** original values of other fields are omitted. **
  • The original values of any modified fields are omitted from ** UPDATE records. **
** ** A patchset blob may be used with up to date versions of all ** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(), ** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly, ** attempting to use a patchset blob with old versions of the ** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error. ** ** Because the non-primary key "old.*" fields are omitted, no ** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset ** is passed to the sqlite3changeset_apply() API. Other conflict types work ** in the same way as for changesets. ** ** Changes within a patchset are ordered in the same way as for changesets ** generated by the sqlite3session_changeset() function (i.e. all changes for ** a single table are grouped together, tables appear in the order in which ** they were attached to the session object). */ SQLITE_API int sqlite3session_patchset( sqlite3_session *pSession, /* Session object */ int *pnPatchset, /* OUT: Size of buffer at *ppPatchset */ void **ppPatchset /* OUT: Buffer containing patchset */ ); /* ** CAPI3REF: Test if a changeset has recorded any changes. ** ** Return non-zero if no changes to attached tables have been recorded by ** the session object passed as the first argument. Otherwise, if one or ** more changes have been recorded, return zero. ** ** Even if this function returns zero, it is possible that calling ** [sqlite3session_changeset()] on the session handle may still return a ** changeset that contains no changes. This can happen when a row in ** an attached table is modified and then later on the original values ** are restored. However, if this function returns non-zero, then it is ** guaranteed that a call to sqlite3session_changeset() will return a ** changeset containing zero changes. */ SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession); /* ** CAPI3REF: Query for the amount of heap memory used by a session object. ** ** This API returns the total amount of heap memory in bytes currently ** used by the session object passed as the only argument. */ SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession); /* ** CAPI3REF: Create An Iterator To Traverse A Changeset ** CONSTRUCTOR: sqlite3_changeset_iter ** ** Create an iterator used to iterate through the contents of a changeset. ** If successful, *pp is set to point to the iterator handle and SQLITE_OK ** is returned. Otherwise, if an error occurs, *pp is set to zero and an ** SQLite error code is returned. ** ** The following functions can be used to advance and query a changeset ** iterator created by this function: ** **
    **
  • [sqlite3changeset_next()] **
  • [sqlite3changeset_op()] **
  • [sqlite3changeset_new()] **
  • [sqlite3changeset_old()] **
** ** It is the responsibility of the caller to eventually destroy the iterator ** by passing it to [sqlite3changeset_finalize()]. The buffer containing the ** changeset (pChangeset) must remain valid until after the iterator is ** destroyed. ** ** Assuming the changeset blob was created by one of the ** [sqlite3session_changeset()], [sqlite3changeset_concat()] or ** [sqlite3changeset_invert()] functions, all changes within the changeset ** that apply to a single table are grouped together. This means that when ** an application iterates through a changeset using an iterator created by ** this function, all changes that relate to a single table are visited ** consecutively. There is no chance that the iterator will visit a change ** the applies to table X, then one for table Y, and then later on visit ** another change for table X. ** ** The behavior of sqlite3changeset_start_v2() and its streaming equivalent ** may be modified by passing a combination of ** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter. ** ** Note that the sqlite3changeset_start_v2() API is still experimental ** and therefore subject to change. */ SQLITE_API int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset /* Pointer to blob containing changeset */ ); SQLITE_API int sqlite3changeset_start_v2( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset, /* Pointer to blob containing changeset */ int flags /* SESSION_CHANGESETSTART_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_start_v2 ** ** The following flags may passed via the 4th parameter to ** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]: ** **
SQLITE_CHANGESETAPPLY_INVERT
** Invert the changeset while iterating through it. This is equivalent to ** inverting a changeset using sqlite3changeset_invert() before applying it. ** It is an error to specify this flag with a patchset. */ #define SQLITE_CHANGESETSTART_INVERT 0x0002 /* ** CAPI3REF: Advance A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function may only be used with iterators created by the function ** [sqlite3changeset_start()]. If it is called on an iterator passed to ** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE ** is returned and the call has no effect. ** ** Immediately after an iterator is created by sqlite3changeset_start(), it ** does not point to any change in the changeset. Assuming the changeset ** is not empty, the first call to this function advances the iterator to ** point to the first change in the changeset. Each subsequent call advances ** the iterator to point to the next change in the changeset (if any). If ** no error occurs and the iterator points to a valid change after a call ** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned. ** Otherwise, if all changes in the changeset have already been visited, ** SQLITE_DONE is returned. ** ** If an error occurs, an SQLite error code is returned. Possible error ** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or ** SQLITE_NOMEM. */ SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *pIter); /* ** CAPI3REF: Obtain The Current Operation From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this ** is not the case, this function returns [SQLITE_MISUSE]. ** ** Arguments pOp, pnCol and pzTab may not be NULL. Upon return, three ** outputs are set through these pointers: ** ** *pOp is set to one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], ** depending on the type of change that the iterator currently points to; ** ** *pnCol is set to the number of columns in the table affected by the change; and ** ** *pzTab is set to point to a nul-terminated utf-8 encoded string containing ** the name of the table affected by the current change. The buffer remains ** valid until either sqlite3changeset_next() is called on the iterator ** or until the conflict-handler function returns. ** ** If pbIndirect is not NULL, then *pbIndirect is set to true (1) if the change ** is an indirect change, or false (0) otherwise. See the documentation for ** [sqlite3session_indirect()] for a description of direct and indirect ** changes. ** ** If no error occurs, SQLITE_OK is returned. If an error does occur, an ** SQLite error code is returned. The values of the output variables may not ** be trusted in this case. */ SQLITE_API int sqlite3changeset_op( sqlite3_changeset_iter *pIter, /* Iterator object */ const char **pzTab, /* OUT: Pointer to table name */ int *pnCol, /* OUT: Number of columns in table */ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ int *pbIndirect /* OUT: True for an 'indirect' change */ ); /* ** CAPI3REF: Obtain The Primary Key Definition Of A Table ** METHOD: sqlite3_changeset_iter ** ** For each modified table, a changeset includes the following: ** **
    **
  • The number of columns in the table, and **
  • Which of those columns make up the tables PRIMARY KEY. **
** ** This function is used to find which columns comprise the PRIMARY KEY of ** the table modified by the change that iterator pIter currently points to. ** If successful, *pabPK is set to point to an array of nCol entries, where ** nCol is the number of columns in the table. Elements of *pabPK are set to ** 0x01 if the corresponding column is part of the tables primary key, or ** 0x00 if it is not. ** ** If argument pnCol is not NULL, then *pnCol is set to the number of columns ** in the table. ** ** If this function is called when the iterator does not point to a valid ** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise, ** SQLITE_OK is returned and the output variables populated as described ** above. */ SQLITE_API int sqlite3changeset_pk( sqlite3_changeset_iter *pIter, /* Iterator object */ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ int *pnCol /* OUT: Number of entries in output array */ ); /* ** CAPI3REF: Obtain old.* Values From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. ** Furthermore, it may only be called if the type of change that the iterator ** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise, ** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the vector of ** original row values stored as part of the UPDATE or DELETE change and ** returns SQLITE_OK. The name of the function comes from the fact that this ** is similar to the "old.*" columns available to update or delete triggers. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ SQLITE_API int sqlite3changeset_old( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ ); /* ** CAPI3REF: Obtain new.* Values From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. ** Furthermore, it may only be called if the type of change that the iterator ** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise, ** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the vector of ** new row values stored as part of the UPDATE or INSERT change and ** returns SQLITE_OK. If the change is an UPDATE and does not include ** a new value for the requested column, *ppValue is set to NULL and ** SQLITE_OK returned. The name of the function comes from the fact that ** this is similar to the "new.*" columns available to update or delete ** triggers. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ SQLITE_API int sqlite3changeset_new( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ ); /* ** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function should only be used with iterator objects passed to a ** conflict-handler callback by [sqlite3changeset_apply()] with either ** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function ** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue ** is set to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the ** "conflicting row" associated with the current conflict-handler callback ** and returns SQLITE_OK. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ SQLITE_API int sqlite3changeset_conflict( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: Value from conflicting row */ ); /* ** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations ** METHOD: sqlite3_changeset_iter ** ** This function may only be called with an iterator passed to an ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case ** it sets the output variable to the total number of known foreign key ** violations in the destination database and returns SQLITE_OK. ** ** In all other cases this function returns SQLITE_MISUSE. */ SQLITE_API int sqlite3changeset_fk_conflicts( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int *pnOut /* OUT: Number of FK violations */ ); /* ** CAPI3REF: Finalize A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function is used to finalize an iterator allocated with ** [sqlite3changeset_start()]. ** ** This function should only be called on iterators created using the ** [sqlite3changeset_start()] function. If an application calls this ** function with an iterator passed to a conflict-handler by ** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the ** call has no effect. ** ** If an error was encountered within a call to an sqlite3changeset_xxx() ** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an ** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding ** to that error is returned by this function. Otherwise, SQLITE_OK is ** returned. This is to allow the following pattern (pseudo-code): ** **
**   sqlite3changeset_start();
**   while( SQLITE_ROW==sqlite3changeset_next() ){
**     // Do something with change.
**   }
**   rc = sqlite3changeset_finalize();
**   if( rc!=SQLITE_OK ){
**     // An error has occurred
**   }
** 
*/ SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter); /* ** CAPI3REF: Invert A Changeset ** ** This function is used to "invert" a changeset object. Applying an inverted ** changeset to a database reverses the effects of applying the uninverted ** changeset. Specifically: ** **
    **
  • Each DELETE change is changed to an INSERT, and **
  • Each INSERT change is changed to a DELETE, and **
  • For each UPDATE change, the old.* and new.* values are exchanged. **
** ** This function does not change the order in which changes appear within ** the changeset. It merely reverses the sense of each individual change. ** ** If successful, a pointer to a buffer containing the inverted changeset ** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and ** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are ** zeroed and an SQLite error code returned. ** ** It is the responsibility of the caller to eventually call sqlite3_free() ** on the *ppOut pointer to free the buffer allocation following a successful ** call to this function. ** ** WARNING/TODO: This function currently assumes that the input is a valid ** changeset. If it is not, the results are undefined. */ SQLITE_API int sqlite3changeset_invert( int nIn, const void *pIn, /* Input changeset */ int *pnOut, void **ppOut /* OUT: Inverse of input */ ); /* ** CAPI3REF: Concatenate Two Changeset Objects ** ** This function is used to concatenate two changesets, A and B, into a ** single changeset. The result is a changeset equivalent to applying ** changeset A followed by changeset B. ** ** This function combines the two input changesets using an ** sqlite3_changegroup object. Calling it produces similar results as the ** following code fragment: ** **
**   sqlite3_changegroup *pGrp;
**   rc = sqlite3_changegroup_new(&pGrp);
**   if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nA, pA);
**   if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nB, pB);
**   if( rc==SQLITE_OK ){
**     rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
**   }else{
**     *ppOut = 0;
**     *pnOut = 0;
**   }
** 
** ** Refer to the sqlite3_changegroup documentation below for details. */ SQLITE_API int sqlite3changeset_concat( int nA, /* Number of bytes in buffer pA */ void *pA, /* Pointer to buffer containing changeset A */ int nB, /* Number of bytes in buffer pB */ void *pB, /* Pointer to buffer containing changeset B */ int *pnOut, /* OUT: Number of bytes in output changeset */ void **ppOut /* OUT: Buffer containing output changeset */ ); /* ** CAPI3REF: Upgrade the Schema of a Changeset/Patchset */ SQLITE_API int sqlite3changeset_upgrade( sqlite3 *db, const char *zDb, int nIn, const void *pIn, /* Input changeset */ int *pnOut, void **ppOut /* OUT: Inverse of input */ ); /* ** CAPI3REF: Changegroup Handle ** ** A changegroup is an object used to combine two or more ** [changesets] or [patchsets] */ typedef struct sqlite3_changegroup sqlite3_changegroup; /* ** CAPI3REF: Create A New Changegroup Object ** CONSTRUCTOR: sqlite3_changegroup ** ** An sqlite3_changegroup object is used to combine two or more changesets ** (or patchsets) into a single changeset (or patchset). A single changegroup ** object may combine changesets or patchsets, but not both. The output is ** always in the same format as the input. ** ** If successful, this function returns SQLITE_OK and populates (*pp) with ** a pointer to a new sqlite3_changegroup object before returning. The caller ** should eventually free the returned object using a call to ** sqlite3changegroup_delete(). If an error occurs, an SQLite error code ** (i.e. SQLITE_NOMEM) is returned and *pp is set to NULL. ** ** The usual usage pattern for an sqlite3_changegroup object is as follows: ** **
    **
  • It is created using a call to sqlite3changegroup_new(). ** **
  • Zero or more changesets (or patchsets) are added to the object ** by calling sqlite3changegroup_add(). ** **
  • The result of combining all input changesets together is obtained ** by the application via a call to sqlite3changegroup_output(). ** **
  • The object is deleted using a call to sqlite3changegroup_delete(). **
** ** Any number of calls to add() and output() may be made between the calls to ** new() and delete(), and in any order. ** ** As well as the regular sqlite3changegroup_add() and ** sqlite3changegroup_output() functions, also available are the streaming ** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm(). */ SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp); /* ** CAPI3REF: Add a Schema to a Changegroup ** METHOD: sqlite3_changegroup_schema ** ** This method may be used to optionally enforce the rule that the changesets ** added to the changegroup handle must match the schema of database zDb ** ("main", "temp", or the name of an attached database). If ** sqlite3changegroup_add() is called to add a changeset that is not compatible ** with the configured schema, SQLITE_SCHEMA is returned and the changegroup ** object is left in an undefined state. ** ** A changeset schema is considered compatible with the database schema in ** the same way as for sqlite3changeset_apply(). Specifically, for each ** table in the changeset, there exists a database table with: ** **
    **
  • The name identified by the changeset, and **
  • at least as many columns as recorded in the changeset, and **
  • the primary key columns in the same position as recorded in ** the changeset. **
** ** The output of the changegroup object always has the same schema as the ** database nominated using this function. In cases where changesets passed ** to sqlite3changegroup_add() have fewer columns than the corresponding table ** in the database schema, these are filled in using the default column ** values from the database schema. This makes it possible to combined ** changesets that have different numbers of columns for a single table ** within a changegroup, provided that they are otherwise compatible. */ SQLITE_API int sqlite3changegroup_schema(sqlite3_changegroup*, sqlite3*, const char *zDb); /* ** CAPI3REF: Add A Changeset To A Changegroup ** METHOD: sqlite3_changegroup ** ** Add all changes within the changeset (or patchset) in buffer pData (size ** nData bytes) to the changegroup. ** ** If the buffer contains a patchset, then all prior calls to this function ** on the same changegroup object must also have specified patchsets. Or, if ** the buffer contains a changeset, so must have the earlier calls to this ** function. Otherwise, SQLITE_ERROR is returned and no changes are added ** to the changegroup. ** ** Rows within the changeset and changegroup are identified by the values in ** their PRIMARY KEY columns. A change in the changeset is considered to ** apply to the same row as a change already present in the changegroup if ** the two rows have the same primary key. ** ** Changes to rows that do not already appear in the changegroup are ** simply copied into it. Or, if both the new changeset and the changegroup ** contain changes that apply to a single row, the final contents of the ** changegroup depends on the type of each change, as follows: ** ** ** ** **
Existing Change New Change Output Change **
INSERT INSERT ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
INSERT UPDATE ** The INSERT change remains in the changegroup. The values in the ** INSERT change are modified as if the row was inserted by the ** existing change and then updated according to the new change. **
INSERT DELETE ** The existing INSERT is removed from the changegroup. The DELETE is ** not added. **
UPDATE INSERT ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
UPDATE UPDATE ** The existing UPDATE remains within the changegroup. It is amended ** so that the accompanying values are as if the row was updated once ** by the existing change and then again by the new change. **
UPDATE DELETE ** The existing UPDATE is replaced by the new DELETE within the ** changegroup. **
DELETE INSERT ** If one or more of the column values in the row inserted by the ** new change differ from those in the row deleted by the existing ** change, the existing DELETE is replaced by an UPDATE within the ** changegroup. Otherwise, if the inserted row is exactly the same ** as the deleted row, the existing DELETE is simply discarded. **
DELETE UPDATE ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
DELETE DELETE ** The new change is ignored. This case does not occur if the new ** changeset was recorded immediately after the changesets already ** added to the changegroup. **
** ** If the new changeset contains changes to a table that is already present ** in the changegroup, then the number of columns and the position of the ** primary key columns for the table must be consistent. If this is not the ** case, this function fails with SQLITE_SCHEMA. Except, if the changegroup ** object has been configured with a database schema using the ** sqlite3changegroup_schema() API, then it is possible to combine changesets ** with different numbers of columns for a single table, provided that ** they are otherwise compatible. ** ** If the input changeset appears to be corrupt and the corruption is ** detected, SQLITE_CORRUPT is returned. Or, if an out-of-memory condition ** occurs during processing, this function returns SQLITE_NOMEM. ** ** In all cases, if an error occurs the state of the final contents of the ** changegroup is undefined. If no error occurs, SQLITE_OK is returned. */ SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData); /* ** CAPI3REF: Obtain A Composite Changeset From A Changegroup ** METHOD: sqlite3_changegroup ** ** Obtain a buffer containing a changeset (or patchset) representing the ** current contents of the changegroup. If the inputs to the changegroup ** were themselves changesets, the output is a changeset. Or, if the ** inputs were patchsets, the output is also a patchset. ** ** As with the output of the sqlite3session_changeset() and ** sqlite3session_patchset() functions, all changes related to a single ** table are grouped together in the output of this function. Tables appear ** in the same order as for the very first changeset added to the changegroup. ** If the second or subsequent changesets added to the changegroup contain ** changes for tables that do not appear in the first changeset, they are ** appended onto the end of the output changeset, again in the order in ** which they are first encountered. ** ** If an error occurs, an SQLite error code is returned and the output ** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK ** is returned and the output variables are set to the size of and a ** pointer to the output buffer, respectively. In this case it is the ** responsibility of the caller to eventually free the buffer using a ** call to sqlite3_free(). */ SQLITE_API int sqlite3changegroup_output( sqlite3_changegroup*, int *pnData, /* OUT: Size of output buffer in bytes */ void **ppData /* OUT: Pointer to output buffer */ ); /* ** CAPI3REF: Delete A Changegroup Object ** DESTRUCTOR: sqlite3_changegroup */ SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*); /* ** CAPI3REF: Apply A Changeset To A Database ** ** Apply a changeset or patchset to a database. These functions attempt to ** update the "main" database attached to handle db with the changes found in ** the changeset passed via the second and third arguments. ** ** The fourth argument (xFilter) passed to these functions is the "filter ** callback". If it is not NULL, then for each table affected by at least one ** change in the changeset, the filter callback is invoked with ** the table name as the second argument, and a copy of the context pointer ** passed as the sixth argument as the first. If the "filter callback" ** returns zero, then no attempt is made to apply any changes to the table. ** Otherwise, if the return value is non-zero or the xFilter argument to ** is NULL, all changes related to the table are attempted. ** ** For each table that is not excluded by the filter callback, this function ** tests that the target database contains a compatible table. A table is ** considered compatible if all of the following are true: ** **
    **
  • The table has the same name as the name recorded in the ** changeset, and **
  • The table has at least as many columns as recorded in the ** changeset, and **
  • The table has primary key columns in the same position as ** recorded in the changeset. **
** ** If there is no compatible table, it is not an error, but none of the ** changes associated with the table are applied. A warning message is issued ** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most ** one such warning is issued for each table in the changeset. ** ** For each change for which there is a compatible table, an attempt is made ** to modify the table contents according to the UPDATE, INSERT or DELETE ** change. If a change cannot be applied cleanly, the conflict handler ** function passed as the fifth argument to sqlite3changeset_apply() may be ** invoked. A description of exactly when the conflict handler is invoked for ** each type of change is below. ** ** Unlike the xFilter argument, xConflict may not be passed NULL. The results ** of passing anything other than a valid function pointer as the xConflict ** argument are undefined. ** ** Each time the conflict handler function is invoked, it must return one ** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or ** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned ** if the second argument passed to the conflict handler is either ** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler ** returns an illegal value, any changes already made are rolled back and ** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different ** actions are taken by sqlite3changeset_apply() depending on the value ** returned by each invocation of the conflict-handler function. Refer to ** the documentation for the three ** [SQLITE_CHANGESET_OMIT|available return values] for details. ** **
**
DELETE Changes
** For each DELETE change, the function checks if the target database ** contains a row with the same primary key value (or values) as the ** original row values stored in the changeset. If it does, and the values ** stored in all non-primary key columns also match the values stored in ** the changeset the row is deleted from the target database. ** ** If a row with matching primary key values is found, but one or more of ** the non-primary key fields contains a value different from the original ** row value stored in the changeset, the conflict-handler function is ** invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the ** database table has more columns than are recorded in the changeset, ** only the values of those non-primary key fields are compared against ** the current database contents - any trailing database table columns ** are ignored. ** ** If no row with matching primary key values is found in the database, ** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] ** passed as the second argument. ** ** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT ** (which can only happen if a foreign key constraint is violated), the ** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT] ** passed as the second argument. This includes the case where the DELETE ** operation is attempted because an earlier call to the conflict handler ** function returned [SQLITE_CHANGESET_REPLACE]. ** **
INSERT Changes
** For each INSERT change, an attempt is made to insert the new row into ** the database. If the changeset row contains fewer fields than the ** database table, the trailing fields are populated with their default ** values. ** ** If the attempt to insert the row fails because the database already ** contains a row with the same primary key values, the conflict handler ** function is invoked with the second argument set to ** [SQLITE_CHANGESET_CONFLICT]. ** ** If the attempt to insert the row fails because of some other constraint ** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is ** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT]. ** This includes the case where the INSERT operation is re-attempted because ** an earlier call to the conflict handler function returned ** [SQLITE_CHANGESET_REPLACE]. ** **
UPDATE Changes
** For each UPDATE change, the function checks if the target database ** contains a row with the same primary key value (or values) as the ** original row values stored in the changeset. If it does, and the values ** stored in all modified non-primary key columns also match the values ** stored in the changeset the row is updated within the target database. ** ** If a row with matching primary key values is found, but one or more of ** the modified non-primary key fields contains a value different from an ** original row value stored in the changeset, the conflict-handler function ** is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since ** UPDATE changes only contain values for non-primary key fields that are ** to be modified, only those fields need to match the original values to ** avoid the SQLITE_CHANGESET_DATA conflict-handler callback. ** ** If no row with matching primary key values is found in the database, ** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] ** passed as the second argument. ** ** If the UPDATE operation is attempted, but SQLite returns ** SQLITE_CONSTRAINT, the conflict-handler function is invoked with ** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument. ** This includes the case where the UPDATE operation is attempted after ** an earlier call to the conflict handler function returned ** [SQLITE_CHANGESET_REPLACE]. **
** ** It is safe to execute SQL statements, including those that write to the ** table that the callback related to, from within the xConflict callback. ** This can be used to further customize the application's conflict ** resolution strategy. ** ** All changes made by these functions are enclosed in a savepoint transaction. ** If any other error (aside from a constraint failure when attempting to ** write to the target database) occurs, then the savepoint transaction is ** rolled back, restoring the target database to its original state, and an ** SQLite error code returned. ** ** If the output parameters (ppRebase) and (pnRebase) are non-NULL and ** the input is a changeset (not a patchset), then sqlite3changeset_apply_v2() ** may set (*ppRebase) to point to a "rebase" that may be used with the ** sqlite3_rebaser APIs buffer before returning. In this case (*pnRebase) ** is set to the size of the buffer in bytes. It is the responsibility of the ** caller to eventually free any such buffer using sqlite3_free(). The buffer ** is only allocated and populated if one or more conflicts were encountered ** while applying the patchset. See comments surrounding the sqlite3_rebaser ** APIs for further details. ** ** The behavior of sqlite3changeset_apply_v2() and its streaming equivalent ** may be modified by passing a combination of ** [SQLITE_CHANGESETAPPLY_NOSAVEPOINT | supported flags] as the 9th parameter. ** ** Note that the sqlite3changeset_apply_v2() API is still experimental ** and therefore subject to change. */ SQLITE_API int sqlite3changeset_apply( sqlite3 *db, /* Apply change to "main" db of this handle */ int nChangeset, /* Size of changeset in bytes */ void *pChangeset, /* Changeset blob */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx /* First argument passed to xConflict */ ); SQLITE_API int sqlite3changeset_apply_v2( sqlite3 *db, /* Apply change to "main" db of this handle */ int nChangeset, /* Size of changeset in bytes */ void *pChangeset, /* Changeset blob */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, /* OUT: Rebase data */ int flags /* SESSION_CHANGESETAPPLY_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_apply_v2 ** ** The following flags may passed via the 9th parameter to ** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]: ** **
**
SQLITE_CHANGESETAPPLY_NOSAVEPOINT
** Usually, the sessions module encloses all operations performed by ** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The ** SAVEPOINT is committed if the changeset or patchset is successfully ** applied, or rolled back if an error occurs. Specifying this flag ** causes the sessions module to omit this savepoint. In this case, if the ** caller has an open transaction or savepoint when apply_v2() is called, ** it may revert the partially applied changeset by rolling it back. ** **
SQLITE_CHANGESETAPPLY_INVERT
** Invert the changeset before applying it. This is equivalent to inverting ** a changeset using sqlite3changeset_invert() before applying it. It is ** an error to specify this flag with a patchset. ** **
SQLITE_CHANGESETAPPLY_IGNORENOOP
** Do not invoke the conflict handler callback for any changes that ** would not actually modify the database even if they were applied. ** Specifically, this means that the conflict handler is not invoked ** for: **
    **
  • a delete change if the row being deleted cannot be found, **
  • an update change if the modified fields are already set to ** their new values in the conflicting row, or **
  • an insert change if all fields of the conflicting row match ** the row being inserted. **
** **
SQLITE_CHANGESETAPPLY_FKNOACTION
** If this flag it set, then all foreign key constraints in the target ** database behave as if they were declared with "ON UPDATE NO ACTION ON ** DELETE NO ACTION", even if they are actually CASCADE, RESTRICT, SET NULL ** or SET DEFAULT. */ #define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001 #define SQLITE_CHANGESETAPPLY_INVERT 0x0002 #define SQLITE_CHANGESETAPPLY_IGNORENOOP 0x0004 #define SQLITE_CHANGESETAPPLY_FKNOACTION 0x0008 /* ** CAPI3REF: Constants Passed To The Conflict Handler ** ** Values that may be passed as the second argument to a conflict-handler. ** **
**
SQLITE_CHANGESET_DATA
** The conflict handler is invoked with CHANGESET_DATA as the second argument ** when processing a DELETE or UPDATE change if a row with the required ** PRIMARY KEY fields is present in the database, but one or more other ** (non primary-key) fields modified by the update do not contain the ** expected "before" values. ** ** The conflicting row, in this case, is the database row with the matching ** primary key. ** **
SQLITE_CHANGESET_NOTFOUND
** The conflict handler is invoked with CHANGESET_NOTFOUND as the second ** argument when processing a DELETE or UPDATE change if a row with the ** required PRIMARY KEY fields is not present in the database. ** ** There is no conflicting row in this case. The results of invoking the ** sqlite3changeset_conflict() API are undefined. ** **
SQLITE_CHANGESET_CONFLICT
** CHANGESET_CONFLICT is passed as the second argument to the conflict ** handler while processing an INSERT change if the operation would result ** in duplicate primary key values. ** ** The conflicting row in this case is the database row with the matching ** primary key. ** **
SQLITE_CHANGESET_FOREIGN_KEY
** If foreign key handling is enabled, and applying a changeset leaves the ** database in a state containing foreign key violations, the conflict ** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument ** exactly once before the changeset is committed. If the conflict handler ** returns CHANGESET_OMIT, the changes, including those that caused the ** foreign key constraint violation, are committed. Or, if it returns ** CHANGESET_ABORT, the changeset is rolled back. ** ** No current or conflicting row information is provided. The only function ** it is possible to call on the supplied sqlite3_changeset_iter handle ** is sqlite3changeset_fk_conflicts(). ** **
SQLITE_CHANGESET_CONSTRAINT
** If any other constraint violation occurs while applying a change (i.e. ** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is ** invoked with CHANGESET_CONSTRAINT as the second argument. ** ** There is no conflicting row in this case. The results of invoking the ** sqlite3changeset_conflict() API are undefined. ** **
*/ #define SQLITE_CHANGESET_DATA 1 #define SQLITE_CHANGESET_NOTFOUND 2 #define SQLITE_CHANGESET_CONFLICT 3 #define SQLITE_CHANGESET_CONSTRAINT 4 #define SQLITE_CHANGESET_FOREIGN_KEY 5 /* ** CAPI3REF: Constants Returned By The Conflict Handler ** ** A conflict handler callback must return one of the following three values. ** **
**
SQLITE_CHANGESET_OMIT
** If a conflict handler returns this value no special action is taken. The ** change that caused the conflict is not applied. The session module ** continues to the next change in the changeset. ** **
SQLITE_CHANGESET_REPLACE
** This value may only be returned if the second argument to the conflict ** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this ** is not the case, any changes applied so far are rolled back and the ** call to sqlite3changeset_apply() returns SQLITE_MISUSE. ** ** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict ** handler, then the conflicting row is either updated or deleted, depending ** on the type of change. ** ** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict ** handler, then the conflicting row is removed from the database and a ** second attempt to apply the change is made. If this second attempt fails, ** the original row is restored to the database before continuing. ** **
SQLITE_CHANGESET_ABORT
** If this value is returned, any changes applied so far are rolled back ** and the call to sqlite3changeset_apply() returns SQLITE_ABORT. **
*/ #define SQLITE_CHANGESET_OMIT 0 #define SQLITE_CHANGESET_REPLACE 1 #define SQLITE_CHANGESET_ABORT 2 /* ** CAPI3REF: Rebasing changesets ** EXPERIMENTAL ** ** Suppose there is a site hosting a database in state S0. And that ** modifications are made that move that database to state S1 and a ** changeset recorded (the "local" changeset). Then, a changeset based ** on S0 is received from another site (the "remote" changeset) and ** applied to the database. The database is then in state ** (S1+"remote"), where the exact state depends on any conflict ** resolution decisions (OMIT or REPLACE) made while applying "remote". ** Rebasing a changeset is to update it to take those conflict ** resolution decisions into account, so that the same conflicts ** do not have to be resolved elsewhere in the network. ** ** For example, if both the local and remote changesets contain an ** INSERT of the same key on "CREATE TABLE t1(a PRIMARY KEY, b)": ** ** local: INSERT INTO t1 VALUES(1, 'v1'); ** remote: INSERT INTO t1 VALUES(1, 'v2'); ** ** and the conflict resolution is REPLACE, then the INSERT change is ** removed from the local changeset (it was overridden). Or, if the ** conflict resolution was "OMIT", then the local changeset is modified ** to instead contain: ** ** UPDATE t1 SET b = 'v2' WHERE a=1; ** ** Changes within the local changeset are rebased as follows: ** **
**
Local INSERT
** This may only conflict with a remote INSERT. If the conflict ** resolution was OMIT, then add an UPDATE change to the rebased ** changeset. Or, if the conflict resolution was REPLACE, add ** nothing to the rebased changeset. ** **
Local DELETE
** This may conflict with a remote UPDATE or DELETE. In both cases the ** only possible resolution is OMIT. If the remote operation was a ** DELETE, then add no change to the rebased changeset. If the remote ** operation was an UPDATE, then the old.* fields of change are updated ** to reflect the new.* values in the UPDATE. ** **
Local UPDATE
** This may conflict with a remote UPDATE or DELETE. If it conflicts ** with a DELETE, and the conflict resolution was OMIT, then the update ** is changed into an INSERT. Any undefined values in the new.* record ** from the update change are filled in using the old.* values from ** the conflicting DELETE. Or, if the conflict resolution was REPLACE, ** the UPDATE change is simply omitted from the rebased changeset. ** ** If conflict is with a remote UPDATE and the resolution is OMIT, then ** the old.* values are rebased using the new.* values in the remote ** change. Or, if the resolution is REPLACE, then the change is copied ** into the rebased changeset with updates to columns also updated by ** the conflicting remote UPDATE removed. If this means no columns would ** be updated, the change is omitted. **
** ** A local change may be rebased against multiple remote changes ** simultaneously. If a single key is modified by multiple remote ** changesets, they are combined as follows before the local changeset ** is rebased: ** **
    **
  • If there has been one or more REPLACE resolutions on a ** key, it is rebased according to a REPLACE. ** **
  • If there have been no REPLACE resolutions on a key, then ** the local changeset is rebased according to the most recent ** of the OMIT resolutions. **
** ** Note that conflict resolutions from multiple remote changesets are ** combined on a per-field basis, not per-row. This means that in the ** case of multiple remote UPDATE operations, some fields of a single ** local change may be rebased for REPLACE while others are rebased for ** OMIT. ** ** In order to rebase a local changeset, the remote changeset must first ** be applied to the local database using sqlite3changeset_apply_v2() and ** the buffer of rebase information captured. Then: ** **
    **
  1. An sqlite3_rebaser object is created by calling ** sqlite3rebaser_create(). **
  2. The new object is configured with the rebase buffer obtained from ** sqlite3changeset_apply_v2() by calling sqlite3rebaser_configure(). ** If the local changeset is to be rebased against multiple remote ** changesets, then sqlite3rebaser_configure() should be called ** multiple times, in the same order that the multiple ** sqlite3changeset_apply_v2() calls were made. **
  3. Each local changeset is rebased by calling sqlite3rebaser_rebase(). **
  4. The sqlite3_rebaser object is deleted by calling ** sqlite3rebaser_delete(). **
*/ typedef struct sqlite3_rebaser sqlite3_rebaser; /* ** CAPI3REF: Create a changeset rebaser object. ** EXPERIMENTAL ** ** Allocate a new changeset rebaser object. If successful, set (*ppNew) to ** point to the new object and return SQLITE_OK. Otherwise, if an error ** occurs, return an SQLite error code (e.g. SQLITE_NOMEM) and set (*ppNew) ** to NULL. */ SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew); /* ** CAPI3REF: Configure a changeset rebaser object. ** EXPERIMENTAL ** ** Configure the changeset rebaser object to rebase changesets according ** to the conflict resolutions described by buffer pRebase (size nRebase ** bytes), which must have been obtained from a previous call to ** sqlite3changeset_apply_v2(). */ SQLITE_API int sqlite3rebaser_configure( sqlite3_rebaser*, int nRebase, const void *pRebase ); /* ** CAPI3REF: Rebase a changeset ** EXPERIMENTAL ** ** Argument pIn must point to a buffer containing a changeset nIn bytes ** in size. This function allocates and populates a buffer with a copy ** of the changeset rebased according to the configuration of the ** rebaser object passed as the first argument. If successful, (*ppOut) ** is set to point to the new buffer containing the rebased changeset and ** (*pnOut) to its size in bytes and SQLITE_OK returned. It is the ** responsibility of the caller to eventually free the new buffer using ** sqlite3_free(). Otherwise, if an error occurs, (*ppOut) and (*pnOut) ** are set to zero and an SQLite error code returned. */ SQLITE_API int sqlite3rebaser_rebase( sqlite3_rebaser*, int nIn, const void *pIn, int *pnOut, void **ppOut ); /* ** CAPI3REF: Delete a changeset rebaser object. ** EXPERIMENTAL ** ** Delete the changeset rebaser object and all associated resources. There ** should be one call to this function for each successful invocation ** of sqlite3rebaser_create(). */ SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p); /* ** CAPI3REF: Streaming Versions of API functions. ** ** The six streaming API xxx_strm() functions serve similar purposes to the ** corresponding non-streaming API functions: ** ** ** **
Streaming functionNon-streaming equivalent
sqlite3changeset_apply_strm[sqlite3changeset_apply] **
sqlite3changeset_apply_strm_v2[sqlite3changeset_apply_v2] **
sqlite3changeset_concat_strm[sqlite3changeset_concat] **
sqlite3changeset_invert_strm[sqlite3changeset_invert] **
sqlite3changeset_start_strm[sqlite3changeset_start] **
sqlite3session_changeset_strm[sqlite3session_changeset] **
sqlite3session_patchset_strm[sqlite3session_patchset] **
** ** Non-streaming functions that accept changesets (or patchsets) as input ** require that the entire changeset be stored in a single buffer in memory. ** Similarly, those that return a changeset or patchset do so by returning ** a pointer to a single large buffer allocated using sqlite3_malloc(). ** Normally this is convenient. However, if an application running in a ** low-memory environment is required to handle very large changesets, the ** large contiguous memory allocations required can become onerous. ** ** In order to avoid this problem, instead of a single large buffer, input ** is passed to a streaming API functions by way of a callback function that ** the sessions module invokes to incrementally request input data as it is ** required. In all cases, a pair of API function parameters such as ** **
**        int nChangeset,
**        void *pChangeset,
**  
** ** Is replaced by: ** **
**        int (*xInput)(void *pIn, void *pData, int *pnData),
**        void *pIn,
**  
** ** Each time the xInput callback is invoked by the sessions module, the first ** argument passed is a copy of the supplied pIn context pointer. The second ** argument, pData, points to a buffer (*pnData) bytes in size. Assuming no ** error occurs the xInput method should copy up to (*pnData) bytes of data ** into the buffer and set (*pnData) to the actual number of bytes copied ** before returning SQLITE_OK. If the input is completely exhausted, (*pnData) ** should be set to zero to indicate this. Or, if an error occurs, an SQLite ** error code should be returned. In all cases, if an xInput callback returns ** an error, all processing is abandoned and the streaming API function ** returns a copy of the error code to the caller. ** ** In the case of sqlite3changeset_start_strm(), the xInput callback may be ** invoked by the sessions module at any point during the lifetime of the ** iterator. If such an xInput callback returns an error, the iterator enters ** an error state, whereby all subsequent calls to iterator functions ** immediately fail with the same error code as returned by xInput. ** ** Similarly, streaming API functions that return changesets (or patchsets) ** return them in chunks by way of a callback function instead of via a ** pointer to a single large buffer. In this case, a pair of parameters such ** as: ** **
**        int *pnChangeset,
**        void **ppChangeset,
**  
** ** Is replaced by: ** **
**        int (*xOutput)(void *pOut, const void *pData, int nData),
**        void *pOut
**  
** ** The xOutput callback is invoked zero or more times to return data to ** the application. The first parameter passed to each call is a copy of the ** pOut pointer supplied by the application. The second parameter, pData, ** points to a buffer nData bytes in size containing the chunk of output ** data being returned. If the xOutput callback successfully processes the ** supplied data, it should return SQLITE_OK to indicate success. Otherwise, ** it should return some other SQLite error code. In this case processing ** is immediately abandoned and the streaming API function returns a copy ** of the xOutput error code to the application. ** ** The sessions module never invokes an xOutput callback with the third ** parameter set to a value less than or equal to zero. Other than this, ** no guarantees are made as to the size of the chunks of data returned. */ SQLITE_API int sqlite3changeset_apply_strm( sqlite3 *db, /* Apply change to "main" db of this handle */ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ void *pIn, /* First arg for xInput */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx /* First argument passed to xConflict */ ); SQLITE_API int sqlite3changeset_apply_v2_strm( sqlite3 *db, /* Apply change to "main" db of this handle */ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ void *pIn, /* First arg for xInput */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, int flags ); SQLITE_API int sqlite3changeset_concat_strm( int (*xInputA)(void *pIn, void *pData, int *pnData), void *pInA, int (*xInputB)(void *pIn, void *pData, int *pnData), void *pInB, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_invert_strm( int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_start_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3changeset_start_v2_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int flags ); SQLITE_API int sqlite3session_changeset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3session_patchset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3rebaser_rebase_strm( sqlite3_rebaser *pRebaser, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Configure global parameters ** ** The sqlite3session_config() interface is used to make global configuration ** changes to the sessions module in order to tune it to the specific needs ** of the application. ** ** The sqlite3session_config() interface is not threadsafe. If it is invoked ** while any other thread is inside any other sessions method then the ** results are undefined. Furthermore, if it is invoked after any sessions ** related objects have been created, the results are also undefined. ** ** The first argument to the sqlite3session_config() function must be one ** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The ** interpretation of the (void*) value passed as the second parameter and ** the effect of calling this function depends on the value of the first ** parameter. ** **
**
SQLITE_SESSION_CONFIG_STRMSIZE
** By default, the sessions module streaming interfaces attempt to input ** and output data in approximately 1 KiB chunks. This operand may be used ** to set and query the value of this configuration setting. The pointer ** passed as the second argument must point to a value of type (int). ** If this value is greater than 0, it is used as the new streaming data ** chunk size for both input and output. Before returning, the (int) value ** pointed to by pArg is set to the final value of the streaming interface ** chunk size. **
** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ SQLITE_API int sqlite3session_config(int op, void *pArg); /* ** CAPI3REF: Values for sqlite3session_config(). */ #define SQLITE_SESSION_CONFIG_STRMSIZE 1 /* ** Make sure we can call this stuff from C++. */ #if 0 } #endif #endif /* !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) */ /******** End of sqlite3session.h *********/ /******** Begin file fts5.h *********/ /* ** 2014 May 31 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** Interfaces to extend FTS5. Using the interfaces defined in this file, ** FTS5 may be extended with: ** ** * custom tokenizers, and ** * custom auxiliary functions. */ #ifndef _FTS5_H #define _FTS5_H #if 0 extern "C" { #endif /************************************************************************* ** CUSTOM AUXILIARY FUNCTIONS ** ** Virtual table implementations may overload SQL functions by implementing ** the sqlite3_module.xFindFunction() method. */ typedef struct Fts5ExtensionApi Fts5ExtensionApi; typedef struct Fts5Context Fts5Context; typedef struct Fts5PhraseIter Fts5PhraseIter; typedef void (*fts5_extension_function)( const Fts5ExtensionApi *pApi, /* API offered by current FTS version */ Fts5Context *pFts, /* First arg to pass to pApi functions */ sqlite3_context *pCtx, /* Context for returning result/error */ int nVal, /* Number of values in apVal[] array */ sqlite3_value **apVal /* Array of trailing arguments */ ); struct Fts5PhraseIter { const unsigned char *a; const unsigned char *b; }; /* ** EXTENSION API FUNCTIONS ** ** xUserData(pFts): ** Return a copy of the context pointer the extension function was ** registered with. ** ** xColumnTotalSize(pFts, iCol, pnToken): ** If parameter iCol is less than zero, set output variable *pnToken ** to the total number of tokens in the FTS5 table. Or, if iCol is ** non-negative but less than the number of columns in the table, return ** the total number of tokens in column iCol, considering all rows in ** the FTS5 table. ** ** If parameter iCol is greater than or equal to the number of columns ** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. ** an OOM condition or IO error), an appropriate SQLite error code is ** returned. ** ** xColumnCount(pFts): ** Return the number of columns in the table. ** ** xColumnSize(pFts, iCol, pnToken): ** If parameter iCol is less than zero, set output variable *pnToken ** to the total number of tokens in the current row. Or, if iCol is ** non-negative but less than the number of columns in the table, set ** *pnToken to the number of tokens in column iCol of the current row. ** ** If parameter iCol is greater than or equal to the number of columns ** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g. ** an OOM condition or IO error), an appropriate SQLite error code is ** returned. ** ** This function may be quite inefficient if used with an FTS5 table ** created with the "columnsize=0" option. ** ** xColumnText: ** If parameter iCol is less than zero, or greater than or equal to the ** number of columns in the table, SQLITE_RANGE is returned. ** ** Otherwise, this function attempts to retrieve the text of column iCol of ** the current document. If successful, (*pz) is set to point to a buffer ** containing the text in utf-8 encoding, (*pn) is set to the size in bytes ** (not characters) of the buffer and SQLITE_OK is returned. Otherwise, ** if an error occurs, an SQLite error code is returned and the final values ** of (*pz) and (*pn) are undefined. ** ** xPhraseCount: ** Returns the number of phrases in the current query expression. ** ** xPhraseSize: ** If parameter iCol is less than zero, or greater than or equal to the ** number of phrases in the current query, as returned by xPhraseCount, ** 0 is returned. Otherwise, this function returns the number of tokens in ** phrase iPhrase of the query. Phrases are numbered starting from zero. ** ** xInstCount: ** Set *pnInst to the total number of occurrences of all phrases within ** the query within the current row. Return SQLITE_OK if successful, or ** an error code (i.e. SQLITE_NOMEM) if an error occurs. ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" or "detail=column" option. If the FTS5 table is created ** with either "detail=none" or "detail=column" and "content=" option ** (i.e. if it is a contentless table), then this API always returns 0. ** ** xInst: ** Query for the details of phrase match iIdx within the current row. ** Phrase matches are numbered starting from zero, so the iIdx argument ** should be greater than or equal to zero and smaller than the value ** output by xInstCount(). If iIdx is less than zero or greater than ** or equal to the value returned by xInstCount(), SQLITE_RANGE is returned. ** ** Otherwise, output parameter *piPhrase is set to the phrase number, *piCol ** to the column in which it occurs and *piOff the token offset of the ** first token of the phrase. SQLITE_OK is returned if successful, or an ** error code (i.e. SQLITE_NOMEM) if an error occurs. ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" or "detail=column" option. ** ** xRowid: ** Returns the rowid of the current row. ** ** xTokenize: ** Tokenize text using the tokenizer belonging to the FTS5 table. ** ** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback): ** This API function is used to query the FTS table for phrase iPhrase ** of the current query. Specifically, a query equivalent to: ** ** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid ** ** with $p set to a phrase equivalent to the phrase iPhrase of the ** current query is executed. Any column filter that applies to ** phrase iPhrase of the current query is included in $p. For each ** row visited, the callback function passed as the fourth argument ** is invoked. The context and API objects passed to the callback ** function may be used to access the properties of each matched row. ** Invoking Api.xUserData() returns a copy of the pointer passed as ** the third argument to pUserData. ** ** If parameter iPhrase is less than zero, or greater than or equal to ** the number of phrases in the query, as returned by xPhraseCount(), ** this function returns SQLITE_RANGE. ** ** If the callback function returns any value other than SQLITE_OK, the ** query is abandoned and the xQueryPhrase function returns immediately. ** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK. ** Otherwise, the error code is propagated upwards. ** ** If the query runs to completion without incident, SQLITE_OK is returned. ** Or, if some error occurs before the query completes or is aborted by ** the callback, an SQLite error code is returned. ** ** ** xSetAuxdata(pFts5, pAux, xDelete) ** ** Save the pointer passed as the second argument as the extension function's ** "auxiliary data". The pointer may then be retrieved by the current or any ** future invocation of the same fts5 extension function made as part of ** the same MATCH query using the xGetAuxdata() API. ** ** Each extension function is allocated a single auxiliary data slot for ** each FTS query (MATCH expression). If the extension function is invoked ** more than once for a single FTS query, then all invocations share a ** single auxiliary data context. ** ** If there is already an auxiliary data pointer when this function is ** invoked, then it is replaced by the new pointer. If an xDelete callback ** was specified along with the original pointer, it is invoked at this ** point. ** ** The xDelete callback, if one is specified, is also invoked on the ** auxiliary data pointer after the FTS5 query has finished. ** ** If an error (e.g. an OOM condition) occurs within this function, ** the auxiliary data is set to NULL and an error code returned. If the ** xDelete parameter was not NULL, it is invoked on the auxiliary data ** pointer before returning. ** ** ** xGetAuxdata(pFts5, bClear) ** ** Returns the current auxiliary data pointer for the fts5 extension ** function. See the xSetAuxdata() method for details. ** ** If the bClear argument is non-zero, then the auxiliary data is cleared ** (set to NULL) before this function returns. In this case the xDelete, ** if any, is not invoked. ** ** ** xRowCount(pFts5, pnRow) ** ** This function is used to retrieve the total number of rows in the table. ** In other words, the same value that would be returned by: ** ** SELECT count(*) FROM ftstable; ** ** xPhraseFirst() ** This function is used, along with type Fts5PhraseIter and the xPhraseNext ** method, to iterate through all instances of a single query phrase within ** the current row. This is the same information as is accessible via the ** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient ** to use, this API may be faster under some circumstances. To iterate ** through instances of phrase iPhrase, use the following code: ** ** Fts5PhraseIter iter; ** int iCol, iOff; ** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff); ** iCol>=0; ** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff) ** ){ ** // An instance of phrase iPhrase at offset iOff of column iCol ** } ** ** The Fts5PhraseIter structure is defined above. Applications should not ** modify this structure directly - it should only be used as shown above ** with the xPhraseFirst() and xPhraseNext() API methods (and by ** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below). ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" or "detail=column" option. If the FTS5 table is created ** with either "detail=none" or "detail=column" and "content=" option ** (i.e. if it is a contentless table), then this API always iterates ** through an empty set (all calls to xPhraseFirst() set iCol to -1). ** ** xPhraseNext() ** See xPhraseFirst above. ** ** xPhraseFirstColumn() ** This function and xPhraseNextColumn() are similar to the xPhraseFirst() ** and xPhraseNext() APIs described above. The difference is that instead ** of iterating through all instances of a phrase in the current row, these ** APIs are used to iterate through the set of columns in the current row ** that contain one or more instances of a specified phrase. For example: ** ** Fts5PhraseIter iter; ** int iCol; ** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol); ** iCol>=0; ** pApi->xPhraseNextColumn(pFts, &iter, &iCol) ** ){ ** // Column iCol contains at least one instance of phrase iPhrase ** } ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" option. If the FTS5 table is created with either ** "detail=none" "content=" option (i.e. if it is a contentless table), ** then this API always iterates through an empty set (all calls to ** xPhraseFirstColumn() set iCol to -1). ** ** The information accessed using this API and its companion ** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext ** (or xInst/xInstCount). The chief advantage of this API is that it is ** significantly more efficient than those alternatives when used with ** "detail=column" tables. ** ** xPhraseNextColumn() ** See xPhraseFirstColumn above. ** ** xQueryToken(pFts5, iPhrase, iToken, ppToken, pnToken) ** This is used to access token iToken of phrase iPhrase of the current ** query. Before returning, output parameter *ppToken is set to point ** to a buffer containing the requested token, and *pnToken to the ** size of this buffer in bytes. ** ** If iPhrase or iToken are less than zero, or if iPhrase is greater than ** or equal to the number of phrases in the query as reported by ** xPhraseCount(), or if iToken is equal to or greater than the number of ** tokens in the phrase, SQLITE_RANGE is returned and *ppToken and *pnToken are both zeroed. ** ** The output text is not a copy of the query text that specified the ** token. It is the output of the tokenizer module. For tokendata=1 ** tables, this includes any embedded 0x00 and trailing data. ** ** xInstToken(pFts5, iIdx, iToken, ppToken, pnToken) ** This is used to access token iToken of phrase hit iIdx within the ** current row. If iIdx is less than zero or greater than or equal to the ** value returned by xInstCount(), SQLITE_RANGE is returned. Otherwise, ** output variable (*ppToken) is set to point to a buffer containing the ** matching document token, and (*pnToken) to the size of that buffer in ** bytes. This API is not available if the specified token matches a ** prefix query term. In that case both output variables are always set ** to 0. ** ** The output text is not a copy of the document text that was tokenized. ** It is the output of the tokenizer module. For tokendata=1 tables, this ** includes any embedded 0x00 and trailing data. ** ** This API can be quite slow if used with an FTS5 table created with the ** "detail=none" or "detail=column" option. */ struct Fts5ExtensionApi { int iVersion; /* Currently always set to 3 */ void *(*xUserData)(Fts5Context*); int (*xColumnCount)(Fts5Context*); int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow); int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken); int (*xTokenize)(Fts5Context*, const char *pText, int nText, /* Text to tokenize */ void *pCtx, /* Context passed to xToken() */ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */ ); int (*xPhraseCount)(Fts5Context*); int (*xPhraseSize)(Fts5Context*, int iPhrase); int (*xInstCount)(Fts5Context*, int *pnInst); int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff); sqlite3_int64 (*xRowid)(Fts5Context*); int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn); int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken); int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData, int(*)(const Fts5ExtensionApi*,Fts5Context*,void*) ); int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*)); void *(*xGetAuxdata)(Fts5Context*, int bClear); int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*); void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff); int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*); void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol); /* Below this point are iVersion>=3 only */ int (*xQueryToken)(Fts5Context*, int iPhrase, int iToken, const char **ppToken, int *pnToken ); int (*xInstToken)(Fts5Context*, int iIdx, int iToken, const char**, int*); }; /* ** CUSTOM AUXILIARY FUNCTIONS *************************************************************************/ /************************************************************************* ** CUSTOM TOKENIZERS ** ** Applications may also register custom tokenizer types. A tokenizer ** is registered by providing fts5 with a populated instance of the ** following structure. All structure methods must be defined, setting ** any member of the fts5_tokenizer struct to NULL leads to undefined ** behaviour. The structure methods are expected to function as follows: ** ** xCreate: ** This function is used to allocate and initialize a tokenizer instance. ** A tokenizer instance is required to actually tokenize text. ** ** The first argument passed to this function is a copy of the (void*) ** pointer provided by the application when the fts5_tokenizer object ** was registered with FTS5 (the third argument to xCreateTokenizer()). ** The second and third arguments are an array of nul-terminated strings ** containing the tokenizer arguments, if any, specified following the ** tokenizer name as part of the CREATE VIRTUAL TABLE statement used ** to create the FTS5 table. ** ** The final argument is an output variable. If successful, (*ppOut) ** should be set to point to the new tokenizer handle and SQLITE_OK ** returned. If an error occurs, some value other than SQLITE_OK should ** be returned. In this case, fts5 assumes that the final value of *ppOut ** is undefined. ** ** xDelete: ** This function is invoked to delete a tokenizer handle previously ** allocated using xCreate(). Fts5 guarantees that this function will ** be invoked exactly once for each successful call to xCreate(). ** ** xTokenize: ** This function is expected to tokenize the nText byte string indicated ** by argument pText. pText may or may not be nul-terminated. The first ** argument passed to this function is a pointer to an Fts5Tokenizer object ** returned by an earlier call to xCreate(). ** ** The second argument indicates the reason that FTS5 is requesting ** tokenization of the supplied text. This is always one of the following ** four values: ** **
  • FTS5_TOKENIZE_DOCUMENT - A document is being inserted into ** or removed from the FTS table. The tokenizer is being invoked to ** determine the set of tokens to add to (or delete from) the ** FTS index. ** **
  • FTS5_TOKENIZE_QUERY - A MATCH query is being executed ** against the FTS index. The tokenizer is being called to tokenize ** a bareword or quoted string specified as part of the query. ** **
  • (FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX) - Same as ** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is ** followed by a "*" character, indicating that the last token ** returned by the tokenizer will be treated as a token prefix. ** **
  • FTS5_TOKENIZE_AUX - The tokenizer is being invoked to ** satisfy an fts5_api.xTokenize() request made by an auxiliary ** function. Or an fts5_api.xColumnSize() request made by the same ** on a columnsize=0 database. **
** ** For each token in the input string, the supplied callback xToken() must ** be invoked. The first argument to it should be a copy of the pointer ** passed as the second argument to xTokenize(). The third and fourth ** arguments are a pointer to a buffer containing the token text, and the ** size of the token in bytes. The 4th and 5th arguments are the byte offsets ** of the first byte of and first byte immediately following the text from ** which the token is derived within the input. ** ** The second argument passed to the xToken() callback ("tflags") should ** normally be set to 0. The exception is if the tokenizer supports ** synonyms. In this case see the discussion below for details. ** ** FTS5 assumes the xToken() callback is invoked for each token in the ** order that they occur within the input text. ** ** If an xToken() callback returns any value other than SQLITE_OK, then ** the tokenization should be abandoned and the xTokenize() method should ** immediately return a copy of the xToken() return value. Or, if the ** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally, ** if an error occurs with the xTokenize() implementation itself, it ** may abandon the tokenization and return any error code other than ** SQLITE_OK or SQLITE_DONE. ** ** SYNONYM SUPPORT ** ** Custom tokenizers may also support synonyms. Consider a case in which a ** user wishes to query for a phrase such as "first place". Using the ** built-in tokenizers, the FTS5 query 'first + place' will match instances ** of "first place" within the document set, but not alternative forms ** such as "1st place". In some applications, it would be better to match ** all instances of "first place" or "1st place" regardless of which form ** the user specified in the MATCH query text. ** ** There are several ways to approach this in FTS5: ** **
  1. By mapping all synonyms to a single token. In this case, using ** the above example, this means that the tokenizer returns the ** same token for inputs "first" and "1st". Say that token is in ** fact "first", so that when the user inserts the document "I won ** 1st place" entries are added to the index for tokens "i", "won", ** "first" and "place". If the user then queries for '1st + place', ** the tokenizer substitutes "first" for "1st" and the query works ** as expected. ** **
  2. By querying the index for all synonyms of each query term ** separately. In this case, when tokenizing query text, the ** tokenizer may provide multiple synonyms for a single term ** within the document. FTS5 then queries the index for each ** synonym individually. For example, faced with the query: ** ** ** ... MATCH 'first place' ** ** the tokenizer offers both "1st" and "first" as synonyms for the ** first token in the MATCH query and FTS5 effectively runs a query ** similar to: ** ** ** ... MATCH '(first OR 1st) place' ** ** except that, for the purposes of auxiliary functions, the query ** still appears to contain just two phrases - "(first OR 1st)" ** being treated as a single phrase. ** **
  3. By adding multiple synonyms for a single term to the FTS index. ** Using this method, when tokenizing document text, the tokenizer ** provides multiple synonyms for each token. So that when a ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do so would be ** inefficient), it doesn't matter if the user queries for ** 'first + place' or '1st + place', as there are entries in the ** FTS index corresponding to both forms of the first token. **
** ** Whether it is parsing document or query text, any call to xToken that ** specifies a tflags argument with the FTS5_TOKEN_COLOCATED bit ** is considered to supply a synonym for the previous token. For example, ** when parsing the document "I won first place", a tokenizer that supports ** synonyms would call xToken() 5 times, as follows: ** ** ** xToken(pCtx, 0, "i", 1, 0, 1); ** xToken(pCtx, 0, "won", 3, 2, 5); ** xToken(pCtx, 0, "first", 5, 6, 11); ** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11); ** xToken(pCtx, 0, "place", 5, 12, 17); ** ** ** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time ** xToken() is called. Multiple synonyms may be specified for a single token ** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence. ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the ** token "first" is substituted for "1st" by the tokenizer, then the query: ** ** ** ... MATCH '1s*' ** ** will not match documents that contain the token "1st" (as the tokenizer ** will probably not map "1s" to any prefix of "first"). ** ** For full prefix support, method (3) may be preferred. In this case, ** because the index contains entries for both "first" and "1st", prefix ** queries such as 'fi*' or '1s*' will match correctly. However, because ** extra entries are added to the FTS index, this method uses more space ** within the database. ** ** Method (2) offers a midpoint between (1) and (3). Using this method, ** a query such as '1s*' will match documents that contain the literal ** token "1st", but not "first" (assuming the tokenizer is not able to ** provide synonyms for prefixes). However, a non-prefix query like '1st' ** will match against "1st" and "first". This method does not require ** extra disk space, as no extra entries are added to the FTS index. ** On the other hand, it may require more CPU cycles to run MATCH queries, ** as separate queries of the FTS index are required for each synonym. ** ** When using methods (2) or (3), it is important that the tokenizer only ** provide synonyms when tokenizing document text (method (3)) or query ** text (method (2)), not both. Doing so will not cause any errors, but is ** inefficient. */ typedef struct Fts5Tokenizer Fts5Tokenizer; typedef struct fts5_tokenizer fts5_tokenizer; struct fts5_tokenizer { int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut); void (*xDelete)(Fts5Tokenizer*); int (*xTokenize)(Fts5Tokenizer*, void *pCtx, int flags, /* Mask of FTS5_TOKENIZE_* flags */ const char *pText, int nText, int (*xToken)( void *pCtx, /* Copy of 2nd argument to xTokenize() */ int tflags, /* Mask of FTS5_TOKEN_* flags */ const char *pToken, /* Pointer to buffer containing token */ int nToken, /* Size of token in bytes */ int iStart, /* Byte offset of token within input text */ int iEnd /* Byte offset of end of token within input text */ ) ); }; /* Flags that may be passed as the third argument to xTokenize() */ #define FTS5_TOKENIZE_QUERY 0x0001 #define FTS5_TOKENIZE_PREFIX 0x0002 #define FTS5_TOKENIZE_DOCUMENT 0x0004 #define FTS5_TOKENIZE_AUX 0x0008 /* Flags that may be passed by the tokenizer implementation back to FTS5 ** as the third argument to the supplied xToken callback. */ #define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */ /* ** END OF CUSTOM TOKENIZERS *************************************************************************/ /************************************************************************* ** FTS5 EXTENSION REGISTRATION API */ typedef struct fts5_api fts5_api; struct fts5_api { int iVersion; /* Currently always set to 2 */ /* Create a new tokenizer */ int (*xCreateTokenizer)( fts5_api *pApi, const char *zName, void *pUserData, fts5_tokenizer *pTokenizer, void (*xDestroy)(void*) ); /* Find an existing tokenizer */ int (*xFindTokenizer)( fts5_api *pApi, const char *zName, void **ppUserData, fts5_tokenizer *pTokenizer ); /* Create a new auxiliary function */ int (*xCreateFunction)( fts5_api *pApi, const char *zName, void *pUserData, fts5_extension_function xFunction, void (*xDestroy)(void*) ); }; /* ** END OF REGISTRATION API *************************************************************************/ #if 0 } /* end of the 'extern "C"' block */ #endif #endif /* _FTS5_H */ /******** End of fts5.h *********/ /************** End of sqlite3.h *********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* ** Reuse the STATIC_LRU for mutex access to sqlite3_temp_directory. */ #define SQLITE_MUTEX_STATIC_TEMPDIR SQLITE_MUTEX_STATIC_VFS1 /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H) #include "sqlite_cfg.h" #define SQLITECONFIG_H 1 #endif /************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/ /************** Begin file sqliteLimit.h *************************************/ /* ** 2007 May 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file defines various limits of what SQLite can process. */ /* ** The maximum length of a TEXT or BLOB in bytes. This also ** limits the size of a row in a table or index. ** ** The hard limit is the ability of a 32-bit signed integer ** to count the size: 2^31-1 or 2147483647. */ #ifndef SQLITE_MAX_LENGTH # define SQLITE_MAX_LENGTH 1000000000 #endif /* ** This is the maximum number of ** ** * Columns in a table ** * Columns in an index ** * Columns in a view ** * Terms in the SET clause of an UPDATE statement ** * Terms in the result set of a SELECT statement ** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement. ** * Terms in the VALUES clause of an INSERT statement ** ** The hard upper limit here is 32676. Most database people will ** tell you that in a well-normalized database, you usually should ** not have more than a dozen or so columns in any table. And if ** that is the case, there is no point in having more than a few ** dozen values in any of the other situations described above. */ #ifndef SQLITE_MAX_COLUMN # define SQLITE_MAX_COLUMN 2000 #endif /* ** The maximum length of a single SQL statement in bytes. ** ** It used to be the case that setting this value to zero would ** turn the limit off. That is no longer true. It is not possible ** to turn this limit off. */ #ifndef SQLITE_MAX_SQL_LENGTH # define SQLITE_MAX_SQL_LENGTH 1000000000 #endif /* ** The maximum depth of an expression tree. This is limited to ** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might ** want to place more severe limits on the complexity of an ** expression. A value of 0 means that there is no limit. */ #ifndef SQLITE_MAX_EXPR_DEPTH # define SQLITE_MAX_EXPR_DEPTH 1000 #endif /* ** The maximum number of terms in a compound SELECT statement. ** The code generator for compound SELECT statements does one ** level of recursion for each term. A stack overflow can result ** if the number of terms is too large. In practice, most SQL ** never has more than 3 or 4 terms. Use a value of 0 to disable ** any limit on the number of terms in a compound SELECT. */ #ifndef SQLITE_MAX_COMPOUND_SELECT # define SQLITE_MAX_COMPOUND_SELECT 500 #endif /* ** The maximum number of opcodes in a VDBE program. ** Not currently enforced. */ #ifndef SQLITE_MAX_VDBE_OP # define SQLITE_MAX_VDBE_OP 250000000 #endif /* ** The maximum number of arguments to an SQL function. */ #ifndef SQLITE_MAX_FUNCTION_ARG # define SQLITE_MAX_FUNCTION_ARG 127 #endif /* ** The suggested maximum number of in-memory pages to use for ** the main database table and for temporary tables. ** ** IMPLEMENTATION-OF: R-30185-15359 The default suggested cache size is -2000, ** which means the cache size is limited to 2048000 bytes of memory. ** IMPLEMENTATION-OF: R-48205-43578 The default suggested cache size can be ** altered using the SQLITE_DEFAULT_CACHE_SIZE compile-time options. */ #ifndef SQLITE_DEFAULT_CACHE_SIZE # define SQLITE_DEFAULT_CACHE_SIZE -2000 #endif /* ** The default number of frames to accumulate in the log file before ** checkpointing the database in WAL mode. */ #ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT # define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000 #endif /* ** The maximum number of attached databases. This must be between 0 ** and 125. The upper bound of 125 is because the attached databases are ** counted using a signed 8-bit integer which has a maximum value of 127 ** and we have to allow 2 extra counts for the "main" and "temp" databases. */ #ifndef SQLITE_MAX_ATTACHED # define SQLITE_MAX_ATTACHED 10 #endif /* ** The maximum value of a ?nnn wildcard that the parser will accept. ** If the value exceeds 32767 then extra space is required for the Expr ** structure. But otherwise, we believe that the number can be as large ** as a signed 32-bit integer can hold. */ #ifndef SQLITE_MAX_VARIABLE_NUMBER # define SQLITE_MAX_VARIABLE_NUMBER 32766 #endif /* Maximum page size. The upper bound on this value is 65536. This a limit ** imposed by the use of 16-bit offsets within each page. ** ** Earlier versions of SQLite allowed the user to change this value at ** compile time. This is no longer permitted, on the grounds that it creates ** a library that is technically incompatible with an SQLite library ** compiled with a different limit. If a process operating on a database ** with a page-size of 65536 bytes crashes, then an instance of SQLite ** compiled with the default page-size limit will not be able to rollback ** the aborted transaction. This could lead to database corruption. */ #ifdef SQLITE_MAX_PAGE_SIZE # undef SQLITE_MAX_PAGE_SIZE #endif #define SQLITE_MAX_PAGE_SIZE 65536 /* ** The default size of a database page. */ #ifndef SQLITE_DEFAULT_PAGE_SIZE # define SQLITE_DEFAULT_PAGE_SIZE 4096 #endif #if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE # undef SQLITE_DEFAULT_PAGE_SIZE # define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE #endif /* ** Ordinarily, if no value is explicitly provided, SQLite creates databases ** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain ** device characteristics (sector-size and atomic write() support), ** SQLite may choose a larger value. This constant is the maximum value ** SQLite will choose on its own. */ #ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE # define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192 #endif #if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE # undef SQLITE_MAX_DEFAULT_PAGE_SIZE # define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE #endif /* ** Maximum number of pages in one database file. ** ** This is really just the default value for the max_page_count pragma. ** This value can be lowered (or raised) at run-time using that the ** max_page_count macro. */ #ifndef SQLITE_MAX_PAGE_COUNT # define SQLITE_MAX_PAGE_COUNT 0xfffffffe /* 4294967294 */ #endif /* ** Maximum length (in bytes) of the pattern in a LIKE or GLOB ** operator. */ #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 #endif /* ** Maximum depth of recursion for triggers. ** ** A value of 1 means that a trigger program will not be able to itself ** fire any triggers. A value of 0 means that no trigger programs at all ** may be executed. */ #ifndef SQLITE_MAX_TRIGGER_DEPTH # define SQLITE_MAX_TRIGGER_DEPTH 1000 #endif /************** End of sqliteLimit.h *****************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* Disable nuisance warnings on Borland compilers */ #if defined(__BORLANDC__) #pragma warn -rch /* unreachable code */ #pragma warn -ccc /* Condition is always true or false */ #pragma warn -aus /* Assigned value is never used */ #pragma warn -csu /* Comparing signed and unsigned */ #pragma warn -spa /* Suspicious pointer arithmetic */ #endif /* ** A few places in the code require atomic load/store of aligned ** integer values. */ #ifndef __has_extension # define __has_extension(x) 0 /* compatibility with non-clang compilers */ #endif #if GCC_VERSION>=4007000 || __has_extension(c_atomic) # define SQLITE_ATOMIC_INTRINSICS 1 # define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED) # define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED) #else # define SQLITE_ATOMIC_INTRINSICS 0 # define AtomicLoad(PTR) (*(PTR)) # define AtomicStore(PTR,VAL) (*(PTR) = (VAL)) #endif /* ** Include standard header files as necessary */ #ifdef HAVE_STDINT_H #include #endif #ifdef HAVE_INTTYPES_H #include #endif /* ** The following macros are used to cast pointers to integers and ** integers to pointers. The way you do this varies from one compiler ** to the next, so we have developed the following set of #if statements ** to generate appropriate macros for a wide range of compilers. ** ** The correct "ANSI" way to do this is to use the intptr_t type. ** Unfortunately, that typedef is not available on all compilers, or ** if it is available, it requires an #include of specific headers ** that vary from one machine to the next. ** ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). ** So we have to define the macros in different ways depending on the ** compiler. */ #if defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) #elif defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) #else /* Generates a warning - but it always works */ # define SQLITE_INT_TO_PTR(X) ((void*)(X)) # define SQLITE_PTR_TO_INT(X) ((int)(X)) #endif /* ** Macros to hint to the compiler that a function should or should not be ** inlined. */ #if defined(__GNUC__) # define SQLITE_NOINLINE __attribute__((noinline)) # define SQLITE_INLINE __attribute__((always_inline)) inline #elif defined(_MSC_VER) && _MSC_VER>=1310 # define SQLITE_NOINLINE __declspec(noinline) # define SQLITE_INLINE __forceinline #else # define SQLITE_NOINLINE # define SQLITE_INLINE #endif #if defined(SQLITE_COVERAGE_TEST) || defined(__STRICT_ANSI__) # undef SQLITE_INLINE # define SQLITE_INLINE #endif /* ** Make sure that the compiler intrinsics we desire are enabled when ** compiling with an appropriate version of MSVC unless prevented by ** the SQLITE_DISABLE_INTRINSIC define. */ #if !defined(SQLITE_DISABLE_INTRINSIC) # if defined(_MSC_VER) && _MSC_VER>=1400 # if !defined(_WIN32_WCE) # include # pragma intrinsic(_byteswap_ushort) # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_byteswap_uint64) # pragma intrinsic(_ReadWriteBarrier) # else # include # endif # endif #endif /* ** Enable SQLITE_USE_SEH by default on MSVC builds. Only omit ** SEH support if the -DSQLITE_OMIT_SEH option is given. */ #if defined(_MSC_VER) && !defined(SQLITE_OMIT_SEH) # define SQLITE_USE_SEH 1 #else # undef SQLITE_USE_SEH #endif /* ** Enable SQLITE_DIRECT_OVERFLOW_READ, unless the build explicitly ** disables it using -DSQLITE_DIRECT_OVERFLOW_READ=0 */ #if defined(SQLITE_DIRECT_OVERFLOW_READ) && SQLITE_DIRECT_OVERFLOW_READ+1==1 /* Disable if -DSQLITE_DIRECT_OVERFLOW_READ=0 */ # undef SQLITE_DIRECT_OVERFLOW_READ #else /* In all other cases, enable */ # define SQLITE_DIRECT_OVERFLOW_READ 1 #endif /* ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. ** 0 means mutexes are permanently disable and the library is never ** threadsafe. 1 means the library is serialized which is the highest ** level of threadsafety. 2 means the library is multithreaded - multiple ** threads can use SQLite as long as no two threads try to use the same ** database connection at the same time. ** ** Older versions of SQLite used an optional THREADSAFE macro. ** We support that for legacy. ** ** To ensure that the correct value of "THREADSAFE" is reported when querying ** for compile-time options at runtime (e.g. "PRAGMA compile_options"), this ** logic is partially replicated in ctime.c. If it is updated here, it should ** also be updated there. */ #if !defined(SQLITE_THREADSAFE) # if defined(THREADSAFE) # define SQLITE_THREADSAFE THREADSAFE # else # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ # endif #endif /* ** Powersafe overwrite is on by default. But can be turned off using ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. */ #ifndef SQLITE_POWERSAFE_OVERWRITE # define SQLITE_POWERSAFE_OVERWRITE 1 #endif /* ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in ** which case memory allocation statistics are disabled by default. */ #if !defined(SQLITE_DEFAULT_MEMSTATUS) # define SQLITE_DEFAULT_MEMSTATUS 1 #endif /* ** Exactly one of the following macros must be defined in order to ** specify which memory allocation subsystem to use. ** ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() ** SQLITE_WIN32_MALLOC // Use Win32 native heap API ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails ** SQLITE_MEMDEBUG // Debugging version of system malloc() ** ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the ** assert() macro is enabled, each call into the Win32 native heap subsystem ** will cause HeapValidate to be called. If heap validation should fail, an ** assertion will be triggered. ** ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as ** the default. */ #if defined(SQLITE_SYSTEM_MALLOC) \ + defined(SQLITE_WIN32_MALLOC) \ + defined(SQLITE_ZERO_MALLOC) \ + defined(SQLITE_MEMDEBUG)>1 # error "Two or more of the following compile-time configuration options\ are defined but at most one is allowed:\ SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ SQLITE_ZERO_MALLOC" #endif #if defined(SQLITE_SYSTEM_MALLOC) \ + defined(SQLITE_WIN32_MALLOC) \ + defined(SQLITE_ZERO_MALLOC) \ + defined(SQLITE_MEMDEBUG)==0 # define SQLITE_SYSTEM_MALLOC 1 #endif /* ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the ** sizes of memory allocations below this value where possible. */ #if !defined(SQLITE_MALLOC_SOFT_LIMIT) # define SQLITE_MALLOC_SOFT_LIMIT 1024 #endif /* ** We need to define _XOPEN_SOURCE as follows in order to enable ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit ** it. */ #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) # define _XOPEN_SOURCE 600 #endif /* ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, ** make it true by defining or undefining NDEBUG. ** ** Setting NDEBUG makes the code smaller and faster by disabling the ** assert() statements in the code. So we want the default action ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out ** feature. */ #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif #if defined(NDEBUG) && defined(SQLITE_DEBUG) # undef NDEBUG #endif /* ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. */ #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 #endif /* ** The testcase() macro is used to aid in coverage testing. When ** doing coverage testing, the condition inside the argument to ** testcase() must be evaluated both true and false in order to ** get full branch coverage. The testcase() macro is inserted ** to help ensure adequate test coverage in places where simple ** condition/decision coverage is inadequate. For example, testcase() ** can be used to make sure boundary values are tested. For ** bitmask tests, testcase() can be used to make sure each bit ** is significant and used at least once. On switch statements ** where multiple cases go to the same block of code, testcase() ** can insure that all cases are evaluated. */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) # ifndef SQLITE_AMALGAMATION extern unsigned int sqlite3CoverageCounter; # endif # define testcase(X) if( X ){ sqlite3CoverageCounter += (unsigned)__LINE__; } #else # define testcase(X) #endif /* ** The TESTONLY macro is used to enclose variable declarations or ** other bits of code that are needed to support the arguments ** within testcase() and assert() macros. */ #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) # define TESTONLY(X) X #else # define TESTONLY(X) #endif /* ** Sometimes we need a small amount of code such as a variable initialization ** to setup for a later assert() statement. We do not want this code to ** appear when assert() is disabled. The following macro is therefore ** used to contain that setup code. The "VVA" acronym stands for ** "Verification, Validation, and Accreditation". In other words, the ** code within VVA_ONLY() will only run during verification processes. */ #ifndef NDEBUG # define VVA_ONLY(X) X #else # define VVA_ONLY(X) #endif /* ** Disable ALWAYS() and NEVER() (make them pass-throughs) for coverage ** and mutation testing */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 #endif /* ** The ALWAYS and NEVER macros surround boolean expressions which ** are intended to always be true or false, respectively. Such ** expressions could be omitted from the code completely. But they ** are included in a few cases in order to enhance the resilience ** of SQLite to unexpected behavior - to make the code "self-healing" ** or "ductile" rather than being "brittle" and crashing at the first ** hint of unplanned behavior. ** ** In other words, ALWAYS and NEVER are added for defensive code. ** ** When doing coverage testing ALWAYS and NEVER are hard-coded to ** be true and false so that the unreachable code they specify will ** not be counted as untested code. */ #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif /* ** Some conditionals are optimizations only. In other words, if the ** conditionals are replaced with a constant 1 (true) or 0 (false) then ** the correct answer is still obtained, though perhaps not as quickly. ** ** The following macros mark these optimizations conditionals. */ #if defined(SQLITE_MUTATION_TEST) # define OK_IF_ALWAYS_TRUE(X) (1) # define OK_IF_ALWAYS_FALSE(X) (0) #else # define OK_IF_ALWAYS_TRUE(X) (X) # define OK_IF_ALWAYS_FALSE(X) (X) #endif /* ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is ** defined. We need to defend against those failures when testing with ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches ** during a normal build. The following macro can be used to disable tests ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. */ #if defined(SQLITE_TEST_REALLOC_STRESS) # define ONLY_IF_REALLOC_STRESS(X) (X) #elif !defined(NDEBUG) # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) #else # define ONLY_IF_REALLOC_STRESS(X) (0) #endif /* ** Declarations used for tracing the operating system interfaces. */ #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) extern int sqlite3OSTrace; # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X # define SQLITE_HAVE_OS_TRACE #else # define OSTRACE(X) # undef SQLITE_HAVE_OS_TRACE #endif /* ** Is the sqlite3ErrName() function needed in the build? Currently, ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when ** OSTRACE is enabled), and by several "test*.c" files (which are ** compiled using SQLITE_TEST). */ #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) # define SQLITE_NEED_ERR_NAME #else # undef SQLITE_NEED_ERR_NAME #endif /* ** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_OMIT_EXPLAIN # undef SQLITE_ENABLE_EXPLAIN_COMMENTS #endif /* ** SQLITE_OMIT_VIRTUALTABLE implies SQLITE_OMIT_ALTERTABLE */ #if defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_ALTERTABLE) # define SQLITE_OMIT_ALTERTABLE #endif /* ** Return true (non-zero) if the input is an integer that is too large ** to fit in 32-bits. This macro is used inside of various testcase() ** macros to verify that we have tested SQLite for large-file support. */ #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) /* ** The macro unlikely() is a hint that surrounds a boolean ** expression that is usually false. Macro likely() surrounds ** a boolean expression that is usually true. These hints could, ** in theory, be used by the compiler to generate better code, but ** currently they are just comments for human readers. */ #define likely(X) (X) #define unlikely(X) (X) /************** Include hash.h in the middle of sqliteInt.h ******************/ /************** Begin file hash.h ********************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the header file for the generic hash-table implementation ** used in SQLite. */ #ifndef SQLITE_HASH_H #define SQLITE_HASH_H /* Forward declarations of structures. */ typedef struct Hash Hash; typedef struct HashElem HashElem; /* A complete hash table is an instance of the following structure. ** The internals of this structure are intended to be opaque -- client ** code should not attempt to access or modify the fields of this structure ** directly. Change this structure only by using the routines below. ** However, some of the "procedures" and "functions" for modifying and ** accessing this structure are really macros, so we can't really make ** this structure opaque. ** ** All elements of the hash table are on a single doubly-linked list. ** Hash.first points to the head of this list. ** ** There are Hash.htsize buckets. Each bucket points to a spot in ** the global doubly-linked list. The contents of the bucket are the ** element pointed to plus the next _ht.count-1 elements in the list. ** ** Hash.htsize and Hash.ht may be zero. In that case lookup is done ** by a linear search of the global list. For small tables, the ** Hash.ht table is never allocated because if there are few elements ** in the table, it is faster to do a linear search than to manage ** the hash table. */ struct Hash { unsigned int htsize; /* Number of buckets in the hash table */ unsigned int count; /* Number of entries in this table */ HashElem *first; /* The first element of the array */ struct _ht { /* the hash table */ unsigned int count; /* Number of entries with this hash */ HashElem *chain; /* Pointer to first entry with this hash */ } *ht; }; /* Each element in the hash table is an instance of the following ** structure. All elements are stored on a single doubly-linked list. ** ** Again, this structure is intended to be opaque, but it can't really ** be opaque because it is used by macros. */ struct HashElem { HashElem *next, *prev; /* Next and previous elements in the table */ void *data; /* Data associated with this element */ const char *pKey; /* Key associated with this element */ }; /* ** Access routines. To delete, insert a NULL pointer. */ SQLITE_PRIVATE void sqlite3HashInit(Hash*); SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, void *pData); SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey); SQLITE_PRIVATE void sqlite3HashClear(Hash*); /* ** Macros for looping over all elements of a hash table. The idiom is ** like this: ** ** Hash h; ** HashElem *p; ** ... ** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ ** SomeStructure *pData = sqliteHashData(p); ** // do something with pData ** } */ #define sqliteHashFirst(H) ((H)->first) #define sqliteHashNext(E) ((E)->next) #define sqliteHashData(E) ((E)->data) /* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */ /* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */ /* ** Number of entries in a hash table */ #define sqliteHashCount(H) ((H)->count) #endif /* SQLITE_HASH_H */ /************** End of hash.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include parse.h in the middle of sqliteInt.h *****************/ /************** Begin file parse.h *******************************************/ #define TK_SEMI 1 #define TK_EXPLAIN 2 #define TK_QUERY 3 #define TK_PLAN 4 #define TK_BEGIN 5 #define TK_TRANSACTION 6 #define TK_DEFERRED 7 #define TK_IMMEDIATE 8 #define TK_EXCLUSIVE 9 #define TK_COMMIT 10 #define TK_END 11 #define TK_ROLLBACK 12 #define TK_SAVEPOINT 13 #define TK_RELEASE 14 #define TK_TO 15 #define TK_TABLE 16 #define TK_CREATE 17 #define TK_IF 18 #define TK_NOT 19 #define TK_EXISTS 20 #define TK_TEMP 21 #define TK_LP 22 #define TK_RP 23 #define TK_AS 24 #define TK_COMMA 25 #define TK_WITHOUT 26 #define TK_ABORT 27 #define TK_ACTION 28 #define TK_AFTER 29 #define TK_ANALYZE 30 #define TK_ASC 31 #define TK_ATTACH 32 #define TK_BEFORE 33 #define TK_BY 34 #define TK_CASCADE 35 #define TK_CAST 36 #define TK_CONFLICT 37 #define TK_DATABASE 38 #define TK_DESC 39 #define TK_DETACH 40 #define TK_EACH 41 #define TK_FAIL 42 #define TK_OR 43 #define TK_AND 44 #define TK_IS 45 #define TK_MATCH 46 #define TK_LIKE_KW 47 #define TK_BETWEEN 48 #define TK_IN 49 #define TK_ISNULL 50 #define TK_NOTNULL 51 #define TK_NE 52 #define TK_EQ 53 #define TK_GT 54 #define TK_LE 55 #define TK_LT 56 #define TK_GE 57 #define TK_ESCAPE 58 #define TK_ID 59 #define TK_COLUMNKW 60 #define TK_DO 61 #define TK_FOR 62 #define TK_IGNORE 63 #define TK_INITIALLY 64 #define TK_INSTEAD 65 #define TK_NO 66 #define TK_KEY 67 #define TK_OF 68 #define TK_OFFSET 69 #define TK_PRAGMA 70 #define TK_RAISE 71 #define TK_RECURSIVE 72 #define TK_REPLACE 73 #define TK_RESTRICT 74 #define TK_ROW 75 #define TK_ROWS 76 #define TK_TRIGGER 77 #define TK_VACUUM 78 #define TK_VIEW 79 #define TK_VIRTUAL 80 #define TK_WITH 81 #define TK_NULLS 82 #define TK_FIRST 83 #define TK_LAST 84 #define TK_CURRENT 85 #define TK_FOLLOWING 86 #define TK_PARTITION 87 #define TK_PRECEDING 88 #define TK_RANGE 89 #define TK_UNBOUNDED 90 #define TK_EXCLUDE 91 #define TK_GROUPS 92 #define TK_OTHERS 93 #define TK_TIES 94 #define TK_GENERATED 95 #define TK_ALWAYS 96 #define TK_MATERIALIZED 97 #define TK_REINDEX 98 #define TK_RENAME 99 #define TK_CTIME_KW 100 #define TK_ANY 101 #define TK_BITAND 102 #define TK_BITOR 103 #define TK_LSHIFT 104 #define TK_RSHIFT 105 #define TK_PLUS 106 #define TK_MINUS 107 #define TK_STAR 108 #define TK_SLASH 109 #define TK_REM 110 #define TK_CONCAT 111 #define TK_PTR 112 #define TK_COLLATE 113 #define TK_BITNOT 114 #define TK_ON 115 #define TK_INDEXED 116 #define TK_STRING 117 #define TK_JOIN_KW 118 #define TK_CONSTRAINT 119 #define TK_DEFAULT 120 #define TK_NULL 121 #define TK_PRIMARY 122 #define TK_UNIQUE 123 #define TK_CHECK 124 #define TK_REFERENCES 125 #define TK_AUTOINCR 126 #define TK_INSERT 127 #define TK_DELETE 128 #define TK_UPDATE 129 #define TK_SET 130 #define TK_DEFERRABLE 131 #define TK_FOREIGN 132 #define TK_DROP 133 #define TK_UNION 134 #define TK_ALL 135 #define TK_EXCEPT 136 #define TK_INTERSECT 137 #define TK_SELECT 138 #define TK_VALUES 139 #define TK_DISTINCT 140 #define TK_DOT 141 #define TK_FROM 142 #define TK_JOIN 143 #define TK_USING 144 #define TK_ORDER 145 #define TK_GROUP 146 #define TK_HAVING 147 #define TK_LIMIT 148 #define TK_WHERE 149 #define TK_RETURNING 150 #define TK_INTO 151 #define TK_NOTHING 152 #define TK_FLOAT 153 #define TK_BLOB 154 #define TK_INTEGER 155 #define TK_VARIABLE 156 #define TK_CASE 157 #define TK_WHEN 158 #define TK_THEN 159 #define TK_ELSE 160 #define TK_INDEX 161 #define TK_ALTER 162 #define TK_ADD 163 #define TK_WINDOW 164 #define TK_OVER 165 #define TK_FILTER 166 #define TK_COLUMN 167 #define TK_AGG_FUNCTION 168 #define TK_AGG_COLUMN 169 #define TK_TRUEFALSE 170 #define TK_ISNOT 171 #define TK_FUNCTION 172 #define TK_UMINUS 173 #define TK_UPLUS 174 #define TK_TRUTH 175 #define TK_REGISTER 176 #define TK_VECTOR 177 #define TK_SELECT_COLUMN 178 #define TK_IF_NULL_ROW 179 #define TK_ASTERISK 180 #define TK_SPAN 181 #define TK_ERROR 182 #define TK_SPACE 183 #define TK_ILLEGAL 184 /************** End of parse.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ #include #include #include #include #include /* ** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY. ** This allows better measurements of where memcpy() is used when running ** cachegrind. But this macro version of memcpy() is very slow so it ** should not be used in production. This is a performance measurement ** hack only. */ #ifdef SQLITE_INLINE_MEMCPY # define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\ int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);} #endif /* ** If compiling for a processor that lacks floating point support, ** substitute integer for floating-point */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite_int64 # define float sqlite_int64 # define LONGDOUBLE_TYPE sqlite_int64 # ifndef SQLITE_BIG_DBL # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) # endif # define SQLITE_OMIT_DATETIME_FUNCS 1 # define SQLITE_OMIT_TRACE 1 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT # undef SQLITE_HAVE_ISNAN #endif #ifndef SQLITE_BIG_DBL # define SQLITE_BIG_DBL (1e99) #endif /* ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 ** afterward. Having this macro allows us to cause the C compiler ** to omit code used by TEMP tables without messy #ifndef statements. */ #ifdef SQLITE_OMIT_TEMPDB #define OMIT_TEMPDB 1 #else #define OMIT_TEMPDB 0 #endif /* ** The "file format" number is an integer that is incremented whenever ** the VDBE-level file format changes. The following macros define the ** the default file format for new databases and the maximum file format ** that the library can read. */ #define SQLITE_MAX_FILE_FORMAT 4 #ifndef SQLITE_DEFAULT_FILE_FORMAT # define SQLITE_DEFAULT_FILE_FORMAT 4 #endif /* ** Determine whether triggers are recursive by default. This can be ** changed at run-time using a pragma. */ #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 #endif /* ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified ** on the command-line */ #ifndef SQLITE_TEMP_STORE # define SQLITE_TEMP_STORE 1 #endif /* ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it ** to zero. */ #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 # undef SQLITE_MAX_WORKER_THREADS # define SQLITE_MAX_WORKER_THREADS 0 #endif #ifndef SQLITE_MAX_WORKER_THREADS # define SQLITE_MAX_WORKER_THREADS 8 #endif #ifndef SQLITE_DEFAULT_WORKER_THREADS # define SQLITE_DEFAULT_WORKER_THREADS 0 #endif #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS # undef SQLITE_MAX_WORKER_THREADS # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS #endif /* ** The default initial allocation for the pagecache when using separate ** pagecaches for each database connection. A positive number is the ** number of pages. A negative number N translations means that a buffer ** of -1024*N bytes is allocated and used for as many pages as it will hold. ** ** The default value of "20" was chosen to minimize the run-time of the ** speedtest1 test program with options: --shrink-memory --reprepare */ #ifndef SQLITE_DEFAULT_PCACHE_INITSZ # define SQLITE_DEFAULT_PCACHE_INITSZ 20 #endif /* ** Default value for the SQLITE_CONFIG_SORTERREF_SIZE option. */ #ifndef SQLITE_DEFAULT_SORTERREF_SIZE # define SQLITE_DEFAULT_SORTERREF_SIZE 0x7fffffff #endif /* ** The compile-time options SQLITE_MMAP_READWRITE and ** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another. ** You must choose one or the other (or neither) but not both. */ #if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) #error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE #endif /* ** GCC does not define the offsetof() macro so we'll have to do it ** ourselves. */ #ifndef offsetof #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) #endif /* ** Macros to compute minimum and maximum of two numbers. */ #ifndef MIN # define MIN(A,B) ((A)<(B)?(A):(B)) #endif #ifndef MAX # define MAX(A,B) ((A)>(B)?(A):(B)) #endif /* ** Swap two objects of type TYPE. */ #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} /* ** Check to see if this machine uses EBCDIC. (Yes, believe it or ** not, there are still machines out there that use EBCDIC.) */ #if 'A' == '\301' # define SQLITE_EBCDIC 1 #else # define SQLITE_ASCII 1 #endif /* ** Integers of known sizes. These typedefs might change for architectures ** where the sizes very. Preprocessor macros are available so that the ** types can be conveniently redefined at compile-type. Like this: ** ** cc '-DUINTPTR_TYPE=long long int' ... */ #ifndef UINT32_TYPE # ifdef HAVE_UINT32_T # define UINT32_TYPE uint32_t # else # define UINT32_TYPE unsigned int # endif #endif #ifndef UINT16_TYPE # ifdef HAVE_UINT16_T # define UINT16_TYPE uint16_t # else # define UINT16_TYPE unsigned short int # endif #endif #ifndef INT16_TYPE # ifdef HAVE_INT16_T # define INT16_TYPE int16_t # else # define INT16_TYPE short int # endif #endif #ifndef UINT8_TYPE # ifdef HAVE_UINT8_T # define UINT8_TYPE uint8_t # else # define UINT8_TYPE unsigned char # endif #endif #ifndef INT8_TYPE # ifdef HAVE_INT8_T # define INT8_TYPE int8_t # else # define INT8_TYPE signed char # endif #endif #ifndef LONGDOUBLE_TYPE # define LONGDOUBLE_TYPE long double #endif typedef sqlite_int64 i64; /* 8-byte signed integer */ typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ typedef INT16_TYPE i16; /* 2-byte signed integer */ typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ typedef INT8_TYPE i8; /* 1-byte signed integer */ /* ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value ** that can be stored in a u32 without loss of data. The value ** is 0x00000000ffffffff. But because of quirks of some compilers, we ** have to specify the value in the less intuitive manner shown: */ #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) /* ** The datatype used to store estimates of the number of rows in a ** table or index. */ typedef u64 tRowcnt; /* ** Estimated quantities used for query planning are stored as 16-bit ** logarithms. For quantity X, the value stored is 10*log2(X). This ** gives a possible range of values of approximately 1.0e986 to 1e-986. ** But the allowed values are "grainy". Not every value is representable. ** For example, quantities 16 and 17 are both represented by a LogEst ** of 40. However, since LogEst quantities are suppose to be estimates, ** not exact values, this imprecision is not a problem. ** ** "LogEst" is short for "Logarithmic Estimate". ** ** Examples: ** 1 -> 0 20 -> 43 10000 -> 132 ** 2 -> 10 25 -> 46 25000 -> 146 ** 3 -> 16 100 -> 66 1000000 -> 199 ** 4 -> 20 1000 -> 99 1048576 -> 200 ** 10 -> 33 1024 -> 100 4294967296 -> 320 ** ** The LogEst can be negative to indicate fractional values. ** Examples: ** ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 */ typedef INT16_TYPE LogEst; /* ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer */ #ifndef SQLITE_PTRSIZE # if defined(__SIZEOF_POINTER__) # define SQLITE_PTRSIZE __SIZEOF_POINTER__ # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(_M_ARM) || defined(__arm__) || defined(__x86) || \ (defined(__APPLE__) && defined(__POWERPC__)) || \ (defined(__TOS_AIX__) && !defined(__64BIT__)) # define SQLITE_PTRSIZE 4 # else # define SQLITE_PTRSIZE 8 # endif #endif /* The uptr type is an unsigned integer large enough to hold a pointer */ #if defined(HAVE_STDINT_H) typedef uintptr_t uptr; #elif SQLITE_PTRSIZE==4 typedef u32 uptr; #else typedef u64 uptr; #endif /* ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to ** something between S (inclusive) and E (exclusive). ** ** In other words, S is a buffer and E is a pointer to the first byte after ** the end of buffer S. This macro returns true if P points to something ** contained within the buffer S. */ #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E))) /* ** P is one byte past the end of a large buffer. Return true if a span of bytes ** between S..E crosses the end of that buffer. In other words, return true ** if the sub-buffer S..E-1 overflows the buffer whose last byte is P-1. ** ** S is the start of the span. E is one byte past the end of end of span. ** ** P ** |-----------------| FALSE ** |-------| ** S E ** ** P ** |-----------------| ** |-------| TRUE ** S E ** ** P ** |-----------------| ** |-------| FALSE ** S E */ #define SQLITE_OVERFLOW(P,S,E) (((uptr)(S)<(uptr)(P))&&((uptr)(E)>(uptr)(P))) /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined ** at run-time. ** ** If you are building SQLite on some obscure platform for which the ** following ifdef magic does not work, you can always include either: ** ** -DSQLITE_BYTEORDER=1234 ** ** or ** ** -DSQLITE_BYTEORDER=4321 ** ** to cause the build to work for little-endian or big-endian processors, ** respectively. */ #ifndef SQLITE_BYTEORDER /* Replicate changes at tag-20230904a */ # if defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_BIG_ENDIAN__ # define SQLITE_BYTEORDER 4321 # elif defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__ # define SQLITE_BYTEORDER 1234 # elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1 # define SQLITE_BYTEORDER 4321 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64) # define SQLITE_BYTEORDER 1234 # elif defined(sparc) || defined(__ARMEB__) || defined(__AARCH64EB__) # define SQLITE_BYTEORDER 4321 # else # define SQLITE_BYTEORDER 0 # endif #endif #if SQLITE_BYTEORDER==4321 # define SQLITE_BIGENDIAN 1 # define SQLITE_LITTLEENDIAN 0 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE #elif SQLITE_BYTEORDER==1234 # define SQLITE_BIGENDIAN 0 # define SQLITE_LITTLEENDIAN 1 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE #else # ifdef SQLITE_AMALGAMATION const int sqlite3one = 1; # else extern const int sqlite3one; # endif # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) #endif /* ** Constants for the largest and smallest possible 64-bit signed integers. ** These macros are designed to work correctly on both 32-bit and 64-bit ** compilers. */ #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) #define LARGEST_UINT64 (0xffffffff|(((u64)0xffffffff)<<32)) #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) /* ** Round up a number to the next larger multiple of 8. This is used ** to force 8-byte alignment on 64-bit architectures. ** ** ROUND8() always does the rounding, for any argument. ** ** ROUND8P() assumes that the argument is already an integer number of ** pointers in size, and so it is a no-op on systems where the pointer ** size is 8. */ #define ROUND8(x) (((x)+7)&~7) #if SQLITE_PTRSIZE==8 # define ROUND8P(x) (x) #else # define ROUND8P(x) (((x)+7)&~7) #endif /* ** Round down to the nearest multiple of 8 */ #define ROUNDDOWN8(x) ((x)&~7) /* ** Assert that the pointer X is aligned to an 8-byte boundary. This ** macro is used only within assert() to verify that the code gets ** all alignment restrictions correct. ** ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the ** underlying malloc() implementation might return us 4-byte aligned ** pointers. In that case, only verify 4-byte alignment. */ #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC # define EIGHT_BYTE_ALIGNMENT(X) ((((uptr)(X) - (uptr)0)&3)==0) #else # define EIGHT_BYTE_ALIGNMENT(X) ((((uptr)(X) - (uptr)0)&7)==0) #endif /* ** Disable MMAP on platforms where it is known to not work */ #if defined(__OpenBSD__) || defined(__QNXNTO__) # undef SQLITE_MAX_MMAP_SIZE # define SQLITE_MAX_MMAP_SIZE 0 #endif /* ** Default maximum size of memory used by memory-mapped I/O in the VFS */ #ifdef __APPLE__ # include #endif #ifndef SQLITE_MAX_MMAP_SIZE # if defined(__linux__) \ || defined(_WIN32) \ || (defined(__APPLE__) && defined(__MACH__)) \ || defined(__sun) \ || defined(__FreeBSD__) \ || defined(__DragonFly__) # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ # else # define SQLITE_MAX_MMAP_SIZE 0 # endif #endif /* ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger ** default MMAP_SIZE is specified at compile-time, make sure that it does ** not exceed the maximum mmap size. */ #ifndef SQLITE_DEFAULT_MMAP_SIZE # define SQLITE_DEFAULT_MMAP_SIZE 0 #endif #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE # undef SQLITE_DEFAULT_MMAP_SIZE # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE #endif /* ** TREETRACE_ENABLED will be either 1 or 0 depending on whether or not ** the Abstract Syntax Tree tracing logic is turned on. */ #if !defined(SQLITE_AMALGAMATION) SQLITE_PRIVATE u32 sqlite3TreeTrace; #endif #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_SELECTTRACE) \ || defined(SQLITE_ENABLE_TREETRACE)) # define TREETRACE_ENABLED 1 # define TREETRACE(K,P,S,X) \ if(sqlite3TreeTrace&(K)) \ sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ sqlite3DebugPrintf X #else # define TREETRACE(K,P,S,X) # define TREETRACE_ENABLED 0 #endif /* TREETRACE flag meanings: ** ** 0x00000001 Beginning and end of SELECT processing ** 0x00000002 WHERE clause processing ** 0x00000004 Query flattener ** 0x00000008 Result-set wildcard expansion ** 0x00000010 Query name resolution ** 0x00000020 Aggregate analysis ** 0x00000040 Window functions ** 0x00000080 Generated column names ** 0x00000100 Move HAVING terms into WHERE ** 0x00000200 Count-of-view optimization ** 0x00000400 Compound SELECT processing ** 0x00000800 Drop superfluous ORDER BY ** 0x00001000 LEFT JOIN simplifies to JOIN ** 0x00002000 Constant propagation ** 0x00004000 Push-down optimization ** 0x00008000 After all FROM-clause analysis ** 0x00010000 Beginning of DELETE/INSERT/UPDATE processing ** 0x00020000 Transform DISTINCT into GROUP BY ** 0x00040000 SELECT tree dump after all code has been generated ** 0x00080000 NOT NULL strength reduction */ /* ** Macros for "wheretrace" */ SQLITE_PRIVATE u32 sqlite3WhereTrace; #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE)) # define WHERETRACE(K,X) if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X # define WHERETRACE_ENABLED 1 #else # define WHERETRACE(K,X) #endif /* ** Bits for the sqlite3WhereTrace mask: ** ** (---any--) Top-level block structure ** 0x-------F High-level debug messages ** 0x----FFF- More detail ** 0xFFFF---- Low-level debug messages ** ** 0x00000001 Code generation ** 0x00000002 Solver ** 0x00000004 Solver costs ** 0x00000008 WhereLoop inserts ** ** 0x00000010 Display sqlite3_index_info xBestIndex calls ** 0x00000020 Range an equality scan metrics ** 0x00000040 IN operator decisions ** 0x00000080 WhereLoop cost adjustements ** 0x00000100 ** 0x00000200 Covering index decisions ** 0x00000400 OR optimization ** 0x00000800 Index scanner ** 0x00001000 More details associated with code generation ** 0x00002000 ** 0x00004000 Show all WHERE terms at key points ** 0x00008000 Show the full SELECT statement at key places ** ** 0x00010000 Show more detail when printing WHERE terms ** 0x00020000 Show WHERE terms returned from whereScanNext() */ /* ** An instance of the following structure is used to store the busy-handler ** callback for a given sqlite handle. ** ** The sqlite.busyHandler member of the sqlite struct contains the busy ** callback for the database handle. Each pager opened via the sqlite ** handle is passed a pointer to sqlite.busyHandler. The busy-handler ** callback is currently invoked only from within pager.c. */ typedef struct BusyHandler BusyHandler; struct BusyHandler { int (*xBusyHandler)(void *,int); /* The busy callback */ void *pBusyArg; /* First arg to busy callback */ int nBusy; /* Incremented with each busy call */ }; /* ** Name of table that holds the database schema. ** ** The PREFERRED names are used wherever possible. But LEGACY is also ** used for backwards compatibility. ** ** 1. Queries can use either the PREFERRED or the LEGACY names ** 2. The sqlite3_set_authorizer() callback uses the LEGACY name ** 3. The PRAGMA table_list statement uses the PREFERRED name ** ** The LEGACY names are stored in the internal symbol hash table ** in support of (2). Names are translated using sqlite3PreferredTableName() ** for (3). The sqlite3FindTable() function takes care of translating ** names for (1). ** ** Note that "sqlite_temp_schema" can also be called "temp.sqlite_schema". */ #define LEGACY_SCHEMA_TABLE "sqlite_master" #define LEGACY_TEMP_SCHEMA_TABLE "sqlite_temp_master" #define PREFERRED_SCHEMA_TABLE "sqlite_schema" #define PREFERRED_TEMP_SCHEMA_TABLE "sqlite_temp_schema" /* ** The root-page of the schema table. */ #define SCHEMA_ROOT 1 /* ** The name of the schema table. The name is different for TEMP. */ #define SCHEMA_TABLE(x) \ ((!OMIT_TEMPDB)&&(x==1)?LEGACY_TEMP_SCHEMA_TABLE:LEGACY_SCHEMA_TABLE) /* ** A convenience macro that returns the number of elements in ** an array. */ #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) /* ** Determine if the argument is a power of two */ #define IsPowerOfTwo(X) (((X)&((X)-1))==0) /* ** The following value as a destructor means to use sqlite3DbFree(). ** The sqlite3DbFree() routine requires two parameters instead of the ** one parameter that destructors normally want. So we have to introduce ** this magic value that the code knows to handle differently. Any ** pointer will work here as long as it is distinct from SQLITE_STATIC ** and SQLITE_TRANSIENT. */ #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3OomClear) /* ** When SQLITE_OMIT_WSD is defined, it means that the target platform does ** not support Writable Static Data (WSD) such as global and static variables. ** All variables must either be on the stack or dynamically allocated from ** the heap. When WSD is unsupported, the variable declarations scattered ** throughout the SQLite code must become constants instead. The SQLITE_WSD ** macro is used for this purpose. And instead of referencing the variable ** directly, we use its constant as a key to lookup the run-time allocated ** buffer that holds real variable. The constant is also the initializer ** for the run-time allocated buffer. ** ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL ** macros become no-ops and have zero performance impact. */ #ifdef SQLITE_OMIT_WSD #define SQLITE_WSD const #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) SQLITE_API int sqlite3_wsd_init(int N, int J); SQLITE_API void *sqlite3_wsd_find(void *K, int L); #else #define SQLITE_WSD #define GLOBAL(t,v) v #define sqlite3GlobalConfig sqlite3Config #endif /* ** The following macros are used to suppress compiler warnings and to ** make it clear to human readers when a function parameter is deliberately ** left unused within the body of a function. This usually happens when ** a function is called via a function pointer. For example the ** implementation of an SQL aggregate step callback may not use the ** parameter indicating the number of arguments passed to the aggregate, ** if it knows that this is enforced elsewhere. ** ** When a function parameter is not used at all within the body of a function, ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. ** However, these macros may also be used to suppress warnings related to ** parameters that may or may not be used depending on compilation options. ** For example those parameters only used in assert() statements. In these ** cases the parameters are named as per the usual conventions. */ #define UNUSED_PARAMETER(x) (void)(x) #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) /* ** Forward references to structures */ typedef struct AggInfo AggInfo; typedef struct AuthContext AuthContext; typedef struct AutoincInfo AutoincInfo; typedef struct Bitvec Bitvec; typedef struct CollSeq CollSeq; typedef struct Column Column; typedef struct Cte Cte; typedef struct CteUse CteUse; typedef struct Db Db; typedef struct DbClientData DbClientData; typedef struct DbFixer DbFixer; typedef struct Schema Schema; typedef struct Expr Expr; typedef struct ExprList ExprList; typedef struct FKey FKey; typedef struct FpDecode FpDecode; typedef struct FuncDestructor FuncDestructor; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct IndexedExpr IndexedExpr; typedef struct IndexSample IndexSample; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct OnOrUsing OnOrUsing; typedef struct Parse Parse; typedef struct ParseCleanup ParseCleanup; typedef struct PreUpdate PreUpdate; typedef struct PrintfArguments PrintfArguments; typedef struct RCStr RCStr; typedef struct RenameToken RenameToken; typedef struct Returning Returning; typedef struct RowSet RowSet; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SQLiteThread SQLiteThread; typedef struct SelectDest SelectDest; typedef struct SrcItem SrcItem; typedef struct SrcList SrcList; typedef struct sqlite3_str StrAccum; /* Internal alias for sqlite3_str */ typedef struct Table Table; typedef struct TableLock TableLock; typedef struct Token Token; typedef struct TreeView TreeView; typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct Upsert Upsert; typedef struct VTable VTable; typedef struct VtabCtx VtabCtx; typedef struct Walker Walker; typedef struct WhereInfo WhereInfo; typedef struct Window Window; typedef struct With With; /* ** The bitmask datatype defined below is used for various optimizations. ** ** Changing this from a 64-bit to a 32-bit type limits the number of ** tables in a join to 32 instead of 64. But it also reduces the size ** of the library by 738 bytes on ix86. */ #ifdef SQLITE_BITMASK_TYPE typedef SQLITE_BITMASK_TYPE Bitmask; #else typedef u64 Bitmask; #endif /* ** The number of bits in a Bitmask. "BMS" means "BitMask Size". */ #define BMS ((int)(sizeof(Bitmask)*8)) /* ** A bit in a Bitmask */ #define MASKBIT(n) (((Bitmask)1)<<(n)) #define MASKBIT64(n) (((u64)1)<<(n)) #define MASKBIT32(n) (((unsigned int)1)<<(n)) #define SMASKBIT32(n) ((n)<=31?((unsigned int)1)<<(n):0) #define ALLBITS ((Bitmask)-1) #define TOPBIT (((Bitmask)1)<<(BMS-1)) /* A VList object records a mapping between parameters/variables/wildcards ** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer ** variable number associated with that parameter. See the format description ** on the sqlite3VListAdd() routine for more information. A VList is really ** just an array of integers. */ typedef int VList; /* ** Defer sourcing vdbe.h and btree.h until after the "u8" and ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque ** pointer types (i.e. FuncDef) defined above. */ /************** Include os.h in the middle of sqliteInt.h ********************/ /************** Begin file os.h **********************************************/ /* ** 2001 September 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file (together with is companion C source-code file ** "os.c") attempt to abstract the underlying operating system so that ** the SQLite library will work on both POSIX and windows systems. ** ** This header file is #include-ed by sqliteInt.h and thus ends up ** being included by every source file. */ #ifndef _SQLITE_OS_H_ #define _SQLITE_OS_H_ /* ** Attempt to automatically detect the operating system and setup the ** necessary pre-processor macros for it. */ /************** Include os_setup.h in the middle of os.h *********************/ /************** Begin file os_setup.h ****************************************/ /* ** 2013 November 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains pre-processor directives related to operating system ** detection and/or setup. */ #ifndef SQLITE_OS_SETUP_H #define SQLITE_OS_SETUP_H /* ** Figure out if we are dealing with Unix, Windows, or some other operating ** system. ** ** After the following block of preprocess macros, all of ** ** SQLITE_OS_KV ** SQLITE_OS_OTHER ** SQLITE_OS_UNIX ** SQLITE_OS_WIN ** ** will defined to either 1 or 0. One of them will be 1. The others will be 0. ** If none of the macros are initially defined, then select either ** SQLITE_OS_UNIX or SQLITE_OS_WIN depending on the target platform. ** ** If SQLITE_OS_OTHER=1 is specified at compile-time, then the application ** must provide its own VFS implementation together with sqlite3_os_init() ** and sqlite3_os_end() routines. */ #if !defined(SQLITE_OS_KV) && !defined(SQLITE_OS_OTHER) && \ !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_WIN) # if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || \ defined(__MINGW32__) || defined(__BORLANDC__) # define SQLITE_OS_WIN 1 # define SQLITE_OS_UNIX 0 # else # define SQLITE_OS_WIN 0 # define SQLITE_OS_UNIX 1 # endif #endif #if SQLITE_OS_OTHER+1>1 # undef SQLITE_OS_KV # define SQLITE_OS_KV 0 # undef SQLITE_OS_UNIX # define SQLITE_OS_UNIX 0 # undef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 #endif #if SQLITE_OS_KV+1>1 # undef SQLITE_OS_OTHER # define SQLITE_OS_OTHER 0 # undef SQLITE_OS_UNIX # define SQLITE_OS_UNIX 0 # undef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 # define SQLITE_OMIT_LOAD_EXTENSION 1 # define SQLITE_OMIT_WAL 1 # define SQLITE_OMIT_DEPRECATED 1 # undef SQLITE_TEMP_STORE # define SQLITE_TEMP_STORE 3 /* Always use memory for temporary storage */ # define SQLITE_DQS 0 # define SQLITE_OMIT_SHARED_CACHE 1 # define SQLITE_OMIT_AUTOINIT 1 #endif #if SQLITE_OS_UNIX+1>1 # undef SQLITE_OS_KV # define SQLITE_OS_KV 0 # undef SQLITE_OS_OTHER # define SQLITE_OS_OTHER 0 # undef SQLITE_OS_WIN # define SQLITE_OS_WIN 0 #endif #if SQLITE_OS_WIN+1>1 # undef SQLITE_OS_KV # define SQLITE_OS_KV 0 # undef SQLITE_OS_OTHER # define SQLITE_OS_OTHER 0 # undef SQLITE_OS_UNIX # define SQLITE_OS_UNIX 0 #endif #endif /* SQLITE_OS_SETUP_H */ /************** End of os_setup.h ********************************************/ /************** Continuing where we left off in os.h *************************/ /* If the SET_FULLSYNC macro is not defined above, then make it ** a no-op */ #ifndef SET_FULLSYNC # define SET_FULLSYNC(x,y) #endif /* Maximum pathname length. Note: FILENAME_MAX defined by stdio.h */ #ifndef SQLITE_MAX_PATHLEN # define SQLITE_MAX_PATHLEN FILENAME_MAX #endif /* Maximum number of symlinks that will be resolved while trying to ** expand a filename in xFullPathname() in the VFS. */ #ifndef SQLITE_MAX_SYMLINK # define SQLITE_MAX_SYMLINK 200 #endif /* ** The default size of a disk sector */ #ifndef SQLITE_DEFAULT_SECTOR_SIZE # define SQLITE_DEFAULT_SECTOR_SIZE 4096 #endif /* ** Temporary files are named starting with this prefix followed by 16 random ** alphanumeric characters, and no file extension. They are stored in the ** OS's standard temporary file directory, and are deleted prior to exit. ** If sqlite is being embedded in another program, you may wish to change the ** prefix to reflect your program's name, so that if your program exits ** prematurely, old temporary files can be easily identified. This can be done ** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. ** ** 2006-10-31: The default prefix used to be "sqlite_". But then ** Mcafee started using SQLite in their anti-virus product and it ** started putting files with the "sqlite" name in the c:/temp folder. ** This annoyed many windows users. Those users would then do a ** Google search for "sqlite", find the telephone numbers of the ** developers and call to wake them up at night and complain. ** For this reason, the default name prefix is changed to be "sqlite" ** spelled backwards. So the temp files are still identified, but ** anybody smart enough to figure out the code is also likely smart ** enough to know that calling the developer will not help get rid ** of the file. */ #ifndef SQLITE_TEMP_FILE_PREFIX # define SQLITE_TEMP_FILE_PREFIX "etilqs_" #endif /* ** The following values may be passed as the second argument to ** sqlite3OsLock(). The various locks exhibit the following semantics: ** ** SHARED: Any number of processes may hold a SHARED lock simultaneously. ** RESERVED: A single process may hold a RESERVED lock on a file at ** any time. Other processes may hold and obtain new SHARED locks. ** PENDING: A single process may hold a PENDING lock on a file at ** any one time. Existing SHARED locks may persist, but no new ** SHARED locks may be obtained by other processes. ** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. ** ** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a ** process that requests an EXCLUSIVE lock may actually obtain a PENDING ** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to ** sqlite3OsLock(). */ #define NO_LOCK 0 #define SHARED_LOCK 1 #define RESERVED_LOCK 2 #define PENDING_LOCK 3 #define EXCLUSIVE_LOCK 4 /* ** File Locking Notes: (Mostly about windows but also some info for Unix) ** ** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because ** those functions are not available. So we use only LockFile() and ** UnlockFile(). ** ** LockFile() prevents not just writing but also reading by other processes. ** A SHARED_LOCK is obtained by locking a single randomly-chosen ** byte out of a specific range of bytes. The lock byte is obtained at ** random so two separate readers can probably access the file at the ** same time, unless they are unlucky and choose the same lock byte. ** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. ** There can only be one writer. A RESERVED_LOCK is obtained by locking ** a single byte of the file that is designated as the reserved lock byte. ** A PENDING_LOCK is obtained by locking a designated byte different from ** the RESERVED_LOCK byte. ** ** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, ** which means we can use reader/writer locks. When reader/writer locks ** are used, the lock is placed on the same range of bytes that is used ** for probabilistic locking in Win95/98/ME. Hence, the locking scheme ** will support two or more Win95 readers or two or more WinNT readers. ** But a single Win95 reader will lock out all WinNT readers and a single ** WinNT reader will lock out all other Win95 readers. ** ** The following #defines specify the range of bytes used for locking. ** SHARED_SIZE is the number of bytes available in the pool from which ** a random byte is selected for a shared lock. The pool of bytes for ** shared locks begins at SHARED_FIRST. ** ** The same locking strategy and ** byte ranges are used for Unix. This leaves open the possibility of having ** clients on win95, winNT, and unix all talking to the same shared file ** and all locking correctly. To do so would require that samba (or whatever ** tool is being used for file sharing) implements locks correctly between ** windows and unix. I'm guessing that isn't likely to happen, but by ** using the same locking range we are at least open to the possibility. ** ** Locking in windows is manditory. For this reason, we cannot store ** actual data in the bytes used for locking. The pager never allocates ** the pages involved in locking therefore. SHARED_SIZE is selected so ** that all locks will fit on a single page even at the minimum page size. ** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE ** is set high so that we don't have to allocate an unused page except ** for very large databases. But one should test the page skipping logic ** by setting PENDING_BYTE low and running the entire regression suite. ** ** Changing the value of PENDING_BYTE results in a subtly incompatible ** file format. Depending on how it is changed, you might not notice ** the incompatibility right away, even running a full regression test. ** The default location of PENDING_BYTE is the first byte past the ** 1GB boundary. ** */ #ifdef SQLITE_OMIT_WSD # define PENDING_BYTE (0x40000000) #else # define PENDING_BYTE sqlite3PendingByte #endif #define RESERVED_BYTE (PENDING_BYTE+1) #define SHARED_FIRST (PENDING_BYTE+2) #define SHARED_SIZE 510 /* ** Wrapper around OS specific sqlite3_os_init() function. */ SQLITE_PRIVATE int sqlite3OsInit(void); /* ** Functions for accessing sqlite3_file methods */ SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file*); SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int); SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize); SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int); SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int); SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*); SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file*,int,void*); #define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id); SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **); SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int, int, int); SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id); SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int); #endif /* SQLITE_OMIT_WAL */ SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64, int, void **); SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *, i64, void *); /* ** Functions for accessing sqlite3_vfs methods */ SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int); SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut); SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *); #ifndef SQLITE_OMIT_LOAD_EXTENSION SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *); SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *); SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void); SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *); #endif /* SQLITE_OMIT_LOAD_EXTENSION */ SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *); SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int); SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs*); SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*); /* ** Convenience functions for opening and closing files using ** sqlite3_malloc() to obtain space for the file-handle structure. */ SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*); SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *); #endif /* _SQLITE_OS_H_ */ /************** End of os.h **************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include pager.h in the middle of sqliteInt.h *****************/ /************** Begin file pager.h *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. */ #ifndef SQLITE_PAGER_H #define SQLITE_PAGER_H /* ** Default maximum size for persistent journal files. A negative ** value means no limit. This value may be overridden using the ** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit". */ #ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1 #endif /* ** The type used to represent a page number. The first page in a file ** is called page 1. 0 is used to represent "not a page". */ typedef u32 Pgno; /* ** Each open file is managed by a separate instance of the "Pager" structure. */ typedef struct Pager Pager; /* ** Handle type for pages. */ typedef struct PgHdr DbPage; /* ** Page number PAGER_SJ_PGNO is never used in an SQLite database (it is ** reserved for working around a windows/posix incompatibility). It is ** used in the journal to signify that the remainder of the journal file ** is devoted to storing a super-journal name - there are no more pages to ** roll back. See comments for function writeSuperJournal() in pager.c ** for details. */ #define PAGER_SJ_PGNO_COMPUTED(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1)) #define PAGER_SJ_PGNO(x) ((x)->lckPgno) /* ** Allowed values for the flags parameter to sqlite3PagerOpen(). ** ** NOTE: These values must match the corresponding BTREE_ values in btree.h. */ #define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ #define PAGER_MEMORY 0x0002 /* In-memory database */ /* ** Valid values for the second argument to sqlite3PagerLockingMode(). */ #define PAGER_LOCKINGMODE_QUERY -1 #define PAGER_LOCKINGMODE_NORMAL 0 #define PAGER_LOCKINGMODE_EXCLUSIVE 1 /* ** Numeric constants that encode the journalmode. ** ** The numeric values encoded here (other than PAGER_JOURNALMODE_QUERY) ** are exposed in the API via the "PRAGMA journal_mode" command and ** therefore cannot be changed without a compatibility break. */ #define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */ #define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ #define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ #define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ #define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ #define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ #define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */ /* ** Flags that make up the mask passed to sqlite3PagerGet(). */ #define PAGER_GET_NOCONTENT 0x01 /* Do not load data from disk */ #define PAGER_GET_READONLY 0x02 /* Read-only page is acceptable */ /* ** Flags for sqlite3PagerSetFlags() ** ** Value constraints (enforced via assert()): ** PAGER_FULLFSYNC == SQLITE_FullFSync ** PAGER_CKPT_FULLFSYNC == SQLITE_CkptFullFSync ** PAGER_CACHE_SPILL == SQLITE_CacheSpill */ #define PAGER_SYNCHRONOUS_OFF 0x01 /* PRAGMA synchronous=OFF */ #define PAGER_SYNCHRONOUS_NORMAL 0x02 /* PRAGMA synchronous=NORMAL */ #define PAGER_SYNCHRONOUS_FULL 0x03 /* PRAGMA synchronous=FULL */ #define PAGER_SYNCHRONOUS_EXTRA 0x04 /* PRAGMA synchronous=EXTRA */ #define PAGER_SYNCHRONOUS_MASK 0x07 /* Mask for four values above */ #define PAGER_FULLFSYNC 0x08 /* PRAGMA fullfsync=ON */ #define PAGER_CKPT_FULLFSYNC 0x10 /* PRAGMA checkpoint_fullfsync=ON */ #define PAGER_CACHESPILL 0x20 /* PRAGMA cache_spill=ON */ #define PAGER_FLAGS_MASK 0x38 /* All above except SYNCHRONOUS */ /* ** The remainder of this file contains the declarations of the functions ** that make up the Pager sub-system API. See source code comments for ** a detailed description of each routine. */ /* Open and close a Pager connection. */ SQLITE_PRIVATE int sqlite3PagerOpen( sqlite3_vfs*, Pager **ppPager, const char*, int, int, int, void(*)(DbPage*) ); SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3*); SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); /* Functions used to configure a Pager object. */ SQLITE_PRIVATE void sqlite3PagerSetBusyHandler(Pager*, int(*)(void *), void *); SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int); /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager*,Pager*); #endif /* END SQLCIPHER */ SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager*, Pgno); SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager*, int); SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64); SQLITE_PRIVATE void sqlite3PagerShrink(Pager*); SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned); SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int); SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*); SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*); SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64); SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*); SQLITE_PRIVATE int sqlite3PagerFlush(Pager*); /* Functions used to obtain and release page references. */ SQLITE_PRIVATE int sqlite3PagerGet(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); SQLITE_PRIVATE void sqlite3PagerRef(DbPage*); SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*); SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*); SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage*); /* Operations on page references. */ SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*); SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*); SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int); SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*); SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); /* Functions used to manage pager transactions and savepoints. */ SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*); SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int); SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zSuper, int); SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*); SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper); SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n); SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*); SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*); # ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager*, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager*, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager); # endif #endif #if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_ENABLE_SETLK_TIMEOUT) SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager*, int); SQLITE_PRIVATE void sqlite3PagerWalDb(Pager*, sqlite3*); #else # define sqlite3PagerWalWriteLock(y,z) SQLITE_OK # define sqlite3PagerWalDb(x,y) #endif #ifdef SQLITE_DIRECT_OVERFLOW_READ SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno); #endif #ifdef SQLITE_ENABLE_ZIPVFS SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); #endif /* Functions used to query pager state and configuration. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*); SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); #endif SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*); SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager*, int); SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager*); SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager*); SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*); SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, u64*); SQLITE_PRIVATE void sqlite3PagerClearCache(Pager*); SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *); /* Functions used to truncate the database file. */ SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno); SQLITE_PRIVATE void sqlite3PagerRekey(DbPage*, Pgno, u16); /* BEGIN SQLCIPHER */ #if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL) void *sqlcipherPagerCodec(DbPage *); #endif /* END SQLCIPHER */ /* Functions to support testing and debugging. */ #if !defined(NDEBUG) || defined(SQLITE_TEST) SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*); SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*); #endif #ifdef SQLITE_TEST SQLITE_PRIVATE int *sqlite3PagerStats(Pager*); SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); void disable_simulated_io_errors(void); void enable_simulated_io_errors(void); #else # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL) SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager*); #endif #endif /* SQLITE_PAGER_H */ /************** End of pager.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include btree.h in the middle of sqliteInt.h *****************/ /************** Begin file btree.h *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. */ #ifndef SQLITE_BTREE_H #define SQLITE_BTREE_H /* TODO: This definition is just included so other modules compile. It ** needs to be revisited. */ #define SQLITE_N_BTREE_META 16 /* ** If defined as non-zero, auto-vacuum is enabled by default. Otherwise ** it must be turned on for each database using "PRAGMA auto_vacuum = 1". */ #ifndef SQLITE_DEFAULT_AUTOVACUUM #define SQLITE_DEFAULT_AUTOVACUUM 0 #endif #define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ #define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ #define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ /* ** Forward declarations of structure */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; typedef struct BtShared BtShared; typedef struct BtreePayload BtreePayload; SQLITE_PRIVATE int sqlite3BtreeOpen( sqlite3_vfs *pVfs, /* VFS to use with this b-tree */ const char *zFilename, /* Name of database file to open */ sqlite3 *db, /* Associated database connection */ Btree **ppBtree, /* Return open Btree* here */ int flags, /* Flags */ int vfsFlags /* Flags passed through to VFS open */ ); /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the ** following values. ** ** NOTE: These values must match the corresponding PAGER_ values in ** pager.h. */ #define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */ #define BTREE_MEMORY 2 /* This is an in-memory DB */ #define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */ #define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree*,int); #if SQLITE_MAX_MMAP_SIZE>0 SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64); #endif SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned); SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree*,Pgno); SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree*); SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree*); SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p); SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int,int*); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char*); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int); SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int); SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, Pgno*, int flags); SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree*); SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree); #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock); #endif /* Savepoints are named, nestable SQL transactions mostly implemented */ /* in vdbe.c and pager.c See https://sqlite.org/lang_savepoint.html */ SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); /* "Checkpoint" only refers to WAL. See https://sqlite.org/wal.html#ckpt */ #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); #endif SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR ** of the flags shown below. ** ** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set. ** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data ** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With ** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored ** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL ** indices.) */ #define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ #define BTREE_BLOBKEY 2 /* Table has keys only - no data */ SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, i64*); SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree*, int, int); SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p); /* ** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta ** should be one of the following values. The integer values are assigned ** to constants so that the offset of the corresponding field in an ** SQLite database header may be found using the following formula: ** ** offset = 36 + (idx * 4) ** ** For example, the free-page-count field is located at byte offset 36 of ** the database file header. The incr-vacuum-flag field is located at ** byte offset 64 (== 36+4*7). ** ** The BTREE_DATA_VERSION value is not really a value stored in the header. ** It is a read-only number computed by the pager. But we merge it with ** the header value access routines since its access pattern is the same. ** Call it a "virtual meta value". */ #define BTREE_FREE_PAGE_COUNT 0 #define BTREE_SCHEMA_VERSION 1 #define BTREE_FILE_FORMAT 2 #define BTREE_DEFAULT_CACHE_SIZE 3 #define BTREE_LARGEST_ROOT_PAGE 4 #define BTREE_TEXT_ENCODING 5 #define BTREE_USER_VERSION 6 #define BTREE_INCR_VACUUM 7 #define BTREE_APPLICATION_ID 8 #define BTREE_DATA_VERSION 15 /* A virtual meta-value */ /* ** Kinds of hints that can be passed into the sqlite3BtreeCursorHint() ** interface. ** ** BTREE_HINT_RANGE (arguments: Expr*, Mem*) ** ** The first argument is an Expr* (which is guaranteed to be constant for ** the lifetime of the cursor) that defines constraints on which rows ** might be fetched with this cursor. The Expr* tree may contain ** TK_REGISTER nodes that refer to values stored in the array of registers ** passed as the second parameter. In other words, if Expr.op==TK_REGISTER ** then the value of the node is the value in Mem[pExpr.iTable]. Any ** TK_COLUMN node in the expression tree refers to the Expr.iColumn-th ** column of the b-tree of the cursor. The Expr tree will not contain ** any function calls nor subqueries nor references to b-trees other than ** the cursor being hinted. ** ** The design of the _RANGE hint is aid b-tree implementations that try ** to prefetch content from remote machines - to provide those ** implementations with limits on what needs to be prefetched and thereby ** reduce network bandwidth. ** ** Note that BTREE_HINT_FLAGS with BTREE_BULKLOAD is the only hint used by ** standard SQLite. The other hints are provided for extensions that use ** the SQLite parser and code generator but substitute their own storage ** engine. */ #define BTREE_HINT_RANGE 0 /* Range constraints on queries */ /* ** Values that may be OR'd together to form the argument to the ** BTREE_HINT_FLAGS hint for sqlite3BtreeCursorHint(): ** ** The BTREE_BULKLOAD flag is set on index cursors when the index is going ** to be filled with content that is already in sorted order. ** ** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or ** OP_SeekLE opcodes for a range search, but where the range of entries ** selected will all have the same key. In other words, the cursor will ** be used only for equality key searches. ** */ #define BTREE_BULKLOAD 0x00000001 /* Used to full index in sorted order */ #define BTREE_SEEK_EQ 0x00000002 /* EQ seeks only - no range seeks */ /* ** Flags passed as the third argument to sqlite3BtreeCursor(). ** ** For read-only cursors the wrFlag argument is always zero. For read-write ** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or just ** (BTREE_WRCSR). If the BTREE_FORDELETE bit is set, then the cursor will ** only be used by SQLite for the following: ** ** * to seek to and then delete specific entries, and/or ** ** * to read values that will be used to create keys that other ** BTREE_FORDELETE cursors will seek to and delete. ** ** The BTREE_FORDELETE flag is an optimization hint. It is not used by ** by this, the native b-tree engine of SQLite, but it is available to ** alternative storage engines that might be substituted in place of this ** b-tree system. For alternative storage engines in which a delete of ** the main table row automatically deletes corresponding index rows, ** the FORDELETE flag hint allows those alternative storage engines to ** skip a lot of work. Namely: FORDELETE cursors may treat all SEEK ** and DELETE operations as no-ops, and any READ operation against a ** FORDELETE cursor may return a null row: 0x01 0x00. */ #define BTREE_WRCSR 0x00000004 /* read-write cursor */ #define BTREE_FORDELETE 0x00000008 /* Cursor is for seek/delete only */ SQLITE_PRIVATE int sqlite3BtreeCursor( Btree*, /* BTree containing table to open */ Pgno iTable, /* Index of root page */ int wrFlag, /* 1 for writing. 0 for read-only */ struct KeyInfo*, /* First argument to compare function */ BtCursor *pCursor /* Space to write cursor structure */ ); SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void); SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor*, unsigned); #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor*, int, ...); #endif SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeTableMoveto( BtCursor*, i64 intKey, int bias, int *pRes ); SQLITE_PRIVATE int sqlite3BtreeIndexMoveto( BtCursor*, UnpackedRecord *pUnKey, int *pRes ); SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*); SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags); /* Allowed flags for sqlite3BtreeDelete() and sqlite3BtreeInsert() */ #define BTREE_SAVEPOSITION 0x02 /* Leave cursor pointing at NEXT or PREV */ #define BTREE_AUXDELETE 0x04 /* not the primary delete operation */ #define BTREE_APPEND 0x08 /* Insert is likely an append */ #define BTREE_PREFORMAT 0x80 /* Inserted data is a preformated cell */ /* An instance of the BtreePayload object describes the content of a single ** entry in either an index or table btree. ** ** Index btrees (used for indexes and also WITHOUT ROWID tables) contain ** an arbitrary key and no data. These btrees have pKey,nKey set to the ** key and the pData,nData,nZero fields are uninitialized. The aMem,nMem ** fields give an array of Mem objects that are a decomposition of the key. ** The nMem field might be zero, indicating that no decomposition is available. ** ** Table btrees (used for rowid tables) contain an integer rowid used as ** the key and passed in the nKey field. The pKey field is zero. ** pData,nData hold the content of the new entry. nZero extra zero bytes ** are appended to the end of the content when constructing the entry. ** The aMem,nMem fields are uninitialized for table btrees. ** ** Field usage summary: ** ** Table BTrees Index Btrees ** ** pKey always NULL encoded key ** nKey the ROWID length of pKey ** pData data not used ** aMem not used decomposed key value ** nMem not used entries in aMem ** nData length of pData not used ** nZero extra zeros after pData not used ** ** This object is used to pass information into sqlite3BtreeInsert(). The ** same information used to be passed as five separate parameters. But placing ** the information into this object helps to keep the interface more ** organized and understandable, and it also helps the resulting code to ** run a little faster by using fewer registers for parameter passing. */ struct BtreePayload { const void *pKey; /* Key content for indexes. NULL for tables */ sqlite3_int64 nKey; /* Size of pKey for indexes. PRIMARY KEY for tabs */ const void *pData; /* Data for tables. */ sqlite3_value *aMem; /* First of nMem value in the unpacked pKey */ u16 nMem; /* Number of aMem[] value. Might be zero */ int nData; /* Size of pData. 0 if none. */ int nZero; /* Extra zero data appended after pData,nData */ }; SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload, int flags, int seekResult); SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags); SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags); SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*); SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*); SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeIntegrityCheck( sqlite3 *db, /* Database connection that is running the check */ Btree *p, /* The btree to be checked */ Pgno *aRoot, /* An array of root pages numbers for individual trees */ int nRoot, /* Number of entries in aRoot[] */ int mxErr, /* Stop reporting errors after this many */ int *pnErr, /* OUT: Write number of errors seen to this variable */ char **pzOut /* OUT: Write the error message string here */ ); SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor*); #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *); #endif SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask); SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt); SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void); #ifdef SQLITE_DEBUG SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree*); #else # define sqlite3BtreeSeekCount(X) 0 #endif #ifndef NDEBUG SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*); #endif SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3*, BtCursor*, i64*); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); #endif #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); #endif SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor*, BtCursor*, i64); SQLITE_PRIVATE void sqlite3BtreeClearCache(Btree*); /* ** If we are not using shared cache, then there is no need to ** use mutexes to access the BtShared structures. So make the ** Enter and Leave procedures no-ops. */ #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree*); #else # define sqlite3BtreeEnter(X) # define sqlite3BtreeEnterAll(X) # define sqlite3BtreeSharable(X) 0 # define sqlite3BtreeEnterCursor(X) # define sqlite3BtreeConnectionCount(X) 1 #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); #ifndef NDEBUG /* These routines are used inside assert() statements only. */ SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*); #endif #else # define sqlite3BtreeLeave(X) # define sqlite3BtreeLeaveCursor(X) # define sqlite3BtreeLeaveAll(X) # define sqlite3BtreeHoldsMutex(X) 1 # define sqlite3BtreeHoldsAllMutexes(X) 1 # define sqlite3SchemaMutexHeld(X,Y,Z) 1 #endif #endif /* SQLITE_BTREE_H */ /************** End of btree.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include vdbe.h in the middle of sqliteInt.h ******************/ /************** Begin file vdbe.h ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Header file for the Virtual DataBase Engine (VDBE) ** ** This header defines the interface to the virtual database engine ** or VDBE. The VDBE implements an abstract machine that runs a ** simple program to access and modify the underlying database. */ #ifndef SQLITE_VDBE_H #define SQLITE_VDBE_H /* #include */ /* ** A single VDBE is an opaque structure named "Vdbe". Only routines ** in the source file sqliteVdbe.c are allowed to see the insides ** of this structure. */ typedef struct Vdbe Vdbe; /* ** The names of the following types declared in vdbeInt.h are required ** for the VdbeOp definition. */ typedef struct sqlite3_value Mem; typedef struct SubProgram SubProgram; /* ** A single instruction of the virtual machine has an opcode ** and as many as three operands. The instruction is recorded ** as an instance of the following structure: */ struct VdbeOp { u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u16 p5; /* Fifth parameter is an unsigned 16-bit integer */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ union p4union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ u32 *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ Table *pTab; /* Used when p4type is P4_TABLE */ #ifdef SQLITE_ENABLE_CURSOR_HINTS Expr *pExpr; /* Used when p4type is P4_EXPR */ #endif } p4; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zComment; /* Comment to improve readability */ #endif #ifdef SQLITE_VDBE_COVERAGE u32 iSrcLine; /* Source-code line that generated this opcode ** with flags in the upper 8 bits */ #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) u64 nExec; u64 nCycle; #endif }; typedef struct VdbeOp VdbeOp; /* ** A sub-routine used to implement a trigger program. */ struct SubProgram { VdbeOp *aOp; /* Array of opcodes for sub-program */ int nOp; /* Elements in aOp[] */ int nMem; /* Number of memory cells required */ int nCsr; /* Number of cursors required */ u8 *aOnce; /* Array of OP_Once flags */ void *token; /* id that may be used to recursive triggers */ SubProgram *pNext; /* Next sub-program already visited */ }; /* ** A smaller version of VdbeOp used for the VdbeAddOpList() function because ** it takes up less space. */ struct VdbeOpList { u8 opcode; /* What operation to perform */ signed char p1; /* First operand */ signed char p2; /* Second parameter (often the jump destination) */ signed char p3; /* Third parameter */ }; typedef struct VdbeOpList VdbeOpList; /* ** Allowed values of VdbeOp.p4type */ #define P4_NOTUSED 0 /* The P4 parameter is not used */ #define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ #define P4_STATIC (-1) /* Pointer to a static string */ #define P4_COLLSEQ (-2) /* P4 is a pointer to a CollSeq structure */ #define P4_INT32 (-3) /* P4 is a 32-bit signed integer */ #define P4_SUBPROGRAM (-4) /* P4 is a pointer to a SubProgram structure */ #define P4_TABLE (-5) /* P4 is a pointer to a Table structure */ /* Above do not own any resources. Must free those below */ #define P4_FREE_IF_LE (-6) #define P4_DYNAMIC (-6) /* Pointer to memory from sqliteMalloc() */ #define P4_FUNCDEF (-7) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-8) /* P4 is a pointer to a KeyInfo structure */ #define P4_EXPR (-9) /* P4 is a pointer to an Expr tree */ #define P4_MEM (-10) /* P4 is a pointer to a Mem* structure */ #define P4_VTAB (-11) /* P4 is a pointer to an sqlite3_vtab structure */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INTARRAY (-14) /* P4 is a vector of 32-bit integers */ #define P4_FUNCCTX (-15) /* P4 is a pointer to an sqlite3_context object */ #define P4_TABLEREF (-16) /* Like P4_TABLE, but reference counted */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 /* ** The Vdbe.aColName array contains 5n Mem structures, where n is the ** number of columns of data returned by the statement. */ #define COLNAME_NAME 0 #define COLNAME_DECLTYPE 1 #define COLNAME_DATABASE 2 #define COLNAME_TABLE 3 #define COLNAME_COLUMN 4 #ifdef SQLITE_ENABLE_COLUMN_METADATA # define COLNAME_N 5 /* Number of COLNAME_xxx symbols */ #else # ifdef SQLITE_OMIT_DECLTYPE # define COLNAME_N 1 /* Store only the name */ # else # define COLNAME_N 2 /* Store the name and decltype */ # endif #endif /* ** The following macro converts a label returned by sqlite3VdbeMakeLabel() ** into an index into the Parse.aLabel[] array that contains the resolved ** address of that label. */ #define ADDR(X) (~(X)) /* ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the tool/mkopcodeh.tcl script for details */ #define OP_Savepoint 0 #define OP_AutoCommit 1 #define OP_Transaction 2 #define OP_Checkpoint 3 #define OP_JournalMode 4 #define OP_Vacuum 5 #define OP_VFilter 6 /* jump, synopsis: iplan=r[P3] zplan='P4' */ #define OP_VUpdate 7 /* synopsis: data=r[P3@P2] */ #define OP_Init 8 /* jump, synopsis: Start at P2 */ #define OP_Goto 9 /* jump */ #define OP_Gosub 10 /* jump */ #define OP_InitCoroutine 11 /* jump */ #define OP_Yield 12 /* jump */ #define OP_MustBeInt 13 /* jump */ #define OP_Jump 14 /* jump */ #define OP_Once 15 /* jump */ #define OP_If 16 /* jump */ #define OP_IfNot 17 /* jump */ #define OP_IsType 18 /* jump, synopsis: if typeof(P1.P3) in P5 goto P2 */ #define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */ #define OP_IfNullRow 20 /* jump, synopsis: if P1.nullRow then r[P3]=NULL, goto P2 */ #define OP_SeekLT 21 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekLE 22 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekGE 23 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekGT 24 /* jump, synopsis: key=r[P3@P4] */ #define OP_IfNotOpen 25 /* jump, synopsis: if( !csr[P1] ) goto P2 */ #define OP_IfNoHope 26 /* jump, synopsis: key=r[P3@P4] */ #define OP_NoConflict 27 /* jump, synopsis: key=r[P3@P4] */ #define OP_NotFound 28 /* jump, synopsis: key=r[P3@P4] */ #define OP_Found 29 /* jump, synopsis: key=r[P3@P4] */ #define OP_SeekRowid 30 /* jump, synopsis: intkey=r[P3] */ #define OP_NotExists 31 /* jump, synopsis: intkey=r[P3] */ #define OP_Last 32 /* jump */ #define OP_IfSmaller 33 /* jump */ #define OP_SorterSort 34 /* jump */ #define OP_Sort 35 /* jump */ #define OP_Rewind 36 /* jump */ #define OP_SorterNext 37 /* jump */ #define OP_Prev 38 /* jump */ #define OP_Next 39 /* jump */ #define OP_IdxLE 40 /* jump, synopsis: key=r[P3@P4] */ #define OP_IdxGT 41 /* jump, synopsis: key=r[P3@P4] */ #define OP_IdxLT 42 /* jump, synopsis: key=r[P3@P4] */ #define OP_Or 43 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */ #define OP_And 44 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */ #define OP_IdxGE 45 /* jump, synopsis: key=r[P3@P4] */ #define OP_RowSetRead 46 /* jump, synopsis: r[P3]=rowset(P1) */ #define OP_RowSetTest 47 /* jump, synopsis: if r[P3] in rowset(P1) goto P2 */ #define OP_Program 48 /* jump */ #define OP_FkIfZero 49 /* jump, synopsis: if fkctr[P1]==0 goto P2 */ #define OP_IsNull 50 /* jump, same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */ #define OP_NotNull 51 /* jump, same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */ #define OP_Ne 52 /* jump, same as TK_NE, synopsis: IF r[P3]!=r[P1] */ #define OP_Eq 53 /* jump, same as TK_EQ, synopsis: IF r[P3]==r[P1] */ #define OP_Gt 54 /* jump, same as TK_GT, synopsis: IF r[P3]>r[P1] */ #define OP_Le 55 /* jump, same as TK_LE, synopsis: IF r[P3]<=r[P1] */ #define OP_Lt 56 /* jump, same as TK_LT, synopsis: IF r[P3]=r[P1] */ #define OP_ElseEq 58 /* jump, same as TK_ESCAPE */ #define OP_IfPos 59 /* jump, synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */ #define OP_IfNotZero 60 /* jump, synopsis: if r[P1]!=0 then r[P1]--, goto P2 */ #define OP_DecrJumpZero 61 /* jump, synopsis: if (--r[P1])==0 goto P2 */ #define OP_IncrVacuum 62 /* jump */ #define OP_VNext 63 /* jump */ #define OP_Filter 64 /* jump, synopsis: if key(P3@P4) not in filter(P1) goto P2 */ #define OP_PureFunc 65 /* synopsis: r[P3]=func(r[P2@NP]) */ #define OP_Function 66 /* synopsis: r[P3]=func(r[P2@NP]) */ #define OP_Return 67 #define OP_EndCoroutine 68 #define OP_HaltIfNull 69 /* synopsis: if r[P3]=null halt */ #define OP_Halt 70 #define OP_Integer 71 /* synopsis: r[P2]=P1 */ #define OP_Int64 72 /* synopsis: r[P2]=P4 */ #define OP_String 73 /* synopsis: r[P2]='P4' (len=P1) */ #define OP_BeginSubrtn 74 /* synopsis: r[P2]=NULL */ #define OP_Null 75 /* synopsis: r[P2..P3]=NULL */ #define OP_SoftNull 76 /* synopsis: r[P1]=NULL */ #define OP_Blob 77 /* synopsis: r[P2]=P4 (len=P1) */ #define OP_Variable 78 /* synopsis: r[P2]=parameter(P1,P4) */ #define OP_Move 79 /* synopsis: r[P2@P3]=r[P1@P3] */ #define OP_Copy 80 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */ #define OP_SCopy 81 /* synopsis: r[P2]=r[P1] */ #define OP_IntCopy 82 /* synopsis: r[P2]=r[P1] */ #define OP_FkCheck 83 #define OP_ResultRow 84 /* synopsis: output=r[P1@P2] */ #define OP_CollSeq 85 #define OP_AddImm 86 /* synopsis: r[P1]=r[P1]+P2 */ #define OP_RealAffinity 87 #define OP_Cast 88 /* synopsis: affinity(r[P1]) */ #define OP_Permutation 89 #define OP_Compare 90 /* synopsis: r[P1@P3] <-> r[P2@P3] */ #define OP_IsTrue 91 /* synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 */ #define OP_ZeroOrNull 92 /* synopsis: r[P2] = 0 OR NULL */ #define OP_Offset 93 /* synopsis: r[P3] = sqlite_offset(P1) */ #define OP_Column 94 /* synopsis: r[P3]=PX cursor P1 column P2 */ #define OP_TypeCheck 95 /* synopsis: typecheck(r[P1@P2]) */ #define OP_Affinity 96 /* synopsis: affinity(r[P1@P2]) */ #define OP_MakeRecord 97 /* synopsis: r[P3]=mkrec(r[P1@P2]) */ #define OP_Count 98 /* synopsis: r[P2]=count() */ #define OP_ReadCookie 99 #define OP_SetCookie 100 #define OP_ReopenIdx 101 /* synopsis: root=P2 iDb=P3 */ #define OP_BitAnd 102 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */ #define OP_BitOr 103 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */ #define OP_ShiftLeft 104 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<>r[P1] */ #define OP_Add 106 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */ #define OP_Subtract 107 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */ #define OP_Multiply 108 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */ #define OP_Divide 109 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */ #define OP_Remainder 110 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */ #define OP_Concat 111 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */ #define OP_OpenRead 112 /* synopsis: root=P2 iDb=P3 */ #define OP_OpenWrite 113 /* synopsis: root=P2 iDb=P3 */ #define OP_BitNot 114 /* same as TK_BITNOT, synopsis: r[P2]= ~r[P1] */ #define OP_OpenDup 115 #define OP_OpenAutoindex 116 /* synopsis: nColumn=P2 */ #define OP_String8 117 /* same as TK_STRING, synopsis: r[P2]='P4' */ #define OP_OpenEphemeral 118 /* synopsis: nColumn=P2 */ #define OP_SorterOpen 119 #define OP_SequenceTest 120 /* synopsis: if( cursor[P1].ctr++ ) pc = P2 */ #define OP_OpenPseudo 121 /* synopsis: P3 columns in r[P2] */ #define OP_Close 122 #define OP_ColumnsUsed 123 #define OP_SeekScan 124 /* synopsis: Scan-ahead up to P1 rows */ #define OP_SeekHit 125 /* synopsis: set P2<=seekHit<=P3 */ #define OP_Sequence 126 /* synopsis: r[P2]=cursor[P1].ctr++ */ #define OP_NewRowid 127 /* synopsis: r[P2]=rowid */ #define OP_Insert 128 /* synopsis: intkey=r[P3] data=r[P2] */ #define OP_RowCell 129 #define OP_Delete 130 #define OP_ResetCount 131 #define OP_SorterCompare 132 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */ #define OP_SorterData 133 /* synopsis: r[P2]=data */ #define OP_RowData 134 /* synopsis: r[P2]=data */ #define OP_Rowid 135 /* synopsis: r[P2]=PX rowid of P1 */ #define OP_NullRow 136 #define OP_SeekEnd 137 #define OP_IdxInsert 138 /* synopsis: key=r[P2] */ #define OP_SorterInsert 139 /* synopsis: key=r[P2] */ #define OP_IdxDelete 140 /* synopsis: key=r[P2@P3] */ #define OP_DeferredSeek 141 /* synopsis: Move P3 to P1.rowid if needed */ #define OP_IdxRowid 142 /* synopsis: r[P2]=rowid */ #define OP_FinishSeek 143 #define OP_Destroy 144 #define OP_Clear 145 #define OP_ResetSorter 146 #define OP_CreateBtree 147 /* synopsis: r[P2]=root iDb=P1 flags=P3 */ #define OP_SqlExec 148 #define OP_ParseSchema 149 #define OP_LoadAnalysis 150 #define OP_DropTable 151 #define OP_DropIndex 152 #define OP_Real 153 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ #define OP_DropTrigger 154 #define OP_IntegrityCk 155 #define OP_RowSetAdd 156 /* synopsis: rowset(P1)=r[P2] */ #define OP_Param 157 #define OP_FkCounter 158 /* synopsis: fkctr[P1]+=P2 */ #define OP_MemMax 159 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_OffsetLimit 160 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */ #define OP_AggInverse 161 /* synopsis: accum=r[P3] inverse(r[P2@P5]) */ #define OP_AggStep 162 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggStep1 163 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggValue 164 /* synopsis: r[P3]=value N=P2 */ #define OP_AggFinal 165 /* synopsis: accum=r[P1] N=P2 */ #define OP_Expire 166 #define OP_CursorLock 167 #define OP_CursorUnlock 168 #define OP_TableLock 169 /* synopsis: iDb=P1 root=P2 write=P3 */ #define OP_VBegin 170 #define OP_VCreate 171 #define OP_VDestroy 172 #define OP_VOpen 173 #define OP_VCheck 174 #define OP_VInitIn 175 /* synopsis: r[P2]=ValueList(P1,P3) */ #define OP_VColumn 176 /* synopsis: r[P3]=vcolumn(P2) */ #define OP_VRename 177 #define OP_Pagecount 178 #define OP_MaxPgcnt 179 #define OP_ClrSubtype 180 /* synopsis: r[P1].subtype = 0 */ #define OP_GetSubtype 181 /* synopsis: r[P2] = r[P1].subtype */ #define OP_SetSubtype 182 /* synopsis: r[P2].subtype = r[P1] */ #define OP_FilterAdd 183 /* synopsis: filter(P1) += key(P3@P4) */ #define OP_Trace 184 #define OP_CursorHint 185 #define OP_ReleaseReg 186 /* synopsis: release r[P1@P2] mask P3 */ #define OP_Noop 187 #define OP_Explain 188 #define OP_Abortable 189 /* Properties such as "out2" or "jump" that are specified in ** comments following the "case" for each opcode in the vdbe.c ** are encoded into bitvectors as follows: */ #define OPFLG_JUMP 0x01 /* jump: P2 holds jmp target */ #define OPFLG_IN1 0x02 /* in1: P1 is an input */ #define OPFLG_IN2 0x04 /* in2: P2 is an input */ #define OPFLG_IN3 0x08 /* in3: P3 is an input */ #define OPFLG_OUT2 0x10 /* out2: P2 is an output */ #define OPFLG_OUT3 0x20 /* out3: P3 is an output */ #define OPFLG_NCYCLE 0x40 /* ncycle:Cycles count against P1 */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x41, 0x00,\ /* 8 */ 0x01, 0x01, 0x01, 0x01, 0x03, 0x03, 0x01, 0x01,\ /* 16 */ 0x03, 0x03, 0x01, 0x12, 0x01, 0x49, 0x49, 0x49,\ /* 24 */ 0x49, 0x01, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49,\ /* 32 */ 0x41, 0x01, 0x41, 0x41, 0x41, 0x01, 0x41, 0x41,\ /* 40 */ 0x41, 0x41, 0x41, 0x26, 0x26, 0x41, 0x23, 0x0b,\ /* 48 */ 0x01, 0x01, 0x03, 0x03, 0x0b, 0x0b, 0x0b, 0x0b,\ /* 56 */ 0x0b, 0x0b, 0x01, 0x03, 0x03, 0x03, 0x01, 0x41,\ /* 64 */ 0x01, 0x00, 0x00, 0x02, 0x02, 0x08, 0x00, 0x10,\ /* 72 */ 0x10, 0x10, 0x00, 0x10, 0x00, 0x10, 0x10, 0x00,\ /* 80 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x02, 0x02,\ /* 88 */ 0x02, 0x00, 0x00, 0x12, 0x1e, 0x20, 0x40, 0x00,\ /* 96 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x40, 0x26, 0x26,\ /* 104 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26,\ /* 112 */ 0x40, 0x00, 0x12, 0x40, 0x40, 0x10, 0x40, 0x00,\ /* 120 */ 0x00, 0x00, 0x40, 0x00, 0x40, 0x40, 0x10, 0x10,\ /* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x50,\ /* 136 */ 0x00, 0x40, 0x04, 0x04, 0x00, 0x40, 0x50, 0x40,\ /* 144 */ 0x10, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,\ /* 152 */ 0x00, 0x10, 0x00, 0x00, 0x06, 0x10, 0x00, 0x04,\ /* 160 */ 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 168 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x10, 0x50,\ /* 176 */ 0x40, 0x00, 0x10, 0x10, 0x02, 0x12, 0x12, 0x00,\ /* 184 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,} /* The resolve3P2Values() routine is able to run faster if it knows ** the value of the largest JUMP opcode. The smaller the maximum ** JUMP opcode the better, so the mkopcodeh.tcl script that ** generated this include file strives to group all JUMP opcodes ** together near the beginning of the list. */ #define SQLITE_MX_JUMP_OPCODE 64 /* Maximum JUMP opcode */ /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ /* ** Additional non-public SQLITE_PREPARE_* flags */ #define SQLITE_PREPARE_SAVESQL 0x80 /* Preserve SQL text */ #define SQLITE_PREPARE_MASK 0x0f /* Mask of public flags */ /* ** Prototypes for the VDBE interface. See comments on the implementation ** for a description of what each of these routines does. */ SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*); SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe*,int,const char*); SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe*,int,const char*,...); SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(Vdbe*,int,int,int,int,const u8*,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall(Parse*,int,int,int,int,const FuncDef*,int); SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe*,int); #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N); SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p); #else # define sqlite3VdbeVerifyNoMallocRequired(A,B) # define sqlite3VdbeVerifyNoResultRow(A) #endif #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int); SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn(Vdbe*,int,int,int); #else # define sqlite3VdbeVerifyAbortable(A,B) # define sqlite3VdbeNoJumpsOutsideSubrtn(A,B,C,D) #endif SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno); #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3VdbeExplain(Parse*,u8,const char*,...); SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse*); SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse*); # define ExplainQueryPlan(P) sqlite3VdbeExplain P # ifdef SQLITE_ENABLE_STMT_SCANSTATUS # define ExplainQueryPlan2(V,P) (V = sqlite3VdbeExplain P) # else # define ExplainQueryPlan2(V,P) ExplainQueryPlan(P) # endif # define ExplainQueryPlanPop(P) sqlite3VdbeExplainPop(P) # define ExplainQueryPlanParent(P) sqlite3VdbeExplainParent(P) #else # define ExplainQueryPlan(P) # define ExplainQueryPlan2(V,P) # define ExplainQueryPlanPop(P) # define ExplainQueryPlanParent(P) 0 # define sqlite3ExplainBreakpoint(A,B) /*no-op*/ #endif #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_EXPLAIN) SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char*,const char*); #else # define sqlite3ExplainBreakpoint(A,B) /*no-op*/ #endif SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*, int, char*, u16); SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, int addr, u8); SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1); SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2); SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3); SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u16 P5); SQLITE_PRIVATE void sqlite3VdbeTypeofColumn(Vdbe*, int); SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters(Parse*,int addr, int n, u32 mask, int); #else # define sqlite3VdbeReleaseRegisters(P,A,N,M,F) #endif SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe*, void *pP4, int p4type); SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*); SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetLastOp(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse*); SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,Parse*); SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int); #endif SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, u8); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3*,Vdbe*,const char*); SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString(Vdbe*,const char*); #endif SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8); SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); SQLITE_PRIVATE int sqlite3BlobCompare(const Mem*, const Mem*); SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip(int, const void *, UnpackedRecord *, int); SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo*); typedef int (*RecordCompare)(int,const void*,UnpackedRecord*); SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*); SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe*); SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context*); #ifdef SQLITE_ENABLE_BYTECODE_VTAB SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3*); #endif /* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on ** each VDBE opcode. ** ** Use the SQLITE_ENABLE_MODULE_COMMENTS macro to see some extra no-op ** comments in VDBE programs that show key decision points in the code ** generator. */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); # define VdbeComment(X) sqlite3VdbeComment X SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...); # define VdbeNoopComment(X) sqlite3VdbeNoopComment X # ifdef SQLITE_ENABLE_MODULE_COMMENTS # define VdbeModuleComment(X) sqlite3VdbeNoopComment X # else # define VdbeModuleComment(X) # endif #else # define VdbeComment(X) # define VdbeNoopComment(X) # define VdbeModuleComment(X) #endif /* ** The VdbeCoverage macros are used to set a coverage testing point ** for VDBE branch instructions. The coverage testing points are line ** numbers in the sqlite3.c source file. VDBE branch coverage testing ** only works with an amalgamation build. That's ok since a VDBE branch ** coverage build designed for testing the test suite only. No application ** should ever ship with VDBE branch coverage measuring turned on. ** ** VdbeCoverage(v) // Mark the previously coded instruction ** // as a branch ** ** VdbeCoverageIf(v, conditional) // Mark previous if conditional true ** ** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken ** ** VdbeCoverageNeverTaken(v) // Previous branch is never taken ** ** VdbeCoverageNeverNull(v) // Previous three-way branch is only ** // taken on the first two ways. The ** // NULL option is not possible ** ** VdbeCoverageEqNe(v) // Previous OP_Jump is only interested ** // in distinguishing equal and not-equal. ** ** Every VDBE branch operation must be tagged with one of the macros above. ** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and ** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch() ** routine in vdbe.c, alerting the developer to the missed tag. ** ** During testing, the test application will invoke ** sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE,...) to set a callback ** routine that is invoked as each bytecode branch is taken. The callback ** contains the sqlite3.c source line number of the VdbeCoverage macro and ** flags to indicate whether or not the branch was taken. The test application ** is responsible for keeping track of this and reporting byte-code branches ** that are never taken. ** ** See the VdbeBranchTaken() macro and vdbeTakeBranch() function in the ** vdbe.c source file for additional information. */ #ifdef SQLITE_VDBE_COVERAGE SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe*,int); # define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageAlwaysTaken(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x5000000); # define VdbeCoverageNeverTaken(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x6000000); # define VdbeCoverageNeverNull(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000); # define VdbeCoverageNeverNullIf(v,x) \ if(x)sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000); # define VdbeCoverageEqNe(v) \ sqlite3VdbeSetLineNumber(v,__LINE__|0x8000000); # define VDBE_OFFSET_LINENO(x) (__LINE__+x) #else # define VdbeCoverage(v) # define VdbeCoverageIf(v,x) # define VdbeCoverageAlwaysTaken(v) # define VdbeCoverageNeverTaken(v) # define VdbeCoverageNeverNull(v) # define VdbeCoverageNeverNullIf(v,x) # define VdbeCoverageEqNe(v) # define VDBE_OFFSET_LINENO(x) 0 #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS SQLITE_PRIVATE void sqlite3VdbeScanStatus(Vdbe*, int, int, int, LogEst, const char*); SQLITE_PRIVATE void sqlite3VdbeScanStatusRange(Vdbe*, int, int, int); SQLITE_PRIVATE void sqlite3VdbeScanStatusCounters(Vdbe*, int, int, int); #else # define sqlite3VdbeScanStatus(a,b,c,d,e,f) # define sqlite3VdbeScanStatusRange(a,b,c,d) # define sqlite3VdbeScanStatusCounters(a,b,c,d) #endif #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, VdbeOp*); #endif #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr); #endif #endif /* SQLITE_VDBE_H */ /************** End of vdbe.h ************************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include pcache.h in the middle of sqliteInt.h ****************/ /************** Begin file pcache.h ******************************************/ /* ** 2008 August 05 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. */ #ifndef _PCACHE_H_ typedef struct PgHdr PgHdr; typedef struct PCache PCache; /* ** Every page in the cache is controlled by an instance of the following ** structure. */ struct PgHdr { sqlite3_pcache_page *pPage; /* Pcache object page handle */ void *pData; /* Page data */ void *pExtra; /* Extra content */ PCache *pCache; /* PRIVATE: Cache that owns this page */ PgHdr *pDirty; /* Transient list of dirty sorted by pgno */ Pager *pPager; /* The pager this page is part of */ Pgno pgno; /* Page number for this page */ #ifdef SQLITE_CHECK_PAGES u32 pageHash; /* Hash of page content */ #endif u16 flags; /* PGHDR flags defined below */ /********************************************************************** ** Elements above, except pCache, are public. All that follow are ** private to pcache.c and should not be accessed by other modules. ** pCache is grouped with the public elements for efficiency. */ i64 nRef; /* Number of users of this page */ PgHdr *pDirtyNext; /* Next element in list of dirty pages */ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ /* NB: pDirtyNext and pDirtyPrev are undefined if the ** PgHdr object is not dirty */ }; /* Bit values for PgHdr.flags */ #define PGHDR_CLEAN 0x001 /* Page not on the PCache.pDirty list */ #define PGHDR_DIRTY 0x002 /* Page is on the PCache.pDirty list */ #define PGHDR_WRITEABLE 0x004 /* Journaled and ready to modify */ #define PGHDR_NEED_SYNC 0x008 /* Fsync the rollback journal before ** writing this page to the database */ #define PGHDR_DONT_WRITE 0x010 /* Do not write content to disk */ #define PGHDR_MMAP 0x020 /* This is an mmap page object */ #define PGHDR_WAL_APPEND 0x040 /* Appended to wal file */ /* Initialize and shutdown the page cache subsystem */ SQLITE_PRIVATE int sqlite3PcacheInitialize(void); SQLITE_PRIVATE void sqlite3PcacheShutdown(void); /* Page cache buffer management: ** These routines implement SQLITE_CONFIG_PAGECACHE. */ SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n); /* Create a new pager cache. ** Under memory stress, invoke xStress to try to make pages clean. ** Only clean and unpinned pages can be reclaimed. */ SQLITE_PRIVATE int sqlite3PcacheOpen( int szPage, /* Size of every page */ int szExtra, /* Extra space associated with each page */ int bPurgeable, /* True if pages are on backing store */ int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ void *pStress, /* Argument to xStress */ PCache *pToInit /* Preallocated space for the PCache */ ); /* Modify the page-size after the cache has been created. */ SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *, int); /* Return the size in bytes of a PCache object. Used to preallocate ** storage space. */ SQLITE_PRIVATE int sqlite3PcacheSize(void); /* One release per successful fetch. Page is pinned until released. ** Reference counted. */ SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch(PCache*, Pgno, int createFlag); SQLITE_PRIVATE int sqlite3PcacheFetchStress(PCache*, Pgno, sqlite3_pcache_page**); SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(PCache*, Pgno, sqlite3_pcache_page *pPage); SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*); SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache*); /* Change a page number. Used by incr-vacuum. */ SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno); /* Remove all pages with pgno>x. Reset the cache if x==0 */ SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x); /* Get a list of all dirty pages in the cache, sorted by page number */ SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*); /* Reset and close the cache object */ SQLITE_PRIVATE void sqlite3PcacheClose(PCache*); /* Clear flags from pages of the page cache */ SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *); /* Discard the contents of the cache */ SQLITE_PRIVATE void sqlite3PcacheClear(PCache*); /* Return the total number of outstanding page references */ SQLITE_PRIVATE i64 sqlite3PcacheRefCount(PCache*); /* Increment the reference count of an existing page */ SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*); SQLITE_PRIVATE i64 sqlite3PcachePageRefcount(PgHdr*); /* Return the total number of pages stored in the cache */ SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*); #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* Iterate through all dirty pages currently stored in the cache. This ** interface is only available if SQLITE_CHECK_PAGES is defined when the ** library is built. */ SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)); #endif #if defined(SQLITE_DEBUG) /* Check invariants on a PgHdr object */ SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr*); #endif /* Set and get the suggested cache-size for the specified pager-cache. ** ** If no global maximum is configured, then the system attempts to limit ** the total number of pages cached by purgeable pager-caches to the sum ** of the suggested cache-sizes. */ SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *); #endif /* Set or get the suggested spill-size for the specified pager-cache. ** ** The spill-size is the minimum number of pages in cache before the cache ** will attempt to spill dirty pages by calling xStress. */ SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *, int); /* Free up as much memory as possible from the page cache */ SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* Try to return memory used by the pcache module to the main memory heap */ SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int); #endif #ifdef SQLITE_TEST SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*); #endif SQLITE_PRIVATE void sqlite3PCacheSetDefault(void); /* Return the header size */ SQLITE_PRIVATE int sqlite3HeaderSizePcache(void); SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void); /* Number of dirty pages as a percentage of the configured cache size */ SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*); #ifdef SQLITE_DIRECT_OVERFLOW_READ SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache); #endif #endif /* _PCACHE_H_ */ /************** End of pcache.h **********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include mutex.h in the middle of sqliteInt.h *****************/ /************** Begin file mutex.h *******************************************/ /* ** 2007 August 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the common header for all mutex implementations. ** The sqliteInt.h header #includes this file so that it is available ** to all source files. We break it out in an effort to keep the code ** better organized. ** ** NOTE: source files should *not* #include this header file directly. ** Source files should #include the sqliteInt.h file and let that file ** include this one indirectly. */ /* ** Figure out what version of the code to use. The choices are ** ** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The ** mutexes implementation cannot be overridden ** at start-time. ** ** SQLITE_MUTEX_NOOP For single-threaded applications. No ** mutual exclusion is provided. But this ** implementation can be overridden at ** start-time. ** ** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix. ** ** SQLITE_MUTEX_W32 For multi-threaded applications on Win32. */ #if !SQLITE_THREADSAFE # define SQLITE_MUTEX_OMIT #endif #if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP) # if SQLITE_OS_UNIX # define SQLITE_MUTEX_PTHREADS # elif SQLITE_OS_WIN # define SQLITE_MUTEX_W32 # else # define SQLITE_MUTEX_NOOP # endif #endif #ifdef SQLITE_MUTEX_OMIT /* ** If this is a no-op implementation, implement everything as macros. */ #define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) #define sqlite3_mutex_free(X) #define sqlite3_mutex_enter(X) #define sqlite3_mutex_try(X) SQLITE_OK #define sqlite3_mutex_leave(X) #define sqlite3_mutex_held(X) ((void)(X),1) #define sqlite3_mutex_notheld(X) ((void)(X),1) #define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8) #define sqlite3MutexInit() SQLITE_OK #define sqlite3MutexEnd() #define MUTEX_LOGIC(X) #else #define MUTEX_LOGIC(X) X SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); #endif /* defined(SQLITE_MUTEX_OMIT) */ /************** End of mutex.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /* The SQLITE_EXTRA_DURABLE compile-time option used to set the default ** synchronous setting to EXTRA. It is no longer supported. */ #ifdef SQLITE_EXTRA_DURABLE # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE # define SQLITE_DEFAULT_SYNCHRONOUS 3 #endif /* ** Default synchronous levels. ** ** Note that (for historical reasons) the PAGER_SYNCHRONOUS_* macros differ ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1. ** ** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS ** OFF 1 0 ** NORMAL 2 1 ** FULL 3 2 ** EXTRA 4 3 ** ** The "PRAGMA synchronous" statement also uses the zero-based numbers. ** In other words, the zero-based numbers are used for all external interfaces ** and the one-based values are used internally. */ #ifndef SQLITE_DEFAULT_SYNCHRONOUS # define SQLITE_DEFAULT_SYNCHRONOUS 2 #endif #ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS # define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS #endif /* ** Each database file to be accessed by the system is an instance ** of the following structure. There are normally two of these structures ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. */ struct Db { char *zDbSName; /* Name of this database. (schema name, not filename) */ Btree *pBt; /* The B*Tree structure for this database file */ u8 safety_level; /* How aggressive at syncing data to disk */ u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. ** ** Most Schema objects are associated with a Btree. The exception is ** the Schema for the TEMP database (sqlite3.aDb[1]) which is free-standing. ** In shared cache mode, a single Schema object can be shared by multiple ** Btrees that refer to the same underlying BtShared object. ** ** Schema objects are automatically deallocated when the last Btree that ** references them is destroyed. The TEMP Schema is manually freed by ** sqlite3_close(). * ** A thread must be holding a mutex on the corresponding Btree in order ** to access Schema content. This implies that the thread must also be ** holding a mutex on the sqlite3 connection pointer that owns the Btree. ** For a TEMP Schema, only the connection mutex is required. */ struct Schema { int schema_cookie; /* Database schema version number for this file */ int iGeneration; /* Generation counter. Incremented with each change */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash fkeyHash; /* All foreign keys by referenced table name */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u8 enc; /* Text encoding used by this database */ u16 schemaFlags; /* Flags associated with this schema */ int cache_size; /* Number of pages to use in the cache */ }; /* ** These macros can be used to test, set, or clear bits in the ** Db.pSchema->flags field. */ #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) /* ** Allowed values for the DB.pSchema->flags field. ** ** The DB_SchemaLoaded flag is set after the database schema has been ** read into internal hash tables. ** ** DB_UnresetViews means that one or more views have column names that ** have been filled out. If the schema changes, these column names might ** changes and so the view will need to be reset. */ #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ #define DB_UnresetViews 0x0002 /* Some views have defined column names */ #define DB_ResetWanted 0x0008 /* Reset the schema when nSchemaLock==0 */ /* ** The number of different kinds of things that can be limited ** using the sqlite3_limit() interface. */ #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) /* ** Lookaside malloc is a set of fixed-size buffers that can be used ** to satisfy small transient memory allocation requests for objects ** associated with a particular database connection. The use of ** lookaside malloc provides a significant performance enhancement ** (approx 10%) by avoiding numerous malloc/free requests while parsing ** SQL statements. ** ** The Lookaside structure holds configuration information about the ** lookaside malloc subsystem. Each available memory allocation in ** the lookaside subsystem is stored on a linked list of LookasideSlot ** objects. ** ** Lookaside allocations are only allowed for objects that are associated ** with a particular database connection. Hence, schema information cannot ** be stored in lookaside because in shared cache mode the schema information ** is shared by multiple database connections. Therefore, while parsing ** schema information, the Lookaside.bEnabled flag is cleared so that ** lookaside allocations are not used to construct the schema objects. ** ** New lookaside allocations are only allowed if bDisable==0. When ** bDisable is greater than zero, sz is set to zero which effectively ** disables lookaside without adding a new test for the bDisable flag ** in a performance-critical path. sz should be set by to szTrue whenever ** bDisable changes back to zero. ** ** Lookaside buffers are initially held on the pInit list. As they are ** used and freed, they are added back to the pFree list. New allocations ** come off of pFree first, then pInit as a fallback. This dual-list ** allows use to compute a high-water mark - the maximum number of allocations ** outstanding at any point in the past - by subtracting the number of ** allocations on the pInit list from the total number of allocations. ** ** Enhancement on 2019-12-12: Two-size-lookaside ** The default lookaside configuration is 100 slots of 1200 bytes each. ** The larger slot sizes are important for performance, but they waste ** a lot of space, as most lookaside allocations are less than 128 bytes. ** The two-size-lookaside enhancement breaks up the lookaside allocation ** into two pools: One of 128-byte slots and the other of the default size ** (1200-byte) slots. Allocations are filled from the small-pool first, ** failing over to the full-size pool if that does not work. Thus more ** lookaside slots are available while also using less memory. ** This enhancement can be omitted by compiling with ** SQLITE_OMIT_TWOSIZE_LOOKASIDE. */ struct Lookaside { u32 bDisable; /* Only operate the lookaside when zero */ u16 sz; /* Size of each buffer in bytes */ u16 szTrue; /* True value of sz, even if disabled */ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ u32 nSlot; /* Number of lookaside slots allocated */ u32 anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ LookasideSlot *pInit; /* List of buffers not previously used */ LookasideSlot *pFree; /* List of available buffers */ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE LookasideSlot *pSmallInit; /* List of small buffers not previously used */ LookasideSlot *pSmallFree; /* List of available small buffers */ void *pMiddle; /* First byte past end of full-size buffers and ** the first byte of LOOKASIDE_SMALL buffers */ #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ void *pStart; /* First byte of available memory space */ void *pEnd; /* First byte past end of available space */ void *pTrueEnd; /* True value of pEnd, when db->pnBytesFreed!=0 */ }; struct LookasideSlot { LookasideSlot *pNext; /* Next buffer in the list of free buffers */ }; #define DisableLookaside db->lookaside.bDisable++;db->lookaside.sz=0 #define EnableLookaside db->lookaside.bDisable--;\ db->lookaside.sz=db->lookaside.bDisable?0:db->lookaside.szTrue /* Size of the smaller allocations in two-size lookaside */ #ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE # define LOOKASIDE_SMALL 0 #else # define LOOKASIDE_SMALL 128 #endif /* ** A hash table for built-in function definitions. (Application-defined ** functions use a regular table table from hash.h.) ** ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. ** Collisions are on the FuncDef.u.pHash chain. Use the SQLITE_FUNC_HASH() ** macro to compute a hash on the function name. */ #define SQLITE_FUNC_HASH_SZ 23 struct FuncDefHash { FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ }; #define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ) #ifdef SQLITE_USER_AUTHENTICATION /* ** Information held in the "sqlite3" database connection object and used ** to manage user authentication. */ typedef struct sqlite3_userauth sqlite3_userauth; struct sqlite3_userauth { u8 authLevel; /* Current authentication level */ int nAuthPW; /* Size of the zAuthPW in bytes */ char *zAuthPW; /* Password used to authenticate */ char *zAuthUser; /* User name used to authenticate */ }; /* Allowed values for sqlite3_userauth.authLevel */ #define UAUTH_Unknown 0 /* Authentication not yet checked */ #define UAUTH_Fail 1 /* User authentication failed */ #define UAUTH_User 2 /* Authenticated as a normal user */ #define UAUTH_Admin 3 /* Authenticated as an administrator */ /* Functions used only by user authorization logic */ SQLITE_PRIVATE int sqlite3UserAuthTable(const char*); SQLITE_PRIVATE int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); SQLITE_PRIVATE void sqlite3UserAuthInit(sqlite3*); SQLITE_PRIVATE void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); #endif /* SQLITE_USER_AUTHENTICATION */ /* ** typedef for the authorization callback function. */ #ifdef SQLITE_USER_AUTHENTICATION typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, const char*, const char*); #else typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, const char*); #endif #ifndef SQLITE_OMIT_DEPRECATED /* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing ** in the style of sqlite3_trace() */ #define SQLITE_TRACE_LEGACY 0x40 /* Use the legacy xTrace */ #define SQLITE_TRACE_XPROFILE 0x80 /* Use the legacy xProfile */ #else #define SQLITE_TRACE_LEGACY 0 #define SQLITE_TRACE_XPROFILE 0 #endif /* SQLITE_OMIT_DEPRECATED */ #define SQLITE_TRACE_NONLEGACY_MASK 0x0f /* Normal flags */ /* ** Maximum number of sqlite3.aDb[] entries. This is the number of attached ** databases plus 2 for "main" and "temp". */ #define SQLITE_MAX_DB (SQLITE_MAX_ATTACHED+2) /* ** Each database connection is an instance of the following structure. */ struct sqlite3 { sqlite3_vfs *pVfs; /* OS Interface */ struct Vdbe *pVdbe; /* List of active virtual machines */ CollSeq *pDfltColl; /* BINARY collseq for the database encoding */ sqlite3_mutex *mutex; /* Connection mutex */ Db *aDb; /* All backends */ int nDb; /* Number of backends currently in use */ u32 mDbFlags; /* flags recording internal state */ u64 flags; /* flags settable by pragmas. See below */ i64 lastRowid; /* ROWID of most recent insert (see above) */ i64 szMmap; /* Default mmap_size setting */ u32 nSchemaLock; /* Do not reset the schema when non-zero */ unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ int errCode; /* Most recent error code (SQLITE_*) */ int errByteOffset; /* Byte offset of error in SQL statement */ int errMask; /* & result codes with this before returning */ int iSysErrno; /* Errno value from last system error */ u32 dbOptFlags; /* Flags to enable/disable optimizations */ u8 enc; /* Text encoding */ u8 autoCommit; /* The auto-commit flag. */ u8 temp_store; /* 1: file 2: memory 0: default */ u8 mallocFailed; /* True if we have seen a malloc failure */ u8 bBenignMalloc; /* Do not require OOMs if true */ u8 dfltLockMode; /* Default locking-mode for attached dbs */ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ u8 suppressErr; /* Do not issue error messages if true */ u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ u8 mTrace; /* zero or more SQLITE_TRACE flags */ u8 noSharedCache; /* True if no shared-cache backends */ u8 nSqlExec; /* Number of pending OP_SqlExec opcodes */ u8 eOpenState; /* Current condition of the connection */ int nextPagesize; /* Pagesize after VACUUM if >0 */ i64 nChange; /* Value returned by sqlite3_changes() */ i64 nTotalChange; /* Value returned by sqlite3_total_changes() */ int aLimit[SQLITE_N_LIMIT]; /* Limits */ int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ struct sqlite3InitInfo { /* Information used during initialization */ Pgno newTnum; /* Rootpage of table being initialized */ u8 iDb; /* Which db file is being initialized */ u8 busy; /* TRUE if currently initializing */ unsigned orphanTrigger : 1; /* Last statement is orphaned TEMP trigger */ unsigned imposterTable : 1; /* Building an imposter table */ unsigned reopenMemdb : 1; /* ATTACH is really a reopen using MemDB */ const char **azInit; /* "type", "name", and "tbl_name" columns */ } init; int nVdbeActive; /* Number of VDBEs currently running */ int nVdbeRead; /* Number of active VDBEs that read or write */ int nVdbeWrite; /* Number of active VDBEs that read and write */ int nVdbeExec; /* Number of nested calls to VdbeExec() */ int nVDestroy; /* Number of active OP_VDestroy operations */ int nExtension; /* Number of loaded extensions */ void **aExtension; /* Array of shared library handles */ union { void (*xLegacy)(void*,const char*); /* mTrace==SQLITE_TRACE_LEGACY */ int (*xV2)(u32,void*,void*,void*); /* All other mTrace values */ } trace; void *pTraceArg; /* Argument to the trace function */ #ifndef SQLITE_OMIT_DEPRECATED void (*xProfile)(void*,const char*,u64); /* Profiling function */ void *pProfileArg; /* Argument to profile function */ #endif void *pCommitArg; /* Argument to xCommitCallback() */ int (*xCommitCallback)(void*); /* Invoked at every commit. */ void *pRollbackArg; /* Argument to xRollbackCallback() */ void (*xRollbackCallback)(void*); /* Invoked at every commit. */ void *pUpdateArg; void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); void *pAutovacPagesArg; /* Client argument to autovac_pages */ void (*xAutovacDestr)(void*); /* Destructor for pAutovacPAgesArg */ unsigned int (*xAutovacPages)(void*,const char*,u32,u32,u32); Parse *pParse; /* Current parse */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK void *pPreUpdateArg; /* First argument to xPreUpdateCallback */ void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64 ); PreUpdate *pPreUpdate; /* Context for active pre-update callback */ #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifndef SQLITE_OMIT_WAL int (*xWalCallback)(void *, sqlite3 *, const char *, int); void *pWalArg; #endif void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); void *pCollNeededArg; sqlite3_value *pErr; /* Most recent error message */ union { volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ double notUsed1; /* Spacer */ } u1; Lookaside lookaside; /* Lookaside malloc configuration */ #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth; /* Access authorization function */ void *pAuthArg; /* 1st argument to the access auth function */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ unsigned nProgressOps; /* Number of opcodes for progress callback */ #endif #ifndef SQLITE_OMIT_VIRTUALTABLE int nVTrans; /* Allocated size of aVTrans */ Hash aModule; /* populated by sqlite3_create_module() */ VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ VTable **aVTrans; /* Virtual tables with open transactions */ VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ #endif Hash aFunc; /* Hash table of connection functions */ Hash aCollSeq; /* All collating sequences */ BusyHandler busyHandler; /* Busy callback */ Db aDbStatic[2]; /* Static space for the 2 default backends */ Savepoint *pSavepoint; /* List of active savepoints */ int nAnalysisLimit; /* Number of index rows to ANALYZE */ int busyTimeout; /* Busy handler timeout, in msec */ int nSavepoint; /* Number of non-transaction savepoints */ int nStatement; /* Number of nested statement-transactions */ i64 nDeferredCons; /* Net deferred constraints this transaction. */ i64 nDeferredImmCons; /* Net deferred immediate constraints */ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ DbClientData *pDbData; /* sqlite3_set_clientdata() content */ #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY /* The following variables are all protected by the STATIC_MAIN ** mutex, not by sqlite3.mutex. They are used by code in notify.c. ** ** When X.pUnlockConnection==Y, that means that X is waiting for Y to ** unlock so that it can proceed. ** ** When X.pBlockingConnection==Y, that means that something that X tried ** tried to do recently failed with an SQLITE_LOCKED error due to locks ** held by Y. */ sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ void *pUnlockArg; /* Argument to xUnlockNotify */ void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ #endif #ifdef SQLITE_USER_AUTHENTICATION sqlite3_userauth auth; /* User authentication information */ #endif }; /* ** A macro to discover the encoding of a database. */ #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) #define ENC(db) ((db)->enc) /* ** A u64 constant where the lower 32 bits are all zeros. Only the ** upper 32 bits are included in the argument. Necessary because some ** C-compilers still do not accept LL integer literals. */ #define HI(X) ((u64)(X)<<32) /* ** Possible values for the sqlite3.flags. ** ** Value constraints (enforced via assert()): ** SQLITE_FullFSync == PAGER_FULLFSYNC ** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC ** SQLITE_CacheSpill == PAGER_CACHE_SPILL */ #define SQLITE_WriteSchema 0x00000001 /* OK to update SQLITE_SCHEMA */ #define SQLITE_LegacyFileFmt 0x00000002 /* Create new databases in format 1 */ #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ #define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */ #define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */ #define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */ #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ #define SQLITE_TrustedSchema 0x00000080 /* Allow unsafe functions and ** vtabs in the schema definition */ #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ /* result set is empty */ #define SQLITE_IgnoreChecks 0x00000200 /* Do not enforce check constraints */ #define SQLITE_StmtScanStatus 0x00000400 /* Enable stmt_scanstats() counters */ #define SQLITE_NoCkptOnClose 0x00000800 /* No checkpoint on close()/DETACH */ #define SQLITE_ReverseOrder 0x00001000 /* Reverse unordered SELECTs */ #define SQLITE_RecTriggers 0x00002000 /* Enable recursive triggers */ #define SQLITE_ForeignKeys 0x00004000 /* Enforce foreign key constraints */ #define SQLITE_AutoIndex 0x00008000 /* Enable automatic indexes */ #define SQLITE_LoadExtension 0x00010000 /* Enable load_extension */ #define SQLITE_LoadExtFunc 0x00020000 /* Enable load_extension() SQL func */ #define SQLITE_EnableTrigger 0x00040000 /* True to enable triggers */ #define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x00100000 /* Disable database changes */ #define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */ #define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */ #define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/ #define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */ #define SQLITE_ResetDatabase 0x02000000 /* Reset the database */ #define SQLITE_LegacyAlter 0x04000000 /* Legacy ALTER TABLE behaviour */ #define SQLITE_NoSchemaError 0x08000000 /* Do not report schema parse errors*/ #define SQLITE_Defensive 0x10000000 /* Input SQL is likely hostile */ #define SQLITE_DqsDDL 0x20000000 /* dbl-quoted strings allowed in DDL*/ #define SQLITE_DqsDML 0x40000000 /* dbl-quoted strings allowed in DML*/ #define SQLITE_EnableView 0x80000000 /* Enable the use of views */ #define SQLITE_CountRows HI(0x00001) /* Count rows changed by INSERT, */ /* DELETE, or UPDATE and return */ /* the count using a callback. */ #define SQLITE_CorruptRdOnly HI(0x00002) /* Prohibit writes due to error */ #define SQLITE_ReadUncommit HI(0x00004) /* READ UNCOMMITTED in shared-cache */ #define SQLITE_FkNoAction HI(0x00008) /* Treat all FK as NO ACTION */ /* Flags used only if debugging */ #ifdef SQLITE_DEBUG #define SQLITE_SqlTrace HI(0x0100000) /* Debug print SQL as it executes */ #define SQLITE_VdbeListing HI(0x0200000) /* Debug listings of VDBE progs */ #define SQLITE_VdbeTrace HI(0x0400000) /* True to trace VDBE execution */ #define SQLITE_VdbeAddopTrace HI(0x0800000) /* Trace sqlite3VdbeAddOp() calls */ #define SQLITE_VdbeEQP HI(0x1000000) /* Debug EXPLAIN QUERY PLAN */ #define SQLITE_ParserTrace HI(0x2000000) /* PRAGMA parser_trace=ON */ #endif /* ** Allowed values for sqlite3.mDbFlags */ #define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */ #define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */ #define DBFLAG_Vacuum 0x0004 /* Currently in a VACUUM */ #define DBFLAG_VacuumInto 0x0008 /* Currently running VACUUM INTO */ #define DBFLAG_SchemaKnownOk 0x0010 /* Schema is known to be valid */ #define DBFLAG_InternalFunc 0x0020 /* Allow use of internal functions */ #define DBFLAG_EncodingFixed 0x0040 /* No longer possible to change enc. */ /* ** Bits of the sqlite3.dbOptFlags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to ** selectively disable various optimizations. */ #define SQLITE_QueryFlattener 0x00000001 /* Query flattening */ #define SQLITE_WindowFunc 0x00000002 /* Use xInverse for window functions */ #define SQLITE_GroupByOrder 0x00000004 /* GROUPBY cover of ORDERBY */ #define SQLITE_FactorOutConst 0x00000008 /* Constant factoring */ #define SQLITE_DistinctOpt 0x00000010 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x00000020 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x00000040 /* ORDER BY of joins via index */ #define SQLITE_Transitive 0x00000080 /* Transitive constraints */ #define SQLITE_OmitNoopJoin 0x00000100 /* Omit unused tables in joins */ #define SQLITE_CountOfView 0x00000200 /* The count-of-view optimization */ #define SQLITE_CursorHints 0x00000400 /* Add OP_CursorHint opcodes */ #define SQLITE_Stat4 0x00000800 /* Use STAT4 data */ /* TH3 expects this value ^^^^^^^^^^ to be 0x0000800. Don't change it */ #define SQLITE_PushDown 0x00001000 /* The push-down optimization */ #define SQLITE_SimplifyJoin 0x00002000 /* Convert LEFT JOIN to JOIN */ #define SQLITE_SkipScan 0x00004000 /* Skip-scans */ #define SQLITE_PropagateConst 0x00008000 /* The constant propagation opt */ #define SQLITE_MinMaxOpt 0x00010000 /* The min/max optimization */ #define SQLITE_SeekScan 0x00020000 /* The OP_SeekScan optimization */ #define SQLITE_OmitOrderBy 0x00040000 /* Omit pointless ORDER BY */ /* TH3 expects this value ^^^^^^^^^^ to be 0x40000. Coordinate any change */ #define SQLITE_BloomFilter 0x00080000 /* Use a Bloom filter on searches */ #define SQLITE_BloomPulldown 0x00100000 /* Run Bloom filters early */ #define SQLITE_BalancedMerge 0x00200000 /* Balance multi-way merges */ #define SQLITE_ReleaseReg 0x00400000 /* Use OP_ReleaseReg for testing */ #define SQLITE_FlttnUnionAll 0x00800000 /* Disable the UNION ALL flattener */ /* TH3 expects this value ^^^^^^^^^^ See flatten04.test */ #define SQLITE_IndexedExpr 0x01000000 /* Pull exprs from index when able */ #define SQLITE_Coroutines 0x02000000 /* Co-routines for subqueries */ #define SQLITE_NullUnusedCols 0x04000000 /* NULL unused columns in subqueries */ #define SQLITE_OnePass 0x08000000 /* Single-pass DELETE and UPDATE */ #define SQLITE_AllOpts 0xffffffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) /* ** Return true if it OK to factor constant expressions into the initialization ** code. The argument is a Parse object for the code generator. */ #define ConstFactorOk(P) ((P)->okConstFactor) /* Possible values for the sqlite3.eOpenState field. ** The numbers are randomly selected such that a minimum of three bits must ** change to convert any number to another or to zero */ #define SQLITE_STATE_OPEN 0x76 /* Database is open */ #define SQLITE_STATE_CLOSED 0xce /* Database is closed */ #define SQLITE_STATE_SICK 0xba /* Error and awaiting close */ #define SQLITE_STATE_BUSY 0x6d /* Database currently in use */ #define SQLITE_STATE_ERROR 0xd5 /* An SQLITE_MISUSE error occurred */ #define SQLITE_STATE_ZOMBIE 0xa7 /* Close with last statement close */ /* ** Each SQL function is defined by an instance of the following ** structure. For global built-in functions (ex: substr(), max(), count()) ** a pointer to this structure is held in the sqlite3BuiltinFunctions object. ** For per-connection application-defined functions, a pointer to this ** structure is held in the db->aHash hash table. ** ** The u.pHash field is used by the global built-ins. The u.pDestructor ** field is used by per-connection app-def functions. */ struct FuncDef { i8 nArg; /* Number of arguments. -1 means unlimited */ u32 funcFlags; /* Some combination of SQLITE_FUNC_* */ void *pUserData; /* User data parameter */ FuncDef *pNext; /* Next function with same name */ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ void (*xValue)(sqlite3_context*); /* Current agg value */ void (*xInverse)(sqlite3_context*,int,sqlite3_value**); /* inverse agg-step */ const char *zName; /* SQL name of the function. */ union { FuncDef *pHash; /* Next with a different name but the same hash */ FuncDestructor *pDestructor; /* Reference counted destructor function */ } u; /* pHash if SQLITE_FUNC_BUILTIN, pDestructor otherwise */ }; /* ** This structure encapsulates a user-function destructor callback (as ** configured using create_function_v2()) and a reference counter. When ** create_function_v2() is called to create a function with a destructor, ** a single object of this type is allocated. FuncDestructor.nRef is set to ** the number of FuncDef objects created (either 1 or 3, depending on whether ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor ** member of each of the new FuncDef objects is set to point to the allocated ** FuncDestructor. ** ** Thereafter, when one of the FuncDef objects is deleted, the reference ** count on this object is decremented. When it reaches 0, the destructor ** is invoked and the FuncDestructor structure freed. */ struct FuncDestructor { int nRef; void (*xDestroy)(void *); void *pUserData; }; /* ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There ** are assert() statements in the code to verify this. ** ** Value constraints (enforced via assert()): ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg ** SQLITE_FUNC_ANYORDER == NC_OrderAgg == SF_OrderByReqd ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG ** SQLITE_FUNC_BYTELEN == OPFLAG_BYTELENARG ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API ** SQLITE_FUNC_DIRECT == SQLITE_DIRECTONLY from the API ** SQLITE_FUNC_UNSAFE == SQLITE_INNOCUOUS -- opposite meanings!!! ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API ** ** Note that even though SQLITE_FUNC_UNSAFE and SQLITE_INNOCUOUS have the ** same bit value, their meanings are inverted. SQLITE_FUNC_UNSAFE is ** used internally and if set means that the function has side effects. ** SQLITE_INNOCUOUS is used by application code and means "not unsafe". ** See multiple instances of tag-20230109-1. */ #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ #define SQLITE_FUNC_BYTELEN 0x00c0 /* Built-in octet_length() function */ #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ /* 0x0200 -- available for reuse */ #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a ** single query - might change over time */ #define SQLITE_FUNC_TEST 0x4000 /* Built-in testing functions */ #define SQLITE_FUNC_RUNONLY 0x8000 /* Cannot be used by valueFromFunction */ #define SQLITE_FUNC_WINDOW 0x00010000 /* Built-in window-only function */ #define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */ #define SQLITE_FUNC_DIRECT 0x00080000 /* Not for use in TRIGGERs or VIEWs */ /* SQLITE_SUBTYPE 0x00100000 // Consumer of subtypes */ #define SQLITE_FUNC_UNSAFE 0x00200000 /* Function has side effects */ #define SQLITE_FUNC_INLINE 0x00400000 /* Functions implemented in-line */ #define SQLITE_FUNC_BUILTIN 0x00800000 /* This is a built-in function */ /* SQLITE_RESULT_SUBTYPE 0x01000000 // Generator of subtypes */ #define SQLITE_FUNC_ANYORDER 0x08000000 /* count/min/max aggregate */ /* Identifier numbers for each in-line function */ #define INLINEFUNC_coalesce 0 #define INLINEFUNC_implies_nonnull_row 1 #define INLINEFUNC_expr_implies_expr 2 #define INLINEFUNC_expr_compare 3 #define INLINEFUNC_affinity 4 #define INLINEFUNC_iif 5 #define INLINEFUNC_sqlite_offset 6 #define INLINEFUNC_unlikely 99 /* Default case */ /* ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are ** used to create the initializers for the FuncDef structures. ** ** FUNCTION(zName, nArg, iArg, bNC, xFunc) ** Used to create a scalar function definition of a function zName ** implemented by C function xFunc that accepts nArg arguments. The ** value passed as iArg is cast to a (void*) and made available ** as the user-data (sqlite3_user_data()) for the function. If ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. ** ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. ** ** SFUNCTION(zName, nArg, iArg, bNC, xFunc) ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and ** adds the SQLITE_DIRECTONLY flag. ** ** INLINE_FUNC(zName, nArg, iFuncId, mFlags) ** zName is the name of a function that is implemented by in-line ** byte code rather than by the usual callbacks. The iFuncId ** parameter determines the function id. The mFlags parameter is ** optional SQLITE_FUNC_ flags for this function. ** ** TEST_FUNC(zName, nArg, iFuncId, mFlags) ** zName is the name of a test-only function implemented by in-line ** byte code rather than by the usual callbacks. The iFuncId ** parameter determines the function id. The mFlags parameter is ** optional SQLITE_FUNC_ flags for this function. ** ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions ** and functions like sqlite_version() that can change, but not during ** a single query. The iArg is ignored. The user-data is always set ** to a NULL pointer. The bNC parameter is not used. ** ** MFUNCTION(zName, nArg, xPtr, xFunc) ** For math-library functions. xPtr is an arbitrary pointer. ** ** PURE_DATE(zName, nArg, iArg, bNC, xFunc) ** Used for "pure" date/time functions, this macro is like DFUNCTION ** except that it does set the SQLITE_FUNC_CONSTANT flags. iArg is ** ignored and the user-data for these functions is set to an ** arbitrary non-NULL pointer. The bNC parameter is not used. ** ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) ** Used to create an aggregate function definition implemented by ** the C functions xStep and xFinal. The first four parameters ** are interpreted in the same way as the first 4 parameters to ** FUNCTION(). ** ** WAGGREGATE(zName, nArg, iArg, xStep, xFinal, xValue, xInverse) ** Used to create an aggregate function definition implemented by ** the C functions xStep and xFinal. The first four parameters ** are interpreted in the same way as the first 4 parameters to ** FUNCTION(). ** ** LIKEFUNC(zName, nArg, pArg, flags) ** Used to create a scalar function definition of a function zName ** that accepts nArg arguments and is implemented by a call to C ** function likeFunc. Argument pArg is cast to a (void *) and made ** available as the function user-data (sqlite3_user_data()). The ** FuncDef.flags variable is set to the value passed as the flags ** parameter. */ #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define SFUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_DIRECTONLY|SQLITE_FUNC_UNSAFE, \ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define MFUNCTION(zName, nArg, xPtr, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8, \ xPtr, 0, xFunc, 0, 0, 0, #zName, {0} } #define JFUNCTION(zName, nArg, bUseCache, bWS, bRS, bJsonB, iArg, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_DETERMINISTIC|SQLITE_FUNC_CONSTANT|\ SQLITE_UTF8|((bUseCache)*SQLITE_FUNC_RUNONLY)|\ ((bRS)*SQLITE_SUBTYPE)|((bWS)*SQLITE_RESULT_SUBTYPE), \ SQLITE_INT_TO_PTR(iArg|((bJsonB)*JSON_BLOB)),0,xFunc,0, 0, 0, #zName, {0} } #define INLINE_FUNC(zName, nArg, iArg, mFlags) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_UTF8|SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} } #define TEST_FUNC(zName, nArg, iArg, mFlags) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_UTF8|SQLITE_FUNC_INTERNAL|SQLITE_FUNC_TEST| \ SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} } #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_SLOCHNG|SQLITE_UTF8, \ 0, 0, xFunc, 0, 0, 0, #zName, {0} } #define PURE_DATE(zName, nArg, iArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \ (void*)&sqlite3Config, 0, xFunc, 0, 0, 0, #zName, {0} } #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} } #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ pArg, 0, xFunc, 0, 0, 0, #zName, } #define LIKEFUNC(zName, nArg, arg, flags) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} } #define WAGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue, xInverse, f) \ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|f, \ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,xInverse,#zName, {0}} #define INTERNAL_FUNCTION(zName, nArg, xFunc) \ {nArg, SQLITE_FUNC_BUILTIN|\ SQLITE_FUNC_INTERNAL|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \ 0, 0, xFunc, 0, 0, 0, #zName, {0} } /* ** All current savepoints are stored in a linked list starting at ** sqlite3.pSavepoint. The first element in the list is the most recently ** opened savepoint. Savepoints are added to the list by the vdbe ** OP_Savepoint instruction. */ struct Savepoint { char *zName; /* Savepoint name (nul-terminated) */ i64 nDeferredCons; /* Number of deferred fk violations */ i64 nDeferredImmCons; /* Number of deferred imm fk. */ Savepoint *pNext; /* Parent savepoint (if any) */ }; /* ** The following are used as the second parameter to sqlite3Savepoint(), ** and as the P1 argument to the OP_Savepoint instruction. */ #define SAVEPOINT_BEGIN 0 #define SAVEPOINT_RELEASE 1 #define SAVEPOINT_ROLLBACK 2 /* ** Each SQLite module (virtual table definition) is defined by an ** instance of the following structure, stored in the sqlite3.aModule ** hash table. */ struct Module { const sqlite3_module *pModule; /* Callback pointers */ const char *zName; /* Name passed to create_module() */ int nRefModule; /* Number of pointers to this object */ void *pAux; /* pAux passed to create_module() */ void (*xDestroy)(void *); /* Module destructor function */ Table *pEpoTab; /* Eponymous table for this module */ }; /* ** Information about each column of an SQL table is held in an instance ** of the Column structure, in the Table.aCol[] array. ** ** Definitions: ** ** "table column index" This is the index of the column in the ** Table.aCol[] array, and also the index of ** the column in the original CREATE TABLE stmt. ** ** "storage column index" This is the index of the column in the ** record BLOB generated by the OP_MakeRecord ** opcode. The storage column index is less than ** or equal to the table column index. It is ** equal if and only if there are no VIRTUAL ** columns to the left. ** ** Notes on zCnName: ** The zCnName field stores the name of the column, the datatype of the ** column, and the collating sequence for the column, in that order, all in ** a single allocation. Each string is 0x00 terminated. The datatype ** is only included if the COLFLAG_HASTYPE bit of colFlags is set and the ** collating sequence name is only included if the COLFLAG_HASCOLL bit is ** set. */ struct Column { char *zCnName; /* Name of this column */ unsigned notNull :4; /* An OE_ code for handling a NOT NULL constraint */ unsigned eCType :4; /* One of the standard types */ char affinity; /* One of the SQLITE_AFF_... values */ u8 szEst; /* Est size of value in this column. sizeof(INT)==1 */ u8 hName; /* Column name hash for faster lookup */ u16 iDflt; /* 1-based index of DEFAULT. 0 means "none" */ u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ }; /* Allowed values for Column.eCType. ** ** Values must match entries in the global constant arrays ** sqlite3StdTypeLen[] and sqlite3StdType[]. Each value is one more ** than the offset into these arrays for the corresponding name. ** Adjust the SQLITE_N_STDTYPE value if adding or removing entries. */ #define COLTYPE_CUSTOM 0 /* Type appended to zName */ #define COLTYPE_ANY 1 #define COLTYPE_BLOB 2 #define COLTYPE_INT 3 #define COLTYPE_INTEGER 4 #define COLTYPE_REAL 5 #define COLTYPE_TEXT 6 #define SQLITE_N_STDTYPE 6 /* Number of standard types */ /* Allowed values for Column.colFlags. ** ** Constraints: ** TF_HasVirtual == COLFLAG_VIRTUAL ** TF_HasStored == COLFLAG_STORED ** TF_HasHidden == COLFLAG_HIDDEN */ #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ #define COLFLAG_UNIQUE 0x0008 /* Column def contains "UNIQUE" or "PK" */ #define COLFLAG_SORTERREF 0x0010 /* Use sorter-refs with this column */ #define COLFLAG_VIRTUAL 0x0020 /* GENERATED ALWAYS AS ... VIRTUAL */ #define COLFLAG_STORED 0x0040 /* GENERATED ALWAYS AS ... STORED */ #define COLFLAG_NOTAVAIL 0x0080 /* STORED column not yet calculated */ #define COLFLAG_BUSY 0x0100 /* Blocks recursion on GENERATED columns */ #define COLFLAG_HASCOLL 0x0200 /* Has collating sequence name in zCnName */ #define COLFLAG_NOEXPAND 0x0400 /* Omit this column when expanding "*" */ #define COLFLAG_GENERATED 0x0060 /* Combo: _STORED, _VIRTUAL */ #define COLFLAG_NOINSERT 0x0062 /* Combo: _HIDDEN, _STORED, _VIRTUAL */ /* ** A "Collating Sequence" is defined by an instance of the following ** structure. Conceptually, a collating sequence consists of a name and ** a comparison routine that defines the order of that sequence. ** ** If CollSeq.xCmp is NULL, it means that the ** collating sequence is undefined. Indices built on an undefined ** collating sequence may not be read or written. */ struct CollSeq { char *zName; /* Name of the collating sequence, UTF-8 encoded */ u8 enc; /* Text encoding handled by xCmp() */ void *pUser; /* First argument to xCmp() */ int (*xCmp)(void*,int, const void*, int, const void*); void (*xDel)(void*); /* Destructor for pUser */ }; /* ** A sort order can be either ASC or DESC. */ #define SQLITE_SO_ASC 0 /* Sort in ascending order */ #define SQLITE_SO_DESC 1 /* Sort in ascending order */ #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ /* ** Column affinity types. ** ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve ** the speed a little by numbering the values consecutively. ** ** But rather than start with 0 or 1, we begin with 'A'. That way, ** when multiple affinity types are concatenated into a string and ** used as the P4 operand, they will be more readable. ** ** Note also that the numeric types are grouped together so that testing ** for a numeric type is a single comparison. And the BLOB type is first. */ #define SQLITE_AFF_NONE 0x40 /* '@' */ #define SQLITE_AFF_BLOB 0x41 /* 'A' */ #define SQLITE_AFF_TEXT 0x42 /* 'B' */ #define SQLITE_AFF_NUMERIC 0x43 /* 'C' */ #define SQLITE_AFF_INTEGER 0x44 /* 'D' */ #define SQLITE_AFF_REAL 0x45 /* 'E' */ #define SQLITE_AFF_FLEXNUM 0x46 /* 'F' */ #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) /* ** The SQLITE_AFF_MASK values masks off the significant bits of an ** affinity value. */ #define SQLITE_AFF_MASK 0x47 /* ** Additional bit values that can be ORed with an affinity without ** changing the affinity. ** ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. ** It causes an assert() to fire if either operand to a comparison ** operator is NULL. It is added to certain comparison operators to ** prove that the operands are always NOT NULL. */ #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ /* ** An object of this type is created for each virtual table present in ** the database schema. ** ** If the database schema is shared, then there is one instance of this ** structure for each database connection (sqlite3*) that uses the shared ** schema. This is because each database connection requires its own unique ** instance of the sqlite3_vtab* handle used to access the virtual table ** implementation. sqlite3_vtab* handles can not be shared between ** database connections, even when the rest of the in-memory database ** schema is shared, as the implementation often stores the database ** connection handle passed to it via the xConnect() or xCreate() method ** during initialization internally. This database connection handle may ** then be used by the virtual table implementation to access real tables ** within the database. So that they appear as part of the callers ** transaction, these accesses need to be made via the same database ** connection as that used to execute SQL operations on the virtual table. ** ** All VTable objects that correspond to a single table in a shared ** database schema are initially stored in a linked-list pointed to by ** the Table.pVTable member variable of the corresponding Table object. ** When an sqlite3_prepare() operation is required to access the virtual ** table, it searches the list for the VTable that corresponds to the ** database connection doing the preparing so as to use the correct ** sqlite3_vtab* handle in the compiled query. ** ** When an in-memory Table object is deleted (for example when the ** schema is being reloaded for some reason), the VTable objects are not ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed ** immediately. Instead, they are moved from the Table.pVTable list to ** another linked list headed by the sqlite3.pDisconnect member of the ** corresponding sqlite3 structure. They are then deleted/xDisconnected ** next time a statement is prepared using said sqlite3*. This is done ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. ** Refer to comments above function sqlite3VtabUnlockList() for an ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect ** list without holding the corresponding sqlite3.mutex mutex. ** ** The memory for objects of this type is always allocated by ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as ** the first argument. */ struct VTable { sqlite3 *db; /* Database connection associated with this table */ Module *pMod; /* Pointer to module implementation */ sqlite3_vtab *pVtab; /* Pointer to vtab instance */ int nRef; /* Number of pointers to this structure */ u8 bConstraint; /* True if constraints are supported */ u8 bAllSchemas; /* True if might use any attached schema */ u8 eVtabRisk; /* Riskiness of allowing hacker access */ int iSavepoint; /* Depth of the SAVEPOINT stack */ VTable *pNext; /* Next in linked list (see above) */ }; /* Allowed values for VTable.eVtabRisk */ #define SQLITE_VTABRISK_Low 0 #define SQLITE_VTABRISK_Normal 1 #define SQLITE_VTABRISK_High 2 /* ** The schema for each SQL table, virtual table, and view is represented ** in memory by an instance of the following structure. */ struct Table { char *zName; /* Name of the table or view */ Column *aCol; /* Information about each column */ Index *pIndex; /* List of SQL indexes on this table. */ char *zColAff; /* String defining the affinity of each column */ ExprList *pCheck; /* All CHECK constraints */ /* ... also used as column name list in a VIEW */ Pgno tnum; /* Root BTree page for this table */ u32 nTabRef; /* Number of pointers to this Table */ u32 tabFlags; /* Mask of TF_* values */ i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ i16 nCol; /* Number of columns in this table */ i16 nNVCol; /* Number of columns that are not VIRTUAL */ LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ LogEst szTabRow; /* Estimated size of each table row in bytes */ #ifdef SQLITE_ENABLE_COSTMULT LogEst costMult; /* Cost multiplier for using this table */ #endif u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ u8 eTabType; /* 0: normal, 1: virtual, 2: view */ union { struct { /* Used by ordinary tables: */ int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ FKey *pFKey; /* Linked list of all foreign keys in this table */ ExprList *pDfltList; /* DEFAULT clauses on various columns. ** Or the AS clause for generated columns. */ } tab; struct { /* Used by views: */ Select *pSelect; /* View definition */ } view; struct { /* Used by virtual tables only: */ int nArg; /* Number of arguments to the module */ char **azArg; /* 0: module 1: schema 2: vtab name 3...: args */ VTable *p; /* List of VTable objects. */ } vtab; } u; Trigger *pTrigger; /* List of triggers on this object */ Schema *pSchema; /* Schema that contains this table */ }; /* ** Allowed values for Table.tabFlags. ** ** TF_OOOHidden applies to tables or view that have hidden columns that are ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, ** the TF_OOOHidden attribute would apply in this case. Such tables require ** special handling during INSERT processing. The "OOO" means "Out Of Order". ** ** Constraints: ** ** TF_HasVirtual == COLFLAG_VIRTUAL ** TF_HasStored == COLFLAG_STORED ** TF_HasHidden == COLFLAG_HIDDEN */ #define TF_Readonly 0x00000001 /* Read-only system table */ #define TF_HasHidden 0x00000002 /* Has one or more hidden columns */ #define TF_HasPrimaryKey 0x00000004 /* Table has a primary key */ #define TF_Autoincrement 0x00000008 /* Integer primary key is autoincrement */ #define TF_HasStat1 0x00000010 /* nRowLogEst set from sqlite_stat1 */ #define TF_HasVirtual 0x00000020 /* Has one or more VIRTUAL columns */ #define TF_HasStored 0x00000040 /* Has one or more STORED columns */ #define TF_HasGenerated 0x00000060 /* Combo: HasVirtual + HasStored */ #define TF_WithoutRowid 0x00000080 /* No rowid. PRIMARY KEY is the key */ #define TF_StatsUsed 0x00000100 /* Query planner decisions affected by ** Index.aiRowLogEst[] values */ #define TF_NoVisibleRowid 0x00000200 /* No user-visible "rowid" column */ #define TF_OOOHidden 0x00000400 /* Out-of-Order hidden columns */ #define TF_HasNotNull 0x00000800 /* Contains NOT NULL constraints */ #define TF_Shadow 0x00001000 /* True for a shadow table */ #define TF_HasStat4 0x00002000 /* STAT4 info available for this table */ #define TF_Ephemeral 0x00004000 /* An ephemeral table */ #define TF_Eponymous 0x00008000 /* An eponymous virtual table */ #define TF_Strict 0x00010000 /* STRICT mode */ /* ** Allowed values for Table.eTabType */ #define TABTYP_NORM 0 /* Ordinary table */ #define TABTYP_VTAB 1 /* Virtual table */ #define TABTYP_VIEW 2 /* A view */ #define IsView(X) ((X)->eTabType==TABTYP_VIEW) #define IsOrdinaryTable(X) ((X)->eTabType==TABTYP_NORM) /* ** Test to see whether or not a table is a virtual table. This is ** done as a macro so that it will be optimized out when virtual ** table support is omitted from the build. */ #ifndef SQLITE_OMIT_VIRTUALTABLE # define IsVirtual(X) ((X)->eTabType==TABTYP_VTAB) # define ExprIsVtab(X) \ ((X)->op==TK_COLUMN && (X)->y.pTab->eTabType==TABTYP_VTAB) #else # define IsVirtual(X) 0 # define ExprIsVtab(X) 0 #endif /* ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() ** only works for non-virtual tables (ordinary tables and views) and is ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The ** IsHiddenColumn() macro is general purpose. */ #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) #elif !defined(SQLITE_OMIT_VIRTUALTABLE) # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) # define IsOrdinaryHiddenColumn(X) 0 #else # define IsHiddenColumn(X) 0 # define IsOrdinaryHiddenColumn(X) 0 #endif /* Does the table have a rowid */ #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) /* Macro is true if the SQLITE_ALLOW_ROWID_IN_VIEW (mis-)feature is ** available. By default, this macro is false */ #ifndef SQLITE_ALLOW_ROWID_IN_VIEW # define ViewCanHaveRowid 0 #else # define ViewCanHaveRowid (sqlite3Config.mNoVisibleRowid==0) #endif /* ** Each foreign key constraint is an instance of the following structure. ** ** A foreign key is associated with two tables. The "from" table is ** the table that contains the REFERENCES clause that creates the foreign ** key. The "to" table is the table that is named in the REFERENCES clause. ** Consider this example: ** ** CREATE TABLE ex1( ** a INTEGER PRIMARY KEY, ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) ** ); ** ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". ** Equivalent names: ** ** from-table == child-table ** to-table == parent-table ** ** Each REFERENCES clause generates an instance of the following structure ** which is attached to the from-table. The to-table need not exist when ** the from-table is created. The existence of the to-table is not checked. ** ** The list of all parents for child Table X is held at X.pFKey. ** ** A list of all children for a table named Z (which might not even exist) ** is held in Schema.fkeyHash with a hash key of Z. */ struct FKey { Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ char *zTo; /* Name of table that the key points to (aka: Parent) */ FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ FKey *pPrevTo; /* Previous with the same zTo */ int nCol; /* Number of columns in this key */ /* EV: R-30323-21917 */ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ Trigger *apTrigger[2];/* Triggers for aAction[] actions */ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ int iFrom; /* Index of column in pFrom */ char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ } aCol[1]; /* One entry for each of nCol columns */ }; /* ** SQLite supports many different ways to resolve a constraint ** error. ROLLBACK processing means that a constraint violation ** causes the operation in process to fail and for the current transaction ** to be rolled back. ABORT processing means the operation in process ** fails and any prior changes from that one operation are backed out, ** but the transaction is not rolled back. FAIL processing means that ** the operation in progress stops and returns an error code. But prior ** changes due to the same operation are not backed out and no rollback ** occurs. IGNORE means that the particular row that caused the constraint ** error is not inserted or updated. Processing continues and no error ** is returned. REPLACE means that preexisting database rows that caused ** a UNIQUE constraint violation are removed so that the new insert or ** update can proceed. Processing continues and no error is reported. ** UPDATE applies to insert operations only and means that the insert ** is omitted and the DO UPDATE clause of an upsert is run instead. ** ** RESTRICT, SETNULL, SETDFLT, and CASCADE actions apply only to foreign keys. ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign ** key is set to NULL. SETDFLT means that the foreign key is set ** to its default value. CASCADE means that a DELETE or UPDATE of the ** referenced table row is propagated into the row that holds the ** foreign key. ** ** The OE_Default value is a place holder that means to use whatever ** conflict resolution algorithm is required from context. ** ** The following symbolic values are used to record which type ** of conflict resolution action to take. */ #define OE_None 0 /* There is no constraint to check */ #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ #define OE_Abort 2 /* Back out changes but do no rollback transaction */ #define OE_Fail 3 /* Stop the operation but leave all prior changes */ #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ #define OE_Update 6 /* Process as a DO UPDATE in an upsert */ #define OE_Restrict 7 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ #define OE_SetNull 8 /* Set the foreign key value to NULL */ #define OE_SetDflt 9 /* Set the foreign key value to its default */ #define OE_Cascade 10 /* Cascade the changes */ #define OE_Default 11 /* Do whatever the default action is */ /* ** An instance of the following structure is passed as the first ** argument to sqlite3VdbeKeyCompare and is used to control the ** comparison of the two index keys. ** ** Note that aSortOrder[] and aColl[] have nField+1 slots. There ** are nField slots for the columns of an index then one extra slot ** for the rowid at the end. */ struct KeyInfo { u32 nRef; /* Number of references to this KeyInfo object */ u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ u16 nKeyField; /* Number of key columns in the index */ u16 nAllField; /* Total columns, including key plus others */ sqlite3 *db; /* The database connection */ u8 *aSortFlags; /* Sort order for each column. */ CollSeq *aColl[1]; /* Collating sequence for each term of the key */ }; /* ** Allowed bit values for entries in the KeyInfo.aSortFlags[] array. */ #define KEYINFO_ORDER_DESC 0x01 /* DESC sort order */ #define KEYINFO_ORDER_BIGNULL 0x02 /* NULL is larger than any other value */ /* ** This object holds a record which has been parsed out into individual ** fields, for the purposes of doing a comparison. ** ** A record is an object that contains one or more fields of data. ** Records are used to store the content of a table row and to store ** the key of an index. A blob encoding of a record is created by ** the OP_MakeRecord opcode of the VDBE and is disassembled by the ** OP_Column opcode. ** ** An instance of this object serves as a "key" for doing a search on ** an index b+tree. The goal of the search is to find the entry that ** is closed to the key described by this object. This object might hold ** just a prefix of the key. The number of fields is given by ** pKeyInfo->nField. ** ** The r1 and r2 fields are the values to return if this key is less than ** or greater than a key in the btree, respectively. These are normally ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree ** is in DESC order. ** ** The key comparison functions actually return default_rc when they find ** an equals comparison. default_rc can be -1, 0, or +1. If there are ** multiple entries in the b-tree with the same key (when only looking ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to ** cause the search to find the last match, or +1 to cause the search to ** find the first match. ** ** The key comparison functions will set eqSeen to true if they ever ** get and equal results when comparing this structure to a b-tree record. ** When default_rc!=0, the search might end up on the record immediately ** before the first match or immediately after the last match. The ** eqSeen field will indicate whether or not an exact match exists in the ** b-tree. */ struct UnpackedRecord { KeyInfo *pKeyInfo; /* Collation and sort-order information */ Mem *aMem; /* Values */ union { char *z; /* Cache of aMem[0].z for vdbeRecordCompareString() */ i64 i; /* Cache of aMem[0].u.i for vdbeRecordCompareInt() */ } u; int n; /* Cache of aMem[0].n used by vdbeRecordCompareString() */ u16 nField; /* Number of entries in apMem[] */ i8 default_rc; /* Comparison result if keys are equal */ u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ i8 r1; /* Value to return if (lhs < rhs) */ i8 r2; /* Value to return if (lhs > rhs) */ u8 eqSeen; /* True if an equality comparison has been seen */ }; /* ** Each SQL index is represented in memory by an ** instance of the following structure. ** ** The columns of the table that are to be indexed are described ** by the aiColumn[] field of this structure. For example, suppose ** we have the following table and index: ** ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); ** CREATE INDEX Ex2 ON Ex1(c3,c1); ** ** In the Table structure describing Ex1, nCol==3 because there are ** three columns in the table. In the Index structure describing ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. ** The second column to be indexed (c1) has an index of 0 in ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. ** ** The Index.onError field determines whether or not the indexed columns ** must be unique and what to do if they are not. When Index.onError=OE_None, ** it means this is not a unique index. Otherwise it is a unique index ** and the value of Index.onError indicates which conflict resolution ** algorithm to employ when an attempt is made to insert a non-unique ** element. ** ** The colNotIdxed bitmask is used in combination with SrcItem.colUsed ** for a fast test to see if an index can serve as a covering index. ** colNotIdxed has a 1 bit for every column of the original table that ** is *not* available in the index. Thus the expression ** "colUsed & colNotIdxed" will be non-zero if the index is not a ** covering index. The most significant bit of of colNotIdxed will always ** be true (note-20221022-a). If a column beyond the 63rd column of the ** table is used, the "colUsed & colNotIdxed" test will always be non-zero ** and we have to assume either that the index is not covering, or use ** an alternative (slower) algorithm to determine whether or not ** the index is covering. ** ** While parsing a CREATE TABLE or CREATE INDEX statement in order to ** generate VDBE code (as opposed to parsing one read from an sqlite_schema ** table as part of parsing an existing database schema), transient instances ** of this structure may be created. In this case the Index.tnum variable is ** used to store the address of a VDBE instruction, not a database page ** number (it cannot - the database page is not allocated until the VDBE ** program is executed). See convertToWithoutRowidTable() for details. */ struct Index { char *zName; /* Name of this index */ i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ const char **azColl; /* Array of collation sequence names for index */ Expr *pPartIdxWhere; /* WHERE clause for partial indices */ ExprList *aColExpr; /* Column expressions */ Pgno tnum; /* DB Page containing root of this index */ LogEst szIdxRow; /* Estimated average row size in bytes */ u16 nKeyCol; /* Number of columns forming the key */ u16 nColumn; /* Number of columns stored in the index */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ unsigned idxType:2; /* 0:Normal 1:UNIQUE, 2:PRIMARY KEY, 3:IPK */ unsigned bUnordered:1; /* Use this index for == or IN queries only */ unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ unsigned isResized:1; /* True if resizeIndexObject() has been called */ unsigned isCovering:1; /* True if this is a covering index */ unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ unsigned hasStat1:1; /* aiRowLogEst values come from sqlite_stat1 */ unsigned bLowQual:1; /* sqlite_stat1 says this is a low-quality index */ unsigned bNoQuery:1; /* Do not use this index to optimize queries */ unsigned bAscKeyBug:1; /* True if the bba7b69f9849b5bf bug applies */ unsigned bHasVCol:1; /* Index references one or more VIRTUAL columns */ unsigned bHasExpr:1; /* Index contains an expression, either a literal ** expression, or a reference to a VIRTUAL column */ #ifdef SQLITE_ENABLE_STAT4 int nSample; /* Number of elements in aSample[] */ int mxSample; /* Number of slots allocated to aSample[] */ int nSampleCol; /* Size of IndexSample.anEq[] and so on */ tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ IndexSample *aSample; /* Samples of the left-most key */ tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ #endif Bitmask colNotIdxed; /* Unindexed columns in pTab */ }; /* ** Allowed values for Index.idxType */ #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ #define SQLITE_IDXTYPE_IPK 3 /* INTEGER PRIMARY KEY index */ /* Return true if index X is a PRIMARY KEY index */ #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) /* Return true if index X is a UNIQUE index */ #define IsUniqueIndex(X) ((X)->onError!=OE_None) /* The Index.aiColumn[] values are normally positive integer. But ** there are some negative values that have special meaning: */ #define XN_ROWID (-1) /* Indexed column is the rowid */ #define XN_EXPR (-2) /* Indexed column is an expression */ /* ** Each sample stored in the sqlite_stat4 table is represented in memory ** using a structure of this type. See documentation at the top of the ** analyze.c source file for additional information. */ struct IndexSample { void *p; /* Pointer to sampled record */ int n; /* Size of record in bytes */ tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ }; /* ** Possible values to use within the flags argument to sqlite3GetToken(). */ #define SQLITE_TOKEN_QUOTED 0x1 /* Token is a quoted identifier. */ #define SQLITE_TOKEN_KEYWORD 0x2 /* Token is a keyword. */ /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** The memory that "z" points to is owned by other objects. Take care ** that the owner of the "z" string does not deallocate the string before ** the Token goes out of scope! Very often, the "z" points to some place ** in the middle of the Parse.zSql text. But it might also point to a ** static string. */ struct Token { const char *z; /* Text of the token. Not NULL-terminated! */ unsigned int n; /* Number of characters in this token */ }; /* ** An instance of this structure contains information needed to generate ** code for a SELECT that contains aggregate functions. ** ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a ** pointer to this structure. The Expr.iAgg field is the index in ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate ** code for that node. ** ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the ** original Select structure that describes the SELECT statement. These ** fields do not need to be freed when deallocating the AggInfo structure. */ struct AggInfo { u8 directMode; /* Direct rendering mode means take data directly ** from source tables rather than from accumulators */ u8 useSortingIdx; /* In direct mode, reference the sorting index rather ** than the source table */ u16 nSortingColumn; /* Number of columns in the sorting index */ int sortingIdx; /* Cursor number of the sorting index */ int sortingIdxPTab; /* Cursor number of pseudo-table */ int iFirstReg; /* First register in range for aCol[] and aFunc[] */ ExprList *pGroupBy; /* The group by clause */ struct AggInfo_col { /* For each column used in source tables */ Table *pTab; /* Source table */ Expr *pCExpr; /* The original expression */ int iTable; /* Cursor number of the source table */ i16 iColumn; /* Column number within the source table */ i16 iSorterColumn; /* Column number in the sorting index */ } *aCol; int nColumn; /* Number of used entries in aCol[] */ int nAccumulator; /* Number of columns that show through to the output. ** Additional columns are used only as parameters to ** aggregate functions */ struct AggInfo_func { /* For each aggregate function */ Expr *pFExpr; /* Expression encoding the function */ FuncDef *pFunc; /* The aggregate function implementation */ int iDistinct; /* Ephemeral table used to enforce DISTINCT */ int iDistAddr; /* Address of OP_OpenEphemeral */ int iOBTab; /* Ephemeral table to implement ORDER BY */ u8 bOBPayload; /* iOBTab has payload columns separate from key */ u8 bOBUnique; /* Enforce uniqueness on iOBTab keys */ u8 bUseSubtype; /* Transfer subtype info through sorter */ } *aFunc; int nFunc; /* Number of entries in aFunc[] */ u32 selId; /* Select to which this AggInfo belongs */ #ifdef SQLITE_DEBUG Select *pSelect; /* SELECT statement that this AggInfo supports */ #endif }; /* ** Macros to compute aCol[] and aFunc[] register numbers. ** ** These macros should not be used prior to the call to ** assignAggregateRegisters() that computes the value of pAggInfo->iFirstReg. ** The assert()s that are part of this macro verify that constraint. */ #define AggInfoColumnReg(A,I) (assert((A)->iFirstReg),(A)->iFirstReg+(I)) #define AggInfoFuncReg(A,I) \ (assert((A)->iFirstReg),(A)->iFirstReg+(A)->nColumn+(I)) /* ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater ** than 32767 we have to make it 32-bit. 16-bit is preferred because ** it uses less memory in the Expr object, which is a big memory user ** in systems with lots of prepared statements. And few applications ** need more than about 10 or 20 variables. But some extreme users want ** to have prepared statements with over 32766 variables, and for them ** the option is available (at compile-time). */ #if SQLITE_MAX_VARIABLE_NUMBER<32767 typedef i16 ynVar; #else typedef int ynVar; #endif /* ** Each node of an expression in the parse tree is an instance ** of this structure. ** ** Expr.op is the opcode. The integer parser token codes are reused ** as opcodes here. For example, the parser defines TK_GE to be an integer ** code representing the ">=" operator. This same integer code is reused ** to represent the greater-than-or-equal-to operator in the expression ** tree. ** ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, ** or TK_STRING), then Expr.u.zToken contains the text of the SQL literal. If ** the expression is a variable (TK_VARIABLE), then Expr.u.zToken contains the ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), ** then Expr.u.zToken contains the name of the function. ** ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a ** binary operator. Either or both may be NULL. ** ** Expr.x.pList is a list of arguments if the expression is an SQL function, ** a CASE expression or an IN expression of the form " IN (, ...)". ** Expr.x.pSelect is used if the expression is a sub-select or an expression of ** the form " IN (SELECT ...)". If the EP_xIsSelect bit is set in the ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is ** valid. ** ** An expression of the form ID or ID.ID refers to a column in a table. ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is ** the integer cursor number of a VDBE cursor pointing to that table and ** Expr.iColumn is the column number for the specific column. If the ** expression is used as a result in an aggregate SELECT, then the ** value is also stored in the Expr.iAgg column in the aggregate so that ** it can be accessed after all aggregates are computed. ** ** If the expression is an unbound variable marker (a question mark ** character '?' in the original SQL) then the Expr.iTable holds the index ** number for that variable. ** ** If the expression is a subquery then Expr.iColumn holds an integer ** register number containing the result of the subquery. If the ** subquery gives a constant result, then iTable is -1. If the subquery ** gives a different answer at different times during statement processing ** then iTable is the address of a subroutine that computes the subquery. ** ** If the Expr is of type OP_Column, and the table it is selecting from ** is a disk table or the "old.*" pseudo-table, then pTab points to the ** corresponding table definition. ** ** ALLOCATION NOTES: ** ** Expr objects can use a lot of memory space in database schema. To ** help reduce memory requirements, sometimes an Expr object will be ** truncated. And to reduce the number of memory allocations, sometimes ** two or more Expr objects will be stored in a single memory allocation, ** together with Expr.u.zToken strings. ** ** If the EP_Reduced and EP_TokenOnly flags are set when ** an Expr object is truncated. When EP_Reduced is set, then all ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees ** are contained within the same memory allocation. Note, however, that ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately ** allocated, regardless of whether or not EP_Reduced is set. */ struct Expr { u8 op; /* Operation performed by this node */ char affExpr; /* affinity, or RAISE type */ u8 op2; /* TK_REGISTER/TK_TRUTH: original value of Expr.op ** TK_COLUMN: the value of p5 for OP_Column ** TK_AGG_FUNCTION: nesting depth ** TK_FUNCTION: NC_SelfRef flag if needs OP_PureFunc */ #ifdef SQLITE_DEBUG u8 vvaFlags; /* Verification flags. */ #endif u32 flags; /* Various flags. EP_* See below */ union { char *zToken; /* Token value. Zero terminated and dequoted */ int iValue; /* Non-negative integer value if EP_IntValue */ } u; /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ Expr *pLeft; /* Left subnode */ Expr *pRight; /* Right subnode */ union { ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ } x; /* If the EP_Reduced flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ #endif int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old ** EP_Unlikely: 134217728 times likelihood ** TK_IN: ephemeral table holding RHS ** TK_SELECT_COLUMN: Number of columns on the LHS ** TK_SELECT: 1st register of result vector */ ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. ** TK_VARIABLE: variable number (always >= 1). ** TK_SELECT_COLUMN: column of the result vector */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ union { int iJoin; /* If EP_OuterON or EP_InnerON, the right table */ int iOfst; /* else: start of token from start of statement */ } w; AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ union { Table *pTab; /* TK_COLUMN: Table containing column. Can be NULL ** for a column of an index on an expression */ Window *pWin; /* EP_WinFunc: Window/Filter defn for a function */ struct { /* TK_IN, TK_SELECT, and TK_EXISTS */ int iAddr; /* Subroutine entry address */ int regReturn; /* Register used to hold return address */ } sub; } y; }; /* The following are the meanings of bits in the Expr.flags field. ** Value restrictions: ** ** EP_Agg == NC_HasAgg == SF_HasAgg ** EP_Win == NC_HasWin */ #define EP_OuterON 0x000001 /* Originates in ON/USING clause of outer join */ #define EP_InnerON 0x000002 /* Originates in ON/USING of an inner join */ #define EP_Distinct 0x000004 /* Aggregate function with DISTINCT keyword */ #define EP_HasFunc 0x000008 /* Contains one or more functions of any kind */ #define EP_Agg 0x000010 /* Contains one or more aggregate functions */ #define EP_FixedCol 0x000020 /* TK_Column with a known fixed value */ #define EP_VarSelect 0x000040 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x000080 /* token.z was originally in "..." */ #define EP_InfixFunc 0x000100 /* True for an infix function: LIKE, GLOB, etc */ #define EP_Collate 0x000200 /* Tree contains a TK_COLLATE operator */ #define EP_Commuted 0x000400 /* Comparison operator has been commuted */ #define EP_IntValue 0x000800 /* Integer value contained in u.iValue */ #define EP_xIsSelect 0x001000 /* x.pSelect is valid (otherwise x.pList is) */ #define EP_Skip 0x002000 /* Operator does not contribute to affinity */ #define EP_Reduced 0x004000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ #define EP_Win 0x008000 /* Contains window functions */ #define EP_TokenOnly 0x010000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ #define EP_FullSize 0x020000 /* Expr structure must remain full sized */ #define EP_IfNullRow 0x040000 /* The TK_IF_NULL_ROW opcode */ #define EP_Unlikely 0x080000 /* unlikely() or likelihood() function */ #define EP_ConstFunc 0x100000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ #define EP_CanBeNull 0x200000 /* Can be null despite NOT NULL constraint */ #define EP_Subquery 0x400000 /* Tree contains a TK_SELECT operator */ #define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */ #define EP_WinFunc 0x1000000 /* TK_FUNCTION with Expr.y.pWin set */ #define EP_Subrtn 0x2000000 /* Uses Expr.y.sub. TK_IN, _SELECT, or _EXISTS */ #define EP_Quoted 0x4000000 /* TK_ID was originally quoted */ #define EP_Static 0x8000000 /* Held in memory not obtained from malloc() */ #define EP_IsTrue 0x10000000 /* Always has boolean value of TRUE */ #define EP_IsFalse 0x20000000 /* Always has boolean value of FALSE */ #define EP_FromDDL 0x40000000 /* Originates from sqlite_schema */ /* 0x80000000 // Available */ /* The EP_Propagate mask is a set of properties that automatically propagate ** upwards into parent nodes. */ #define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc) /* Macros can be used to test, set, or clear bits in the ** Expr.flags field. */ #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) #define ExprSetProperty(E,P) (E)->flags|=(P) #define ExprClearProperty(E,P) (E)->flags&=~(P) #define ExprAlwaysTrue(E) (((E)->flags&(EP_OuterON|EP_IsTrue))==EP_IsTrue) #define ExprAlwaysFalse(E) (((E)->flags&(EP_OuterON|EP_IsFalse))==EP_IsFalse) #define ExprIsFullSize(E) (((E)->flags&(EP_Reduced|EP_TokenOnly))==0) /* Macros used to ensure that the correct members of unions are accessed ** in Expr. */ #define ExprUseUToken(E) (((E)->flags&EP_IntValue)==0) #define ExprUseUValue(E) (((E)->flags&EP_IntValue)!=0) #define ExprUseWOfst(E) (((E)->flags&(EP_InnerON|EP_OuterON))==0) #define ExprUseWJoin(E) (((E)->flags&(EP_InnerON|EP_OuterON))!=0) #define ExprUseXList(E) (((E)->flags&EP_xIsSelect)==0) #define ExprUseXSelect(E) (((E)->flags&EP_xIsSelect)!=0) #define ExprUseYTab(E) (((E)->flags&(EP_WinFunc|EP_Subrtn))==0) #define ExprUseYWin(E) (((E)->flags&EP_WinFunc)!=0) #define ExprUseYSub(E) (((E)->flags&EP_Subrtn)!=0) /* Flags for use with Expr.vvaFlags */ #define EP_NoReduce 0x01 /* Cannot EXPRDUP_REDUCE this Expr */ #define EP_Immutable 0x02 /* Do not change this Expr node */ /* The ExprSetVVAProperty() macro is used for Verification, Validation, ** and Accreditation only. It works like ExprSetProperty() during VVA ** processes but is a no-op for delivery. */ #ifdef SQLITE_DEBUG # define ExprSetVVAProperty(E,P) (E)->vvaFlags|=(P) # define ExprHasVVAProperty(E,P) (((E)->vvaFlags&(P))!=0) # define ExprClearVVAProperties(E) (E)->vvaFlags = 0 #else # define ExprSetVVAProperty(E,P) # define ExprHasVVAProperty(E,P) 0 # define ExprClearVVAProperties(E) #endif /* ** Macros to determine the number of bytes required by a normal Expr ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags ** and an Expr struct with the EP_TokenOnly flag set. */ #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ /* ** Flags passed to the sqlite3ExprDup() function. See the header comment ** above sqlite3ExprDup() for details. */ #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ /* ** True if the expression passed as an argument was a function with ** an OVER() clause (a window function). */ #ifdef SQLITE_OMIT_WINDOWFUNC # define IsWindowFunc(p) 0 #else # define IsWindowFunc(p) ( \ ExprHasProperty((p), EP_WinFunc) && p->y.pWin->eFrmType!=TK_FILTER \ ) #endif /* ** A list of expressions. Each expression may optionally have a ** name. An expr/name combination can be used in several ways, such ** as the list of "expr AS ID" fields following a "SELECT" or in the ** list of "ID = expr" items in an UPDATE. A list of expressions can ** also be used as the argument to a function, in which case the a.zName ** field is not used. ** ** In order to try to keep memory usage down, the Expr.a.zEName field ** is used for multiple purposes: ** ** eEName Usage ** ---------- ------------------------- ** ENAME_NAME (1) the AS of result set column ** (2) COLUMN= of an UPDATE ** ** ENAME_TAB DB.TABLE.NAME used to resolve names ** of subqueries ** ** ENAME_SPAN Text of the original result set ** expression. */ struct ExprList { int nExpr; /* Number of expressions on the list */ int nAlloc; /* Number of a[] slots allocated */ struct ExprList_item { /* For each expression in the list */ Expr *pExpr; /* The parse tree for this expression */ char *zEName; /* Token associated with this expression */ struct { u8 sortFlags; /* Mask of KEYINFO_ORDER_* flags */ unsigned eEName :2; /* Meaning of zEName */ unsigned done :1; /* Indicates when processing is finished */ unsigned reusable :1; /* Constant expression is reusable */ unsigned bSorterRef :1; /* Defer evaluation until after sorting */ unsigned bNulls :1; /* True if explicit "NULLS FIRST/LAST" */ unsigned bUsed :1; /* This column used in a SF_NestedFrom subquery */ unsigned bUsingTerm:1; /* Term from the USING clause of a NestedFrom */ unsigned bNoExpand: 1; /* Term is an auxiliary in NestedFrom and should ** not be expanded by "*" in parent queries */ } fg; union { struct { /* Used by any ExprList other than Parse.pConsExpr */ u16 iOrderByCol; /* For ORDER BY, column number in result set */ u16 iAlias; /* Index into Parse.aAlias[] for zName */ } x; int iConstExprReg; /* Register in which Expr value is cached. Used only ** by Parse.pConstExpr */ } u; } a[1]; /* One slot for each expression in the list */ }; /* ** Allowed values for Expr.a.eEName */ #define ENAME_NAME 0 /* The AS clause of a result set */ #define ENAME_SPAN 1 /* Complete text of the result set expression */ #define ENAME_TAB 2 /* "DB.TABLE.NAME" for the result set */ #define ENAME_ROWID 3 /* "DB.TABLE._rowid_" for * expansion of rowid */ /* ** An instance of this structure can hold a simple list of identifiers, ** such as the list "a,b,c" in the following statements: ** ** INSERT INTO t(a,b,c) VALUES ...; ** CREATE INDEX idx ON t(a,b,c); ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; ** ** The IdList.a.idx field is used when the IdList represents the list of ** column names after a table name in an INSERT statement. In the statement ** ** INSERT INTO t(a,b,c) ... ** ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. */ struct IdList { int nId; /* Number of identifiers on the list */ u8 eU4; /* Which element of a.u4 is valid */ struct IdList_item { char *zName; /* Name of the identifier */ union { int idx; /* Index in some Table.aCol[] of a column named zName */ Expr *pExpr; /* Expr to implement a USING variable -- NOT USED */ } u4; } a[1]; }; /* ** Allowed values for IdList.eType, which determines which value of the a.u4 ** is valid. */ #define EU4_NONE 0 /* Does not use IdList.a.u4 */ #define EU4_IDX 1 /* Uses IdList.a.u4.idx */ #define EU4_EXPR 2 /* Uses IdList.a.u4.pExpr -- NOT CURRENTLY USED */ /* ** The SrcItem object represents a single term in the FROM clause of a query. ** The SrcList object is mostly an array of SrcItems. ** ** The jointype starts out showing the join type between the current table ** and the next table on the list. The parser builds the list this way. ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each ** jointype expresses the join between the table and the previous table. ** ** In the colUsed field, the high-order bit (bit 63) is set if the table ** contains more than 63 columns and the 64-th or later column is used. ** ** Union member validity: ** ** u1.zIndexedBy fg.isIndexedBy && !fg.isTabFunc ** u1.pFuncArg fg.isTabFunc && !fg.isIndexedBy ** u2.pIBIndex fg.isIndexedBy && !fg.isCte ** u2.pCteUse fg.isCte && !fg.isIndexedBy */ struct SrcItem { Schema *pSchema; /* Schema to which this item is fixed */ char *zDatabase; /* Name of database holding this table */ char *zName; /* Name of the table */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ Select *pSelect; /* A SELECT statement used in place of a table name */ int addrFillSub; /* Address of subroutine to manifest a subquery */ int regReturn; /* Register holding return address of addrFillSub */ int regResult; /* Registers holding results of a co-routine */ struct { u8 jointype; /* Type of join between this table and the previous */ unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ unsigned isTabFunc :1; /* True if table-valued-function syntax */ unsigned isCorrelated :1; /* True if sub-query is correlated */ unsigned isMaterialized:1; /* This is a materialized view */ unsigned viaCoroutine :1; /* Implemented as a co-routine */ unsigned isRecursive :1; /* True for recursive reference in WITH */ unsigned fromDDL :1; /* Comes from sqlite_schema */ unsigned isCte :1; /* This is a CTE */ unsigned notCte :1; /* This item may not match a CTE */ unsigned isUsing :1; /* u3.pUsing is valid */ unsigned isOn :1; /* u3.pOn was once valid and non-NULL */ unsigned isSynthUsing :1; /* u3.pUsing is synthesized from NATURAL */ unsigned isNestedFrom :1; /* pSelect is a SF_NestedFrom subquery */ } fg; int iCursor; /* The VDBE cursor number used to access this table */ union { Expr *pOn; /* fg.isUsing==0 => The ON clause of a join */ IdList *pUsing; /* fg.isUsing==1 => The USING clause of a join */ } u3; Bitmask colUsed; /* Bit N set if column N used. Details above for N>62 */ union { char *zIndexedBy; /* Identifier from "INDEXED BY " clause */ ExprList *pFuncArg; /* Arguments to table-valued-function */ } u1; union { Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ CteUse *pCteUse; /* CTE Usage info when fg.isCte is true */ } u2; }; /* ** The OnOrUsing object represents either an ON clause or a USING clause. ** It can never be both at the same time, but it can be neither. */ struct OnOrUsing { Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ }; /* ** This object represents one or more tables that are the source of ** content for an SQL statement. For example, a single SrcList object ** is used to hold the FROM clause of a SELECT statement. SrcList also ** represents the target tables for DELETE, INSERT, and UPDATE statements. ** */ struct SrcList { int nSrc; /* Number of tables or subqueries in the FROM clause */ u32 nAlloc; /* Number of entries allocated in a[] below */ SrcItem a[1]; /* One entry for each identifier on the list */ }; /* ** Permitted values of the SrcList.a.jointype field */ #define JT_INNER 0x01 /* Any kind of inner or cross join */ #define JT_CROSS 0x02 /* Explicit use of the CROSS keyword */ #define JT_NATURAL 0x04 /* True for a "natural" join */ #define JT_LEFT 0x08 /* Left outer join */ #define JT_RIGHT 0x10 /* Right outer join */ #define JT_OUTER 0x20 /* The "OUTER" keyword is present */ #define JT_LTORJ 0x40 /* One of the LEFT operands of a RIGHT JOIN ** Mnemonic: Left Table Of Right Join */ #define JT_ERROR 0x80 /* unknown or unsupported join type */ /* ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() ** and the WhereInfo.wctrlFlags member. ** ** Value constraints (enforced via assert()): ** WHERE_USE_LIMIT == SF_FixedLimit */ #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ #define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */ #define WHERE_DUPLICATES_OK 0x0010 /* Ok to return a row more than once */ #define WHERE_OR_SUBCLAUSE 0x0020 /* Processing a sub-WHERE as part of ** the OR optimization */ #define WHERE_GROUPBY 0x0040 /* pOrderBy is really a GROUP BY */ #define WHERE_DISTINCTBY 0x0080 /* pOrderby is really a DISTINCT clause */ #define WHERE_WANT_DISTINCT 0x0100 /* All output needs to be distinct */ #define WHERE_SORTBYGROUP 0x0200 /* Support sqlite3WhereIsSorted() */ #define WHERE_AGG_DISTINCT 0x0400 /* Query is "SELECT agg(DISTINCT ...)" */ #define WHERE_ORDERBY_LIMIT 0x0800 /* ORDERBY+LIMIT on the inner loop */ #define WHERE_RIGHT_JOIN 0x1000 /* Processing a RIGHT JOIN */ /* 0x2000 not currently used */ #define WHERE_USE_LIMIT 0x4000 /* Use the LIMIT in cost estimates */ /* 0x8000 not currently used */ /* Allowed return values from sqlite3WhereIsDistinct() */ #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ /* ** A NameContext defines a context in which to resolve table and column ** names. The context consists of a list of tables (the pSrcList) field and ** a list of named expression (pEList). The named expression list may ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or ** to the table being operated on by INSERT, UPDATE, or DELETE. The ** pEList corresponds to the result set of a SELECT and is NULL for ** other statements. ** ** NameContexts can be nested. When resolving names, the inner-most ** context is searched first. If no match is found, the next outer ** context is checked. If there is still no match, the next context ** is checked. This process continues until either a match is found ** or all contexts are check. When a match is found, the nRef member of ** the context containing the match is incremented. ** ** Each subquery gets a new NameContext. The pNext field points to the ** NameContext in the parent query. Thus the process of scanning the ** NameContext list corresponds to searching through successively outer ** subqueries looking for a match. */ struct NameContext { Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ union { ExprList *pEList; /* Optional list of result-set columns */ AggInfo *pAggInfo; /* Information about aggregates at this level */ Upsert *pUpsert; /* ON CONFLICT clause information from an upsert */ int iBaseReg; /* For TK_REGISTER when parsing RETURNING */ } uNC; NameContext *pNext; /* Next outer name context. NULL for outermost */ int nRef; /* Number of names resolved by this context */ int nNcErr; /* Number of errors encountered while resolving names */ int ncFlags; /* Zero or more NC_* flags defined below */ u32 nNestedSelect; /* Number of nested selects using this NC */ Select *pWinSelect; /* SELECT statement for any window functions */ }; /* ** Allowed values for the NameContext, ncFlags field. ** ** Value constraints (all checked via assert()): ** NC_HasAgg == SF_HasAgg == EP_Agg ** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX ** NC_OrderAgg == SF_OrderByReqd == SQLITE_FUNC_ANYORDER ** NC_HasWin == EP_Win ** */ #define NC_AllowAgg 0x000001 /* Aggregate functions are allowed here */ #define NC_PartIdx 0x000002 /* True if resolving a partial index WHERE */ #define NC_IsCheck 0x000004 /* True if resolving a CHECK constraint */ #define NC_GenCol 0x000008 /* True for a GENERATED ALWAYS AS clause */ #define NC_HasAgg 0x000010 /* One or more aggregate functions seen */ #define NC_IdxExpr 0x000020 /* True if resolving columns of CREATE INDEX */ #define NC_SelfRef 0x00002e /* Combo: PartIdx, isCheck, GenCol, and IdxExpr */ #define NC_Subquery 0x000040 /* A subquery has been seen */ #define NC_UEList 0x000080 /* True if uNC.pEList is used */ #define NC_UAggInfo 0x000100 /* True if uNC.pAggInfo is used */ #define NC_UUpsert 0x000200 /* True if uNC.pUpsert is used */ #define NC_UBaseReg 0x000400 /* True if uNC.iBaseReg is used */ #define NC_MinMaxAgg 0x001000 /* min/max aggregates seen. See note above */ #define NC_Complex 0x002000 /* True if a function or subquery seen */ #define NC_AllowWin 0x004000 /* Window functions are allowed here */ #define NC_HasWin 0x008000 /* One or more window functions seen */ #define NC_IsDDL 0x010000 /* Resolving names in a CREATE statement */ #define NC_InAggFunc 0x020000 /* True if analyzing arguments to an agg func */ #define NC_FromDDL 0x040000 /* SQL text comes from sqlite_schema */ #define NC_NoSelect 0x080000 /* Do not descend into sub-selects */ #define NC_Where 0x100000 /* Processing WHERE clause of a SELECT */ #define NC_OrderAgg 0x8000000 /* Has an aggregate other than count/min/max */ /* ** An instance of the following object describes a single ON CONFLICT ** clause in an upsert. ** ** The pUpsertTarget field is only set if the ON CONFLICT clause includes ** conflict-target clause. (In "ON CONFLICT(a,b)" the "(a,b)" is the ** conflict-target clause.) The pUpsertTargetWhere is the optional ** WHERE clause used to identify partial unique indexes. ** ** pUpsertSet is the list of column=expr terms of the UPDATE statement. ** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING. The ** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the ** WHERE clause is omitted. */ struct Upsert { ExprList *pUpsertTarget; /* Optional description of conflict target */ Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */ ExprList *pUpsertSet; /* The SET clause from an ON CONFLICT UPDATE */ Expr *pUpsertWhere; /* WHERE clause for the ON CONFLICT UPDATE */ Upsert *pNextUpsert; /* Next ON CONFLICT clause in the list */ u8 isDoUpdate; /* True for DO UPDATE. False for DO NOTHING */ u8 isDup; /* True if 2nd or later with same pUpsertIdx */ /* Above this point is the parse tree for the ON CONFLICT clauses. ** The next group of fields stores intermediate data. */ void *pToFree; /* Free memory when deleting the Upsert object */ /* All fields above are owned by the Upsert object and must be freed ** when the Upsert is destroyed. The fields below are used to transfer ** information from the INSERT processing down into the UPDATE processing ** while generating code. The fields below are owned by the INSERT ** statement and will be freed by INSERT processing. */ Index *pUpsertIdx; /* UNIQUE constraint specified by pUpsertTarget */ SrcList *pUpsertSrc; /* Table to be updated */ int regData; /* First register holding array of VALUES */ int iDataCur; /* Index of the data cursor */ int iIdxCur; /* Index of the first index cursor */ }; /* ** An instance of the following structure contains all information ** needed to generate code for a single SELECT statement. ** ** See the header comment on the computeLimitRegisters() routine for a ** detailed description of the meaning of the iLimit and iOffset fields. ** ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. ** These addresses must be stored so that we can go back and fill in ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor ** the number of columns in P2 can be computed at the same time ** as the OP_OpenEphm instruction is coded because not ** enough information about the compound query is known at that point. ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating ** sequences for the ORDER BY clause. */ struct Select { u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ LogEst nSelectRow; /* Estimated number of result rows */ u32 selFlags; /* Various SF_* values */ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ u32 selId; /* Unique identifier number for this SELECT */ int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ ExprList *pEList; /* The fields of the result */ SrcList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ Select *pPrior; /* Prior select in a compound select statement */ Select *pNext; /* Next select to the left in a compound */ Expr *pLimit; /* LIMIT expression. NULL means not used. */ With *pWith; /* WITH clause attached to this select. Or NULL. */ #ifndef SQLITE_OMIT_WINDOWFUNC Window *pWin; /* List of window functions */ Window *pWinDefn; /* List of named window definitions */ #endif }; /* ** Allowed values for Select.selFlags. The "SF" prefix stands for ** "Select Flag". ** ** Value constraints (all checked via assert()) ** SF_HasAgg == NC_HasAgg ** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX ** SF_OrderByReqd == NC_OrderAgg == SQLITE_FUNC_ANYORDER ** SF_FixedLimit == WHERE_USE_LIMIT */ #define SF_Distinct 0x0000001 /* Output should be DISTINCT */ #define SF_All 0x0000002 /* Includes the ALL keyword */ #define SF_Resolved 0x0000004 /* Identifiers have been resolved */ #define SF_Aggregate 0x0000008 /* Contains agg functions or a GROUP BY */ #define SF_HasAgg 0x0000010 /* Contains aggregate functions */ #define SF_UsesEphemeral 0x0000020 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0000040 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0000080 /* FROM subqueries have Table metadata */ #define SF_Compound 0x0000100 /* Part of a compound query */ #define SF_Values 0x0000200 /* Synthesized from VALUES clause */ #define SF_MultiValue 0x0000400 /* Single VALUES term with multiple rows */ #define SF_NestedFrom 0x0000800 /* Part of a parenthesized FROM clause */ #define SF_MinMaxAgg 0x0001000 /* Aggregate containing min() or max() */ #define SF_Recursive 0x0002000 /* The recursive part of a recursive CTE */ #define SF_FixedLimit 0x0004000 /* nSelectRow set by a constant LIMIT */ #define SF_MaybeConvert 0x0008000 /* Need convertCompoundSelectToSubquery() */ #define SF_Converted 0x0010000 /* By convertCompoundSelectToSubquery() */ #define SF_IncludeHidden 0x0020000 /* Include hidden columns in output */ #define SF_ComplexResult 0x0040000 /* Result contains subquery or function */ #define SF_WhereBegin 0x0080000 /* Really a WhereBegin() call. Debug Only */ #define SF_WinRewrite 0x0100000 /* Window function rewrite accomplished */ #define SF_View 0x0200000 /* SELECT statement is a view */ #define SF_NoopOrderBy 0x0400000 /* ORDER BY is ignored for this query */ #define SF_UFSrcCheck 0x0800000 /* Check pSrc as required by UPDATE...FROM */ #define SF_PushDown 0x1000000 /* SELECT has be modified by push-down opt */ #define SF_MultiPart 0x2000000 /* Has multiple incompatible PARTITIONs */ #define SF_CopyCte 0x4000000 /* SELECT statement is a copy of a CTE */ #define SF_OrderByReqd 0x8000000 /* The ORDER BY clause may not be omitted */ #define SF_UpdateFrom 0x10000000 /* Query originates with UPDATE FROM */ /* True if S exists and has SF_NestedFrom */ #define IsNestedFrom(S) ((S)!=0 && ((S)->selFlags&SF_NestedFrom)!=0) /* ** The results of a SELECT can be distributed in several ways, as defined ** by one of the following macros. The "SRT" prefix means "SELECT Result ** Type". ** ** SRT_Union Store results as a key in a temporary index ** identified by pDest->iSDParm. ** ** SRT_Except Remove results from the temporary index pDest->iSDParm. ** ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result ** set is not empty. ** ** SRT_Discard Throw the results away. This is used by SELECT ** statements within triggers whose only purpose is ** the side-effects of functions. ** ** SRT_Output Generate a row of output (using the OP_ResultRow ** opcode) for each row in the result set. ** ** SRT_Mem Only valid if the result is a single column. ** Store the first column of the first result row ** in register pDest->iSDParm then abandon the rest ** of the query. This destination implies "LIMIT 1". ** ** SRT_Set The result must be a single column. Store each ** row of result as the key in table pDest->iSDParm. ** Apply the affinity pDest->affSdst before storing ** results. Used to implement "IN (SELECT ...)". ** ** SRT_EphemTab Create an temporary table pDest->iSDParm and store ** the result there. The cursor is left open after ** returning. This is like SRT_Table except that ** this destination uses OP_OpenEphemeral to create ** the table first. ** ** SRT_Coroutine Generate a co-routine that returns a new row of ** results each time it is invoked. The entry point ** of the co-routine is stored in register pDest->iSDParm ** and the result row is stored in pDest->nDest registers ** starting with pDest->iSdst. ** ** SRT_Table Store results in temporary table pDest->iSDParm. ** SRT_Fifo This is like SRT_EphemTab except that the table ** is assumed to already be open. SRT_Fifo has ** the additional property of being able to ignore ** the ORDER BY clause. ** ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. ** But also use temporary table pDest->iSDParm+1 as ** a record of all prior results and ignore any duplicate ** rows. Name means: "Distinct Fifo". ** ** SRT_Queue Store results in priority queue pDest->iSDParm (really ** an index). Append a sequence number so that all entries ** are distinct. ** ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if ** the same record has never been stored before. The ** index at pDest->iSDParm+1 hold all prior stores. ** ** SRT_Upfrom Store results in the temporary table already opened by ** pDest->iSDParm. If (pDest->iSDParm<0), then the temp ** table is an intkey table - in this case the first ** column returned by the SELECT is used as the integer ** key. If (pDest->iSDParm>0), then the table is an index ** table. (pDest->iSDParm) is the number of key columns in ** each index record in this case. */ #define SRT_Union 1 /* Store result as keys in an index */ #define SRT_Except 2 /* Remove result from a UNION index */ #define SRT_Exists 3 /* Store 1 if the result is not empty */ #define SRT_Discard 4 /* Do not save the results anywhere */ #define SRT_DistFifo 5 /* Like SRT_Fifo, but unique results only */ #define SRT_DistQueue 6 /* Like SRT_Queue, but unique results only */ /* The DISTINCT clause is ignored for all of the above. Not that ** IgnorableDistinct() implies IgnorableOrderby() */ #define IgnorableDistinct(X) ((X->eDest)<=SRT_DistQueue) #define SRT_Queue 7 /* Store result in an queue */ #define SRT_Fifo 8 /* Store result as data with an automatic rowid */ /* The ORDER BY clause is ignored for all of the above */ #define IgnorableOrderby(X) ((X->eDest)<=SRT_Fifo) #define SRT_Output 9 /* Output each row of result */ #define SRT_Mem 10 /* Store result in a memory cell */ #define SRT_Set 11 /* Store results as keys in an index */ #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ #define SRT_Coroutine 13 /* Generate a single row of result */ #define SRT_Table 14 /* Store result as data with an automatic rowid */ #define SRT_Upfrom 15 /* Store result as data with rowid */ /* ** An instance of this object describes where to put of the results of ** a SELECT statement. */ struct SelectDest { u8 eDest; /* How to dispose of the results. One of SRT_* above. */ int iSDParm; /* A parameter used by the eDest disposal method */ int iSDParm2; /* A second parameter for the eDest disposal method */ int iSdst; /* Base register where results are written */ int nSdst; /* Number of registers allocated */ char *zAffSdst; /* Affinity used for SRT_Set */ ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ }; /* ** During code generation of statements that do inserts into AUTOINCREMENT ** tables, the following information is attached to the Table.u.autoInc.p ** pointer of each autoincrement table to record some side information that ** the code generator needs. We have to keep per-table autoincrement ** information in case inserts are done within triggers. Triggers do not ** normally coordinate their activities, but we do need to coordinate the ** loading and saving of autoincrement information. */ struct AutoincInfo { AutoincInfo *pNext; /* Next info block in a list of them all */ Table *pTab; /* Table this info block refers to */ int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ int regCtr; /* Memory register holding the rowid counter */ }; /* ** At least one instance of the following structure is created for each ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE ** statement. All such objects are stored in the linked list headed at ** Parse.pTriggerPrg and deleted once statement compilation has been ** completed. ** ** A Vdbe sub-program that implements the body and WHEN clause of trigger ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. ** The Parse.pTriggerPrg list never contains two entries with the same ** values for both pTrigger and orconf. ** ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns ** accessed (or set to 0 for triggers fired as a result of INSERT ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to ** a mask of new.* columns used by the program. */ struct TriggerPrg { Trigger *pTrigger; /* Trigger this program was coded from */ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ SubProgram *pProgram; /* Program implementing pTrigger/orconf */ int orconf; /* Default ON CONFLICT policy */ u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ }; /* ** The yDbMask datatype for the bitmask of all attached databases. */ #if SQLITE_MAX_ATTACHED>30 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) # define DbMaskZero(M) memset((M),0,sizeof(M)) # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) #else typedef unsigned int yDbMask; # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) # define DbMaskZero(M) ((M)=0) # define DbMaskSet(M,I) ((M)|=(((yDbMask)1)<<(I))) # define DbMaskAllZero(M) ((M)==0) # define DbMaskNonZero(M) ((M)!=0) #endif /* ** For each index X that has as one of its arguments either an expression ** or the name of a virtual generated column, and if X is in scope such that ** the value of the expression can simply be read from the index, then ** there is an instance of this object on the Parse.pIdxExpr list. ** ** During code generation, while generating code to evaluate expressions, ** this list is consulted and if a matching expression is found, the value ** is read from the index rather than being recomputed. */ struct IndexedExpr { Expr *pExpr; /* The expression contained in the index */ int iDataCur; /* The data cursor associated with the index */ int iIdxCur; /* The index cursor */ int iIdxCol; /* The index column that contains value of pExpr */ u8 bMaybeNullRow; /* True if we need an OP_IfNullRow check */ u8 aff; /* Affinity of the pExpr expression */ IndexedExpr *pIENext; /* Next in a list of all indexed expressions */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS const char *zIdxName; /* Name of index, used only for bytecode comments */ #endif }; /* ** An instance of the ParseCleanup object specifies an operation that ** should be performed after parsing to deallocation resources obtained ** during the parse and which are no longer needed. */ struct ParseCleanup { ParseCleanup *pNext; /* Next cleanup task */ void *pPtr; /* Pointer to object to deallocate */ void (*xCleanup)(sqlite3*,void*); /* Deallocation routine */ }; /* ** An SQL parser context. A copy of this structure is passed through ** the parser and down into all the parser action routine in order to ** carry around information that is global to the entire parse. ** ** The structure is divided into two parts. When the parser and code ** generate call themselves recursively, the first part of the structure ** is constant but the second part is reset at the beginning and end of ** each recursion. ** ** The nTableLock and aTableLock variables are only used if the shared-cache ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are ** used to store the set of table-locks required by the statement being ** compiled. Function sqlite3TableLock() is used to add entries to the ** list. */ struct Parse { sqlite3 *db; /* The main database structure */ char *zErrMsg; /* An error message */ Vdbe *pVdbe; /* An engine for executing database bytecode */ int rc; /* Return code from execution */ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ u8 checkSchema; /* Causes schema cookie check after an error */ u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ u8 okConstFactor; /* OK to factor out constants */ u8 disableLookaside; /* Number of times lookaside has been disabled */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ u8 withinRJSubrtn; /* Nesting level for RIGHT JOIN body subroutines */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) u8 earlyCleanup; /* OOM inside sqlite3ParserAddCleanup() */ #endif #ifdef SQLITE_DEBUG u8 ifNotExists; /* Might be true if IF NOT EXISTS. Assert()s only */ #endif int nRangeReg; /* Size of the temporary register block */ int iRangeReg; /* First register in temporary register block */ int nErr; /* Number of errors seen */ int nTab; /* Number of previously allocated VDBE cursors */ int nMem; /* Number of memory cells used so far */ int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ int iSelfTab; /* Table associated with an index on expr, or negative ** of the base register during check-constraint eval */ int nLabel; /* The *negative* of the number of labels used */ int nLabelAlloc; /* Number of slots in aLabel */ int *aLabel; /* Space to hold the labels */ ExprList *pConstExpr;/* Constant expressions */ IndexedExpr *pIdxEpr;/* List of expressions used by active indexes */ IndexedExpr *pIdxPartExpr; /* Exprs constrained by index WHERE clauses */ Token constraintName;/* Name of the constraint currently being parsed */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ int nMaxArg; /* Max args passed to user function by sub-program */ int nSelect; /* Number of SELECT stmts. Counter for Select.selId */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK u32 nProgressSteps; /* xProgress steps taken during sqlite3_prepare() */ #endif #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ ParseCleanup *pCleanup; /* List of cleanup operations to run after parse */ union { int addrCrTab; /* Address of OP_CreateBtree on CREATE TABLE */ Returning *pReturning; /* The RETURNING clause */ } u1; u32 oldmask; /* Mask of old.* columns referenced */ u32 newmask; /* Mask of new.* columns referenced */ LogEst nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ u8 bReturning; /* Coding a RETURNING trigger */ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ u8 disableTriggers; /* True to disable triggers */ /************************************************************************** ** Fields above must be initialized to zero. The fields that follow, ** down to the beginning of the recursive section, do not need to be ** initialized as they will be set before being used. The boundary is ** determined by offsetof(Parse,aTempReg). **************************************************************************/ int aTempReg[8]; /* Holding area for temporary registers */ Parse *pOuterParse; /* Outer Parse object when nested */ Token sNameToken; /* Token with unqualified schema object name */ /************************************************************************ ** Above is constant between recursions. Below is reset before and after ** each recursion. The boundary between these two regions is determined ** using offsetof(Parse,sLastToken) so the sLastToken field must be the ** first field in the recursive region. ************************************************************************/ Token sLastToken; /* The last token parsed */ ynVar nVar; /* Number of '?' variables seen in the SQL so far */ u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ u8 explain; /* True if the EXPLAIN flag is found on the query */ u8 eParseMode; /* PARSE_MODE_XXX constant */ #ifndef SQLITE_OMIT_VIRTUALTABLE int nVtabLock; /* Number of virtual tables to lock */ #endif int nHeight; /* Expression tree height of current sub-select */ #ifndef SQLITE_OMIT_EXPLAIN int addrExplain; /* Address of current OP_Explain opcode */ #endif VList *pVList; /* Mapping between variable names and numbers */ Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Index *pNewIndex; /* An index being constructed by CREATE INDEX. ** Also used to hold redundant UNIQUE constraints ** during a RENAME COLUMN */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ #ifndef SQLITE_OMIT_VIRTUALTABLE Token sArg; /* Complete text of a module argument */ Table **apVtabLock; /* Pointer to virtual tables needing locking */ #endif With *pWith; /* Current WITH clause, or NULL */ #ifndef SQLITE_OMIT_ALTERTABLE RenameToken *pRename; /* Tokens subject to renaming by ALTER TABLE */ #endif }; /* Allowed values for Parse.eParseMode */ #define PARSE_MODE_NORMAL 0 #define PARSE_MODE_DECLARE_VTAB 1 #define PARSE_MODE_RENAME 2 #define PARSE_MODE_UNMAP 3 /* ** Sizes and pointers of various parts of the Parse object. */ #define PARSE_HDR(X) (((char*)(X))+offsetof(Parse,zErrMsg)) #define PARSE_HDR_SZ (offsetof(Parse,aTempReg)-offsetof(Parse,zErrMsg)) /* Recursive part w/o aColCache*/ #define PARSE_RECURSE_SZ offsetof(Parse,sLastToken) /* Recursive part */ #define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */ #define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ) /* Pointer to tail */ /* ** Return true if currently inside an sqlite3_declare_vtab() call. */ #ifdef SQLITE_OMIT_VIRTUALTABLE #define IN_DECLARE_VTAB 0 #else #define IN_DECLARE_VTAB (pParse->eParseMode==PARSE_MODE_DECLARE_VTAB) #endif #if defined(SQLITE_OMIT_ALTERTABLE) #define IN_RENAME_OBJECT 0 #else #define IN_RENAME_OBJECT (pParse->eParseMode>=PARSE_MODE_RENAME) #endif #if defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_OMIT_ALTERTABLE) #define IN_SPECIAL_PARSE 0 #else #define IN_SPECIAL_PARSE (pParse->eParseMode!=PARSE_MODE_NORMAL) #endif /* ** An instance of the following structure can be declared on a stack and used ** to save the Parse.zAuthContext value so that it can be restored later. */ struct AuthContext { const char *zAuthContext; /* Put saved Parse.zAuthContext here */ Parse *pParse; /* The Parse structure */ }; /* ** Bitfield flags for P5 value in various opcodes. ** ** Value constraints (enforced via assert()): ** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH ** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF ** OPFLAG_BULKCSR == BTREE_BULKLOAD ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ ** OPFLAG_FORDELETE == BTREE_FORDELETE ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION ** OPFLAG_AUXDELETE == BTREE_AUXDELETE */ #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ /* Also used in P2 (not P5) of OP_Delete */ #define OPFLAG_NOCHNG 0x01 /* OP_VColumn nochange for UPDATE */ #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BYTELENARG 0xc0 /* OP_Column only for octet_length() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */ #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ #define OPFLAG_NOCHNG_MAGIC 0x6d /* OP_MakeRecord: serialtype 10 is ok */ #define OPFLAG_PREFORMAT 0x80 /* OP_Insert uses preformatted cell */ /* ** Each trigger present in the database schema is stored as an instance of ** struct Trigger. ** ** Pointers to instances of struct Trigger are stored in two ways. ** 1. In the "trigHash" hash table (part of the sqlite3* that represents the ** database). This allows Trigger structures to be retrieved by name. ** 2. All triggers associated with a single table form a linked list, using the ** pNext member of struct Trigger. A pointer to the first element of the ** linked list is stored as the "pTrigger" member of the associated ** struct Table. ** ** The "step_list" member points to the first element of a linked list ** containing the SQL statements specified as the trigger program. */ struct Trigger { char *zName; /* The name of the trigger */ char *table; /* The table or view to which the trigger applies */ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ u8 bReturning; /* This trigger implements a RETURNING clause */ Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ IdList *pColumns; /* If this is an UPDATE OF trigger, the is stored here */ Schema *pSchema; /* Schema containing the trigger */ Schema *pTabSchema; /* Schema containing the table */ TriggerStep *step_list; /* Link list of trigger program steps */ Trigger *pNext; /* Next trigger associated with the table */ }; /* ** A trigger is either a BEFORE or an AFTER trigger. The following constants ** determine which. ** ** If there are multiple triggers, you might of some BEFORE and some AFTER. ** In that cases, the constants below can be ORed together. */ #define TRIGGER_BEFORE 1 #define TRIGGER_AFTER 2 /* ** An instance of struct TriggerStep is used to store a single SQL statement ** that is a part of a trigger-program. ** ** Instances of struct TriggerStep are stored in a singly linked list (linked ** using the "pNext" member) referenced by the "step_list" member of the ** associated struct Trigger instance. The first element of the linked list is ** the first step of the trigger-program. ** ** The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or ** "SELECT" statement. The meanings of the other members is determined by the ** value of "op" as follows: ** ** (op == TK_INSERT) ** orconf -> stores the ON CONFLICT algorithm ** pSelect -> The content to be inserted - either a SELECT statement or ** a VALUES clause. ** zTarget -> Dequoted name of the table to insert into. ** pIdList -> If this is an INSERT INTO ... () VALUES ... ** statement, then this stores the column-names to be ** inserted into. ** pUpsert -> The ON CONFLICT clauses for an Upsert ** ** (op == TK_DELETE) ** zTarget -> Dequoted name of the table to delete from. ** pWhere -> The WHERE clause of the DELETE statement if one is specified. ** Otherwise NULL. ** ** (op == TK_UPDATE) ** zTarget -> Dequoted name of the table to update. ** pWhere -> The WHERE clause of the UPDATE statement if one is specified. ** Otherwise NULL. ** pExprList -> A list of the columns to update and the expressions to update ** them to. See sqlite3Update() documentation of "pChanges" ** argument. ** ** (op == TK_SELECT) ** pSelect -> The SELECT statement ** ** (op == TK_RETURNING) ** pExprList -> The list of expressions that follow the RETURNING keyword. ** */ struct TriggerStep { u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT, ** or TK_RETURNING */ u8 orconf; /* OE_Rollback etc. */ Trigger *pTrig; /* The trigger that this step is a part of */ Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ SrcList *pFrom; /* FROM clause for UPDATE statement (if any) */ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ ExprList *pExprList; /* SET clause for UPDATE, or RETURNING clause */ IdList *pIdList; /* Column names for INSERT */ Upsert *pUpsert; /* Upsert clauses on an INSERT */ char *zSpan; /* Original SQL text of this command */ TriggerStep *pNext; /* Next in the link-list */ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ }; /* ** Information about a RETURNING clause */ struct Returning { Parse *pParse; /* The parse that includes the RETURNING clause */ ExprList *pReturnEL; /* List of expressions to return */ Trigger retTrig; /* The transient trigger that implements RETURNING */ TriggerStep retTStep; /* The trigger step */ int iRetCur; /* Transient table holding RETURNING results */ int nRetCol; /* Number of in pReturnEL after expansion */ int iRetReg; /* Register array for holding a row of RETURNING */ char zName[40]; /* Name of trigger: "sqlite_returning_%p" */ }; /* ** An objected used to accumulate the text of a string where we ** do not necessarily know how big the string will be in the end. */ struct sqlite3_str { sqlite3 *db; /* Optional database for lookaside. Can be NULL */ char *zText; /* The string collected so far */ u32 nAlloc; /* Amount of space allocated in zText */ u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ u32 nChar; /* Length of the string so far */ u8 accError; /* SQLITE_NOMEM or SQLITE_TOOBIG */ u8 printfFlags; /* SQLITE_PRINTF flags below */ }; #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) /* ** The following object is the header for an "RCStr" or "reference-counted ** string". An RCStr is passed around and used like any other char* ** that has been dynamically allocated. The important interface ** differences: ** ** 1. RCStr strings are reference counted. They are deallocated ** when the reference count reaches zero. ** ** 2. Use sqlite3RCStrUnref() to free an RCStr string rather than ** sqlite3_free() ** ** 3. Make a (read-only) copy of a read-only RCStr string using ** sqlite3RCStrRef(). ** ** "String" is in the name, but an RCStr object can also be used to hold ** binary data. */ struct RCStr { u64 nRCRef; /* Number of references */ /* Total structure size should be a multiple of 8 bytes for alignment */ }; /* ** A pointer to this structure is used to communicate information ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. */ typedef struct { sqlite3 *db; /* The database being initialized */ char **pzErrMsg; /* Error message stored here */ int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ int rc; /* Result code stored here */ u32 mInitFlags; /* Flags controlling error messages */ u32 nInitRow; /* Number of rows processed */ Pgno mxPage; /* Maximum page number. 0 for no limit. */ } InitData; /* ** Allowed values for mInitFlags */ #define INITFLAG_AlterMask 0x0003 /* Types of ALTER */ #define INITFLAG_AlterRename 0x0001 /* Reparse after a RENAME */ #define INITFLAG_AlterDrop 0x0002 /* Reparse after a DROP COLUMN */ #define INITFLAG_AlterAdd 0x0003 /* Reparse after an ADD COLUMN */ /* Tuning parameters are set using SQLITE_TESTCTRL_TUNE and are controlled ** on debug-builds of the CLI using ".testctrl tune ID VALUE". Tuning ** parameters are for temporary use during development, to help find ** optimal values for parameters in the query planner. The should not ** be used on trunk check-ins. They are a temporary mechanism available ** for transient development builds only. ** ** Tuning parameters are numbered starting with 1. */ #define SQLITE_NTUNE 6 /* Should be zero for all trunk check-ins */ #ifdef SQLITE_DEBUG # define Tuning(X) (sqlite3Config.aTune[(X)-1]) #else # define Tuning(X) 0 #endif /* ** Structure containing global configuration data for the SQLite library. ** ** This structure also contains some state information. */ struct Sqlite3Config { int bMemstat; /* True to enable memory status */ u8 bCoreMutex; /* True to enable core mutexing */ u8 bFullMutex; /* True to enable full mutexing */ u8 bOpenUri; /* True to interpret filenames as URIs */ u8 bUseCis; /* Use covering indices for full-scans */ u8 bSmallMalloc; /* Avoid large memory allocations if true */ u8 bExtraSchemaChecks; /* Verify type,name,tbl_name in schema */ u8 bUseLongDouble; /* Make use of long double */ #ifdef SQLITE_DEBUG u8 bJsonSelfcheck; /* Double-check JSON parsing */ #endif int mxStrlen; /* Maximum string length */ int neverCorrupt; /* Database is always well-formed */ int szLookaside; /* Default lookaside buffer size */ int nLookaside; /* Default lookaside buffer count */ int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ sqlite3_mem_methods m; /* Low-level memory allocation interface */ sqlite3_mutex_methods mutex; /* Low-level mutex interface */ sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ void *pHeap; /* Heap storage space */ int nHeap; /* Size of pHeap[] */ int mnReq, mxReq; /* Min and max heap requests sizes */ sqlite3_int64 szMmap; /* mmap() space per open file */ sqlite3_int64 mxMmap; /* Maximum value for szMmap */ void *pPage; /* Page cache memory */ int szPage; /* Size of each page in pPage[] */ int nPage; /* Number of pages in pPage[] */ int mxParserStack; /* maximum depth of the parser stack */ int sharedCacheEnabled; /* true if shared-cache mode enabled */ u32 szPma; /* Maximum Sorter PMA size */ /* The above might be initialized to non-zero. The following need to always ** initially be zero, however. */ int isInit; /* True after initialization has finished */ int inProgress; /* True while initialization in progress */ int isMutexInit; /* True after mutexes are initialized */ int isMallocInit; /* True after malloc is initialized */ int isPCacheInit; /* True after malloc is initialized */ int nRefInitMutex; /* Number of users of pInitMutex */ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ void (*xLog)(void*,int,const char*); /* Function for logging */ void *pLogArg; /* First argument to xLog() */ #ifdef SQLITE_ENABLE_SQLLOG void(*xSqllog)(void*,sqlite3*,const char*, int); void *pSqllogArg; #endif #ifdef SQLITE_VDBE_COVERAGE /* The following callback (if not NULL) is invoked on every VDBE branch ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. */ void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif #ifndef SQLITE_OMIT_DESERIALIZE sqlite3_int64 mxMemdbSize; /* Default max memdb size */ #endif #ifndef SQLITE_UNTESTABLE int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ #endif #ifdef SQLITE_ALLOW_ROWID_IN_VIEW u32 mNoVisibleRowid; /* TF_NoVisibleRowid if the ROWID_IN_VIEW ** feature is disabled. 0 if rowids can ** occur in views. */ #endif int bLocaltimeFault; /* True to fail localtime() calls */ int (*xAltLocaltime)(const void*,void*); /* Alternative localtime() routine */ int iOnceResetThreshold; /* When to reset OP_Once counters */ u32 szSorterRef; /* Min size in bytes to use sorter-refs */ unsigned int iPrngSeed; /* Alternative fixed seed for the PRNG */ /* vvvv--- must be last ---vvv */ #ifdef SQLITE_DEBUG sqlite3_int64 aTune[SQLITE_NTUNE]; /* Tuning parameters */ #endif }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); ** ** One writes: ** ** assert( X || CORRUPT_DB ); ** ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate ** that the database is definitely corrupt, only that it might be corrupt. ** For most test cases, CORRUPT_DB is set to false using a special ** sqlite3_test_control(). This enables assert() statements to prove ** things that are always true for well-formed databases. */ #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) /* ** Context pointer passed down through the tree-walk. */ struct Walker { Parse *pParse; /* Parser context. */ int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ int walkerDepth; /* Number of subqueries */ u16 eCode; /* A small processing code */ u16 mWFlags; /* Use-dependent flags */ union { /* Extra data for callback */ NameContext *pNC; /* Naming context */ int n; /* A counter */ int iCur; /* A cursor number */ SrcList *pSrcList; /* FROM clause */ struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ struct RefSrcList *pRefSrcList; /* sqlite3ReferencesSrcList() */ int *aiCol; /* array of column indexes */ struct IdxCover *pIdxCover; /* Check for index coverage */ ExprList *pGroupBy; /* GROUP BY clause */ Select *pSelect; /* HAVING to WHERE clause ctx */ struct WindowRewrite *pRewrite; /* Window rewrite context */ struct WhereConst *pConst; /* WHERE clause constants */ struct RenameCtx *pRename; /* RENAME COLUMN context */ struct Table *pTab; /* Table of generated column */ struct CoveringIndexCheck *pCovIdxCk; /* Check for covering index */ SrcItem *pSrcItem; /* A single FROM clause item */ DbFixer *pFix; /* See sqlite3FixSelect() */ Mem *aMem; /* See sqlite3BtreeCursorHint() */ } u; }; /* ** The following structure contains information used by the sqliteFix... ** routines as they walk the parse tree to make database references ** explicit. */ struct DbFixer { Parse *pParse; /* The parsing context. Error messages written here */ Walker w; /* Walker object */ Schema *pSchema; /* Fix items to this schema */ u8 bTemp; /* True for TEMP schema entries */ const char *zDb; /* Make sure all objects are contained in this database */ const char *zType; /* Type of the container - used for error messages */ const Token *pName; /* Name of the container - used for error messages */ }; /* Forward declarations */ SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*); SQLITE_PRIVATE int sqlite3WalkExprNN(Walker*, Expr*); SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*); SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*); SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker*, Expr*); SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker*, Select*); SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker*,Select*); SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker*,Select*); SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker*,Select*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker*, Select*); #endif #ifndef SQLITE_OMIT_CTE SQLITE_PRIVATE void sqlite3SelectPopWith(Walker*, Select*); #else # define sqlite3SelectPopWith 0 #endif /* ** Return code from the parse-tree walking primitives and their ** callbacks. */ #define WRC_Continue 0 /* Continue down into children */ #define WRC_Prune 1 /* Omit children but continue walking siblings */ #define WRC_Abort 2 /* Abandon the tree walk */ /* ** A single common table expression */ struct Cte { char *zName; /* Name of this CTE */ ExprList *pCols; /* List of explicit column names, or NULL */ Select *pSelect; /* The definition of this CTE */ const char *zCteErr; /* Error message for circular references */ CteUse *pUse; /* Usage information for this CTE */ u8 eM10d; /* The MATERIALIZED flag */ }; /* ** Allowed values for the materialized flag (eM10d): */ #define M10d_Yes 0 /* AS MATERIALIZED */ #define M10d_Any 1 /* Not specified. Query planner's choice */ #define M10d_No 2 /* AS NOT MATERIALIZED */ /* ** An instance of the With object represents a WITH clause containing ** one or more CTEs (common table expressions). */ struct With { int nCte; /* Number of CTEs in the WITH clause */ int bView; /* Belongs to the outermost Select of a view */ With *pOuter; /* Containing WITH clause, or NULL */ Cte a[1]; /* For each CTE in the WITH clause.... */ }; /* ** The Cte object is not guaranteed to persist for the entire duration ** of code generation. (The query flattener or other parser tree ** edits might delete it.) The following object records information ** about each Common Table Expression that must be preserved for the ** duration of the parse. ** ** The CteUse objects are freed using sqlite3ParserAddCleanup() rather ** than sqlite3SelectDelete(), which is what enables them to persist ** until the end of code generation. */ struct CteUse { int nUse; /* Number of users of this CTE */ int addrM9e; /* Start of subroutine to compute materialization */ int regRtn; /* Return address register for addrM9e subroutine */ int iCur; /* Ephemeral table holding the materialization */ LogEst nRowEst; /* Estimated number of rows in the table */ u8 eM10d; /* The MATERIALIZED flag */ }; /* Client data associated with sqlite3_set_clientdata() and ** sqlite3_get_clientdata(). */ struct DbClientData { DbClientData *pNext; /* Next in a linked list */ void *pData; /* The data */ void (*xDestructor)(void*); /* Destructor. Might be NULL */ char zName[1]; /* Name of this client data. MUST BE LAST */ }; #ifdef SQLITE_DEBUG /* ** An instance of the TreeView object is used for printing the content of ** data structures on sqlite3DebugPrintf() using a tree-like view. */ struct TreeView { int iLevel; /* Which level of the tree we are on */ u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ }; #endif /* SQLITE_DEBUG */ /* ** This object is used in various ways, most (but not all) related to window ** functions. ** ** (1) A single instance of this structure is attached to the ** the Expr.y.pWin field for each window function in an expression tree. ** This object holds the information contained in the OVER clause, ** plus additional fields used during code generation. ** ** (2) All window functions in a single SELECT form a linked-list ** attached to Select.pWin. The Window.pFunc and Window.pExpr ** fields point back to the expression that is the window function. ** ** (3) The terms of the WINDOW clause of a SELECT are instances of this ** object on a linked list attached to Select.pWinDefn. ** ** (4) For an aggregate function with a FILTER clause, an instance ** of this object is stored in Expr.y.pWin with eFrmType set to ** TK_FILTER. In this case the only field used is Window.pFilter. ** ** The uses (1) and (2) are really the same Window object that just happens ** to be accessible in two different ways. Use case (3) are separate objects. */ struct Window { char *zName; /* Name of window (may be NULL) */ char *zBase; /* Name of base window for chaining (may be NULL) */ ExprList *pPartition; /* PARTITION BY clause */ ExprList *pOrderBy; /* ORDER BY clause */ u8 eFrmType; /* TK_RANGE, TK_GROUPS, TK_ROWS, or 0 */ u8 eStart; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */ u8 eEnd; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */ u8 bImplicitFrame; /* True if frame was implicitly specified */ u8 eExclude; /* TK_NO, TK_CURRENT, TK_TIES, TK_GROUP, or 0 */ Expr *pStart; /* Expression for " PRECEDING" */ Expr *pEnd; /* Expression for " FOLLOWING" */ Window **ppThis; /* Pointer to this object in Select.pWin list */ Window *pNextWin; /* Next window function belonging to this SELECT */ Expr *pFilter; /* The FILTER expression */ FuncDef *pWFunc; /* The function */ int iEphCsr; /* Partition buffer or Peer buffer */ int regAccum; /* Accumulator */ int regResult; /* Interim result */ int csrApp; /* Function cursor (used by min/max) */ int regApp; /* Function register (also used by min/max) */ int regPart; /* Array of registers for PARTITION BY values */ Expr *pOwner; /* Expression object this window is attached to */ int nBufferCol; /* Number of columns in buffer table */ int iArgCol; /* Offset of first argument for this function */ int regOne; /* Register containing constant value 1 */ int regStartRowid; int regEndRowid; u8 bExprArgs; /* Defer evaluation of window function arguments ** due to the SQLITE_SUBTYPE flag */ }; #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3*, Window*); SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window*); SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p); SQLITE_PRIVATE Window *sqlite3WindowAlloc(Parse*, int, int, Expr*, int , Expr*, u8); SQLITE_PRIVATE void sqlite3WindowAttach(Parse*, Expr*, Window*); SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin); SQLITE_PRIVATE int sqlite3WindowCompare(const Parse*, const Window*, const Window*, int); SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse*, Select*); SQLITE_PRIVATE void sqlite3WindowCodeStep(Parse*, Select*, WhereInfo*, int, int); SQLITE_PRIVATE int sqlite3WindowRewrite(Parse*, Select*); SQLITE_PRIVATE void sqlite3WindowUpdate(Parse*, Window*, Window*, FuncDef*); SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p); SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p); SQLITE_PRIVATE void sqlite3WindowFunctions(void); SQLITE_PRIVATE void sqlite3WindowChain(Parse*, Window*, Window*); SQLITE_PRIVATE Window *sqlite3WindowAssemble(Parse*, Window*, ExprList*, ExprList*, Token*); #else # define sqlite3WindowDelete(a,b) # define sqlite3WindowFunctions() # define sqlite3WindowAttach(a,b,c) #endif /* ** Assuming zIn points to the first byte of a UTF-8 character, ** advance zIn to point to the first byte of the next UTF-8 character. */ #define SQLITE_SKIP_UTF8(zIn) { \ if( (*(zIn++))>=0xc0 ){ \ while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ } \ } /* ** The SQLITE_*_BKPT macros are substitutes for the error codes with ** the same name but without the _BKPT suffix. These macros invoke ** routines that report the line-number on which the error originated ** using sqlite3_log(). The routines also provide a convenient place ** to set a debugger breakpoint. */ SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType); SQLITE_PRIVATE int sqlite3CorruptError(int); SQLITE_PRIVATE int sqlite3MisuseError(int); SQLITE_PRIVATE int sqlite3CantopenError(int); #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NomemError(int); SQLITE_PRIVATE int sqlite3IoerrnomemError(int); # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__) # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__) #else # define SQLITE_NOMEM_BKPT SQLITE_NOMEM # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO) SQLITE_PRIVATE int sqlite3CorruptPgnoError(int,Pgno); # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptPgnoError(__LINE__,(P)) #else # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptError(__LINE__) #endif /* ** FTS3 and FTS4 both require virtual table support */ #if defined(SQLITE_OMIT_VIRTUALTABLE) # undef SQLITE_ENABLE_FTS3 # undef SQLITE_ENABLE_FTS4 #endif /* ** FTS4 is really an extension for FTS3. It is enabled using the ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 1 #endif /* ** The ctype.h header is needed for non-ASCII systems. It is also ** needed by FTS3 when FTS3 is included in the amalgamation. */ #if !defined(SQLITE_ASCII) || \ (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) # include #endif /* ** The following macros mimic the standard library functions toupper(), ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The ** sqlite versions only work for ASCII characters, regardless of locale. */ #ifdef SQLITE_ASCII # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) # define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80) # define sqlite3JsonId1(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x42) # define sqlite3JsonId2(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x46) #else # define sqlite3Toupper(x) toupper((unsigned char)(x)) # define sqlite3Isspace(x) isspace((unsigned char)(x)) # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) # define sqlite3Tolower(x) tolower((unsigned char)(x)) # define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`') # define sqlite3JsonId1(x) (sqlite3IsIdChar(x)&&(x)<'0') # define sqlite3JsonId2(x) sqlite3IsIdChar(x) #endif SQLITE_PRIVATE int sqlite3IsIdChar(u8); /* ** Internal function prototypes */ SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*); SQLITE_PRIVATE int sqlite3Strlen30(const char*); #define sqlite3Strlen30NN(C) (strlen(C)&0x3fffffff) SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*); #define sqlite3StrNICmp sqlite3_strnicmp SQLITE_PRIVATE int sqlite3MallocInit(void); SQLITE_PRIVATE void sqlite3MallocEnd(void); SQLITE_PRIVATE void *sqlite3Malloc(u64); SQLITE_PRIVATE void *sqlite3MallocZero(u64); SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, u64); SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, u64); SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3*, u64); SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*); SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64); SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3*,const char*,const char*); SQLITE_PRIVATE void *sqlite3Realloc(void*, u64); SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64); SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*); SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3*, void*); SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3*, void*); SQLITE_PRIVATE int sqlite3MallocSize(const void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, const void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); #endif SQLITE_PRIVATE int sqlite3HeapNearlyFull(void); /* ** On systems with ample stack space and that support alloca(), make ** use of alloca() to obtain space for large automatic objects. By default, ** obtain space from malloc(). ** ** The alloca() routine never returns NULL. This will cause code paths ** that deal with sqlite3StackAlloc() failures to be unreachable. */ #ifdef SQLITE_USE_ALLOCA # define sqlite3StackAllocRaw(D,N) alloca(N) # define sqlite3StackAllocRawNN(D,N) alloca(N) # define sqlite3StackFree(D,P) # define sqlite3StackFreeNN(D,P) #else # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) # define sqlite3StackAllocRawNN(D,N) sqlite3DbMallocRawNN(D,N) # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) # define sqlite3StackFreeNN(D,P) sqlite3DbFreeNN(D,P) #endif /* Do not allow both MEMSYS5 and MEMSYS3 to be defined together. If they ** are, disable MEMSYS3 */ #ifdef SQLITE_ENABLE_MEMSYS5 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); #undef SQLITE_ENABLE_MEMSYS3 #endif #ifdef SQLITE_ENABLE_MEMSYS3 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); #endif #ifndef SQLITE_MUTEX_OMIT SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void); SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void); SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int); SQLITE_PRIVATE int sqlite3MutexInit(void); SQLITE_PRIVATE int sqlite3MutexEnd(void); #endif #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) SQLITE_PRIVATE void sqlite3MemoryBarrier(void); #else # define sqlite3MemoryBarrier() #endif SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int); SQLITE_PRIVATE void sqlite3StatusUp(int, int); SQLITE_PRIVATE void sqlite3StatusDown(int, int); SQLITE_PRIVATE void sqlite3StatusHighwater(int, int); SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3*,int*); /* Access to mutexes used by sqlite3_status() */ SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void); SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void); #if defined(SQLITE_ENABLE_MULTITHREADED_CHECKS) && !defined(SQLITE_MUTEX_OMIT) SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex*); #else # define sqlite3MutexWarnOnContention(x) #endif #ifndef SQLITE_OMIT_FLOATING_POINT # define EXP754 (((u64)0x7ff)<<52) # define MAN754 ((((u64)1)<<52)-1) # define IsNaN(X) (((X)&EXP754)==EXP754 && ((X)&MAN754)!=0) # define IsOvfl(X) (((X)&EXP754)==EXP754) SQLITE_PRIVATE int sqlite3IsNaN(double); SQLITE_PRIVATE int sqlite3IsOverflow(double); #else # define IsNaN(X) 0 # define sqlite3IsNaN(X) 0 # define sqlite3IsOVerflow(X) 0 #endif /* ** An instance of the following structure holds information about SQL ** functions arguments that are the parameters to the printf() function. */ struct PrintfArguments { int nArg; /* Total number of arguments */ int nUsed; /* Number of arguments used so far */ sqlite3_value **apArg; /* The argument values */ }; /* ** An instance of this object receives the decoding of a floating point ** value into an approximate decimal representation. */ struct FpDecode { char sign; /* '+' or '-' */ char isSpecial; /* 1: Infinity 2: NaN */ int n; /* Significant digits in the decode */ int iDP; /* Location of the decimal point */ char *z; /* Start of significant digits */ char zBuf[24]; /* Storage for significant digits */ }; SQLITE_PRIVATE void sqlite3FpDecode(FpDecode*,double,int,int); SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...); SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list); #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView*, const char *zFormat, ...); SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); SQLITE_PRIVATE void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*); SQLITE_PRIVATE void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); SQLITE_PRIVATE void sqlite3TreeViewBareIdList(TreeView*, const IdList*, const char*); SQLITE_PRIVATE void sqlite3TreeViewIdList(TreeView*, const IdList*, u8, const char*); SQLITE_PRIVATE void sqlite3TreeViewColumnList(TreeView*, const Column*, int, u8); SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView*, const SrcList*); SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView*, const Select*, u8); SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView*, const With*, u8); SQLITE_PRIVATE void sqlite3TreeViewUpsert(TreeView*, const Upsert*, u8); #if TREETRACE_ENABLED SQLITE_PRIVATE void sqlite3TreeViewDelete(const With*, const SrcList*, const Expr*, const ExprList*,const Expr*, const Trigger*); SQLITE_PRIVATE void sqlite3TreeViewInsert(const With*, const SrcList*, const IdList*, const Select*, const ExprList*, int, const Upsert*, const Trigger*); SQLITE_PRIVATE void sqlite3TreeViewUpdate(const With*, const SrcList*, const ExprList*, const Expr*, int, const ExprList*, const Expr*, const Upsert*, const Trigger*); #endif #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3TreeViewTriggerStep(TreeView*, const TriggerStep*, u8, u8); SQLITE_PRIVATE void sqlite3TreeViewTrigger(TreeView*, const Trigger*, u8, u8); #endif #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView*, const Window*, u8); SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8); #endif SQLITE_PRIVATE void sqlite3ShowExpr(const Expr*); SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList*); SQLITE_PRIVATE void sqlite3ShowIdList(const IdList*); SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList*); SQLITE_PRIVATE void sqlite3ShowSelect(const Select*); SQLITE_PRIVATE void sqlite3ShowWith(const With*); SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert*); #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep*); SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep*); SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger*); SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger*); #endif #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3ShowWindow(const Window*); SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window*); #endif #endif SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*); SQLITE_PRIVATE void sqlite3ProgressCheck(Parse*); SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...); SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3*,int); SQLITE_PRIVATE void sqlite3Dequote(char*); SQLITE_PRIVATE void sqlite3DequoteExpr(Expr*); SQLITE_PRIVATE void sqlite3DequoteToken(Token*); SQLITE_PRIVATE void sqlite3TokenInit(Token*,char*); SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int); SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*); SQLITE_PRIVATE void sqlite3FinishCoding(Parse*); SQLITE_PRIVATE int sqlite3GetTempReg(Parse*); SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int); SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int); SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int); SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*); SQLITE_PRIVATE void sqlite3TouchRegister(Parse*,int); #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3FirstAvailableRegister(Parse*,int); #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse*,int,int); #endif SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*); SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse*, Expr*, Select*); SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse*,Expr*, Expr*); SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr*); SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, const Token*, int); SQLITE_PRIVATE void sqlite3ExprAddFunctionOrderBy(Parse*,Expr*,ExprList*); SQLITE_PRIVATE void sqlite3ExprOrderByAggregateError(Parse*,Expr*); SQLITE_PRIVATE void sqlite3ExprFunctionUsable(Parse*,const Expr*,const FuncDef*); SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32); SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*); SQLITE_PRIVATE void sqlite3ExprDeleteGeneric(sqlite3*,void*); SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse*, Expr*); SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse*, Expr*); SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*); SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse*, int, ExprList*); SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList*,int,int); SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,const Token*,int); SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,const char*,const char*); SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*); SQLITE_PRIVATE void sqlite3ExprListDeleteGeneric(sqlite3*,void*); SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList*); SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index*); SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**); SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**); SQLITE_PRIVATE int sqlite3InitOne(sqlite3*, int, char**, u32); SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); #ifndef SQLITE_OMIT_VIRTUALTABLE SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName); #endif SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*); SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int); SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*); SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*); SQLITE_PRIVATE void sqlite3ColumnSetExpr(Parse*,Table*,Column*,Expr*); SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table*,Column*); SQLITE_PRIVATE void sqlite3ColumnSetColl(sqlite3*,Column*,const char*zColl); SQLITE_PRIVATE const char *sqlite3ColumnColl(Column*); SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*); SQLITE_PRIVATE void sqlite3GenerateColumnNames(Parse *pParse, Select *pSelect); SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); SQLITE_PRIVATE void sqlite3SubqueryColumnTypes(Parse*,Table*,Select*,char); SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*,char); SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *, int); SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*); SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index*, i16); #ifdef SQLITE_OMIT_GENERATED_COLUMNS # define sqlite3TableColumnToStorage(T,X) (X) /* No-op pass-through */ # define sqlite3StorageColumnToTable(T,X) (X) /* No-op pass-through */ #else SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table*, i16); SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table*, i16); #endif SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); #if SQLITE_ENABLE_HIDDEN_COLUMNS SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table*, Column*); #else # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ #endif SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token,Token); SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int); SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*, const char*, const char*); SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*,const char*,const char*); SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*); SQLITE_PRIVATE void sqlite3AddGenerated(Parse*,Expr*,Token*); SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,u32,Select*); SQLITE_PRIVATE void sqlite3AddReturning(Parse*,ExprList*); SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*, sqlite3_vfs**,char**,char **); /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC SQLITE_PRIVATE int sqlite3CodecQueryParameters(sqlite3*,const char*,const char*); #else # define sqlite3CodecQueryParameters(A,B,C) 0 #endif /* END SQLCIPHER */ SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*); #ifdef SQLITE_UNTESTABLE # define sqlite3FaultSim(X) SQLITE_OK #else SQLITE_PRIVATE int sqlite3FaultSim(int); #endif SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); #endif SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*); SQLITE_PRIVATE void sqlite3RowSetDelete(void*); SQLITE_PRIVATE void sqlite3RowSetClear(void*); SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64); SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64); SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*); SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*); #else # define sqlite3ViewGetColumnNames(A,B) 0 #endif #if SQLITE_MAX_ATTACHED>30 SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask); #endif SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int); SQLITE_PRIVATE void sqlite3CodeDropTable(Parse*, Table*, int, int); SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*); SQLITE_PRIVATE void sqlite3DeleteTableGeneric(sqlite3*, void*); SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3*, Index*); #ifndef SQLITE_OMIT_AUTOINCREMENT SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse); SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int, Upsert*); #ifndef SQLITE_OMIT_GENERATED_COLUMNS SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns(Parse*, int, Table*); #endif SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse*, IdList*, Token*); SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*); SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(Parse*, SrcList*, int, int); SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2); SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(Parse*, SrcList*, Token*, Token*); SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, Select*, OnOrUsing*); SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, SrcItem *); SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse*,SrcList*); SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*); SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*); SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3*, OnOrUsing*); SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*); SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, Expr*, int, int, u8); SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int); SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*); SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, Expr*,ExprList*,u32,Expr*); SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*); SQLITE_PRIVATE void sqlite3SelectDeleteGeneric(sqlite3*,void*); SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*); SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, Trigger*); SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*); #endif SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe*,int,const char*); SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*); SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*,Expr*,int,ExprList*,Expr*, Upsert*); SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*, ExprList*,Select*,u16,int); SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*); SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo*); SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe*,WhereInfo*); SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo*); SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo*, int*); #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo*); SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int); #ifndef SQLITE_OMIT_GENERATED_COLUMNS SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn(Parse*, Table*, Column*, int); #endif SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ #define SQLITE_ECEL_OMITREF 0x08 /* Omit if ExprList.u.x.iOrderByCol */ SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*); #define LOCATE_VIEW 0x01 #define LOCATE_NOERR 0x02 SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*); SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char*); SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,u32 flags,SrcItem *); SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3Vacuum(Parse*,Token*,Expr*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*, int, sqlite3_value*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, const Token*); SQLITE_PRIVATE int sqlite3ExprCompare(const Parse*,const Expr*,const Expr*, int); SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr*,Expr*,int); SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList*,const ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(const Parse*,const Expr*,const Expr*, int); SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr*,int,int); SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker*,Parse*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse*, Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); #endif SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int); SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); SQLITE_PRIVATE void sqlite3EndTransaction(Parse*,int); SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *); SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*); SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char*); SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr*); SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8); SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*); SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int); SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint(Expr*,const SrcList*,int); #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*); #endif SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); SQLITE_PRIVATE const char *sqlite3RowidAlias(Table *pTab); SQLITE_PRIVATE void sqlite3GenerateRowDelete( Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int); SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(Expr*,int*,int); SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*,int*,Upsert*); #ifdef SQLITE_ENABLE_NULL_TRIM SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe*,Table*); #else # define sqlite3SetMakeRecordP5(A,B) #endif SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); SQLITE_PRIVATE void sqlite3MultiWrite(Parse*); SQLITE_PRIVATE void sqlite3MayAbort(Parse*); SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*); SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*); SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,const Expr*,int); SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,const ExprList*,int); SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,const SrcList*,int); SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,const IdList*); SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,const Select*,int); SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch(int,const char*); SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int); SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum*,sqlite3_value*); SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void); SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void); SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void); SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3*); #endif SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*); SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*); SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int); SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p); #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, ExprList*,Expr*,int); #endif #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, Expr*,int, int); SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int); SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*); SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *); SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, int, int, int); SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*, const char*,const char*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(Parse*,Token*, IdList*, Select*,u8,Upsert*, const char*,const char*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(Parse*,Token*,SrcList*,ExprList*, Expr*, u8, const char*,const char*); SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(Parse*,Token*, Expr*, const char*,const char*); SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc(Parse*, TriggerStep*); # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) # define sqlite3IsToplevel(p) ((p)->pToplevel==0) #else # define sqlite3TriggersExist(B,C,D,E,F) 0 # define sqlite3DeleteTrigger(A,B) # define sqlite3DropTriggerPtr(A,B) # define sqlite3UnlinkAndDeleteTrigger(A,B,C) # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) # define sqlite3TriggerList(X, Y) 0 # define sqlite3ParseToplevel(p) p # define sqlite3IsToplevel(p) 1 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 # define sqlite3TriggerStepSrc(A,B) 0 #endif SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*); SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol); SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem*,int); SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr*,int,u32); SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int); #ifndef SQLITE_OMIT_AUTHORIZATION SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*); SQLITE_PRIVATE int sqlite3AuthReadCol(Parse*, const char *, const char *, int); #else # define sqlite3AuthRead(a,b,c,d) # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK # define sqlite3AuthContextPush(a,b,c) # define sqlite3AuthContextPop(a) ((void)(a)) #endif SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName); SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64); SQLITE_PRIVATE i64 sqlite3RealToI64(double); SQLITE_PRIVATE int sqlite3Int64ToText(i64,char*); SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8); SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*); SQLITE_PRIVATE int sqlite3Atoi(const char*); #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar); #endif SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte); SQLITE_PRIVATE u32 sqlite3Utf8Read(const u8**); SQLITE_PRIVATE int sqlite3Utf8ReadLimited(const u8*, int, u32*); SQLITE_PRIVATE LogEst sqlite3LogEst(u64); SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst,LogEst); SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double); SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst); SQLITE_PRIVATE VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int); SQLITE_PRIVATE const char *sqlite3VListNumToName(VList*,int); SQLITE_PRIVATE int sqlite3VListNameToNum(VList*,const char*,int); /* ** Routines to read and write variable-length integers. These used to ** be defined locally, but now we use the varint routines in the util.c ** file. */ SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64); SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *); SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *); SQLITE_PRIVATE int sqlite3VarintLen(u64 v); /* ** The common case is for a varint to be a single byte. They following ** macros handle the common case without a procedure call, but then call ** the procedure for larger varints. */ #define getVarint32(A,B) \ (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) #define getVarint32NR(A,B) \ B=(u32)*(A);if(B>=0x80)sqlite3GetVarint32((A),(u32*)&(B)) #define putVarint32(A,B) \ (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ sqlite3PutVarint((A),(B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3*, Index*); SQLITE_PRIVATE char *sqlite3TableAffinityStr(sqlite3*,const Table*); SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe*, Table*, int); SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2); SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity); SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table*,int); SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprDataType(const Expr *pExpr); SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8); SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char*, i64*); SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); SQLITE_PRIVATE void sqlite3Error(sqlite3*,int); SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3*); SQLITE_PRIVATE void sqlite3SystemError(sqlite3*,int); SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n); SQLITE_PRIVATE u8 sqlite3HexToInt(int h); SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); #if defined(SQLITE_NEED_ERR_NAME) SQLITE_PRIVATE const char *sqlite3ErrName(int); #endif #ifndef SQLITE_OMIT_DESERIALIZE SQLITE_PRIVATE int sqlite3MemdbInit(void); SQLITE_PRIVATE int sqlite3IsMemdb(const sqlite3_vfs*); #else # define sqlite3IsMemdb(X) 0 #endif SQLITE_PRIVATE const char *sqlite3ErrStr(int); SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse); SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); SQLITE_PRIVATE int sqlite3IsBinary(const CollSeq*); SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8); SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr); SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,const Expr*,const Expr*); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(const Parse *pParse, Expr*, const Token*, int); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(const Parse*,Expr*,const char*); SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*); SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr*); SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3*); SQLITE_PRIVATE int sqlite3CheckObjectName(Parse*, const char*,const char*,const char*); SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, i64); SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64); SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64); SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64); SQLITE_PRIVATE int sqlite3AbsInt32(int); #ifdef SQLITE_ENABLE_8_3_NAMES SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*); #else # define sqlite3FileSuffix3(X,Y) #endif SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,u8); SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value*, void(*)(void*)); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value*); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context*); #endif SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); #endif SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, const Expr *, u8, u8, sqlite3_value **); SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[]; SQLITE_PRIVATE const char sqlite3StrBINARY[]; SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[]; SQLITE_PRIVATE const char sqlite3StdTypeAffinity[]; SQLITE_PRIVATE const char *sqlite3StdType[]; SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[]; SQLITE_PRIVATE const unsigned char *sqlite3aLTb; SQLITE_PRIVATE const unsigned char *sqlite3aEQb; SQLITE_PRIVATE const unsigned char *sqlite3aGTb; SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[]; SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config; SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions; #ifndef SQLITE_OMIT_WSD SQLITE_PRIVATE int sqlite3PendingByte; #endif #endif /* SQLITE_AMALGAMATION */ #ifdef VDBE_PROFILE SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt; #endif SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, Pgno, Pgno); SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*); SQLITE_PRIVATE void sqlite3AlterFunctions(void); SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*); SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int); SQLITE_PRIVATE void sqlite3CodeRhsOfIN(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr*); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse*, SrcItem*); SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); SQLITE_PRIVATE int sqlite3MatchEName( const struct ExprList_item*, const char*, const char*, const char*, int* ); SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr*); SQLITE_PRIVATE u8 sqlite3StrIHash(const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE int sqlite3ResolveExprListNames(NameContext*, ExprList*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *); SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse*, SrcList*, const Token*); SQLITE_PRIVATE const void *sqlite3RenameTokenMap(Parse*, const void*, const Token*); SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse*, const void *pTo, const void *pFrom); SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse*, Expr*); SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse*, ExprList*); SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); SQLITE_PRIVATE char sqlite3AffinityType(const char*, Column*); SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*); SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*); SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*); SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *); SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*); SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SQLITE_PRIVATE void sqlite3SchemaClear(void *); SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *); SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo*); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo*); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList(Parse*, ExprList*, int, int); SQLITE_PRIVATE const char *sqlite3SelectOpName(int); SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse*, ExprList*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo*); #endif SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), void (*)(sqlite3_context*), void (*)(sqlite3_context*,int,sqlite3_value **), FuncDestructor *pDestructor ); SQLITE_PRIVATE void sqlite3NoopDestructor(void*); SQLITE_PRIVATE void *sqlite3OomFault(sqlite3*); SQLITE_PRIVATE void sqlite3OomClear(sqlite3*); SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); SQLITE_PRIVATE char *sqlite3RCStrRef(char*); SQLITE_PRIVATE void sqlite3RCStrUnref(void*); SQLITE_PRIVATE char *sqlite3RCStrNew(u64); SQLITE_PRIVATE char *sqlite3RCStrResize(char*,u64); SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum*, i64); SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*); SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum*, u8); SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*); SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int); SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3*,const char*); SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3*,const Expr*); SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *); SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); #ifndef SQLITE_OMIT_SUBQUERY SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse*, Expr*); #else # define sqlite3ExprCheckIN(x,y) SQLITE_OK #endif #ifdef SQLITE_ENABLE_STAT4 SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue( Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*); SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord*); SQLITE_PRIVATE int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3*, Index*, int); #endif /* ** The interface to the LEMON-generated parser */ #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(u64), Parse*); SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*)); #endif SQLITE_PRIVATE void sqlite3Parser(void*, int, Token); SQLITE_PRIVATE int sqlite3ParserFallback(int); #ifdef YYTRACKMAXSTACKDEPTH SQLITE_PRIVATE int sqlite3ParserStackPeak(void*); #endif SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*); #ifndef SQLITE_OMIT_LOAD_EXTENSION SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*); #else # define sqlite3CloseExtensions(X) #endif #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, Pgno, u8, const char *); #else #define sqlite3TableLock(v,w,x,y,z) #endif #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*); #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3VtabClear(D,T) # define sqlite3VtabSync(X,Y) SQLITE_OK # define sqlite3VtabRollback(X) # define sqlite3VtabCommit(X) # define sqlite3VtabInSync(db) 0 # define sqlite3VtabLock(X) # define sqlite3VtabUnlock(X) # define sqlite3VtabModuleUnref(D,X) # define sqlite3VtabUnlockList(X) # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK # define sqlite3GetVTable(X,Y) ((VTable*)0) #else SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table*); SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p); SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe*); SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db); SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db); SQLITE_PRIVATE void sqlite3VtabLock(VTable *); SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *); SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3*,Module*); SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3*); SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *, int, int); SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*); SQLITE_PRIVATE Module *sqlite3VtabCreateModule( sqlite3*, const char*, const sqlite3_module*, void*, void(*)(void*) ); # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) #endif SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db); #ifndef SQLITE_OMIT_VIRTUALTABLE SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName); SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3*,Table*,const char*); SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3*, Table*); #else # define sqlite3ShadowTableName(A,B) 0 # define sqlite3IsShadowTableOf(A,B,C) 0 # define sqlite3MarkAllShadowTablesOf(A,B) #endif SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse*,Module*); SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3*,Module*); SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*); SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*); SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*); SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*); SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*); SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *); SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *); SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(Parse*); SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse*,sqlite3*); SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse*); SQLITE_PRIVATE void *sqlite3ParserAddCleanup(Parse*,void(*)(sqlite3*,void*),void*); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE char *sqlite3Normalize(Vdbe*, const char*); #endif SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse*,const Expr*); SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, const Expr*, const Expr*); SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*); SQLITE_PRIVATE const char *sqlite3JournalModename(int); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); SQLITE_PRIVATE int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); #endif #ifndef SQLITE_OMIT_CTE SQLITE_PRIVATE Cte *sqlite3CteNew(Parse*,Token*,ExprList*,Select*,u8); SQLITE_PRIVATE void sqlite3CteDelete(sqlite3*,Cte*); SQLITE_PRIVATE With *sqlite3WithAdd(Parse*,With*,Cte*); SQLITE_PRIVATE void sqlite3WithDelete(sqlite3*,With*); SQLITE_PRIVATE void sqlite3WithDeleteGeneric(sqlite3*,void*); SQLITE_PRIVATE With *sqlite3WithPush(Parse*, With*, u8); #else # define sqlite3CteNew(P,T,E,S) ((void*)0) # define sqlite3CteDelete(D,C) # define sqlite3CteWithAdd(P,W,C) ((void*)0) # define sqlite3WithDelete(x,y) # define sqlite3WithPush(x,y,z) ((void*)0) #endif #ifndef SQLITE_OMIT_UPSERT SQLITE_PRIVATE Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*,Upsert*); SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3*,Upsert*); SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3*,Upsert*); SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*,Upsert*); SQLITE_PRIVATE void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int); SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert*,Index*); SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert*); #else #define sqlite3UpsertNew(u,v,w,x,y,z) ((Upsert*)0) #define sqlite3UpsertDelete(x,y) #define sqlite3UpsertDup(x,y) ((Upsert*)0) #define sqlite3UpsertOfIndex(x,y) ((Upsert*)0) #define sqlite3UpsertNextIsIPK(x) 0 #endif /* Declarations for functions in fkey.c. All of these are replaced by ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign ** key functionality is available. If OMIT_TRIGGER is defined but ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In ** this case foreign keys are parsed, but no other functionality is ** provided (enforcement of FK constraints requires the triggers sub-system). */ #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) SQLITE_PRIVATE void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); SQLITE_PRIVATE void sqlite3FkDropTable(Parse*, SrcList *, Table*); SQLITE_PRIVATE void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); SQLITE_PRIVATE int sqlite3FkRequired(Parse*, Table*, int*, int); SQLITE_PRIVATE u32 sqlite3FkOldmask(Parse*, Table*); SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *); SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3*,int); #else #define sqlite3FkActions(a,b,c,d,e,f) #define sqlite3FkCheck(a,b,c,d,e,f) #define sqlite3FkDropTable(a,b,c) #define sqlite3FkOldmask(a,b) 0 #define sqlite3FkRequired(a,b,c,d) 0 #define sqlite3FkReferences(a) 0 #define sqlite3FkClearTriggerCache(a,b) #endif #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *, Table*); SQLITE_PRIVATE int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); #else #define sqlite3FkDelete(a,b) #define sqlite3FkLocateIndex(a,b,c,d,e) #endif /* ** Available fault injectors. Should be numbered beginning with 0. */ #define SQLITE_FAULTINJECTOR_MALLOC 0 #define SQLITE_FAULTINJECTOR_COUNT 1 /* ** The interface to the code in fault.c used for identifying "benign" ** malloc failures. This is only present if SQLITE_UNTESTABLE ** is not defined. */ #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void); SQLITE_PRIVATE void sqlite3EndBenignMalloc(void); #else #define sqlite3BeginBenignMalloc() #define sqlite3EndBenignMalloc() #endif /* ** Allowed return values from sqlite3FindInIndex() */ #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ /* ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). */ #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*, int*); SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *); #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *); #endif SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p); SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *); SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); #if SQLITE_MAX_EXPR_DEPTH>0 SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *); SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int); #else #define sqlite3SelectExprHeight(x) 0 #define sqlite3ExprCheckHeight(x,y) #endif SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr*,int); SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*); SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32); #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db); SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db); #else #define sqlite3ConnectionBlocked(x,y) #define sqlite3ConnectionUnlocked(x) #define sqlite3ConnectionClosed(x) #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *); #endif #if defined(YYCOVERAGE) SQLITE_PRIVATE int sqlite3ParserCoverage(FILE*); #endif /* ** If the SQLITE_ENABLE IOTRACE exists then the global variable ** sqlite3IoTrace is a pointer to a printf-like routine used to ** print I/O tracing messages. */ #ifdef SQLITE_ENABLE_IOTRACE # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*); SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); #else # define IOTRACE(A) # define sqlite3VdbeIOTraceSql(X) #endif /* ** These routines are available for the mem2.c debugging memory allocator ** only. They are used to verify that different "types" of memory ** allocations are properly tracked by the system. ** ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of ** the MEMTYPE_* macros defined below. The type must be a bitmask with ** a single bit set. ** ** sqlite3MemdebugHasType() returns true if any of the bits in its second ** argument match the type set by the previous sqlite3MemdebugSetType(). ** sqlite3MemdebugHasType() is intended for use inside assert() statements. ** ** sqlite3MemdebugNoType() returns true if none of the bits in its second ** argument match the type set by the previous sqlite3MemdebugSetType(). ** ** Perhaps the most important point is the difference between MEMTYPE_HEAP ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means ** it might have been allocated by lookaside, except the allocation was ** too large or lookaside was already full. It is important to verify ** that allocations that might have been satisfied by lookaside are not ** passed back to non-lookaside free() routines. Asserts such as the ** example above are placed on the non-lookaside free() routines to verify ** this constraint. ** ** All of this is no-op for a production build. It only comes into ** play when the SQLITE_MEMDEBUG compile-time option is used. */ #ifdef SQLITE_MEMDEBUG SQLITE_PRIVATE void sqlite3MemdebugSetType(void*,u8); SQLITE_PRIVATE int sqlite3MemdebugHasType(const void*,u8); SQLITE_PRIVATE int sqlite3MemdebugNoType(const void*,u8); #else # define sqlite3MemdebugSetType(X,Y) /* no-op */ # define sqlite3MemdebugHasType(X,Y) 1 # define sqlite3MemdebugNoType(X,Y) 1 #endif #define MEMTYPE_HEAP 0x01 /* General heap allocations */ #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ #define MEMTYPE_PCACHE 0x04 /* Page cache allocations */ /* ** Threading interface */ #if SQLITE_MAX_WORKER_THREADS>0 SQLITE_PRIVATE int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread*, void**); #endif #if defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST) SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3*); #endif #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3*); #endif SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr); SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr*, int); SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(Parse*,Expr*,int,int); SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse*, Expr*); #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt); #endif #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) SQLITE_PRIVATE int sqlite3KvvfsInit(void); #endif #if defined(VDBE_PROFILE) \ || defined(SQLITE_PERFORMANCE_TRACE) \ || defined(SQLITE_ENABLE_STMT_SCANSTATUS) SQLITE_PRIVATE sqlite3_uint64 sqlite3Hwtime(void); #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS # define IS_STMT_SCANSTATUS(db) (db->flags & SQLITE_StmtScanStatus) #else # define IS_STMT_SCANSTATUS(db) 0 #endif #endif /* SQLITEINT_H */ /************** End of sqliteInt.h *******************************************/ /************** Begin file os_common.h ***************************************/ /* ** 2004 May 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains macros and a little bit of code that is common to ** all of the platform-specific files (os_*.c) and is #included into those ** files. ** ** This file should be #included by the os_*.c files only. It is not a ** general purpose header file. */ #ifndef _OS_COMMON_H_ #define _OS_COMMON_H_ /* ** At least two bugs have slipped in because we changed the MEMORY_DEBUG ** macro to SQLITE_DEBUG and some older makefiles have not yet made the ** switch. The following code should catch this problem at compile-time. */ #ifdef MEMORY_DEBUG # error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." #endif /* ** Macros for performance tracing. Normally turned off. Only works ** on i486 hardware. */ #ifdef SQLITE_PERFORMANCE_TRACE static sqlite_uint64 g_start; static sqlite_uint64 g_elapsed; #define TIMER_START g_start=sqlite3Hwtime() #define TIMER_END g_elapsed=sqlite3Hwtime()-g_start #define TIMER_ELAPSED g_elapsed #else #define TIMER_START #define TIMER_END #define TIMER_ELAPSED ((sqlite_uint64)0) #endif /* ** If we compile with the SQLITE_TEST macro set, then the following block ** of code will give us the ability to simulate a disk I/O error. This ** is used for testing the I/O recovery logic. */ #if defined(SQLITE_TEST) SQLITE_API extern int sqlite3_io_error_hit; SQLITE_API extern int sqlite3_io_error_hardhit; SQLITE_API extern int sqlite3_io_error_pending; SQLITE_API extern int sqlite3_io_error_persist; SQLITE_API extern int sqlite3_io_error_benign; SQLITE_API extern int sqlite3_diskfull_pending; SQLITE_API extern int sqlite3_diskfull; #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) #define SimulateIOError(CODE) \ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ || sqlite3_io_error_pending-- == 1 ) \ { local_ioerr(); CODE; } static void local_ioerr(){ IOTRACE(("IOERR\n")); sqlite3_io_error_hit++; if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; } #define SimulateDiskfullError(CODE) \ if( sqlite3_diskfull_pending ){ \ if( sqlite3_diskfull_pending == 1 ){ \ local_ioerr(); \ sqlite3_diskfull = 1; \ sqlite3_io_error_hit = 1; \ CODE; \ }else{ \ sqlite3_diskfull_pending--; \ } \ } #else #define SimulateIOErrorBenign(X) #define SimulateIOError(A) #define SimulateDiskfullError(A) #endif /* defined(SQLITE_TEST) */ /* ** When testing, keep a count of the number of open files. */ #if defined(SQLITE_TEST) SQLITE_API extern int sqlite3_open_file_count; #define OpenCounter(X) sqlite3_open_file_count+=(X) #else #define OpenCounter(X) #endif /* defined(SQLITE_TEST) */ #endif /* !defined(_OS_COMMON_H_) */ /************** End of os_common.h *******************************************/ /************** Begin file ctime.c *******************************************/ /* DO NOT EDIT! ** This file is automatically generated by the script in the canonical ** SQLite source tree at tool/mkctimec.tcl. ** ** To modify this header, edit any of the various lists in that script ** which specify categories of generated conditionals in this file. */ /* ** 2010 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements routines used to report what compile-time options ** SQLite was built with. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* IMP: R-16824-07538 */ /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H) /* #include "sqlite_cfg.h" */ #define SQLITECONFIG_H 1 #endif /* These macros are provided to "stringify" the value of the define ** for those options in which the value is meaningful. */ #define CTIMEOPT_VAL_(opt) #opt #define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt) /* Like CTIMEOPT_VAL, but especially for SQLITE_DEFAULT_LOOKASIDE. This ** option requires a separate macro because legal values contain a single ** comma. e.g. (-DSQLITE_DEFAULT_LOOKASIDE="100,100") */ #define CTIMEOPT_VAL2_(opt1,opt2) #opt1 "," #opt2 #define CTIMEOPT_VAL2(opt) CTIMEOPT_VAL2_(opt) /* #include "sqliteInt.h" */ /* ** An array of names of all compile-time options. This array should ** be sorted A-Z. ** ** This array looks large, but in a typical installation actually uses ** only a handful of compile-time options, so most times this array is usually ** rather short and uses little memory space. */ static const char * const sqlite3azCompileOpt[] = { #ifdef SQLITE_32BIT_ROWID "32BIT_ROWID", #endif #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC "4_BYTE_ALIGNED_MALLOC", #endif #ifdef SQLITE_ALLOW_COVERING_INDEX_SCAN # if SQLITE_ALLOW_COVERING_INDEX_SCAN != 1 "ALLOW_COVERING_INDEX_SCAN=" CTIMEOPT_VAL(SQLITE_ALLOW_COVERING_INDEX_SCAN), # endif #endif #ifdef SQLITE_ALLOW_ROWID_IN_VIEW "ALLOW_ROWID_IN_VIEW", #endif #ifdef SQLITE_ALLOW_URI_AUTHORITY "ALLOW_URI_AUTHORITY", #endif #ifdef SQLITE_ATOMIC_INTRINSICS "ATOMIC_INTRINSICS=" CTIMEOPT_VAL(SQLITE_ATOMIC_INTRINSICS), #endif #ifdef SQLITE_BITMASK_TYPE "BITMASK_TYPE=" CTIMEOPT_VAL(SQLITE_BITMASK_TYPE), #endif #ifdef SQLITE_BUG_COMPATIBLE_20160819 "BUG_COMPATIBLE_20160819", #endif #ifdef SQLITE_CASE_SENSITIVE_LIKE "CASE_SENSITIVE_LIKE", #endif #ifdef SQLITE_CHECK_PAGES "CHECK_PAGES", #endif #if defined(__clang__) && defined(__clang_major__) "COMPILER=clang-" CTIMEOPT_VAL(__clang_major__) "." CTIMEOPT_VAL(__clang_minor__) "." CTIMEOPT_VAL(__clang_patchlevel__), #elif defined(_MSC_VER) "COMPILER=msvc-" CTIMEOPT_VAL(_MSC_VER), #elif defined(__GNUC__) && defined(__VERSION__) "COMPILER=gcc-" __VERSION__, #endif #ifdef SQLITE_COVERAGE_TEST "COVERAGE_TEST", #endif #ifdef SQLITE_DEBUG "DEBUG", #endif #ifdef SQLITE_DEFAULT_AUTOMATIC_INDEX "DEFAULT_AUTOMATIC_INDEX", #endif #ifdef SQLITE_DEFAULT_AUTOVACUUM "DEFAULT_AUTOVACUUM", #endif #ifdef SQLITE_DEFAULT_CACHE_SIZE "DEFAULT_CACHE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_CACHE_SIZE), #endif #ifdef SQLITE_DEFAULT_CKPTFULLFSYNC "DEFAULT_CKPTFULLFSYNC", #endif #ifdef SQLITE_DEFAULT_FILE_FORMAT "DEFAULT_FILE_FORMAT=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_FORMAT), #endif #ifdef SQLITE_DEFAULT_FILE_PERMISSIONS "DEFAULT_FILE_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_PERMISSIONS), #endif #ifdef SQLITE_DEFAULT_FOREIGN_KEYS "DEFAULT_FOREIGN_KEYS", #endif #ifdef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT "DEFAULT_JOURNAL_SIZE_LIMIT=" CTIMEOPT_VAL(SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT), #endif #ifdef SQLITE_DEFAULT_LOCKING_MODE "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE), #endif #ifdef SQLITE_DEFAULT_LOOKASIDE "DEFAULT_LOOKASIDE=" CTIMEOPT_VAL2(SQLITE_DEFAULT_LOOKASIDE), #endif #ifdef SQLITE_DEFAULT_MEMSTATUS # if SQLITE_DEFAULT_MEMSTATUS != 1 "DEFAULT_MEMSTATUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_MEMSTATUS), # endif #endif #ifdef SQLITE_DEFAULT_MMAP_SIZE "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE), #endif #ifdef SQLITE_DEFAULT_PAGE_SIZE "DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_PAGE_SIZE), #endif #ifdef SQLITE_DEFAULT_PCACHE_INITSZ "DEFAULT_PCACHE_INITSZ=" CTIMEOPT_VAL(SQLITE_DEFAULT_PCACHE_INITSZ), #endif #ifdef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS "DEFAULT_PROXYDIR_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_PROXYDIR_PERMISSIONS), #endif #ifdef SQLITE_DEFAULT_RECURSIVE_TRIGGERS "DEFAULT_RECURSIVE_TRIGGERS", #endif #ifdef SQLITE_DEFAULT_ROWEST "DEFAULT_ROWEST=" CTIMEOPT_VAL(SQLITE_DEFAULT_ROWEST), #endif #ifdef SQLITE_DEFAULT_SECTOR_SIZE "DEFAULT_SECTOR_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_SECTOR_SIZE), #endif #ifdef SQLITE_DEFAULT_SYNCHRONOUS "DEFAULT_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_SYNCHRONOUS), #endif #ifdef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT "DEFAULT_WAL_AUTOCHECKPOINT=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_AUTOCHECKPOINT), #endif #ifdef SQLITE_DEFAULT_WAL_SYNCHRONOUS "DEFAULT_WAL_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_SYNCHRONOUS), #endif #ifdef SQLITE_DEFAULT_WORKER_THREADS "DEFAULT_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WORKER_THREADS), #endif #ifdef SQLITE_DIRECT_OVERFLOW_READ "DIRECT_OVERFLOW_READ", #endif #ifdef SQLITE_DISABLE_DIRSYNC "DISABLE_DIRSYNC", #endif #ifdef SQLITE_DISABLE_FTS3_UNICODE "DISABLE_FTS3_UNICODE", #endif #ifdef SQLITE_DISABLE_FTS4_DEFERRED "DISABLE_FTS4_DEFERRED", #endif #ifdef SQLITE_DISABLE_INTRINSIC "DISABLE_INTRINSIC", #endif #ifdef SQLITE_DISABLE_LFS "DISABLE_LFS", #endif #ifdef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS "DISABLE_PAGECACHE_OVERFLOW_STATS", #endif #ifdef SQLITE_DISABLE_SKIPAHEAD_DISTINCT "DISABLE_SKIPAHEAD_DISTINCT", #endif #ifdef SQLITE_DQS "DQS=" CTIMEOPT_VAL(SQLITE_DQS), #endif #ifdef SQLITE_ENABLE_8_3_NAMES "ENABLE_8_3_NAMES=" CTIMEOPT_VAL(SQLITE_ENABLE_8_3_NAMES), #endif #ifdef SQLITE_ENABLE_API_ARMOR "ENABLE_API_ARMOR", #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE "ENABLE_ATOMIC_WRITE", #endif #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE "ENABLE_BATCH_ATOMIC_WRITE", #endif #ifdef SQLITE_ENABLE_BYTECODE_VTAB "ENABLE_BYTECODE_VTAB", #endif #ifdef SQLITE_ENABLE_CEROD "ENABLE_CEROD=" CTIMEOPT_VAL(SQLITE_ENABLE_CEROD), #endif #ifdef SQLITE_ENABLE_COLUMN_METADATA "ENABLE_COLUMN_METADATA", #endif #ifdef SQLITE_ENABLE_COLUMN_USED_MASK "ENABLE_COLUMN_USED_MASK", #endif #ifdef SQLITE_ENABLE_COSTMULT "ENABLE_COSTMULT", #endif #ifdef SQLITE_ENABLE_CURSOR_HINTS "ENABLE_CURSOR_HINTS", #endif #ifdef SQLITE_ENABLE_DBPAGE_VTAB "ENABLE_DBPAGE_VTAB", #endif #ifdef SQLITE_ENABLE_DBSTAT_VTAB "ENABLE_DBSTAT_VTAB", #endif #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT "ENABLE_EXPENSIVE_ASSERT", #endif #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS "ENABLE_EXPLAIN_COMMENTS", #endif #ifdef SQLITE_ENABLE_FTS3 "ENABLE_FTS3", #endif #ifdef SQLITE_ENABLE_FTS3_PARENTHESIS "ENABLE_FTS3_PARENTHESIS", #endif #ifdef SQLITE_ENABLE_FTS3_TOKENIZER "ENABLE_FTS3_TOKENIZER", #endif #ifdef SQLITE_ENABLE_FTS4 "ENABLE_FTS4", #endif #ifdef SQLITE_ENABLE_FTS5 "ENABLE_FTS5", #endif #ifdef SQLITE_ENABLE_GEOPOLY "ENABLE_GEOPOLY", #endif #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS "ENABLE_HIDDEN_COLUMNS", #endif #ifdef SQLITE_ENABLE_ICU "ENABLE_ICU", #endif #ifdef SQLITE_ENABLE_IOTRACE "ENABLE_IOTRACE", #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION "ENABLE_LOAD_EXTENSION", #endif #ifdef SQLITE_ENABLE_LOCKING_STYLE "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE), #endif #ifdef SQLITE_ENABLE_MATH_FUNCTIONS "ENABLE_MATH_FUNCTIONS", #endif #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT "ENABLE_MEMORY_MANAGEMENT", #endif #ifdef SQLITE_ENABLE_MEMSYS3 "ENABLE_MEMSYS3", #endif #ifdef SQLITE_ENABLE_MEMSYS5 "ENABLE_MEMSYS5", #endif #ifdef SQLITE_ENABLE_MULTIPLEX "ENABLE_MULTIPLEX", #endif #ifdef SQLITE_ENABLE_NORMALIZE "ENABLE_NORMALIZE", #endif #ifdef SQLITE_ENABLE_NULL_TRIM "ENABLE_NULL_TRIM", #endif #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC "ENABLE_OFFSET_SQL_FUNC", #endif #ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK "ENABLE_OVERSIZE_CELL_CHECK", #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK "ENABLE_PREUPDATE_HOOK", #endif #ifdef SQLITE_ENABLE_QPSG "ENABLE_QPSG", #endif #ifdef SQLITE_ENABLE_RBU "ENABLE_RBU", #endif #ifdef SQLITE_ENABLE_RTREE "ENABLE_RTREE", #endif #ifdef SQLITE_ENABLE_SESSION "ENABLE_SESSION", #endif #ifdef SQLITE_ENABLE_SNAPSHOT "ENABLE_SNAPSHOT", #endif #ifdef SQLITE_ENABLE_SORTER_REFERENCES "ENABLE_SORTER_REFERENCES", #endif #ifdef SQLITE_ENABLE_SQLLOG "ENABLE_SQLLOG", #endif #ifdef SQLITE_ENABLE_STAT4 "ENABLE_STAT4", #endif #ifdef SQLITE_ENABLE_STMTVTAB "ENABLE_STMTVTAB", #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS "ENABLE_STMT_SCANSTATUS", #endif #ifdef SQLITE_ENABLE_TREETRACE "ENABLE_TREETRACE", #endif #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION "ENABLE_UNKNOWN_SQL_FUNCTION", #endif #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY "ENABLE_UNLOCK_NOTIFY", #endif #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT "ENABLE_UPDATE_DELETE_LIMIT", #endif #ifdef SQLITE_ENABLE_URI_00_ERROR "ENABLE_URI_00_ERROR", #endif #ifdef SQLITE_ENABLE_VFSTRACE "ENABLE_VFSTRACE", #endif #ifdef SQLITE_ENABLE_WHERETRACE "ENABLE_WHERETRACE", #endif #ifdef SQLITE_ENABLE_ZIPVFS "ENABLE_ZIPVFS", #endif #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS "EXPLAIN_ESTIMATED_ROWS", #endif #ifdef SQLITE_EXTRA_AUTOEXT "EXTRA_AUTOEXT=" CTIMEOPT_VAL(SQLITE_EXTRA_AUTOEXT), #endif #ifdef SQLITE_EXTRA_IFNULLROW "EXTRA_IFNULLROW", #endif #ifdef SQLITE_EXTRA_INIT "EXTRA_INIT=" CTIMEOPT_VAL(SQLITE_EXTRA_INIT), #endif #ifdef SQLITE_EXTRA_SHUTDOWN "EXTRA_SHUTDOWN=" CTIMEOPT_VAL(SQLITE_EXTRA_SHUTDOWN), #endif #ifdef SQLITE_FTS3_MAX_EXPR_DEPTH "FTS3_MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_FTS3_MAX_EXPR_DEPTH), #endif #ifdef SQLITE_FTS5_ENABLE_TEST_MI "FTS5_ENABLE_TEST_MI", #endif #ifdef SQLITE_FTS5_NO_WITHOUT_ROWID "FTS5_NO_WITHOUT_ROWID", #endif /* BEGIN SQLCIPHER */ #if SQLITE_HAS_CODEC "HAS_CODEC", #endif /* END SQLCIPHER */ #if HAVE_ISNAN || SQLITE_HAVE_ISNAN "HAVE_ISNAN", #endif #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX # if SQLITE_HOMEGROWN_RECURSIVE_MUTEX != 1 "HOMEGROWN_RECURSIVE_MUTEX=" CTIMEOPT_VAL(SQLITE_HOMEGROWN_RECURSIVE_MUTEX), # endif #endif #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS "IGNORE_AFP_LOCK_ERRORS", #endif #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS "IGNORE_FLOCK_LOCK_ERRORS", #endif #ifdef SQLITE_INLINE_MEMCPY "INLINE_MEMCPY", #endif #ifdef SQLITE_INT64_TYPE "INT64_TYPE", #endif #ifdef SQLITE_INTEGRITY_CHECK_ERROR_MAX "INTEGRITY_CHECK_ERROR_MAX=" CTIMEOPT_VAL(SQLITE_INTEGRITY_CHECK_ERROR_MAX), #endif #ifdef SQLITE_LEGACY_JSON_VALID "LEGACY_JSON_VALID", #endif #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS "LIKE_DOESNT_MATCH_BLOBS", #endif #ifdef SQLITE_LOCK_TRACE "LOCK_TRACE", #endif #ifdef SQLITE_LOG_CACHE_SPILL "LOG_CACHE_SPILL", #endif #ifdef SQLITE_MALLOC_SOFT_LIMIT "MALLOC_SOFT_LIMIT=" CTIMEOPT_VAL(SQLITE_MALLOC_SOFT_LIMIT), #endif #ifdef SQLITE_MAX_ATTACHED "MAX_ATTACHED=" CTIMEOPT_VAL(SQLITE_MAX_ATTACHED), #endif #ifdef SQLITE_MAX_COLUMN "MAX_COLUMN=" CTIMEOPT_VAL(SQLITE_MAX_COLUMN), #endif #ifdef SQLITE_MAX_COMPOUND_SELECT "MAX_COMPOUND_SELECT=" CTIMEOPT_VAL(SQLITE_MAX_COMPOUND_SELECT), #endif #ifdef SQLITE_MAX_DEFAULT_PAGE_SIZE "MAX_DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_DEFAULT_PAGE_SIZE), #endif #ifdef SQLITE_MAX_EXPR_DEPTH "MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_EXPR_DEPTH), #endif #ifdef SQLITE_MAX_FUNCTION_ARG "MAX_FUNCTION_ARG=" CTIMEOPT_VAL(SQLITE_MAX_FUNCTION_ARG), #endif #ifdef SQLITE_MAX_LENGTH "MAX_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LENGTH), #endif #ifdef SQLITE_MAX_LIKE_PATTERN_LENGTH "MAX_LIKE_PATTERN_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LIKE_PATTERN_LENGTH), #endif #ifdef SQLITE_MAX_MEMORY "MAX_MEMORY=" CTIMEOPT_VAL(SQLITE_MAX_MEMORY), #endif #ifdef SQLITE_MAX_MMAP_SIZE "MAX_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE), #endif #ifdef SQLITE_MAX_MMAP_SIZE_ "MAX_MMAP_SIZE_=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE_), #endif #ifdef SQLITE_MAX_PAGE_COUNT "MAX_PAGE_COUNT=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_COUNT), #endif #ifdef SQLITE_MAX_PAGE_SIZE "MAX_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_SIZE), #endif #ifdef SQLITE_MAX_SCHEMA_RETRY "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY), #endif #ifdef SQLITE_MAX_SQL_LENGTH "MAX_SQL_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_SQL_LENGTH), #endif #ifdef SQLITE_MAX_TRIGGER_DEPTH "MAX_TRIGGER_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_TRIGGER_DEPTH), #endif #ifdef SQLITE_MAX_VARIABLE_NUMBER "MAX_VARIABLE_NUMBER=" CTIMEOPT_VAL(SQLITE_MAX_VARIABLE_NUMBER), #endif #ifdef SQLITE_MAX_VDBE_OP "MAX_VDBE_OP=" CTIMEOPT_VAL(SQLITE_MAX_VDBE_OP), #endif #ifdef SQLITE_MAX_WORKER_THREADS "MAX_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_MAX_WORKER_THREADS), #endif #ifdef SQLITE_MEMDEBUG "MEMDEBUG", #endif #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT "MIXED_ENDIAN_64BIT_FLOAT", #endif #ifdef SQLITE_MMAP_READWRITE "MMAP_READWRITE", #endif #ifdef SQLITE_MUTEX_NOOP "MUTEX_NOOP", #endif #ifdef SQLITE_MUTEX_OMIT "MUTEX_OMIT", #endif #ifdef SQLITE_MUTEX_PTHREADS "MUTEX_PTHREADS", #endif #ifdef SQLITE_MUTEX_W32 "MUTEX_W32", #endif #ifdef SQLITE_NEED_ERR_NAME "NEED_ERR_NAME", #endif #ifdef SQLITE_NO_SYNC "NO_SYNC", #endif #ifdef SQLITE_OMIT_ALTERTABLE "OMIT_ALTERTABLE", #endif #ifdef SQLITE_OMIT_ANALYZE "OMIT_ANALYZE", #endif #ifdef SQLITE_OMIT_ATTACH "OMIT_ATTACH", #endif #ifdef SQLITE_OMIT_AUTHORIZATION "OMIT_AUTHORIZATION", #endif #ifdef SQLITE_OMIT_AUTOINCREMENT "OMIT_AUTOINCREMENT", #endif #ifdef SQLITE_OMIT_AUTOINIT "OMIT_AUTOINIT", #endif #ifdef SQLITE_OMIT_AUTOMATIC_INDEX "OMIT_AUTOMATIC_INDEX", #endif #ifdef SQLITE_OMIT_AUTORESET "OMIT_AUTORESET", #endif #ifdef SQLITE_OMIT_AUTOVACUUM "OMIT_AUTOVACUUM", #endif #ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION "OMIT_BETWEEN_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_BLOB_LITERAL "OMIT_BLOB_LITERAL", #endif #ifdef SQLITE_OMIT_CAST "OMIT_CAST", #endif #ifdef SQLITE_OMIT_CHECK "OMIT_CHECK", #endif #ifdef SQLITE_OMIT_COMPLETE "OMIT_COMPLETE", #endif #ifdef SQLITE_OMIT_COMPOUND_SELECT "OMIT_COMPOUND_SELECT", #endif #ifdef SQLITE_OMIT_CONFLICT_CLAUSE "OMIT_CONFLICT_CLAUSE", #endif #ifdef SQLITE_OMIT_CTE "OMIT_CTE", #endif #if defined(SQLITE_OMIT_DATETIME_FUNCS) || defined(SQLITE_OMIT_FLOATING_POINT) "OMIT_DATETIME_FUNCS", #endif #ifdef SQLITE_OMIT_DECLTYPE "OMIT_DECLTYPE", #endif #ifdef SQLITE_OMIT_DEPRECATED "OMIT_DEPRECATED", #endif #ifdef SQLITE_OMIT_DESERIALIZE "OMIT_DESERIALIZE", #endif #ifdef SQLITE_OMIT_DISKIO "OMIT_DISKIO", #endif #ifdef SQLITE_OMIT_EXPLAIN "OMIT_EXPLAIN", #endif #ifdef SQLITE_OMIT_FLAG_PRAGMAS "OMIT_FLAG_PRAGMAS", #endif #ifdef SQLITE_OMIT_FLOATING_POINT "OMIT_FLOATING_POINT", #endif #ifdef SQLITE_OMIT_FOREIGN_KEY "OMIT_FOREIGN_KEY", #endif #ifdef SQLITE_OMIT_GET_TABLE "OMIT_GET_TABLE", #endif #ifdef SQLITE_OMIT_HEX_INTEGER "OMIT_HEX_INTEGER", #endif #ifdef SQLITE_OMIT_INCRBLOB "OMIT_INCRBLOB", #endif #ifdef SQLITE_OMIT_INTEGRITY_CHECK "OMIT_INTEGRITY_CHECK", #endif #ifdef SQLITE_OMIT_INTROSPECTION_PRAGMAS "OMIT_INTROSPECTION_PRAGMAS", #endif #ifdef SQLITE_OMIT_JSON "OMIT_JSON", #endif #ifdef SQLITE_OMIT_LIKE_OPTIMIZATION "OMIT_LIKE_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_LOAD_EXTENSION "OMIT_LOAD_EXTENSION", #endif #ifdef SQLITE_OMIT_LOCALTIME "OMIT_LOCALTIME", #endif #ifdef SQLITE_OMIT_LOOKASIDE "OMIT_LOOKASIDE", #endif #ifdef SQLITE_OMIT_MEMORYDB "OMIT_MEMORYDB", #endif #ifdef SQLITE_OMIT_OR_OPTIMIZATION "OMIT_OR_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_PAGER_PRAGMAS "OMIT_PAGER_PRAGMAS", #endif #ifdef SQLITE_OMIT_PARSER_TRACE "OMIT_PARSER_TRACE", #endif #ifdef SQLITE_OMIT_POPEN "OMIT_POPEN", #endif #ifdef SQLITE_OMIT_PRAGMA "OMIT_PRAGMA", #endif #ifdef SQLITE_OMIT_PROGRESS_CALLBACK "OMIT_PROGRESS_CALLBACK", #endif #ifdef SQLITE_OMIT_QUICKBALANCE "OMIT_QUICKBALANCE", #endif #ifdef SQLITE_OMIT_REINDEX "OMIT_REINDEX", #endif #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS "OMIT_SCHEMA_PRAGMAS", #endif #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS "OMIT_SCHEMA_VERSION_PRAGMAS", #endif #ifdef SQLITE_OMIT_SEH "OMIT_SEH", #endif #ifdef SQLITE_OMIT_SHARED_CACHE "OMIT_SHARED_CACHE", #endif #ifdef SQLITE_OMIT_SHUTDOWN_DIRECTORIES "OMIT_SHUTDOWN_DIRECTORIES", #endif #ifdef SQLITE_OMIT_SUBQUERY "OMIT_SUBQUERY", #endif #ifdef SQLITE_OMIT_TCL_VARIABLE "OMIT_TCL_VARIABLE", #endif #ifdef SQLITE_OMIT_TEMPDB "OMIT_TEMPDB", #endif #ifdef SQLITE_OMIT_TEST_CONTROL "OMIT_TEST_CONTROL", #endif #ifdef SQLITE_OMIT_TRACE # if SQLITE_OMIT_TRACE != 1 "OMIT_TRACE=" CTIMEOPT_VAL(SQLITE_OMIT_TRACE), # endif #endif #ifdef SQLITE_OMIT_TRIGGER "OMIT_TRIGGER", #endif #ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION "OMIT_TRUNCATE_OPTIMIZATION", #endif #ifdef SQLITE_OMIT_UTF16 "OMIT_UTF16", #endif #ifdef SQLITE_OMIT_VACUUM "OMIT_VACUUM", #endif #ifdef SQLITE_OMIT_VIEW "OMIT_VIEW", #endif #ifdef SQLITE_OMIT_VIRTUALTABLE "OMIT_VIRTUALTABLE", #endif #ifdef SQLITE_OMIT_WAL "OMIT_WAL", #endif #ifdef SQLITE_OMIT_WSD "OMIT_WSD", #endif #ifdef SQLITE_OMIT_XFER_OPT "OMIT_XFER_OPT", #endif #ifdef SQLITE_PERFORMANCE_TRACE "PERFORMANCE_TRACE", #endif #ifdef SQLITE_POWERSAFE_OVERWRITE # if SQLITE_POWERSAFE_OVERWRITE != 1 "POWERSAFE_OVERWRITE=" CTIMEOPT_VAL(SQLITE_POWERSAFE_OVERWRITE), # endif #endif #ifdef SQLITE_PREFER_PROXY_LOCKING "PREFER_PROXY_LOCKING", #endif #ifdef SQLITE_PROXY_DEBUG "PROXY_DEBUG", #endif #ifdef SQLITE_REVERSE_UNORDERED_SELECTS "REVERSE_UNORDERED_SELECTS", #endif #ifdef SQLITE_RTREE_INT_ONLY "RTREE_INT_ONLY", #endif #ifdef SQLITE_SECURE_DELETE "SECURE_DELETE", #endif #ifdef SQLITE_SMALL_STACK "SMALL_STACK", #endif #ifdef SQLITE_SORTER_PMASZ "SORTER_PMASZ=" CTIMEOPT_VAL(SQLITE_SORTER_PMASZ), #endif #ifdef SQLITE_SOUNDEX "SOUNDEX", #endif #ifdef SQLITE_STAT4_SAMPLES "STAT4_SAMPLES=" CTIMEOPT_VAL(SQLITE_STAT4_SAMPLES), #endif #ifdef SQLITE_STMTJRNL_SPILL "STMTJRNL_SPILL=" CTIMEOPT_VAL(SQLITE_STMTJRNL_SPILL), #endif #ifdef SQLITE_SUBSTR_COMPATIBILITY "SUBSTR_COMPATIBILITY", #endif #if (!defined(SQLITE_WIN32_MALLOC) \ && !defined(SQLITE_ZERO_MALLOC) \ && !defined(SQLITE_MEMDEBUG) \ ) || defined(SQLITE_SYSTEM_MALLOC) "SYSTEM_MALLOC", #endif #ifdef SQLITE_TCL "TCL", #endif #ifdef SQLITE_TEMP_STORE "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE), #endif #ifdef SQLITE_TEST "TEST", #endif #if defined(SQLITE_THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #elif defined(THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(THREADSAFE), #else "THREADSAFE=1", #endif #ifdef SQLITE_UNLINK_AFTER_CLOSE "UNLINK_AFTER_CLOSE", #endif #ifdef SQLITE_UNTESTABLE "UNTESTABLE", #endif #ifdef SQLITE_USER_AUTHENTICATION "USER_AUTHENTICATION", #endif #ifdef SQLITE_USE_ALLOCA "USE_ALLOCA", #endif #ifdef SQLITE_USE_FCNTL_TRACE "USE_FCNTL_TRACE", #endif #ifdef SQLITE_USE_URI "USE_URI", #endif #ifdef SQLITE_VDBE_COVERAGE "VDBE_COVERAGE", #endif #ifdef SQLITE_WIN32_MALLOC "WIN32_MALLOC", #endif #ifdef SQLITE_ZERO_MALLOC "ZERO_MALLOC", #endif } ; SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt){ *pnOpt = sizeof(sqlite3azCompileOpt) / sizeof(sqlite3azCompileOpt[0]); return (const char**)sqlite3azCompileOpt; } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /************** End of ctime.c ***********************************************/ /************** Begin file global.c ******************************************/ /* ** 2008 June 13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains definitions of global variables and constants. */ /* #include "sqliteInt.h" */ /* An array to map all upper-case characters into their corresponding ** lower-case character. ** ** SQLite only considers US-ASCII (or EBCDIC) characters. We do not ** handle case conversions for the UTF character set since the tables ** involved are nearly as big or bigger than SQLite itself. */ SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = { #ifdef SQLITE_ASCII 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, 252,253,254,255, #endif #ifdef SQLITE_EBCDIC 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */ 96, 97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111, /* 6x */ 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, /* 7x */ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, /* 9x */ 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */ 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */ 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */ 224,225,162,163,164,165,166,167,168,169,234,235,236,237,238,239, /* Ex */ 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255, /* Fx */ #endif /* All of the upper-to-lower conversion data is above. The following ** 18 integers are completely unrelated. They are appended to the ** sqlite3UpperToLower[] array to avoid UBSAN warnings. Here's what is ** going on: ** ** The SQL comparison operators (<>, =, >, <=, <, and >=) are implemented ** by invoking sqlite3MemCompare(A,B) which compares values A and B and ** returns negative, zero, or positive if A is less then, equal to, or ** greater than B, respectively. Then the true false results is found by ** consulting sqlite3aLTb[opcode], sqlite3aEQb[opcode], or ** sqlite3aGTb[opcode] depending on whether the result of compare(A,B) ** is negative, zero, or positive, where opcode is the specific opcode. ** The only works because the comparison opcodes are consecutive and in ** this order: NE EQ GT LE LT GE. Various assert()s throughout the code ** ensure that is the case. ** ** These elements must be appended to another array. Otherwise the ** index (here shown as [256-OP_Ne]) would be out-of-bounds and thus ** be undefined behavior. That's goofy, but the C-standards people thought ** it was a good idea, so here we are. */ /* NE EQ GT LE LT GE */ 1, 0, 0, 1, 1, 0, /* aLTb[]: Use when compare(A,B) less than zero */ 0, 1, 0, 1, 0, 1, /* aEQb[]: Use when compare(A,B) equals zero */ 1, 0, 1, 0, 0, 1 /* aGTb[]: Use when compare(A,B) greater than zero*/ }; SQLITE_PRIVATE const unsigned char *sqlite3aLTb = &sqlite3UpperToLower[256-OP_Ne]; SQLITE_PRIVATE const unsigned char *sqlite3aEQb = &sqlite3UpperToLower[256+6-OP_Ne]; SQLITE_PRIVATE const unsigned char *sqlite3aGTb = &sqlite3UpperToLower[256+12-OP_Ne]; /* ** The following 256 byte lookup table is used to support SQLites built-in ** equivalents to the following standard library functions: ** ** isspace() 0x01 ** isalpha() 0x02 ** isdigit() 0x04 ** isalnum() 0x06 ** isxdigit() 0x08 ** toupper() 0x20 ** SQLite identifier character 0x40 $, _, or non-ascii ** Quote character 0x80 ** ** Bit 0x20 is set if the mapped character requires translation to upper ** case. i.e. if the character is a lower-case ASCII character. ** If x is a lower-case ASCII character, then its upper-case equivalent ** is (x - 0x20). Therefore toupper() can be implemented as: ** ** (x & ~(map[x]&0x20)) ** ** The equivalent of tolower() is implemented using the sqlite3UpperToLower[] ** array. tolower() is used more often than toupper() by SQLite. ** ** Bit 0x40 is set if the character is non-alphanumeric and can be used in an ** SQLite identifier. Identifiers are alphanumerics, "_", "$", and any ** non-ASCII UTF character. Hence the test for whether or not a character is ** part of an identifier is 0x46. */ SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */ 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */ 0x01, 0x00, 0x80, 0x00, 0x40, 0x00, 0x00, 0x80, /* 20..27 !"#$%&' */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */ 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */ 0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */ 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */ 0x02, 0x02, 0x02, 0x80, 0x00, 0x00, 0x00, 0x40, /* 58..5f XYZ[\]^_ */ 0x80, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */ 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 80..87 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 88..8f ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 90..97 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 98..9f ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a0..a7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a8..af ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b0..b7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b8..bf ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c0..c7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c8..cf ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d0..d7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d8..df ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e0..e7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e8..ef ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* f0..f7 ........ */ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 /* f8..ff ........ */ }; /* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards ** compatibility for legacy applications, the URI filename capability is ** disabled by default. ** ** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled ** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options. ** ** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally ** disabled. The default value may be changed by compiling with the ** SQLITE_USE_URI symbol defined. ** ** URI filenames are enabled by default if SQLITE_HAS_CODEC is ** enabled. */ #ifndef SQLITE_USE_URI /* BEGIN SQLCIPHER */ # ifdef SQLITE_HAS_CODEC # define SQLITE_USE_URI 1 # else # define SQLITE_USE_URI 0 # endif /* END SQLCIPHER */ #endif /* EVIDENCE-OF: R-38720-18127 The default setting is determined by the ** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if ** that compile-time option is omitted. */ #if !defined(SQLITE_ALLOW_COVERING_INDEX_SCAN) # define SQLITE_ALLOW_COVERING_INDEX_SCAN 1 #else # if !SQLITE_ALLOW_COVERING_INDEX_SCAN # error "Compile-time disabling of covering index scan using the\ -DSQLITE_ALLOW_COVERING_INDEX_SCAN=0 option is deprecated.\ Contact SQLite developers if this is a problem for you, and\ delete this #error macro to continue with your build." # endif #endif /* The minimum PMA size is set to this value multiplied by the database ** page size in bytes. */ #ifndef SQLITE_SORTER_PMASZ # define SQLITE_SORTER_PMASZ 250 #endif /* Statement journals spill to disk when their size exceeds the following ** threshold (in bytes). 0 means that statement journals are created and ** written to disk immediately (the default behavior for SQLite versions ** before 3.12.0). -1 means always keep the entire statement journal in ** memory. (The statement journal is also always held entirely in memory ** if journal_mode=MEMORY or if temp_store=MEMORY, regardless of this ** setting.) */ #ifndef SQLITE_STMTJRNL_SPILL # define SQLITE_STMTJRNL_SPILL (64*1024) #endif /* ** The default lookaside-configuration, the format "SZ,N". SZ is the ** number of bytes in each lookaside slot (should be a multiple of 8) ** and N is the number of slots. The lookaside-configuration can be ** changed as start-time using sqlite3_config(SQLITE_CONFIG_LOOKASIDE) ** or at run-time for an individual database connection using ** sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE); ** ** With the two-size-lookaside enhancement, less lookaside is required. ** The default configuration of 1200,40 actually provides 30 1200-byte slots ** and 93 128-byte slots, which is more lookaside than is available ** using the older 1200,100 configuration without two-size-lookaside. */ #ifndef SQLITE_DEFAULT_LOOKASIDE # ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE # define SQLITE_DEFAULT_LOOKASIDE 1200,100 /* 120KB of memory */ # else # define SQLITE_DEFAULT_LOOKASIDE 1200,40 /* 48KB of memory */ # endif #endif /* The default maximum size of an in-memory database created using ** sqlite3_deserialize() */ #ifndef SQLITE_MEMDB_DEFAULT_MAXSIZE # define SQLITE_MEMDB_DEFAULT_MAXSIZE 1073741824 #endif /* ** The following singleton contains the global configuration for ** the SQLite library. */ SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = { SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */ 1, /* bCoreMutex */ SQLITE_THREADSAFE==1, /* bFullMutex */ SQLITE_USE_URI, /* bOpenUri */ SQLITE_ALLOW_COVERING_INDEX_SCAN, /* bUseCis */ 0, /* bSmallMalloc */ 1, /* bExtraSchemaChecks */ sizeof(LONGDOUBLE_TYPE)>8, /* bUseLongDouble */ #ifdef SQLITE_DEBUG 0, /* bJsonSelfcheck */ #endif 0x7ffffffe, /* mxStrlen */ 0, /* neverCorrupt */ SQLITE_DEFAULT_LOOKASIDE, /* szLookaside, nLookaside */ SQLITE_STMTJRNL_SPILL, /* nStmtSpill */ {0,0,0,0,0,0,0,0}, /* m */ {0,0,0,0,0,0,0,0,0}, /* mutex */ {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */ (void*)0, /* pHeap */ 0, /* nHeap */ 0, 0, /* mnHeap, mxHeap */ SQLITE_DEFAULT_MMAP_SIZE, /* szMmap */ SQLITE_MAX_MMAP_SIZE, /* mxMmap */ (void*)0, /* pPage */ 0, /* szPage */ SQLITE_DEFAULT_PCACHE_INITSZ, /* nPage */ 0, /* mxParserStack */ 0, /* sharedCacheEnabled */ SQLITE_SORTER_PMASZ, /* szPma */ /* All the rest should always be initialized to zero */ 0, /* isInit */ 0, /* inProgress */ 0, /* isMutexInit */ 0, /* isMallocInit */ 0, /* isPCacheInit */ 0, /* nRefInitMutex */ 0, /* pInitMutex */ 0, /* xLog */ 0, /* pLogArg */ #ifdef SQLITE_ENABLE_SQLLOG 0, /* xSqllog */ 0, /* pSqllogArg */ #endif #ifdef SQLITE_VDBE_COVERAGE 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif #ifndef SQLITE_OMIT_DESERIALIZE SQLITE_MEMDB_DEFAULT_MAXSIZE, /* mxMemdbSize */ #endif #ifndef SQLITE_UNTESTABLE 0, /* xTestCallback */ #endif #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 0, /* mNoVisibleRowid. 0 == allow rowid-in-view */ #endif 0, /* bLocaltimeFault */ 0, /* xAltLocaltime */ 0x7ffffffe, /* iOnceResetThreshold */ SQLITE_DEFAULT_SORTERREF_SIZE, /* szSorterRef */ 0, /* iPrngSeed */ #ifdef SQLITE_DEBUG {0,0,0,0,0,0}, /* aTune */ #endif }; /* ** Hash table for global functions - functions common to all ** database connections. After initialization, this table is ** read-only. */ SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions; #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) /* ** Counter used for coverage testing. Does not come into play for ** release builds. ** ** Access to this global variable is not mutex protected. This might ** result in TSAN warnings. But as the variable does not exist in ** release builds, that should not be a concern. */ SQLITE_PRIVATE unsigned int sqlite3CoverageCounter; #endif /* SQLITE_COVERAGE_TEST || SQLITE_DEBUG */ #ifdef VDBE_PROFILE /* ** The following performance counter can be used in place of ** sqlite3Hwtime() for profiling. This is a no-op on standard builds. */ SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt = 0; #endif /* ** The value of the "pending" byte must be 0x40000000 (1 byte past the ** 1-gibabyte boundary) in a compatible database. SQLite never uses ** the database page that contains the pending byte. It never attempts ** to read or write that page. The pending byte page is set aside ** for use by the VFS layers as space for managing file locks. ** ** During testing, it is often desirable to move the pending byte to ** a different position in the file. This allows code that has to ** deal with the pending byte to run on files that are much smaller ** than 1 GiB. The sqlite3_test_control() interface can be used to ** move the pending byte. ** ** IMPORTANT: Changing the pending byte to any value other than ** 0x40000000 results in an incompatible database file format! ** Changing the pending byte during operation will result in undefined ** and incorrect behavior. */ #ifndef SQLITE_OMIT_WSD SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000; #endif /* ** Tracing flags set by SQLITE_TESTCTRL_TRACEFLAGS. */ SQLITE_PRIVATE u32 sqlite3TreeTrace = 0; SQLITE_PRIVATE u32 sqlite3WhereTrace = 0; /* #include "opcodes.h" */ /* ** Properties of opcodes. The OPFLG_INITIALIZER macro is ** created by mkopcodeh.awk during compilation. Data is obtained ** from the comments following the "case OP_xxxx:" statements in ** the vdbe.c file. */ SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER; /* ** Name of the default collating sequence */ SQLITE_PRIVATE const char sqlite3StrBINARY[] = "BINARY"; /* ** Standard typenames. These names must match the COLTYPE_* definitions. ** Adjust the SQLITE_N_STDTYPE value if adding or removing entries. ** ** sqlite3StdType[] The actual names of the datatypes. ** ** sqlite3StdTypeLen[] The length (in bytes) of each entry ** in sqlite3StdType[]. ** ** sqlite3StdTypeAffinity[] The affinity associated with each entry ** in sqlite3StdType[]. */ SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[] = { 3, 4, 3, 7, 4, 4 }; SQLITE_PRIVATE const char sqlite3StdTypeAffinity[] = { SQLITE_AFF_NUMERIC, SQLITE_AFF_BLOB, SQLITE_AFF_INTEGER, SQLITE_AFF_INTEGER, SQLITE_AFF_REAL, SQLITE_AFF_TEXT }; SQLITE_PRIVATE const char *sqlite3StdType[] = { "ANY", "BLOB", "INT", "INTEGER", "REAL", "TEXT" }; /************** End of global.c **********************************************/ /************** Begin file status.c ******************************************/ /* ** 2008 June 18 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This module implements the sqlite3_status() interface and related ** functionality. */ /* #include "sqliteInt.h" */ /************** Include vdbeInt.h in the middle of status.c ******************/ /************** Begin file vdbeInt.h *****************************************/ /* ** 2003 September 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the header file for information that is private to the ** VDBE. This information used to all be at the top of the single ** source code file "vdbe.c". When that file became too big (over ** 6000 lines long) it was split up into several smaller files and ** this header information was factored out. */ #ifndef SQLITE_VDBEINT_H #define SQLITE_VDBEINT_H /* ** The maximum number of times that a statement will try to reparse ** itself before giving up and returning SQLITE_SCHEMA. */ #ifndef SQLITE_MAX_SCHEMA_RETRY # define SQLITE_MAX_SCHEMA_RETRY 50 #endif /* ** VDBE_DISPLAY_P4 is true or false depending on whether or not the ** "explain" P4 display logic is enabled. */ #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) \ || defined(SQLITE_ENABLE_BYTECODE_VTAB) # define VDBE_DISPLAY_P4 1 #else # define VDBE_DISPLAY_P4 0 #endif /* ** SQL is translated into a sequence of instructions to be ** executed by a virtual machine. Each instruction is an instance ** of the following structure. */ typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned Bool; /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Elements of the linked list at Vdbe.pAuxData */ typedef struct AuxData AuxData; /* A cache of large TEXT or BLOB values in a VdbeCursor */ typedef struct VdbeTxtBlbCache VdbeTxtBlbCache; /* Types of VDBE cursors */ #define CURTYPE_BTREE 0 #define CURTYPE_SORTER 1 #define CURTYPE_VTAB 2 #define CURTYPE_PSEUDO 3 /* ** A VdbeCursor is an superclass (a wrapper) for various cursor objects: ** ** * A b-tree cursor ** - In the main database or in an ephemeral database ** - On either an index or a table ** * A sorter ** * A virtual table ** * A one-row "pseudotable" stored in a single register */ typedef struct VdbeCursor VdbeCursor; struct VdbeCursor { u8 eCurType; /* One of the CURTYPE_* values above */ i8 iDb; /* Index of cursor database in db->aDb[] */ u8 nullRow; /* True if pointing to a row with no data */ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ u8 isTable; /* True for rowid tables. False for indexes */ #ifdef SQLITE_DEBUG u8 seekOp; /* Most recent seek operation on this cursor */ u8 wrFlag; /* The wrFlag argument to sqlite3BtreeCursor() */ #endif Bool isEphemeral:1; /* True for an ephemeral table */ Bool useRandomRowid:1; /* Generate new record numbers semi-randomly */ Bool isOrdered:1; /* True if the table is not BTREE_UNORDERED */ Bool noReuse:1; /* OpenEphemeral may not reuse this cursor */ Bool colCache:1; /* pCache pointer is initialized and non-NULL */ u16 seekHit; /* See the OP_SeekHit and OP_IfNoHope opcodes */ union { /* pBtx for isEphermeral. pAltMap otherwise */ Btree *pBtx; /* Separate file holding temporary table */ u32 *aAltMap; /* Mapping from table to index column numbers */ } ub; i64 seqCount; /* Sequence counter */ /* Cached OP_Column parse information is only valid if cacheStatus matches ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that ** the cache is out of date. */ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */ int seekResult; /* Result of previous sqlite3BtreeMoveto() or 0 ** if there have been no prior seeks on the cursor. */ /* seekResult does not distinguish between "no seeks have ever occurred ** on this cursor" and "the most recent seek was an exact match". ** For CURTYPE_PSEUDO, seekResult is the register holding the record */ /* When a new VdbeCursor is allocated, only the fields above are zeroed. ** The fields that follow are uninitialized, and must be individually ** initialized prior to first use. */ VdbeCursor *pAltCursor; /* Associated index cursor from which to read */ union { BtCursor *pCursor; /* CURTYPE_BTREE or _PSEUDO. Btree cursor */ sqlite3_vtab_cursor *pVCur; /* CURTYPE_VTAB. Vtab cursor */ VdbeSorter *pSorter; /* CURTYPE_SORTER. Sorter object */ } uc; KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */ u32 iHdrOffset; /* Offset to next unparsed byte of the header */ Pgno pgnoRoot; /* Root page of the open btree cursor */ i16 nField; /* Number of fields in the header */ u16 nHdrParsed; /* Number of header fields parsed so far */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ u32 *aOffset; /* Pointer to aType[nField] */ const u8 *aRow; /* Data for the current row, if all on one page */ u32 payloadSize; /* Total number of bytes in the record */ u32 szRow; /* Byte available in aRow */ #ifdef SQLITE_ENABLE_COLUMN_USED_MASK u64 maskUsed; /* Mask of columns used by this cursor */ #endif VdbeTxtBlbCache *pCache; /* Cache of large TEXT or BLOB values */ /* 2*nField extra array elements allocated for aType[], beyond the one ** static element declared in the structure. nField total array slots for ** aType[] and nField+1 array slots for aOffset[] */ u32 aType[1]; /* Type values record decode. MUST BE LAST */ }; /* Return true if P is a null-only cursor */ #define IsNullCursor(P) \ ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0) /* ** A value for VdbeCursor.cacheStatus that means the cache is always invalid. */ #define CACHE_STALE 0 /* ** Large TEXT or BLOB values can be slow to load, so we want to avoid ** loading them more than once. For that reason, large TEXT and BLOB values ** can be stored in a cache defined by this object, and attached to the ** VdbeCursor using the pCache field. */ struct VdbeTxtBlbCache { char *pCValue; /* A RCStr buffer to hold the value */ i64 iOffset; /* File offset of the row being cached */ int iCol; /* Column for which the cache is valid */ u32 cacheStatus; /* Vdbe.cacheCtr value */ u32 colCacheCtr; /* Column cache counter */ }; /* ** When a sub-program is executed (OP_Program), a structure of this type ** is allocated to store the current value of the program counter, as ** well as the current memory cell array and various other frame specific ** values stored in the Vdbe struct. When the sub-program is finished, ** these values are copied back to the Vdbe from the VdbeFrame structure, ** restoring the state of the VM to as it was before the sub-program ** began executing. ** ** The memory for a VdbeFrame object is allocated and managed by a memory ** cell in the parent (calling) frame. When the memory cell is deleted or ** overwritten, the VdbeFrame object is not freed immediately. Instead, it ** is linked into the Vdbe.pDelFrame list. The contents of the Vdbe.pDelFrame ** list is deleted when the VM is reset in VdbeHalt(). The reason for doing ** this instead of deleting the VdbeFrame immediately is to avoid recursive ** calls to sqlite3VdbeMemRelease() when the memory cells belonging to the ** child frame are released. ** ** The currently executing frame is stored in Vdbe.pFrame. Vdbe.pFrame is ** set to NULL if the currently executing frame is the main program. */ typedef struct VdbeFrame VdbeFrame; struct VdbeFrame { Vdbe *v; /* VM this frame belongs to */ VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */ Op *aOp; /* Program instructions for parent frame */ Mem *aMem; /* Array of memory cells for parent frame */ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */ u8 *aOnce; /* Bitmask used by OP_Once */ void *token; /* Copy of SubProgram.token */ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ AuxData *pAuxData; /* Linked list of auxdata allocations */ #if SQLITE_DEBUG u32 iFrameMagic; /* magic number for sanity checking */ #endif int nCursor; /* Number of entries in apCsr */ int pc; /* Program Counter in parent (calling) frame */ int nOp; /* Size of aOp array */ int nMem; /* Number of entries in aMem */ int nChildMem; /* Number of memory cells for child frame */ int nChildCsr; /* Number of cursors for child frame */ i64 nChange; /* Statement changes (Vdbe.nChange) */ i64 nDbChange; /* Value of db->nChange */ }; /* Magic number for sanity checking on VdbeFrame objects */ #define SQLITE_FRAME_MAGIC 0x879fb71e /* ** Return a pointer to the array of registers allocated for use ** by a VdbeFrame. */ #define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))]) /* ** Internally, the vdbe manipulates nearly all SQL values as Mem ** structures. Each Mem struct may cache multiple representations (string, ** integer etc.) of the same value. */ struct sqlite3_value { union MemValue { double r; /* Real value used when MEM_Real is set in flags */ i64 i; /* Integer value used when MEM_Int is set in flags */ int nZero; /* Extra zero bytes when MEM_Zero and MEM_Blob set */ const char *zPType; /* Pointer type when MEM_Term|MEM_Subtype|MEM_Null */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ } u; char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ u8 eSubtype; /* Subtype for this value */ /* ShallowCopy only needs to copy the information above */ sqlite3 *db; /* The associated database connection */ int szMalloc; /* Size of the zMalloc allocation */ u32 uTemp; /* Transient storage for serial_type in OP_MakeRecord */ char *zMalloc; /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */ void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */ #ifdef SQLITE_DEBUG Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */ u16 mScopyFlags; /* flags value immediately after the shallow copy */ #endif }; /* ** Size of struct Mem not including the Mem.zMalloc member or anything that ** follows. */ #define MEMCELLSIZE offsetof(Mem,db) /* One or more of the following flags are set to indicate the ** representations of the value stored in the Mem struct. ** ** * MEM_Null An SQL NULL value ** ** * MEM_Null|MEM_Zero An SQL NULL with the virtual table ** UPDATE no-change flag set ** ** * MEM_Null|MEM_Term| An SQL NULL, but also contains a ** MEM_Subtype pointer accessible using ** sqlite3_value_pointer(). ** ** * MEM_Null|MEM_Cleared Special SQL NULL that compares non-equal ** to other NULLs even using the IS operator. ** ** * MEM_Str A string, stored in Mem.z with ** length Mem.n. Zero-terminated if ** MEM_Term is set. This flag is ** incompatible with MEM_Blob and ** MEM_Null, but can appear with MEM_Int, ** MEM_Real, and MEM_IntReal. ** ** * MEM_Blob A blob, stored in Mem.z length Mem.n. ** Incompatible with MEM_Str, MEM_Null, ** MEM_Int, MEM_Real, and MEM_IntReal. ** ** * MEM_Blob|MEM_Zero A blob in Mem.z of length Mem.n plus ** MEM.u.i extra 0x00 bytes at the end. ** ** * MEM_Int Integer stored in Mem.u.i. ** ** * MEM_Real Real stored in Mem.u.r. ** ** * MEM_IntReal Real stored as an integer in Mem.u.i. ** ** If the MEM_Null flag is set, then the value is an SQL NULL value. ** For a pointer type created using sqlite3_bind_pointer() or ** sqlite3_result_pointer() the MEM_Term and MEM_Subtype flags are also set. ** ** If the MEM_Str flag is set then Mem.z points at a string representation. ** Usually this is encoded in the same unicode encoding as the main ** database (see below for exceptions). If the MEM_Term flag is also ** set, then the string is nul terminated. The MEM_Int and MEM_Real ** flags may coexist with the MEM_Str flag. */ #define MEM_Undefined 0x0000 /* Value is undefined */ #define MEM_Null 0x0001 /* Value is NULL (or a pointer) */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MEM_IntReal 0x0020 /* MEM_Int that stringifies like MEM_Real */ #define MEM_AffMask 0x003f /* Mask of affinity bits */ /* Extra bits that modify the meanings of the core datatypes above */ #define MEM_FromBind 0x0040 /* Value originates from sqlite3_bind() */ /* 0x0080 // Available */ #define MEM_Cleared 0x0100 /* NULL set by OP_Null, not from data */ #define MEM_Term 0x0200 /* String in Mem.z is zero terminated */ #define MEM_Zero 0x0400 /* Mem.i contains count of 0s appended to blob */ #define MEM_Subtype 0x0800 /* Mem.eSubtype is valid */ #define MEM_TypeMask 0x0dbf /* Mask of type bits */ /* Bits that determine the storage for Mem.z for a string or blob or ** aggregate accumulator. */ #define MEM_Dyn 0x1000 /* Need to call Mem.xDel() on Mem.z */ #define MEM_Static 0x2000 /* Mem.z points to a static string */ #define MEM_Ephem 0x4000 /* Mem.z points to an ephemeral string */ #define MEM_Agg 0x8000 /* Mem.z points to an agg function context */ /* Return TRUE if Mem X contains dynamically allocated content - anything ** that needs to be deallocated to avoid a leak. */ #define VdbeMemDynamic(X) \ (((X)->flags&(MEM_Agg|MEM_Dyn))!=0) /* ** Clear any existing type flags from a Mem and replace them with f */ #define MemSetTypeFlag(p, f) \ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f) /* ** True if Mem X is a NULL-nochng type. */ #define MemNullNochng(X) \ (((X)->flags&MEM_TypeMask)==(MEM_Null|MEM_Zero) \ && (X)->n==0 && (X)->u.nZero==0) /* ** Return true if a memory cell has been initialized and is valid. ** is for use inside assert() statements only. ** ** A Memory cell is initialized if at least one of the ** MEM_Null, MEM_Str, MEM_Int, MEM_Real, MEM_Blob, or MEM_IntReal bits ** is set. It is "undefined" if all those bits are zero. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_AffMask)!=0 #endif /* ** Each auxiliary data pointer stored by a user defined function ** implementation calling sqlite3_set_auxdata() is stored in an instance ** of this structure. All such structures associated with a single VM ** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed ** when the VM is halted (if not before). */ struct AuxData { int iAuxOp; /* Instruction number of OP_Function opcode */ int iAuxArg; /* Index of function argument. */ void *pAux; /* Aux data pointer */ void (*xDeleteAux)(void*); /* Destructor for the aux data */ AuxData *pNextAux; /* Next element in list */ }; /* ** The "context" argument for an installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, ** even the public interface to SQLite, can use a pointer to this structure. ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { Mem *pOut; /* The return value is stored here */ FuncDef *pFunc; /* Pointer to function information */ Mem *pMem; /* Memory cell used to store aggregate context */ Vdbe *pVdbe; /* The VM that owns this context */ int iOp; /* Instruction number of OP_Function */ int isError; /* Error code returned by the function. */ u8 enc; /* Encoding to use for results */ u8 skipFlag; /* Skip accumulator loading if true */ u8 argc; /* Number of arguments */ sqlite3_value *argv[1]; /* Argument set */ }; /* A bitfield type for use inside of structures. Always follow with :N where ** N is the number of bits. */ typedef unsigned bft; /* Bit Field Type */ /* The ScanStatus object holds a single value for the ** sqlite3_stmt_scanstatus() interface. ** ** aAddrRange[]: ** This array is used by ScanStatus elements associated with EQP ** notes that make an SQLITE_SCANSTAT_NCYCLE value available. It is ** an array of up to 3 ranges of VM addresses for which the Vdbe.anCycle[] ** values should be summed to calculate the NCYCLE value. Each pair of ** integer addresses is a start and end address (both inclusive) for a range ** instructions. A start value of 0 indicates an empty range. */ typedef struct ScanStatus ScanStatus; struct ScanStatus { int addrExplain; /* OP_Explain for loop */ int aAddrRange[6]; int addrLoop; /* Address of "loops" counter */ int addrVisit; /* Address of "rows visited" counter */ int iSelectID; /* The "Select-ID" for this loop */ LogEst nEst; /* Estimated output rows per loop */ char *zName; /* Name of table or index */ }; /* The DblquoteStr object holds the text of a double-quoted ** string for a prepared statement. A linked list of these objects ** is constructed during statement parsing and is held on Vdbe.pDblStr. ** When computing a normalized SQL statement for an SQL statement, that ** list is consulted for each double-quoted identifier to see if the ** identifier should really be a string literal. */ typedef struct DblquoteStr DblquoteStr; struct DblquoteStr { DblquoteStr *pNextStr; /* Next string literal in the list */ char z[8]; /* Dequoted value for the string */ }; /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. */ struct Vdbe { sqlite3 *db; /* The database connection that owns this statement */ Vdbe **ppVPrev,*pVNext; /* Linked list of VDBEs with the same Vdbe.db */ Parse *pParse; /* Parsing context used to create this Vdbe */ ynVar nVar; /* Number of entries in aVar[] */ int nMem; /* Number of memory locations currently allocated */ int nCursor; /* Number of slots in apCsr[] */ u32 cacheCtr; /* VdbeCursor row cache generation counter */ int pc; /* The program counter */ int rc; /* Value to return */ i64 nChange; /* Number of db changes made since last reset */ int iStatement; /* Statement number (or 0 if has no opened stmt) */ i64 iCurrentTime; /* Value of julianday('now') for this statement */ i64 nFkConstraint; /* Number of imm. FK constraints this VM */ i64 nStmtDefCons; /* Number of def. constraints when stmt started */ i64 nStmtDefImmCons; /* Number of def. imm constraints when stmt started */ Mem *aMem; /* The memory locations */ Mem **apArg; /* Arguments to currently executing user function */ VdbeCursor **apCsr; /* One element of this array for each open cursor */ Mem *aVar; /* Values for the OP_Variable opcode. */ /* When allocating a new Vdbe object, all of the fields below should be ** initialized to zero or NULL */ Op *aOp; /* Space to hold the virtual machine's program */ int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Slots allocated for aOp[] */ Mem *aColName; /* Column names to return */ Mem *pResultRow; /* Current output row */ char *zErrMsg; /* Error message written here */ VList *pVList; /* Name of variables */ #ifndef SQLITE_OMIT_TRACE i64 startTime; /* Time when query started - used for profiling */ #endif #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ u32 nWrite; /* Number of write operations that have occurred */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u16 nResAlloc; /* Column slots allocated to aColName[] */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ u8 eVdbeState; /* On of the VDBE_*_STATE values */ bft expired:2; /* 1: recompile VM immediately 2: when convenient */ bft explain:2; /* 0: normal, 1: EXPLAIN, 2: EXPLAIN QUERY PLAN */ bft changeCntOn:1; /* True to update the change-counter */ bft usesStmtJournal:1; /* True if uses a statement journal */ bft readOnly:1; /* True for statements that do not write */ bft bIsReader:1; /* True for statements that read */ bft haveEqpOps:1; /* Bytecode supports EXPLAIN QUERY PLAN */ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ yDbMask lockMask; /* Subset of btreeMask that requires a lock */ u32 aCounter[9]; /* Counters used by sqlite3_stmt_status() */ char *zSql; /* Text of the SQL statement that generated this */ #ifdef SQLITE_ENABLE_NORMALIZE char *zNormSql; /* Normalization of the associated SQL statement */ DblquoteStr *pDblStr; /* List of double-quoted string literals */ #endif void *pFree; /* Free this when deleting the vdbe */ VdbeFrame *pFrame; /* Parent frame */ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ AuxData *pAuxData; /* Linked list of auxdata allocations */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int nScan; /* Entries in aScan[] */ ScanStatus *aScan; /* Scan definitions for sqlite3_stmt_scanstatus() */ #endif }; /* ** The following are allowed values for Vdbe.eVdbeState */ #define VDBE_INIT_STATE 0 /* Prepared statement under construction */ #define VDBE_READY_STATE 1 /* Ready to run but not yet started */ #define VDBE_RUN_STATE 2 /* Run in progress */ #define VDBE_HALT_STATE 3 /* Finished. Need reset() or finalize() */ /* ** Structure used to store the context required by the ** sqlite3_preupdate_*() API functions. */ struct PreUpdate { Vdbe *v; VdbeCursor *pCsr; /* Cursor to read old values from */ int op; /* One of SQLITE_INSERT, UPDATE, DELETE */ u8 *aRecord; /* old.* database record */ KeyInfo keyinfo; UnpackedRecord *pUnpacked; /* Unpacked version of aRecord[] */ UnpackedRecord *pNewUnpacked; /* Unpacked version of new.* record */ int iNewReg; /* Register for new.* values */ int iBlobWrite; /* Value returned by preupdate_blobwrite() */ i64 iKey1; /* First key value passed to hook */ i64 iKey2; /* Second key value passed to hook */ Mem *aNew; /* Array of new.* values */ Table *pTab; /* Schema object being updated */ Index *pPk; /* PK index if pTab is WITHOUT ROWID */ }; /* ** An instance of this object is used to pass an vector of values into ** OP_VFilter, the xFilter method of a virtual table. The vector is the ** set of values on the right-hand side of an IN constraint. ** ** The value as passed into xFilter is an sqlite3_value with a "pointer" ** type, such as is generated by sqlite3_result_pointer() and read by ** sqlite3_value_pointer. Such values have MEM_Term|MEM_Subtype|MEM_Null ** and a subtype of 'p'. The sqlite3_vtab_in_first() and _next() interfaces ** know how to use this object to step through all the values in the ** right operand of the IN constraint. */ typedef struct ValueList ValueList; struct ValueList { BtCursor *pCsr; /* An ephemeral table holding all values */ sqlite3_value *pOut; /* Register to hold each decoded output value */ }; /* Size of content associated with serial types that fit into a ** single-byte varint. */ #ifndef SQLITE_AMALGAMATION SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[]; #endif /* ** Function prototypes */ SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...); SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*); SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe*,VdbeCursor*); void sqliteVdbePopStack(Vdbe*,int); SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p); SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor*); SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*); SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32); SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8); #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in); # define swapMixedEndianFloat(X) X = sqlite3FloatSwap(X) #else # define swapMixedEndianFloat(X) #endif SQLITE_PRIVATE void sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*); SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*); SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); #if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB) SQLITE_PRIVATE int sqlite3VdbeNextOpcode(Vdbe*,Mem*,int,int*,int*,Op**); SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3*,Op*); #endif #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) SQLITE_PRIVATE char *sqlite3VdbeDisplayComment(sqlite3*,const Op*,const char*); #endif #if !defined(SQLITE_OMIT_EXPLAIN) SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); #endif SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int); SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*); SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, i64, u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64); #ifdef SQLITE_OMIT_FLOATING_POINT # define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64 #else SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double); #endif SQLITE_PRIVATE void sqlite3VdbeMemSetPointer(Mem*, void*, const char*, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem*,sqlite3*,u16); SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*); #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int); #else SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem*,int); #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem*); #endif SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem*); SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, u8, u8); SQLITE_PRIVATE int sqlite3IntFloatCompare(i64,double); SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem*); SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem*, int ifNull); SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem*,u8,u8); SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*); SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset(BtCursor*,u32,Mem*); SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem*p); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*); #endif #if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB) SQLITE_PRIVATE const char *sqlite3OpcodeName(int); #endif SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*); #endif SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*); /* Destructor on Mem */ SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); /* Actually deletes the Frame */ SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK SQLITE_PRIVATE void sqlite3VdbePreUpdateHook( Vdbe*,VdbeCursor*,int,const char*,Table*,i64,int,int); #endif SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p); SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *); SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *); SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *); SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *, int *); SQLITE_PRIVATE int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *); SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *); SQLITE_PRIVATE void sqlite3VdbeValueListFree(void*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe*, VdbeCursor*); SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe*); #else # define sqlite3VdbeIncrWriteCounter(V,C) # define sqlite3VdbeAssertAbortable(V) #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*); #else # define sqlite3VdbeEnter(X) #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*); #else # define sqlite3VdbeLeave(X) #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*); SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr); #endif #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8); SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem); #endif #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *); #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) #else #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK #define ExpandBlob(P) SQLITE_OK #endif #endif /* !defined(SQLITE_VDBEINT_H) */ /************** End of vdbeInt.h *********************************************/ /************** Continuing where we left off in status.c *********************/ /* ** Variables in which to record status information. */ #if SQLITE_PTRSIZE>4 typedef sqlite3_int64 sqlite3StatValueType; #else typedef u32 sqlite3StatValueType; #endif typedef struct sqlite3StatType sqlite3StatType; static SQLITE_WSD struct sqlite3StatType { sqlite3StatValueType nowValue[10]; /* Current value */ sqlite3StatValueType mxValue[10]; /* Maximum value */ } sqlite3Stat = { {0,}, {0,} }; /* ** Elements of sqlite3Stat[] are protected by either the memory allocator ** mutex, or by the pcache1 mutex. The following array determines which. */ static const char statMutex[] = { 0, /* SQLITE_STATUS_MEMORY_USED */ 1, /* SQLITE_STATUS_PAGECACHE_USED */ 1, /* SQLITE_STATUS_PAGECACHE_OVERFLOW */ 0, /* SQLITE_STATUS_SCRATCH_USED */ 0, /* SQLITE_STATUS_SCRATCH_OVERFLOW */ 0, /* SQLITE_STATUS_MALLOC_SIZE */ 0, /* SQLITE_STATUS_PARSER_STACK */ 1, /* SQLITE_STATUS_PAGECACHE_SIZE */ 0, /* SQLITE_STATUS_SCRATCH_SIZE */ 0, /* SQLITE_STATUS_MALLOC_COUNT */ }; /* The "wsdStat" macro will resolve to the status information ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdStat can refer directly ** to the "sqlite3Stat" state vector declared above. */ #ifdef SQLITE_OMIT_WSD # define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat) # define wsdStat x[0] #else # define wsdStatInit # define wsdStat sqlite3Stat #endif /* ** Return the current value of a status parameter. The caller must ** be holding the appropriate mutex. */ SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int op){ wsdStatInit; assert( op>=0 && op=0 && op=0 && op=0 && opwsdStat.mxValue[op] ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } } SQLITE_PRIVATE void sqlite3StatusDown(int op, int N){ wsdStatInit; assert( N>=0 ); assert( op>=0 && op=0 && op=0 ); newValue = (sqlite3StatValueType)X; assert( op>=0 && op=0 && opwsdStat.mxValue[op] ){ wsdStat.mxValue[op] = newValue; } } /* ** Query status information. */ SQLITE_API int sqlite3_status64( int op, sqlite3_int64 *pCurrent, sqlite3_int64 *pHighwater, int resetFlag ){ sqlite3_mutex *pMutex; wsdStatInit; if( op<0 || op>=ArraySize(wsdStat.nowValue) ){ return SQLITE_MISUSE_BKPT; } #ifdef SQLITE_ENABLE_API_ARMOR if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT; #endif pMutex = statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex(); sqlite3_mutex_enter(pMutex); *pCurrent = wsdStat.nowValue[op]; *pHighwater = wsdStat.mxValue[op]; if( resetFlag ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } sqlite3_mutex_leave(pMutex); (void)pMutex; /* Prevent warning when SQLITE_THREADSAFE=0 */ return SQLITE_OK; } SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){ sqlite3_int64 iCur = 0, iHwtr = 0; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT; #endif rc = sqlite3_status64(op, &iCur, &iHwtr, resetFlag); if( rc==0 ){ *pCurrent = (int)iCur; *pHighwater = (int)iHwtr; } return rc; } /* ** Return the number of LookasideSlot elements on the linked list */ static u32 countLookasideSlots(LookasideSlot *p){ u32 cnt = 0; while( p ){ p = p->pNext; cnt++; } return cnt; } /* ** Count the number of slots of lookaside memory that are outstanding */ SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3 *db, int *pHighwater){ u32 nInit = countLookasideSlots(db->lookaside.pInit); u32 nFree = countLookasideSlots(db->lookaside.pFree); #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE nInit += countLookasideSlots(db->lookaside.pSmallInit); nFree += countLookasideSlots(db->lookaside.pSmallFree); #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( pHighwater ) *pHighwater = db->lookaside.nSlot - nInit; return db->lookaside.nSlot - (nInit+nFree); } /* ** Query status information for a single database connection */ SQLITE_API int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ int op, /* Status verb */ int *pCurrent, /* Write current value here */ int *pHighwater, /* Write high-water mark here */ int resetFlag /* Reset high-water mark if true */ ){ int rc = SQLITE_OK; /* Return code */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || pCurrent==0|| pHighwater==0 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); switch( op ){ case SQLITE_DBSTATUS_LOOKASIDE_USED: { *pCurrent = sqlite3LookasideUsed(db, pHighwater); if( resetFlag ){ LookasideSlot *p = db->lookaside.pFree; if( p ){ while( p->pNext ) p = p->pNext; p->pNext = db->lookaside.pInit; db->lookaside.pInit = db->lookaside.pFree; db->lookaside.pFree = 0; } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE p = db->lookaside.pSmallFree; if( p ){ while( p->pNext ) p = p->pNext; p->pNext = db->lookaside.pSmallInit; db->lookaside.pSmallInit = db->lookaside.pSmallFree; db->lookaside.pSmallFree = 0; } #endif } break; } case SQLITE_DBSTATUS_LOOKASIDE_HIT: case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: { testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT ); testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE ); testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL ); assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 ); assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 ); *pCurrent = 0; *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT]; if( resetFlag ){ db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0; } break; } /* ** Return an approximation for the amount of memory currently used ** by all pagers associated with the given database connection. The ** highwater mark is meaningless and is returned as zero. */ case SQLITE_DBSTATUS_CACHE_USED_SHARED: case SQLITE_DBSTATUS_CACHE_USED: { int totalUsed = 0; int i; sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); int nByte = sqlite3PagerMemUsed(pPager); if( op==SQLITE_DBSTATUS_CACHE_USED_SHARED ){ nByte = nByte / sqlite3BtreeConnectionCount(pBt); } totalUsed += nByte; } } sqlite3BtreeLeaveAll(db); *pCurrent = totalUsed; *pHighwater = 0; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store the schema for all databases (main, temp, and any ATTACHed ** databases. *pHighwater is set to zero. */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ sqlite3BtreeEnterAll(db); db->pnBytesFreed = &nByte; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; for(i=0; inDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( pSchema->tblHash.count + pSchema->trigHash.count + pSchema->idxHash.count + pSchema->fkeyHash.count ); nByte += sqlite3_msize(pSchema->tblHash.ht); nByte += sqlite3_msize(pSchema->trigHash.ht); nByte += sqlite3_msize(pSchema->idxHash.ht); nByte += sqlite3_msize(pSchema->fkeyHash.ht); for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p)); } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; db->lookaside.pEnd = db->lookaside.pTrueEnd; sqlite3BtreeLeaveAll(db); *pHighwater = 0; *pCurrent = nByte; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store all prepared statements. ** *pHighwater is set to zero. */ case SQLITE_DBSTATUS_STMT_USED: { struct Vdbe *pVdbe; /* Used to iterate through VMs */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pVNext){ sqlite3VdbeDelete(pVdbe); } db->lookaside.pEnd = db->lookaside.pTrueEnd; db->pnBytesFreed = 0; *pHighwater = 0; /* IMP: R-64479-57858 */ *pCurrent = nByte; break; } /* ** Set *pCurrent to the total cache hits or misses encountered by all ** pagers the database handle is connected to. *pHighwater is always set ** to zero. */ case SQLITE_DBSTATUS_CACHE_SPILL: op = SQLITE_DBSTATUS_CACHE_WRITE+1; /* no break */ deliberate_fall_through case SQLITE_DBSTATUS_CACHE_HIT: case SQLITE_DBSTATUS_CACHE_MISS: case SQLITE_DBSTATUS_CACHE_WRITE:{ int i; u64 nRet = 0; assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 ); assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 ); for(i=0; inDb; i++){ if( db->aDb[i].pBt ){ Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt); sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet); } } *pHighwater = 0; /* IMP: R-42420-56072 */ /* IMP: R-54100-20147 */ /* IMP: R-29431-39229 */ *pCurrent = (int)nRet & 0x7fffffff; break; } /* Set *pCurrent to non-zero if there are unresolved deferred foreign ** key constraints. Set *pCurrent to zero if all foreign key constraints ** have been satisfied. The *pHighwater is always set to zero. */ case SQLITE_DBSTATUS_DEFERRED_FKS: { *pHighwater = 0; /* IMP: R-11967-56545 */ *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0; break; } default: { rc = SQLITE_ERROR; } } sqlite3_mutex_leave(db->mutex); return rc; } /************** End of status.c **********************************************/ /************** Begin file date.c ********************************************/ /* ** 2003 October 31 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** ** SQLite processes all times and dates as julian day numbers. The ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 ** 2000-01-01 00:00:00 is JD 2451544.5 ** ** This implementation requires years to be expressed as a 4-digit number ** which means that only dates between 0000-01-01 and 9999-12-31 can ** be represented, even though julian day numbers allow a much wider ** range of dates. ** ** The Gregorian calendar system is used for all dates and times, ** even those that predate the Gregorian calendar. Historians usually ** use the julian calendar for dates prior to 1582-10-15 and for some ** dates afterwards, depending on locale. Beware of this difference. ** ** The conversion algorithms are implemented based on descriptions ** in the following text: ** ** Jean Meeus ** Astronomical Algorithms, 2nd Edition, 1998 ** ISBN 0-943396-61-1 ** Willmann-Bell, Inc ** Richmond, Virginia (USA) */ /* #include "sqliteInt.h" */ /* #include */ /* #include */ #include #ifndef SQLITE_OMIT_DATETIME_FUNCS /* ** The MSVC CRT on Windows CE may not have a localtime() function. ** So declare a substitute. The substitute function itself is ** defined in "os_win.c". */ #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) struct tm *__cdecl localtime(const time_t *); #endif /* ** A structure for holding a single date and time. */ typedef struct DateTime DateTime; struct DateTime { sqlite3_int64 iJD; /* The julian day number times 86400000 */ int Y, M, D; /* Year, month, and day */ int h, m; /* Hour and minutes */ int tz; /* Timezone offset in minutes */ double s; /* Seconds */ char validJD; /* True (1) if iJD is valid */ char rawS; /* Raw numeric value stored in s */ char validYMD; /* True (1) if Y,M,D are valid */ char validHMS; /* True (1) if h,m,s are valid */ char validTZ; /* True (1) if tz is valid */ char tzSet; /* Timezone was set explicitly */ char isError; /* An overflow has occurred */ char useSubsec; /* Display subsecond precision */ }; /* ** Convert zDate into one or more integers according to the conversion ** specifier zFormat. ** ** zFormat[] contains 4 characters for each integer converted, except for ** the last integer which is specified by three characters. The meaning ** of a four-character format specifiers ABCD is: ** ** A: number of digits to convert. Always "2" or "4". ** B: minimum value. Always "0" or "1". ** C: maximum value, decoded as: ** a: 12 ** b: 14 ** c: 24 ** d: 31 ** e: 59 ** f: 9999 ** D: the separator character, or \000 to indicate this is the ** last number to convert. ** ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates ** the 2-digit day which is the last integer in the set. ** ** The function returns the number of successful conversions. */ static int getDigits(const char *zDate, const char *zFormat, ...){ /* The aMx[] array translates the 3rd character of each format ** spec into a max size: a b c d e f */ static const u16 aMx[] = { 12, 14, 24, 31, 59, 14712 }; va_list ap; int cnt = 0; char nextC; va_start(ap, zFormat); do{ char N = zFormat[0] - '0'; char min = zFormat[1] - '0'; int val = 0; u16 max; assert( zFormat[2]>='a' && zFormat[2]<='f' ); max = aMx[zFormat[2] - 'a']; nextC = zFormat[3]; val = 0; while( N-- ){ if( !sqlite3Isdigit(*zDate) ){ goto end_getDigits; } val = val*10 + *zDate - '0'; zDate++; } if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ goto end_getDigits; } *va_arg(ap,int*) = val; zDate++; cnt++; zFormat += 4; }while( nextC ); end_getDigits: va_end(ap); return cnt; } /* ** Parse a timezone extension on the end of a date-time. ** The extension is of the form: ** ** (+/-)HH:MM ** ** Or the "zulu" notation: ** ** Z ** ** If the parse is successful, write the number of minutes ** of change in p->tz and return 0. If a parser error occurs, ** return non-zero. ** ** A missing specifier is not considered an error. */ static int parseTimezone(const char *zDate, DateTime *p){ int sgn = 0; int nHr, nMn; int c; while( sqlite3Isspace(*zDate) ){ zDate++; } p->tz = 0; c = *zDate; if( c=='-' ){ sgn = -1; }else if( c=='+' ){ sgn = +1; }else if( c=='Z' || c=='z' ){ zDate++; goto zulu_time; }else{ return c!=0; } zDate++; if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ return 1; } zDate += 5; p->tz = sgn*(nMn + nHr*60); zulu_time: while( sqlite3Isspace(*zDate) ){ zDate++; } p->tzSet = 1; return *zDate!=0; } /* ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. ** The HH, MM, and SS must each be exactly 2 digits. The ** fractional seconds FFFF can be one or more digits. ** ** Return 1 if there is a parsing error and 0 on success. */ static int parseHhMmSs(const char *zDate, DateTime *p){ int h, m, s; double ms = 0.0; if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ return 1; } zDate += 5; if( *zDate==':' ){ zDate++; if( getDigits(zDate, "20e", &s)!=1 ){ return 1; } zDate += 2; if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ double rScale = 1.0; zDate++; while( sqlite3Isdigit(*zDate) ){ ms = ms*10.0 + *zDate - '0'; rScale *= 10.0; zDate++; } ms /= rScale; } }else{ s = 0; } p->validJD = 0; p->rawS = 0; p->validHMS = 1; p->h = h; p->m = m; p->s = s + ms; if( parseTimezone(zDate, p) ) return 1; p->validTZ = (p->tz!=0)?1:0; return 0; } /* ** Put the DateTime object into its error state. */ static void datetimeError(DateTime *p){ memset(p, 0, sizeof(*p)); p->isError = 1; } /* ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume ** that the YYYY-MM-DD is according to the Gregorian calendar. ** ** Reference: Meeus page 61 */ static void computeJD(DateTime *p){ int Y, M, D, A, B, X1, X2; if( p->validJD ) return; if( p->validYMD ){ Y = p->Y; M = p->M; D = p->D; }else{ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ M = 1; D = 1; } if( Y<-4713 || Y>9999 || p->rawS ){ datetimeError(p); return; } if( M<=2 ){ Y--; M += 12; } A = Y/100; B = 2 - A + (A/4); X1 = 36525*(Y+4716)/100; X2 = 306001*(M+1)/10000; p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); p->validJD = 1; if( p->validHMS ){ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000 + 0.5); if( p->validTZ ){ p->iJD -= p->tz*60000; p->validYMD = 0; p->validHMS = 0; p->validTZ = 0; } } } /* ** Parse dates of the form ** ** YYYY-MM-DD HH:MM:SS.FFF ** YYYY-MM-DD HH:MM:SS ** YYYY-MM-DD HH:MM ** YYYY-MM-DD ** ** Write the result into the DateTime structure and return 0 ** on success and 1 if the input string is not a well-formed ** date. */ static int parseYyyyMmDd(const char *zDate, DateTime *p){ int Y, M, D, neg; if( zDate[0]=='-' ){ zDate++; neg = 1; }else{ neg = 0; } if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ return 1; } zDate += 10; while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } if( parseHhMmSs(zDate, p)==0 ){ /* We got the time */ }else if( *zDate==0 ){ p->validHMS = 0; }else{ return 1; } p->validJD = 0; p->validYMD = 1; p->Y = neg ? -Y : Y; p->M = M; p->D = D; if( p->validTZ ){ computeJD(p); } return 0; } /* ** Set the time to the current time reported by the VFS. ** ** Return the number of errors. */ static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ p->iJD = sqlite3StmtCurrentTime(context); if( p->iJD>0 ){ p->validJD = 1; return 0; }else{ return 1; } } /* ** Input "r" is a numeric quantity which might be a julian day number, ** or the number of seconds since 1970. If the value if r is within ** range of a julian day number, install it as such and set validJD. ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. */ static void setRawDateNumber(DateTime *p, double r){ p->s = r; p->rawS = 1; if( r>=0.0 && r<5373484.5 ){ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); p->validJD = 1; } } /* ** Attempt to parse the given string into a julian day number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM ** DDDD.DD ** now ** ** In the first form, the +/-HH:MM is always optional. The fractional ** seconds extension (the ".FFF") is optional. The seconds portion ** (":SS.FFF") is option. The year and date can be omitted as long ** as there is a time string. The time string can be omitted as long ** as there is a year and date. */ static int parseDateOrTime( sqlite3_context *context, const char *zDate, DateTime *p ){ double r; if( parseYyyyMmDd(zDate,p)==0 ){ return 0; }else if( parseHhMmSs(zDate, p)==0 ){ return 0; }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ return setDateTimeToCurrent(context, p); }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ setRawDateNumber(p, r); return 0; }else if( (sqlite3StrICmp(zDate,"subsec")==0 || sqlite3StrICmp(zDate,"subsecond")==0) && sqlite3NotPureFunc(context) ){ p->useSubsec = 1; return setDateTimeToCurrent(context, p); } return 1; } /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. ** Multiplying this by 86400000 gives 464269060799999 as the maximum value ** for DateTime.iJD. ** ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with ** such a large integer literal, so we have to encode it. */ #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) /* ** Return TRUE if the given julian day number is within range. ** ** The input is the JulianDay times 86400000. */ static int validJulianDay(sqlite3_int64 iJD){ return iJD>=0 && iJD<=INT_464269060799999; } /* ** Compute the Year, Month, and Day from the julian day number. */ static void computeYMD(DateTime *p){ int Z, A, B, C, D, E, X1; if( p->validYMD ) return; if( !p->validJD ){ p->Y = 2000; p->M = 1; p->D = 1; }else if( !validJulianDay(p->iJD) ){ datetimeError(p); return; }else{ Z = (int)((p->iJD + 43200000)/86400000); A = (int)((Z - 1867216.25)/36524.25); A = Z + 1 + A - (A/4); B = A + 1524; C = (int)((B - 122.1)/365.25); D = (36525*(C&32767))/100; E = (int)((B-D)/30.6001); X1 = (int)(30.6001*E); p->D = B - D - X1; p->M = E<14 ? E-1 : E-13; p->Y = p->M>2 ? C - 4716 : C - 4715; } p->validYMD = 1; } /* ** Compute the Hour, Minute, and Seconds from the julian day number. */ static void computeHMS(DateTime *p){ int day_ms, day_min; /* milliseconds, minutes into the day */ if( p->validHMS ) return; computeJD(p); day_ms = (int)((p->iJD + 43200000) % 86400000); p->s = (day_ms % 60000)/1000.0; day_min = day_ms/60000; p->m = day_min % 60; p->h = day_min / 60; p->rawS = 0; p->validHMS = 1; } /* ** Compute both YMD and HMS */ static void computeYMD_HMS(DateTime *p){ computeYMD(p); computeHMS(p); } /* ** Clear the YMD and HMS and the TZ */ static void clearYMD_HMS_TZ(DateTime *p){ p->validYMD = 0; p->validHMS = 0; p->validTZ = 0; } #ifndef SQLITE_OMIT_LOCALTIME /* ** On recent Windows platforms, the localtime_s() function is available ** as part of the "Secure CRT". It is essentially equivalent to ** localtime_r() available under most POSIX platforms, except that the ** order of the parameters is reversed. ** ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. ** ** If the user has not indicated to use localtime_r() or localtime_s() ** already, check for an MSVC build environment that provides ** localtime_s(). */ #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) #undef HAVE_LOCALTIME_S #define HAVE_LOCALTIME_S 1 #endif /* ** The following routine implements the rough equivalent of localtime_r() ** using whatever operating-system specific localtime facility that ** is available. This routine returns 0 on success and ** non-zero on any kind of error. ** ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this ** routine will always fail. If bLocaltimeFault is nonzero and ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is ** invoked in place of the OS-defined localtime() function. ** ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C ** library function localtime_r() is used to assist in the calculation of ** local time. */ static int osLocaltime(time_t *t, struct tm *pTm){ int rc; #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S struct tm *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif sqlite3_mutex_enter(mutex); pX = localtime(t); #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ){ if( sqlite3GlobalConfig.xAltLocaltime!=0 && 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm) ){ pX = pTm; }else{ pX = 0; } } #endif if( pX ) *pTm = *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex_leave(mutex); #endif rc = pX==0; #else #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ){ if( sqlite3GlobalConfig.xAltLocaltime!=0 ){ return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm); }else{ return 1; } } #endif #if HAVE_LOCALTIME_R rc = localtime_r(t, pTm)==0; #else rc = localtime_s(pTm, t); #endif /* HAVE_LOCALTIME_R */ #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ return rc; } #endif /* SQLITE_OMIT_LOCALTIME */ #ifndef SQLITE_OMIT_LOCALTIME /* ** Assuming the input DateTime is UTC, move it to its localtime equivalent. */ static int toLocaltime( DateTime *p, /* Date at which to calculate offset */ sqlite3_context *pCtx /* Write error here if one occurs */ ){ time_t t; struct tm sLocal; int iYearDiff; /* Initialize the contents of sLocal to avoid a compiler warning. */ memset(&sLocal, 0, sizeof(sLocal)); computeJD(p); if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */ || p->iJD>2130141456*(i64)100000 /* 2038-01-18 */ ){ /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only ** works for years between 1970 and 2037. For dates outside this range, ** SQLite attempts to map the year into an equivalent year within this ** range, do the calculation, then map the year back. */ DateTime x = *p; computeYMD_HMS(&x); iYearDiff = (2000 + x.Y%4) - x.Y; x.Y += iYearDiff; x.validJD = 0; computeJD(&x); t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); }else{ iYearDiff = 0; t = (time_t)(p->iJD/1000 - 21086676*(i64)10000); } if( osLocaltime(&t, &sLocal) ){ sqlite3_result_error(pCtx, "local time unavailable", -1); return SQLITE_ERROR; } p->Y = sLocal.tm_year + 1900 - iYearDiff; p->M = sLocal.tm_mon + 1; p->D = sLocal.tm_mday; p->h = sLocal.tm_hour; p->m = sLocal.tm_min; p->s = sLocal.tm_sec + (p->iJD%1000)*0.001; p->validYMD = 1; p->validHMS = 1; p->validJD = 0; p->rawS = 0; p->validTZ = 0; p->isError = 0; return SQLITE_OK; } #endif /* SQLITE_OMIT_LOCALTIME */ /* ** The following table defines various date transformations of the form ** ** 'NNN days' ** ** Where NNN is an arbitrary floating-point number and "days" can be one ** of several units of time. */ static const struct { u8 nName; /* Length of the name */ char zName[7]; /* Name of the transformation */ float rLimit; /* Maximum NNN value for this transform */ float rXform; /* Constant used for this transform */ } aXformType[] = { { 6, "second", 4.6427e+14, 1.0 }, { 6, "minute", 7.7379e+12, 60.0 }, { 4, "hour", 1.2897e+11, 3600.0 }, { 3, "day", 5373485.0, 86400.0 }, { 5, "month", 176546.0, 2592000.0 }, { 4, "year", 14713.0, 31536000.0 }, }; /* ** If the DateTime p is raw number, try to figure out if it is ** a julian day number of a unix timestamp. Set the p value ** appropriately. */ static void autoAdjustDate(DateTime *p){ if( !p->rawS || p->validJD ){ p->rawS = 0; }else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */ && p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */ ){ double r = p->s*1000.0 + 210866760000000.0; clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)(r + 0.5); p->validJD = 1; p->rawS = 0; } } /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours ** NNN minutes ** NNN.NNNN seconds ** NNN months ** NNN years ** start of month ** start of year ** start of week ** start of day ** weekday N ** unixepoch ** localtime ** utc ** ** Return 0 on success and 1 if there is any kind of error. If the error ** is in a system call (i.e. localtime()), then an error message is written ** to context pCtx. If the error is an unrecognized modifier, no error is ** written to pCtx. */ static int parseModifier( sqlite3_context *pCtx, /* Function context */ const char *z, /* The text of the modifier */ int n, /* Length of zMod in bytes */ DateTime *p, /* The date/time value to be modified */ int idx /* Parameter index of the modifier */ ){ int rc = 1; double r; switch(sqlite3UpperToLower[(u8)z[0]] ){ case 'a': { /* ** auto ** ** If rawS is available, then interpret as a julian day number, or ** a unix timestamp, depending on its magnitude. */ if( sqlite3_stricmp(z, "auto")==0 ){ if( idx>1 ) return 1; /* IMP: R-33611-57934 */ autoAdjustDate(p); rc = 0; } break; } case 'j': { /* ** julianday ** ** Always interpret the prior number as a julian-day value. If this ** is not the first modifier, or if the prior argument is not a numeric ** value in the allowed range of julian day numbers understood by ** SQLite (0..5373484.5) then the result will be NULL. */ if( sqlite3_stricmp(z, "julianday")==0 ){ if( idx>1 ) return 1; /* IMP: R-31176-64601 */ if( p->validJD && p->rawS ){ rc = 0; p->rawS = 0; } } break; } #ifndef SQLITE_OMIT_LOCALTIME case 'l': { /* localtime ** ** Assuming the current time value is UTC (a.k.a. GMT), shift it to ** show local time. */ if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ rc = toLocaltime(p, pCtx); } break; } #endif case 'u': { /* ** unixepoch ** ** Treat the current value of p->s as the number of ** seconds since 1970. Convert to a real julian day number. */ if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ if( idx>1 ) return 1; /* IMP: R-49255-55373 */ r = p->s*1000.0 + 210866760000000.0; if( r>=0.0 && r<464269060800000.0 ){ clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)(r + 0.5); p->validJD = 1; p->rawS = 0; rc = 0; } } #ifndef SQLITE_OMIT_LOCALTIME else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ if( p->tzSet==0 ){ i64 iOrigJD; /* Original localtime */ i64 iGuess; /* Guess at the corresponding utc time */ int cnt = 0; /* Safety to prevent infinite loop */ i64 iErr; /* Guess is off by this much */ computeJD(p); iGuess = iOrigJD = p->iJD; iErr = 0; do{ DateTime new; memset(&new, 0, sizeof(new)); iGuess -= iErr; new.iJD = iGuess; new.validJD = 1; rc = toLocaltime(&new, pCtx); if( rc ) return rc; computeJD(&new); iErr = new.iJD - iOrigJD; }while( iErr && cnt++<3 ); memset(p, 0, sizeof(*p)); p->iJD = iGuess; p->validJD = 1; p->tzSet = 1; } rc = SQLITE_OK; } #endif break; } case 'w': { /* ** weekday N ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( sqlite3_strnicmp(z, "weekday ", 8)==0 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 && r>=0.0 && r<7.0 && (n=(int)r)==r ){ sqlite3_int64 Z; computeYMD_HMS(p); p->validTZ = 0; p->validJD = 0; computeJD(p); Z = ((p->iJD + 129600000)/86400000) % 7; if( Z>n ) Z -= 7; p->iJD += (n - Z)*86400000; clearYMD_HMS_TZ(p); rc = 0; } break; } case 's': { /* ** start of TTTTT ** ** Move the date backwards to the beginning of the current day, ** or month or year. ** ** subsecond ** subsec ** ** Show subsecond precision in the output of datetime() and ** unixepoch() and strftime('%s'). */ if( sqlite3_strnicmp(z, "start of ", 9)!=0 ){ if( sqlite3_stricmp(z, "subsec")==0 || sqlite3_stricmp(z, "subsecond")==0 ){ p->useSubsec = 1; rc = 0; } break; } if( !p->validJD && !p->validYMD && !p->validHMS ) break; z += 9; computeYMD(p); p->validHMS = 1; p->h = p->m = 0; p->s = 0.0; p->rawS = 0; p->validTZ = 0; p->validJD = 0; if( sqlite3_stricmp(z,"month")==0 ){ p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"year")==0 ){ p->M = 1; p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"day")==0 ){ rc = 0; } break; } case '+': case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { double rRounder; int i; int Y,M,D,h,m,x; const char *z2 = z; char z0 = z[0]; for(n=1; z[n]; n++){ if( z[n]==':' ) break; if( sqlite3Isspace(z[n]) ) break; if( z[n]=='-' ){ if( n==5 && getDigits(&z[1], "40f", &Y)==1 ) break; if( n==6 && getDigits(&z[1], "50f", &Y)==1 ) break; } } if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ assert( rc==1 ); break; } if( z[n]=='-' ){ /* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the ** specified number of years, months, and days. MM is limited to ** the range 0-11 and DD is limited to 0-30. */ if( z0!='+' && z0!='-' ) break; /* Must start with +/- */ if( n==5 ){ if( getDigits(&z[1], "40f-20a-20d", &Y, &M, &D)!=3 ) break; }else{ assert( n==6 ); if( getDigits(&z[1], "50f-20a-20d", &Y, &M, &D)!=3 ) break; z++; } if( M>=12 ) break; /* M range 0..11 */ if( D>=31 ) break; /* D range 0..30 */ computeYMD_HMS(p); p->validJD = 0; if( z0=='-' ){ p->Y -= Y; p->M -= M; D = -D; }else{ p->Y += Y; p->M += M; } x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; computeJD(p); p->validHMS = 0; p->validYMD = 0; p->iJD += (i64)D*86400000; if( z[11]==0 ){ rc = 0; break; } if( sqlite3Isspace(z[11]) && getDigits(&z[12], "20c:20e", &h, &m)==2 ){ z2 = &z[12]; n = 2; }else{ break; } } if( z2[n]==':' ){ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the ** specified number of hours, minutes, seconds, and fractional seconds ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be ** omitted. */ DateTime tx; sqlite3_int64 day; if( !sqlite3Isdigit(*z2) ) z2++; memset(&tx, 0, sizeof(tx)); if( parseHhMmSs(z2, &tx) ) break; computeJD(&tx); tx.iJD -= 43200000; day = tx.iJD/86400000; tx.iJD -= day*86400000; if( z0=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } /* If control reaches this point, it means the transformation is ** one of the forms like "+NNN days". */ z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n>10 || n<3 ) break; if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; computeJD(p); assert( rc==1 ); rRounder = r<0 ? -0.5 : +0.5; for(i=0; i-aXformType[i].rLimit && rM += (int)r; x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; p->validJD = 0; r -= (int)r; break; } case 5: { /* Special processing to add years */ int y = (int)r; assert( strcmp(aXformType[i].zName,"year")==0 ); computeYMD_HMS(p); p->Y += y; p->validJD = 0; r -= (int)r; break; } } computeJD(p); p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder); rc = 0; break; } } clearYMD_HMS_TZ(p); break; } default: { break; } } return rc; } /* ** Process time function arguments. argv[0] is a date-time stamp. ** argv[1] and following are modifiers. Parse them all and write ** the resulting time into the DateTime structure p. Return 0 ** on success and 1 if there are any errors. ** ** If there are zero parameters (if even argv[0] is undefined) ** then assume a default value of "now" for argv[0]. */ static int isDate( sqlite3_context *context, int argc, sqlite3_value **argv, DateTime *p ){ int i, n; const unsigned char *z; int eType; memset(p, 0, sizeof(*p)); if( argc==0 ){ if( !sqlite3NotPureFunc(context) ) return 1; return setDateTimeToCurrent(context, p); } if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT || eType==SQLITE_INTEGER ){ setRawDateNumber(p, sqlite3_value_double(argv[0])); }else{ z = sqlite3_value_text(argv[0]); if( !z || parseDateOrTime(context, (char*)z, p) ){ return 1; } } for(i=1; iisError || !validJulianDay(p->iJD) ) return 1; if( argc==1 && p->validYMD && p->D>28 ){ /* Make sure a YYYY-MM-DD is normalized. ** Example: 2023-02-31 -> 2023-03-03 */ assert( p->validJD ); p->validYMD = 0; } return 0; } /* ** The following routines implement the various date and time functions ** of SQLite. */ /* ** julianday( TIMESTRING, MOD, MOD, ...) ** ** Return the julian day number of the date specified in the arguments */ static void juliandayFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ computeJD(&x); sqlite3_result_double(context, x.iJD/86400000.0); } } /* ** unixepoch( TIMESTRING, MOD, MOD, ...) ** ** Return the number of seconds (including fractional seconds) since ** the unix epoch of 1970-01-01 00:00:00 GMT. */ static void unixepochFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ computeJD(&x); if( x.useSubsec ){ sqlite3_result_double(context, (x.iJD - 21086676*(i64)10000000)/1000.0); }else{ sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); } } } /* ** datetime( TIMESTRING, MOD, MOD, ...) ** ** Return YYYY-MM-DD HH:MM:SS */ static void datetimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int Y, s, n; char zBuf[32]; computeYMD_HMS(&x); Y = x.Y; if( Y<0 ) Y = -Y; zBuf[1] = '0' + (Y/1000)%10; zBuf[2] = '0' + (Y/100)%10; zBuf[3] = '0' + (Y/10)%10; zBuf[4] = '0' + (Y)%10; zBuf[5] = '-'; zBuf[6] = '0' + (x.M/10)%10; zBuf[7] = '0' + (x.M)%10; zBuf[8] = '-'; zBuf[9] = '0' + (x.D/10)%10; zBuf[10] = '0' + (x.D)%10; zBuf[11] = ' '; zBuf[12] = '0' + (x.h/10)%10; zBuf[13] = '0' + (x.h)%10; zBuf[14] = ':'; zBuf[15] = '0' + (x.m/10)%10; zBuf[16] = '0' + (x.m)%10; zBuf[17] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[18] = '0' + (s/10000)%10; zBuf[19] = '0' + (s/1000)%10; zBuf[20] = '.'; zBuf[21] = '0' + (s/100)%10; zBuf[22] = '0' + (s/10)%10; zBuf[23] = '0' + (s)%10; zBuf[24] = 0; n = 24; }else{ s = (int)x.s; zBuf[18] = '0' + (s/10)%10; zBuf[19] = '0' + (s)%10; zBuf[20] = 0; n = 20; } if( x.Y<0 ){ zBuf[0] = '-'; sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT); }else{ sqlite3_result_text(context, &zBuf[1], n-1, SQLITE_TRANSIENT); } } } /* ** time( TIMESTRING, MOD, MOD, ...) ** ** Return HH:MM:SS */ static void timeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int s, n; char zBuf[16]; computeHMS(&x); zBuf[0] = '0' + (x.h/10)%10; zBuf[1] = '0' + (x.h)%10; zBuf[2] = ':'; zBuf[3] = '0' + (x.m/10)%10; zBuf[4] = '0' + (x.m)%10; zBuf[5] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[6] = '0' + (s/10000)%10; zBuf[7] = '0' + (s/1000)%10; zBuf[8] = '.'; zBuf[9] = '0' + (s/100)%10; zBuf[10] = '0' + (s/10)%10; zBuf[11] = '0' + (s)%10; zBuf[12] = 0; n = 12; }else{ s = (int)x.s; zBuf[6] = '0' + (s/10)%10; zBuf[7] = '0' + (s)%10; zBuf[8] = 0; n = 8; } sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT); } } /* ** date( TIMESTRING, MOD, MOD, ...) ** ** Return YYYY-MM-DD */ static void dateFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; if( isDate(context, argc, argv, &x)==0 ){ int Y; char zBuf[16]; computeYMD(&x); Y = x.Y; if( Y<0 ) Y = -Y; zBuf[1] = '0' + (Y/1000)%10; zBuf[2] = '0' + (Y/100)%10; zBuf[3] = '0' + (Y/10)%10; zBuf[4] = '0' + (Y)%10; zBuf[5] = '-'; zBuf[6] = '0' + (x.M/10)%10; zBuf[7] = '0' + (x.M)%10; zBuf[8] = '-'; zBuf[9] = '0' + (x.D/10)%10; zBuf[10] = '0' + (x.D)%10; zBuf[11] = 0; if( x.Y<0 ){ zBuf[0] = '-'; sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT); }else{ sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT); } } } /* ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) ** ** Return a string described by FORMAT. Conversions as follows: ** ** %d day of month ** %f ** fractional seconds SS.SSS ** %H hour 00-24 ** %j day of year 000-366 ** %J ** julian day number ** %m month 01-12 ** %M minute 00-59 ** %s seconds since 1970-01-01 ** %S seconds 00-59 ** %w day of week 0-6 Sunday==0 ** %W week of year 00-53 ** %Y year 0000-9999 ** %% % */ static void strftimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ DateTime x; size_t i,j; sqlite3 *db; const char *zFmt; sqlite3_str sRes; if( argc==0 ) return; zFmt = (const char*)sqlite3_value_text(argv[0]); if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; db = sqlite3_context_db_handle(context); sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); computeJD(&x); computeYMD_HMS(&x); for(i=j=0; zFmt[i]; i++){ char cf; if( zFmt[i]!='%' ) continue; if( j59.999 ) s = 59.999; sqlite3_str_appendf(&sRes, "%06.3f", s); break; } case 'F': { sqlite3_str_appendf(&sRes, "%04d-%02d-%02d", x.Y, x.M, x.D); break; } case 'H': case 'k': { sqlite3_str_appendf(&sRes, cf=='H' ? "%02d" : "%2d", x.h); break; } case 'I': /* Fall thru */ case 'l': { int h = x.h; if( h>12 ) h -= 12; if( h==0 ) h = 12; sqlite3_str_appendf(&sRes, cf=='I' ? "%02d" : "%2d", h); break; } case 'W': /* Fall thru */ case 'j': { int nDay; /* Number of days since 1st day of year */ DateTime y = x; y.validJD = 0; y.M = 1; y.D = 1; computeJD(&y); nDay = (int)((x.iJD-y.iJD+43200000)/86400000); if( cf=='W' ){ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ wd = (int)(((x.iJD+43200000)/86400000)%7); sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7); }else{ sqlite3_str_appendf(&sRes,"%03d",nDay+1); } break; } case 'J': { sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); break; } case 'm': { sqlite3_str_appendf(&sRes,"%02d",x.M); break; } case 'M': { sqlite3_str_appendf(&sRes,"%02d",x.m); break; } case 'p': /* Fall thru */ case 'P': { if( x.h>=12 ){ sqlite3_str_append(&sRes, cf=='p' ? "PM" : "pm", 2); }else{ sqlite3_str_append(&sRes, cf=='p' ? "AM" : "am", 2); } break; } case 'R': { sqlite3_str_appendf(&sRes, "%02d:%02d", x.h, x.m); break; } case 's': { if( x.useSubsec ){ sqlite3_str_appendf(&sRes,"%.3f", (x.iJD - 21086676*(i64)10000000)/1000.0); }else{ i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); sqlite3_str_appendf(&sRes,"%lld",iS); } break; } case 'S': { sqlite3_str_appendf(&sRes,"%02d",(int)x.s); break; } case 'T': { sqlite3_str_appendf(&sRes,"%02d:%02d:%02d", x.h, x.m, (int)x.s); break; } case 'u': /* Fall thru */ case 'w': { char c = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; if( c=='0' && cf=='u' ) c = '7'; sqlite3_str_appendchar(&sRes, 1, c); break; } case 'Y': { sqlite3_str_appendf(&sRes,"%04d",x.Y); break; } case '%': { sqlite3_str_appendchar(&sRes, 1, '%'); break; } default: { sqlite3_str_reset(&sRes); return; } } } if( j=d2.iJD ){ sign = '+'; Y = d1.Y - d2.Y; if( Y ){ d2.Y = d1.Y; d2.validJD = 0; computeJD(&d2); } M = d1.M - d2.M; if( M<0 ){ Y--; M += 12; } if( M!=0 ){ d2.M = d1.M; d2.validJD = 0; computeJD(&d2); } while( d1.iJDd2.iJD ){ M--; if( M<0 ){ M = 11; Y--; } d2.M++; if( d2.M>12 ){ d2.M = 1; d2.Y++; } d2.validJD = 0; computeJD(&d2); } d1.iJD = d2.iJD - d1.iJD; d1.iJD += (u64)1486995408 * (u64)100000; } d1.validYMD = 0; d1.validHMS = 0; d1.validTZ = 0; computeYMD_HMS(&d1); sqlite3StrAccumInit(&sRes, 0, 0, 0, 100); sqlite3_str_appendf(&sRes, "%c%04d-%02d-%02d %02d:%02d:%06.3f", sign, Y, M, d1.D-1, d1.h, d1.m, d1.s); sqlite3ResultStrAccum(context, &sRes); } /* ** current_timestamp() ** ** This function returns the same value as datetime('now'). */ static void ctimestampFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); datetimeFunc(context, 0, 0); } #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ #ifdef SQLITE_OMIT_DATETIME_FUNCS /* ** If the library is compiled to omit the full-scale date and time ** handling (to get a smaller binary), the following minimal version ** of the functions current_time(), current_date() and current_timestamp() ** are included instead. This is to support column declarations that ** include "DEFAULT CURRENT_TIME" etc. ** ** This function uses the C-library functions time(), gmtime() ** and strftime(). The format string to pass to strftime() is supplied ** as the user-data for the function. */ static void currentTimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ time_t t; char *zFormat = (char *)sqlite3_user_data(context); sqlite3_int64 iT; struct tm *pTm; struct tm sNow; char zBuf[20]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); iT = sqlite3StmtCurrentTime(context); if( iT<=0 ) return; t = iT/1000 - 10000*(sqlite3_int64)21086676; #if HAVE_GMTIME_R pTm = gmtime_r(&t, &sNow); #else sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); pTm = gmtime(&t); if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); #endif if( pTm ){ strftime(zBuf, 20, zFormat, &sNow); sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } } #endif /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with ** external linkage. */ SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){ static FuncDef aDateTimeFuncs[] = { #ifndef SQLITE_OMIT_DATETIME_FUNCS PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), PURE_DATE(date, -1, 0, 0, dateFunc ), PURE_DATE(time, -1, 0, 0, timeFunc ), PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), PURE_DATE(timediff, 2, 0, 0, timediffFunc ), DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), DFUNCTION(current_date, 0, 0, 0, cdateFunc ), #else STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), #endif }; sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); } /************** End of date.c ************************************************/ /************** Begin file os.c **********************************************/ /* ** 2005 November 29 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains OS interface code that is common to all ** architectures. */ /* #include "sqliteInt.h" */ /* ** If we compile with the SQLITE_TEST macro set, then the following block ** of code will give us the ability to simulate a disk I/O error. This ** is used for testing the I/O recovery logic. */ #if defined(SQLITE_TEST) SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */ SQLITE_API int sqlite3_diskfull_pending = 0; SQLITE_API int sqlite3_diskfull = 0; #endif /* defined(SQLITE_TEST) */ /* ** When testing, also keep a count of the number of open files. */ #if defined(SQLITE_TEST) SQLITE_API int sqlite3_open_file_count = 0; #endif /* defined(SQLITE_TEST) */ /* ** The default SQLite sqlite3_vfs implementations do not allocate ** memory (actually, os_unix.c allocates a small amount of memory ** from within OsOpen()), but some third-party implementations may. ** So we test the effects of a malloc() failing and the sqlite3OsXXX() ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. ** ** The following functions are instrumented for malloc() failure ** testing: ** ** sqlite3OsRead() ** sqlite3OsWrite() ** sqlite3OsSync() ** sqlite3OsFileSize() ** sqlite3OsLock() ** sqlite3OsCheckReservedLock() ** sqlite3OsFileControl() ** sqlite3OsShmMap() ** sqlite3OsOpen() ** sqlite3OsDelete() ** sqlite3OsAccess() ** sqlite3OsFullPathname() ** */ #if defined(SQLITE_TEST) SQLITE_API int sqlite3_memdebug_vfs_oom_test = 1; #define DO_OS_MALLOC_TEST(x) \ if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3JournalIsInMemory(x))) { \ void *pTstAlloc = sqlite3Malloc(10); \ if (!pTstAlloc) return SQLITE_IOERR_NOMEM_BKPT; \ sqlite3_free(pTstAlloc); \ } #else #define DO_OS_MALLOC_TEST(x) #endif /* ** The following routines are convenience wrappers around methods ** of the sqlite3_file object. This is mostly just syntactic sugar. All ** of this would be completely automatic if SQLite were coded using ** C++ instead of plain old C. */ SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file *pId){ if( pId->pMethods ){ pId->pMethods->xClose(pId); pId->pMethods = 0; } } SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ DO_OS_MALLOC_TEST(id); return id->pMethods->xRead(id, pBuf, amt, offset); } SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ DO_OS_MALLOC_TEST(id); return id->pMethods->xWrite(id, pBuf, amt, offset); } SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){ return id->pMethods->xTruncate(id, size); } SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){ DO_OS_MALLOC_TEST(id); return flags ? id->pMethods->xSync(id, flags) : SQLITE_OK; } SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ DO_OS_MALLOC_TEST(id); return id->pMethods->xFileSize(id, pSize); } SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){ DO_OS_MALLOC_TEST(id); assert( lockType>=SQLITE_LOCK_SHARED && lockType<=SQLITE_LOCK_EXCLUSIVE ); return id->pMethods->xLock(id, lockType); } SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){ assert( lockType==SQLITE_LOCK_NONE || lockType==SQLITE_LOCK_SHARED ); return id->pMethods->xUnlock(id, lockType); } SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){ DO_OS_MALLOC_TEST(id); return id->pMethods->xCheckReservedLock(id, pResOut); } /* ** Use sqlite3OsFileControl() when we are doing something that might fail ** and we need to know about the failures. Use sqlite3OsFileControlHint() ** when simply tossing information over the wall to the VFS and we do not ** really care if the VFS receives and understands the information since it ** is only a hint and can be safely ignored. The sqlite3OsFileControlHint() ** routine has no return value since the return value would be meaningless. */ SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ if( id->pMethods==0 ) return SQLITE_NOTFOUND; #ifdef SQLITE_TEST if( op!=SQLITE_FCNTL_COMMIT_PHASETWO && op!=SQLITE_FCNTL_LOCK_TIMEOUT && op!=SQLITE_FCNTL_CKPT_DONE && op!=SQLITE_FCNTL_CKPT_START ){ /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite ** is using a regular VFS, it is called after the corresponding ** transaction has been committed. Injecting a fault at this point ** confuses the test scripts - the COMMIT command returns SQLITE_NOMEM ** but the transaction is committed anyway. ** ** The core must call OsFileControl() though, not OsFileControlHint(), ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably ** means the commit really has failed and an error should be returned ** to the user. ** ** The CKPT_DONE and CKPT_START file-controls are write-only signals ** to the cksumvfs. Their return code is meaningless and is ignored ** by the SQLite core, so there is no point in simulating OOMs for them. */ DO_OS_MALLOC_TEST(id); } #endif return id->pMethods->xFileControl(id, op, pArg); } SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){ if( id->pMethods ) (void)id->pMethods->xFileControl(id, op, pArg); } SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){ int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); } SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ if( NEVER(id->pMethods==0) ) return 0; return id->pMethods->xDeviceCharacteristics(id); } #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ return id->pMethods->xShmLock(id, offset, n, flags); } SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id){ id->pMethods->xShmBarrier(id); } SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){ return id->pMethods->xShmUnmap(id, deleteFlag); } SQLITE_PRIVATE int sqlite3OsShmMap( sqlite3_file *id, /* Database file handle */ int iPage, int pgsz, int bExtend, /* True to extend file if necessary */ void volatile **pp /* OUT: Pointer to mapping */ ){ DO_OS_MALLOC_TEST(id); return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp); } #endif /* SQLITE_OMIT_WAL */ #if SQLITE_MAX_MMAP_SIZE>0 /* The real implementation of xFetch and xUnfetch */ SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ DO_OS_MALLOC_TEST(id); return id->pMethods->xFetch(id, iOff, iAmt, pp); } SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ return id->pMethods->xUnfetch(id, iOff, p); } #else /* No-op stubs to use when memory-mapped I/O is disabled */ SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ *pp = 0; return SQLITE_OK; } SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ return SQLITE_OK; } #endif /* ** The next group of routines are convenience wrappers around the ** VFS methods. */ SQLITE_PRIVATE int sqlite3OsOpen( sqlite3_vfs *pVfs, const char *zPath, sqlite3_file *pFile, int flags, int *pFlagsOut ){ int rc; DO_OS_MALLOC_TEST(0); /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ assert( zPath || (flags & SQLITE_OPEN_EXCLUSIVE) ); rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut); assert( rc==SQLITE_OK || pFile->pMethods==0 ); return rc; } SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ DO_OS_MALLOC_TEST(0); assert( dirSync==0 || dirSync==1 ); return pVfs->xDelete!=0 ? pVfs->xDelete(pVfs, zPath, dirSync) : SQLITE_OK; } SQLITE_PRIVATE int sqlite3OsAccess( sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut ){ DO_OS_MALLOC_TEST(0); return pVfs->xAccess(pVfs, zPath, flags, pResOut); } SQLITE_PRIVATE int sqlite3OsFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nPathOut, char *zPathOut ){ DO_OS_MALLOC_TEST(0); zPathOut[0] = 0; return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); } #ifndef SQLITE_OMIT_LOAD_EXTENSION SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ assert( zPath!=0 ); assert( strlen(zPath)<=SQLITE_MAX_PATHLEN ); /* tag-20210611-1 */ return pVfs->xDlOpen(pVfs, zPath); } SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ pVfs->xDlError(pVfs, nByte, zBufOut); } SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){ return pVfs->xDlSym(pVfs, pHdle, zSym); } SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ pVfs->xDlClose(pVfs, pHandle); } #endif /* SQLITE_OMIT_LOAD_EXTENSION */ SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ if( sqlite3Config.iPrngSeed ){ memset(zBufOut, 0, nByte); if( ALWAYS(nByte>(signed)sizeof(unsigned)) ) nByte = sizeof(unsigned int); memcpy(zBufOut, &sqlite3Config.iPrngSeed, nByte); return SQLITE_OK; }else{ return pVfs->xRandomness(pVfs, nByte, zBufOut); } } SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ return pVfs->xSleep(pVfs, nMicro); } SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs *pVfs){ return pVfs->xGetLastError ? pVfs->xGetLastError(pVfs, 0, 0) : 0; } SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ int rc; /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64() ** method to get the current date and time if that method is available ** (if iVersion is 2 or greater and the function pointer is not NULL) and ** will fall back to xCurrentTime() if xCurrentTimeInt64() is ** unavailable. */ if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut); }else{ double r; rc = pVfs->xCurrentTime(pVfs, &r); *pTimeOut = (sqlite3_int64)(r*86400000.0); } return rc; } SQLITE_PRIVATE int sqlite3OsOpenMalloc( sqlite3_vfs *pVfs, const char *zFile, sqlite3_file **ppFile, int flags, int *pOutFlags ){ int rc; sqlite3_file *pFile; pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile); if( pFile ){ rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); if( rc!=SQLITE_OK ){ sqlite3_free(pFile); *ppFile = 0; }else{ *ppFile = pFile; } }else{ *ppFile = 0; rc = SQLITE_NOMEM_BKPT; } assert( *ppFile!=0 || rc!=SQLITE_OK ); return rc; } SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *pFile){ assert( pFile ); sqlite3OsClose(pFile); sqlite3_free(pFile); } /* ** This function is a wrapper around the OS specific implementation of ** sqlite3_os_init(). The purpose of the wrapper is to provide the ** ability to simulate a malloc failure, so that the handling of an ** error in sqlite3_os_init() by the upper layers can be tested. */ SQLITE_PRIVATE int sqlite3OsInit(void){ void *p = sqlite3_malloc(10); if( p==0 ) return SQLITE_NOMEM_BKPT; sqlite3_free(p); return sqlite3_os_init(); } /* ** The list of all registered VFS implementations. */ static sqlite3_vfs * SQLITE_WSD vfsList = 0; #define vfsList GLOBAL(sqlite3_vfs *, vfsList) /* ** Locate a VFS by name. If no name is given, simply return the ** first VFS on the list. */ SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ sqlite3_vfs *pVfs = 0; #if SQLITE_THREADSAFE sqlite3_mutex *mutex; #endif #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return 0; #endif #if SQLITE_THREADSAFE mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif sqlite3_mutex_enter(mutex); for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ if( zVfs==0 ) break; if( strcmp(zVfs, pVfs->zName)==0 ) break; } sqlite3_mutex_leave(mutex); return pVfs; } /* ** Unlink a VFS from the linked list */ static void vfsUnlink(sqlite3_vfs *pVfs){ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)) ); if( pVfs==0 ){ /* No-op */ }else if( vfsList==pVfs ){ vfsList = pVfs->pNext; }else if( vfsList ){ sqlite3_vfs *p = vfsList; while( p->pNext && p->pNext!=pVfs ){ p = p->pNext; } if( p->pNext==pVfs ){ p->pNext = pVfs->pNext; } } } /* ** Register a VFS with the system. It is harmless to register the same ** VFS multiple times. The new VFS becomes the default if makeDflt is ** true. */ SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ MUTEX_LOGIC(sqlite3_mutex *mutex;) #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return rc; #endif #ifdef SQLITE_ENABLE_API_ARMOR if( pVfs==0 ) return SQLITE_MISUSE_BKPT; #endif MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(mutex); vfsUnlink(pVfs); if( makeDflt || vfsList==0 ){ pVfs->pNext = vfsList; vfsList = pVfs; }else{ pVfs->pNext = vfsList->pNext; vfsList->pNext = pVfs; } assert(vfsList); sqlite3_mutex_leave(mutex); return SQLITE_OK; } /* ** Unregister a VFS so that it is no longer accessible. */ SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ MUTEX_LOGIC(sqlite3_mutex *mutex;) #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return rc; #endif MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(mutex); vfsUnlink(pVfs); sqlite3_mutex_leave(mutex); return SQLITE_OK; } /************** End of os.c **************************************************/ /************** Begin file fault.c *******************************************/ /* ** 2008 Jan 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code to support the concept of "benign" ** malloc failures (when the xMalloc() or xRealloc() method of the ** sqlite3_mem_methods structure fails to allocate a block of memory ** and returns 0). ** ** Most malloc failures are non-benign. After they occur, SQLite ** abandons the current operation and returns an error code (usually ** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily ** fatal. For example, if a malloc fails while resizing a hash table, this ** is completely recoverable simply by not carrying out the resize. The ** hash table will continue to function normally. So a malloc failure ** during a hash table resize is a benign fault. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_UNTESTABLE /* ** Global variables. */ typedef struct BenignMallocHooks BenignMallocHooks; static SQLITE_WSD struct BenignMallocHooks { void (*xBenignBegin)(void); void (*xBenignEnd)(void); } sqlite3Hooks = { 0, 0 }; /* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks ** structure. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdHooks can refer directly ** to the "sqlite3Hooks" state vector declared above. */ #ifdef SQLITE_OMIT_WSD # define wsdHooksInit \ BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks) # define wsdHooks x[0] #else # define wsdHooksInit # define wsdHooks sqlite3Hooks #endif /* ** Register hooks to call when sqlite3BeginBenignMalloc() and ** sqlite3EndBenignMalloc() are called, respectively. */ SQLITE_PRIVATE void sqlite3BenignMallocHooks( void (*xBenignBegin)(void), void (*xBenignEnd)(void) ){ wsdHooksInit; wsdHooks.xBenignBegin = xBenignBegin; wsdHooks.xBenignEnd = xBenignEnd; } /* ** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that ** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc() ** indicates that subsequent malloc failures are non-benign. */ SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){ wsdHooksInit; if( wsdHooks.xBenignBegin ){ wsdHooks.xBenignBegin(); } } SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){ wsdHooksInit; if( wsdHooks.xBenignEnd ){ wsdHooks.xBenignEnd(); } } #endif /* #ifndef SQLITE_UNTESTABLE */ /************** End of fault.c ***********************************************/ /************** Begin file mem0.c ********************************************/ /* ** 2008 October 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains a no-op memory allocation drivers for use when ** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented ** here always fail. SQLite will not operate with these drivers. These ** are merely placeholders. Real drivers must be substituted using ** sqlite3_config() before SQLite will operate. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is the default. It is ** used when no other memory allocator is specified using compile-time ** macros. */ #ifdef SQLITE_ZERO_MALLOC /* ** No-op versions of all memory allocation routines */ static void *sqlite3MemMalloc(int nByte){ return 0; } static void sqlite3MemFree(void *pPrior){ return; } static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; } static int sqlite3MemSize(void *pPrior){ return 0; } static int sqlite3MemRoundup(int n){ return n; } static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; } static void sqlite3MemShutdown(void *NotUsed){ return; } /* ** This routine is the only routine in this file with external linkage. ** ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. */ SQLITE_PRIVATE void sqlite3MemSetDefault(void){ static const sqlite3_mem_methods defaultMethods = { sqlite3MemMalloc, sqlite3MemFree, sqlite3MemRealloc, sqlite3MemSize, sqlite3MemRoundup, sqlite3MemInit, sqlite3MemShutdown, 0 }; sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); } #endif /* SQLITE_ZERO_MALLOC */ /************** End of mem0.c ************************************************/ /************** Begin file mem1.c ********************************************/ /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains low-level memory allocation drivers for when ** SQLite will use the standard C-library malloc/realloc/free interface ** to obtain the memory it needs. ** ** This file contains implementations of the low-level memory allocation ** routines specified in the sqlite3_mem_methods object. The content of ** this file is only used if SQLITE_SYSTEM_MALLOC is defined. The ** SQLITE_SYSTEM_MALLOC macro is defined automatically if neither the ** SQLITE_MEMDEBUG nor the SQLITE_WIN32_MALLOC macros are defined. The ** default configuration is to use memory allocation routines in this ** file. ** ** C-preprocessor macro summary: ** ** HAVE_MALLOC_USABLE_SIZE The configure script sets this symbol if ** the malloc_usable_size() interface exists ** on the target platform. Or, this symbol ** can be set manually, if desired. ** If an equivalent interface exists by ** a different name, using a separate -D ** option to rename it. ** ** SQLITE_WITHOUT_ZONEMALLOC Some older macs lack support for the zone ** memory allocator. Set this symbol to enable ** building on older macs. ** ** SQLITE_WITHOUT_MSIZE Set this symbol to disable the use of ** _msize() on windows systems. This might ** be necessary when compiling for Delphi, ** for example. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is the default. It is ** used when no other memory allocator is specified using compile-time ** macros. */ #ifdef SQLITE_SYSTEM_MALLOC #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) /* ** Use the zone allocator available on apple products unless the ** SQLITE_WITHOUT_ZONEMALLOC symbol is defined. */ #include #include #ifdef SQLITE_MIGHT_BE_SINGLE_CORE #include #endif /* SQLITE_MIGHT_BE_SINGLE_CORE */ static malloc_zone_t* _sqliteZone_; #define SQLITE_MALLOC(x) malloc_zone_malloc(_sqliteZone_, (x)) #define SQLITE_FREE(x) malloc_zone_free(_sqliteZone_, (x)); #define SQLITE_REALLOC(x,y) malloc_zone_realloc(_sqliteZone_, (x), (y)) #define SQLITE_MALLOCSIZE(x) \ (_sqliteZone_ ? _sqliteZone_->size(_sqliteZone_,x) : malloc_size(x)) #else /* if not __APPLE__ */ /* ** Use standard C library malloc and free on non-Apple systems. ** Also used by Apple systems if SQLITE_WITHOUT_ZONEMALLOC is defined. */ #define SQLITE_MALLOC(x) malloc(x) #define SQLITE_FREE(x) free(x) #define SQLITE_REALLOC(x,y) realloc((x),(y)) /* ** The malloc.h header file is needed for malloc_usable_size() function ** on some systems (e.g. Linux). */ #if HAVE_MALLOC_H && HAVE_MALLOC_USABLE_SIZE # define SQLITE_USE_MALLOC_H 1 # define SQLITE_USE_MALLOC_USABLE_SIZE 1 /* ** The MSVCRT has malloc_usable_size(), but it is called _msize(). The ** use of _msize() is automatic, but can be disabled by compiling with ** -DSQLITE_WITHOUT_MSIZE. Using the _msize() function also requires ** the malloc.h header file. */ #elif defined(_MSC_VER) && !defined(SQLITE_WITHOUT_MSIZE) # define SQLITE_USE_MALLOC_H # define SQLITE_USE_MSIZE #endif /* ** Include the malloc.h header file, if necessary. Also set define macro ** SQLITE_MALLOCSIZE to the appropriate function name, which is _msize() ** for MSVC and malloc_usable_size() for most other systems (e.g. Linux). ** The memory size function can always be overridden manually by defining ** the macro SQLITE_MALLOCSIZE to the desired function name. */ #if defined(SQLITE_USE_MALLOC_H) # include # if defined(SQLITE_USE_MALLOC_USABLE_SIZE) # if !defined(SQLITE_MALLOCSIZE) # define SQLITE_MALLOCSIZE(x) malloc_usable_size(x) # endif # elif defined(SQLITE_USE_MSIZE) # if !defined(SQLITE_MALLOCSIZE) # define SQLITE_MALLOCSIZE _msize # endif # endif #endif /* defined(SQLITE_USE_MALLOC_H) */ #endif /* __APPLE__ or not __APPLE__ */ /* ** Like malloc(), but remember the size of the allocation ** so that we can find it later using sqlite3MemSize(). ** ** For this low-level routine, we are guaranteed that nByte>0 because ** cases of nByte<=0 will be intercepted and dealt with by higher level ** routines. */ static void *sqlite3MemMalloc(int nByte){ #ifdef SQLITE_MALLOCSIZE void *p; testcase( ROUND8(nByte)==nByte ); p = SQLITE_MALLOC( nByte ); if( p==0 ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte); } return p; #else sqlite3_int64 *p; assert( nByte>0 ); testcase( ROUND8(nByte)!=nByte ); p = SQLITE_MALLOC( nByte+8 ); if( p ){ p[0] = nByte; p++; }else{ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte); } return (void *)p; #endif } /* ** Like free() but works for allocations obtained from sqlite3MemMalloc() ** or sqlite3MemRealloc(). ** ** For this low-level routine, we already know that pPrior!=0 since ** cases where pPrior==0 will have been intercepted and dealt with ** by higher-level routines. */ static void sqlite3MemFree(void *pPrior){ #ifdef SQLITE_MALLOCSIZE SQLITE_FREE(pPrior); #else sqlite3_int64 *p = (sqlite3_int64*)pPrior; assert( pPrior!=0 ); p--; SQLITE_FREE(p); #endif } /* ** Report the allocated size of a prior return from xMalloc() ** or xRealloc(). */ static int sqlite3MemSize(void *pPrior){ #ifdef SQLITE_MALLOCSIZE assert( pPrior!=0 ); return (int)SQLITE_MALLOCSIZE(pPrior); #else sqlite3_int64 *p; assert( pPrior!=0 ); p = (sqlite3_int64*)pPrior; p--; return (int)p[0]; #endif } /* ** Like realloc(). Resize an allocation previously obtained from ** sqlite3MemMalloc(). ** ** For this low-level interface, we know that pPrior!=0. Cases where ** pPrior==0 while have been intercepted by higher-level routine and ** redirected to xMalloc. Similarly, we know that nByte>0 because ** cases where nByte<=0 will have been intercepted by higher-level ** routines and redirected to xFree. */ static void *sqlite3MemRealloc(void *pPrior, int nByte){ #ifdef SQLITE_MALLOCSIZE void *p = SQLITE_REALLOC(pPrior, nByte); if( p==0 ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed memory resize %u to %u bytes", SQLITE_MALLOCSIZE(pPrior), nByte); } return p; #else sqlite3_int64 *p = (sqlite3_int64*)pPrior; assert( pPrior!=0 && nByte>0 ); assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */ p--; p = SQLITE_REALLOC(p, nByte+8 ); if( p ){ p[0] = nByte; p++; }else{ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed memory resize %u to %u bytes", sqlite3MemSize(pPrior), nByte); } return (void*)p; #endif } /* ** Round up a request size to the next valid allocation size. */ static int sqlite3MemRoundup(int n){ return ROUND8(n); } /* ** Initialize this module. */ static int sqlite3MemInit(void *NotUsed){ #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) int cpuCount; size_t len; if( _sqliteZone_ ){ return SQLITE_OK; } len = sizeof(cpuCount); /* One usually wants to use hw.activecpu for MT decisions, but not here */ sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0); if( cpuCount>1 ){ /* defer MT decisions to system malloc */ _sqliteZone_ = malloc_default_zone(); }else{ /* only 1 core, use our own zone to contention over global locks, ** e.g. we have our own dedicated locks */ _sqliteZone_ = malloc_create_zone(4096, 0); malloc_set_zone_name(_sqliteZone_, "Sqlite_Heap"); } #endif /* defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) */ UNUSED_PARAMETER(NotUsed); return SQLITE_OK; } /* ** Deinitialize this module. */ static void sqlite3MemShutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); return; } /* ** This routine is the only routine in this file with external linkage. ** ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. */ SQLITE_PRIVATE void sqlite3MemSetDefault(void){ static const sqlite3_mem_methods defaultMethods = { sqlite3MemMalloc, sqlite3MemFree, sqlite3MemRealloc, sqlite3MemSize, sqlite3MemRoundup, sqlite3MemInit, sqlite3MemShutdown, 0 }; sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); } #endif /* SQLITE_SYSTEM_MALLOC */ /************** End of mem1.c ************************************************/ /************** Begin file mem2.c ********************************************/ /* ** 2007 August 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains low-level memory allocation drivers for when ** SQLite will use the standard C-library malloc/realloc/free interface ** to obtain the memory it needs while adding lots of additional debugging ** information to each allocation in order to help detect and fix memory ** leaks and memory usage errors. ** ** This file contains implementations of the low-level memory allocation ** routines specified in the sqlite3_mem_methods object. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is used only if the ** SQLITE_MEMDEBUG macro is defined */ #ifdef SQLITE_MEMDEBUG /* ** The backtrace functionality is only available with GLIBC */ #ifdef __GLIBC__ extern int backtrace(void**,int); extern void backtrace_symbols_fd(void*const*,int,int); #else # define backtrace(A,B) 1 # define backtrace_symbols_fd(A,B,C) #endif /* #include */ /* ** Each memory allocation looks like this: ** ** ------------------------------------------------------------------------ ** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard | ** ------------------------------------------------------------------------ ** ** The application code sees only a pointer to the allocation. We have ** to back up from the allocation pointer to find the MemBlockHdr. The ** MemBlockHdr tells us the size of the allocation and the number of ** backtrace pointers. There is also a guard word at the end of the ** MemBlockHdr. */ struct MemBlockHdr { i64 iSize; /* Size of this allocation */ struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */ char nBacktrace; /* Number of backtraces on this alloc */ char nBacktraceSlots; /* Available backtrace slots */ u8 nTitle; /* Bytes of title; includes '\0' */ u8 eType; /* Allocation type code */ int iForeGuard; /* Guard word for sanity */ }; /* ** Guard words */ #define FOREGUARD 0x80F5E153 #define REARGUARD 0xE4676B53 /* ** Number of malloc size increments to track. */ #define NCSIZE 1000 /* ** All of the static variables used by this module are collected ** into a single structure named "mem". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static struct { /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** Head and tail of a linked list of all outstanding allocations */ struct MemBlockHdr *pFirst; struct MemBlockHdr *pLast; /* ** The number of levels of backtrace to save in new allocations. */ int nBacktrace; void (*xBacktrace)(int, int, void **); /* ** Title text to insert in front of each block */ int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */ char zTitle[100]; /* The title text */ /* ** sqlite3MallocDisallow() increments the following counter. ** sqlite3MallocAllow() decrements it. */ int disallow; /* Do not allow memory allocation */ /* ** Gather statistics on the sizes of memory allocations. ** nAlloc[i] is the number of allocation attempts of i*8 ** bytes. i==NCSIZE is the number of allocation attempts for ** sizes more than NCSIZE*8 bytes. */ int nAlloc[NCSIZE]; /* Total number of allocations */ int nCurrent[NCSIZE]; /* Current number of allocations */ int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */ } mem; /* ** Adjust memory usage statistics */ static void adjustStats(int iSize, int increment){ int i = ROUND8(iSize)/8; if( i>NCSIZE-1 ){ i = NCSIZE - 1; } if( increment>0 ){ mem.nAlloc[i]++; mem.nCurrent[i]++; if( mem.nCurrent[i]>mem.mxCurrent[i] ){ mem.mxCurrent[i] = mem.nCurrent[i]; } }else{ mem.nCurrent[i]--; assert( mem.nCurrent[i]>=0 ); } } /* ** Given an allocation, find the MemBlockHdr for that allocation. ** ** This routine checks the guards at either end of the allocation and ** if they are incorrect it asserts. */ static struct MemBlockHdr *sqlite3MemsysGetHeader(const void *pAllocation){ struct MemBlockHdr *p; int *pInt; u8 *pU8; int nReserve; p = (struct MemBlockHdr*)pAllocation; p--; assert( p->iForeGuard==(int)FOREGUARD ); nReserve = ROUND8(p->iSize); pInt = (int*)pAllocation; pU8 = (u8*)pAllocation; assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD ); /* This checks any of the "extra" bytes allocated due ** to rounding up to an 8 byte boundary to ensure ** they haven't been overwritten. */ while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 ); return p; } /* ** Return the number of bytes currently allocated at address p. */ static int sqlite3MemSize(void *p){ struct MemBlockHdr *pHdr; if( !p ){ return 0; } pHdr = sqlite3MemsysGetHeader(p); return (int)pHdr->iSize; } /* ** Initialize the memory allocation subsystem. */ static int sqlite3MemInit(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( (sizeof(struct MemBlockHdr)&7) == 0 ); if( !sqlite3GlobalConfig.bMemstat ){ /* If memory status is enabled, then the malloc.c wrapper will already ** hold the STATIC_MEM mutex when the routines here are invoked. */ mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } return SQLITE_OK; } /* ** Deinitialize the memory allocation subsystem. */ static void sqlite3MemShutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); mem.mutex = 0; } /* ** Round up a request size to the next valid allocation size. */ static int sqlite3MemRoundup(int n){ return ROUND8(n); } /* ** Fill a buffer with pseudo-random bytes. This is used to preset ** the content of a new memory allocation to unpredictable values and ** to clear the content of a freed allocation to unpredictable values. */ static void randomFill(char *pBuf, int nByte){ unsigned int x, y, r; x = SQLITE_PTR_TO_INT(pBuf); y = nByte | 1; while( nByte >= 4 ){ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001); y = y*1103515245 + 12345; r = x ^ y; *(int*)pBuf = r; pBuf += 4; nByte -= 4; } while( nByte-- > 0 ){ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001); y = y*1103515245 + 12345; r = x ^ y; *(pBuf++) = r & 0xff; } } /* ** Allocate nByte bytes of memory. */ static void *sqlite3MemMalloc(int nByte){ struct MemBlockHdr *pHdr; void **pBt; char *z; int *pInt; void *p = 0; int totalSize; int nReserve; sqlite3_mutex_enter(mem.mutex); assert( mem.disallow==0 ); nReserve = ROUND8(nByte); totalSize = nReserve + sizeof(*pHdr) + sizeof(int) + mem.nBacktrace*sizeof(void*) + mem.nTitle; p = malloc(totalSize); if( p ){ z = p; pBt = (void**)&z[mem.nTitle]; pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace]; pHdr->pNext = 0; pHdr->pPrev = mem.pLast; if( mem.pLast ){ mem.pLast->pNext = pHdr; }else{ mem.pFirst = pHdr; } mem.pLast = pHdr; pHdr->iForeGuard = FOREGUARD; pHdr->eType = MEMTYPE_HEAP; pHdr->nBacktraceSlots = mem.nBacktrace; pHdr->nTitle = mem.nTitle; if( mem.nBacktrace ){ void *aAddr[40]; pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1; memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*)); assert(pBt[0]); if( mem.xBacktrace ){ mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]); } }else{ pHdr->nBacktrace = 0; } if( mem.nTitle ){ memcpy(z, mem.zTitle, mem.nTitle); } pHdr->iSize = nByte; adjustStats(nByte, +1); pInt = (int*)&pHdr[1]; pInt[nReserve/sizeof(int)] = REARGUARD; randomFill((char*)pInt, nByte); memset(((char*)pInt)+nByte, 0x65, nReserve-nByte); p = (void*)pInt; } sqlite3_mutex_leave(mem.mutex); return p; } /* ** Free memory. */ static void sqlite3MemFree(void *pPrior){ struct MemBlockHdr *pHdr; void **pBt; char *z; assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0 || mem.mutex!=0 ); pHdr = sqlite3MemsysGetHeader(pPrior); pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; sqlite3_mutex_enter(mem.mutex); if( pHdr->pPrev ){ assert( pHdr->pPrev->pNext==pHdr ); pHdr->pPrev->pNext = pHdr->pNext; }else{ assert( mem.pFirst==pHdr ); mem.pFirst = pHdr->pNext; } if( pHdr->pNext ){ assert( pHdr->pNext->pPrev==pHdr ); pHdr->pNext->pPrev = pHdr->pPrev; }else{ assert( mem.pLast==pHdr ); mem.pLast = pHdr->pPrev; } z = (char*)pBt; z -= pHdr->nTitle; adjustStats((int)pHdr->iSize, -1); randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) + (int)pHdr->iSize + sizeof(int) + pHdr->nTitle); free(z); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation. ** ** For this debugging implementation, we *always* make a copy of the ** allocation into a new place in memory. In this way, if the ** higher level code is using pointer to the old allocation, it is ** much more likely to break and we are much more liking to find ** the error. */ static void *sqlite3MemRealloc(void *pPrior, int nByte){ struct MemBlockHdr *pOldHdr; void *pNew; assert( mem.disallow==0 ); assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */ pOldHdr = sqlite3MemsysGetHeader(pPrior); pNew = sqlite3MemMalloc(nByte); if( pNew ){ memcpy(pNew, pPrior, (int)(nByteiSize ? nByte : pOldHdr->iSize)); if( nByte>pOldHdr->iSize ){ randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - (int)pOldHdr->iSize); } sqlite3MemFree(pPrior); } return pNew; } /* ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. */ SQLITE_PRIVATE void sqlite3MemSetDefault(void){ static const sqlite3_mem_methods defaultMethods = { sqlite3MemMalloc, sqlite3MemFree, sqlite3MemRealloc, sqlite3MemSize, sqlite3MemRoundup, sqlite3MemInit, sqlite3MemShutdown, 0 }; sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods); } /* ** Set the "type" of an allocation. */ SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); pHdr->eType = eType; } } /* ** Return TRUE if the mask of type in eType matches the type of the ** allocation p. Also return true if p==NULL. ** ** This routine is designed for use within an assert() statement, to ** verify the type of an allocation. For example: ** ** assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); */ SQLITE_PRIVATE int sqlite3MemdebugHasType(const void *p, u8 eType){ int rc = 1; if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ if( (pHdr->eType&eType)==0 ){ rc = 0; } } return rc; } /* ** Return TRUE if the mask of type in eType matches no bits of the type of the ** allocation p. Also return true if p==NULL. ** ** This routine is designed for use within an assert() statement, to ** verify the type of an allocation. For example: ** ** assert( sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); */ SQLITE_PRIVATE int sqlite3MemdebugNoType(const void *p, u8 eType){ int rc = 1; if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ if( (pHdr->eType&eType)!=0 ){ rc = 0; } } return rc; } /* ** Set the number of backtrace levels kept for each allocation. ** A value of zero turns off backtracing. The number is always rounded ** up to a multiple of 2. */ SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){ if( depth<0 ){ depth = 0; } if( depth>20 ){ depth = 20; } depth = (depth+1)&0xfe; mem.nBacktrace = depth; } SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){ mem.xBacktrace = xBacktrace; } /* ** Set the title string for subsequent allocations. */ SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){ unsigned int n = sqlite3Strlen30(zTitle) + 1; sqlite3_mutex_enter(mem.mutex); if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1; memcpy(mem.zTitle, zTitle, n); mem.zTitle[n] = 0; mem.nTitle = ROUND8(n); sqlite3_mutex_leave(mem.mutex); } SQLITE_PRIVATE void sqlite3MemdebugSync(){ struct MemBlockHdr *pHdr; for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ void **pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; mem.xBacktrace((int)pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]); } } /* ** Open the file indicated and write a log of all unfreed memory ** allocations into that log. */ SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){ FILE *out; struct MemBlockHdr *pHdr; void **pBt; int i; out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ char *z = (char*)pHdr; z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle; fprintf(out, "**** %lld bytes at %p from %s ****\n", pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???"); if( pHdr->nBacktrace ){ fflush(out); pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out)); fprintf(out, "\n"); } } fprintf(out, "COUNTS:\n"); for(i=0; i=1 ); size = mem3.aPool[i-1].u.hdr.size4x/4; assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); assert( size>=2 ); if( size <= MX_SMALL ){ memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); }else{ hash = size % N_HASH; memsys3UnlinkFromList(i, &mem3.aiHash[hash]); } } /* ** Link the chunk at mem3.aPool[i] so that is on the list rooted ** at *pRoot. */ static void memsys3LinkIntoList(u32 i, u32 *pRoot){ assert( sqlite3_mutex_held(mem3.mutex) ); mem3.aPool[i].u.list.next = *pRoot; mem3.aPool[i].u.list.prev = 0; if( *pRoot ){ mem3.aPool[*pRoot].u.list.prev = i; } *pRoot = i; } /* ** Link the chunk at index i into either the appropriate ** small chunk list, or into the large chunk hash table. */ static void memsys3Link(u32 i){ u32 size, hash; assert( sqlite3_mutex_held(mem3.mutex) ); assert( i>=1 ); assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); size = mem3.aPool[i-1].u.hdr.size4x/4; assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); assert( size>=2 ); if( size <= MX_SMALL ){ memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); }else{ hash = size % N_HASH; memsys3LinkIntoList(i, &mem3.aiHash[hash]); } } /* ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex ** will already be held (obtained by code in malloc.c) if ** sqlite3GlobalConfig.bMemStat is true. */ static void memsys3Enter(void){ if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } sqlite3_mutex_enter(mem3.mutex); } static void memsys3Leave(void){ sqlite3_mutex_leave(mem3.mutex); } /* ** Called when we are unable to satisfy an allocation of nBytes. */ static void memsys3OutOfMemory(int nByte){ if( !mem3.alarmBusy ){ mem3.alarmBusy = 1; assert( sqlite3_mutex_held(mem3.mutex) ); sqlite3_mutex_leave(mem3.mutex); sqlite3_release_memory(nByte); sqlite3_mutex_enter(mem3.mutex); mem3.alarmBusy = 0; } } /* ** Chunk i is a free chunk that has been unlinked. Adjust its ** size parameters for check-out and return a pointer to the ** user portion of the chunk. */ static void *memsys3Checkout(u32 i, u32 nBlock){ u32 x; assert( sqlite3_mutex_held(mem3.mutex) ); assert( i>=1 ); assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); x = mem3.aPool[i-1].u.hdr.size4x; mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; return &mem3.aPool[i]; } /* ** Carve a piece off of the end of the mem3.iKeyBlk free chunk. ** Return a pointer to the new allocation. Or, if the key chunk ** is not large enough, return 0. */ static void *memsys3FromKeyBlk(u32 nBlock){ assert( sqlite3_mutex_held(mem3.mutex) ); assert( mem3.szKeyBlk>=nBlock ); if( nBlock>=mem3.szKeyBlk-1 ){ /* Use the entire key chunk */ void *p = memsys3Checkout(mem3.iKeyBlk, mem3.szKeyBlk); mem3.iKeyBlk = 0; mem3.szKeyBlk = 0; mem3.mnKeyBlk = 0; return p; }else{ /* Split the key block. Return the tail. */ u32 newi, x; newi = mem3.iKeyBlk + mem3.szKeyBlk - nBlock; assert( newi > mem3.iKeyBlk+1 ); mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = nBlock; mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x |= 2; mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; mem3.szKeyBlk -= nBlock; mem3.aPool[newi-1].u.hdr.prevSize = mem3.szKeyBlk; x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2; mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x; if( mem3.szKeyBlk < mem3.mnKeyBlk ){ mem3.mnKeyBlk = mem3.szKeyBlk; } return (void*)&mem3.aPool[newi]; } } /* ** *pRoot is the head of a list of free chunks of the same size ** or same size hash. In other words, *pRoot is an entry in either ** mem3.aiSmall[] or mem3.aiHash[]. ** ** This routine examines all entries on the given list and tries ** to coalesce each entries with adjacent free chunks. ** ** If it sees a chunk that is larger than mem3.iKeyBlk, it replaces ** the current mem3.iKeyBlk with the new larger chunk. In order for ** this mem3.iKeyBlk replacement to work, the key chunk must be ** linked into the hash tables. That is not the normal state of ** affairs, of course. The calling routine must link the key ** chunk before invoking this routine, then must unlink the (possibly ** changed) key chunk once this routine has finished. */ static void memsys3Merge(u32 *pRoot){ u32 iNext, prev, size, i, x; assert( sqlite3_mutex_held(mem3.mutex) ); for(i=*pRoot; i>0; i=iNext){ iNext = mem3.aPool[i].u.list.next; size = mem3.aPool[i-1].u.hdr.size4x; assert( (size&1)==0 ); if( (size&2)==0 ){ memsys3UnlinkFromList(i, pRoot); assert( i > mem3.aPool[i-1].u.hdr.prevSize ); prev = i - mem3.aPool[i-1].u.hdr.prevSize; if( prev==iNext ){ iNext = mem3.aPool[prev].u.list.next; } memsys3Unlink(prev); size = i + size/4 - prev; x = mem3.aPool[prev-1].u.hdr.size4x & 2; mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; mem3.aPool[prev+size-1].u.hdr.prevSize = size; memsys3Link(prev); i = prev; }else{ size /= 4; } if( size>mem3.szKeyBlk ){ mem3.iKeyBlk = i; mem3.szKeyBlk = size; } } } /* ** Return a block of memory of at least nBytes in size. ** Return NULL if unable. ** ** This function assumes that the necessary mutexes, if any, are ** already held by the caller. Hence "Unsafe". */ static void *memsys3MallocUnsafe(int nByte){ u32 i; u32 nBlock; u32 toFree; assert( sqlite3_mutex_held(mem3.mutex) ); assert( sizeof(Mem3Block)==8 ); if( nByte<=12 ){ nBlock = 2; }else{ nBlock = (nByte + 11)/8; } assert( nBlock>=2 ); /* STEP 1: ** Look for an entry of the correct size in either the small ** chunk table or in the large chunk hash table. This is ** successful most of the time (about 9 times out of 10). */ if( nBlock <= MX_SMALL ){ i = mem3.aiSmall[nBlock-2]; if( i>0 ){ memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); return memsys3Checkout(i, nBlock); } }else{ int hash = nBlock % N_HASH; for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ memsys3UnlinkFromList(i, &mem3.aiHash[hash]); return memsys3Checkout(i, nBlock); } } } /* STEP 2: ** Try to satisfy the allocation by carving a piece off of the end ** of the key chunk. This step usually works if step 1 fails. */ if( mem3.szKeyBlk>=nBlock ){ return memsys3FromKeyBlk(nBlock); } /* STEP 3: ** Loop through the entire memory pool. Coalesce adjacent free ** chunks. Recompute the key chunk as the largest free chunk. ** Then try again to satisfy the allocation by carving a piece off ** of the end of the key chunk. This step happens very ** rarely (we hope!) */ for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ memsys3OutOfMemory(toFree); if( mem3.iKeyBlk ){ memsys3Link(mem3.iKeyBlk); mem3.iKeyBlk = 0; mem3.szKeyBlk = 0; } for(i=0; i=nBlock ){ return memsys3FromKeyBlk(nBlock); } } } /* If none of the above worked, then we fail. */ return 0; } /* ** Free an outstanding memory allocation. ** ** This function assumes that the necessary mutexes, if any, are ** already held by the caller. Hence "Unsafe". */ static void memsys3FreeUnsafe(void *pOld){ Mem3Block *p = (Mem3Block*)pOld; int i; u32 size, x; assert( sqlite3_mutex_held(mem3.mutex) ); assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); i = p - mem3.aPool; assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); size = mem3.aPool[i-1].u.hdr.size4x/4; assert( i+size<=mem3.nPool+1 ); mem3.aPool[i-1].u.hdr.size4x &= ~1; mem3.aPool[i+size-1].u.hdr.prevSize = size; mem3.aPool[i+size-1].u.hdr.size4x &= ~2; memsys3Link(i); /* Try to expand the key using the newly freed chunk */ if( mem3.iKeyBlk ){ while( (mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x&2)==0 ){ size = mem3.aPool[mem3.iKeyBlk-1].u.hdr.prevSize; mem3.iKeyBlk -= size; mem3.szKeyBlk += size; memsys3Unlink(mem3.iKeyBlk); x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2; mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x; mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk; } x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2; while( (mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x&1)==0 ){ memsys3Unlink(mem3.iKeyBlk+mem3.szKeyBlk); mem3.szKeyBlk += mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x/4; mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x; mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk; } } } /* ** Return the size of an outstanding allocation, in bytes. The ** size returned omits the 8-byte header overhead. This only ** works for chunks that are currently checked out. */ static int memsys3Size(void *p){ Mem3Block *pBlock; assert( p!=0 ); pBlock = (Mem3Block*)p; assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; } /* ** Round up a request size to the next valid allocation size. */ static int memsys3Roundup(int n){ if( n<=12 ){ return 12; }else{ return ((n+11)&~7) - 4; } } /* ** Allocate nBytes of memory. */ static void *memsys3Malloc(int nBytes){ sqlite3_int64 *p; assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ memsys3Enter(); p = memsys3MallocUnsafe(nBytes); memsys3Leave(); return (void*)p; } /* ** Free memory. */ static void memsys3Free(void *pPrior){ assert( pPrior ); memsys3Enter(); memsys3FreeUnsafe(pPrior); memsys3Leave(); } /* ** Change the size of an existing memory allocation */ static void *memsys3Realloc(void *pPrior, int nBytes){ int nOld; void *p; if( pPrior==0 ){ return sqlite3_malloc(nBytes); } if( nBytes<=0 ){ sqlite3_free(pPrior); return 0; } nOld = memsys3Size(pPrior); if( nBytes<=nOld && nBytes>=nOld-128 ){ return pPrior; } memsys3Enter(); p = memsys3MallocUnsafe(nBytes); if( p ){ if( nOld>1)!=(size&1) ){ fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); assert( 0 ); break; } if( size&1 ){ fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); }else{ fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, i==mem3.iKeyBlk ? " **key**" : ""); } } for(i=0; i0; j=mem3.aPool[j].u.list.next){ fprintf(out, " %p(%d)", &mem3.aPool[j], (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); } fprintf(out, "\n"); } for(i=0; i0; j=mem3.aPool[j].u.list.next){ fprintf(out, " %p(%d)", &mem3.aPool[j], (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); } fprintf(out, "\n"); } fprintf(out, "key=%d\n", mem3.iKeyBlk); fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szKeyBlk*8); fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnKeyBlk*8); sqlite3_mutex_leave(mem3.mutex); if( out==stdout ){ fflush(stdout); }else{ fclose(out); } #else UNUSED_PARAMETER(zFilename); #endif } /* ** This routine is the only routine in this file with external ** linkage. ** ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. The ** arguments specify the block of memory to manage. ** ** This routine is only called by sqlite3_config(), and therefore ** is not required to be threadsafe (it is not). */ SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ static const sqlite3_mem_methods mempoolMethods = { memsys3Malloc, memsys3Free, memsys3Realloc, memsys3Size, memsys3Roundup, memsys3Init, memsys3Shutdown, 0 }; return &mempoolMethods; } #endif /* SQLITE_ENABLE_MEMSYS3 */ /************** End of mem3.c ************************************************/ /************** Begin file mem5.c ********************************************/ /* ** 2007 October 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** This version of the memory allocation subsystem omits all ** use of malloc(). The application gives SQLite a block of memory ** before calling sqlite3_initialize() from which allocations ** are made and returned by the xMalloc() and xRealloc() ** implementations. Once sqlite3_initialize() has been called, ** the amount of memory available to SQLite is fixed and cannot ** be changed. ** ** This version of the memory allocation subsystem is included ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. ** ** This memory allocator uses the following algorithm: ** ** 1. All memory allocation sizes are rounded up to a power of 2. ** ** 2. If two adjacent free blocks are the halves of a larger block, ** then the two blocks are coalesced into the single larger block. ** ** 3. New memory is allocated from the first available free block. ** ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions ** Concerning Dynamic Storage Allocation". Journal of the Association for ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. ** ** Let n be the size of the largest allocation divided by the minimum ** allocation size (after rounding all sizes up to a power of 2.) Let M ** be the maximum amount of memory ever outstanding at one time. Let ** N be the total amount of memory available for allocation. Robson ** proved that this memory allocator will never breakdown due to ** fragmentation as long as the following constraint holds: ** ** N >= M*(1 + log2(n)/2) - n + 1 ** ** The sqlite3_status() logic tracks the maximum values of n and M so ** that an application can, at any time, verify this constraint. */ /* #include "sqliteInt.h" */ /* ** This version of the memory allocator is used only when ** SQLITE_ENABLE_MEMSYS5 is defined. */ #ifdef SQLITE_ENABLE_MEMSYS5 /* ** A minimum allocation is an instance of the following structure. ** Larger allocations are an array of these structures where the ** size of the array is a power of 2. ** ** The size of this object must be a power of two. That fact is ** verified in memsys5Init(). */ typedef struct Mem5Link Mem5Link; struct Mem5Link { int next; /* Index of next free chunk */ int prev; /* Index of previous free chunk */ }; /* ** Maximum size of any allocation is ((1<=0 && i=0 && iLogsize<=LOGMAX ); assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); next = MEM5LINK(i)->next; prev = MEM5LINK(i)->prev; if( prev<0 ){ mem5.aiFreelist[iLogsize] = next; }else{ MEM5LINK(prev)->next = next; } if( next>=0 ){ MEM5LINK(next)->prev = prev; } } /* ** Link the chunk at mem5.aPool[i] so that is on the iLogsize ** free list. */ static void memsys5Link(int i, int iLogsize){ int x; assert( sqlite3_mutex_held(mem5.mutex) ); assert( i>=0 && i=0 && iLogsize<=LOGMAX ); assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; MEM5LINK(i)->prev = -1; if( x>=0 ){ assert( xprev = i; } mem5.aiFreelist[iLogsize] = i; } /* ** Obtain or release the mutex needed to access global data structures. */ static void memsys5Enter(void){ sqlite3_mutex_enter(mem5.mutex); } static void memsys5Leave(void){ sqlite3_mutex_leave(mem5.mutex); } /* ** Return the size of an outstanding allocation, in bytes. ** This only works for chunks that are currently checked out. */ static int memsys5Size(void *p){ int iSize, i; assert( p!=0 ); i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom); assert( i>=0 && i0 ); /* No more than 1GiB per allocation */ if( nByte > 0x40000000 ) return 0; #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* Keep track of the maximum allocation request. Even unfulfilled ** requests are counted */ if( (u32)nByte>mem5.maxRequest ){ mem5.maxRequest = nByte; } #endif /* Round nByte up to the next valid power of two */ for(iFullSz=mem5.szAtom,iLogsize=0; iFullSzLOGMAX ){ testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); return 0; } i = mem5.aiFreelist[iBin]; memsys5Unlink(i, iBin); while( iBin>iLogsize ){ int newSize; iBin--; newSize = 1 << iBin; mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; memsys5Link(i+newSize, iBin); } mem5.aCtrl[i] = iLogsize; #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* Update allocator performance statistics. */ mem5.nAlloc++; mem5.totalAlloc += iFullSz; mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount=0 && iBlock0 ); assert( mem5.currentOut>=(size*mem5.szAtom) ); mem5.currentCount--; mem5.currentOut -= size*mem5.szAtom; assert( mem5.currentOut>0 || mem5.currentCount==0 ); assert( mem5.currentCount>0 || mem5.currentOut==0 ); #endif mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; while( ALWAYS(iLogsize>iLogsize) & 1 ){ iBuddy = iBlock - size; assert( iBuddy>=0 ); }else{ iBuddy = iBlock + size; if( iBuddy>=mem5.nBlock ) break; } if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; memsys5Unlink(iBuddy, iLogsize); iLogsize++; if( iBuddy0 ){ memsys5Enter(); p = memsys5MallocUnsafe(nBytes); memsys5Leave(); } return (void*)p; } /* ** Free memory. ** ** The outer layer memory allocator prevents this routine from ** being called with pPrior==0. */ static void memsys5Free(void *pPrior){ assert( pPrior!=0 ); memsys5Enter(); memsys5FreeUnsafe(pPrior); memsys5Leave(); } /* ** Change the size of an existing memory allocation. ** ** The outer layer memory allocator prevents this routine from ** being called with pPrior==0. ** ** nBytes is always a value obtained from a prior call to ** memsys5Round(). Hence nBytes is always a non-negative power ** of two. If nBytes==0 that means that an oversize allocation ** (an allocation larger than 0x40000000) was requested and this ** routine should return 0 without freeing pPrior. */ static void *memsys5Realloc(void *pPrior, int nBytes){ int nOld; void *p; assert( pPrior!=0 ); assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ assert( nBytes>=0 ); if( nBytes==0 ){ return 0; } nOld = memsys5Size(pPrior); if( nBytes<=nOld ){ return pPrior; } p = memsys5Malloc(nBytes); if( p ){ memcpy(p, pPrior, nOld); memsys5Free(pPrior); } return p; } /* ** Round up a request size to the next valid allocation size. If ** the allocation is too large to be handled by this allocation system, ** return 0. ** ** All allocations must be a power of two and must be expressed by a ** 32-bit signed integer. Hence the largest allocation is 0x40000000 ** or 1073741824 bytes. */ static int memsys5Roundup(int n){ int iFullSz; if( n<=mem5.szAtom*2 ){ if( n<=mem5.szAtom ) return mem5.szAtom; return mem5.szAtom*2; } if( n>0x10000000 ){ if( n>0x40000000 ) return 0; if( n>0x20000000 ) return 0x40000000; return 0x20000000; } for(iFullSz=mem5.szAtom*8; iFullSz=(i64)n ) return iFullSz/2; return iFullSz; } /* ** Return the ceiling of the logarithm base 2 of iValue. ** ** Examples: memsys5Log(1) -> 0 ** memsys5Log(2) -> 1 ** memsys5Log(4) -> 2 ** memsys5Log(5) -> 3 ** memsys5Log(8) -> 3 ** memsys5Log(9) -> 4 */ static int memsys5Log(int iValue){ int iLog; for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<mem5.szAtom ){ mem5.szAtom = mem5.szAtom << 1; } mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); mem5.zPool = zByte; mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; for(ii=0; ii<=LOGMAX; ii++){ mem5.aiFreelist[ii] = -1; } iOffset = 0; for(ii=LOGMAX; ii>=0; ii--){ int nAlloc = (1<mem5.nBlock); } /* If a mutex is required for normal operation, allocate one */ if( sqlite3GlobalConfig.bMemstat==0 ){ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } return SQLITE_OK; } /* ** Deinitialize this module. */ static void memsys5Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); mem5.mutex = 0; return; } #ifdef SQLITE_TEST /* ** Open the file indicated and write a log of all unfreed memory ** allocations into that log. */ SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){ FILE *out; int i, j, n; int nMinLog; if( zFilename==0 || zFilename[0]==0 ){ out = stdout; }else{ out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } } memsys5Enter(); nMinLog = memsys5Log(mem5.szAtom); for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); } fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); memsys5Leave(); if( out==stdout ){ fflush(stdout); }else{ fclose(out); } } #endif /* ** This routine is the only routine in this file with external ** linkage. It returns a pointer to a static sqlite3_mem_methods ** struct populated with the memsys5 methods. */ SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ static const sqlite3_mem_methods memsys5Methods = { memsys5Malloc, memsys5Free, memsys5Realloc, memsys5Size, memsys5Roundup, memsys5Init, memsys5Shutdown, 0 }; return &memsys5Methods; } #endif /* SQLITE_ENABLE_MEMSYS5 */ /************** End of mem5.c ************************************************/ /************** Begin file mutex.c *******************************************/ /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes. ** ** This file contains code that is common across all mutex implementations. */ /* #include "sqliteInt.h" */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT) /* ** For debugging purposes, record when the mutex subsystem is initialized ** and uninitialized so that we can assert() if there is an attempt to ** allocate a mutex while the system is uninitialized. */ static SQLITE_WSD int mutexIsInit = 0; #endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */ #ifndef SQLITE_MUTEX_OMIT #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS /* ** This block (enclosed by SQLITE_ENABLE_MULTITHREADED_CHECKS) contains ** the implementation of a wrapper around the system default mutex ** implementation (sqlite3DefaultMutex()). ** ** Most calls are passed directly through to the underlying default ** mutex implementation. Except, if a mutex is configured by calling ** sqlite3MutexWarnOnContention() on it, then if contention is ever ** encountered within xMutexEnter() a warning is emitted via sqlite3_log(). ** ** This type of mutex is used as the database handle mutex when testing ** apps that usually use SQLITE_CONFIG_MULTITHREAD mode. */ /* ** Type for all mutexes used when SQLITE_ENABLE_MULTITHREADED_CHECKS ** is defined. Variable CheckMutex.mutex is a pointer to the real mutex ** allocated by the system mutex implementation. Variable iType is usually set ** to the type of mutex requested - SQLITE_MUTEX_RECURSIVE, SQLITE_MUTEX_FAST ** or one of the static mutex identifiers. Or, if this is a recursive mutex ** that has been configured using sqlite3MutexWarnOnContention(), it is ** set to SQLITE_MUTEX_WARNONCONTENTION. */ typedef struct CheckMutex CheckMutex; struct CheckMutex { int iType; sqlite3_mutex *mutex; }; #define SQLITE_MUTEX_WARNONCONTENTION (-1) /* ** Pointer to real mutex methods object used by the CheckMutex ** implementation. Set by checkMutexInit(). */ static SQLITE_WSD const sqlite3_mutex_methods *pGlobalMutexMethods; #ifdef SQLITE_DEBUG static int checkMutexHeld(sqlite3_mutex *p){ return pGlobalMutexMethods->xMutexHeld(((CheckMutex*)p)->mutex); } static int checkMutexNotheld(sqlite3_mutex *p){ return pGlobalMutexMethods->xMutexNotheld(((CheckMutex*)p)->mutex); } #endif /* ** Initialize and deinitialize the mutex subsystem. */ static int checkMutexInit(void){ pGlobalMutexMethods = sqlite3DefaultMutex(); return SQLITE_OK; } static int checkMutexEnd(void){ pGlobalMutexMethods = 0; return SQLITE_OK; } /* ** Allocate a mutex. */ static sqlite3_mutex *checkMutexAlloc(int iType){ static CheckMutex staticMutexes[] = { {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}, {13, 0} }; CheckMutex *p = 0; assert( SQLITE_MUTEX_RECURSIVE==1 && SQLITE_MUTEX_FAST==0 ); if( iType<2 ){ p = sqlite3MallocZero(sizeof(CheckMutex)); if( p==0 ) return 0; p->iType = iType; }else{ #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2>=ArraySize(staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &staticMutexes[iType-2]; } if( p->mutex==0 ){ p->mutex = pGlobalMutexMethods->xMutexAlloc(iType); if( p->mutex==0 ){ if( iType<2 ){ sqlite3_free(p); } p = 0; } } return (sqlite3_mutex*)p; } /* ** Free a mutex. */ static void checkMutexFree(sqlite3_mutex *p){ assert( SQLITE_MUTEX_RECURSIVE<2 ); assert( SQLITE_MUTEX_FAST<2 ); assert( SQLITE_MUTEX_WARNONCONTENTION<2 ); #ifdef SQLITE_ENABLE_API_ARMOR if( ((CheckMutex*)p)->iType<2 ) #endif { CheckMutex *pCheck = (CheckMutex*)p; pGlobalMutexMethods->xMutexFree(pCheck->mutex); sqlite3_free(pCheck); } #ifdef SQLITE_ENABLE_API_ARMOR else{ (void)SQLITE_MISUSE_BKPT; } #endif } /* ** Enter the mutex. */ static void checkMutexEnter(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; if( pCheck->iType==SQLITE_MUTEX_WARNONCONTENTION ){ if( SQLITE_OK==pGlobalMutexMethods->xMutexTry(pCheck->mutex) ){ return; } sqlite3_log(SQLITE_MISUSE, "illegal multi-threaded access to database connection" ); } pGlobalMutexMethods->xMutexEnter(pCheck->mutex); } /* ** Enter the mutex (do not block). */ static int checkMutexTry(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; return pGlobalMutexMethods->xMutexTry(pCheck->mutex); } /* ** Leave the mutex. */ static void checkMutexLeave(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; pGlobalMutexMethods->xMutexLeave(pCheck->mutex); } sqlite3_mutex_methods const *multiThreadedCheckMutex(void){ static const sqlite3_mutex_methods sMutex = { checkMutexInit, checkMutexEnd, checkMutexAlloc, checkMutexFree, checkMutexEnter, checkMutexTry, checkMutexLeave, #ifdef SQLITE_DEBUG checkMutexHeld, checkMutexNotheld #else 0, 0 #endif }; return &sMutex; } /* ** Mark the SQLITE_MUTEX_RECURSIVE mutex passed as the only argument as ** one on which there should be no contention. */ SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex *p){ if( sqlite3GlobalConfig.mutex.xMutexAlloc==checkMutexAlloc ){ CheckMutex *pCheck = (CheckMutex*)p; assert( pCheck->iType==SQLITE_MUTEX_RECURSIVE ); pCheck->iType = SQLITE_MUTEX_WARNONCONTENTION; } } #endif /* ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS */ /* ** Initialize the mutex system. */ SQLITE_PRIVATE int sqlite3MutexInit(void){ int rc = SQLITE_OK; if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){ /* If the xMutexAlloc method has not been set, then the user did not ** install a mutex implementation via sqlite3_config() prior to ** sqlite3_initialize() being called. This block copies pointers to ** the default implementation into the sqlite3GlobalConfig structure. */ sqlite3_mutex_methods const *pFrom; sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; if( sqlite3GlobalConfig.bCoreMutex ){ #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS pFrom = multiThreadedCheckMutex(); #else pFrom = sqlite3DefaultMutex(); #endif }else{ pFrom = sqlite3NoopMutex(); } pTo->xMutexInit = pFrom->xMutexInit; pTo->xMutexEnd = pFrom->xMutexEnd; pTo->xMutexFree = pFrom->xMutexFree; pTo->xMutexEnter = pFrom->xMutexEnter; pTo->xMutexTry = pFrom->xMutexTry; pTo->xMutexLeave = pFrom->xMutexLeave; pTo->xMutexHeld = pFrom->xMutexHeld; pTo->xMutexNotheld = pFrom->xMutexNotheld; sqlite3MemoryBarrier(); pTo->xMutexAlloc = pFrom->xMutexAlloc; } assert( sqlite3GlobalConfig.mutex.xMutexInit ); rc = sqlite3GlobalConfig.mutex.xMutexInit(); #ifdef SQLITE_DEBUG GLOBAL(int, mutexIsInit) = 1; #endif sqlite3MemoryBarrier(); return rc; } /* ** Shutdown the mutex system. This call frees resources allocated by ** sqlite3MutexInit(). */ SQLITE_PRIVATE int sqlite3MutexEnd(void){ int rc = SQLITE_OK; if( sqlite3GlobalConfig.mutex.xMutexEnd ){ rc = sqlite3GlobalConfig.mutex.xMutexEnd(); } #ifdef SQLITE_DEBUG GLOBAL(int, mutexIsInit) = 0; #endif return rc; } /* ** Retrieve a pointer to a static mutex or allocate a new dynamic one. */ SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){ #ifndef SQLITE_OMIT_AUTOINIT if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0; if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0; #endif assert( sqlite3GlobalConfig.mutex.xMutexAlloc ); return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){ if( !sqlite3GlobalConfig.bCoreMutex ){ return 0; } assert( GLOBAL(int, mutexIsInit) ); assert( sqlite3GlobalConfig.mutex.xMutexAlloc ); return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } /* ** Free a dynamic mutex. */ SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexFree ); sqlite3GlobalConfig.mutex.xMutexFree(p); } } /* ** Obtain the mutex p. If some other thread already has the mutex, block ** until it can be obtained. */ SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){ if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexEnter ); sqlite3GlobalConfig.mutex.xMutexEnter(p); } } /* ** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another ** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY. */ SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){ int rc = SQLITE_OK; if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexTry ); return sqlite3GlobalConfig.mutex.xMutexTry(p); } return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was previously ** entered by the same thread. The behavior is undefined if the mutex ** is not currently entered. If a NULL pointer is passed as an argument ** this function is a no-op. */ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){ if( p ){ assert( sqlite3GlobalConfig.mutex.xMutexLeave ); sqlite3GlobalConfig.mutex.xMutexLeave(p); } } #ifndef NDEBUG /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use inside assert() statements. */ SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexHeld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p); } SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); } #endif #endif /* !defined(SQLITE_MUTEX_OMIT) */ /************** End of mutex.c ***********************************************/ /************** Begin file mutex_noop.c **************************************/ /* ** 2008 October 07 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes. ** ** This implementation in this file does not provide any mutual ** exclusion and is thus suitable for use only in applications ** that use SQLite in a single thread. The routines defined ** here are place-holders. Applications can substitute working ** mutex routines at start-time using the ** ** sqlite3_config(SQLITE_CONFIG_MUTEX,...) ** ** interface. ** ** If compiled with SQLITE_DEBUG, then additional logic is inserted ** that does error checking on mutexes to make sure they are being ** called correctly. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_MUTEX_OMIT #ifndef SQLITE_DEBUG /* ** Stub routines for all mutex methods. ** ** This routines provide no mutual exclusion or error checking. */ static int noopMutexInit(void){ return SQLITE_OK; } static int noopMutexEnd(void){ return SQLITE_OK; } static sqlite3_mutex *noopMutexAlloc(int id){ UNUSED_PARAMETER(id); return (sqlite3_mutex*)8; } static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } static int noopMutexTry(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return SQLITE_OK; } static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){ static const sqlite3_mutex_methods sMutex = { noopMutexInit, noopMutexEnd, noopMutexAlloc, noopMutexFree, noopMutexEnter, noopMutexTry, noopMutexLeave, 0, 0, }; return &sMutex; } #endif /* !SQLITE_DEBUG */ #ifdef SQLITE_DEBUG /* ** In this implementation, error checking is provided for testing ** and debugging purposes. The mutexes still do not provide any ** mutual exclusion. */ /* ** The mutex object */ typedef struct sqlite3_debug_mutex { int id; /* The mutex type */ int cnt; /* Number of entries without a matching leave */ } sqlite3_debug_mutex; /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use inside assert() statements. */ static int debugMutexHeld(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; return p==0 || p->cnt>0; } static int debugMutexNotheld(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; return p==0 || p->cnt==0; } /* ** Initialize and deinitialize the mutex subsystem. */ static int debugMutexInit(void){ return SQLITE_OK; } static int debugMutexEnd(void){ return SQLITE_OK; } /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. */ static sqlite3_mutex *debugMutexAlloc(int id){ static sqlite3_debug_mutex aStatic[SQLITE_MUTEX_STATIC_VFS3 - 1]; sqlite3_debug_mutex *pNew = 0; switch( id ){ case SQLITE_MUTEX_FAST: case SQLITE_MUTEX_RECURSIVE: { pNew = sqlite3Malloc(sizeof(*pNew)); if( pNew ){ pNew->id = id; pNew->cnt = 0; } break; } default: { #ifdef SQLITE_ENABLE_API_ARMOR if( id-2<0 || id-2>=ArraySize(aStatic) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif pNew = &aStatic[id-2]; pNew->id = id; break; } } return (sqlite3_mutex*)pNew; } /* ** This routine deallocates a previously allocated mutex. */ static void debugMutexFree(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( p->cnt==0 ); if( p->id==SQLITE_MUTEX_RECURSIVE || p->id==SQLITE_MUTEX_FAST ){ sqlite3_free(p); }else{ #ifdef SQLITE_ENABLE_API_ARMOR (void)SQLITE_MISUSE_BKPT; #endif } } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void debugMutexEnter(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); p->cnt++; } static int debugMutexTry(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); p->cnt++; return SQLITE_OK; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void debugMutexLeave(sqlite3_mutex *pX){ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX; assert( debugMutexHeld(pX) ); p->cnt--; assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) ); } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){ static const sqlite3_mutex_methods sMutex = { debugMutexInit, debugMutexEnd, debugMutexAlloc, debugMutexFree, debugMutexEnter, debugMutexTry, debugMutexLeave, debugMutexHeld, debugMutexNotheld }; return &sMutex; } #endif /* SQLITE_DEBUG */ /* ** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation ** is used regardless of the run-time threadsafety setting. */ #ifdef SQLITE_MUTEX_NOOP SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ return sqlite3NoopMutex(); } #endif /* defined(SQLITE_MUTEX_NOOP) */ #endif /* !defined(SQLITE_MUTEX_OMIT) */ /************** End of mutex_noop.c ******************************************/ /************** Begin file mutex_unix.c **************************************/ /* ** 2007 August 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes for pthreads */ /* #include "sqliteInt.h" */ /* ** The code in this file is only used if we are compiling threadsafe ** under unix with pthreads. ** ** Note that this implementation requires a version of pthreads that ** supports recursive mutexes. */ #ifdef SQLITE_MUTEX_PTHREADS #include /* ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields ** are necessary under two conditions: (1) Debug builds and (2) using ** home-grown mutexes. Encapsulate these conditions into a single #define. */ #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX) # define SQLITE_MUTEX_NREF 1 #else # define SQLITE_MUTEX_NREF 0 #endif /* ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { pthread_mutex_t mutex; /* Mutex controlling the lock */ #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) int id; /* Mutex type */ #endif #if SQLITE_MUTEX_NREF volatile int nRef; /* Number of entrances */ volatile pthread_t owner; /* Thread that is within this mutex */ int trace; /* True to trace changes */ #endif }; #if SQLITE_MUTEX_NREF # define SQLITE3_MUTEX_INITIALIZER(id) \ {PTHREAD_MUTEX_INITIALIZER,id,0,(pthread_t)0,0} #elif defined(SQLITE_ENABLE_API_ARMOR) # define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER, id } #else #define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER } #endif /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use only inside assert() statements. On some platforms, ** there might be race conditions that can cause these routines to ** deliver incorrect results. In particular, if pthread_equal() is ** not an atomic operation, then these routines might delivery ** incorrect results. On most platforms, pthread_equal() is a ** comparison of two integers and is therefore atomic. But we are ** told that HPUX is not such a platform. If so, then these routines ** will not always work correctly on HPUX. ** ** On those platforms where pthread_equal() is not atomic, SQLite ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to ** make sure no assert() statements are evaluated and hence these ** routines are never called. */ #if !defined(NDEBUG) || defined(SQLITE_DEBUG) static int pthreadMutexHeld(sqlite3_mutex *p){ return (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); } static int pthreadMutexNotheld(sqlite3_mutex *p){ return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; } #endif /* ** Try to provide a memory barrier operation, needed for initialization ** and also for the implementation of xShmBarrier in the VFS in cases ** where SQLite is compiled without mutexes. */ SQLITE_PRIVATE void sqlite3MemoryBarrier(void){ #if defined(SQLITE_MEMORY_BARRIER) SQLITE_MEMORY_BARRIER; #elif defined(__GNUC__) && GCC_VERSION>=4001000 __sync_synchronize(); #endif } /* ** Initialize and deinitialize the mutex subsystem. */ static int pthreadMutexInit(void){ return SQLITE_OK; } static int pthreadMutexEnd(void){ return SQLITE_OK; } /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. SQLite ** will unwind its stack and return an error. The argument ** to sqlite3_mutex_alloc() is one of these integer constants: ** **
    **
  • SQLITE_MUTEX_FAST **
  • SQLITE_MUTEX_RECURSIVE **
  • SQLITE_MUTEX_STATIC_MAIN **
  • SQLITE_MUTEX_STATIC_MEM **
  • SQLITE_MUTEX_STATIC_OPEN **
  • SQLITE_MUTEX_STATIC_PRNG **
  • SQLITE_MUTEX_STATIC_LRU **
  • SQLITE_MUTEX_STATIC_PMEM **
  • SQLITE_MUTEX_STATIC_APP1 **
  • SQLITE_MUTEX_STATIC_APP2 **
  • SQLITE_MUTEX_STATIC_APP3 **
  • SQLITE_MUTEX_STATIC_VFS1 **
  • SQLITE_MUTEX_STATIC_VFS2 **
  • SQLITE_MUTEX_STATIC_VFS3 **
** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. */ static sqlite3_mutex *pthreadMutexAlloc(int iType){ static sqlite3_mutex staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER(2), SQLITE3_MUTEX_INITIALIZER(3), SQLITE3_MUTEX_INITIALIZER(4), SQLITE3_MUTEX_INITIALIZER(5), SQLITE3_MUTEX_INITIALIZER(6), SQLITE3_MUTEX_INITIALIZER(7), SQLITE3_MUTEX_INITIALIZER(8), SQLITE3_MUTEX_INITIALIZER(9), SQLITE3_MUTEX_INITIALIZER(10), SQLITE3_MUTEX_INITIALIZER(11), SQLITE3_MUTEX_INITIALIZER(12), SQLITE3_MUTEX_INITIALIZER(13) }; sqlite3_mutex *p; switch( iType ){ case SQLITE_MUTEX_RECURSIVE: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, we will have to ** build our own. See below. */ pthread_mutex_init(&p->mutex, 0); #else /* Use a recursive mutex if it is available */ pthread_mutexattr_t recursiveAttr; pthread_mutexattr_init(&recursiveAttr); pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&p->mutex, &recursiveAttr); pthread_mutexattr_destroy(&recursiveAttr); #endif #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) p->id = SQLITE_MUTEX_RECURSIVE; #endif } break; } case SQLITE_MUTEX_FAST: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ pthread_mutex_init(&p->mutex, 0); #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) p->id = SQLITE_MUTEX_FAST; #endif } break; } default: { #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &staticMutexes[iType-2]; break; } } #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR) assert( p==0 || p->id==iType ); #endif return p; } /* ** This routine deallocates a previously ** allocated mutex. SQLite is careful to deallocate every ** mutex that it allocates. */ static void pthreadMutexFree(sqlite3_mutex *p){ assert( p->nRef==0 ); #ifdef SQLITE_ENABLE_API_ARMOR if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ) #endif { pthread_mutex_destroy(&p->mutex); sqlite3_free(p); } #ifdef SQLITE_ENABLE_API_ARMOR else{ (void)SQLITE_MISUSE_BKPT; } #endif } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void pthreadMutexEnter(sqlite3_mutex *p){ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, then we have to grow ** our own. This implementation assumes that pthread_equal() ** is atomic - that it cannot be deceived into thinking self ** and p->owner are equal if p->owner changes between two values ** that are not equal to self while the comparison is taking place. ** This implementation also assumes a coherent cache - that ** separate processes cannot read different values from the same ** address at the same time. If either of these two conditions ** are not met, then the mutexes will fail and problems will result. */ { pthread_t self = pthread_self(); if( p->nRef>0 && pthread_equal(p->owner, self) ){ p->nRef++; }else{ pthread_mutex_lock(&p->mutex); assert( p->nRef==0 ); p->owner = self; p->nRef = 1; } } #else /* Use the built-in recursive mutexes if they are available. */ pthread_mutex_lock(&p->mutex); #if SQLITE_MUTEX_NREF assert( p->nRef>0 || p->owner==0 ); p->owner = pthread_self(); p->nRef++; #endif #endif #ifdef SQLITE_DEBUG if( p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif } static int pthreadMutexTry(sqlite3_mutex *p){ int rc; assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, then we have to grow ** our own. This implementation assumes that pthread_equal() ** is atomic - that it cannot be deceived into thinking self ** and p->owner are equal if p->owner changes between two values ** that are not equal to self while the comparison is taking place. ** This implementation also assumes a coherent cache - that ** separate processes cannot read different values from the same ** address at the same time. If either of these two conditions ** are not met, then the mutexes will fail and problems will result. */ { pthread_t self = pthread_self(); if( p->nRef>0 && pthread_equal(p->owner, self) ){ p->nRef++; rc = SQLITE_OK; }else if( pthread_mutex_trylock(&p->mutex)==0 ){ assert( p->nRef==0 ); p->owner = self; p->nRef = 1; rc = SQLITE_OK; }else{ rc = SQLITE_BUSY; } } #else /* Use the built-in recursive mutexes if they are available. */ if( pthread_mutex_trylock(&p->mutex)==0 ){ #if SQLITE_MUTEX_NREF p->owner = pthread_self(); p->nRef++; #endif rc = SQLITE_OK; }else{ rc = SQLITE_BUSY; } #endif #ifdef SQLITE_DEBUG if( rc==SQLITE_OK && p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void pthreadMutexLeave(sqlite3_mutex *p){ assert( pthreadMutexHeld(p) ); #if SQLITE_MUTEX_NREF p->nRef--; if( p->nRef==0 ) p->owner = 0; #endif assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX if( p->nRef==0 ){ pthread_mutex_unlock(&p->mutex); } #else pthread_mutex_unlock(&p->mutex); #endif #ifdef SQLITE_DEBUG if( p->trace ){ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); } #endif } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ static const sqlite3_mutex_methods sMutex = { pthreadMutexInit, pthreadMutexEnd, pthreadMutexAlloc, pthreadMutexFree, pthreadMutexEnter, pthreadMutexTry, pthreadMutexLeave, #ifdef SQLITE_DEBUG pthreadMutexHeld, pthreadMutexNotheld #else 0, 0 #endif }; return &sMutex; } #endif /* SQLITE_MUTEX_PTHREADS */ /************** End of mutex_unix.c ******************************************/ /************** Begin file mutex_w32.c ***************************************/ /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes for Win32. */ /* #include "sqliteInt.h" */ #if SQLITE_OS_WIN /* ** Include code that is common to all os_*.c files */ /* #include "os_common.h" */ /* ** Include the header file for the Windows VFS. */ /************** Include os_win.h in the middle of mutex_w32.c ****************/ /************** Begin file os_win.h ******************************************/ /* ** 2013 November 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to Windows. */ #ifndef SQLITE_OS_WIN_H #define SQLITE_OS_WIN_H /* ** Include the primary Windows SDK header file. */ #include "windows.h" #ifdef __CYGWIN__ # include # include /* amalgamator: dontcache */ #endif /* ** Determine if we are dealing with Windows NT. ** ** We ought to be able to determine if we are compiling for Windows 9x or ** Windows NT using the _WIN32_WINNT macro as follows: ** ** #if defined(_WIN32_WINNT) ** # define SQLITE_OS_WINNT 1 ** #else ** # define SQLITE_OS_WINNT 0 ** #endif ** ** However, Visual Studio 2005 does not set _WIN32_WINNT by default, as ** it ought to, so the above test does not work. We'll just assume that ** everything is Windows NT unless the programmer explicitly says otherwise ** by setting SQLITE_OS_WINNT to 0. */ #if SQLITE_OS_WIN && !defined(SQLITE_OS_WINNT) # define SQLITE_OS_WINNT 1 #endif /* ** Determine if we are dealing with Windows CE - which has a much reduced ** API. */ #if defined(_WIN32_WCE) # define SQLITE_OS_WINCE 1 #else # define SQLITE_OS_WINCE 0 #endif /* ** Determine if we are dealing with WinRT, which provides only a subset of ** the full Win32 API. */ #if !defined(SQLITE_OS_WINRT) # define SQLITE_OS_WINRT 0 #endif /* ** For WinCE, some API function parameters do not appear to be declared as ** volatile. */ #if SQLITE_OS_WINCE # define SQLITE_WIN32_VOLATILE #else # define SQLITE_WIN32_VOLATILE volatile #endif /* ** For some Windows sub-platforms, the _beginthreadex() / _endthreadex() ** functions are not available (e.g. those not using MSVC, Cygwin, etc). */ #if SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \ SQLITE_THREADSAFE>0 && !defined(__CYGWIN__) # define SQLITE_OS_WIN_THREADS 1 #else # define SQLITE_OS_WIN_THREADS 0 #endif #endif /* SQLITE_OS_WIN_H */ /************** End of os_win.h **********************************************/ /************** Continuing where we left off in mutex_w32.c ******************/ #endif /* ** The code in this file is only used if we are compiling multithreaded ** on a Win32 system. */ #ifdef SQLITE_MUTEX_W32 /* ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { CRITICAL_SECTION mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ #ifdef SQLITE_DEBUG volatile int nRef; /* Number of entrances */ volatile DWORD owner; /* Thread holding this mutex */ volatile LONG trace; /* True to trace changes */ #endif }; /* ** These are the initializer values used when declaring a "static" mutex ** on Win32. It should be noted that all mutexes require initialization ** on the Win32 platform. */ #define SQLITE_W32_MUTEX_INITIALIZER { 0 } #ifdef SQLITE_DEBUG #define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id, \ 0L, (DWORD)0, 0 } #else #define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id } #endif #ifdef SQLITE_DEBUG /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use only inside assert() statements. */ static int winMutexHeld(sqlite3_mutex *p){ return p->nRef!=0 && p->owner==GetCurrentThreadId(); } static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){ return p->nRef==0 || p->owner!=tid; } static int winMutexNotheld(sqlite3_mutex *p){ DWORD tid = GetCurrentThreadId(); return winMutexNotheld2(p, tid); } #endif /* ** Try to provide a memory barrier operation, needed for initialization ** and also for the xShmBarrier method of the VFS in cases when SQLite is ** compiled without mutexes (SQLITE_THREADSAFE=0). */ SQLITE_PRIVATE void sqlite3MemoryBarrier(void){ #if defined(SQLITE_MEMORY_BARRIER) SQLITE_MEMORY_BARRIER; #elif defined(__GNUC__) __sync_synchronize(); #elif MSVC_VERSION>=1400 _ReadWriteBarrier(); #elif defined(MemoryBarrier) MemoryBarrier(); #endif } /* ** Initialize and deinitialize the mutex subsystem. */ static sqlite3_mutex winMutex_staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER(2), SQLITE3_MUTEX_INITIALIZER(3), SQLITE3_MUTEX_INITIALIZER(4), SQLITE3_MUTEX_INITIALIZER(5), SQLITE3_MUTEX_INITIALIZER(6), SQLITE3_MUTEX_INITIALIZER(7), SQLITE3_MUTEX_INITIALIZER(8), SQLITE3_MUTEX_INITIALIZER(9), SQLITE3_MUTEX_INITIALIZER(10), SQLITE3_MUTEX_INITIALIZER(11), SQLITE3_MUTEX_INITIALIZER(12), SQLITE3_MUTEX_INITIALIZER(13) }; static int winMutex_isInit = 0; static int winMutex_isNt = -1; /* <0 means "need to query" */ /* As the winMutexInit() and winMutexEnd() functions are called as part ** of the sqlite3_initialize() and sqlite3_shutdown() processing, the ** "interlocked" magic used here is probably not strictly necessary. */ static LONG SQLITE_WIN32_VOLATILE winMutex_lock = 0; SQLITE_API int sqlite3_win32_is_nt(void); /* os_win.c */ SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */ static int winMutexInit(void){ /* The first to increment to 1 does actual initialization */ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){ int i; for(i=0; i **
  • SQLITE_MUTEX_FAST **
  • SQLITE_MUTEX_RECURSIVE **
  • SQLITE_MUTEX_STATIC_MAIN **
  • SQLITE_MUTEX_STATIC_MEM **
  • SQLITE_MUTEX_STATIC_OPEN **
  • SQLITE_MUTEX_STATIC_PRNG **
  • SQLITE_MUTEX_STATIC_LRU **
  • SQLITE_MUTEX_STATIC_PMEM **
  • SQLITE_MUTEX_STATIC_APP1 **
  • SQLITE_MUTEX_STATIC_APP2 **
  • SQLITE_MUTEX_STATIC_APP3 **
  • SQLITE_MUTEX_STATIC_VFS1 **
  • SQLITE_MUTEX_STATIC_VFS2 **
  • SQLITE_MUTEX_STATIC_VFS3 ** ** ** The first two constants cause sqlite3_mutex_alloc() to create ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. But SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** The other allowed parameters to sqlite3_mutex_alloc() each return ** a pointer to a static preexisting mutex. Six static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. */ static sqlite3_mutex *winMutexAlloc(int iType){ sqlite3_mutex *p; switch( iType ){ case SQLITE_MUTEX_FAST: case SQLITE_MUTEX_RECURSIVE: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ p->id = iType; #ifdef SQLITE_DEBUG #ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC p->trace = 1; #endif #endif #if SQLITE_OS_WINRT InitializeCriticalSectionEx(&p->mutex, 0, 0); #else InitializeCriticalSection(&p->mutex); #endif } break; } default: { #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &winMutex_staticMutexes[iType-2]; #ifdef SQLITE_DEBUG #ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC InterlockedCompareExchange(&p->trace, 1, 0); #endif #endif break; } } assert( p==0 || p->id==iType ); return p; } /* ** This routine deallocates a previously ** allocated mutex. SQLite is careful to deallocate every ** mutex that it allocates. */ static void winMutexFree(sqlite3_mutex *p){ assert( p ); assert( p->nRef==0 && p->owner==0 ); if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ){ DeleteCriticalSection(&p->mutex); sqlite3_free(p); }else{ #ifdef SQLITE_ENABLE_API_ARMOR (void)SQLITE_MISUSE_BKPT; #endif } } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void winMutexEnter(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif #ifdef SQLITE_DEBUG assert( p ); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); #else assert( p ); #endif assert( winMutex_isInit==1 ); EnterCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG assert( p->nRef>0 || p->owner==0 ); p->owner = tid; p->nRef++; if( p->trace ){ OSTRACE(("ENTER-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n", tid, p->id, p, p->trace, p->nRef)); } #endif } static int winMutexTry(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif int rc = SQLITE_BUSY; assert( p ); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); /* ** The sqlite3_mutex_try() routine is very rarely used, and when it ** is used it is merely an optimization. So it is OK for it to always ** fail. ** ** The TryEnterCriticalSection() interface is only available on WinNT. ** And some windows compilers complain if you try to use it without ** first doing some #defines that prevent SQLite from building on Win98. ** For that reason, we will omit this optimization for now. See ** ticket #2685. */ #if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0400 assert( winMutex_isInit==1 ); assert( winMutex_isNt>=-1 && winMutex_isNt<=1 ); if( winMutex_isNt<0 ){ winMutex_isNt = sqlite3_win32_is_nt(); } assert( winMutex_isNt==0 || winMutex_isNt==1 ); if( winMutex_isNt && TryEnterCriticalSection(&p->mutex) ){ #ifdef SQLITE_DEBUG p->owner = tid; p->nRef++; #endif rc = SQLITE_OK; } #else UNUSED_PARAMETER(p); #endif #ifdef SQLITE_DEBUG if( p->trace ){ OSTRACE(("TRY-MUTEX tid=%lu, mutex(%d)=%p (%d), owner=%lu, nRef=%d, rc=%s\n", tid, p->id, p, p->trace, p->owner, p->nRef, sqlite3ErrName(rc))); } #endif return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void winMutexLeave(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif assert( p ); #ifdef SQLITE_DEBUG assert( p->nRef>0 ); assert( p->owner==tid ); p->nRef--; if( p->nRef==0 ) p->owner = 0; assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #endif assert( winMutex_isInit==1 ); LeaveCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG if( p->trace ){ OSTRACE(("LEAVE-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n", tid, p->id, p, p->trace, p->nRef)); } #endif } SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ static const sqlite3_mutex_methods sMutex = { winMutexInit, winMutexEnd, winMutexAlloc, winMutexFree, winMutexEnter, winMutexTry, winMutexLeave, #ifdef SQLITE_DEBUG winMutexHeld, winMutexNotheld #else 0, 0 #endif }; return &sMutex; } #endif /* SQLITE_MUTEX_W32 */ /************** End of mutex_w32.c *******************************************/ /************** Begin file malloc.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** Memory allocation functions used throughout sqlite. */ /* #include "sqliteInt.h" */ /* #include */ /* ** Attempt to release up to n bytes of non-essential memory currently ** held by SQLite. An example of non-essential memory is memory used to ** cache database pages that are not currently in use. */ SQLITE_API int sqlite3_release_memory(int n){ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT return sqlite3PcacheReleaseMemory(n); #else /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine ** is a no-op returning zero if SQLite is not compiled with ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ UNUSED_PARAMETER(n); return 0; #endif } /* ** Default value of the hard heap limit. 0 means "no limit". */ #ifndef SQLITE_MAX_MEMORY # define SQLITE_MAX_MEMORY 0 #endif /* ** State information local to the memory allocation subsystem. */ static SQLITE_WSD struct Mem0Global { sqlite3_mutex *mutex; /* Mutex to serialize access */ sqlite3_int64 alarmThreshold; /* The soft heap limit */ sqlite3_int64 hardLimit; /* The hard upper bound on memory */ /* ** True if heap is nearly "full" where "full" is defined by the ** sqlite3_soft_heap_limit() setting. */ int nearlyFull; } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 }; #define mem0 GLOBAL(struct Mem0Global, mem0) /* ** Return the memory allocator mutex. sqlite3_status() needs it. */ SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void){ return mem0.mutex; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Deprecated external interface. It used to set an alarm callback ** that was invoked when memory usage grew too large. Now it is a ** no-op. */ SQLITE_API int sqlite3_memory_alarm( void(*xCallback)(void *pArg, sqlite3_int64 used,int N), void *pArg, sqlite3_int64 iThreshold ){ (void)xCallback; (void)pArg; (void)iThreshold; return SQLITE_OK; } #endif /* ** Set the soft heap-size limit for the library. An argument of ** zero disables the limit. A negative argument is a no-op used to ** obtain the return value. ** ** The return value is the value of the heap limit just before this ** interface was called. ** ** If the hard heap limit is enabled, then the soft heap limit cannot ** be disabled nor raised above the hard heap limit. */ SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; sqlite3_int64 excess; sqlite3_int64 nUsed; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return -1; #endif sqlite3_mutex_enter(mem0.mutex); priorLimit = mem0.alarmThreshold; if( n<0 ){ sqlite3_mutex_leave(mem0.mutex); return priorLimit; } if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){ n = mem0.hardLimit; } mem0.alarmThreshold = n; nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed); sqlite3_mutex_leave(mem0.mutex); excess = sqlite3_memory_used() - n; if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); return priorLimit; } SQLITE_API void sqlite3_soft_heap_limit(int n){ if( n<0 ) n = 0; sqlite3_soft_heap_limit64(n); } /* ** Set the hard heap-size limit for the library. An argument of zero ** disables the hard heap limit. A negative argument is a no-op used ** to obtain the return value without affecting the hard heap limit. ** ** The return value is the value of the hard heap limit just prior to ** calling this interface. ** ** Setting the hard heap limit will also activate the soft heap limit ** and constrain the soft heap limit to be no more than the hard heap ** limit. */ SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){ sqlite3_int64 priorLimit; #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return -1; #endif sqlite3_mutex_enter(mem0.mutex); priorLimit = mem0.hardLimit; if( n>=0 ){ mem0.hardLimit = n; if( n0 ); /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal ** implementation of malloc_good_size(), which must be called in debug ** mode and specifically when the DMD "Dark Matter Detector" is enabled ** or else a crash results. Hence, do not attempt to optimize out the ** following xRoundup() call. */ nFull = sqlite3GlobalConfig.m.xRoundup(n); sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); if( mem0.alarmThreshold>0 ){ sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.alarmThreshold - nFull ){ AtomicStore(&mem0.nearlyFull, 1); sqlite3MallocAlarm(nFull); if( mem0.hardLimit ){ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.hardLimit - nFull ){ *pp = 0; return; } } }else{ AtomicStore(&mem0.nearlyFull, 0); } } p = sqlite3GlobalConfig.m.xMalloc(nFull); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( p==0 && mem0.alarmThreshold>0 ){ sqlite3MallocAlarm(nFull); p = sqlite3GlobalConfig.m.xMalloc(nFull); } #endif if( p ){ nFull = sqlite3MallocSize(p); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); } *pp = p; } /* ** Maximum size of any single memory allocation. ** ** This is not a limit on the total amount of memory used. This is ** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc(). ** ** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391 ** This provides a 256-byte safety margin for defense against 32-bit ** signed integer overflow bugs when computing memory allocation sizes. ** Paranoid applications might want to reduce the maximum allocation size ** further for an even larger safety margin. 0x3fffffff or 0x0fffffff ** or even smaller would be reasonable upper bounds on the size of a memory ** allocations for most applications. */ #ifndef SQLITE_MAX_ALLOCATION_SIZE # define SQLITE_MAX_ALLOCATION_SIZE 2147483391 #endif #if SQLITE_MAX_ALLOCATION_SIZE>2147483391 # error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391 #endif /* ** Allocate memory. This routine is like sqlite3_malloc() except that it ** assumes the memory subsystem has already been initialized. */ SQLITE_PRIVATE void *sqlite3Malloc(u64 n){ void *p; if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){ p = 0; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); mallocWithAlarm((int)n, &p); sqlite3_mutex_leave(mem0.mutex); }else{ p = sqlite3GlobalConfig.m.xMalloc((int)n); } assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ return p; } /* ** This version of the memory allocation is for use by the application. ** First make sure the memory subsystem is initialized, then do the ** allocation. */ SQLITE_API void *sqlite3_malloc(int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return n<=0 ? 0 : sqlite3Malloc(n); } SQLITE_API void *sqlite3_malloc64(sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Malloc(n); } /* ** TRUE if p is a lookaside memory allocation from db */ #ifndef SQLITE_OMIT_LOOKASIDE static int isLookaside(sqlite3 *db, const void *p){ return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd); } #else #define isLookaside(A,B) 0 #endif /* ** Return the size of a memory allocation previously obtained from ** sqlite3Malloc() or sqlite3_malloc(). */ SQLITE_PRIVATE int sqlite3MallocSize(const void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize((void*)p); } static int lookasideMallocSize(sqlite3 *db, const void *p){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE return plookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL; #else return db->lookaside.szTrue; #endif } SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, const void *p){ assert( p!=0 ); #ifdef SQLITE_DEBUG if( db==0 ){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); }else if( !isLookaside(db,p) ){ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); } #endif if( db ){ if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ assert( sqlite3_mutex_held(db->mutex) ); return LOOKASIDE_SMALL; } #endif if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ assert( sqlite3_mutex_held(db->mutex) ); return db->lookaside.szTrue; } } } return sqlite3GlobalConfig.m.xSize((void*)p); } SQLITE_API sqlite3_uint64 sqlite3_msize(void *p){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return p ? sqlite3GlobalConfig.m.xSize(p) : 0; } /* ** Free memory previously obtained from sqlite3Malloc(). */ SQLITE_API void sqlite3_free(void *p){ if( p==0 ) return; /* IMP: R-49053-54554 */ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } } /* ** Add the size of memory allocation "p" to the count in ** *db->pnBytesFreed. */ static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ *db->pnBytesFreed += sqlite3DbMallocSize(db,p); } /* ** Free memory that might be associated with a particular database ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. */ SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( db ){ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pSmallFree; db->lookaside.pSmallFree = pBuf; return; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; return; } } if( db->pnBytesFreed ){ measureAllocationSize(db, p); return; } } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3 *db, void *p){ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pSmallFree; db->lookaside.pSmallFree = pBuf; return; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; return; } } if( db->pnBytesFreed ){ measureAllocationSize(db, p); return; } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( p ) sqlite3DbFreeNN(db, p); } /* ** Change the size of an existing memory allocation */ SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){ int nOld, nNew, nDiff; void *pNew; assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); if( pOld==0 ){ return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ } if( nBytes==0 ){ sqlite3_free(pOld); /* IMP: R-26507-47431 */ return 0; } if( nBytes>=0x7fffff00 ){ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ return 0; } nOld = sqlite3MallocSize(pOld); /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second ** argument to xRealloc is always a value returned by a prior call to ** xRoundup. */ nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); if( nOld==nNew ){ pNew = pOld; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_int64 nUsed; sqlite3_mutex_enter(mem0.mutex); sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); nDiff = nNew - nOld; if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >= mem0.alarmThreshold-nDiff ){ sqlite3MallocAlarm(nDiff); if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){ sqlite3_mutex_leave(mem0.mutex); return 0; } } pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( pNew==0 && mem0.alarmThreshold>0 ){ sqlite3MallocAlarm((int)nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } #endif if( pNew ){ nNew = sqlite3MallocSize(pNew); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); } sqlite3_mutex_leave(mem0.mutex); }else{ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ return pNew; } /* ** The public interface to sqlite3Realloc. Make sure that the memory ** subsystem is initialized prior to invoking sqliteRealloc. */ SQLITE_API void *sqlite3_realloc(void *pOld, int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif if( n<0 ) n = 0; /* IMP: R-26507-47431 */ return sqlite3Realloc(pOld, n); } SQLITE_API void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Realloc(pOld, n); } /* ** Allocate and zero memory. */ SQLITE_PRIVATE void *sqlite3MallocZero(u64 n){ void *p = sqlite3Malloc(n); if( p ){ memset(p, 0, (size_t)n); } return p; } /* ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ void *p; testcase( db==0 ); p = sqlite3DbMallocRaw(db, n); if( p ) memset(p, 0, (size_t)n); return p; } /* Finish the work of sqlite3DbMallocRawNN for the unusual and ** slower case when the allocation cannot be fulfilled using lookaside. */ static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ void *p; assert( db!=0 ); p = sqlite3Malloc(n); if( !p ) sqlite3OomFault(db); sqlite3MemdebugSetType(p, (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); return p; } /* ** Allocate memory, either lookaside (if possible) or heap. ** If the allocation fails, set the mallocFailed flag in ** the connection pointer. ** ** If db!=0 and db->mallocFailed is true (indicating a prior malloc ** failure on the same database connection) then always return 0. ** Hence for a particular database connection, once malloc starts ** failing, it fails consistently until mallocFailed is reset. ** This is an important assumption. There are many places in the ** code that do things like this: ** ** int *a = (int*)sqlite3DbMallocRaw(db, 100); ** int *b = (int*)sqlite3DbMallocRaw(db, 200); ** if( b ) a[10] = 9; ** ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed ** that all prior mallocs (ex: "a") worked too. ** ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is ** not a NULL pointer. */ SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ void *p; if( db ) return sqlite3DbMallocRawNN(db, n); p = sqlite3Malloc(n); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); return p; } SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ #ifndef SQLITE_OMIT_LOOKASIDE LookasideSlot *pBuf; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( db->pnBytesFreed==0 ); if( n>db->lookaside.sz ){ if( !db->lookaside.bDisable ){ db->lookaside.anStat[1]++; }else if( db->mallocFailed ){ return 0; } return dbMallocRawFinish(db, n); } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( n<=LOOKASIDE_SMALL ){ if( (pBuf = db->lookaside.pSmallFree)!=0 ){ db->lookaside.pSmallFree = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){ db->lookaside.pSmallInit = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; } } #endif if( (pBuf = db->lookaside.pFree)!=0 ){ db->lookaside.pFree = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else if( (pBuf = db->lookaside.pInit)!=0 ){ db->lookaside.pInit = pBuf->pNext; db->lookaside.anStat[0]++; return (void*)pBuf; }else{ db->lookaside.anStat[2]++; } #else assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( db->pnBytesFreed==0 ); if( db->mallocFailed ){ return 0; } #endif return dbMallocRawFinish(db, n); } /* Forward declaration */ static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); /* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ assert( db!=0 ); if( p==0 ) return sqlite3DbMallocRawNN(db, n); assert( sqlite3_mutex_held(db->mutex) ); if( ((uptr)p)<(uptr)db->lookaside.pEnd ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){ if( n<=LOOKASIDE_SMALL ) return p; }else #endif if( ((uptr)p)>=(uptr)db->lookaside.pStart ){ if( n<=db->lookaside.szTrue ) return p; } } return dbReallocFinish(db, p, n); } static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ void *pNew = 0; assert( db!=0 ); assert( p!=0 ); if( db->mallocFailed==0 ){ if( isLookaside(db, p) ){ pNew = sqlite3DbMallocRawNN(db, n); if( pNew ){ memcpy(pNew, p, lookasideMallocSize(db, p)); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3Realloc(p, n); if( !pNew ){ sqlite3OomFault(db); } sqlite3MemdebugSetType(pNew, (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); } } return pNew; } /* ** Attempt to reallocate p. If the reallocation fails, then free p ** and set the mallocFailed flag in the database connection. */ SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ void *pNew; pNew = sqlite3DbRealloc(db, p, n); if( !pNew ){ sqlite3DbFree(db, p); } return pNew; } /* ** Make a copy of a string in memory obtained from sqliteMalloc(). These ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This ** is because when memory debugging is turned on, these two functions are ** called via macros that record the current file and line number in the ** ThreadData structure. */ SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){ char *zNew; size_t n; if( z==0 ){ return 0; } n = strlen(z) + 1; zNew = sqlite3DbMallocRaw(db, n); if( zNew ){ memcpy(zNew, z, n); } return zNew; } SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ char *zNew; assert( db!=0 ); assert( z!=0 || n==0 ); assert( (n&0x7fffffff)==n ); zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0; if( zNew ){ memcpy(zNew, z, (size_t)n); zNew[n] = 0; } return zNew; } /* ** The text between zStart and zEnd represents a phrase within a larger ** SQL statement. Make a copy of this phrase in space obtained form ** sqlite3DbMalloc(). Omit leading and trailing whitespace. */ SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ int n; #ifdef SQLITE_DEBUG /* Because of the way the parser works, the span is guaranteed to contain ** at least one non-space character */ for(n=0; sqlite3Isspace(zStart[n]); n++){ assert( &zStart[n]mallocFailed, and also ** temporarily disable the lookaside memory allocator and interrupt ** any running VDBEs. ** ** Always return a NULL pointer so that this routine can be invoked using ** ** return sqlite3OomFault(db); ** ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly ** common case where no OOM occurs. */ SQLITE_PRIVATE void *sqlite3OomFault(sqlite3 *db){ if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ db->mallocFailed = 1; if( db->nVdbeExec>0 ){ AtomicStore(&db->u1.isInterrupted, 1); } DisableLookaside; if( db->pParse ){ Parse *pParse; sqlite3ErrorMsg(db->pParse, "out of memory"); db->pParse->rc = SQLITE_NOMEM_BKPT; for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){ pParse->nErr++; pParse->rc = SQLITE_NOMEM; } } } return 0; } /* ** This routine reactivates the memory allocator and clears the ** db->mallocFailed flag as necessary. ** ** The memory allocator is not restarted if there are running ** VDBEs. */ SQLITE_PRIVATE void sqlite3OomClear(sqlite3 *db){ if( db->mallocFailed && db->nVdbeExec==0 ){ db->mallocFailed = 0; AtomicStore(&db->u1.isInterrupted, 0); assert( db->lookaside.bDisable>0 ); EnableLookaside; } } /* ** Take actions at the end of an API call to deal with error codes. */ static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){ if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomClear(db); sqlite3Error(db, SQLITE_NOMEM); return SQLITE_NOMEM_BKPT; } return rc & db->errMask; } /* ** This function must be called before exiting any API function (i.e. ** returning control to the user) that has called sqlite3_malloc or ** sqlite3_realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occurred since the previous ** invocation SQLITE_NOMEM is returned instead. ** ** If an OOM as occurred, then the connection error-code (the value ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. */ SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){ /* If the db handle must hold the connection handle mutex here. ** Otherwise the read (and possible write) of db->mallocFailed ** is unsafe, as is the call to sqlite3Error(). */ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed || rc ){ return apiHandleError(db, rc); } return 0; } /************** End of malloc.c **********************************************/ /************** Begin file printf.c ******************************************/ /* ** The "printf" code that follows dates from the 1980's. It is in ** the public domain. ** ************************************************************************** ** ** This file contains code for a set of "printf"-like routines. These ** routines format strings much like the printf() from the standard C ** library, though the implementation here has enhancements to support ** SQLite. */ /* #include "sqliteInt.h" */ /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ #define etRADIX 0 /* non-decimal integer types. %x %o */ #define etFLOAT 1 /* Floating point. %f */ #define etEXP 2 /* Exponentional notation. %e and %E */ #define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */ #define etSIZE 4 /* Return number of characters processed so far. %n */ #define etSTRING 5 /* Strings. %s */ #define etDYNSTRING 6 /* Dynamically allocated strings. %z */ #define etPERCENT 7 /* Percent symbol. %% */ #define etCHARX 8 /* Characters. %c */ /* The rest are extensions, not normally found in printf() */ #define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */ #define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '', NULL pointers replaced by SQL NULL. %Q */ #define etTOKEN 11 /* a pointer to a Token structure */ #define etSRCITEM 12 /* a pointer to a SrcItem */ #define etPOINTER 13 /* The %p conversion */ #define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */ #define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ #define etDECIMAL 16 /* %d or %u, but not %x, %o */ #define etINVALID 17 /* Any unrecognized conversion type */ /* ** An "etByte" is an 8-bit unsigned value. */ typedef unsigned char etByte; /* ** Each builtin conversion character (ex: the 'd' in "%d") is described ** by an instance of the following structure */ typedef struct et_info { /* Information about each format field */ char fmttype; /* The format field code letter */ etByte base; /* The base for radix conversion */ etByte flags; /* One or more of FLAG_ constants below */ etByte type; /* Conversion paradigm */ etByte charset; /* Offset into aDigits[] of the digits string */ etByte prefix; /* Offset into aPrefix[] of the prefix string */ } et_info; /* ** Allowed values for et_info.flags */ #define FLAG_SIGNED 1 /* True if the value to convert is signed */ #define FLAG_STRING 4 /* Allow infinite precision */ /* ** The following table is searched linearly, so it is good to put the ** most frequently used conversion types first. */ static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; static const char aPrefix[] = "-x0\000X0"; static const et_info fmtinfo[] = { { 'd', 10, 1, etDECIMAL, 0, 0 }, { 's', 0, 4, etSTRING, 0, 0 }, { 'g', 0, 1, etGENERIC, 30, 0 }, { 'z', 0, 4, etDYNSTRING, 0, 0 }, { 'q', 0, 4, etSQLESCAPE, 0, 0 }, { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, { 'c', 0, 0, etCHARX, 0, 0 }, { 'o', 8, 0, etRADIX, 0, 2 }, { 'u', 10, 0, etDECIMAL, 0, 0 }, { 'x', 16, 0, etRADIX, 16, 1 }, { 'X', 16, 0, etRADIX, 0, 4 }, #ifndef SQLITE_OMIT_FLOATING_POINT { 'f', 0, 1, etFLOAT, 0, 0 }, { 'e', 0, 1, etEXP, 30, 0 }, { 'E', 0, 1, etEXP, 14, 0 }, { 'G', 0, 1, etGENERIC, 14, 0 }, #endif { 'i', 10, 1, etDECIMAL, 0, 0 }, { 'n', 0, 0, etSIZE, 0, 0 }, { '%', 0, 0, etPERCENT, 0, 0 }, { 'p', 16, 0, etPOINTER, 0, 1 }, /* All the rest are undocumented and are for internal use only */ { 'T', 0, 0, etTOKEN, 0, 0 }, { 'S', 0, 0, etSRCITEM, 0, 0 }, { 'r', 10, 1, etORDINAL, 0, 0 }, }; /* Notes: ** ** %S Takes a pointer to SrcItem. Shows name or database.name ** %!S Like %S but prefer the zName over the zAlias */ /* ** Set the StrAccum object to an error mode. */ SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum *p, u8 eError){ assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); p->accError = eError; if( p->mxAlloc ) sqlite3_str_reset(p); if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError); } /* ** Extra argument values from a PrintfArguments object */ static sqlite3_int64 getIntArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0; return sqlite3_value_int64(p->apArg[p->nUsed++]); } static double getDoubleArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0.0; return sqlite3_value_double(p->apArg[p->nUsed++]); } static char *getTextArg(PrintfArguments *p){ if( p->nArg<=p->nUsed ) return 0; return (char*)sqlite3_value_text(p->apArg[p->nUsed++]); } /* ** Allocate memory for a temporary buffer needed for printf rendering. ** ** If the requested size of the temp buffer is larger than the size ** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error. ** Do the size check before the memory allocation to prevent rogue ** SQL from requesting large allocations using the precision or width ** field of the printf() function. */ static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){ char *z; if( pAccum->accError ) return 0; if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){ sqlite3StrAccumSetError(pAccum, SQLITE_TOOBIG); return 0; } z = sqlite3DbMallocRaw(pAccum->db, n); if( z==0 ){ sqlite3StrAccumSetError(pAccum, SQLITE_NOMEM); } return z; } /* ** On machines with a small stack size, you can redefine the ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired. */ #ifndef SQLITE_PRINT_BUF_SIZE # define SQLITE_PRINT_BUF_SIZE 70 #endif #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ /* ** Hard limit on the precision of floating-point conversions. */ #ifndef SQLITE_PRINTF_PRECISION_LIMIT # define SQLITE_FP_PRECISION_LIMIT 100000000 #endif /* ** Render a string given by "fmt" into the StrAccum object. */ SQLITE_API void sqlite3_str_vappendf( sqlite3_str *pAccum, /* Accumulate results here */ const char *fmt, /* Format string */ va_list ap /* arguments */ ){ int c; /* Next character in the format string */ char *bufpt; /* Pointer to the conversion buffer */ int precision; /* Precision of the current field */ int length; /* Length of the field */ int idx; /* A general purpose loop counter */ int width; /* Width of the current field */ etByte flag_leftjustify; /* True if "-" flag is present */ etByte flag_prefix; /* '+' or ' ' or 0 for prefix */ etByte flag_alternateform; /* True if "#" flag is present */ etByte flag_altform2; /* True if "!" flag is present */ etByte flag_zeropad; /* True if field width constant starts with zero */ etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ etByte done; /* Loop termination flag */ etByte cThousand; /* Thousands separator for %d and %u */ etByte xtype = etINVALID; /* Conversion paradigm */ u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sqlite_uint64 longvalue; /* Value for integer types */ double realvalue; /* Value for real types */ const et_info *infop; /* Pointer to the appropriate info structure */ char *zOut; /* Rendering buffer */ int nOut; /* Size of the rendering buffer */ char *zExtra = 0; /* Malloced memory used by some conversion */ int exp, e2; /* exponent of real numbers */ etByte flag_dp; /* True if decimal point should be shown */ etByte flag_rtz; /* True if trailing zeros should be removed */ PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ char buf[etBUFSIZE]; /* Conversion buffer */ /* pAccum never starts out with an empty buffer that was obtained from ** malloc(). This precondition is required by the mprintf("%z...") ** optimization. */ assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); bufpt = 0; if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){ pArgList = va_arg(ap, PrintfArguments*); bArgList = 1; }else{ bArgList = 0; } for(; (c=(*fmt))!=0; ++fmt){ if( c!='%' ){ bufpt = (char *)fmt; #if HAVE_STRCHRNUL fmt = strchrnul(fmt, '%'); #else do{ fmt++; }while( *fmt && *fmt != '%' ); #endif sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt)); if( *fmt==0 ) break; } if( (c=(*++fmt))==0 ){ sqlite3_str_append(pAccum, "%", 1); break; } /* Find out what flags are present */ flag_leftjustify = flag_prefix = cThousand = flag_alternateform = flag_altform2 = flag_zeropad = 0; done = 0; width = 0; flag_long = 0; precision = -1; do{ switch( c ){ case '-': flag_leftjustify = 1; break; case '+': flag_prefix = '+'; break; case ' ': flag_prefix = ' '; break; case '#': flag_alternateform = 1; break; case '!': flag_altform2 = 1; break; case '0': flag_zeropad = 1; break; case ',': cThousand = ','; break; default: done = 1; break; case 'l': { flag_long = 1; c = *++fmt; if( c=='l' ){ c = *++fmt; flag_long = 2; } done = 1; break; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { unsigned wx = c - '0'; while( (c = *++fmt)>='0' && c<='9' ){ wx = wx*10 + c - '0'; } testcase( wx>0x7fffffff ); width = wx & 0x7fffffff; #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ width = SQLITE_PRINTF_PRECISION_LIMIT; } #endif if( c!='.' && c!='l' ){ done = 1; }else{ fmt--; } break; } case '*': { if( bArgList ){ width = (int)getIntArg(pArgList); }else{ width = va_arg(ap,int); } if( width<0 ){ flag_leftjustify = 1; width = width >= -2147483647 ? -width : 0; } #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( width>SQLITE_PRINTF_PRECISION_LIMIT ){ width = SQLITE_PRINTF_PRECISION_LIMIT; } #endif if( (c = fmt[1])!='.' && c!='l' ){ c = *++fmt; done = 1; } break; } case '.': { c = *++fmt; if( c=='*' ){ if( bArgList ){ precision = (int)getIntArg(pArgList); }else{ precision = va_arg(ap,int); } if( precision<0 ){ precision = precision >= -2147483647 ? -precision : -1; } c = *++fmt; }else{ unsigned px = 0; while( c>='0' && c<='9' ){ px = px*10 + c - '0'; c = *++fmt; } testcase( px>0x7fffffff ); precision = px & 0x7fffffff; } #ifdef SQLITE_PRINTF_PRECISION_LIMIT if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){ precision = SQLITE_PRINTF_PRECISION_LIMIT; } #endif if( c=='l' ){ --fmt; }else{ done = 1; } break; } } }while( !done && (c=(*++fmt))!=0 ); /* Fetch the info entry for the field */ infop = &fmtinfo[0]; xtype = etINVALID; for(idx=0; idxtype; break; } } /* ** At this point, variables are initialized as follows: ** ** flag_alternateform TRUE if a '#' is present. ** flag_altform2 TRUE if a '!' is present. ** flag_prefix '+' or ' ' or zero ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long 1 for "l", 2 for "ll" ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ assert( width>=0 ); assert( precision>=(-1) ); switch( xtype ){ case etPOINTER: flag_long = sizeof(char*)==sizeof(i64) ? 2 : sizeof(char*)==sizeof(long int) ? 1 : 0; /* no break */ deliberate_fall_through case etORDINAL: case etRADIX: cThousand = 0; /* no break */ deliberate_fall_through case etDECIMAL: if( infop->flags & FLAG_SIGNED ){ i64 v; if( bArgList ){ v = getIntArg(pArgList); }else if( flag_long ){ if( flag_long==2 ){ v = va_arg(ap,i64) ; }else{ v = va_arg(ap,long int); } }else{ v = va_arg(ap,int); } if( v<0 ){ testcase( v==SMALLEST_INT64 ); testcase( v==(-1) ); longvalue = ~v; longvalue++; prefix = '-'; }else{ longvalue = v; prefix = flag_prefix; } }else{ if( bArgList ){ longvalue = (u64)getIntArg(pArgList); }else if( flag_long ){ if( flag_long==2 ){ longvalue = va_arg(ap,u64); }else{ longvalue = va_arg(ap,unsigned long int); } }else{ longvalue = va_arg(ap,unsigned int); } prefix = 0; } if( longvalue==0 ) flag_alternateform = 0; if( flag_zeropad && precision=4 || (longvalue/10)%10==1 ){ x = 0; } *(--bufpt) = zOrd[x*2+1]; *(--bufpt) = zOrd[x*2]; } { const char *cset = &aDigits[infop->charset]; u8 base = infop->base; do{ /* Convert to ascii */ *(--bufpt) = cset[longvalue%base]; longvalue = longvalue/base; }while( longvalue>0 ); } length = (int)(&zOut[nOut-1]-bufpt); while( precision>length ){ *(--bufpt) = '0'; /* Zero pad */ length++; } if( cThousand ){ int nn = (length - 1)/3; /* Number of "," to insert */ int ix = (length - 1)%3 + 1; bufpt -= nn; for(idx=0; nn>0; idx++){ bufpt[idx] = bufpt[idx+nn]; ix--; if( ix==0 ){ bufpt[++idx] = cThousand; nn--; ix = 3; } } } if( prefix ) *(--bufpt) = prefix; /* Add sign */ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ const char *pre; char x; pre = &aPrefix[infop->prefix]; for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; } length = (int)(&zOut[nOut-1]-bufpt); break; case etFLOAT: case etEXP: case etGENERIC: { FpDecode s; int iRound; int j; if( bArgList ){ realvalue = getDoubleArg(pArgList); }else{ realvalue = va_arg(ap,double); } if( precision<0 ) precision = 6; /* Set default precision */ #ifdef SQLITE_FP_PRECISION_LIMIT if( precision>SQLITE_FP_PRECISION_LIMIT ){ precision = SQLITE_FP_PRECISION_LIMIT; } #endif if( xtype==etFLOAT ){ iRound = -precision; }else if( xtype==etGENERIC ){ if( precision==0 ) precision = 1; iRound = precision; }else{ iRound = precision+1; } sqlite3FpDecode(&s, realvalue, iRound, flag_altform2 ? 26 : 16); if( s.isSpecial ){ if( s.isSpecial==2 ){ bufpt = flag_zeropad ? "null" : "NaN"; length = sqlite3Strlen30(bufpt); break; }else if( flag_zeropad ){ s.z[0] = '9'; s.iDP = 1000; s.n = 1; }else{ memcpy(buf, "-Inf", 5); bufpt = buf; if( s.sign=='-' ){ /* no-op */ }else if( flag_prefix ){ buf[0] = flag_prefix; }else{ bufpt++; } length = sqlite3Strlen30(bufpt); break; } } if( s.sign=='-' ){ prefix = '-'; }else{ prefix = flag_prefix; } exp = s.iDP-1; if( xtype==etGENERIC && precision>0 ) precision--; /* ** If the field type is etGENERIC, then convert to either etEXP ** or etFLOAT, as appropriate. */ if( xtype==etGENERIC ){ flag_rtz = !flag_alternateform; if( exp<-4 || exp>precision ){ xtype = etEXP; }else{ precision = precision - exp; xtype = etFLOAT; } }else{ flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = s.iDP - 1; } bufpt = buf; { i64 szBufNeeded; /* Size of a temporary buffer needed */ szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15; if( cThousand && e2>0 ) szBufNeeded += (e2+2)/3; if( szBufNeeded > etBUFSIZE ){ bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded); if( bufpt==0 ) return; } } zOut = bufpt; flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; /* The sign in front of the number */ if( prefix ){ *(bufpt++) = prefix; } /* Digits prior to the decimal point */ j = 0; if( e2<0 ){ *(bufpt++) = '0'; }else{ for(; e2>=0; e2--){ *(bufpt++) = j1 ) *(bufpt++) = ','; } } /* The decimal point */ if( flag_dp ){ *(bufpt++) = '.'; } /* "0" digits after the decimal point but before the first ** significant digit of the number */ for(e2++; e2<0 && precision>0; precision--, e2++){ *(bufpt++) = '0'; } /* Significant digits after the decimal point */ while( (precision--)>0 ){ *(bufpt++) = jzOut ); if( bufpt[-1]=='.' ){ if( flag_altform2 ){ *(bufpt++) = '0'; }else{ *(--bufpt) = 0; } } } /* Add the "eNNN" suffix */ if( xtype==etEXP ){ exp = s.iDP - 1; *(bufpt++) = aDigits[infop->charset]; if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; }else{ *(bufpt++) = '+'; } if( exp>=100 ){ *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */ exp %= 100; } *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */ *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */ } *bufpt = 0; /* The converted number is in buf[] and zero terminated. Output it. ** Note that the number is in the usual order, not reversed as with ** integer conversions. */ length = (int)(bufpt-zOut); bufpt = zOut; /* Special case: Add leading zeros if the flag_zeropad flag is ** set and we are not left justified */ if( flag_zeropad && !flag_leftjustify && length < width){ int i; int nPad = width - length; for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } break; } case etSIZE: if( !bArgList ){ *(va_arg(ap,int*)) = pAccum->nChar; } length = width = 0; break; case etPERCENT: buf[0] = '%'; bufpt = buf; length = 1; break; case etCHARX: if( bArgList ){ bufpt = getTextArg(pArgList); length = 1; if( bufpt ){ buf[0] = c = *(bufpt++); if( (c&0xc0)==0xc0 ){ while( length<4 && (bufpt[0]&0xc0)==0x80 ){ buf[length++] = *(bufpt++); } } }else{ buf[0] = 0; } }else{ unsigned int ch = va_arg(ap,unsigned int); if( ch<0x00080 ){ buf[0] = ch & 0xff; length = 1; }else if( ch<0x00800 ){ buf[0] = 0xc0 + (u8)((ch>>6)&0x1f); buf[1] = 0x80 + (u8)(ch & 0x3f); length = 2; }else if( ch<0x10000 ){ buf[0] = 0xe0 + (u8)((ch>>12)&0x0f); buf[1] = 0x80 + (u8)((ch>>6) & 0x3f); buf[2] = 0x80 + (u8)(ch & 0x3f); length = 3; }else{ buf[0] = 0xf0 + (u8)((ch>>18) & 0x07); buf[1] = 0x80 + (u8)((ch>>12) & 0x3f); buf[2] = 0x80 + (u8)((ch>>6) & 0x3f); buf[3] = 0x80 + (u8)(ch & 0x3f); length = 4; } } if( precision>1 ){ i64 nPrior = 1; width -= precision-1; if( width>1 && !flag_leftjustify ){ sqlite3_str_appendchar(pAccum, width-1, ' '); width = 0; } sqlite3_str_append(pAccum, buf, length); precision--; while( precision > 1 ){ i64 nCopyBytes; if( nPrior > precision-1 ) nPrior = precision - 1; nCopyBytes = length*nPrior; if( nCopyBytes + pAccum->nChar >= pAccum->nAlloc ){ sqlite3StrAccumEnlarge(pAccum, nCopyBytes); } if( pAccum->accError ) break; sqlite3_str_append(pAccum, &pAccum->zText[pAccum->nChar-nCopyBytes], nCopyBytes); precision -= nPrior; nPrior *= 2; } } bufpt = buf; flag_altform2 = 1; goto adjust_width_for_utf8; case etSTRING: case etDYNSTRING: if( bArgList ){ bufpt = getTextArg(pArgList); xtype = etSTRING; }else{ bufpt = va_arg(ap,char*); } if( bufpt==0 ){ bufpt = ""; }else if( xtype==etDYNSTRING ){ if( pAccum->nChar==0 && pAccum->mxAlloc && width==0 && precision<0 && pAccum->accError==0 ){ /* Special optimization for sqlite3_mprintf("%z..."): ** Extend an existing memory allocation rather than creating ** a new one. */ assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); pAccum->zText = bufpt; pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED; length = 0; break; } zExtra = bufpt; } if( precision>=0 ){ if( flag_altform2 ){ /* Set length to the number of bytes needed in order to display ** precision characters */ unsigned char *z = (unsigned char*)bufpt; while( precision-- > 0 && z[0] ){ SQLITE_SKIP_UTF8(z); } length = (int)(z - (unsigned char*)bufpt); }else{ for(length=0; length0 ){ /* Adjust width to account for extra bytes in UTF-8 characters */ int ii = length - 1; while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++; } break; case etSQLESCAPE: /* %q: Escape ' characters */ case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */ case etSQLESCAPE3: { /* %w: Escape " characters */ i64 i, j, k, n; int needQuote, isnull; char ch; char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ char *escarg; if( bArgList ){ escarg = getTextArg(pArgList); }else{ escarg = va_arg(ap,char*); } isnull = escarg==0; if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); /* For %q, %Q, and %w, the precision is the number of bytes (or ** characters if the ! flags is present) to use from the input. ** Because of the extra quoting characters inserted, the number ** of output characters may be larger than the precision. */ k = precision; for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){ if( ch==q ) n++; if( flag_altform2 && (ch&0xc0)==0xc0 ){ while( (escarg[i+1]&0xc0)==0x80 ){ i++; } } } needQuote = !isnull && xtype==etSQLESCAPE2; n += i + 3; if( n>etBUFSIZE ){ bufpt = zExtra = printfTempBuf(pAccum, n); if( bufpt==0 ) return; }else{ bufpt = buf; } j = 0; if( needQuote ) bufpt[j++] = q; k = i; for(i=0; iprintfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; if( flag_alternateform ){ /* %#T means an Expr pointer that uses Expr.u.zToken */ Expr *pExpr = va_arg(ap,Expr*); if( ALWAYS(pExpr) && ALWAYS(!ExprHasProperty(pExpr,EP_IntValue)) ){ sqlite3_str_appendall(pAccum, (const char*)pExpr->u.zToken); sqlite3RecordErrorOffsetOfExpr(pAccum->db, pExpr); } }else{ /* %T means a Token pointer */ Token *pToken = va_arg(ap, Token*); assert( bArgList==0 ); if( pToken && pToken->n ){ sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n); sqlite3RecordErrorByteOffset(pAccum->db, pToken->z); } } length = width = 0; break; } case etSRCITEM: { SrcItem *pItem; if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; pItem = va_arg(ap, SrcItem*); assert( bArgList==0 ); if( pItem->zAlias && !flag_altform2 ){ sqlite3_str_appendall(pAccum, pItem->zAlias); }else if( pItem->zName ){ if( pItem->zDatabase ){ sqlite3_str_appendall(pAccum, pItem->zDatabase); sqlite3_str_append(pAccum, ".", 1); } sqlite3_str_appendall(pAccum, pItem->zName); }else if( pItem->zAlias ){ sqlite3_str_appendall(pAccum, pItem->zAlias); }else{ Select *pSel = pItem->pSelect; assert( pSel!=0 ); if( pSel->selFlags & SF_NestedFrom ){ sqlite3_str_appendf(pAccum, "(join-%u)", pSel->selId); }else{ sqlite3_str_appendf(pAccum, "(subquery-%u)", pSel->selId); } } length = width = 0; break; } default: { assert( xtype==etINVALID ); return; } }/* End switch over the format type */ /* ** The text of the conversion is pointed to by "bufpt" and is ** "length" characters long. The field width is "width". Do ** the output. Both length and width are in bytes, not characters, ** at this point. If the "!" flag was present on string conversions ** indicating that width and precision should be expressed in characters, ** then the values have been translated prior to reaching this point. */ width -= length; if( width>0 ){ if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); sqlite3_str_append(pAccum, bufpt, length); if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); }else{ sqlite3_str_append(pAccum, bufpt, length); } if( zExtra ){ sqlite3DbFree(pAccum->db, zExtra); zExtra = 0; } }/* End for loop over the format string */ } /* End of function */ /* ** The z string points to the first character of a token that is ** associated with an error. If db does not already have an error ** byte offset recorded, try to compute the error byte offset for ** z and set the error byte offset in db. */ SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3 *db, const char *z){ const Parse *pParse; const char *zText; const char *zEnd; assert( z!=0 ); if( NEVER(db==0) ) return; if( db->errByteOffset!=(-2) ) return; pParse = db->pParse; if( NEVER(pParse==0) ) return; zText =pParse->zTail; if( NEVER(zText==0) ) return; zEnd = &zText[strlen(zText)]; if( SQLITE_WITHIN(z,zText,zEnd) ){ db->errByteOffset = (int)(z-zText); } } /* ** If pExpr has a byte offset for the start of a token, record that as ** as the error offset. */ SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3 *db, const Expr *pExpr){ while( pExpr && (ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) || pExpr->w.iOfst<=0) ){ pExpr = pExpr->pLeft; } if( pExpr==0 ) return; db->errByteOffset = pExpr->w.iOfst; } /* ** Enlarge the memory allocation on a StrAccum object so that it is ** able to accept at least N more bytes of text. ** ** Return the number of bytes of text that StrAccum is able to accept ** after the attempted enlargement. The value returned might be zero. */ SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum *p, i64 N){ char *zNew; assert( p->nChar+N >= p->nAlloc ); /* Only called if really needed */ if( p->accError ){ testcase(p->accError==SQLITE_TOOBIG); testcase(p->accError==SQLITE_NOMEM); return 0; } if( p->mxAlloc==0 ){ sqlite3StrAccumSetError(p, SQLITE_TOOBIG); return p->nAlloc - p->nChar - 1; }else{ char *zOld = isMalloced(p) ? p->zText : 0; i64 szNew = p->nChar + N + 1; if( szNew+p->nChar<=p->mxAlloc ){ /* Force exponential buffer size growth as long as it does not overflow, ** to avoid having to call this routine too often */ szNew += p->nChar; } if( szNew > p->mxAlloc ){ sqlite3_str_reset(p); sqlite3StrAccumSetError(p, SQLITE_TOOBIG); return 0; }else{ p->nAlloc = (int)szNew; } if( p->db ){ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); }else{ zNew = sqlite3Realloc(zOld, p->nAlloc); } if( zNew ){ assert( p->zText!=0 || p->nChar==0 ); if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); p->zText = zNew; p->nAlloc = sqlite3DbMallocSize(p->db, zNew); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ sqlite3_str_reset(p); sqlite3StrAccumSetError(p, SQLITE_NOMEM); return 0; } } assert( N>=0 && N<=0x7fffffff ); return (int)N; } /* ** Append N copies of character c to the given string buffer. */ SQLITE_API void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){ testcase( p->nChar + (i64)N > 0x7fffffff ); if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ return; } while( (N--)>0 ) p->zText[p->nChar++] = c; } /* ** The StrAccum "p" is not large enough to accept N new bytes of z[]. ** So enlarge if first, then do the append. ** ** This is a helper routine to sqlite3_str_append() that does special-case ** work (enlarging the buffer) using tail recursion, so that the ** sqlite3_str_append() routine can use fast calling semantics. */ static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ N = sqlite3StrAccumEnlarge(p, N); if( N>0 ){ memcpy(&p->zText[p->nChar], z, N); p->nChar += N; } } /* ** Append N bytes of text from z to the StrAccum object. Increase the ** size of the memory allocation for StrAccum if necessary. */ SQLITE_API void sqlite3_str_append(sqlite3_str *p, const char *z, int N){ assert( z!=0 || N==0 ); assert( p->zText!=0 || p->nChar==0 || p->accError ); assert( N>=0 ); assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 ); if( p->nChar+N >= p->nAlloc ){ enlargeAndAppend(p,z,N); }else if( N ){ assert( p->zText ); p->nChar += N; memcpy(&p->zText[p->nChar-N], z, N); } } /* ** Append the complete text of zero-terminated string z[] to the p string. */ SQLITE_API void sqlite3_str_appendall(sqlite3_str *p, const char *z){ sqlite3_str_append(p, z, sqlite3Strlen30(z)); } /* ** Finish off a string by making sure it is zero-terminated. ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ char *zText; assert( p->mxAlloc>0 && !isMalloced(p) ); zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); if( zText ){ memcpy(zText, p->zText, p->nChar+1); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ sqlite3StrAccumSetError(p, SQLITE_NOMEM); } p->zText = zText; return zText; } SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ return strAccumFinishRealloc(p); } } return p->zText; } /* ** Use the content of the StrAccum passed as the second argument ** as the result of an SQL function. */ SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context *pCtx, StrAccum *p){ if( p->accError ){ sqlite3_result_error_code(pCtx, p->accError); sqlite3_str_reset(p); }else if( isMalloced(p) ){ sqlite3_result_text(pCtx, p->zText, p->nChar, SQLITE_DYNAMIC); }else{ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); sqlite3_str_reset(p); } } /* ** This singleton is an sqlite3_str object that is returned if ** sqlite3_malloc() fails to provide space for a real one. This ** sqlite3_str object accepts no new text and always returns ** an SQLITE_NOMEM error. */ static sqlite3_str sqlite3OomStr = { 0, 0, 0, 0, 0, SQLITE_NOMEM, 0 }; /* Finalize a string created using sqlite3_str_new(). */ SQLITE_API char *sqlite3_str_finish(sqlite3_str *p){ char *z; if( p!=0 && p!=&sqlite3OomStr ){ z = sqlite3StrAccumFinish(p); sqlite3_free(p); }else{ z = 0; } return z; } /* Return any error code associated with p */ SQLITE_API int sqlite3_str_errcode(sqlite3_str *p){ return p ? p->accError : SQLITE_NOMEM; } /* Return the current length of p in bytes */ SQLITE_API int sqlite3_str_length(sqlite3_str *p){ return p ? p->nChar : 0; } /* Return the current value for p */ SQLITE_API char *sqlite3_str_value(sqlite3_str *p){ if( p==0 || p->nChar==0 ) return 0; p->zText[p->nChar] = 0; return p->zText; } /* ** Reset an StrAccum string. Reclaim all malloced memory. */ SQLITE_API void sqlite3_str_reset(StrAccum *p){ if( isMalloced(p) ){ sqlite3DbFree(p->db, p->zText); p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; } p->nAlloc = 0; p->nChar = 0; p->zText = 0; } /* ** Initialize a string accumulator. ** ** p: The accumulator to be initialized. ** db: Pointer to a database connection. May be NULL. Lookaside ** memory is used if not NULL. db->mallocFailed is set appropriately ** when not NULL. ** zBase: An initial buffer. May be NULL in which case the initial buffer ** is malloced. ** n: Size of zBase in bytes. If total space requirements never exceed ** n then no memory allocations ever occur. ** mx: Maximum number of bytes to accumulate. If mx==0 then no memory ** allocations will ever occur. */ SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){ p->zText = zBase; p->db = db; p->nAlloc = n; p->mxAlloc = mx; p->nChar = 0; p->accError = 0; p->printfFlags = 0; } /* Allocate and initialize a new dynamic string object */ SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3 *db){ sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); if( p ){ sqlite3StrAccumInit(p, 0, 0, 0, db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); }else{ p = &sqlite3OomStr; } return p; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; assert( db!=0 ); sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); acc.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); if( acc.accError==SQLITE_NOMEM ){ sqlite3OomFault(db); } return z; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ va_list ap; char *z; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); return z; } /* ** Print into memory obtained from sqlite3_malloc(). Omit the internal ** %-conversion extensions. */ SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifdef SQLITE_ENABLE_API_ARMOR if( zFormat==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal ** %-conversion extensions. */ SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){ va_list ap; char *z; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); return z; } /* ** sqlite3_snprintf() works like snprintf() except that it ignores the ** current locale settings. This is important for SQLite because we ** are not able to use a "," as the decimal point in place of "." as ** specified by some locales. ** ** Oops: The first two arguments of sqlite3_snprintf() are backwards ** from the snprintf() standard. Unfortunately, it is too late to change ** this without breaking compatibility, so we just have to live with the ** mistake. ** ** sqlite3_vsnprintf() is the varargs version. */ SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ StrAccum acc; if( n<=0 ) return zBuf; #ifdef SQLITE_ENABLE_API_ARMOR if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); sqlite3_str_vappendf(&acc, zFormat, ap); zBuf[acc.nChar] = 0; return zBuf; } SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ StrAccum acc; va_list ap; if( n<=0 ) return zBuf; #ifdef SQLITE_ENABLE_API_ARMOR if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); va_start(ap,zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); zBuf[acc.nChar] = 0; return zBuf; } /* ** This is the routine that actually formats the sqlite3_log() message. ** We house it in a separate routine from sqlite3_log() to avoid using ** stack space on small-stack systems when logging is disabled. ** ** sqlite3_log() must render into a static buffer. It cannot dynamically ** allocate memory because it might be called while the memory allocator ** mutex is held. ** ** sqlite3_str_vappendf() might ask for *temporary* memory allocations for ** certain format characters (%q) or for very large precisions or widths. ** Care must be taken that any sqlite3_log() calls that occur while the ** memory mutex is held do not use these mechanisms. */ static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ StrAccum acc; /* String accumulator */ char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); sqlite3_str_vappendf(&acc, zFormat, ap); sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, sqlite3StrAccumFinish(&acc)); } /* ** Format and write a message to the log if logging is enabled. */ SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){ va_list ap; /* Vararg list */ if( sqlite3GlobalConfig.xLog ){ va_start(ap, zFormat); renderLogMsg(iErrCode, zFormat, ap); va_end(ap); } } #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) /* ** A version of printf() that understands %lld. Used for debugging. ** The printf() built into some versions of windows does not understand %lld ** and segfaults if you give it a long long int. */ SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){ va_list ap; StrAccum acc; char zBuf[SQLITE_PRINT_BUF_SIZE*10]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); va_start(ap,zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); sqlite3StrAccumFinish(&acc); #ifdef SQLITE_OS_TRACE_PROC { extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); } #else fprintf(stdout,"%s", zBuf); fflush(stdout); #endif } #endif /* ** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. */ SQLITE_API void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3_str_vappendf(p, zFormat, ap); va_end(ap); } /***************************************************************************** ** Reference counted string/blob storage *****************************************************************************/ /* ** Increase the reference count of the string by one. ** ** The input parameter is returned. */ SQLITE_PRIVATE char *sqlite3RCStrRef(char *z){ RCStr *p = (RCStr*)z; assert( p!=0 ); p--; p->nRCRef++; return z; } /* ** Decrease the reference count by one. Free the string when the ** reference count reaches zero. */ SQLITE_PRIVATE void sqlite3RCStrUnref(void *z){ RCStr *p = (RCStr*)z; assert( p!=0 ); p--; assert( p->nRCRef>0 ); if( p->nRCRef>=2 ){ p->nRCRef--; }else{ sqlite3_free(p); } } /* ** Create a new string that is capable of holding N bytes of text, not counting ** the zero byte at the end. The string is uninitialized. ** ** The reference count is initially 1. Call sqlite3RCStrUnref() to free the ** newly allocated string. ** ** This routine returns 0 on an OOM. */ SQLITE_PRIVATE char *sqlite3RCStrNew(u64 N){ RCStr *p = sqlite3_malloc64( N + sizeof(*p) + 1 ); if( p==0 ) return 0; p->nRCRef = 1; return (char*)&p[1]; } /* ** Change the size of the string so that it is able to hold N bytes. ** The string might be reallocated, so return the new allocation. */ SQLITE_PRIVATE char *sqlite3RCStrResize(char *z, u64 N){ RCStr *p = (RCStr*)z; RCStr *pNew; assert( p!=0 ); p--; assert( p->nRCRef==1 ); pNew = sqlite3_realloc64(p, N+sizeof(RCStr)+1); if( pNew==0 ){ sqlite3_free(p); return 0; }else{ return (char*)&pNew[1]; } } /************** End of printf.c **********************************************/ /************** Begin file treeview.c ****************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains C code to implement the TreeView debugging routines. ** These routines print a parse tree to standard output for debugging and ** analysis. ** ** The interfaces in this file is only available when compiling ** with SQLITE_DEBUG. */ /* #include "sqliteInt.h" */ #ifdef SQLITE_DEBUG /* ** Add a new subitem to the tree. The moreToFollow flag indicates that this ** is not the last item in the tree. */ static void sqlite3TreeViewPush(TreeView **pp, u8 moreToFollow){ TreeView *p = *pp; if( p==0 ){ *pp = p = sqlite3_malloc64( sizeof(*p) ); if( p==0 ) return; memset(p, 0, sizeof(*p)); }else{ p->iLevel++; } assert( moreToFollow==0 || moreToFollow==1 ); if( p->iLevel<(int)sizeof(p->bLine) ) p->bLine[p->iLevel] = moreToFollow; } /* ** Finished with one layer of the tree */ static void sqlite3TreeViewPop(TreeView **pp){ TreeView *p = *pp; if( p==0 ) return; p->iLevel--; if( p->iLevel<0 ){ sqlite3_free(p); *pp = 0; } } /* ** Generate a single line of output for the tree, with a prefix that contains ** all the appropriate tree lines */ SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView *p, const char *zFormat, ...){ va_list ap; int i; StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; iiLevel && i<(int)sizeof(p->bLine)-1; i++){ sqlite3_str_append(&acc, p->bLine[i] ? "| " : " ", 4); } sqlite3_str_append(&acc, p->bLine[i] ? "|-- " : "'-- ", 4); } if( zFormat!=0 ){ va_start(ap, zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); assert( acc.nChar>0 || acc.accError ); sqlite3_str_append(&acc, "\n", 1); } sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } /* ** Shorthand for starting a new tree item that consists of a single label */ static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){ sqlite3TreeViewPush(&p, moreFollows); sqlite3TreeViewLine(p, "%s", zLabel); } /* ** Show a list of Column objects in tree format. */ SQLITE_PRIVATE void sqlite3TreeViewColumnList( TreeView *pView, const Column *aCol, int nCol, u8 moreToFollow ){ int i; sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewLine(pView, "COLUMNS"); for(i=0; inCte==0 ) return; if( pWith->pOuter ){ sqlite3TreeViewLine(pView, "WITH (0x%p, pOuter=0x%p)",pWith,pWith->pOuter); }else{ sqlite3TreeViewLine(pView, "WITH (0x%p)", pWith); } if( pWith->nCte>0 ){ sqlite3TreeViewPush(&pView, moreToFollow); for(i=0; inCte; i++){ StrAccum x; char zLine[1000]; const struct Cte *pCte = &pWith->a[i]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); sqlite3_str_appendf(&x, "%s", pCte->zName); if( pCte->pCols && pCte->pCols->nExpr>0 ){ char cSep = '('; int j; for(j=0; jpCols->nExpr; j++){ sqlite3_str_appendf(&x, "%c%s", cSep, pCte->pCols->a[j].zEName); cSep = ','; } sqlite3_str_appendf(&x, ")"); } if( pCte->eM10d!=M10d_Any ){ sqlite3_str_appendf(&x, " %sMATERIALIZED", pCte->eM10d==M10d_No ? "NOT " : ""); } if( pCte->pUse ){ sqlite3_str_appendf(&x, " (pUse=0x%p, nUse=%d)", pCte->pUse, pCte->pUse->nUse); } sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, inCte-1); sqlite3TreeViewSelect(pView, pCte->pSelect, 0); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); } } /* ** Generate a human-readable description of a SrcList object. */ SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView *pView, const SrcList *pSrc){ int i; if( pSrc==0 ) return; for(i=0; inSrc; i++){ const SrcItem *pItem = &pSrc->a[i]; StrAccum x; int n = 0; char zLine[1000]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); x.printfFlags |= SQLITE_PRINTF_INTERNAL; sqlite3_str_appendf(&x, "{%d:*} %!S", pItem->iCursor, pItem); if( pItem->pTab ){ sqlite3_str_appendf(&x, " tab=%Q nCol=%d ptr=%p used=%llx", pItem->pTab->zName, pItem->pTab->nCol, pItem->pTab, pItem->colUsed); } if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==(JT_LEFT|JT_RIGHT) ){ sqlite3_str_appendf(&x, " FULL-OUTER-JOIN"); }else if( pItem->fg.jointype & JT_LEFT ){ sqlite3_str_appendf(&x, " LEFT-JOIN"); }else if( pItem->fg.jointype & JT_RIGHT ){ sqlite3_str_appendf(&x, " RIGHT-JOIN"); }else if( pItem->fg.jointype & JT_CROSS ){ sqlite3_str_appendf(&x, " CROSS-JOIN"); } if( pItem->fg.jointype & JT_LTORJ ){ sqlite3_str_appendf(&x, " LTORJ"); } if( pItem->fg.fromDDL ){ sqlite3_str_appendf(&x, " DDL"); } if( pItem->fg.isCte ){ sqlite3_str_appendf(&x, " CteUse=0x%p", pItem->u2.pCteUse); } if( pItem->fg.isOn || (pItem->fg.isUsing==0 && pItem->u3.pOn!=0) ){ sqlite3_str_appendf(&x, " ON"); } if( pItem->fg.isTabFunc ) sqlite3_str_appendf(&x, " isTabFunc"); if( pItem->fg.isCorrelated ) sqlite3_str_appendf(&x, " isCorrelated"); if( pItem->fg.isMaterialized ) sqlite3_str_appendf(&x, " isMaterialized"); if( pItem->fg.viaCoroutine ) sqlite3_str_appendf(&x, " viaCoroutine"); if( pItem->fg.notCte ) sqlite3_str_appendf(&x, " notCte"); if( pItem->fg.isNestedFrom ) sqlite3_str_appendf(&x, " isNestedFrom"); sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, inSrc-1); n = 0; if( pItem->pSelect ) n++; if( pItem->fg.isTabFunc ) n++; if( pItem->fg.isUsing ) n++; if( pItem->fg.isUsing ){ sqlite3TreeViewIdList(pView, pItem->u3.pUsing, (--n)>0, "USING"); } if( pItem->pSelect ){ if( pItem->pTab ){ Table *pTab = pItem->pTab; sqlite3TreeViewColumnList(pView, pTab->aCol, pTab->nCol, 1); } assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); sqlite3TreeViewSelect(pView, pItem->pSelect, (--n)>0); } if( pItem->fg.isTabFunc ){ sqlite3TreeViewExprList(pView, pItem->u1.pFuncArg, 0, "func-args:"); } sqlite3TreeViewPop(&pView); } } /* ** Generate a human-readable description of a Select object. */ SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ int n = 0; int cnt = 0; if( p==0 ){ sqlite3TreeViewLine(pView, "nil-SELECT"); return; } sqlite3TreeViewPush(&pView, moreToFollow); if( p->pWith ){ sqlite3TreeViewWith(pView, p->pWith, 1); cnt = 1; sqlite3TreeViewPush(&pView, 1); } do{ if( p->selFlags & SF_WhereBegin ){ sqlite3TreeViewLine(pView, "sqlite3WhereBegin()"); }else{ sqlite3TreeViewLine(pView, "SELECT%s%s (%u/%p) selFlags=0x%x nSelectRow=%d", ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p->selId, p, p->selFlags, (int)p->nSelectRow ); } if( cnt++ ) sqlite3TreeViewPop(&pView); if( p->pPrior ){ n = 1000; }else{ n = 0; if( p->pSrc && p->pSrc->nSrc ) n++; if( p->pWhere ) n++; if( p->pGroupBy ) n++; if( p->pHaving ) n++; if( p->pOrderBy ) n++; if( p->pLimit ) n++; #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ) n++; if( p->pWinDefn ) n++; #endif } if( p->pEList ){ sqlite3TreeViewExprList(pView, p->pEList, n>0, "result-set"); } n--; #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ){ Window *pX; sqlite3TreeViewPush(&pView, (n--)>0); sqlite3TreeViewLine(pView, "window-functions"); for(pX=p->pWin; pX; pX=pX->pNextWin){ sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0); } sqlite3TreeViewPop(&pView); } #endif if( p->pSrc && p->pSrc->nSrc ){ sqlite3TreeViewPush(&pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); sqlite3TreeViewSrcList(pView, p->pSrc); sqlite3TreeViewPop(&pView); } if( p->pWhere ){ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); sqlite3TreeViewExpr(pView, p->pWhere, 0); sqlite3TreeViewPop(&pView); } if( p->pGroupBy ){ sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); } if( p->pHaving ){ sqlite3TreeViewItem(pView, "HAVING", (n--)>0); sqlite3TreeViewExpr(pView, p->pHaving, 0); sqlite3TreeViewPop(&pView); } #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWinDefn ){ Window *pX; sqlite3TreeViewItem(pView, "WINDOW", (n--)>0); for(pX=p->pWinDefn; pX; pX=pX->pNextWin){ sqlite3TreeViewWindow(pView, pX, pX->pNextWin!=0); } sqlite3TreeViewPop(&pView); } #endif if( p->pOrderBy ){ sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); } if( p->pLimit ){ sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); sqlite3TreeViewExpr(pView, p->pLimit->pLeft, p->pLimit->pRight!=0); if( p->pLimit->pRight ){ sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); sqlite3TreeViewExpr(pView, p->pLimit->pRight, 0); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); } if( p->pPrior ){ const char *zOp = "UNION"; switch( p->op ){ case TK_ALL: zOp = "UNION ALL"; break; case TK_INTERSECT: zOp = "INTERSECT"; break; case TK_EXCEPT: zOp = "EXCEPT"; break; } sqlite3TreeViewItem(pView, zOp, 1); } p = p->pPrior; }while( p!=0 ); sqlite3TreeViewPop(&pView); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Generate a description of starting or stopping bounds */ SQLITE_PRIVATE void sqlite3TreeViewBound( TreeView *pView, /* View context */ u8 eBound, /* UNBOUNDED, CURRENT, PRECEDING, FOLLOWING */ Expr *pExpr, /* Value for PRECEDING or FOLLOWING */ u8 moreToFollow /* True if more to follow */ ){ switch( eBound ){ case TK_UNBOUNDED: { sqlite3TreeViewItem(pView, "UNBOUNDED", moreToFollow); sqlite3TreeViewPop(&pView); break; } case TK_CURRENT: { sqlite3TreeViewItem(pView, "CURRENT", moreToFollow); sqlite3TreeViewPop(&pView); break; } case TK_PRECEDING: { sqlite3TreeViewItem(pView, "PRECEDING", moreToFollow); sqlite3TreeViewExpr(pView, pExpr, 0); sqlite3TreeViewPop(&pView); break; } case TK_FOLLOWING: { sqlite3TreeViewItem(pView, "FOLLOWING", moreToFollow); sqlite3TreeViewExpr(pView, pExpr, 0); sqlite3TreeViewPop(&pView); break; } } } #endif /* SQLITE_OMIT_WINDOWFUNC */ #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Generate a human-readable explanation for a Window object */ SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView *pView, const Window *pWin, u8 more){ int nElement = 0; if( pWin==0 ) return; if( pWin->pFilter ){ sqlite3TreeViewItem(pView, "FILTER", 1); sqlite3TreeViewExpr(pView, pWin->pFilter, 0); sqlite3TreeViewPop(&pView); if( pWin->eFrmType==TK_FILTER ) return; } sqlite3TreeViewPush(&pView, more); if( pWin->zName ){ sqlite3TreeViewLine(pView, "OVER %s (%p)", pWin->zName, pWin); }else{ sqlite3TreeViewLine(pView, "OVER (%p)", pWin); } if( pWin->zBase ) nElement++; if( pWin->pOrderBy ) nElement++; if( pWin->eFrmType!=0 && pWin->eFrmType!=TK_FILTER ) nElement++; if( pWin->eExclude ) nElement++; if( pWin->zBase ){ sqlite3TreeViewPush(&pView, (--nElement)>0); sqlite3TreeViewLine(pView, "window: %s", pWin->zBase); sqlite3TreeViewPop(&pView); } if( pWin->pPartition ){ sqlite3TreeViewExprList(pView, pWin->pPartition, nElement>0,"PARTITION-BY"); } if( pWin->pOrderBy ){ sqlite3TreeViewExprList(pView, pWin->pOrderBy, (--nElement)>0, "ORDER-BY"); } if( pWin->eFrmType!=0 && pWin->eFrmType!=TK_FILTER ){ char zBuf[30]; const char *zFrmType = "ROWS"; if( pWin->eFrmType==TK_RANGE ) zFrmType = "RANGE"; if( pWin->eFrmType==TK_GROUPS ) zFrmType = "GROUPS"; sqlite3_snprintf(sizeof(zBuf),zBuf,"%s%s",zFrmType, pWin->bImplicitFrame ? " (implied)" : ""); sqlite3TreeViewItem(pView, zBuf, (--nElement)>0); sqlite3TreeViewBound(pView, pWin->eStart, pWin->pStart, 1); sqlite3TreeViewBound(pView, pWin->eEnd, pWin->pEnd, 0); sqlite3TreeViewPop(&pView); } if( pWin->eExclude ){ char zBuf[30]; const char *zExclude; switch( pWin->eExclude ){ case TK_NO: zExclude = "NO OTHERS"; break; case TK_CURRENT: zExclude = "CURRENT ROW"; break; case TK_GROUP: zExclude = "GROUP"; break; case TK_TIES: zExclude = "TIES"; break; default: sqlite3_snprintf(sizeof(zBuf),zBuf,"invalid(%d)", pWin->eExclude); zExclude = zBuf; break; } sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, "EXCLUDE %s", zExclude); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); } #endif /* SQLITE_OMIT_WINDOWFUNC */ #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Generate a human-readable explanation for a Window Function object */ SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView *pView, const Window *pWin, u8 more){ if( pWin==0 ) return; sqlite3TreeViewPush(&pView, more); sqlite3TreeViewLine(pView, "WINFUNC %s(%d)", pWin->pWFunc->zName, pWin->pWFunc->nArg); sqlite3TreeViewWindow(pView, pWin, 0); sqlite3TreeViewPop(&pView); } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** Generate a human-readable explanation of an expression tree. */ SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ const char *zBinOp = 0; /* Binary operator */ const char *zUniOp = 0; /* Unary operator */ char zFlgs[200]; sqlite3TreeViewPush(&pView, moreToFollow); if( pExpr==0 ){ sqlite3TreeViewLine(pView, "nil"); sqlite3TreeViewPop(&pView); return; } if( pExpr->flags || pExpr->affExpr || pExpr->vvaFlags || pExpr->pAggInfo ){ StrAccum x; sqlite3StrAccumInit(&x, 0, zFlgs, sizeof(zFlgs), 0); sqlite3_str_appendf(&x, " fg.af=%x.%c", pExpr->flags, pExpr->affExpr ? pExpr->affExpr : 'n'); if( ExprHasProperty(pExpr, EP_OuterON) ){ sqlite3_str_appendf(&x, " outer.iJoin=%d", pExpr->w.iJoin); } if( ExprHasProperty(pExpr, EP_InnerON) ){ sqlite3_str_appendf(&x, " inner.iJoin=%d", pExpr->w.iJoin); } if( ExprHasProperty(pExpr, EP_FromDDL) ){ sqlite3_str_appendf(&x, " DDL"); } if( ExprHasVVAProperty(pExpr, EP_Immutable) ){ sqlite3_str_appendf(&x, " IMMUTABLE"); } if( pExpr->pAggInfo!=0 ){ sqlite3_str_appendf(&x, " agg-column[%d]", pExpr->iAgg); } sqlite3StrAccumFinish(&x); }else{ zFlgs[0] = 0; } switch( pExpr->op ){ case TK_AGG_COLUMN: { sqlite3TreeViewLine(pView, "AGG{%d:%d}%s", pExpr->iTable, pExpr->iColumn, zFlgs); break; } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ char zOp2[16]; if( pExpr->op2 ){ sqlite3_snprintf(sizeof(zOp2),zOp2," op2=0x%02x",pExpr->op2); }else{ zOp2[0] = 0; } sqlite3TreeViewLine(pView, "COLUMN(%d)%s%s", pExpr->iColumn, zFlgs, zOp2); }else{ assert( ExprUseYTab(pExpr) ); sqlite3TreeViewLine(pView, "{%d:%d} pTab=%p%s", pExpr->iTable, pExpr->iColumn, pExpr->y.pTab, zFlgs); } if( ExprHasProperty(pExpr, EP_FixedCol) ){ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); } break; } case TK_INTEGER: { if( pExpr->flags & EP_IntValue ){ sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); }else{ sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); } break; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_STRING: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); break; } case TK_NULL: { sqlite3TreeViewLine(pView,"NULL"); break; } case TK_TRUEFALSE: { sqlite3TreeViewLine(pView,"%s%s", sqlite3ExprTruthValue(pExpr) ? "TRUE" : "FALSE", zFlgs); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_VARIABLE: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", pExpr->u.zToken, pExpr->iColumn); break; } case TK_REGISTER: { sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); break; } case TK_ID: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: zBinOp = "LT"; break; case TK_LE: zBinOp = "LE"; break; case TK_GT: zBinOp = "GT"; break; case TK_GE: zBinOp = "GE"; break; case TK_NE: zBinOp = "NE"; break; case TK_EQ: zBinOp = "EQ"; break; case TK_IS: zBinOp = "IS"; break; case TK_ISNOT: zBinOp = "ISNOT"; break; case TK_AND: zBinOp = "AND"; break; case TK_OR: zBinOp = "OR"; break; case TK_PLUS: zBinOp = "ADD"; break; case TK_STAR: zBinOp = "MUL"; break; case TK_MINUS: zBinOp = "SUB"; break; case TK_REM: zBinOp = "REM"; break; case TK_BITAND: zBinOp = "BITAND"; break; case TK_BITOR: zBinOp = "BITOR"; break; case TK_SLASH: zBinOp = "DIV"; break; case TK_LSHIFT: zBinOp = "LSHIFT"; break; case TK_RSHIFT: zBinOp = "RSHIFT"; break; case TK_CONCAT: zBinOp = "CONCAT"; break; case TK_DOT: zBinOp = "DOT"; break; case TK_LIMIT: zBinOp = "LIMIT"; break; case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_TRUTH: { int x; const char *azOp[] = { "IS-FALSE", "IS-TRUE", "IS-NOT-FALSE", "IS-NOT-TRUE" }; assert( pExpr->op2==TK_IS || pExpr->op2==TK_ISNOT ); assert( pExpr->pRight ); assert( sqlite3ExprSkipCollateAndLikely(pExpr->pRight)->op == TK_TRUEFALSE ); x = (pExpr->op2==TK_ISNOT)*2 + sqlite3ExprTruthValue(pExpr->pRight); zUniOp = azOp[x]; break; } case TK_SPAN: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView, "SPAN %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_COLLATE: { /* COLLATE operators without the EP_Collate flag are intended to ** emulate collation associated with a table column. These show ** up in the treeview output as "SOFT-COLLATE". Explicit COLLATE ** operators that appear in the original SQL always have the ** EP_Collate bit set and appear in treeview output as just "COLLATE" */ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView, "%sCOLLATE %Q%s", !ExprHasProperty(pExpr, EP_Collate) ? "SOFT-" : "", pExpr->u.zToken, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_AGG_FUNCTION: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ Window *pWin; if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; pWin = 0; }else{ assert( ExprUseXList(pExpr) ); pFarg = pExpr->x.pList; #ifndef SQLITE_OMIT_WINDOWFUNC pWin = IsWindowFunc(pExpr) ? pExpr->y.pWin : 0; #else pWin = 0; #endif } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->op==TK_AGG_FUNCTION ){ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q%s agg=%d[%d]/%p", pExpr->op2, pExpr->u.zToken, zFlgs, pExpr->pAggInfo ? pExpr->pAggInfo->selId : 0, pExpr->iAgg, pExpr->pAggInfo); }else if( pExpr->op2!=0 ){ const char *zOp2; char zBuf[8]; sqlite3_snprintf(sizeof(zBuf),zBuf,"0x%02x",pExpr->op2); zOp2 = zBuf; if( pExpr->op2==NC_IsCheck ) zOp2 = "NC_IsCheck"; if( pExpr->op2==NC_IdxExpr ) zOp2 = "NC_IdxExpr"; if( pExpr->op2==NC_PartIdx ) zOp2 = "NC_PartIdx"; if( pExpr->op2==NC_GenCol ) zOp2 = "NC_GenCol"; sqlite3TreeViewLine(pView, "FUNCTION %Q%s op2=%s", pExpr->u.zToken, zFlgs, zOp2); }else{ sqlite3TreeViewLine(pView, "FUNCTION %Q%s", pExpr->u.zToken, zFlgs); } if( pFarg ){ sqlite3TreeViewExprList(pView, pFarg, pWin!=0 || pExpr->pLeft, 0); if( pExpr->pLeft ){ Expr *pOB = pExpr->pLeft; assert( pOB->op==TK_ORDER ); assert( ExprUseXList(pOB) ); sqlite3TreeViewExprList(pView, pOB->x.pList, pWin!=0, "ORDERBY"); } } #ifndef SQLITE_OMIT_WINDOWFUNC if( pWin ){ sqlite3TreeViewWindow(pView, pWin, 0); } #endif break; } case TK_ORDER: { sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, "ORDERBY"); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: { assert( ExprUseXSelect(pExpr) ); sqlite3TreeViewLine(pView, "EXISTS-expr flags=0x%x", pExpr->flags); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_SELECT: { assert( ExprUseXSelect(pExpr) ); sqlite3TreeViewLine(pView, "subquery-expr flags=0x%x", pExpr->flags); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_IN: { sqlite3_str *pStr = sqlite3_str_new(0); char *z; sqlite3_str_appendf(pStr, "IN flags=0x%x", pExpr->flags); if( pExpr->iTable ) sqlite3_str_appendf(pStr, " iTable=%d",pExpr->iTable); if( ExprHasProperty(pExpr, EP_Subrtn) ){ sqlite3_str_appendf(pStr, " subrtn(%d,%d)", pExpr->y.sub.regReturn, pExpr->y.sub.iAddr); } z = sqlite3_str_finish(pStr); sqlite3TreeViewLine(pView, z); sqlite3_free(z); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); if( ExprUseXSelect(pExpr) ){ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); }else{ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); } break; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { const Expr *pX, *pY, *pZ; pX = pExpr->pLeft; assert( ExprUseXList(pExpr) ); assert( pExpr->x.pList->nExpr==2 ); pY = pExpr->x.pList->a[0].pExpr; pZ = pExpr->x.pList->a[1].pExpr; sqlite3TreeViewLine(pView, "BETWEEN%s", zFlgs); sqlite3TreeViewExpr(pView, pX, 1); sqlite3TreeViewExpr(pView, pY, 1); sqlite3TreeViewExpr(pView, pZ, 0); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. */ sqlite3TreeViewLine(pView, "%s(%d)", pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); break; } case TK_CASE: { sqlite3TreeViewLine(pView, "CASE"); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); assert( ExprUseXList(pExpr) ); sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { const char *zType = "unk"; switch( pExpr->affExpr ){ case OE_Rollback: zType = "rollback"; break; case OE_Abort: zType = "abort"; break; case OE_Fail: zType = "fail"; break; case OE_Ignore: zType = "ignore"; break; } assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); break; } #endif case TK_MATCH: { sqlite3TreeViewLine(pView, "MATCH {%d:%d}%s", pExpr->iTable, pExpr->iColumn, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pRight, 0); break; } case TK_VECTOR: { char *z = sqlite3_mprintf("VECTOR%s",zFlgs); assert( ExprUseXList(pExpr) ); sqlite3TreeViewBareExprList(pView, pExpr->x.pList, z); sqlite3_free(z); break; } case TK_SELECT_COLUMN: { sqlite3TreeViewLine(pView, "SELECT-COLUMN %d of [0..%d]%s", pExpr->iColumn, pExpr->iTable-1, pExpr->pRight==pExpr->pLeft ? " (SELECT-owner)" : ""); assert( ExprUseXSelect(pExpr->pLeft) ); sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0); break; } case TK_IF_NULL_ROW: { sqlite3TreeViewLine(pView, "IF-NULL-ROW %d", pExpr->iTable); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_ERROR: { Expr tmp; sqlite3TreeViewLine(pView, "ERROR"); tmp = *pExpr; tmp.op = pExpr->op2; sqlite3TreeViewExpr(pView, &tmp, 0); break; } case TK_ROW: { if( pExpr->iColumn<=0 ){ sqlite3TreeViewLine(pView, "First FROM table rowid"); }else{ sqlite3TreeViewLine(pView, "First FROM table column %d", pExpr->iColumn-1); } break; } default: { sqlite3TreeViewLine(pView, "op=%d", pExpr->op); break; } } if( zBinOp ){ sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); sqlite3TreeViewExpr(pView, pExpr->pRight, 0); }else if( zUniOp ){ sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); } sqlite3TreeViewPop(&pView); } /* ** Generate a human-readable explanation of an expression list. */ SQLITE_PRIVATE void sqlite3TreeViewBareExprList( TreeView *pView, const ExprList *pList, const char *zLabel ){ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; if( pList==0 ){ sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ int i; sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; inExpr; i++){ int j = pList->a[i].u.x.iOrderByCol; char *zName = pList->a[i].zEName; int moreToFollow = inExpr - 1; if( j || zName ){ sqlite3TreeViewPush(&pView, moreToFollow); moreToFollow = 0; sqlite3TreeViewLine(pView, 0); if( zName ){ switch( pList->a[i].fg.eEName ){ default: fprintf(stdout, "AS %s ", zName); break; case ENAME_TAB: fprintf(stdout, "TABLE-ALIAS-NAME(\"%s\") ", zName); if( pList->a[i].fg.bUsed ) fprintf(stdout, "(used) "); if( pList->a[i].fg.bUsingTerm ) fprintf(stdout, "(USING-term) "); if( pList->a[i].fg.bNoExpand ) fprintf(stdout, "(NoExpand) "); break; case ENAME_SPAN: fprintf(stdout, "SPAN(\"%s\") ", zName); break; } } if( j ){ fprintf(stdout, "iOrderByCol=%d", j); } fprintf(stdout, "\n"); fflush(stdout); } sqlite3TreeViewExpr(pView, pList->a[i].pExpr, moreToFollow); if( j || zName ){ sqlite3TreeViewPop(&pView); } } } } SQLITE_PRIVATE void sqlite3TreeViewExprList( TreeView *pView, const ExprList *pList, u8 moreToFollow, const char *zLabel ){ sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewBareExprList(pView, pList, zLabel); sqlite3TreeViewPop(&pView); } /* ** Generate a human-readable explanation of an id-list. */ SQLITE_PRIVATE void sqlite3TreeViewBareIdList( TreeView *pView, const IdList *pList, const char *zLabel ){ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; if( pList==0 ){ sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ int i; sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; inId; i++){ char *zName = pList->a[i].zName; int moreToFollow = inId - 1; if( zName==0 ) zName = "(null)"; sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewLine(pView, 0); if( pList->eU4==EU4_NONE ){ fprintf(stdout, "%s\n", zName); }else if( pList->eU4==EU4_IDX ){ fprintf(stdout, "%s (%d)\n", zName, pList->a[i].u4.idx); }else{ assert( pList->eU4==EU4_EXPR ); if( pList->a[i].u4.pExpr==0 ){ fprintf(stdout, "%s (pExpr=NULL)\n", zName); }else{ fprintf(stdout, "%s\n", zName); sqlite3TreeViewPush(&pView, inId-1); sqlite3TreeViewExpr(pView, pList->a[i].u4.pExpr, 0); sqlite3TreeViewPop(&pView); } } sqlite3TreeViewPop(&pView); } } } SQLITE_PRIVATE void sqlite3TreeViewIdList( TreeView *pView, const IdList *pList, u8 moreToFollow, const char *zLabel ){ sqlite3TreeViewPush(&pView, moreToFollow); sqlite3TreeViewBareIdList(pView, pList, zLabel); sqlite3TreeViewPop(&pView); } /* ** Generate a human-readable explanation of a list of Upsert objects */ SQLITE_PRIVATE void sqlite3TreeViewUpsert( TreeView *pView, const Upsert *pUpsert, u8 moreToFollow ){ if( pUpsert==0 ) return; sqlite3TreeViewPush(&pView, moreToFollow); while( pUpsert ){ int n; sqlite3TreeViewPush(&pView, pUpsert->pNextUpsert!=0 || moreToFollow); sqlite3TreeViewLine(pView, "ON CONFLICT DO %s", pUpsert->isDoUpdate ? "UPDATE" : "NOTHING"); n = (pUpsert->pUpsertSet!=0) + (pUpsert->pUpsertWhere!=0); sqlite3TreeViewExprList(pView, pUpsert->pUpsertTarget, (n--)>0, "TARGET"); sqlite3TreeViewExprList(pView, pUpsert->pUpsertSet, (n--)>0, "SET"); if( pUpsert->pUpsertWhere ){ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); sqlite3TreeViewExpr(pView, pUpsert->pUpsertWhere, 0); sqlite3TreeViewPop(&pView); } sqlite3TreeViewPop(&pView); pUpsert = pUpsert->pNextUpsert; } sqlite3TreeViewPop(&pView); } #if TREETRACE_ENABLED /* ** Generate a human-readable diagram of the data structure that go ** into generating an DELETE statement. */ SQLITE_PRIVATE void sqlite3TreeViewDelete( const With *pWith, const SrcList *pTabList, const Expr *pWhere, const ExprList *pOrderBy, const Expr *pLimit, const Trigger *pTrigger ){ int n = 0; TreeView *pView = 0; sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, "DELETE"); if( pWith ) n++; if( pTabList ) n++; if( pWhere ) n++; if( pOrderBy ) n++; if( pLimit ) n++; if( pTrigger ) n++; if( pWith ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewWith(pView, pWith, 0); sqlite3TreeViewPop(&pView); } if( pTabList ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "FROM"); sqlite3TreeViewSrcList(pView, pTabList); sqlite3TreeViewPop(&pView); } if( pWhere ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "WHERE"); sqlite3TreeViewExpr(pView, pWhere, 0); sqlite3TreeViewPop(&pView); } if( pOrderBy ){ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY"); } if( pLimit ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "LIMIT"); sqlite3TreeViewExpr(pView, pLimit, 0); sqlite3TreeViewPop(&pView); } if( pTrigger ){ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1); } sqlite3TreeViewPop(&pView); } #endif /* TREETRACE_ENABLED */ #if TREETRACE_ENABLED /* ** Generate a human-readable diagram of the data structure that go ** into generating an INSERT statement. */ SQLITE_PRIVATE void sqlite3TreeViewInsert( const With *pWith, const SrcList *pTabList, const IdList *pColumnList, const Select *pSelect, const ExprList *pExprList, int onError, const Upsert *pUpsert, const Trigger *pTrigger ){ TreeView *pView = 0; int n = 0; const char *zLabel = "INSERT"; switch( onError ){ case OE_Replace: zLabel = "REPLACE"; break; case OE_Ignore: zLabel = "INSERT OR IGNORE"; break; case OE_Rollback: zLabel = "INSERT OR ROLLBACK"; break; case OE_Abort: zLabel = "INSERT OR ABORT"; break; case OE_Fail: zLabel = "INSERT OR FAIL"; break; } sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, zLabel); if( pWith ) n++; if( pTabList ) n++; if( pColumnList ) n++; if( pSelect ) n++; if( pExprList ) n++; if( pUpsert ) n++; if( pTrigger ) n++; if( pWith ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewWith(pView, pWith, 0); sqlite3TreeViewPop(&pView); } if( pTabList ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "INTO"); sqlite3TreeViewSrcList(pView, pTabList); sqlite3TreeViewPop(&pView); } if( pColumnList ){ sqlite3TreeViewIdList(pView, pColumnList, (--n)>0, "COLUMNS"); } if( pSelect ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "DATA-SOURCE"); sqlite3TreeViewSelect(pView, pSelect, 0); sqlite3TreeViewPop(&pView); } if( pExprList ){ sqlite3TreeViewExprList(pView, pExprList, (--n)>0, "VALUES"); } if( pUpsert ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "UPSERT"); sqlite3TreeViewUpsert(pView, pUpsert, 0); sqlite3TreeViewPop(&pView); } if( pTrigger ){ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1); } sqlite3TreeViewPop(&pView); } #endif /* TREETRACE_ENABLED */ #if TREETRACE_ENABLED /* ** Generate a human-readable diagram of the data structure that go ** into generating an UPDATE statement. */ SQLITE_PRIVATE void sqlite3TreeViewUpdate( const With *pWith, const SrcList *pTabList, const ExprList *pChanges, const Expr *pWhere, int onError, const ExprList *pOrderBy, const Expr *pLimit, const Upsert *pUpsert, const Trigger *pTrigger ){ int n = 0; TreeView *pView = 0; const char *zLabel = "UPDATE"; switch( onError ){ case OE_Replace: zLabel = "UPDATE OR REPLACE"; break; case OE_Ignore: zLabel = "UPDATE OR IGNORE"; break; case OE_Rollback: zLabel = "UPDATE OR ROLLBACK"; break; case OE_Abort: zLabel = "UPDATE OR ABORT"; break; case OE_Fail: zLabel = "UPDATE OR FAIL"; break; } sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewLine(pView, zLabel); if( pWith ) n++; if( pTabList ) n++; if( pChanges ) n++; if( pWhere ) n++; if( pOrderBy ) n++; if( pLimit ) n++; if( pUpsert ) n++; if( pTrigger ) n++; if( pWith ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewWith(pView, pWith, 0); sqlite3TreeViewPop(&pView); } if( pTabList ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "FROM"); sqlite3TreeViewSrcList(pView, pTabList); sqlite3TreeViewPop(&pView); } if( pChanges ){ sqlite3TreeViewExprList(pView, pChanges, (--n)>0, "SET"); } if( pWhere ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "WHERE"); sqlite3TreeViewExpr(pView, pWhere, 0); sqlite3TreeViewPop(&pView); } if( pOrderBy ){ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY"); } if( pLimit ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "LIMIT"); sqlite3TreeViewExpr(pView, pLimit, 0); sqlite3TreeViewPop(&pView); } if( pUpsert ){ sqlite3TreeViewPush(&pView, (--n)>0); sqlite3TreeViewLine(pView, "UPSERT"); sqlite3TreeViewUpsert(pView, pUpsert, 0); sqlite3TreeViewPop(&pView); } if( pTrigger ){ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1); } sqlite3TreeViewPop(&pView); } #endif /* TREETRACE_ENABLED */ #ifndef SQLITE_OMIT_TRIGGER /* ** Show a human-readable graph of a TriggerStep */ SQLITE_PRIVATE void sqlite3TreeViewTriggerStep( TreeView *pView, const TriggerStep *pStep, u8 moreToFollow, u8 showFullList ){ int cnt = 0; if( pStep==0 ) return; sqlite3TreeViewPush(&pView, moreToFollow || (showFullList && pStep->pNext!=0)); do{ if( cnt++ && pStep->pNext==0 ){ sqlite3TreeViewPop(&pView); sqlite3TreeViewPush(&pView, 0); } sqlite3TreeViewLine(pView, "%s", pStep->zSpan ? pStep->zSpan : "RETURNING"); }while( showFullList && (pStep = pStep->pNext)!=0 ); sqlite3TreeViewPop(&pView); } /* ** Show a human-readable graph of a Trigger */ SQLITE_PRIVATE void sqlite3TreeViewTrigger( TreeView *pView, const Trigger *pTrigger, u8 moreToFollow, u8 showFullList ){ int cnt = 0; if( pTrigger==0 ) return; sqlite3TreeViewPush(&pView, moreToFollow || (showFullList && pTrigger->pNext!=0)); do{ if( cnt++ && pTrigger->pNext==0 ){ sqlite3TreeViewPop(&pView); sqlite3TreeViewPush(&pView, 0); } sqlite3TreeViewLine(pView, "TRIGGER %s", pTrigger->zName); sqlite3TreeViewPush(&pView, 0); sqlite3TreeViewTriggerStep(pView, pTrigger->step_list, 0, 1); sqlite3TreeViewPop(&pView); }while( showFullList && (pTrigger = pTrigger->pNext)!=0 ); sqlite3TreeViewPop(&pView); } #endif /* SQLITE_OMIT_TRIGGER */ /* ** These simplified versions of the tree-view routines omit unnecessary ** parameters. These variants are intended to be used from a symbolic ** debugger, such as "gdb", during interactive debugging sessions. ** ** This routines are given external linkage so that they will always be ** accessible to the debugging, and to avoid warnings about unused ** functions. But these routines only exist in debugging builds, so they ** do not contaminate the interface. */ SQLITE_PRIVATE void sqlite3ShowExpr(const Expr *p){ sqlite3TreeViewExpr(0,p,0); } SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList *p){ sqlite3TreeViewExprList(0,p,0,0);} SQLITE_PRIVATE void sqlite3ShowIdList(const IdList *p){ sqlite3TreeViewIdList(0,p,0,0); } SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList *p){ sqlite3TreeViewSrcList(0,p); } SQLITE_PRIVATE void sqlite3ShowSelect(const Select *p){ sqlite3TreeViewSelect(0,p,0); } SQLITE_PRIVATE void sqlite3ShowWith(const With *p){ sqlite3TreeViewWith(0,p,0); } SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert *p){ sqlite3TreeViewUpsert(0,p,0); } #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep *p){ sqlite3TreeViewTriggerStep(0,p,0,0); } SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep *p){ sqlite3TreeViewTriggerStep(0,p,0,1); } SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,0); } SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,1);} #endif #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3ShowWindow(const Window *p){ sqlite3TreeViewWindow(0,p,0); } SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window *p){ sqlite3TreeViewWinFunc(0,p,0); } #endif #endif /* SQLITE_DEBUG */ /************** End of treeview.c ********************************************/ /************** Begin file random.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code to implement a pseudo-random number ** generator (PRNG) for SQLite. ** ** Random numbers are used by some of the database backends in order ** to generate random integer keys for tables or random filenames. */ /* #include "sqliteInt.h" */ /* All threads share a single random number generator. ** This structure is the current state of the generator. */ static SQLITE_WSD struct sqlite3PrngType { u32 s[16]; /* 64 bytes of chacha20 state */ u8 out[64]; /* Output bytes */ u8 n; /* Output bytes remaining */ } sqlite3Prng; /* The RFC-7539 ChaCha20 block function */ #define ROTL(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) #define QR(a, b, c, d) ( \ a += b, d ^= a, d = ROTL(d,16), \ c += d, b ^= c, b = ROTL(b,12), \ a += b, d ^= a, d = ROTL(d, 8), \ c += d, b ^= c, b = ROTL(b, 7)) static void chacha_block(u32 *out, const u32 *in){ int i; u32 x[16]; memcpy(x, in, 64); for(i=0; i<10; i++){ QR(x[0], x[4], x[ 8], x[12]); QR(x[1], x[5], x[ 9], x[13]); QR(x[2], x[6], x[10], x[14]); QR(x[3], x[7], x[11], x[15]); QR(x[0], x[5], x[10], x[15]); QR(x[1], x[6], x[11], x[12]); QR(x[2], x[7], x[ 8], x[13]); QR(x[3], x[4], x[ 9], x[14]); } for(i=0; i<16; i++) out[i] = x[i]+in[i]; } /* ** Return N random bytes. */ SQLITE_API void sqlite3_randomness(int N, void *pBuf){ unsigned char *zBuf = pBuf; /* The "wsdPrng" macro will resolve to the pseudo-random number generator ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdPrng can refer directly ** to the "sqlite3Prng" state vector declared above. */ #ifdef SQLITE_OMIT_WSD struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng); # define wsdPrng p[0] #else # define wsdPrng sqlite3Prng #endif #if SQLITE_THREADSAFE sqlite3_mutex *mutex; #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return; #endif #if SQLITE_THREADSAFE mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG); #endif sqlite3_mutex_enter(mutex); if( N<=0 || pBuf==0 ){ wsdPrng.s[0] = 0; sqlite3_mutex_leave(mutex); return; } /* Initialize the state of the random number generator once, ** the first time this routine is called. */ if( wsdPrng.s[0]==0 ){ sqlite3_vfs *pVfs = sqlite3_vfs_find(0); static const u32 chacha20_init[] = { 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 }; memcpy(&wsdPrng.s[0], chacha20_init, 16); if( NEVER(pVfs==0) ){ memset(&wsdPrng.s[4], 0, 44); }else{ sqlite3OsRandomness(pVfs, 44, (char*)&wsdPrng.s[4]); } wsdPrng.s[15] = wsdPrng.s[12]; wsdPrng.s[12] = 0; wsdPrng.n = 0; } assert( N>0 ); while( 1 /* exit by break */ ){ if( N<=wsdPrng.n ){ memcpy(zBuf, &wsdPrng.out[wsdPrng.n-N], N); wsdPrng.n -= N; break; } if( wsdPrng.n>0 ){ memcpy(zBuf, wsdPrng.out, wsdPrng.n); N -= wsdPrng.n; zBuf += wsdPrng.n; } wsdPrng.s[12]++; chacha_block((u32*)wsdPrng.out, wsdPrng.s); wsdPrng.n = 64; } sqlite3_mutex_leave(mutex); } #ifndef SQLITE_UNTESTABLE /* ** For testing purposes, we sometimes want to preserve the state of ** PRNG and restore the PRNG to its saved state at a later time, or ** to reset the PRNG to its initial state. These routines accomplish ** those tasks. ** ** The sqlite3_test_control() interface calls these routines to ** control the PRNG. */ static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng; SQLITE_PRIVATE void sqlite3PrngSaveState(void){ memcpy( &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), &GLOBAL(struct sqlite3PrngType, sqlite3Prng), sizeof(sqlite3Prng) ); } SQLITE_PRIVATE void sqlite3PrngRestoreState(void){ memcpy( &GLOBAL(struct sqlite3PrngType, sqlite3Prng), &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), sizeof(sqlite3Prng) ); } #endif /* SQLITE_UNTESTABLE */ /************** End of random.c **********************************************/ /************** Begin file threads.c *****************************************/ /* ** 2012 July 21 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file presents a simple cross-platform threading interface for ** use internally by SQLite. ** ** A "thread" can be created using sqlite3ThreadCreate(). This thread ** runs independently of its creator until it is joined using ** sqlite3ThreadJoin(), at which point it terminates. ** ** Threads do not have to be real. It could be that the work of the ** "thread" is done by the main thread at either the sqlite3ThreadCreate() ** or sqlite3ThreadJoin() call. This is, in fact, what happens in ** single threaded systems. Nothing in SQLite requires multiple threads. ** This interface exists so that applications that want to take advantage ** of multiple cores can do so, while also allowing applications to stay ** single-threaded if desired. */ /* #include "sqliteInt.h" */ #if SQLITE_OS_WIN /* # include "os_win.h" */ #endif #if SQLITE_MAX_WORKER_THREADS>0 /********************************* Unix Pthreads ****************************/ #if SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) && SQLITE_THREADSAFE>0 #define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */ /* #include */ /* A running thread */ struct SQLiteThread { pthread_t tid; /* Thread ID */ int done; /* Set to true when thread finishes */ void *pOut; /* Result returned by the thread */ void *(*xTask)(void*); /* The thread routine */ void *pIn; /* Argument to the thread */ }; /* Create a new thread */ SQLITE_PRIVATE int sqlite3ThreadCreate( SQLiteThread **ppThread, /* OUT: Write the thread object here */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ SQLiteThread *p; int rc; assert( ppThread!=0 ); assert( xTask!=0 ); /* This routine is never used in single-threaded mode */ assert( sqlite3GlobalConfig.bCoreMutex!=0 ); *ppThread = 0; p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM_BKPT; memset(p, 0, sizeof(*p)); p->xTask = xTask; p->pIn = pIn; /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a ** function that returns SQLITE_ERROR when passed the argument 200, that ** forces worker threads to run sequentially and deterministically ** for testing purposes. */ if( sqlite3FaultSim(200) ){ rc = 1; }else{ rc = pthread_create(&p->tid, 0, xTask, pIn); } if( rc ){ p->done = 1; p->pOut = xTask(pIn); } *ppThread = p; return SQLITE_OK; } /* Get the results of the thread */ SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){ int rc; assert( ppOut!=0 ); if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT; if( p->done ){ *ppOut = p->pOut; rc = SQLITE_OK; }else{ rc = pthread_join(p->tid, ppOut) ? SQLITE_ERROR : SQLITE_OK; } sqlite3_free(p); return rc; } #endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */ /******************************** End Unix Pthreads *************************/ /********************************* Win32 Threads ****************************/ #if SQLITE_OS_WIN_THREADS #define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */ #include /* A running thread */ struct SQLiteThread { void *tid; /* The thread handle */ unsigned id; /* The thread identifier */ void *(*xTask)(void*); /* The routine to run as a thread */ void *pIn; /* Argument to xTask */ void *pResult; /* Result of xTask */ }; /* Thread procedure Win32 compatibility shim */ static unsigned __stdcall sqlite3ThreadProc( void *pArg /* IN: Pointer to the SQLiteThread structure */ ){ SQLiteThread *p = (SQLiteThread *)pArg; assert( p!=0 ); #if 0 /* ** This assert appears to trigger spuriously on certain ** versions of Windows, possibly due to _beginthreadex() ** and/or CreateThread() not fully setting their thread ** ID parameter before starting the thread. */ assert( p->id==GetCurrentThreadId() ); #endif assert( p->xTask!=0 ); p->pResult = p->xTask(p->pIn); _endthreadex(0); return 0; /* NOT REACHED */ } /* Create a new thread */ SQLITE_PRIVATE int sqlite3ThreadCreate( SQLiteThread **ppThread, /* OUT: Write the thread object here */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ SQLiteThread *p; assert( ppThread!=0 ); assert( xTask!=0 ); *ppThread = 0; p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM_BKPT; /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a ** function that returns SQLITE_ERROR when passed the argument 200, that ** forces worker threads to run sequentially and deterministically ** (via the sqlite3FaultSim() term of the conditional) for testing ** purposes. */ if( sqlite3GlobalConfig.bCoreMutex==0 || sqlite3FaultSim(200) ){ memset(p, 0, sizeof(*p)); }else{ p->xTask = xTask; p->pIn = pIn; p->tid = (void*)_beginthreadex(0, 0, sqlite3ThreadProc, p, 0, &p->id); if( p->tid==0 ){ memset(p, 0, sizeof(*p)); } } if( p->xTask==0 ){ p->id = GetCurrentThreadId(); p->pResult = xTask(pIn); } *ppThread = p; return SQLITE_OK; } SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject); /* os_win.c */ /* Get the results of the thread */ SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){ DWORD rc; BOOL bRc; assert( ppOut!=0 ); if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT; if( p->xTask==0 ){ /* assert( p->id==GetCurrentThreadId() ); */ rc = WAIT_OBJECT_0; assert( p->tid==0 ); }else{ assert( p->id!=0 && p->id!=GetCurrentThreadId() ); rc = sqlite3Win32Wait((HANDLE)p->tid); assert( rc!=WAIT_IO_COMPLETION ); bRc = CloseHandle((HANDLE)p->tid); assert( bRc ); } if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult; sqlite3_free(p); return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR; } #endif /* SQLITE_OS_WIN_THREADS */ /******************************** End Win32 Threads *************************/ /********************************* Single-Threaded **************************/ #ifndef SQLITE_THREADS_IMPLEMENTED /* ** This implementation does not actually create a new thread. It does the ** work of the thread in the main thread, when either the thread is created ** or when it is joined */ /* A running thread */ struct SQLiteThread { void *(*xTask)(void*); /* The routine to run as a thread */ void *pIn; /* Argument to xTask */ void *pResult; /* Result of xTask */ }; /* Create a new thread */ SQLITE_PRIVATE int sqlite3ThreadCreate( SQLiteThread **ppThread, /* OUT: Write the thread object here */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ SQLiteThread *p; assert( ppThread!=0 ); assert( xTask!=0 ); *ppThread = 0; p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM_BKPT; if( (SQLITE_PTR_TO_INT(p)/17)&1 ){ p->xTask = xTask; p->pIn = pIn; }else{ p->xTask = 0; p->pResult = xTask(pIn); } *ppThread = p; return SQLITE_OK; } /* Get the results of the thread */ SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){ assert( ppOut!=0 ); if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT; if( p->xTask ){ *ppOut = p->xTask(p->pIn); }else{ *ppOut = p->pResult; } sqlite3_free(p); #if defined(SQLITE_TEST) { void *pTstAlloc = sqlite3Malloc(10); if (!pTstAlloc) return SQLITE_NOMEM_BKPT; sqlite3_free(pTstAlloc); } #endif return SQLITE_OK; } #endif /* !defined(SQLITE_THREADS_IMPLEMENTED) */ /****************************** End Single-Threaded *************************/ #endif /* SQLITE_MAX_WORKER_THREADS>0 */ /************** End of threads.c *********************************************/ /************** Begin file utf.c *********************************************/ /* ** 2004 April 13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** ** Notes on UTF-8: ** ** Byte-0 Byte-1 Byte-2 Byte-3 Value ** 0xxxxxxx 00000000 00000000 0xxxxxxx ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx ** ** ** Notes on UTF-16: (with wwww+1==uuuuu) ** ** Word-0 Word-1 Value ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx ** ** ** BOM or Byte Order Mark: ** 0xff 0xfe little-endian utf-16 follows ** 0xfe 0xff big-endian utf-16 follows ** */ /* #include "sqliteInt.h" */ /* #include */ /* #include "vdbeInt.h" */ #if !defined(SQLITE_AMALGAMATION) && SQLITE_BYTEORDER==0 /* ** The following constant value is used by the SQLITE_BIGENDIAN and ** SQLITE_LITTLEENDIAN macros. */ SQLITE_PRIVATE const int sqlite3one = 1; #endif /* SQLITE_AMALGAMATION && SQLITE_BYTEORDER==0 */ /* ** This lookup table is used to help decode the first byte of ** a multi-byte UTF8 character. */ static const unsigned char sqlite3Utf8Trans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; #define WRITE_UTF8(zOut, c) { \ if( c<0x00080 ){ \ *zOut++ = (u8)(c&0xFF); \ } \ else if( c<0x00800 ){ \ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ else if( c<0x10000 ){ \ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ }else{ \ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ } #define WRITE_UTF16LE(zOut, c) { \ if( c<=0xFFFF ){ \ *zOut++ = (u8)(c&0x00FF); \ *zOut++ = (u8)((c>>8)&0x00FF); \ }else{ \ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ *zOut++ = (u8)(c&0x00FF); \ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ } \ } #define WRITE_UTF16BE(zOut, c) { \ if( c<=0xFFFF ){ \ *zOut++ = (u8)((c>>8)&0x00FF); \ *zOut++ = (u8)(c&0x00FF); \ }else{ \ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ *zOut++ = (u8)(c&0x00FF); \ } \ } /* ** Translate a single UTF-8 character. Return the unicode value. ** ** During translation, assume that the byte that zTerm points ** is a 0x00. ** ** Write a pointer to the next unread byte back into *pzNext. ** ** Notes On Invalid UTF-8: ** ** * This routine never allows a 7-bit character (0x00 through 0x7f) to ** be encoded as a multi-byte character. Any multi-byte character that ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. ** ** * This routine never allows a UTF16 surrogate value to be encoded. ** If a multi-byte character attempts to encode a value between ** 0xd800 and 0xe000 then it is rendered as 0xfffd. ** ** * Bytes in the range of 0x80 through 0xbf which occur as the first ** byte of a character are interpreted as single-byte characters ** and rendered as themselves even though they are technically ** invalid characters. ** ** * This routine accepts over-length UTF8 encodings ** for unicode values 0x80 and greater. It does not change over-length ** encodings to 0xfffd as some systems recommend. */ #define READ_UTF8(zIn, zTerm, c) \ c = *(zIn++); \ if( c>=0xc0 ){ \ c = sqlite3Utf8Trans1[c-0xc0]; \ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ c = (c<<6) + (0x3f & *(zIn++)); \ } \ if( c<0x80 \ || (c&0xFFFFF800)==0xD800 \ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ } SQLITE_PRIVATE u32 sqlite3Utf8Read( const unsigned char **pz /* Pointer to string from which to read char */ ){ unsigned int c; /* Same as READ_UTF8() above but without the zTerm parameter. ** For this routine, we assume the UTF8 string is always zero-terminated. */ c = *((*pz)++); if( c>=0xc0 ){ c = sqlite3Utf8Trans1[c-0xc0]; while( (*(*pz) & 0xc0)==0x80 ){ c = (c<<6) + (0x3f & *((*pz)++)); } if( c<0x80 || (c&0xFFFFF800)==0xD800 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } } return c; } /* ** Read a single UTF8 character out of buffer z[], but reading no ** more than n characters from the buffer. z[] is not zero-terminated. ** ** Return the number of bytes used to construct the character. ** ** Invalid UTF8 might generate a strange result. No effort is made ** to detect invalid UTF8. ** ** At most 4 bytes will be read out of z[]. The return value will always ** be between 1 and 4. */ SQLITE_PRIVATE int sqlite3Utf8ReadLimited( const u8 *z, int n, u32 *piOut ){ u32 c; int i = 1; assert( n>0 ); c = z[0]; if( c>=0xc0 ){ c = sqlite3Utf8Trans1[c-0xc0]; if( n>4 ) n = 4; while( idb==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 ); #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3VdbeMemPrettyPrint(pMem, &acc); fprintf(stderr, "INPUT: %s\n", sqlite3StrAccumFinish(&acc)); } #endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM_BKPT; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n&~1]; while( zInenc = desiredEnc; goto translate_out; } /* Set len to the maximum number of bytes required in the output buffer. */ if( desiredEnc==SQLITE_UTF8 ){ /* When converting from UTF-16, the maximum growth results from ** translating a 2-byte character to a 4-byte UTF-8 character. ** A single byte is required for the output string ** nul-terminator. */ pMem->n &= ~1; len = 2 * (sqlite3_int64)pMem->n + 1; }else{ /* When converting from UTF-8 to UTF-16 the maximum growth is caused ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 ** character. Two bytes are required in the output buffer for the ** nul-terminator. */ len = 2 * (sqlite3_int64)pMem->n + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer, space obtained ** from sqlite3_malloc(). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; zOut = sqlite3DbMallocRaw(pMem->db, len); if( !zOut ){ return SQLITE_NOMEM_BKPT; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ if( desiredEnc==SQLITE_UTF16LE ){ /* UTF-8 -> UTF-16 Little-endian */ while( zIn UTF-16 Big-endian */ while( zInn = (int)(z - zOut); *z++ = 0; }else{ assert( desiredEnc==SQLITE_UTF8 ); if( pMem->enc==SQLITE_UTF16LE ){ /* UTF-16 Little-endian -> UTF-8 */ while( zIn=0xd800 && c<0xe000 ){ #ifdef SQLITE_REPLACE_INVALID_UTF if( c>=0xdc00 || zIn>=zTerm ){ c = 0xfffd; }else{ int c2 = *(zIn++); c2 += (*(zIn++))<<8; if( c2<0xdc00 || c2>=0xe000 ){ zIn -= 2; c = 0xfffd; }else{ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000; } } #else if( zIn UTF-8 */ while( zIn=0xd800 && c<0xe000 ){ #ifdef SQLITE_REPLACE_INVALID_UTF if( c>=0xdc00 || zIn>=zTerm ){ c = 0xfffd; }else{ int c2 = (*(zIn++))<<8; c2 += *(zIn++); if( c2<0xdc00 || c2>=0xe000 ){ zIn -= 2; c = 0xfffd; }else{ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000; } } #else if( zInn = (int)(z - zOut); } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); c = MEM_Str|MEM_Term|(pMem->flags&(MEM_AffMask|MEM_Subtype)); sqlite3VdbeMemRelease(pMem); pMem->flags = c; pMem->enc = desiredEnc; pMem->z = (char*)zOut; pMem->zMalloc = pMem->z; pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z); translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3VdbeMemPrettyPrint(pMem, &acc); fprintf(stderr, "OUTPUT: %s\n", sqlite3StrAccumFinish(&acc)); } #endif return SQLITE_OK; } #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_UTF16 /* ** This routine checks for a byte-order mark at the beginning of the ** UTF-16 string stored in *pMem. If one is present, it is removed and ** the encoding of the Mem adjusted. This routine does not do any ** byte-swapping, it just sets Mem.enc appropriately. ** ** The allocation (static, dynamic etc.) and encoding of the Mem may be ** changed by this function. */ SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){ int rc = SQLITE_OK; u8 bom = 0; assert( pMem->n>=0 ); if( pMem->n>1 ){ u8 b1 = *(u8 *)pMem->z; u8 b2 = *(((u8 *)pMem->z) + 1); if( b1==0xFE && b2==0xFF ){ bom = SQLITE_UTF16BE; } if( b1==0xFF && b2==0xFE ){ bom = SQLITE_UTF16LE; } } if( bom ){ rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc==SQLITE_OK ){ pMem->n -= 2; memmove(pMem->z, &pMem->z[2], pMem->n); pMem->z[pMem->n] = '\0'; pMem->z[pMem->n+1] = '\0'; pMem->flags |= MEM_Term; pMem->enc = bom; } } return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, ** return the number of unicode characters in pZ up to (but not including) ** the first 0x00 byte. If nByte is not less than zero, return the ** number of unicode characters in the first nByte of pZ (or up to ** the first 0x00, whichever comes first). */ SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){ int r = 0; const u8 *z = (const u8*)zIn; const u8 *zTerm; if( nByte>=0 ){ zTerm = &z[nByte]; }else{ zTerm = (const u8*)(-1); } assert( z<=zTerm ); while( *z!=0 && zmallocFailed ){ sqlite3VdbeMemRelease(&m); m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); assert( m.z || db->mallocFailed ); return m.z; } /* ** zIn is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters ** in pZ. nChar must be non-negative. */ SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){ int c; unsigned char const *z = zIn; int n = 0; if( SQLITE_UTF16NATIVE==SQLITE_UTF16LE ) z++; while( n=0xd8 && c<0xdc && z[0]>=0xdc && z[0]<0xe0 ) z += 2; n++; } return (int)(z-(unsigned char const *)zIn) - (SQLITE_UTF16NATIVE==SQLITE_UTF16LE); } #if defined(SQLITE_TEST) /* ** This routine is called from the TCL test function "translate_selftest". ** It checks that the primitives for serializing and deserializing ** characters in each encoding are inverses of each other. */ SQLITE_PRIVATE void sqlite3UtfSelfTest(void){ unsigned int i, t; unsigned char zBuf[20]; unsigned char *z; int n; unsigned int c; for(i=0; i<0x00110000; i++){ z = zBuf; WRITE_UTF8(z, i); n = (int)(z-zBuf); assert( n>0 && n<=4 ); z[0] = 0; z = zBuf; c = sqlite3Utf8Read((const u8**)&z); t = i; if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; assert( c==t ); assert( (z-zBuf)==n ); } } #endif /* SQLITE_TEST */ #endif /* SQLITE_OMIT_UTF16 */ /************** End of utf.c *************************************************/ /************** Begin file util.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** */ /* #include "sqliteInt.h" */ /* #include */ #ifndef SQLITE_OMIT_FLOATING_POINT #include #endif /* ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, ** or to bypass normal error detection during testing in order to let ** execute proceed further downstream. ** ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The ** sqlite3FaultSim() function only returns non-zero during testing. ** ** During testing, if the test harness has set a fault-sim callback using ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then ** each call to sqlite3FaultSim() is relayed to that application-supplied ** callback and the integer return value form the application-supplied ** callback is returned by sqlite3FaultSim(). ** ** The integer argument to sqlite3FaultSim() is a code to identify which ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() ** should have a unique code. To prevent legacy testing applications from ** breaking, the codes should not be changed or reused. */ #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE int sqlite3FaultSim(int iTest){ int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; return xCallback ? xCallback(iTest) : SQLITE_OK; } #endif #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Return true if the floating point value is Not a Number (NaN). ** ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. ** Otherwise, we have our own implementation that works on most systems. */ SQLITE_PRIVATE int sqlite3IsNaN(double x){ int rc; /* The value return */ #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN u64 y; memcpy(&y,&x,sizeof(y)); rc = IsNaN(y); #else rc = isnan(x); #endif /* HAVE_ISNAN */ testcase( rc ); return rc; } #endif /* SQLITE_OMIT_FLOATING_POINT */ #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Return true if the floating point value is NaN or +Inf or -Inf. */ SQLITE_PRIVATE int sqlite3IsOverflow(double x){ int rc; /* The value return */ u64 y; memcpy(&y,&x,sizeof(y)); rc = IsOvfl(y); return rc; } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Compute a string length that is limited to what can be stored in ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ SQLITE_PRIVATE int sqlite3Strlen30(const char *z){ if( z==0 ) return 0; return 0x3fffffff & (int)strlen(z); } /* ** Return the declared type of a column. Or return zDflt if the column ** has no declared type. ** ** The column type is an extra string stored after the zero-terminator on ** the column name if and only if the COLFLAG_HASTYPE flag is set. */ SQLITE_PRIVATE char *sqlite3ColumnType(Column *pCol, char *zDflt){ if( pCol->colFlags & COLFLAG_HASTYPE ){ return pCol->zCnName + strlen(pCol->zCnName) + 1; }else if( pCol->eCType ){ assert( pCol->eCType<=SQLITE_N_STDTYPE ); return (char*)sqlite3StdType[pCol->eCType-1]; }else{ return zDflt; } } /* ** Helper function for sqlite3Error() - called rarely. Broken out into ** a separate routine to avoid unnecessary register saves on entry to ** sqlite3Error(). */ static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ if( db->pErr ) sqlite3ValueSetNull(db->pErr); sqlite3SystemError(db, err_code); } /* ** Set the current error code to err_code and clear any prior error message. ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates ** that would be appropriate. */ SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){ assert( db!=0 ); db->errCode = err_code; if( err_code || db->pErr ){ sqlite3ErrorFinish(db, err_code); }else{ db->errByteOffset = -1; } } /* ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state ** and error message. */ SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3 *db){ assert( db!=0 ); db->errCode = SQLITE_OK; db->errByteOffset = -1; if( db->pErr ) sqlite3ValueSetNull(db->pErr); } /* ** Load the sqlite3.iSysErrno field if that is an appropriate thing ** to do based on the SQLite error code in rc. */ SQLITE_PRIVATE void sqlite3SystemError(sqlite3 *db, int rc){ if( rc==SQLITE_IOERR_NOMEM ) return; #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL) if( rc==SQLITE_IOERR_IN_PAGE ){ int ii; int iErr; sqlite3BtreeEnterAll(db); for(ii=0; iinDb; ii++){ if( db->aDb[ii].pBt ){ iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt)); if( iErr ){ db->iSysErrno = iErr; } } } sqlite3BtreeLeaveAll(db); return; } #endif rc &= 0xff; if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ db->iSysErrno = sqlite3OsGetLastError(db->pVfs); } } /* ** Set the most recent error code and error string for the sqlite ** handle "db". The error code is set to "err_code". ** ** If it is not NULL, string zFormat specifies the format of the ** error string. zFormat and any string tokens that follow it are ** assumed to be encoded in UTF-8. ** ** To clear the most recent error for sqlite handle "db", sqlite3Error ** should be called with err_code set to SQLITE_OK and zFormat set ** to NULL. */ SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ assert( db!=0 ); db->errCode = err_code; sqlite3SystemError(db, err_code); if( zFormat==0 ){ sqlite3Error(db, err_code); }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ char *z; va_list ap; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); } } /* ** Check for interrupts and invoke progress callback. */ SQLITE_PRIVATE void sqlite3ProgressCheck(Parse *p){ sqlite3 *db = p->db; if( AtomicLoad(&db->u1.isInterrupted) ){ p->nErr++; p->rc = SQLITE_INTERRUPT; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ if( p->rc==SQLITE_INTERRUPT ){ p->nProgressSteps = 0; }else if( (++p->nProgressSteps)>=db->nProgressOps ){ if( db->xProgress(db->pProgressArg) ){ p->nErr++; p->rc = SQLITE_INTERRUPT; } p->nProgressSteps = 0; } } #endif } /* ** Add an error message to pParse->zErrMsg and increment pParse->nErr. ** ** This function should be used to report any error that occurs while ** compiling an SQL statement (i.e. within sqlite3_prepare()). The ** last thing the sqlite3_prepare() function does is copy the error ** stored by this function into the database handle using sqlite3Error(). ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used ** during statement execution (sqlite3_step() etc.). */ SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ char *zMsg; va_list ap; sqlite3 *db = pParse->db; assert( db!=0 ); assert( db->pParse==pParse || db->pParse->pToplevel==pParse ); db->errByteOffset = -2; va_start(ap, zFormat); zMsg = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); if( db->errByteOffset<-1 ) db->errByteOffset = -1; if( db->suppressErr ){ sqlite3DbFree(db, zMsg); if( db->mallocFailed ){ pParse->nErr++; pParse->rc = SQLITE_NOMEM; } }else{ pParse->nErr++; sqlite3DbFree(db, pParse->zErrMsg); pParse->zErrMsg = zMsg; pParse->rc = SQLITE_ERROR; pParse->pWith = 0; } } /* ** If database connection db is currently parsing SQL, then transfer ** error code errCode to that parser if the parser has not already ** encountered some other kind of error. */ SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3 *db, int errCode){ Parse *pParse; if( db==0 || (pParse = db->pParse)==0 ) return errCode; pParse->rc = errCode; pParse->nErr++; return errCode; } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** The input string must be zero-terminated. A new zero-terminator ** is added to the dequoted string. ** ** The return value is -1 if no dequoting occurs or the length of the ** dequoted string, exclusive of the zero terminator, if dequoting does ** occur. ** ** 2002-02-14: This routine is extended to remove MS-Access style ** brackets from around identifiers. For example: "[a-b-c]" becomes ** "a-b-c". */ SQLITE_PRIVATE void sqlite3Dequote(char *z){ char quote; int i, j; if( z==0 ) return; quote = z[0]; if( !sqlite3Isquote(quote) ) return; if( quote=='[' ) quote = ']'; for(i=1, j=0;; i++){ assert( z[i] ); if( z[i]==quote ){ if( z[i+1]==quote ){ z[j++] = quote; i++; }else{ break; } }else{ z[j++] = z[i]; } } z[j] = 0; } SQLITE_PRIVATE void sqlite3DequoteExpr(Expr *p){ assert( !ExprHasProperty(p, EP_IntValue) ); assert( sqlite3Isquote(p->u.zToken[0]) ); p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; sqlite3Dequote(p->u.zToken); } /* ** If the input token p is quoted, try to adjust the token to remove ** the quotes. This is not always possible: ** ** "abc" -> abc ** "ab""cd" -> (not possible because of the interior "") ** ** Remove the quotes if possible. This is a optimization. The overall ** system should still return the correct answer even if this routine ** is always a no-op. */ SQLITE_PRIVATE void sqlite3DequoteToken(Token *p){ unsigned int i; if( p->n<2 ) return; if( !sqlite3Isquote(p->z[0]) ) return; for(i=1; in-1; i++){ if( sqlite3Isquote(p->z[i]) ) return; } p->n -= 2; p->z++; } /* ** Generate a Token object from a string */ SQLITE_PRIVATE void sqlite3TokenInit(Token *p, char *z){ p->z = z; p->n = sqlite3Strlen30(z); } /* Convenient short-hand */ #define UpperToLower sqlite3UpperToLower /* ** Some systems have stricmp(). Others have strcasecmp(). Because ** there is no consistency, we will define our own. ** ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and ** sqlite3_strnicmp() APIs allow applications and extensions to compare ** the contents of two buffers containing UTF-8 strings in a ** case-independent fashion, using the same definition of "case ** independence" that SQLite uses internally when comparing identifiers. */ SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){ if( zLeft==0 ){ return zRight ? -1 : 0; }else if( zRight==0 ){ return 1; } return sqlite3StrICmp(zLeft, zRight); } SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){ unsigned char *a, *b; int c, x; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; for(;;){ c = *a; x = *b; if( c==x ){ if( c==0 ) break; }else{ c = (int)UpperToLower[c] - (int)UpperToLower[x]; if( c ) break; } a++; b++; } return c; } SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; if( zLeft==0 ){ return zRight ? -1 : 0; }else if( zRight==0 ){ return 1; } a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* ** Compute an 8-bit hash on a string that is insensitive to case differences */ SQLITE_PRIVATE u8 sqlite3StrIHash(const char *z){ u8 h = 0; if( z==0 ) return 0; while( z[0] ){ h += UpperToLower[(unsigned char)z[0]]; z++; } return h; } /* Double-Double multiplication. (x[0],x[1]) *= (y,yy) ** ** Reference: ** T. J. Dekker, "A Floating-Point Technique for Extending the ** Available Precision". 1971-07-26. */ static void dekkerMul2(volatile double *x, double y, double yy){ /* ** The "volatile" keywords on parameter x[] and on local variables ** below are needed force intermediate results to be truncated to ** binary64 rather than be carried around in an extended-precision ** format. The truncation is necessary for the Dekker algorithm to ** work. Intel x86 floating point might omit the truncation without ** the use of volatile. */ volatile double tx, ty, p, q, c, cc; double hx, hy; u64 m; memcpy(&m, (void*)&x[0], 8); m &= 0xfffffffffc000000LL; memcpy(&hx, &m, 8); tx = x[0] - hx; memcpy(&m, &y, 8); m &= 0xfffffffffc000000LL; memcpy(&hy, &m, 8); ty = y - hy; p = hx*hy; q = hx*ty + tx*hy; c = p+q; cc = p - c + q + tx*ty; cc = x[0]*yy + x[1]*y + cc; x[0] = c + cc; x[1] = c - x[0]; x[1] += cc; } /* ** The string z[] is an text representation of a real number. ** Convert this string to a double and write it into *pResult. ** ** The string z[] is length bytes in length (bytes, not characters) and ** uses the encoding enc. The string is not necessarily zero-terminated. ** ** Return TRUE if the result is a valid real number (or integer) and FALSE ** if the string is empty or contains extraneous text. More specifically ** return ** 1 => The input string is a pure integer ** 2 or more => The input has a decimal point or eNNN clause ** 0 or less => The input string is not a valid number ** -1 => Not a valid number, but has a valid prefix which ** includes a decimal point and/or an eNNN clause ** ** Valid numbers are in one of these formats: ** ** [+-]digits[E[+-]digits] ** [+-]digits.[digits][E[+-]digits] ** [+-].digits[E[+-]digits] ** ** Leading and trailing whitespace is ignored for the purpose of determining ** validity. ** ** If some prefix of the input string is a valid number, this routine ** returns FALSE but it still converts the prefix and writes the result ** into *pResult. */ #if defined(_MSC_VER) #pragma warning(disable : 4756) #endif SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ #ifndef SQLITE_OMIT_FLOATING_POINT int incr; const char *zEnd; /* sign * significand * (10 ^ (esign * exponent)) */ int sign = 1; /* sign of significand */ u64 s = 0; /* significand */ int d = 0; /* adjust exponent for shifting decimal point */ int esign = 1; /* sign of exponent */ int e = 0; /* exponent */ int eValid = 1; /* True exponent is either not used or is well-formed */ int nDigit = 0; /* Number of digits processed */ int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); *pResult = 0.0; /* Default return value, in case of an error */ if( length==0 ) return 0; if( enc==SQLITE_UTF8 ){ incr = 1; zEnd = z + length; }else{ int i; incr = 2; length &= ~1; assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); testcase( enc==SQLITE_UTF16LE ); testcase( enc==SQLITE_UTF16BE ); for(i=3-enc; i=zEnd ) return 0; /* get sign of significand */ if( *z=='-' ){ sign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* copy max significant digits to significand */ while( z=((LARGEST_UINT64-9)/10) ){ /* skip non-significant significand digits ** (increase exponent by d to shift decimal left) */ while( z=zEnd ) goto do_atof_calc; /* if decimal point is present */ if( *z=='.' ){ z+=incr; eType++; /* copy digits from after decimal to significand ** (decrease exponent by d to shift decimal right) */ while( z=zEnd ) goto do_atof_calc; /* if exponent is present */ if( *z=='e' || *z=='E' ){ z+=incr; eValid = 0; eType++; /* This branch is needed to avoid a (harmless) buffer overread. The ** special comment alerts the mutation tester that the correct answer ** is obtained even if the branch is omitted */ if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ /* get sign of exponent */ if( *z=='-' ){ esign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* copy digits to exponent */ while( z0 && s<(LARGEST_UINT64/10) ){ s *= 10; e--; } while( e<0 && (s%10)==0 ){ s /= 10; e++; } if( e==0 ){ *pResult = s; }else if( sqlite3Config.bUseLongDouble ){ LONGDOUBLE_TYPE r = (LONGDOUBLE_TYPE)s; if( e>0 ){ while( e>=100 ){ e-=100; r *= 1.0e+100L; } while( e>=10 ){ e-=10; r *= 1.0e+10L; } while( e>=1 ){ e-=1; r *= 1.0e+01L; } }else{ while( e<=-100 ){ e+=100; r *= 1.0e-100L; } while( e<=-10 ){ e+=10; r *= 1.0e-10L; } while( e<=-1 ){ e+=1; r *= 1.0e-01L; } } assert( r>=0.0 ); if( r>+1.7976931348623157081452742373e+308L ){ #ifdef INFINITY *pResult = +INFINITY; #else *pResult = 1.0e308*10.0; #endif }else{ *pResult = (double)r; } }else{ double rr[2]; u64 s2; rr[0] = (double)s; s2 = (u64)rr[0]; #if defined(_MSC_VER) && _MSC_VER<1700 if( s2==0x8000000000000000LL ){ s2 = 2*(u64)(0.5*rr[0]); } #endif rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s); if( e>0 ){ while( e>=100 ){ e -= 100; dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83); } while( e>=10 ){ e -= 10; dekkerMul2(rr, 1.0e+10, 0.0); } while( e>=1 ){ e -= 1; dekkerMul2(rr, 1.0e+01, 0.0); } }else{ while( e<=-100 ){ e += 100; dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117); } while( e<=-10 ){ e += 10; dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27); } while( e<=-1 ){ e += 1; dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18); } } *pResult = rr[0]+rr[1]; if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300; } if( sign<0 ) *pResult = -*pResult; assert( !sqlite3IsNaN(*pResult) ); atof_return: /* return true if number and no extra non-whitespace characters after */ if( z==zEnd && nDigit>0 && eValid && eType>0 ){ return eType; }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ return -1; }else{ return 0; } #else return !sqlite3Atoi64(z, pResult, length, enc); #endif /* SQLITE_OMIT_FLOATING_POINT */ } #if defined(_MSC_VER) #pragma warning(default : 4756) #endif /* ** Render an signed 64-bit integer as text. Store the result in zOut[] and ** return the length of the string that was stored, in bytes. The value ** returned does not include the zero terminator at the end of the output ** string. ** ** The caller must ensure that zOut[] is at least 21 bytes in size. */ SQLITE_PRIVATE int sqlite3Int64ToText(i64 v, char *zOut){ int i; u64 x; char zTemp[22]; if( v<0 ){ x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; }else{ x = v; } i = sizeof(zTemp)-2; zTemp[sizeof(zTemp)-1] = 0; while( 1 /*exit-by-break*/ ){ zTemp[i] = (x%10) + '0'; x = x/10; if( x==0 ) break; i--; }; if( v<0 ) zTemp[--i] = '-'; memcpy(zOut, &zTemp[i], sizeof(zTemp)-i); return sizeof(zTemp)-1-i; } /* ** Compare the 19-character string zNum against the text representation ** value 2^63: 9223372036854775808. Return negative, zero, or positive ** if zNum is less than, equal to, or greater than the string. ** Note that zNum must contain exactly 19 characters. ** ** Unlike memcmp() this routine is guaranteed to return the difference ** in the values of the last digit if the only difference is in the ** last digit. So, for example, ** ** compare2pow63("9223372036854775800", 1) ** ** will return -8. */ static int compare2pow63(const char *zNum, int incr){ int c = 0; int i; /* 012345678901234567 */ const char *pow63 = "922337203685477580"; for(i=0; c==0 && i<18; i++){ c = (zNum[i*incr]-pow63[i])*10; } if( c==0 ){ c = zNum[18*incr] - '8'; testcase( c==(-1) ); testcase( c==0 ); testcase( c==(+1) ); } return c; } /* ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This ** routine does *not* accept hexadecimal notation. ** ** Returns: ** ** -1 Not even a prefix of the input text looks like an integer ** 0 Successful transformation. Fits in a 64-bit signed integer. ** 1 Excess non-space text after the integer value ** 2 Integer too large for a 64-bit signed integer or is malformed ** 3 Special case of 9223372036854775808 ** ** length is the number of bytes in the string (bytes, not characters). ** The string is not necessarily zero-terminated. The encoding is ** given by enc. */ SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ int incr; u64 u = 0; int neg = 0; /* assume positive */ int i; int c = 0; int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ int rc; /* Baseline return code */ const char *zStart; const char *zEnd = zNum + length; assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); if( enc==SQLITE_UTF8 ){ incr = 1; }else{ incr = 2; length &= ~1; assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); for(i=3-enc; i='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } testcase( i==18*incr ); testcase( i==19*incr ); testcase( i==20*incr ); if( u>LARGEST_INT64 ){ /* This test and assignment is needed only to suppress UB warnings ** from clang and -fsanitize=undefined. This test and assignment make ** the code a little larger and slower, and no harm comes from omitting ** them, but we must appease the undefined-behavior pharisees. */ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } rc = 0; if( i==0 && zStart==zNum ){ /* No digits */ rc = -1; }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ rc = 1; }else if( &zNum[i]19*incr ? 1 : compare2pow63(zNum, incr); if( c<0 ){ /* zNum is less than 9223372036854775808 so it fits */ assert( u<=LARGEST_INT64 ); return rc; }else{ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; if( c>0 ){ /* zNum is greater than 9223372036854775808 so it overflows */ return 2; }else{ /* zNum is exactly 9223372036854775808. Fits if negative. The ** special case 2 overflow if positive */ assert( u-1==LARGEST_INT64 ); return neg ? rc : 3; } } } } /* ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, ** into a 64-bit signed integer. This routine accepts hexadecimal literals, ** whereas sqlite3Atoi64() does not. ** ** Returns: ** ** 0 Successful transformation. Fits in a 64-bit signed integer. ** 1 Excess text after the integer value ** 2 Integer too large for a 64-bit signed integer or is malformed ** 3 Special case of 9223372036854775808 */ SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') ){ u64 u = 0; int i, k; for(i=2; z[i]=='0'; i++){} for(k=i; sqlite3Isxdigit(z[k]); k++){ u = u*16 + sqlite3HexToInt(z[k]); } memcpy(pOut, &u, 8); if( k-i>16 ) return 2; if( z[k]!=0 ) return 1; return 0; }else #endif /* SQLITE_OMIT_HEX_INTEGER */ { int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789")); if( z[n] ) n++; return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8); } } /* ** If zNum represents an integer that will fit in 32-bits, then set ** *pValue to that integer and return true. Otherwise return false. ** ** This routine accepts both decimal and hexadecimal notation for integers. ** ** Any non-numeric characters that following zNum are ignored. ** This is different from sqlite3Atoi64() which requires the ** input number to be zero-terminated. */ SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){ sqlite_int64 v = 0; int i, c; int neg = 0; if( zNum[0]=='-' ){ neg = 1; zNum++; }else if( zNum[0]=='+' ){ zNum++; } #ifndef SQLITE_OMIT_HEX_INTEGER else if( zNum[0]=='0' && (zNum[1]=='x' || zNum[1]=='X') && sqlite3Isxdigit(zNum[2]) ){ u32 u = 0; zNum += 2; while( zNum[0]=='0' ) zNum++; for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){ u = u*16 + sqlite3HexToInt(zNum[i]); } if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ memcpy(pValue, &u, 4); return 1; }else{ return 0; } } #endif if( !sqlite3Isdigit(zNum[0]) ) return 0; while( zNum[0]=='0' ) zNum++; for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ v = v*10 + c; } /* The longest decimal representation of a 32 bit integer is 10 digits: ** ** 1234567890 ** 2^31 -> 2147483648 */ testcase( i==10 ); if( i>10 ){ return 0; } testcase( v-neg==2147483647 ); if( v-neg>2147483647 ){ return 0; } if( neg ){ v = -v; } *pValue = (int)v; return 1; } /* ** Return a 32-bit integer value extracted from a string. If the ** string is not an integer, just return 0. */ SQLITE_PRIVATE int sqlite3Atoi(const char *z){ int x = 0; sqlite3GetInt32(z, &x); return x; } /* ** Decode a floating-point value into an approximate decimal ** representation. ** ** Round the decimal representation to n significant digits if ** n is positive. Or round to -n signficant digits after the ** decimal point if n is negative. No rounding is performed if ** n is zero. ** ** The significant digits of the decimal representation are ** stored in p->z[] which is a often (but not always) a pointer ** into the middle of p->zBuf[]. There are p->n significant digits. ** The p->z[] array is *not* zero-terminated. */ SQLITE_PRIVATE void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){ int i; u64 v; int e, exp = 0; p->isSpecial = 0; p->z = p->zBuf; /* Convert negative numbers to positive. Deal with Infinity, 0.0, and ** NaN. */ if( r<0.0 ){ p->sign = '-'; r = -r; }else if( r==0.0 ){ p->sign = '+'; p->n = 1; p->iDP = 1; p->z = "0"; return; }else{ p->sign = '+'; } memcpy(&v,&r,8); e = v>>52; if( (e&0x7ff)==0x7ff ){ p->isSpecial = 1 + (v!=0x7ff0000000000000LL); p->n = 0; p->iDP = 0; return; } /* Multiply r by powers of ten until it lands somewhere in between ** 1.0e+19 and 1.0e+17. */ if( sqlite3Config.bUseLongDouble ){ LONGDOUBLE_TYPE rr = r; if( rr>=1.0e+19 ){ while( rr>=1.0e+119L ){ exp+=100; rr *= 1.0e-100L; } while( rr>=1.0e+29L ){ exp+=10; rr *= 1.0e-10L; } while( rr>=1.0e+19L ){ exp++; rr *= 1.0e-1L; } }else{ while( rr<1.0e-97L ){ exp-=100; rr *= 1.0e+100L; } while( rr<1.0e+07L ){ exp-=10; rr *= 1.0e+10L; } while( rr<1.0e+17L ){ exp--; rr *= 1.0e+1L; } } v = (u64)rr; }else{ /* If high-precision floating point is not available using "long double", ** then use Dekker-style double-double computation to increase the ** precision. ** ** The error terms on constants like 1.0e+100 computed using the ** decimal extension, for example as follows: ** ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100))); */ double rr[2]; rr[0] = r; rr[1] = 0.0; if( rr[0]>9.223372036854774784e+18 ){ while( rr[0]>9.223372036854774784e+118 ){ exp += 100; dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117); } while( rr[0]>9.223372036854774784e+28 ){ exp += 10; dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27); } while( rr[0]>9.223372036854774784e+18 ){ exp += 1; dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18); } }else{ while( rr[0]<9.223372036854774784e-83 ){ exp -= 100; dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83); } while( rr[0]<9.223372036854774784e+07 ){ exp -= 10; dekkerMul2(rr, 1.0e+10, 0.0); } while( rr[0]<9.22337203685477478e+17 ){ exp -= 1; dekkerMul2(rr, 1.0e+01, 0.0); } } v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1]; } /* Extract significant digits. */ i = sizeof(p->zBuf)-1; assert( v>0 ); while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; } assert( i>=0 && izBuf)-1 ); p->n = sizeof(p->zBuf) - 1 - i; assert( p->n>0 ); assert( p->nzBuf) ); p->iDP = p->n + exp; if( iRound<=0 ){ iRound = p->iDP - iRound; if( iRound==0 && p->zBuf[i+1]>='5' ){ iRound = 1; p->zBuf[i--] = '0'; p->n++; p->iDP++; } } if( iRound>0 && (iRoundn || p->n>mxRound) ){ char *z = &p->zBuf[i+1]; if( iRound>mxRound ) iRound = mxRound; p->n = iRound; if( z[iRound]>='5' ){ int j = iRound-1; while( 1 /*exit-by-break*/ ){ z[j]++; if( z[j]<='9' ) break; z[j] = '0'; if( j==0 ){ p->z[i--] = '1'; p->n++; p->iDP++; break; }else{ j--; } } } } p->z = &p->zBuf[i+1]; assert( i+p->n < sizeof(p->zBuf) ); while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; } } /* ** Try to convert z into an unsigned 32-bit integer. Return true on ** success and false if there is an error. ** ** Only decimal notation is accepted. */ SQLITE_PRIVATE int sqlite3GetUInt32(const char *z, u32 *pI){ u64 v = 0; int i; for(i=0; sqlite3Isdigit(z[i]); i++){ v = v*10 + z[i] - '0'; if( v>4294967296LL ){ *pI = 0; return 0; } } if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } *pI = (u32)v; return 1; } /* ** The variable-length integer encoding is as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** C = xxxxxxxx 8 bits of data ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** 28 bits - BBBA ** 35 bits - BBBBA ** 42 bits - BBBBBA ** 49 bits - BBBBBBA ** 56 bits - BBBBBBBA ** 64 bits - BBBBBBBBC */ /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data write will be between 1 and 9 bytes. The number ** of bytes written is returned. ** ** A variable-length integer consists of the lower 7 bits of each byte ** for all bytes that have the 8th bit set and one byte with the 8th ** bit clear. Except, if we get to the 9th byte, it stores the full ** 8 bits and is the last byte. */ static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ int i, j, n; u8 buf[10]; if( v & (((u64)0xff000000)<<32) ){ p[8] = (u8)v; v >>= 8; for(i=7; i>=0; i--){ p[i] = (u8)((v & 0x7f) | 0x80); v >>= 7; } return 9; } n = 0; do{ buf[n++] = (u8)((v & 0x7f) | 0x80); v >>= 7; }while( v!=0 ); buf[0] &= 0x7f; assert( n<=9 ); for(i=0, j=n-1; j>=0; j--, i++){ p[i] = buf[j]; } return n; } SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){ if( v<=0x7f ){ p[0] = v&0x7f; return 1; } if( v<=0x3fff ){ p[0] = ((v>>7)&0x7f)|0x80; p[1] = v&0x7f; return 2; } return putVarint64(p,v); } /* ** Bitmasks used by sqlite3GetVarint(). These precomputed constants ** are defined here rather than simply putting the constant expressions ** inline in order to work around bugs in the RVT compiler. ** ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f ** ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 */ #define SLOT_2_0 0x001fc07f #define SLOT_4_2_0 0xf01fc07f /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. */ SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ u32 a,b,s; if( ((signed char*)p)[0]>=0 ){ *v = *p; return 1; } if( ((signed char*)p)[1]>=0 ){ *v = ((u32)(p[0]&0x7f)<<7) | p[1]; return 2; } /* Verify that constants are precomputed correctly */ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); a = ((u32)p[0])<<14; b = p[1]; p += 2; a |= *p; /* a: p0<<14 | p2 (unmasked) */ if (!(a&0x80)) { a &= SLOT_2_0; b &= 0x7f; b = b<<7; a |= b; *v = a; return 3; } /* CSE1 from below */ a &= SLOT_2_0; p++; b = b<<14; b |= *p; /* b: p1<<14 | p3 (unmasked) */ if (!(b&0x80)) { b &= SLOT_2_0; /* moved CSE1 up */ /* a &= (0x7f<<14)|(0x7f); */ a = a<<7; a |= b; *v = a; return 4; } /* a: p0<<14 | p2 (masked) */ /* b: p1<<14 | p3 (unmasked) */ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ /* moved CSE1 up */ /* a &= (0x7f<<14)|(0x7f); */ b &= SLOT_2_0; s = a; /* s: p0<<14 | p2 (masked) */ p++; a = a<<14; a |= *p; /* a: p0<<28 | p2<<14 | p4 (unmasked) */ if (!(a&0x80)) { /* we can skip these cause they were (effectively) done above ** while calculating s */ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ /* b &= (0x7f<<14)|(0x7f); */ b = b<<7; a |= b; s = s>>18; *v = ((u64)s)<<32 | a; return 5; } /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ s = s<<7; s |= b; /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ p++; b = b<<14; b |= *p; /* b: p1<<28 | p3<<14 | p5 (unmasked) */ if (!(b&0x80)) { /* we can skip this cause it was (effectively) done above in calc'ing s */ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ a &= SLOT_2_0; a = a<<7; a |= b; s = s>>18; *v = ((u64)s)<<32 | a; return 6; } p++; a = a<<14; a |= *p; /* a: p2<<28 | p4<<14 | p6 (unmasked) */ if (!(a&0x80)) { a &= SLOT_4_2_0; b &= SLOT_2_0; b = b<<7; a |= b; s = s>>11; *v = ((u64)s)<<32 | a; return 7; } /* CSE2 from below */ a &= SLOT_2_0; p++; b = b<<14; b |= *p; /* b: p3<<28 | p5<<14 | p7 (unmasked) */ if (!(b&0x80)) { b &= SLOT_4_2_0; /* moved CSE2 up */ /* a &= (0x7f<<14)|(0x7f); */ a = a<<7; a |= b; s = s>>4; *v = ((u64)s)<<32 | a; return 8; } p++; a = a<<15; a |= *p; /* a: p4<<29 | p6<<15 | p8 (unmasked) */ /* moved CSE2 up */ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ b &= SLOT_2_0; b = b<<8; a |= b; s = s<<4; b = p[-4]; b &= 0x7f; b = b>>3; s |= b; *v = ((u64)s)<<32 | a; return 9; } /* ** Read a 32-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read. The value is stored in *v. ** ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned ** integer, then set *v to 0xffffffff. ** ** A MACRO version, getVarint32, is provided which inlines the ** single-byte case. All code should use the MACRO version as ** this function assumes the single-byte case has already been handled. */ SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ u64 v64; u8 n; /* Assume that the single-byte case has already been handled by ** the getVarint32() macro */ assert( (p[0] & 0x80)!=0 ); if( (p[1] & 0x80)==0 ){ /* This is the two-byte case */ *v = ((p[0]&0x7f)<<7) | p[1]; return 2; } if( (p[2] & 0x80)==0 ){ /* This is the three-byte case */ *v = ((p[0]&0x7f)<<14) | ((p[1]&0x7f)<<7) | p[2]; return 3; } /* four or more bytes */ n = sqlite3GetVarint(p, &v64); assert( n>3 && n<=9 ); if( (v64 & SQLITE_MAX_U32)!=v64 ){ *v = 0xffffffff; }else{ *v = (u32)v64; } return n; } /* ** Return the number of bytes that will be needed to store the given ** 64-bit integer. */ SQLITE_PRIVATE int sqlite3VarintLen(u64 v){ int i; for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } return i; } /* ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ #if SQLITE_BYTEORDER==4321 u32 x; memcpy(&x,p,4); return x; #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 u32 x; memcpy(&x,p,4); return __builtin_bswap32(x); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u32 x; memcpy(&x,p,4); return _byteswap_ulong(x); #else testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; #endif } SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ #if SQLITE_BYTEORDER==4321 memcpy(p,&v,4); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 u32 x = __builtin_bswap32(v); memcpy(p,&x,4); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u32 x = _byteswap_ulong(v); memcpy(p,&x,4); #else p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; #endif } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal ** character: 0..9a..fA..F */ SQLITE_PRIVATE u8 sqlite3HexToInt(int h){ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); #ifdef SQLITE_ASCII h += 9*(1&(h>>6)); #endif #ifdef SQLITE_EBCDIC h += 9*(1&~(h>>4)); #endif return (u8)(h & 0xf); } /* BEGIN SQLCIPHER */ #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) /* ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary ** value. Return a pointer to its binary value. Space to hold the ** binary value has been obtained from malloc and must be freed by ** the calling routine. */ SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ char *zBlob; int i; zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); n--; if( zBlob ){ for(i=0; ieOpenState; if( eOpenState!=SQLITE_STATE_OPEN ){ if( sqlite3SafetyCheckSickOrOk(db) ){ testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("unopened"); } return 0; }else{ return 1; } } SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ u8 eOpenState; eOpenState = db->eOpenState; if( eOpenState!=SQLITE_STATE_SICK && eOpenState!=SQLITE_STATE_OPEN && eOpenState!=SQLITE_STATE_BUSY ){ testcase( sqlite3GlobalConfig.xLog!=0 ); logBadConnection("invalid"); return 0; }else{ return 1; } } /* ** Attempt to add, subtract, or multiply the 64-bit signed value iB against ** the other 64-bit signed integer at *pA and store the result in *pA. ** Return 0 on success. Or if the operation would have resulted in an ** overflow, leave *pA unchanged and return 1. */ SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){ #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) return __builtin_add_overflow(*pA, iB, pA); #else i64 iA = *pA; testcase( iA==0 ); testcase( iA==1 ); testcase( iB==-1 ); testcase( iB==0 ); if( iB>=0 ){ testcase( iA>0 && LARGEST_INT64 - iA == iB ); testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; }else{ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; } *pA += iB; return 0; #endif } SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){ #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) return __builtin_sub_overflow(*pA, iB, pA); #else testcase( iB==SMALLEST_INT64+1 ); if( iB==SMALLEST_INT64 ){ testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); if( (*pA)>=0 ) return 1; *pA -= iB; return 0; }else{ return sqlite3AddInt64(pA, -iB); } #endif } SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){ #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) return __builtin_mul_overflow(*pA, iB, pA); #else i64 iA = *pA; if( iB>0 ){ if( iA>LARGEST_INT64/iB ) return 1; if( iA0 ){ if( iBLARGEST_INT64/-iB ) return 1; } } *pA = iA*iB; return 0; #endif } /* ** Compute the absolute value of a 32-bit signed integer, of possible. Or ** if the integer has a value of -2147483648, return +2147483647 */ SQLITE_PRIVATE int sqlite3AbsInt32(int x){ if( x>=0 ) return x; if( x==(int)0x80000000 ) return 0x7fffffff; return -x; } #ifdef SQLITE_ENABLE_8_3_NAMES /* ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm ** test.db-mj7f3319fa => test.9fa */ SQLITE_PRIVATE void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ #if SQLITE_ENABLE_8_3_NAMES<2 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) #endif { int i, sz; sz = sqlite3Strlen30(z); for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); } } #endif /* ** Find (an approximate) sum of two LogEst values. This computation is ** not a simple "+" operator because LogEst is stored as a logarithmic ** value. ** */ SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ static const unsigned char x[] = { 10, 10, /* 0,1 */ 9, 9, /* 2,3 */ 8, 8, /* 4,5 */ 7, 7, 7, /* 6,7,8 */ 6, 6, 6, /* 9,10,11 */ 5, 5, 5, /* 12-14 */ 4, 4, 4, 4, /* 15-18 */ 3, 3, 3, 3, 3, 3, /* 19-24 */ 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ }; if( a>=b ){ if( a>b+49 ) return a; if( a>b+31 ) return a+1; return a+x[a-b]; }else{ if( b>a+49 ) return b; if( b>a+31 ) return b+1; return b+x[b-a]; } } /* ** Convert an integer into a LogEst. In other words, compute an ** approximation for 10*log2(x). */ SQLITE_PRIVATE LogEst sqlite3LogEst(u64 x){ static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; LogEst y = 40; if( x<8 ){ if( x<2 ) return 0; while( x<8 ){ y -= 10; x <<= 1; } }else{ #if GCC_VERSION>=5004000 int i = 60 - __builtin_clzll(x); y += i*10; x >>= i; #else while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ while( x>15 ){ y += 10; x >>= 1; } #endif } return a[x&7] + y - 10; } /* ** Convert a double into a LogEst ** In other words, compute an approximation for 10*log2(x). */ SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double x){ u64 a; LogEst e; assert( sizeof(x)==8 && sizeof(a)==8 ); if( x<=1 ) return 0; if( x<=2000000000 ) return sqlite3LogEst((u64)x); memcpy(&a, &x, 8); e = (a>>52) - 1022; return e*10; } /* ** Convert a LogEst into an integer. */ SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst x){ u64 n; n = x%10; x /= 10; if( n>=5 ) n -= 2; else if( n>=1 ) n -= 1; if( x>60 ) return (u64)LARGEST_INT64; return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); } /* ** Add a new name/number pair to a VList. This might require that the ** VList object be reallocated, so return the new VList. If an OOM ** error occurs, the original VList returned and the ** db->mallocFailed flag is set. ** ** A VList is really just an array of integers. To destroy a VList, ** simply pass it to sqlite3DbFree(). ** ** The first integer is the number of integers allocated for the whole ** VList. The second integer is the number of integers actually used. ** Each name/number pair is encoded by subsequent groups of 3 or more ** integers. ** ** Each name/number pair starts with two integers which are the numeric ** value for the pair and the size of the name/number pair, respectively. ** The text name overlays one or more following integers. The text name ** is always zero-terminated. ** ** Conceptually: ** ** struct VList { ** int nAlloc; // Number of allocated slots ** int nUsed; // Number of used slots ** struct VListEntry { ** int iValue; // Value for this entry ** int nSlot; // Slots used by this entry ** // ... variable name goes here ** } a[0]; ** } ** ** During code generation, pointers to the variable names within the ** VList are taken. When that happens, nAlloc is set to zero as an ** indication that the VList may never again be enlarged, since the ** accompanying realloc() would invalidate the pointers. */ SQLITE_PRIVATE VList *sqlite3VListAdd( sqlite3 *db, /* The database connection used for malloc() */ VList *pIn, /* The input VList. Might be NULL */ const char *zName, /* Name of symbol to add */ int nName, /* Bytes of text in zName */ int iVal /* Value to associate with zName */ ){ int nInt; /* number of sizeof(int) objects needed for zName */ char *z; /* Pointer to where zName will be stored */ int i; /* Index in pIn[] where zName is stored */ nInt = nName/4 + 3; assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ if( pIn==0 || pIn[1]+nInt > pIn[0] ){ /* Enlarge the allocation */ sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); if( pOut==0 ) return pIn; if( pIn==0 ) pOut[1] = 2; pIn = pOut; pIn[0] = nAlloc; } i = pIn[1]; pIn[i] = iVal; pIn[i+1] = nInt; z = (char*)&pIn[i+2]; pIn[1] = i+nInt; assert( pIn[1]<=pIn[0] ); memcpy(z, zName, nName); z[nName] = 0; return pIn; } /* ** Return a pointer to the name of a variable in the given VList that ** has the value iVal. Or return a NULL if there is no such variable in ** the list */ SQLITE_PRIVATE const char *sqlite3VListNumToName(VList *pIn, int iVal){ int i, mx; if( pIn==0 ) return 0; mx = pIn[1]; i = 2; do{ if( pIn[i]==iVal ) return (char*)&pIn[i+2]; i += pIn[i+1]; }while( i */ /* Turn bulk memory into a hash table object by initializing the ** fields of the Hash structure. ** ** "pNew" is a pointer to the hash table that is to be initialized. */ SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){ assert( pNew!=0 ); pNew->first = 0; pNew->count = 0; pNew->htsize = 0; pNew->ht = 0; } /* Remove all entries from a hash table. Reclaim all memory. ** Call this routine to delete a hash table or to reset a hash table ** to the empty state. */ SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){ HashElem *elem; /* For looping over all elements of the table */ assert( pH!=0 ); elem = pH->first; pH->first = 0; sqlite3_free(pH->ht); pH->ht = 0; pH->htsize = 0; while( elem ){ HashElem *next_elem = elem->next; sqlite3_free(elem); elem = next_elem; } pH->count = 0; } /* ** The hashing function. */ static unsigned int strHash(const char *z){ unsigned int h = 0; unsigned char c; while( (c = (unsigned char)*z++)!=0 ){ /*OPTIMIZATION-IF-TRUE*/ /* Knuth multiplicative hashing. (Sorting & Searching, p. 510). ** 0x9e3779b1 is 2654435761 which is the closest prime number to ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */ h += sqlite3UpperToLower[c]; h *= 0x9e3779b1; } return h; } /* Link pNew element into the hash table pH. If pEntry!=0 then also ** insert pNew into the pEntry hash bucket. */ static void insertElement( Hash *pH, /* The complete hash table */ struct _ht *pEntry, /* The entry into which pNew is inserted */ HashElem *pNew /* The element to be inserted */ ){ HashElem *pHead; /* First element already in pEntry */ if( pEntry ){ pHead = pEntry->count ? pEntry->chain : 0; pEntry->count++; pEntry->chain = pNew; }else{ pHead = 0; } if( pHead ){ pNew->next = pHead; pNew->prev = pHead->prev; if( pHead->prev ){ pHead->prev->next = pNew; } else { pH->first = pNew; } pHead->prev = pNew; }else{ pNew->next = pH->first; if( pH->first ){ pH->first->prev = pNew; } pNew->prev = 0; pH->first = pNew; } } /* Resize the hash table so that it contains "new_size" buckets. ** ** The hash table might fail to resize if sqlite3_malloc() fails or ** if the new size is the same as the prior size. ** Return TRUE if the resize occurs and false if not. */ static int rehash(Hash *pH, unsigned int new_size){ struct _ht *new_ht; /* The new hash table */ HashElem *elem, *next_elem; /* For looping over existing elements */ #if SQLITE_MALLOC_SOFT_LIMIT>0 if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); } if( new_size==pH->htsize ) return 0; #endif /* The inability to allocates space for a larger hash table is ** a performance hit but it is not a fatal error. So mark the ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero() ** only zeroes the requested number of bytes whereas this module will ** use the actual amount of space allocated for the hash table (which ** may be larger than the requested amount). */ sqlite3BeginBenignMalloc(); new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) ); sqlite3EndBenignMalloc(); if( new_ht==0 ) return 0; sqlite3_free(pH->ht); pH->ht = new_ht; pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht); memset(new_ht, 0, new_size*sizeof(struct _ht)); for(elem=pH->first, pH->first=0; elem; elem = next_elem){ unsigned int h = strHash(elem->pKey) % new_size; next_elem = elem->next; insertElement(pH, &new_ht[h], elem); } return 1; } /* This function (for internal use only) locates an element in an ** hash table that matches the given key. If no element is found, ** a pointer to a static null element with HashElem.data==0 is returned. ** If pH is not NULL, then the hash for this key is written to *pH. */ static HashElem *findElementWithHash( const Hash *pH, /* The pH to be searched */ const char *pKey, /* The key we are searching for */ unsigned int *pHash /* Write the hash value here */ ){ HashElem *elem; /* Used to loop thru the element list */ unsigned int count; /* Number of elements left to test */ unsigned int h; /* The computed hash */ static HashElem nullElement = { 0, 0, 0, 0 }; if( pH->ht ){ /*OPTIMIZATION-IF-TRUE*/ struct _ht *pEntry; h = strHash(pKey) % pH->htsize; pEntry = &pH->ht[h]; elem = pEntry->chain; count = pEntry->count; }else{ h = 0; elem = pH->first; count = pH->count; } if( pHash ) *pHash = h; while( count ){ assert( elem!=0 ); if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ return elem; } elem = elem->next; count--; } return &nullElement; } /* Remove a single entry from the hash table given a pointer to that ** element and a hash on the element's key. */ static void removeElementGivenHash( Hash *pH, /* The pH containing "elem" */ HashElem* elem, /* The element to be removed from the pH */ unsigned int h /* Hash value for the element */ ){ struct _ht *pEntry; if( elem->prev ){ elem->prev->next = elem->next; }else{ pH->first = elem->next; } if( elem->next ){ elem->next->prev = elem->prev; } if( pH->ht ){ pEntry = &pH->ht[h]; if( pEntry->chain==elem ){ pEntry->chain = elem->next; } assert( pEntry->count>0 ); pEntry->count--; } sqlite3_free( elem ); pH->count--; if( pH->count==0 ){ assert( pH->first==0 ); assert( pH->count==0 ); sqlite3HashClear(pH); } } /* Attempt to locate an element of the hash table pH with a key ** that matches pKey. Return the data for this element if it is ** found, or NULL if there is no match. */ SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){ assert( pH!=0 ); assert( pKey!=0 ); return findElementWithHash(pH, pKey, 0)->data; } /* Insert an element into the hash table pH. The key is pKey ** and the data is "data". ** ** If no element exists with a matching key, then a new ** element is created and NULL is returned. ** ** If another element already exists with the same key, then the ** new data replaces the old data and the old data is returned. ** The key is not copied in this instance. If a malloc fails, then ** the new data is returned and the hash table is unchanged. ** ** If the "data" parameter to this function is NULL, then the ** element corresponding to "key" is removed from the hash table. */ SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, void *data){ unsigned int h; /* the hash of the key modulo hash table size */ HashElem *elem; /* Used to loop thru the element list */ HashElem *new_elem; /* New element added to the pH */ assert( pH!=0 ); assert( pKey!=0 ); elem = findElementWithHash(pH,pKey,&h); if( elem->data ){ void *old_data = elem->data; if( data==0 ){ removeElementGivenHash(pH,elem,h); }else{ elem->data = data; elem->pKey = pKey; } return old_data; } if( data==0 ) return 0; new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) ); if( new_elem==0 ) return data; new_elem->pKey = pKey; new_elem->data = data; pH->count++; if( pH->count>=10 && pH->count > 2*pH->htsize ){ if( rehash(pH, pH->count*2) ){ assert( pH->htsize>0 ); h = strHash(pKey) % pH->htsize; } } insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem); return 0; } /************** End of hash.c ************************************************/ /************** Begin file opcodes.c *****************************************/ /* Automatically generated. Do not edit */ /* See the tool/mkopcodec.tcl script for details. */ #if !defined(SQLITE_OMIT_EXPLAIN) \ || defined(VDBE_PROFILE) \ || defined(SQLITE_DEBUG) #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG) # define OpHelp(X) "\0" X #else # define OpHelp(X) #endif SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { /* 0 */ "Savepoint" OpHelp(""), /* 1 */ "AutoCommit" OpHelp(""), /* 2 */ "Transaction" OpHelp(""), /* 3 */ "Checkpoint" OpHelp(""), /* 4 */ "JournalMode" OpHelp(""), /* 5 */ "Vacuum" OpHelp(""), /* 6 */ "VFilter" OpHelp("iplan=r[P3] zplan='P4'"), /* 7 */ "VUpdate" OpHelp("data=r[P3@P2]"), /* 8 */ "Init" OpHelp("Start at P2"), /* 9 */ "Goto" OpHelp(""), /* 10 */ "Gosub" OpHelp(""), /* 11 */ "InitCoroutine" OpHelp(""), /* 12 */ "Yield" OpHelp(""), /* 13 */ "MustBeInt" OpHelp(""), /* 14 */ "Jump" OpHelp(""), /* 15 */ "Once" OpHelp(""), /* 16 */ "If" OpHelp(""), /* 17 */ "IfNot" OpHelp(""), /* 18 */ "IsType" OpHelp("if typeof(P1.P3) in P5 goto P2"), /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"), /* 20 */ "IfNullRow" OpHelp("if P1.nullRow then r[P3]=NULL, goto P2"), /* 21 */ "SeekLT" OpHelp("key=r[P3@P4]"), /* 22 */ "SeekLE" OpHelp("key=r[P3@P4]"), /* 23 */ "SeekGE" OpHelp("key=r[P3@P4]"), /* 24 */ "SeekGT" OpHelp("key=r[P3@P4]"), /* 25 */ "IfNotOpen" OpHelp("if( !csr[P1] ) goto P2"), /* 26 */ "IfNoHope" OpHelp("key=r[P3@P4]"), /* 27 */ "NoConflict" OpHelp("key=r[P3@P4]"), /* 28 */ "NotFound" OpHelp("key=r[P3@P4]"), /* 29 */ "Found" OpHelp("key=r[P3@P4]"), /* 30 */ "SeekRowid" OpHelp("intkey=r[P3]"), /* 31 */ "NotExists" OpHelp("intkey=r[P3]"), /* 32 */ "Last" OpHelp(""), /* 33 */ "IfSmaller" OpHelp(""), /* 34 */ "SorterSort" OpHelp(""), /* 35 */ "Sort" OpHelp(""), /* 36 */ "Rewind" OpHelp(""), /* 37 */ "SorterNext" OpHelp(""), /* 38 */ "Prev" OpHelp(""), /* 39 */ "Next" OpHelp(""), /* 40 */ "IdxLE" OpHelp("key=r[P3@P4]"), /* 41 */ "IdxGT" OpHelp("key=r[P3@P4]"), /* 42 */ "IdxLT" OpHelp("key=r[P3@P4]"), /* 43 */ "Or" OpHelp("r[P3]=(r[P1] || r[P2])"), /* 44 */ "And" OpHelp("r[P3]=(r[P1] && r[P2])"), /* 45 */ "IdxGE" OpHelp("key=r[P3@P4]"), /* 46 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"), /* 47 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"), /* 48 */ "Program" OpHelp(""), /* 49 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 50 */ "IsNull" OpHelp("if r[P1]==NULL goto P2"), /* 51 */ "NotNull" OpHelp("if r[P1]!=NULL goto P2"), /* 52 */ "Ne" OpHelp("IF r[P3]!=r[P1]"), /* 53 */ "Eq" OpHelp("IF r[P3]==r[P1]"), /* 54 */ "Gt" OpHelp("IF r[P3]>r[P1]"), /* 55 */ "Le" OpHelp("IF r[P3]<=r[P1]"), /* 56 */ "Lt" OpHelp("IF r[P3]=r[P1]"), /* 58 */ "ElseEq" OpHelp(""), /* 59 */ "IfPos" OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"), /* 60 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]--, goto P2"), /* 61 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"), /* 62 */ "IncrVacuum" OpHelp(""), /* 63 */ "VNext" OpHelp(""), /* 64 */ "Filter" OpHelp("if key(P3@P4) not in filter(P1) goto P2"), /* 65 */ "PureFunc" OpHelp("r[P3]=func(r[P2@NP])"), /* 66 */ "Function" OpHelp("r[P3]=func(r[P2@NP])"), /* 67 */ "Return" OpHelp(""), /* 68 */ "EndCoroutine" OpHelp(""), /* 69 */ "HaltIfNull" OpHelp("if r[P3]=null halt"), /* 70 */ "Halt" OpHelp(""), /* 71 */ "Integer" OpHelp("r[P2]=P1"), /* 72 */ "Int64" OpHelp("r[P2]=P4"), /* 73 */ "String" OpHelp("r[P2]='P4' (len=P1)"), /* 74 */ "BeginSubrtn" OpHelp("r[P2]=NULL"), /* 75 */ "Null" OpHelp("r[P2..P3]=NULL"), /* 76 */ "SoftNull" OpHelp("r[P1]=NULL"), /* 77 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"), /* 78 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"), /* 79 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"), /* 80 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"), /* 81 */ "SCopy" OpHelp("r[P2]=r[P1]"), /* 82 */ "IntCopy" OpHelp("r[P2]=r[P1]"), /* 83 */ "FkCheck" OpHelp(""), /* 84 */ "ResultRow" OpHelp("output=r[P1@P2]"), /* 85 */ "CollSeq" OpHelp(""), /* 86 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"), /* 87 */ "RealAffinity" OpHelp(""), /* 88 */ "Cast" OpHelp("affinity(r[P1])"), /* 89 */ "Permutation" OpHelp(""), /* 90 */ "Compare" OpHelp("r[P1@P3] <-> r[P2@P3]"), /* 91 */ "IsTrue" OpHelp("r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4"), /* 92 */ "ZeroOrNull" OpHelp("r[P2] = 0 OR NULL"), /* 93 */ "Offset" OpHelp("r[P3] = sqlite_offset(P1)"), /* 94 */ "Column" OpHelp("r[P3]=PX cursor P1 column P2"), /* 95 */ "TypeCheck" OpHelp("typecheck(r[P1@P2])"), /* 96 */ "Affinity" OpHelp("affinity(r[P1@P2])"), /* 97 */ "MakeRecord" OpHelp("r[P3]=mkrec(r[P1@P2])"), /* 98 */ "Count" OpHelp("r[P2]=count()"), /* 99 */ "ReadCookie" OpHelp(""), /* 100 */ "SetCookie" OpHelp(""), /* 101 */ "ReopenIdx" OpHelp("root=P2 iDb=P3"), /* 102 */ "BitAnd" OpHelp("r[P3]=r[P1]&r[P2]"), /* 103 */ "BitOr" OpHelp("r[P3]=r[P1]|r[P2]"), /* 104 */ "ShiftLeft" OpHelp("r[P3]=r[P2]<>r[P1]"), /* 106 */ "Add" OpHelp("r[P3]=r[P1]+r[P2]"), /* 107 */ "Subtract" OpHelp("r[P3]=r[P2]-r[P1]"), /* 108 */ "Multiply" OpHelp("r[P3]=r[P1]*r[P2]"), /* 109 */ "Divide" OpHelp("r[P3]=r[P2]/r[P1]"), /* 110 */ "Remainder" OpHelp("r[P3]=r[P2]%r[P1]"), /* 111 */ "Concat" OpHelp("r[P3]=r[P2]+r[P1]"), /* 112 */ "OpenRead" OpHelp("root=P2 iDb=P3"), /* 113 */ "OpenWrite" OpHelp("root=P2 iDb=P3"), /* 114 */ "BitNot" OpHelp("r[P2]= ~r[P1]"), /* 115 */ "OpenDup" OpHelp(""), /* 116 */ "OpenAutoindex" OpHelp("nColumn=P2"), /* 117 */ "String8" OpHelp("r[P2]='P4'"), /* 118 */ "OpenEphemeral" OpHelp("nColumn=P2"), /* 119 */ "SorterOpen" OpHelp(""), /* 120 */ "SequenceTest" OpHelp("if( cursor[P1].ctr++ ) pc = P2"), /* 121 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"), /* 122 */ "Close" OpHelp(""), /* 123 */ "ColumnsUsed" OpHelp(""), /* 124 */ "SeekScan" OpHelp("Scan-ahead up to P1 rows"), /* 125 */ "SeekHit" OpHelp("set P2<=seekHit<=P3"), /* 126 */ "Sequence" OpHelp("r[P2]=cursor[P1].ctr++"), /* 127 */ "NewRowid" OpHelp("r[P2]=rowid"), /* 128 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"), /* 129 */ "RowCell" OpHelp(""), /* 130 */ "Delete" OpHelp(""), /* 131 */ "ResetCount" OpHelp(""), /* 132 */ "SorterCompare" OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"), /* 133 */ "SorterData" OpHelp("r[P2]=data"), /* 134 */ "RowData" OpHelp("r[P2]=data"), /* 135 */ "Rowid" OpHelp("r[P2]=PX rowid of P1"), /* 136 */ "NullRow" OpHelp(""), /* 137 */ "SeekEnd" OpHelp(""), /* 138 */ "IdxInsert" OpHelp("key=r[P2]"), /* 139 */ "SorterInsert" OpHelp("key=r[P2]"), /* 140 */ "IdxDelete" OpHelp("key=r[P2@P3]"), /* 141 */ "DeferredSeek" OpHelp("Move P3 to P1.rowid if needed"), /* 142 */ "IdxRowid" OpHelp("r[P2]=rowid"), /* 143 */ "FinishSeek" OpHelp(""), /* 144 */ "Destroy" OpHelp(""), /* 145 */ "Clear" OpHelp(""), /* 146 */ "ResetSorter" OpHelp(""), /* 147 */ "CreateBtree" OpHelp("r[P2]=root iDb=P1 flags=P3"), /* 148 */ "SqlExec" OpHelp(""), /* 149 */ "ParseSchema" OpHelp(""), /* 150 */ "LoadAnalysis" OpHelp(""), /* 151 */ "DropTable" OpHelp(""), /* 152 */ "DropIndex" OpHelp(""), /* 153 */ "Real" OpHelp("r[P2]=P4"), /* 154 */ "DropTrigger" OpHelp(""), /* 155 */ "IntegrityCk" OpHelp(""), /* 156 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"), /* 157 */ "Param" OpHelp(""), /* 158 */ "FkCounter" OpHelp("fkctr[P1]+=P2"), /* 159 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 160 */ "OffsetLimit" OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"), /* 161 */ "AggInverse" OpHelp("accum=r[P3] inverse(r[P2@P5])"), /* 162 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 163 */ "AggStep1" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 164 */ "AggValue" OpHelp("r[P3]=value N=P2"), /* 165 */ "AggFinal" OpHelp("accum=r[P1] N=P2"), /* 166 */ "Expire" OpHelp(""), /* 167 */ "CursorLock" OpHelp(""), /* 168 */ "CursorUnlock" OpHelp(""), /* 169 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"), /* 170 */ "VBegin" OpHelp(""), /* 171 */ "VCreate" OpHelp(""), /* 172 */ "VDestroy" OpHelp(""), /* 173 */ "VOpen" OpHelp(""), /* 174 */ "VCheck" OpHelp(""), /* 175 */ "VInitIn" OpHelp("r[P2]=ValueList(P1,P3)"), /* 176 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"), /* 177 */ "VRename" OpHelp(""), /* 178 */ "Pagecount" OpHelp(""), /* 179 */ "MaxPgcnt" OpHelp(""), /* 180 */ "ClrSubtype" OpHelp("r[P1].subtype = 0"), /* 181 */ "GetSubtype" OpHelp("r[P2] = r[P1].subtype"), /* 182 */ "SetSubtype" OpHelp("r[P2].subtype = r[P1]"), /* 183 */ "FilterAdd" OpHelp("filter(P1) += key(P3@P4)"), /* 184 */ "Trace" OpHelp(""), /* 185 */ "CursorHint" OpHelp(""), /* 186 */ "ReleaseReg" OpHelp("release r[P1@P2] mask P3"), /* 187 */ "Noop" OpHelp(""), /* 188 */ "Explain" OpHelp(""), /* 189 */ "Abortable" OpHelp(""), }; return azName[i]; } #endif /************** End of opcodes.c *********************************************/ /************** Begin file os_kv.c *******************************************/ /* ** 2022-09-06 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains an experimental VFS layer that operates on a ** Key/Value storage engine where both keys and values must be pure ** text. */ /* #include */ #if SQLITE_OS_KV || (SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL)) /***************************************************************************** ** Debugging logic */ /* SQLITE_KV_TRACE() is used for tracing calls to kvstorage routines. */ #if 0 #define SQLITE_KV_TRACE(X) printf X #else #define SQLITE_KV_TRACE(X) #endif /* SQLITE_KV_LOG() is used for tracing calls to the VFS interface */ #if 0 #define SQLITE_KV_LOG(X) printf X #else #define SQLITE_KV_LOG(X) #endif /* ** Forward declaration of objects used by this VFS implementation */ typedef struct KVVfsFile KVVfsFile; /* A single open file. There are only two files represented by this ** VFS - the database and the rollback journal. */ struct KVVfsFile { sqlite3_file base; /* IO methods */ const char *zClass; /* Storage class */ int isJournal; /* True if this is a journal file */ unsigned int nJrnl; /* Space allocated for aJrnl[] */ char *aJrnl; /* Journal content */ int szPage; /* Last known page size */ sqlite3_int64 szDb; /* Database file size. -1 means unknown */ char *aData; /* Buffer to hold page data */ }; #define SQLITE_KVOS_SZ 133073 /* ** Methods for KVVfsFile */ static int kvvfsClose(sqlite3_file*); static int kvvfsReadDb(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int kvvfsReadJrnl(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int kvvfsWriteDb(sqlite3_file*,const void*,int iAmt, sqlite3_int64); static int kvvfsWriteJrnl(sqlite3_file*,const void*,int iAmt, sqlite3_int64); static int kvvfsTruncateDb(sqlite3_file*, sqlite3_int64 size); static int kvvfsTruncateJrnl(sqlite3_file*, sqlite3_int64 size); static int kvvfsSyncDb(sqlite3_file*, int flags); static int kvvfsSyncJrnl(sqlite3_file*, int flags); static int kvvfsFileSizeDb(sqlite3_file*, sqlite3_int64 *pSize); static int kvvfsFileSizeJrnl(sqlite3_file*, sqlite3_int64 *pSize); static int kvvfsLock(sqlite3_file*, int); static int kvvfsUnlock(sqlite3_file*, int); static int kvvfsCheckReservedLock(sqlite3_file*, int *pResOut); static int kvvfsFileControlDb(sqlite3_file*, int op, void *pArg); static int kvvfsFileControlJrnl(sqlite3_file*, int op, void *pArg); static int kvvfsSectorSize(sqlite3_file*); static int kvvfsDeviceCharacteristics(sqlite3_file*); /* ** Methods for sqlite3_vfs */ static int kvvfsOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); static int kvvfsDelete(sqlite3_vfs*, const char *zName, int syncDir); static int kvvfsAccess(sqlite3_vfs*, const char *zName, int flags, int *); static int kvvfsFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut); static void *kvvfsDlOpen(sqlite3_vfs*, const char *zFilename); static int kvvfsRandomness(sqlite3_vfs*, int nByte, char *zOut); static int kvvfsSleep(sqlite3_vfs*, int microseconds); static int kvvfsCurrentTime(sqlite3_vfs*, double*); static int kvvfsCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*); static sqlite3_vfs sqlite3OsKvvfsObject = { 1, /* iVersion */ sizeof(KVVfsFile), /* szOsFile */ 1024, /* mxPathname */ 0, /* pNext */ "kvvfs", /* zName */ 0, /* pAppData */ kvvfsOpen, /* xOpen */ kvvfsDelete, /* xDelete */ kvvfsAccess, /* xAccess */ kvvfsFullPathname, /* xFullPathname */ kvvfsDlOpen, /* xDlOpen */ 0, /* xDlError */ 0, /* xDlSym */ 0, /* xDlClose */ kvvfsRandomness, /* xRandomness */ kvvfsSleep, /* xSleep */ kvvfsCurrentTime, /* xCurrentTime */ 0, /* xGetLastError */ kvvfsCurrentTimeInt64 /* xCurrentTimeInt64 */ }; /* Methods for sqlite3_file objects referencing a database file */ static sqlite3_io_methods kvvfs_db_io_methods = { 1, /* iVersion */ kvvfsClose, /* xClose */ kvvfsReadDb, /* xRead */ kvvfsWriteDb, /* xWrite */ kvvfsTruncateDb, /* xTruncate */ kvvfsSyncDb, /* xSync */ kvvfsFileSizeDb, /* xFileSize */ kvvfsLock, /* xLock */ kvvfsUnlock, /* xUnlock */ kvvfsCheckReservedLock, /* xCheckReservedLock */ kvvfsFileControlDb, /* xFileControl */ kvvfsSectorSize, /* xSectorSize */ kvvfsDeviceCharacteristics, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ 0, /* xFetch */ 0 /* xUnfetch */ }; /* Methods for sqlite3_file objects referencing a rollback journal */ static sqlite3_io_methods kvvfs_jrnl_io_methods = { 1, /* iVersion */ kvvfsClose, /* xClose */ kvvfsReadJrnl, /* xRead */ kvvfsWriteJrnl, /* xWrite */ kvvfsTruncateJrnl, /* xTruncate */ kvvfsSyncJrnl, /* xSync */ kvvfsFileSizeJrnl, /* xFileSize */ kvvfsLock, /* xLock */ kvvfsUnlock, /* xUnlock */ kvvfsCheckReservedLock, /* xCheckReservedLock */ kvvfsFileControlJrnl, /* xFileControl */ kvvfsSectorSize, /* xSectorSize */ kvvfsDeviceCharacteristics, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ 0, /* xFetch */ 0 /* xUnfetch */ }; /****** Storage subsystem **************************************************/ #include #include #include /* Forward declarations for the low-level storage engine */ static int kvstorageWrite(const char*, const char *zKey, const char *zData); static int kvstorageDelete(const char*, const char *zKey); static int kvstorageRead(const char*, const char *zKey, char *zBuf, int nBuf); #define KVSTORAGE_KEY_SZ 32 /* Expand the key name with an appropriate prefix and put the result ** zKeyOut[]. The zKeyOut[] buffer is assumed to hold at least ** KVSTORAGE_KEY_SZ bytes. */ static void kvstorageMakeKey( const char *zClass, const char *zKeyIn, char *zKeyOut ){ sqlite3_snprintf(KVSTORAGE_KEY_SZ, zKeyOut, "kvvfs-%s-%s", zClass, zKeyIn); } /* Write content into a key. zClass is the particular namespace of the ** underlying key/value store to use - either "local" or "session". ** ** Both zKey and zData are zero-terminated pure text strings. ** ** Return the number of errors. */ static int kvstorageWrite( const char *zClass, const char *zKey, const char *zData ){ FILE *fd; char zXKey[KVSTORAGE_KEY_SZ]; kvstorageMakeKey(zClass, zKey, zXKey); fd = fopen(zXKey, "wb"); if( fd ){ SQLITE_KV_TRACE(("KVVFS-WRITE %-15s (%d) %.50s%s\n", zXKey, (int)strlen(zData), zData, strlen(zData)>50 ? "..." : "")); fputs(zData, fd); fclose(fd); return 0; }else{ return 1; } } /* Delete a key (with its corresponding data) from the key/value ** namespace given by zClass. If the key does not previously exist, ** this routine is a no-op. */ static int kvstorageDelete(const char *zClass, const char *zKey){ char zXKey[KVSTORAGE_KEY_SZ]; kvstorageMakeKey(zClass, zKey, zXKey); unlink(zXKey); SQLITE_KV_TRACE(("KVVFS-DELETE %-15s\n", zXKey)); return 0; } /* Read the value associated with a zKey from the key/value namespace given ** by zClass and put the text data associated with that key in the first ** nBuf bytes of zBuf[]. The value might be truncated if zBuf is not large ** enough to hold it all. The value put into zBuf must always be zero ** terminated, even if it gets truncated because nBuf is not large enough. ** ** Return the total number of bytes in the data, without truncation, and ** not counting the final zero terminator. Return -1 if the key does ** not exist. ** ** If nBuf<=0 then this routine simply returns the size of the data without ** actually reading it. */ static int kvstorageRead( const char *zClass, const char *zKey, char *zBuf, int nBuf ){ FILE *fd; struct stat buf; char zXKey[KVSTORAGE_KEY_SZ]; kvstorageMakeKey(zClass, zKey, zXKey); if( access(zXKey, R_OK)!=0 || stat(zXKey, &buf)!=0 || !S_ISREG(buf.st_mode) ){ SQLITE_KV_TRACE(("KVVFS-READ %-15s (-1)\n", zXKey)); return -1; } if( nBuf<=0 ){ return (int)buf.st_size; }else if( nBuf==1 ){ zBuf[0] = 0; SQLITE_KV_TRACE(("KVVFS-READ %-15s (%d)\n", zXKey, (int)buf.st_size)); return (int)buf.st_size; } if( nBuf > buf.st_size + 1 ){ nBuf = buf.st_size + 1; } fd = fopen(zXKey, "rb"); if( fd==0 ){ SQLITE_KV_TRACE(("KVVFS-READ %-15s (-1)\n", zXKey)); return -1; }else{ sqlite3_int64 n = fread(zBuf, 1, nBuf-1, fd); fclose(fd); zBuf[n] = 0; SQLITE_KV_TRACE(("KVVFS-READ %-15s (%lld) %.50s%s\n", zXKey, n, zBuf, n>50 ? "..." : "")); return (int)n; } } /* ** An internal level of indirection which enables us to replace the ** kvvfs i/o methods with JavaScript implementations in WASM builds. ** Maintenance reminder: if this struct changes in any way, the JSON ** rendering of its structure must be updated in ** sqlite3_wasm_enum_json(). There are no binary compatibility ** concerns, so it does not need an iVersion member. This file is ** necessarily always compiled together with sqlite3_wasm_enum_json(), ** and JS code dynamically creates the mapping of members based on ** that JSON description. */ typedef struct sqlite3_kvvfs_methods sqlite3_kvvfs_methods; struct sqlite3_kvvfs_methods { int (*xRead)(const char *zClass, const char *zKey, char *zBuf, int nBuf); int (*xWrite)(const char *zClass, const char *zKey, const char *zData); int (*xDelete)(const char *zClass, const char *zKey); const int nKeySize; }; /* ** This object holds the kvvfs I/O methods which may be swapped out ** for JavaScript-side implementations in WASM builds. In such builds ** it cannot be const, but in native builds it should be so that ** the compiler can hopefully optimize this level of indirection out. ** That said, kvvfs is intended primarily for use in WASM builds. ** ** Note that this is not explicitly flagged as static because the ** amalgamation build will tag it with SQLITE_PRIVATE. */ #ifndef SQLITE_WASM const #endif SQLITE_PRIVATE sqlite3_kvvfs_methods sqlite3KvvfsMethods = { kvstorageRead, kvstorageWrite, kvstorageDelete, KVSTORAGE_KEY_SZ }; /****** Utility subroutines ************************************************/ /* ** Encode binary into the text encoded used to persist on disk. ** The output text is stored in aOut[], which must be at least ** nData+1 bytes in length. ** ** Return the actual length of the encoded text, not counting the ** zero terminator at the end. ** ** Encoding format ** --------------- ** ** * Non-zero bytes are encoded as upper-case hexadecimal ** ** * A sequence of one or more zero-bytes that are not at the ** beginning of the buffer are encoded as a little-endian ** base-26 number using a..z. "a" means 0. "b" means 1, ** "z" means 25. "ab" means 26. "ac" means 52. And so forth. ** ** * Because there is no overlap between the encoding characters ** of hexadecimal and base-26 numbers, it is always clear where ** one stops and the next begins. */ static int kvvfsEncode(const char *aData, int nData, char *aOut){ int i, j; const unsigned char *a = (const unsigned char*)aData; for(i=j=0; i>4]; aOut[j++] = "0123456789ABCDEF"[c&0xf]; }else{ /* A sequence of 1 or more zeros is stored as a little-endian ** base-26 number using a..z as the digits. So one zero is "b". ** Two zeros is "c". 25 zeros is "z", 26 zeros is "ab", 27 is "bb", ** and so forth. */ int k; for(k=1; i+k0 ){ aOut[j++] = 'a'+(k%26); k /= 26; } } } aOut[j] = 0; return j; } static const signed char kvvfsHexValue[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; /* ** Decode the text encoding back to binary. The binary content is ** written into pOut, which must be at least nOut bytes in length. ** ** The return value is the number of bytes actually written into aOut[]. */ static int kvvfsDecode(const char *a, char *aOut, int nOut){ int i, j; int c; const unsigned char *aIn = (const unsigned char*)a; i = 0; j = 0; while( 1 ){ c = kvvfsHexValue[aIn[i]]; if( c<0 ){ int n = 0; int mult = 1; c = aIn[i]; if( c==0 ) break; while( c>='a' && c<='z' ){ n += (c - 'a')*mult; mult *= 26; c = aIn[++i]; } if( j+n>nOut ) return -1; memset(&aOut[j], 0, n); j += n; if( c==0 || mult==1 ) break; /* progress stalled if mult==1 */ }else{ aOut[j] = c<<4; c = kvvfsHexValue[aIn[++i]]; if( c<0 ) break; aOut[j++] += c; i++; } } return j; } /* ** Decode a complete journal file. Allocate space in pFile->aJrnl ** and store the decoding there. Or leave pFile->aJrnl set to NULL ** if an error is encountered. ** ** The first few characters of the text encoding will be a little-endian ** base-26 number (digits a..z) that is the total number of bytes ** in the decoded journal file image. This base-26 number is followed ** by a single space, then the encoding of the journal. The space ** separator is required to act as a terminator for the base-26 number. */ static void kvvfsDecodeJournal( KVVfsFile *pFile, /* Store decoding in pFile->aJrnl */ const char *zTxt, /* Text encoding. Zero-terminated */ int nTxt /* Bytes in zTxt, excluding zero terminator */ ){ unsigned int n = 0; int c, i, mult; i = 0; mult = 1; while( (c = zTxt[i++])>='a' && c<='z' ){ n += (zTxt[i] - 'a')*mult; mult *= 26; } sqlite3_free(pFile->aJrnl); pFile->aJrnl = sqlite3_malloc64( n ); if( pFile->aJrnl==0 ){ pFile->nJrnl = 0; return; } pFile->nJrnl = n; n = kvvfsDecode(zTxt+i, pFile->aJrnl, pFile->nJrnl); if( nnJrnl ){ sqlite3_free(pFile->aJrnl); pFile->aJrnl = 0; pFile->nJrnl = 0; } } /* ** Read or write the "sz" element, containing the database file size. */ static sqlite3_int64 kvvfsReadFileSize(KVVfsFile *pFile){ char zData[50]; zData[0] = 0; sqlite3KvvfsMethods.xRead(pFile->zClass, "sz", zData, sizeof(zData)-1); return strtoll(zData, 0, 0); } static int kvvfsWriteFileSize(KVVfsFile *pFile, sqlite3_int64 sz){ char zData[50]; sqlite3_snprintf(sizeof(zData), zData, "%lld", sz); return sqlite3KvvfsMethods.xWrite(pFile->zClass, "sz", zData); } /****** sqlite3_io_methods methods ******************************************/ /* ** Close an kvvfs-file. */ static int kvvfsClose(sqlite3_file *pProtoFile){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xClose %s %s\n", pFile->zClass, pFile->isJournal ? "journal" : "db")); sqlite3_free(pFile->aJrnl); sqlite3_free(pFile->aData); return SQLITE_OK; } /* ** Read from the -journal file. */ static int kvvfsReadJrnl( sqlite3_file *pProtoFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; assert( pFile->isJournal ); SQLITE_KV_LOG(("xRead('%s-journal',%d,%lld)\n", pFile->zClass, iAmt, iOfst)); if( pFile->aJrnl==0 ){ int szTxt = kvstorageRead(pFile->zClass, "jrnl", 0, 0); char *aTxt; if( szTxt<=4 ){ return SQLITE_IOERR; } aTxt = sqlite3_malloc64( szTxt+1 ); if( aTxt==0 ) return SQLITE_NOMEM; kvstorageRead(pFile->zClass, "jrnl", aTxt, szTxt+1); kvvfsDecodeJournal(pFile, aTxt, szTxt); sqlite3_free(aTxt); if( pFile->aJrnl==0 ) return SQLITE_IOERR; } if( iOfst+iAmt>pFile->nJrnl ){ return SQLITE_IOERR_SHORT_READ; } memcpy(zBuf, pFile->aJrnl+iOfst, iAmt); return SQLITE_OK; } /* ** Read from the database file. */ static int kvvfsReadDb( sqlite3_file *pProtoFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; unsigned int pgno; int got, n; char zKey[30]; char *aData = pFile->aData; assert( iOfst>=0 ); assert( iAmt>=0 ); SQLITE_KV_LOG(("xRead('%s-db',%d,%lld)\n", pFile->zClass, iAmt, iOfst)); if( iOfst+iAmt>=512 ){ if( (iOfst % iAmt)!=0 ){ return SQLITE_IOERR_READ; } if( (iAmt & (iAmt-1))!=0 || iAmt<512 || iAmt>65536 ){ return SQLITE_IOERR_READ; } pFile->szPage = iAmt; pgno = 1 + iOfst/iAmt; }else{ pgno = 1; } sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno); got = sqlite3KvvfsMethods.xRead(pFile->zClass, zKey, aData, SQLITE_KVOS_SZ-1); if( got<0 ){ n = 0; }else{ aData[got] = 0; if( iOfst+iAmt<512 ){ int k = iOfst+iAmt; aData[k*2] = 0; n = kvvfsDecode(aData, &aData[2000], SQLITE_KVOS_SZ-2000); if( n>=iOfst+iAmt ){ memcpy(zBuf, &aData[2000+iOfst], iAmt); n = iAmt; }else{ n = 0; } }else{ n = kvvfsDecode(aData, zBuf, iAmt); } } if( nzClass, iAmt, iOfst)); if( iEnd>=0x10000000 ) return SQLITE_FULL; if( pFile->aJrnl==0 || pFile->nJrnlaJrnl, iEnd); if( aNew==0 ){ return SQLITE_IOERR_NOMEM; } pFile->aJrnl = aNew; if( pFile->nJrnlaJrnl+pFile->nJrnl, 0, iOfst-pFile->nJrnl); } pFile->nJrnl = iEnd; } memcpy(pFile->aJrnl+iOfst, zBuf, iAmt); return SQLITE_OK; } /* ** Write into the database file. */ static int kvvfsWriteDb( sqlite3_file *pProtoFile, const void *zBuf, int iAmt, sqlite_int64 iOfst ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; unsigned int pgno; char zKey[30]; char *aData = pFile->aData; SQLITE_KV_LOG(("xWrite('%s-db',%d,%lld)\n", pFile->zClass, iAmt, iOfst)); assert( iAmt>=512 && iAmt<=65536 ); assert( (iAmt & (iAmt-1))==0 ); assert( pFile->szPage<0 || pFile->szPage==iAmt ); pFile->szPage = iAmt; pgno = 1 + iOfst/iAmt; sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno); kvvfsEncode(zBuf, iAmt, aData); if( sqlite3KvvfsMethods.xWrite(pFile->zClass, zKey, aData) ){ return SQLITE_IOERR; } if( iOfst+iAmt > pFile->szDb ){ pFile->szDb = iOfst + iAmt; } return SQLITE_OK; } /* ** Truncate an kvvfs-file. */ static int kvvfsTruncateJrnl(sqlite3_file *pProtoFile, sqlite_int64 size){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xTruncate('%s-journal',%lld)\n", pFile->zClass, size)); assert( size==0 ); sqlite3KvvfsMethods.xDelete(pFile->zClass, "jrnl"); sqlite3_free(pFile->aJrnl); pFile->aJrnl = 0; pFile->nJrnl = 0; return SQLITE_OK; } static int kvvfsTruncateDb(sqlite3_file *pProtoFile, sqlite_int64 size){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; if( pFile->szDb>size && pFile->szPage>0 && (size % pFile->szPage)==0 ){ char zKey[50]; unsigned int pgno, pgnoMax; SQLITE_KV_LOG(("xTruncate('%s-db',%lld)\n", pFile->zClass, size)); pgno = 1 + size/pFile->szPage; pgnoMax = 2 + pFile->szDb/pFile->szPage; while( pgno<=pgnoMax ){ sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno); sqlite3KvvfsMethods.xDelete(pFile->zClass, zKey); pgno++; } pFile->szDb = size; return kvvfsWriteFileSize(pFile, size) ? SQLITE_IOERR : SQLITE_OK; } return SQLITE_IOERR; } /* ** Sync an kvvfs-file. */ static int kvvfsSyncJrnl(sqlite3_file *pProtoFile, int flags){ int i, n; KVVfsFile *pFile = (KVVfsFile *)pProtoFile; char *zOut; SQLITE_KV_LOG(("xSync('%s-journal')\n", pFile->zClass)); if( pFile->nJrnl<=0 ){ return kvvfsTruncateJrnl(pProtoFile, 0); } zOut = sqlite3_malloc64( pFile->nJrnl*2 + 50 ); if( zOut==0 ){ return SQLITE_IOERR_NOMEM; } n = pFile->nJrnl; i = 0; do{ zOut[i++] = 'a' + (n%26); n /= 26; }while( n>0 ); zOut[i++] = ' '; kvvfsEncode(pFile->aJrnl, pFile->nJrnl, &zOut[i]); i = sqlite3KvvfsMethods.xWrite(pFile->zClass, "jrnl", zOut); sqlite3_free(zOut); return i ? SQLITE_IOERR : SQLITE_OK; } static int kvvfsSyncDb(sqlite3_file *pProtoFile, int flags){ return SQLITE_OK; } /* ** Return the current file-size of an kvvfs-file. */ static int kvvfsFileSizeJrnl(sqlite3_file *pProtoFile, sqlite_int64 *pSize){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xFileSize('%s-journal')\n", pFile->zClass)); *pSize = pFile->nJrnl; return SQLITE_OK; } static int kvvfsFileSizeDb(sqlite3_file *pProtoFile, sqlite_int64 *pSize){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; SQLITE_KV_LOG(("xFileSize('%s-db')\n", pFile->zClass)); if( pFile->szDb>=0 ){ *pSize = pFile->szDb; }else{ *pSize = kvvfsReadFileSize(pFile); } return SQLITE_OK; } /* ** Lock an kvvfs-file. */ static int kvvfsLock(sqlite3_file *pProtoFile, int eLock){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; assert( !pFile->isJournal ); SQLITE_KV_LOG(("xLock(%s,%d)\n", pFile->zClass, eLock)); if( eLock!=SQLITE_LOCK_NONE ){ pFile->szDb = kvvfsReadFileSize(pFile); } return SQLITE_OK; } /* ** Unlock an kvvfs-file. */ static int kvvfsUnlock(sqlite3_file *pProtoFile, int eLock){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; assert( !pFile->isJournal ); SQLITE_KV_LOG(("xUnlock(%s,%d)\n", pFile->zClass, eLock)); if( eLock==SQLITE_LOCK_NONE ){ pFile->szDb = -1; } return SQLITE_OK; } /* ** Check if another file-handle holds a RESERVED lock on an kvvfs-file. */ static int kvvfsCheckReservedLock(sqlite3_file *pProtoFile, int *pResOut){ SQLITE_KV_LOG(("xCheckReservedLock\n")); *pResOut = 0; return SQLITE_OK; } /* ** File control method. For custom operations on an kvvfs-file. */ static int kvvfsFileControlJrnl(sqlite3_file *pProtoFile, int op, void *pArg){ SQLITE_KV_LOG(("xFileControl(%d) on journal\n", op)); return SQLITE_NOTFOUND; } static int kvvfsFileControlDb(sqlite3_file *pProtoFile, int op, void *pArg){ SQLITE_KV_LOG(("xFileControl(%d) on database\n", op)); if( op==SQLITE_FCNTL_SYNC ){ KVVfsFile *pFile = (KVVfsFile *)pProtoFile; int rc = SQLITE_OK; SQLITE_KV_LOG(("xSync('%s-db')\n", pFile->zClass)); if( pFile->szDb>0 && 0!=kvvfsWriteFileSize(pFile, pFile->szDb) ){ rc = SQLITE_IOERR; } return rc; } return SQLITE_NOTFOUND; } /* ** Return the sector-size in bytes for an kvvfs-file. */ static int kvvfsSectorSize(sqlite3_file *pFile){ return 512; } /* ** Return the device characteristic flags supported by an kvvfs-file. */ static int kvvfsDeviceCharacteristics(sqlite3_file *pProtoFile){ return 0; } /****** sqlite3_vfs methods *************************************************/ /* ** Open an kvvfs file handle. */ static int kvvfsOpen( sqlite3_vfs *pProtoVfs, const char *zName, sqlite3_file *pProtoFile, int flags, int *pOutFlags ){ KVVfsFile *pFile = (KVVfsFile*)pProtoFile; if( zName==0 ) zName = ""; SQLITE_KV_LOG(("xOpen(\"%s\")\n", zName)); if( strcmp(zName, "local")==0 || strcmp(zName, "session")==0 ){ pFile->isJournal = 0; pFile->base.pMethods = &kvvfs_db_io_methods; }else if( strcmp(zName, "local-journal")==0 || strcmp(zName, "session-journal")==0 ){ pFile->isJournal = 1; pFile->base.pMethods = &kvvfs_jrnl_io_methods; }else{ return SQLITE_CANTOPEN; } if( zName[0]=='s' ){ pFile->zClass = "session"; }else{ pFile->zClass = "local"; } pFile->aData = sqlite3_malloc64(SQLITE_KVOS_SZ); if( pFile->aData==0 ){ return SQLITE_NOMEM; } pFile->aJrnl = 0; pFile->nJrnl = 0; pFile->szPage = -1; pFile->szDb = -1; return SQLITE_OK; } /* ** Delete the file located at zPath. If the dirSync argument is true, ** ensure the file-system modifications are synced to disk before ** returning. */ static int kvvfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ if( strcmp(zPath, "local-journal")==0 ){ sqlite3KvvfsMethods.xDelete("local", "jrnl"); }else if( strcmp(zPath, "session-journal")==0 ){ sqlite3KvvfsMethods.xDelete("session", "jrnl"); } return SQLITE_OK; } /* ** Test for access permissions. Return true if the requested permission ** is available, or false otherwise. */ static int kvvfsAccess( sqlite3_vfs *pProtoVfs, const char *zPath, int flags, int *pResOut ){ SQLITE_KV_LOG(("xAccess(\"%s\")\n", zPath)); if( strcmp(zPath, "local-journal")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("local", "jrnl", 0, 0)>0; }else if( strcmp(zPath, "session-journal")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("session", "jrnl", 0, 0)>0; }else if( strcmp(zPath, "local")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("local", "sz", 0, 0)>0; }else if( strcmp(zPath, "session")==0 ){ *pResOut = sqlite3KvvfsMethods.xRead("session", "sz", 0, 0)>0; }else { *pResOut = 0; } SQLITE_KV_LOG(("xAccess returns %d\n",*pResOut)); return SQLITE_OK; } /* ** Populate buffer zOut with the full canonical pathname corresponding ** to the pathname in zPath. zOut is guaranteed to point to a buffer ** of at least (INST_MAX_PATHNAME+1) bytes. */ static int kvvfsFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nOut, char *zOut ){ size_t nPath; #ifdef SQLITE_OS_KV_ALWAYS_LOCAL zPath = "local"; #endif nPath = strlen(zPath); SQLITE_KV_LOG(("xFullPathname(\"%s\")\n", zPath)); if( nOut static int kvvfsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; struct timeval sNow; (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */ *pTimeOut = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; return SQLITE_OK; } #endif /* SQLITE_OS_KV || SQLITE_OS_UNIX */ #if SQLITE_OS_KV /* ** This routine is called initialize the KV-vfs as the default VFS. */ SQLITE_API int sqlite3_os_init(void){ return sqlite3_vfs_register(&sqlite3OsKvvfsObject, 1); } SQLITE_API int sqlite3_os_end(void){ return SQLITE_OK; } #endif /* SQLITE_OS_KV */ #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) SQLITE_PRIVATE int sqlite3KvvfsInit(void){ return sqlite3_vfs_register(&sqlite3OsKvvfsObject, 0); } #endif /************** End of os_kv.c ***********************************************/ /************** Begin file os_unix.c *****************************************/ /* ** 2004 May 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains the VFS implementation for unix-like operating systems ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. ** ** There are actually several different VFS implementations in this file. ** The differences are in the way that file locking is done. The default ** implementation uses Posix Advisory Locks. Alternative implementations ** use flock(), dot-files, various proprietary locking schemas, or simply ** skip locking all together. ** ** This source file is organized into divisions where the logic for various ** subfunctions is contained within the appropriate division. PLEASE ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed ** in the correct division and should be clearly labelled. ** ** The layout of divisions is as follows: ** ** * General-purpose declarations and utility functions. ** * Unique file ID logic used by VxWorks. ** * Various locking primitive implementations (all except proxy locking): ** + for Posix Advisory Locks ** + for no-op locks ** + for dot-file locks ** + for flock() locking ** + for named semaphore locks (VxWorks only) ** + for AFP filesystem locks (MacOSX only) ** * sqlite3_file methods not associated with locking. ** * Definitions of sqlite3_io_methods objects for all locking ** methods plus "finder" functions for each locking method. ** * sqlite3_vfs method implementations. ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) ** * Definitions of sqlite3_vfs objects for all locking methods ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). */ /* #include "sqliteInt.h" */ #if SQLITE_OS_UNIX /* This file is used on unix only */ /* ** There are various methods for file locking used for concurrency ** control: ** ** 1. POSIX locking (the default), ** 2. No locking, ** 3. Dot-file locking, ** 4. flock() locking, ** 5. AFP locking (OSX only), ** 6. Named POSIX semaphores (VXWorks only), ** 7. proxy locking. (OSX only) ** ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic ** selection of the appropriate locking style based on the filesystem ** where the database is located. */ #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif #endif /* Use pread() and pwrite() if they are available */ #if defined(__APPLE__) || defined(__linux__) # define HAVE_PREAD 1 # define HAVE_PWRITE 1 #endif #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64) # undef USE_PREAD # define USE_PREAD64 1 #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE) # undef USE_PREAD64 # define USE_PREAD 1 #endif /* ** standard include files. */ #include /* amalgamator: keep */ #include /* amalgamator: keep */ #include #include #include /* amalgamator: keep */ /* #include */ #include /* amalgamator: keep */ #include #if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \ && !defined(SQLITE_WASI) # include #endif #if SQLITE_ENABLE_LOCKING_STYLE /* # include */ # include # include #endif /* SQLITE_ENABLE_LOCKING_STYLE */ /* ** Try to determine if gethostuuid() is available based on standard ** macros. This might sometimes compute the wrong value for some ** obscure platforms. For those cases, simply compile with one of ** the following: ** ** -DHAVE_GETHOSTUUID=0 ** -DHAVE_GETHOSTUUID=1 ** ** None if this matters except when building on Apple products with ** -DSQLITE_ENABLE_LOCKING_STYLE. */ #ifndef HAVE_GETHOSTUUID # define HAVE_GETHOSTUUID 0 # if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \ (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000)) # if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \ && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\ && (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0)) # undef HAVE_GETHOSTUUID # define HAVE_GETHOSTUUID 1 # else # warning "gethostuuid() is disabled." # endif # endif #endif #if OS_VXWORKS /* # include */ # include # include #endif /* OS_VXWORKS */ #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE # include #endif #ifdef HAVE_UTIME # include #endif /* ** Allowed values of unixFile.fsFlags */ #define SQLITE_FSFLAGS_IS_MSDOS 0x1 /* ** If we are to be thread-safe, include the pthreads header. */ #if SQLITE_THREADSAFE /* # include */ #endif /* ** Default permissions when creating a new file */ #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 #endif /* ** Default permissions when creating auto proxy dir */ #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 #endif /* ** Maximum supported path-length. */ #define MAX_PATHNAME 512 /* ** Maximum supported symbolic links */ #define SQLITE_MAX_SYMLINKS 100 /* ** Remove and stub certain info for WASI (WebAssembly System ** Interface) builds. */ #ifdef SQLITE_WASI # undef HAVE_FCHMOD # undef HAVE_FCHOWN # undef HAVE_MREMAP # define HAVE_MREMAP 0 # ifndef SQLITE_DEFAULT_UNIX_VFS # define SQLITE_DEFAULT_UNIX_VFS "unix-dotfile" /* ^^^ should SQLITE_DEFAULT_UNIX_VFS be "unix-none"? */ # endif # ifndef F_RDLCK # define F_RDLCK 0 # define F_WRLCK 1 # define F_UNLCK 2 # if __LONG_MAX == 0x7fffffffL # define F_GETLK 12 # define F_SETLK 13 # define F_SETLKW 14 # else # define F_GETLK 5 # define F_SETLK 6 # define F_SETLKW 7 # endif # endif #else /* !SQLITE_WASI */ # ifndef HAVE_FCHMOD # define HAVE_FCHMOD # endif #endif /* SQLITE_WASI */ #ifdef SQLITE_WASI # define osGetpid(X) (pid_t)1 #else /* Always cast the getpid() return type for compatibility with ** kernel modules in VxWorks. */ # define osGetpid(X) (pid_t)getpid() #endif /* ** Only set the lastErrno if the error code is a real error and not ** a normal expected return code of SQLITE_BUSY or SQLITE_OK */ #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) /* Forward references */ typedef struct unixShm unixShm; /* Connection shared memory */ typedef struct unixShmNode unixShmNode; /* Shared memory instance */ typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ /* ** Sometimes, after a file handle is closed by SQLite, the file descriptor ** cannot be closed immediately. In these cases, instances of the following ** structure are used to store the file descriptor while waiting for an ** opportunity to either close or reuse it. */ struct UnixUnusedFd { int fd; /* File descriptor to close */ int flags; /* Flags this file descriptor was opened with */ UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ }; /* ** The unixFile structure is subclass of sqlite3_file specific to the unix ** VFS implementations. */ typedef struct unixFile unixFile; struct unixFile { sqlite3_io_methods const *pMethod; /* Always the first entry */ sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ unixInodeInfo *pInode; /* Info about locks on this inode */ int h; /* The file descriptor */ unsigned char eFileLock; /* The type of lock held on this fd */ unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ int lastErrno; /* The unix errno from last I/O error */ void *lockingContext; /* Locking style specific state */ UnixUnusedFd *pPreallocatedUnused; /* Pre-allocated UnixUnusedFd */ const char *zPath; /* Name of the file */ unixShm *pShm; /* Shared memory segment information */ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ #if SQLITE_MAX_MMAP_SIZE>0 int nFetchOut; /* Number of outstanding xFetch refs */ sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */ sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ void *pMapRegion; /* Memory mapped region */ #endif int sectorSize; /* Device sector size */ int deviceCharacteristics; /* Precomputed device characteristics */ #if SQLITE_ENABLE_LOCKING_STYLE int openFlags; /* The flags specified at open() */ #endif #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) unsigned fsFlags; /* cached details from statfs() */ #endif #ifdef SQLITE_ENABLE_SETLK_TIMEOUT unsigned iBusyTimeout; /* Wait this many millisec on locks */ #endif #if OS_VXWORKS struct vxworksFileId *pId; /* Unique file ID */ #endif #ifdef SQLITE_DEBUG /* The next group of variables are used to track whether or not the ** transaction counter in bytes 24-27 of database files are updated ** whenever any part of the database changes. An assertion fault will ** occur if a file is updated without also updating the transaction ** counter. This test is made to avoid new problems similar to the ** one described by ticket #3584. */ unsigned char transCntrChng; /* True if the transaction counter changed */ unsigned char dbUpdate; /* True if any part of database file changed */ unsigned char inNormalWrite; /* True if in a normal write operation */ #endif #ifdef SQLITE_TEST /* In test mode, increase the size of this structure a bit so that ** it is larger than the struct CrashFile defined in test6.c. */ char aPadding[32]; #endif }; /* This variable holds the process id (pid) from when the xRandomness() ** method was called. If xOpen() is called from a different process id, ** indicating that a fork() has occurred, the PRNG will be reset. */ static pid_t randomnessPid = 0; /* ** Allowed values for the unixFile.ctrlFlags bitmask: */ #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #ifndef SQLITE_DISABLE_DIRSYNC # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ #else # define UNIXFILE_DIRSYNC 0x00 #endif #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ #define UNIXFILE_DELETE 0x20 /* Delete on close */ #define UNIXFILE_URI 0x40 /* Filename might have query parameters */ #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ /* ** Include code that is common to all os_*.c files */ /* #include "os_common.h" */ /* ** Define various macros that are missing from some systems. */ #ifndef O_LARGEFILE # define O_LARGEFILE 0 #endif #ifdef SQLITE_DISABLE_LFS # undef O_LARGEFILE # define O_LARGEFILE 0 #endif #ifndef O_NOFOLLOW # define O_NOFOLLOW 0 #endif #ifndef O_BINARY # define O_BINARY 0 #endif /* ** The threadid macro resolves to the thread-id or to 0. Used for ** testing and debugging only. */ #if SQLITE_THREADSAFE #define threadid pthread_self() #else #define threadid 0 #endif /* ** HAVE_MREMAP defaults to true on Linux and false everywhere else. */ #if !defined(HAVE_MREMAP) # if defined(__linux__) && defined(_GNU_SOURCE) # define HAVE_MREMAP 1 # else # define HAVE_MREMAP 0 # endif #endif /* ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek() ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined. */ #ifdef __ANDROID__ # define lseek lseek64 #endif #ifdef __linux__ /* ** Linux-specific IOCTL magic numbers used for controlling F2FS */ #define F2FS_IOCTL_MAGIC 0xf5 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32) #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 #endif /* __linux__ */ /* ** Different Unix systems declare open() in different ways. Same use ** open(const char*,int,mode_t). Others use open(const char*,int,...). ** The difference is important when using a pointer to the function. ** ** The safest way to deal with the problem is to always use this wrapper ** which always has the same well-defined interface. */ static int posixOpen(const char *zFile, int flags, int mode){ return open(zFile, flags, mode); } /* Forward reference */ static int openDirectory(const char*, int*); static int unixGetpagesize(void); /* ** Many system calls are accessed through pointer-to-functions so that ** they may be overridden at runtime to facilitate fault injection during ** testing and sandboxing. The following array holds the names and pointers ** to all overrideable system calls. */ static struct unix_syscall { const char *zName; /* Name of the system call */ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ sqlite3_syscall_ptr pDefault; /* Default value */ } aSyscall[] = { { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) { "close", (sqlite3_syscall_ptr)close, 0 }, #define osClose ((int(*)(int))aSyscall[1].pCurrent) { "access", (sqlite3_syscall_ptr)access, 0 }, #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) { "stat", (sqlite3_syscall_ptr)stat, 0 }, #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) /* ** The DJGPP compiler environment looks mostly like Unix, but it ** lacks the fcntl() system call. So redefine fcntl() to be something ** that always succeeds. This means that locking does not occur under ** DJGPP. But it is DOS - what did you expect? */ #ifdef __DJGPP__ { "fstat", 0, 0 }, #define osFstat(a,b,c) 0 #else { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) #endif { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) { "read", (sqlite3_syscall_ptr)read, 0 }, #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pread", (sqlite3_syscall_ptr)pread, 0 }, #else { "pread", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) #if defined(USE_PREAD64) { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, #else { "pread64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent) { "write", (sqlite3_syscall_ptr)write, 0 }, #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, #else { "pwrite", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ aSyscall[12].pCurrent) #if defined(USE_PREAD64) { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, #else { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\ aSyscall[13].pCurrent) #if defined(HAVE_FCHMOD) { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, #else { "fchmod", (sqlite3_syscall_ptr)0, 0 }, #endif #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, #else { "fallocate", (sqlite3_syscall_ptr)0, 0 }, #endif #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 }, #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent) { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 }, #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent) #if defined(HAVE_FCHOWN) { "fchown", (sqlite3_syscall_ptr)fchown, 0 }, #else { "fchown", (sqlite3_syscall_ptr)0, 0 }, #endif #define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent) #if defined(HAVE_FCHOWN) { "geteuid", (sqlite3_syscall_ptr)geteuid, 0 }, #else { "geteuid", (sqlite3_syscall_ptr)0, 0 }, #endif #define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent) #if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \ && !defined(SQLITE_WASI) { "mmap", (sqlite3_syscall_ptr)mmap, 0 }, #else { "mmap", (sqlite3_syscall_ptr)0, 0 }, #endif #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent) #if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \ && !defined(SQLITE_WASI) { "munmap", (sqlite3_syscall_ptr)munmap, 0 }, #else { "munmap", (sqlite3_syscall_ptr)0, 0 }, #endif #define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent) #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "mremap", (sqlite3_syscall_ptr)mremap, 0 }, #else { "mremap", (sqlite3_syscall_ptr)0, 0 }, #endif #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent) #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 }, #else { "getpagesize", (sqlite3_syscall_ptr)0, 0 }, #endif #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent) #if defined(HAVE_READLINK) { "readlink", (sqlite3_syscall_ptr)readlink, 0 }, #else { "readlink", (sqlite3_syscall_ptr)0, 0 }, #endif #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent) #if defined(HAVE_LSTAT) { "lstat", (sqlite3_syscall_ptr)lstat, 0 }, #else { "lstat", (sqlite3_syscall_ptr)0, 0 }, #endif #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent) #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) # ifdef __ANDROID__ { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 }, #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent) # else { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 }, #define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent) # endif #else { "ioctl", (sqlite3_syscall_ptr)0, 0 }, #endif }; /* End of the overrideable system calls */ /* ** On some systems, calls to fchown() will trigger a message in a security ** log if they come from non-root processes. So avoid calling fchown() if ** we are not running as root. */ static int robustFchown(int fd, uid_t uid, gid_t gid){ #if defined(HAVE_FCHOWN) return osGeteuid() ? 0 : osFchown(fd,uid,gid); #else return 0; #endif } /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "unix" VFSes. Return SQLITE_OK upon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. */ static int unixSetSystemCall( sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ const char *zName, /* Name of system call to override */ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ ){ unsigned int i; int rc = SQLITE_NOTFOUND; UNUSED_PARAMETER(pNotUsed); if( zName==0 ){ /* If no zName is given, restore all system calls to their default ** settings and return NULL */ rc = SQLITE_OK; for(i=0; i=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break; if( (f & (O_EXCL|O_CREAT))==(O_EXCL|O_CREAT) ){ (void)osUnlink(z); } osClose(fd); sqlite3_log(SQLITE_WARNING, "attempt to open \"%s\" as file descriptor %d", z, fd); fd = -1; if( osOpen("/dev/null", O_RDONLY, m)<0 ) break; } if( fd>=0 ){ if( m!=0 ){ struct stat statbuf; if( osFstat(fd, &statbuf)==0 && statbuf.st_size==0 && (statbuf.st_mode&0777)!=m ){ osFchmod(fd, m); } } #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0) osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); #endif } return fd; } /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the unixInodeInfo and ** vxworksFileId objects used by this file, all of which may be ** shared by multiple threads. ** ** Function unixMutexHeld() is used to assert() that the global mutex ** is held when required. This function is only used as part of assert() ** statements. e.g. ** ** unixEnterMutex() ** assert( unixMutexHeld() ); ** unixEnterLeave() ** ** To prevent deadlock, the global unixBigLock must must be acquired ** before the unixInodeInfo.pLockMutex mutex, if both are held. It is ** OK to get the pLockMutex without holding unixBigLock first, but if ** that happens, the unixBigLock mutex must not be acquired until after ** pLockMutex is released. ** ** OK: enter(unixBigLock), enter(pLockInfo) ** OK: enter(unixBigLock) ** OK: enter(pLockInfo) ** ERROR: enter(pLockInfo), enter(unixBigLock) */ static sqlite3_mutex *unixBigLock = 0; static void unixEnterMutex(void){ assert( sqlite3_mutex_notheld(unixBigLock) ); /* Not a recursive mutex */ sqlite3_mutex_enter(unixBigLock); } static void unixLeaveMutex(void){ assert( sqlite3_mutex_held(unixBigLock) ); sqlite3_mutex_leave(unixBigLock); } #ifdef SQLITE_DEBUG static int unixMutexHeld(void) { return sqlite3_mutex_held(unixBigLock); } #endif #ifdef SQLITE_HAVE_OS_TRACE /* ** Helper function for printing out trace information from debugging ** binaries. This returns the string representation of the supplied ** integer lock-type. */ static const char *azFileLock(int eFileLock){ switch( eFileLock ){ case NO_LOCK: return "NONE"; case SHARED_LOCK: return "SHARED"; case RESERVED_LOCK: return "RESERVED"; case PENDING_LOCK: return "PENDING"; case EXCLUSIVE_LOCK: return "EXCLUSIVE"; } return "ERROR"; } #endif #ifdef SQLITE_LOCK_TRACE /* ** Print out information about all locking operations. ** ** This routine is used for troubleshooting locks on multithreaded ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE ** command-line option on the compiler. This code is normally ** turned off. */ static int lockTrace(int fd, int op, struct flock *p){ char *zOpName, *zType; int s; int savedErrno; if( op==F_GETLK ){ zOpName = "GETLK"; }else if( op==F_SETLK ){ zOpName = "SETLK"; }else{ s = osFcntl(fd, op, p); sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); return s; } if( p->l_type==F_RDLCK ){ zType = "RDLCK"; }else if( p->l_type==F_WRLCK ){ zType = "WRLCK"; }else if( p->l_type==F_UNLCK ){ zType = "UNLCK"; }else{ assert( 0 ); } assert( p->l_whence==SEEK_SET ); s = osFcntl(fd, op, p); savedErrno = errno; sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, (int)p->l_pid, s); if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ struct flock l2; l2 = *p; osFcntl(fd, F_GETLK, &l2); if( l2.l_type==F_RDLCK ){ zType = "RDLCK"; }else if( l2.l_type==F_WRLCK ){ zType = "WRLCK"; }else if( l2.l_type==F_UNLCK ){ zType = "UNLCK"; }else{ assert( 0 ); } sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); } errno = savedErrno; return s; } #undef osFcntl #define osFcntl lockTrace #endif /* SQLITE_LOCK_TRACE */ /* ** Retry ftruncate() calls that fail due to EINTR ** ** All calls to ftruncate() within this file should be made through ** this wrapper. On the Android platform, bypassing the logic below ** could lead to a corrupt database. */ static int robust_ftruncate(int h, sqlite3_int64 sz){ int rc; #ifdef __ANDROID__ /* On Android, ftruncate() always uses 32-bit offsets, even if ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to ** truncate a file to any size larger than 2GiB. Silently ignore any ** such attempts. */ if( sz>(sqlite3_int64)0x7FFFFFFF ){ rc = SQLITE_OK; }else #endif do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); return rc; } /* ** This routine translates a standard POSIX errno code into something ** useful to the clients of the sqlite3 functions. Specifically, it is ** intended to translate a variety of "try again" errors into SQLITE_BUSY ** and a variety of "please close the file descriptor NOW" errors into ** SQLITE_IOERR ** ** Errors during initialization of locks, or file system support for locks, ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. */ static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { assert( (sqliteIOErr == SQLITE_IOERR_LOCK) || (sqliteIOErr == SQLITE_IOERR_UNLOCK) || (sqliteIOErr == SQLITE_IOERR_RDLOCK) || (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ); switch (posixError) { case EACCES: case EAGAIN: case ETIMEDOUT: case EBUSY: case EINTR: case ENOLCK: /* random NFS retry error, unless during file system support * introspection, in which it actually means what it says */ return SQLITE_BUSY; case EPERM: return SQLITE_PERM; default: return sqliteIOErr; } } /****************************************************************************** ****************** Begin Unique File ID Utility Used By VxWorks *************** ** ** On most versions of unix, we can get a unique ID for a file by concatenating ** the device number and the inode number. But this does not work on VxWorks. ** On VxWorks, a unique file id must be based on the canonical filename. ** ** A pointer to an instance of the following structure can be used as a ** unique file ID in VxWorks. Each instance of this structure contains ** a copy of the canonical filename. There is also a reference count. ** The structure is reclaimed when the number of pointers to it drops to ** zero. ** ** There are never very many files open at one time and lookups are not ** a performance-critical path, so it is sufficient to put these ** structures on a linked list. */ struct vxworksFileId { struct vxworksFileId *pNext; /* Next in a list of them all */ int nRef; /* Number of references to this one */ int nName; /* Length of the zCanonicalName[] string */ char *zCanonicalName; /* Canonical filename */ }; #if OS_VXWORKS /* ** All unique filenames are held on a linked list headed by this ** variable: */ static struct vxworksFileId *vxworksFileList = 0; /* ** Simplify a filename into its canonical form ** by making the following changes: ** ** * removing any trailing and duplicate / ** * convert /./ into just / ** * convert /A/../ where A is any simple name into just / ** ** Changes are made in-place. Return the new name length. ** ** The original filename is in z[0..n-1]. Return the number of ** characters in the simplified name. */ static int vxworksSimplifyName(char *z, int n){ int i, j; while( n>1 && z[n-1]=='/' ){ n--; } for(i=j=0; i0 && z[j-1]!='/' ){ j--; } if( j>0 ){ j--; } i += 2; continue; } } z[j++] = z[i]; } z[j] = 0; return j; } /* ** Find a unique file ID for the given absolute pathname. Return ** a pointer to the vxworksFileId object. This pointer is the unique ** file ID. ** ** The nRef field of the vxworksFileId object is incremented before ** the object is returned. A new vxworksFileId object is created ** and added to the global list if necessary. ** ** If a memory allocation error occurs, return NULL. */ static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ struct vxworksFileId *pNew; /* search key and new file ID */ struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ int n; /* Length of zAbsoluteName string */ assert( zAbsoluteName[0]=='/' ); n = (int)strlen(zAbsoluteName); pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) ); if( pNew==0 ) return 0; pNew->zCanonicalName = (char*)&pNew[1]; memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); n = vxworksSimplifyName(pNew->zCanonicalName, n); /* Search for an existing entry that matching the canonical name. ** If found, increment the reference count and return a pointer to ** the existing file ID. */ unixEnterMutex(); for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ if( pCandidate->nName==n && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 ){ sqlite3_free(pNew); pCandidate->nRef++; unixLeaveMutex(); return pCandidate; } } /* No match was found. We will make a new file ID */ pNew->nRef = 1; pNew->nName = n; pNew->pNext = vxworksFileList; vxworksFileList = pNew; unixLeaveMutex(); return pNew; } /* ** Decrement the reference count on a vxworksFileId object. Free ** the object when the reference count reaches zero. */ static void vxworksReleaseFileId(struct vxworksFileId *pId){ unixEnterMutex(); assert( pId->nRef>0 ); pId->nRef--; if( pId->nRef==0 ){ struct vxworksFileId **pp; for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} assert( *pp==pId ); *pp = pId->pNext; sqlite3_free(pId); } unixLeaveMutex(); } #endif /* OS_VXWORKS */ /*************** End of Unique File ID Utility Used By VxWorks **************** ******************************************************************************/ /****************************************************************************** *************************** Posix Advisory Locking **************************** ** ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) ** section 6.5.2.2 lines 483 through 490 specify that when a process ** sets or clears a lock, that operation overrides any prior locks set ** by the same process. It does not explicitly say so, but this implies ** that it overrides locks set by the same process using a different ** file descriptor. Consider this test case: ** ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); ** ** Suppose ./file1 and ./file2 are really the same file (because ** one is a hard or symbolic link to the other) then if you set ** an exclusive lock on fd1, then try to get an exclusive lock ** on fd2, it works. I would have expected the second lock to ** fail since there was already a lock on the file due to fd1. ** But not so. Since both locks came from the same process, the ** second overrides the first, even though they were on different ** file descriptors opened on different file names. ** ** This means that we cannot use POSIX locks to synchronize file access ** among competing threads of the same process. POSIX locks will work fine ** to synchronize access for threads in separate processes, but not ** threads within the same process. ** ** To work around the problem, SQLite has to manage file locks internally ** on its own. Whenever a new database is opened, we have to find the ** specific inode of the database file (the inode is determined by the ** st_dev and st_ino fields of the stat structure that fstat() fills in) ** and check for locks already existing on that inode. When locks are ** created or removed, we have to look at our own internal record of the ** locks to see if another thread has previously set a lock on that same ** inode. ** ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. ** For VxWorks, we have to use the alternative unique ID system based on ** canonical filename and implemented in the previous division.) ** ** The sqlite3_file structure for POSIX is no longer just an integer file ** descriptor. It is now a structure that holds the integer file ** descriptor and a pointer to a structure that describes the internal ** locks on the corresponding inode. There is one locking structure ** per inode, so if the same inode is opened twice, both unixFile structures ** point to the same locking structure. The locking structure keeps ** a reference count (so we will know when to delete it) and a "cnt" ** field that tells us its internal lock status. cnt==0 means the ** file is unlocked. cnt==-1 means the file has an exclusive lock. ** cnt>0 means there are cnt shared locks on the file. ** ** Any attempt to lock or unlock a file first checks the locking ** structure. The fcntl() system call is only invoked to set a ** POSIX lock if the internal lock structure transitions between ** a locked and an unlocked state. ** ** But wait: there are yet more problems with POSIX advisory locks. ** ** If you close a file descriptor that points to a file that has locks, ** all locks on that file that are owned by the current process are ** released. To work around this problem, each unixInodeInfo object ** maintains a count of the number of pending locks on the inode. ** When an attempt is made to close an unixFile, if there are ** other unixFile open on the same inode that are holding locks, the call ** to close() the file descriptor is deferred until all of the locks clear. ** The unixInodeInfo structure keeps a list of file descriptors that need to ** be closed and that list is walked (and cleared) when the last lock ** clears. ** ** Yet another problem: LinuxThreads do not play well with posix locks. ** ** Many older versions of linux use the LinuxThreads library which is ** not posix compliant. Under LinuxThreads, a lock created by thread ** A cannot be modified or overridden by a different thread B. ** Only thread A can modify the lock. Locking behavior is correct ** if the application uses the newer Native Posix Thread Library (NPTL) ** on linux - with NPTL a lock created by thread A can override locks ** in thread B. But there is no way to know at compile-time which ** threading library is being used. So there is no way to know at ** compile-time whether or not thread A can override locks on thread B. ** One has to do a run-time check to discover the behavior of the ** current process. ** ** SQLite used to support LinuxThreads. But support for LinuxThreads ** was dropped beginning with version 3.7.0. SQLite will still work with ** LinuxThreads provided that (1) there is no more than one connection ** per database file in the same process and (2) database connections ** do not move across threads. */ /* ** An instance of the following structure serves as the key used ** to locate a particular unixInodeInfo object. */ struct unixFileId { dev_t dev; /* Device number */ #if OS_VXWORKS struct vxworksFileId *pId; /* Unique file ID for vxworks. */ #else /* We are told that some versions of Android contain a bug that ** sizes ino_t at only 32-bits instead of 64-bits. (See ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c) ** To work around this, always allocate 64-bits for the inode number. ** On small machines that only have 32-bit inodes, this wastes 4 bytes, ** but that should not be a big deal. */ /* WAS: ino_t ino; */ u64 ino; /* Inode number */ #endif }; /* ** An instance of the following structure is allocated for each open ** inode. ** ** A single inode can have multiple file descriptors, so each unixFile ** structure contains a pointer to an instance of this object and this ** object keeps a count of the number of unixFile pointing to it. ** ** Mutex rules: ** ** (1) Only the pLockMutex mutex must be held in order to read or write ** any of the locking fields: ** nShared, nLock, eFileLock, bProcessLock, pUnused ** ** (2) When nRef>0, then the following fields are unchanging and can ** be read (but not written) without holding any mutex: ** fileId, pLockMutex ** ** (3) With the exceptions above, all the fields may only be read ** or written while holding the global unixBigLock mutex. ** ** Deadlock prevention: The global unixBigLock mutex may not ** be acquired while holding the pLockMutex mutex. If both unixBigLock ** and pLockMutex are needed, then unixBigLock must be acquired first. */ struct unixInodeInfo { struct unixFileId fileId; /* The lookup key */ sqlite3_mutex *pLockMutex; /* Hold this mutex for... */ int nShared; /* Number of SHARED locks held */ int nLock; /* Number of outstanding file locks */ unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ unsigned char bProcessLock; /* An exclusive process lock is held */ UnixUnusedFd *pUnused; /* Unused file descriptors to close */ int nRef; /* Number of pointers to this structure */ unixShmNode *pShmNode; /* Shared memory associated with this inode */ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ unixInodeInfo *pPrev; /* .... doubly linked */ #if SQLITE_ENABLE_LOCKING_STYLE unsigned long long sharedByte; /* for AFP simulated shared lock */ #endif #if OS_VXWORKS sem_t *pSem; /* Named POSIX semaphore */ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ #endif }; /* ** A lists of all unixInodeInfo objects. ** ** Must hold unixBigLock in order to read or write this variable. */ static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */ #ifdef SQLITE_DEBUG /* ** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not. ** This routine is used only within assert() to help verify correct mutex ** usage. */ int unixFileMutexHeld(unixFile *pFile){ assert( pFile->pInode ); return sqlite3_mutex_held(pFile->pInode->pLockMutex); } int unixFileMutexNotheld(unixFile *pFile){ assert( pFile->pInode ); return sqlite3_mutex_notheld(pFile->pInode->pLockMutex); } #endif /* ** ** This function - unixLogErrorAtLine(), is only ever called via the macro ** unixLogError(). ** ** It is invoked after an error occurs in an OS function and errno has been ** set. It logs a message using sqlite3_log() containing the current value of ** errno and, if possible, the human-readable equivalent from strerror() or ** strerror_r(). ** ** The first argument passed to the macro should be the error code that ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). ** The two subsequent arguments should be the name of the OS function that ** failed (e.g. "unlink", "open") and the associated file-system path, ** if any. */ #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) static int unixLogErrorAtLine( int errcode, /* SQLite error code */ const char *zFunc, /* Name of OS function that failed */ const char *zPath, /* File path associated with error */ int iLine /* Source line number where error occurred */ ){ char *zErr; /* Message from strerror() or equivalent */ int iErrno = errno; /* Saved syscall error number */ /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use ** the strerror() function to obtain the human-readable error message ** equivalent to errno. Otherwise, use strerror_r(). */ #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) char aErr[80]; memset(aErr, 0, sizeof(aErr)); zErr = aErr; /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, ** assume that the system provides the GNU version of strerror_r() that ** returns a pointer to a buffer containing the error message. That pointer ** may point to aErr[], or it may point to some static storage somewhere. ** Otherwise, assume that the system provides the POSIX version of ** strerror_r(), which always writes an error message into aErr[]. ** ** If the code incorrectly assumes that it is the POSIX version that is ** available, the error message will often be an empty string. Not a ** huge problem. Incorrectly concluding that the GNU version is available ** could lead to a segfault though. */ #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) zErr = # endif strerror_r(iErrno, aErr, sizeof(aErr)-1); #elif SQLITE_THREADSAFE /* This is a threadsafe build, but strerror_r() is not available. */ zErr = ""; #else /* Non-threadsafe build, use strerror(). */ zErr = strerror(iErrno); #endif if( zPath==0 ) zPath = ""; sqlite3_log(errcode, "os_unix.c:%d: (%d) %s(%s) - %s", iLine, iErrno, zFunc, zPath, zErr ); return errcode; } /* ** Close a file descriptor. ** ** We assume that close() almost always works, since it is only in a ** very sick application or on a very sick platform that it might fail. ** If it does fail, simply leak the file descriptor, but do log the ** error. ** ** Note that it is not safe to retry close() after EINTR since the ** file descriptor might have already been reused by another thread. ** So we don't even try to recover from an EINTR. Just log the error ** and move on. */ static void robust_close(unixFile *pFile, int h, int lineno){ if( osClose(h) ){ unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", pFile ? pFile->zPath : 0, lineno); } } /* ** Set the pFile->lastErrno. Do this in a subroutine as that provides ** a convenient place to set a breakpoint. */ static void storeLastErrno(unixFile *pFile, int error){ pFile->lastErrno = error; } /* ** Close all file descriptors accumulated in the unixInodeInfo->pUnused list. */ static void closePendingFds(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; UnixUnusedFd *p; UnixUnusedFd *pNext; assert( unixFileMutexHeld(pFile) ); for(p=pInode->pUnused; p; p=pNext){ pNext = p->pNext; robust_close(pFile, p->fd, __LINE__); sqlite3_free(p); } pInode->pUnused = 0; } /* ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). ** ** The global mutex must be held when this routine is called, but the mutex ** on the inode being deleted must NOT be held. */ static void releaseInodeInfo(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; assert( unixMutexHeld() ); assert( unixFileMutexNotheld(pFile) ); if( ALWAYS(pInode) ){ pInode->nRef--; if( pInode->nRef==0 ){ assert( pInode->pShmNode==0 ); sqlite3_mutex_enter(pInode->pLockMutex); closePendingFds(pFile); sqlite3_mutex_leave(pInode->pLockMutex); if( pInode->pPrev ){ assert( pInode->pPrev->pNext==pInode ); pInode->pPrev->pNext = pInode->pNext; }else{ assert( inodeList==pInode ); inodeList = pInode->pNext; } if( pInode->pNext ){ assert( pInode->pNext->pPrev==pInode ); pInode->pNext->pPrev = pInode->pPrev; } sqlite3_mutex_free(pInode->pLockMutex); sqlite3_free(pInode); } } } /* ** Given a file descriptor, locate the unixInodeInfo object that ** describes that file descriptor. Create a new one if necessary. The ** return value might be uninitialized if an error occurs. ** ** The global mutex must held when calling this routine. ** ** Return an appropriate error code. */ static int findInodeInfo( unixFile *pFile, /* Unix file with file desc used in the key */ unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ ){ int rc; /* System call return code */ int fd; /* The file descriptor for pFile */ struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ struct stat statbuf; /* Low-level file information */ unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ assert( unixMutexHeld() ); /* Get low-level information about the file that we can used to ** create a unique name for the file. */ fd = pFile->h; rc = osFstat(fd, &statbuf); if( rc!=0 ){ storeLastErrno(pFile, errno); #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS) if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; #endif return SQLITE_IOERR; } #ifdef __APPLE__ /* On OS X on an msdos filesystem, the inode number is reported ** incorrectly for zero-size files. See ticket #3260. To work ** around this problem (we consider it a bug in OS X, not SQLite) ** we always increase the file size to 1 by writing a single byte ** prior to accessing the inode number. The one byte written is ** an ASCII 'S' character which also happens to be the first byte ** in the header of every SQLite database. In this way, if there ** is a race condition such that another thread has already populated ** the first page of the database, no damage is done. */ if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); if( rc!=1 ){ storeLastErrno(pFile, errno); return SQLITE_IOERR; } rc = osFstat(fd, &statbuf); if( rc!=0 ){ storeLastErrno(pFile, errno); return SQLITE_IOERR; } } #endif memset(&fileId, 0, sizeof(fileId)); fileId.dev = statbuf.st_dev; #if OS_VXWORKS fileId.pId = pFile->pId; #else fileId.ino = (u64)statbuf.st_ino; #endif assert( unixMutexHeld() ); pInode = inodeList; while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ pInode = pInode->pNext; } if( pInode==0 ){ pInode = sqlite3_malloc64( sizeof(*pInode) ); if( pInode==0 ){ return SQLITE_NOMEM_BKPT; } memset(pInode, 0, sizeof(*pInode)); memcpy(&pInode->fileId, &fileId, sizeof(fileId)); if( sqlite3GlobalConfig.bCoreMutex ){ pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pInode->pLockMutex==0 ){ sqlite3_free(pInode); return SQLITE_NOMEM_BKPT; } } pInode->nRef = 1; assert( unixMutexHeld() ); pInode->pNext = inodeList; pInode->pPrev = 0; if( inodeList ) inodeList->pPrev = pInode; inodeList = pInode; }else{ pInode->nRef++; } *ppInode = pInode; return SQLITE_OK; } /* ** Return TRUE if pFile has been renamed or unlinked since it was first opened. */ static int fileHasMoved(unixFile *pFile){ #if OS_VXWORKS return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; #else struct stat buf; return pFile->pInode!=0 && (osStat(pFile->zPath, &buf)!=0 || (u64)buf.st_ino!=pFile->pInode->fileId.ino); #endif } /* ** Check a unixFile that is a database. Verify the following: ** ** (1) There is exactly one hard link on the file ** (2) The file is not a symbolic link ** (3) The file has not been renamed or unlinked ** ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right. */ static void verifyDbFile(unixFile *pFile){ struct stat buf; int rc; /* These verifications occurs for the main database only */ if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return; rc = osFstat(pFile->h, &buf); if( rc!=0 ){ sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath); return; } if( buf.st_nlink==0 ){ sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath); return; } if( buf.st_nlink>1 ){ sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath); return; } if( fileHasMoved(pFile) ){ sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath); return; } } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); assert( pFile->eFileLock<=SHARED_LOCK ); sqlite3_mutex_enter(pFile->pInode->pLockMutex); /* Check if a thread in this process holds such a lock */ if( pFile->pInode->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ #ifndef __DJGPP__ if( !reserved && !pFile->pInode->bProcessLock ){ struct flock lock; lock.l_whence = SEEK_SET; lock.l_start = RESERVED_BYTE; lock.l_len = 1; lock.l_type = F_WRLCK; if( osFcntl(pFile->h, F_GETLK, &lock) ){ rc = SQLITE_IOERR_CHECKRESERVEDLOCK; storeLastErrno(pFile, errno); } else if( lock.l_type!=F_UNLCK ){ reserved = 1; } } #endif sqlite3_mutex_leave(pFile->pInode->pLockMutex); OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* Forward declaration*/ static int unixSleep(sqlite3_vfs*,int); /* ** Set a posix-advisory-lock. ** ** There are two versions of this routine. If compiled with ** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter ** which is a pointer to a unixFile. If the unixFile->iBusyTimeout ** value is set, then it is the number of milliseconds to wait before ** failing the lock. The iBusyTimeout value is always reset back to ** zero on each call. ** ** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking ** attempt to set the lock. */ #ifndef SQLITE_ENABLE_SETLK_TIMEOUT # define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x) #else static int osSetPosixAdvisoryLock( int h, /* The file descriptor on which to take the lock */ struct flock *pLock, /* The description of the lock */ unixFile *pFile /* Structure holding timeout value */ ){ int tm = pFile->iBusyTimeout; int rc = osFcntl(h,F_SETLK,pLock); while( rc<0 && tm>0 ){ /* On systems that support some kind of blocking file lock with a timeout, ** make appropriate changes here to invoke that blocking file lock. On ** generic posix, however, there is no such API. So we simply try the ** lock once every millisecond until either the timeout expires, or until ** the lock is obtained. */ unixSleep(0,1000); rc = osFcntl(h,F_SETLK,pLock); tm--; } return rc; } #endif /* SQLITE_ENABLE_SETLK_TIMEOUT */ /* ** Attempt to set a system-lock on the file pFile. The lock is ** described by pLock. ** ** If the pFile was opened read/write from unix-excl, then the only lock ** ever obtained is an exclusive lock, and it is obtained exactly once ** the first time any lock is attempted. All subsequent system locking ** operations become no-ops. Locking operations still happen internally, ** in order to coordinate access between separate database connections ** within this process, but all of that is handled in memory and the ** operating system does not participate. ** ** This function is a pass-through to fcntl(F_SETLK) if pFile is using ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" ** and is read-only. ** ** Zero is returned if the call completes successfully, or -1 if a call ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). */ static int unixFileLock(unixFile *pFile, struct flock *pLock){ int rc; unixInodeInfo *pInode = pFile->pInode; assert( pInode!=0 ); assert( sqlite3_mutex_held(pInode->pLockMutex) ); if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){ if( pInode->bProcessLock==0 ){ struct flock lock; assert( pInode->nLock==0 ); lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; lock.l_type = F_WRLCK; rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile); if( rc<0 ) return rc; pInode->bProcessLock = 1; pInode->nLock++; }else{ rc = 0; } }else{ rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile); } return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int unixLock(sqlite3_file *id, int eFileLock){ /* The following describes the implementation of the various locks and ** lock transitions in terms of the POSIX advisory shared and exclusive ** lock primitives (called read-locks and write-locks below, to avoid ** confusion with SQLite lock names). The algorithms are complicated ** slightly in order to be compatible with Windows95 systems simultaneously ** accessing the same database file, in case that is ever required. ** ** Symbols defined in os.h identify the 'pending byte' and the 'reserved ** byte', each single bytes at well known offsets, and the 'shared byte ** range', a range of 510 bytes at a well known offset. ** ** To obtain a SHARED lock, a read-lock is obtained on the 'pending ** byte'. If this is successful, 'shared byte range' is read-locked ** and the lock on the 'pending byte' released. (Legacy note: When ** SQLite was first developed, Windows95 systems were still very common, ** and Windows95 lacks a shared-lock capability. So on Windows95, a ** single randomly selected by from the 'shared byte range' is locked. ** Windows95 is now pretty much extinct, but this work-around for the ** lack of shared-locks on Windows95 lives on, for backwards ** compatibility.) ** ** A process may only obtain a RESERVED lock after it has a SHARED lock. ** A RESERVED lock is implemented by grabbing a write-lock on the ** 'reserved byte'. ** ** An EXCLUSIVE lock may only be requested after either a SHARED or ** RESERVED lock is held. An EXCLUSIVE lock is implemented by obtaining ** a write-lock on the entire 'shared byte range'. Since all other locks ** require a read-lock on one of the bytes within this range, this ensures ** that no other locks are held on the database. ** ** If a process that holds a RESERVED lock requests an EXCLUSIVE, then ** a PENDING lock is obtained first. A PENDING lock is implemented by ** obtaining a write-lock on the 'pending byte'. This ensures that no new ** SHARED locks can be obtained, but existing SHARED locks are allowed to ** persist. If the call to this function fails to obtain the EXCLUSIVE ** lock in this case, it holds the PENDING lock instead. The client may ** then re-attempt the EXCLUSIVE lock later on, after existing SHARED ** locks have cleared. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; struct flock lock; int tErrno = 0; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared, osGetpid(0))); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct. ** (1) We never move from unlocked to anything higher than shared lock. ** (2) SQLite never explicitly requests a pending lock. ** (3) A shared lock is always held when a reserve lock is requested. */ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); assert( eFileLock!=PENDING_LOCK ); assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); /* This mutex is needed because pFile->pInode is shared across threads */ pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); /* If some thread using this PID has a lock via a different unixFile* ** handle that precludes the requested lock, return BUSY. */ if( (pFile->eFileLock!=pInode->eFileLock && (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) ){ rc = SQLITE_BUSY; goto end_lock; } /* If a SHARED lock is requested, and some thread using this PID already ** has a SHARED or RESERVED lock, then increment reference counts and ** return SQLITE_OK. */ if( eFileLock==SHARED_LOCK && (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ assert( eFileLock==SHARED_LOCK ); assert( pFile->eFileLock==0 ); assert( pInode->nShared>0 ); pFile->eFileLock = SHARED_LOCK; pInode->nShared++; pInode->nLock++; goto end_lock; } /* A PENDING lock is needed before acquiring a SHARED lock and before ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will ** be released. */ lock.l_len = 1L; lock.l_whence = SEEK_SET; if( eFileLock==SHARED_LOCK || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock==RESERVED_LOCK) ){ lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); lock.l_start = PENDING_BYTE; if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } goto end_lock; }else if( eFileLock==EXCLUSIVE_LOCK ){ pFile->eFileLock = PENDING_LOCK; pInode->eFileLock = PENDING_LOCK; } } /* If control gets to this point, then actually go ahead and make ** operating system calls for the specified lock. */ if( eFileLock==SHARED_LOCK ){ assert( pInode->nShared==0 ); assert( pInode->eFileLock==0 ); assert( rc==SQLITE_OK ); /* Now get the read-lock */ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); } /* Drop the temporary PENDING lock */ lock.l_start = PENDING_BYTE; lock.l_len = 1L; lock.l_type = F_UNLCK; if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ /* This could happen with a network mount */ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; } if( rc ){ if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } goto end_lock; }else{ pFile->eFileLock = SHARED_LOCK; pInode->nLock++; pInode->nShared = 1; } }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; }else{ /* The request was for a RESERVED or EXCLUSIVE lock. It is ** assumed that there is a SHARED or greater lock on the file ** already. */ assert( 0!=pFile->eFileLock ); lock.l_type = F_WRLCK; assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); if( eFileLock==RESERVED_LOCK ){ lock.l_start = RESERVED_BYTE; lock.l_len = 1L; }else{ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; } if( unixFileLock(pFile, &lock) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } } } #ifdef SQLITE_DEBUG /* Set up the transaction-counter change checking flags when ** transitioning from a SHARED to a RESERVED lock. The change ** from SHARED to RESERVED marks the beginning of a normal ** write operation (not a hot journal rollback). */ if( rc==SQLITE_OK && pFile->eFileLock<=SHARED_LOCK && eFileLock==RESERVED_LOCK ){ pFile->transCntrChng = 0; pFile->dbUpdate = 0; pFile->inNormalWrite = 1; } #endif if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; pInode->eFileLock = eFileLock; } end_lock: sqlite3_mutex_leave(pInode->pLockMutex); OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), rc==SQLITE_OK ? "ok" : "failed")); return rc; } /* ** Add the file descriptor used by file handle pFile to the corresponding ** pUnused list. */ static void setPendingFd(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; UnixUnusedFd *p = pFile->pPreallocatedUnused; assert( unixFileMutexHeld(pFile) ); p->pNext = pInode->pUnused; pInode->pUnused = p; pFile->h = -1; pFile->pPreallocatedUnused = 0; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED ** the byte range is divided into 2 parts and the first part is unlocked then ** set to a read lock, then the other part is simply unlocked. This works ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to ** remove the write lock on a region when a read lock is set. */ static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; struct flock lock; int rc = SQLITE_OK; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); assert( pInode->nShared!=0 ); if( pFile->eFileLock>SHARED_LOCK ){ assert( pInode->eFileLock==pFile->eFileLock ); #ifdef SQLITE_DEBUG /* When reducing a lock such that other processes can start ** reading the database file again, make sure that the ** transaction counter was updated if any part of the database ** file changed. If the transaction counter is not updated, ** other connections to the same file might not realize that ** the file has changed and hence might not know to flush their ** cache. The use of a stale cache can lead to database corruption. */ pFile->inNormalWrite = 0; #endif /* downgrading to a shared lock on NFS involves clearing the write lock ** before establishing the readlock - to avoid a race condition we downgrade ** the lock in 2 blocks, so that part of the range will be covered by a ** write lock until the rest is covered by a read lock: ** 1: [WWWWW] ** 2: [....W] ** 3: [RRRRW] ** 4: [RRRR.] */ if( eFileLock==SHARED_LOCK ){ #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE (void)handleNFSUnlock; assert( handleNFSUnlock==0 ); #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE if( handleNFSUnlock ){ int tErrno; /* Error code from system call errors */ off_t divSize = SHARED_SIZE - 1; lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); goto end_unlock; } lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } goto end_unlock; } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST+divSize; lock.l_len = SHARED_SIZE-divSize; if( unixFileLock(pFile, &lock)==(-1) ){ tErrno = errno; rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); goto end_unlock; } }else #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ { lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; if( unixFileLock(pFile, &lock) ){ /* In theory, the call to unixFileLock() cannot fail because another ** process is holding an incompatible lock. If it does, this ** indicates that the other process is not following the locking ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning ** SQLITE_BUSY would confuse the upper layer (in practice it causes ** an assert to fail). */ rc = SQLITE_IOERR_RDLOCK; storeLastErrno(pFile, errno); goto end_unlock; } } } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = PENDING_BYTE; lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); if( unixFileLock(pFile, &lock)==0 ){ pInode->eFileLock = SHARED_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, errno); goto end_unlock; } } if( eFileLock==NO_LOCK ){ /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ pInode->nShared--; if( pInode->nShared==0 ){ lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = lock.l_len = 0L; if( unixFileLock(pFile, &lock)==0 ){ pInode->eFileLock = NO_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, errno); pInode->eFileLock = NO_LOCK; pFile->eFileLock = NO_LOCK; } } /* Decrement the count of locks against this same file. When the ** count reaches zero, close any other file descriptors whose close ** was deferred because of outstanding locks. */ pInode->nLock--; assert( pInode->nLock>=0 ); if( pInode->nLock==0 ) closePendingFds(pFile); } end_unlock: sqlite3_mutex_leave(pInode->pLockMutex); if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; } return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int unixUnlock(sqlite3_file *id, int eFileLock){ #if SQLITE_MAX_MMAP_SIZE>0 assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 ); #endif return posixUnlock(id, eFileLock, 0); } #if SQLITE_MAX_MMAP_SIZE>0 static int unixMapfile(unixFile *pFd, i64 nByte); static void unixUnmapfile(unixFile *pFd); #endif /* ** This function performs the parts of the "close file" operation ** common to all locking schemes. It closes the directory and file ** handles, if they are valid, and sets all fields of the unixFile ** structure to 0. ** ** It is *not* necessary to hold the mutex when this routine is called, ** even on VxWorks. A mutex will be acquired on VxWorks by the ** vxworksReleaseFileId() routine. */ static int closeUnixFile(sqlite3_file *id){ unixFile *pFile = (unixFile*)id; #if SQLITE_MAX_MMAP_SIZE>0 unixUnmapfile(pFile); #endif if( pFile->h>=0 ){ robust_close(pFile, pFile->h, __LINE__); pFile->h = -1; } #if OS_VXWORKS if( pFile->pId ){ if( pFile->ctrlFlags & UNIXFILE_DELETE ){ osUnlink(pFile->pId->zCanonicalName); } vxworksReleaseFileId(pFile->pId); pFile->pId = 0; } #endif #ifdef SQLITE_UNLINK_AFTER_CLOSE if( pFile->ctrlFlags & UNIXFILE_DELETE ){ osUnlink(pFile->zPath); sqlite3_free(*(char**)&pFile->zPath); pFile->zPath = 0; } #endif OSTRACE(("CLOSE %-3d\n", pFile->h)); OpenCounter(-1); sqlite3_free(pFile->pPreallocatedUnused); memset(pFile, 0, sizeof(unixFile)); return SQLITE_OK; } /* ** Close a file. */ static int unixClose(sqlite3_file *id){ int rc = SQLITE_OK; unixFile *pFile = (unixFile *)id; unixInodeInfo *pInode = pFile->pInode; assert( pInode!=0 ); verifyDbFile(pFile); unixUnlock(id, NO_LOCK); assert( unixFileMutexNotheld(pFile) ); unixEnterMutex(); /* unixFile.pInode is always valid here. Otherwise, a different close ** routine (e.g. nolockClose()) would be called instead. */ assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); sqlite3_mutex_enter(pInode->pLockMutex); if( pInode->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pInode->pUnused list. It will be automatically closed ** when the last lock is cleared. */ setPendingFd(pFile); } sqlite3_mutex_leave(pInode->pLockMutex); releaseInodeInfo(pFile); assert( pFile->pShm==0 ); rc = closeUnixFile(id); unixLeaveMutex(); return rc; } /************** End of the posix advisory lock implementation ***************** ******************************************************************************/ /****************************************************************************** ****************************** No-op Locking ********************************** ** ** Of the various locking implementations available, this is by far the ** simplest: locking is ignored. No attempt is made to lock the database ** file for reading or writing. ** ** This locking mode is appropriate for use on read-only databases ** (ex: databases that are burned into CD-ROM, for example.) It can ** also be used if the application employs some external mechanism to ** prevent simultaneous access of the same database by two or more ** database connections. But there is a serious risk of database ** corruption if this locking mode is used in situations where multiple ** database connections are accessing the same database file at the same ** time and one or more of those connections are writing. */ static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ UNUSED_PARAMETER(NotUsed); *pResOut = 0; return SQLITE_OK; } static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return SQLITE_OK; } static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return SQLITE_OK; } /* ** Close the file. */ static int nolockClose(sqlite3_file *id) { return closeUnixFile(id); } /******************* End of the no-op lock implementation ********************* ******************************************************************************/ /****************************************************************************** ************************* Begin dot-file Locking ****************************** ** ** The dotfile locking implementation uses the existence of separate lock ** files (really a directory) to control access to the database. This works ** on just about every filesystem imaginable. But there are serious downsides: ** ** (1) There is zero concurrency. A single reader blocks all other ** connections from reading or writing the database. ** ** (2) An application crash or power loss can leave stale lock files ** sitting around that need to be cleared manually. ** ** Nevertheless, a dotlock is an appropriate locking mode for use if no ** other locking strategy is available. ** ** Dotfile locking works by creating a subdirectory in the same directory as ** the database and with the same name but with a ".lock" extension added. ** The existence of a lock directory implies an EXCLUSIVE lock. All other ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. */ /* ** The file suffix added to the data base filename in order to create the ** lock directory. */ #define DOTLOCK_SUFFIX ".lock" /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. ** ** In dotfile locking, either a lock exists or it does not. So in this ** variation of CheckReservedLock(), *pResOut is set to true if any lock ** is held on the file and false if the file is unlocked. */ static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); reserved = osAccess((const char*)pFile->lockingContext, 0)==0; OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. ** ** With dotfile locking, we really only support state (4): EXCLUSIVE. ** But we track the other locking levels internally. */ static int dotlockLock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc = SQLITE_OK; /* If we have any lock, then the lock file already exists. All we have ** to do is adjust our internal record of the lock level. */ if( pFile->eFileLock > NO_LOCK ){ pFile->eFileLock = eFileLock; /* Always update the timestamp on the old file */ #ifdef HAVE_UTIME utime(zLockFile, NULL); #else utimes(zLockFile, NULL); #endif return SQLITE_OK; } /* grab an exclusive lock */ rc = osMkdir(zLockFile, 0777); if( rc<0 ){ /* failed to open/create the lock directory */ int tErrno = errno; if( EEXIST == tErrno ){ rc = SQLITE_BUSY; } else { rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( rc!=SQLITE_BUSY ){ storeLastErrno(pFile, tErrno); } } return rc; } /* got it, set the type and return ok */ pFile->eFileLock = eFileLock; return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** When the locking level reaches NO_LOCK, delete the lock file. */ static int dotlockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } /* To downgrade to shared, simply update our internal notion of the ** lock state. No need to mess with the file on disk. */ if( eFileLock==SHARED_LOCK ){ pFile->eFileLock = SHARED_LOCK; return SQLITE_OK; } /* To fully unlock the database, delete the lock file */ assert( eFileLock==NO_LOCK ); rc = osRmdir(zLockFile); if( rc<0 ){ int tErrno = errno; if( tErrno==ENOENT ){ rc = SQLITE_OK; }else{ rc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); } return rc; } pFile->eFileLock = NO_LOCK; return SQLITE_OK; } /* ** Close a file. Make sure the lock has been released before closing. */ static int dotlockClose(sqlite3_file *id) { unixFile *pFile = (unixFile*)id; assert( id!=0 ); dotlockUnlock(id, NO_LOCK); sqlite3_free(pFile->lockingContext); return closeUnixFile(id); } /****************** End of the dot-file lock implementation ******************* ******************************************************************************/ /****************************************************************************** ************************** Begin flock Locking ******************************** ** ** Use the flock() system call to do file locking. ** ** flock() locking is like dot-file locking in that the various ** fine-grain locking levels supported by SQLite are collapsed into ** a single exclusive lock. In other words, SHARED, RESERVED, and ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite ** still works when you do this, but concurrency is reduced since ** only a single process can be reading the database at a time. ** ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off */ #if SQLITE_ENABLE_LOCKING_STYLE /* ** Retry flock() calls that fail with EINTR */ #ifdef EINTR static int robust_flock(int fd, int op){ int rc; do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); return rc; } #else # define robust_flock(a,b) flock(a,b) #endif /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); /* Check if a thread in this process holds such a lock */ if( pFile->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ /* attempt to get the lock */ int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); if( !lrc ){ /* got the lock, unlock it */ lrc = robust_flock(pFile->h, LOCK_UN); if ( lrc ) { int tErrno = errno; /* unlock failed with an error */ lrc = SQLITE_IOERR_UNLOCK; storeLastErrno(pFile, tErrno); rc = lrc; } } else { int tErrno = errno; reserved = 1; /* someone else might have it reserved */ lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(lrc) ){ storeLastErrno(pFile, tErrno); rc = lrc; } } } OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS if( (rc & 0xff) == SQLITE_IOERR ){ rc = SQLITE_OK; reserved=1; } #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** flock() only really support EXCLUSIVE locks. We track intermediate ** lock states in the sqlite3_file structure, but all locks SHARED or ** above are really EXCLUSIVE locks and exclude all other processes from ** access the file. ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int flockLock(sqlite3_file *id, int eFileLock) { int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; assert( pFile ); /* if we already have a lock, it is exclusive. ** Just adjust level and punt on outta here. */ if (pFile->eFileLock > NO_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* grab an exclusive lock */ if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { int tErrno = errno; /* didn't get, must be busy */ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } } else { /* got it, set the type and return ok */ pFile->eFileLock = eFileLock; } OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), rc==SQLITE_OK ? "ok" : "failed")); #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS if( (rc & 0xff) == SQLITE_IOERR ){ rc = SQLITE_BUSY; } #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int flockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } /* shared can just be set because we always have an exclusive */ if (eFileLock==SHARED_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* no, really, unlock. */ if( robust_flock(pFile->h, LOCK_UN) ){ #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS return SQLITE_OK; #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ return SQLITE_IOERR_UNLOCK; }else{ pFile->eFileLock = NO_LOCK; return SQLITE_OK; } } /* ** Close a file. */ static int flockClose(sqlite3_file *id) { assert( id!=0 ); flockUnlock(id, NO_LOCK); return closeUnixFile(id); } #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ /******************* End of the flock lock implementation ********************* ******************************************************************************/ /****************************************************************************** ************************ Begin Named Semaphore Locking ************************ ** ** Named semaphore locking is only supported on VxWorks. ** ** Semaphore locking is like dot-lock and flock in that it really only ** supports EXCLUSIVE locking. Only a single process can read or write ** the database file at a time. This reduces potential concurrency, but ** makes the lock implementation much easier. */ #if OS_VXWORKS /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) { int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); /* Check if a thread in this process holds such a lock */ if( pFile->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ sem_t *pSem = pFile->pInode->pSem; if( sem_trywait(pSem)==-1 ){ int tErrno = errno; if( EAGAIN != tErrno ){ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); storeLastErrno(pFile, tErrno); } else { /* someone else has the lock when we are in NO_LOCK */ reserved = (pFile->eFileLock < SHARED_LOCK); } }else{ /* we could have it if we want it */ sem_post(pSem); } } OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate ** lock states in the sqlite3_file structure, but all locks SHARED or ** above are really EXCLUSIVE locks and exclude all other processes from ** access the file. ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int semXLock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; int rc = SQLITE_OK; /* if we already have a lock, it is exclusive. ** Just adjust level and punt on outta here. */ if (pFile->eFileLock > NO_LOCK) { pFile->eFileLock = eFileLock; rc = SQLITE_OK; goto sem_end_lock; } /* lock semaphore now but bail out when already locked. */ if( sem_trywait(pSem)==-1 ){ rc = SQLITE_BUSY; goto sem_end_lock; } /* got it, set the type and return ok */ pFile->eFileLock = eFileLock; sem_end_lock: return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int semXUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; assert( pFile ); assert( pSem ); OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } /* shared can just be set because we always have an exclusive */ if (eFileLock==SHARED_LOCK) { pFile->eFileLock = eFileLock; return SQLITE_OK; } /* no, really unlock. */ if ( sem_post(pSem)==-1 ) { int rc, tErrno = errno; rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } return rc; } pFile->eFileLock = NO_LOCK; return SQLITE_OK; } /* ** Close a file. */ static int semXClose(sqlite3_file *id) { if( id ){ unixFile *pFile = (unixFile*)id; semXUnlock(id, NO_LOCK); assert( pFile ); assert( unixFileMutexNotheld(pFile) ); unixEnterMutex(); releaseInodeInfo(pFile); unixLeaveMutex(); closeUnixFile(id); } return SQLITE_OK; } #endif /* OS_VXWORKS */ /* ** Named semaphore locking is only available on VxWorks. ** *************** End of the named semaphore lock implementation **************** ******************************************************************************/ /****************************************************************************** *************************** Begin AFP Locking ********************************* ** ** AFP is the Apple Filing Protocol. AFP is a network filesystem found ** on Apple Macintosh computers - both OS9 and OSX. ** ** Third-party implementations of AFP are available. But this code here ** only works on OSX. */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** The afpLockingContext structure contains all afp lock specific state */ typedef struct afpLockingContext afpLockingContext; struct afpLockingContext { int reserved; const char *dbPath; /* Name of the open file */ }; struct ByteRangeLockPB2 { unsigned long long offset; /* offset to first byte to lock */ unsigned long long length; /* nbr of bytes to lock */ unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ int fd; /* file desc to assoc this lock with */ }; #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) /* ** This is a utility for setting or clearing a bit-range lock on an ** AFP filesystem. ** ** Return SQLITE_OK on success, SQLITE_BUSY on failure. */ static int afpSetLock( const char *path, /* Name of the file to be locked or unlocked */ unixFile *pFile, /* Open file descriptor on path */ unsigned long long offset, /* First byte to be locked */ unsigned long long length, /* Number of bytes to lock */ int setLockFlag /* True to set lock. False to clear lock */ ){ struct ByteRangeLockPB2 pb; int err; pb.unLockFlag = setLockFlag ? 0 : 1; pb.startEndFlag = 0; pb.offset = offset; pb.length = length; pb.fd = pFile->h; OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), offset, length)); err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); if ( err==-1 ) { int rc; int tErrno = errno; OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", path, tErrno, strerror(tErrno))); #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS rc = SQLITE_BUSY; #else rc = sqliteErrorFromPosixError(tErrno, setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ if( IS_LOCK_ERROR(rc) ){ storeLastErrno(pFile, tErrno); } return rc; } else { return SQLITE_OK; } } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; afpLockingContext *context; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); context = (afpLockingContext *) pFile->lockingContext; if( context->reserved ){ *pResOut = 1; return SQLITE_OK; } sqlite3_mutex_enter(pFile->pInode->pLockMutex); /* Check if a thread in this process holds such a lock */ if( pFile->pInode->eFileLock>SHARED_LOCK ){ reserved = 1; } /* Otherwise see if some other process holds it. */ if( !reserved ){ /* lock the RESERVED byte */ int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); if( SQLITE_OK==lrc ){ /* if we succeeded in taking the reserved lock, unlock it to restore ** the original state */ lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); } else { /* if we failed to get the lock then someone else must have it */ reserved = 1; } if( IS_LOCK_ERROR(lrc) ){ rc=lrc; } } sqlite3_mutex_leave(pFile->pInode->pLockMutex); OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); *pResOut = reserved; return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int afpLock(sqlite3_file *id, int eFileLock){ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0))); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct ** (1) We never move from unlocked to anything higher than shared lock. ** (2) SQLite never explicitly requests a pending lock. ** (3) A shared lock is always held when a reserve lock is requested. */ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); assert( eFileLock!=PENDING_LOCK ); assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); /* This mutex is needed because pFile->pInode is shared across threads */ pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); /* If some thread using this PID has a lock via a different unixFile* ** handle that precludes the requested lock, return BUSY. */ if( (pFile->eFileLock!=pInode->eFileLock && (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) ){ rc = SQLITE_BUSY; goto afp_end_lock; } /* If a SHARED lock is requested, and some thread using this PID already ** has a SHARED or RESERVED lock, then increment reference counts and ** return SQLITE_OK. */ if( eFileLock==SHARED_LOCK && (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ assert( eFileLock==SHARED_LOCK ); assert( pFile->eFileLock==0 ); assert( pInode->nShared>0 ); pFile->eFileLock = SHARED_LOCK; pInode->nShared++; pInode->nLock++; goto afp_end_lock; } /* A PENDING lock is needed before acquiring a SHARED lock and before ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will ** be released. */ if( eFileLock==SHARED_LOCK || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLockdbPath, pFile, PENDING_BYTE, 1, 1); if (failed) { rc = failed; goto afp_end_lock; } } /* If control gets to this point, then actually go ahead and make ** operating system calls for the specified lock. */ if( eFileLock==SHARED_LOCK ){ int lrc1, lrc2, lrc1Errno = 0; long lk, mask; assert( pInode->nShared==0 ); assert( pInode->eFileLock==0 ); mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; /* Now get the read-lock SHARED_LOCK */ /* note that the quality of the randomness doesn't matter that much */ lk = random(); pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); lrc1 = afpSetLock(context->dbPath, pFile, SHARED_FIRST+pInode->sharedByte, 1, 1); if( IS_LOCK_ERROR(lrc1) ){ lrc1Errno = pFile->lastErrno; } /* Drop the temporary PENDING lock */ lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); if( IS_LOCK_ERROR(lrc1) ) { storeLastErrno(pFile, lrc1Errno); rc = lrc1; goto afp_end_lock; } else if( IS_LOCK_ERROR(lrc2) ){ rc = lrc2; goto afp_end_lock; } else if( lrc1 != SQLITE_OK ) { rc = lrc1; } else { pFile->eFileLock = SHARED_LOCK; pInode->nLock++; pInode->nShared = 1; } }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; }else{ /* The request was for a RESERVED or EXCLUSIVE lock. It is ** assumed that there is a SHARED or greater lock on the file ** already. */ int failed = 0; assert( 0!=pFile->eFileLock ); if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { /* Acquire a RESERVED lock */ failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); if( !failed ){ context->reserved = 1; } } if (!failed && eFileLock == EXCLUSIVE_LOCK) { /* Acquire an EXCLUSIVE lock */ /* Remove the shared lock before trying the range. we'll need to ** reestablish the shared lock if we can't get the afpUnlock */ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + pInode->sharedByte, 1, 0)) ){ int failed2 = SQLITE_OK; /* now attempt to get the exclusive lock range */ failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 1); if( failed && (failed2 = afpSetLock(context->dbPath, pFile, SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ /* Can't reestablish the shared lock. Sqlite can't deal, this is ** a critical I/O error */ rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 : SQLITE_IOERR_LOCK; goto afp_end_lock; } }else{ rc = failed; } } if( failed ){ rc = failed; } } if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; pInode->eFileLock = eFileLock; }else if( eFileLock==EXCLUSIVE_LOCK ){ pFile->eFileLock = PENDING_LOCK; pInode->eFileLock = PENDING_LOCK; } afp_end_lock: sqlite3_mutex_leave(pInode->pLockMutex); OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), rc==SQLITE_OK ? "ok" : "failed")); return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int afpUnlock(sqlite3_file *id, int eFileLock) { int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; int skipShared = 0; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); assert( pInode->nShared!=0 ); if( pFile->eFileLock>SHARED_LOCK ){ assert( pInode->eFileLock==pFile->eFileLock ); #ifdef SQLITE_DEBUG /* When reducing a lock such that other processes can start ** reading the database file again, make sure that the ** transaction counter was updated if any part of the database ** file changed. If the transaction counter is not updated, ** other connections to the same file might not realize that ** the file has changed and hence might not know to flush their ** cache. The use of a stale cache can lead to database corruption. */ assert( pFile->inNormalWrite==0 || pFile->dbUpdate==0 || pFile->transCntrChng==1 ); pFile->inNormalWrite = 0; #endif if( pFile->eFileLock==EXCLUSIVE_LOCK ){ rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ /* only re-establish the shared lock if necessary */ int sharedLockByte = SHARED_FIRST+pInode->sharedByte; rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); } else { skipShared = 1; } } if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); } if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); if( !rc ){ context->reserved = 0; } } if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ pInode->eFileLock = SHARED_LOCK; } } if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; pInode->nShared--; if( pInode->nShared==0 ){ if( !skipShared ){ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); } if( !rc ){ pInode->eFileLock = NO_LOCK; pFile->eFileLock = NO_LOCK; } } if( rc==SQLITE_OK ){ pInode->nLock--; assert( pInode->nLock>=0 ); if( pInode->nLock==0 ) closePendingFds(pFile); } } sqlite3_mutex_leave(pInode->pLockMutex); if( rc==SQLITE_OK ){ pFile->eFileLock = eFileLock; } return rc; } /* ** Close a file & cleanup AFP specific locking context */ static int afpClose(sqlite3_file *id) { int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; assert( id!=0 ); afpUnlock(id, NO_LOCK); assert( unixFileMutexNotheld(pFile) ); unixEnterMutex(); if( pFile->pInode ){ unixInodeInfo *pInode = pFile->pInode; sqlite3_mutex_enter(pInode->pLockMutex); if( pInode->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pInode->aPending. It will be automatically closed when ** the last lock is cleared. */ setPendingFd(pFile); } sqlite3_mutex_leave(pInode->pLockMutex); } releaseInodeInfo(pFile); sqlite3_free(pFile->lockingContext); rc = closeUnixFile(id); unixLeaveMutex(); return rc; } #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ /* ** The code above is the AFP lock implementation. The code is specific ** to MacOSX and does not work on other unix platforms. No alternative ** is available. If you don't compile for a mac, then the "unix-afp" ** VFS is not available. ** ********************* End of the AFP lock implementation ********************** ******************************************************************************/ /****************************************************************************** *************************** Begin NFS Locking ********************************/ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int nfsUnlock(sqlite3_file *id, int eFileLock){ return posixUnlock(id, eFileLock, 1); } #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ /* ** The code above is the NFS lock implementation. The code is specific ** to MacOSX and does not work on other unix platforms. No alternative ** is available. ** ********************* End of the NFS lock implementation ********************** ******************************************************************************/ /****************************************************************************** **************** Non-locking sqlite3_file methods ***************************** ** ** The next division contains implementations for all methods of the ** sqlite3_file object other than the locking methods. The locking ** methods were defined in divisions above (one locking method per ** division). Those methods that are common to all locking modes ** are gather together into this division. */ /* ** Seek to the offset passed as the second argument, then read cnt ** bytes into pBuf. Return the number of bytes actually read. ** ** To avoid stomping the errno value on a failed read the lastErrno value ** is set before returning. */ static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ int got; int prior = 0; #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) i64 newOffset; #endif TIMER_START; assert( cnt==(cnt&0x1ffff) ); assert( id->h>2 ); do{ #if defined(USE_PREAD) got = osPread(id->h, pBuf, cnt, offset); SimulateIOError( got = -1 ); #elif defined(USE_PREAD64) got = osPread64(id->h, pBuf, cnt, offset); SimulateIOError( got = -1 ); #else newOffset = lseek(id->h, offset, SEEK_SET); SimulateIOError( newOffset = -1 ); if( newOffset<0 ){ storeLastErrno((unixFile*)id, errno); return -1; } got = osRead(id->h, pBuf, cnt); #endif if( got==cnt ) break; if( got<0 ){ if( errno==EINTR ){ got = 1; continue; } prior = 0; storeLastErrno((unixFile*)id, errno); break; }else if( got>0 ){ cnt -= got; offset += got; prior += got; pBuf = (void*)(got + (char*)pBuf); } }while( got>0 ); TIMER_END; OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got+prior, offset-prior, TIMER_ELAPSED)); return got+prior; } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. */ static int unixRead( sqlite3_file *id, void *pBuf, int amt, sqlite3_int64 offset ){ unixFile *pFile = (unixFile *)id; int got; assert( id ); assert( offset>=0 ); assert( amt>0 ); /* If this is a database file (not a journal, super-journal or temp ** file), the bytes in the locking range should never be read or written. */ #if 0 assert( pFile->pPreallocatedUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); #endif #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this read request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); return SQLITE_OK; }else{ int nCopy = pFile->mmapSize - offset; memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif got = seekAndRead(pFile, offset, pBuf, amt); if( got==amt ){ return SQLITE_OK; }else if( got<0 ){ /* pFile->lastErrno has been set by seekAndRead(). ** Usually we return SQLITE_IOERR_READ here, though for some ** kinds of errors we return SQLITE_IOERR_CORRUPTFS. The ** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT ** prior to returning to the application by the sqlite3ApiExit() ** routine. */ switch( pFile->lastErrno ){ case ERANGE: case EIO: #ifdef ENXIO case ENXIO: #endif #ifdef EDEVERR case EDEVERR: #endif return SQLITE_IOERR_CORRUPTFS; } return SQLITE_IOERR_READ; }else{ storeLastErrno(pFile, 0); /* not a system error */ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[got], 0, amt-got); return SQLITE_IOERR_SHORT_READ; } } /* ** Attempt to seek the file-descriptor passed as the first argument to ** absolute offset iOff, then attempt to write nBuf bytes of data from ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise, ** return the actual number of bytes written (which may be less than ** nBuf). */ static int seekAndWriteFd( int fd, /* File descriptor to write to */ i64 iOff, /* File offset to begin writing at */ const void *pBuf, /* Copy data from this buffer to the file */ int nBuf, /* Size of buffer pBuf in bytes */ int *piErrno /* OUT: Error number if error occurs */ ){ int rc = 0; /* Value returned by system call */ assert( nBuf==(nBuf&0x1ffff) ); assert( fd>2 ); assert( piErrno!=0 ); nBuf &= 0x1ffff; TIMER_START; #if defined(USE_PREAD) do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR ); #elif defined(USE_PREAD64) do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR); #else do{ i64 iSeek = lseek(fd, iOff, SEEK_SET); SimulateIOError( iSeek = -1 ); if( iSeek<0 ){ rc = -1; break; } rc = osWrite(fd, pBuf, nBuf); }while( rc<0 && errno==EINTR ); #endif TIMER_END; OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED)); if( rc<0 ) *piErrno = errno; return rc; } /* ** Seek to the offset in id->offset then read cnt bytes into pBuf. ** Return the number of bytes actually read. Update the offset. ** ** To avoid stomping the errno value on a failed write the lastErrno value ** is set before returning. */ static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno); } /* ** Write data from a buffer into a file. Return SQLITE_OK on success ** or some other error code on failure. */ static int unixWrite( sqlite3_file *id, const void *pBuf, int amt, sqlite3_int64 offset ){ unixFile *pFile = (unixFile*)id; int wrote = 0; assert( id ); assert( amt>0 ); /* If this is a database file (not a journal, super-journal or temp ** file), the bytes in the locking range should never be read or written. */ #if 0 assert( pFile->pPreallocatedUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); #endif #ifdef SQLITE_DEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a ** normal database file) then record the fact that the database ** has changed. If the transaction counter is modified, record that ** fact too. */ if( pFile->inNormalWrite ){ pFile->dbUpdate = 1; /* The database has been modified */ if( offset<=24 && offset+amt>=27 ){ int rc; char oldCntr[4]; SimulateIOErrorBenign(1); rc = seekAndRead(pFile, 24, oldCntr, 4); SimulateIOErrorBenign(0); if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ pFile->transCntrChng = 1; /* The transaction counter has changed */ } } } #endif #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this write request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); return SQLITE_OK; }else{ int nCopy = pFile->mmapSize - offset; memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))0 ){ amt -= wrote; offset += wrote; pBuf = &((char*)pBuf)[wrote]; } SimulateIOError(( wrote=(-1), amt=1 )); SimulateDiskfullError(( wrote=0, amt=1 )); if( amt>wrote ){ if( wrote<0 && pFile->lastErrno!=ENOSPC ){ /* lastErrno set by seekAndWrite */ return SQLITE_IOERR_WRITE; }else{ storeLastErrno(pFile, 0); /* not a system error */ return SQLITE_FULL; } } return SQLITE_OK; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occurring at the right times. */ SQLITE_API int sqlite3_sync_count = 0; SQLITE_API int sqlite3_fullsync_count = 0; #endif /* ** We do not trust systems to provide a working fdatasync(). Some do. ** Others do no. To be safe, we will stick with the (slightly slower) ** fsync(). If you know that your system does support fdatasync() correctly, ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC */ #if !defined(fdatasync) && !HAVE_FDATASYNC # define fdatasync fsync #endif /* ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently ** only available on Mac OS X. But that could change. */ #ifdef F_FULLFSYNC # define HAVE_FULLFSYNC 1 #else # define HAVE_FULLFSYNC 0 #endif /* ** The fsync() system call does not work as advertised on many ** unix systems. The following procedure is an attempt to make ** it work better. ** ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful ** for testing when we want to run through the test suite quickly. ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash ** or power failure will likely corrupt the database file. ** ** SQLite sets the dataOnly flag if the size of the file is unchanged. ** The idea behind dataOnly is that it should only write the file content ** to disk, not the inode. We only set dataOnly if the file size is ** unchanged since the file size is part of the inode. However, ** Ted Ts'o tells us that fdatasync() will also write the inode if the ** file size has changed. The only real difference between fdatasync() ** and fsync(), Ted tells us, is that fdatasync() will not flush the ** inode if the mtime or owner or other inode attributes have changed. ** We only care about the file size, not the other file attributes, so ** as far as SQLite is concerned, an fdatasync() is always adequate. ** So, we always use fdatasync() if it is available, regardless of ** the value of the dataOnly flag. */ static int full_fsync(int fd, int fullSync, int dataOnly){ int rc; /* The following "ifdef/elif/else/" block has the same structure as ** the one below. It is replicated here solely to avoid cluttering ** up the real code with the UNUSED_PARAMETER() macros. */ #ifdef SQLITE_NO_SYNC UNUSED_PARAMETER(fd); UNUSED_PARAMETER(fullSync); UNUSED_PARAMETER(dataOnly); #elif HAVE_FULLFSYNC UNUSED_PARAMETER(dataOnly); #else UNUSED_PARAMETER(fullSync); UNUSED_PARAMETER(dataOnly); #endif /* Record the number of times that we do a normal fsync() and ** FULLSYNC. This is used during testing to verify that this procedure ** gets called with the correct arguments. */ #ifdef SQLITE_TEST if( fullSync ) sqlite3_fullsync_count++; sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op. But go ahead and call fstat() to validate the file ** descriptor as we need a method to provoke a failure during ** coverage testing. */ #ifdef SQLITE_NO_SYNC { struct stat buf; rc = osFstat(fd, &buf); } #elif HAVE_FULLFSYNC if( fullSync ){ rc = osFcntl(fd, F_FULLFSYNC, 0); }else{ rc = 1; } /* If the FULLFSYNC failed, fall back to attempting an fsync(). ** It shouldn't be possible for fullfsync to fail on the local ** file system (on OSX), so failure indicates that FULLFSYNC ** isn't supported for this file system. So, attempt an fsync ** and (for now) ignore the overhead of a superfluous fcntl call. ** It'd be better to detect fullfsync support once and avoid ** the fcntl call every time sync is called. */ if( rc ) rc = fsync(fd); #elif defined(__APPLE__) /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly ** so currently we default to the macro that redefines fdatasync to fsync */ rc = fsync(fd); #else rc = fdatasync(fd); #if OS_VXWORKS if( rc==-1 && errno==ENOTSUP ){ rc = fsync(fd); } #endif /* OS_VXWORKS */ #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ if( OS_VXWORKS && rc!= -1 ){ rc = 0; } return rc; } /* ** Open a file descriptor to the directory containing file zFilename. ** If successful, *pFd is set to the opened file descriptor and ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined ** value. ** ** The directory file descriptor is used for only one thing - to ** fsync() a directory to make sure file creation and deletion events ** are flushed to disk. Such fsyncs are not needed on newer ** journaling filesystems, but are required on older filesystems. ** ** This routine can be overridden using the xSetSysCall interface. ** The ability to override this routine was added in support of the ** chromium sandbox. Opening a directory is a security risk (we are ** told) so making it overrideable allows the chromium sandbox to ** replace this routine with a harmless no-op. To make this routine ** a no-op, replace it with a stub that returns SQLITE_OK but leaves ** *pFd set to a negative number. ** ** If SQLITE_OK is returned, the caller is responsible for closing ** the file descriptor *pFd using close(). */ static int openDirectory(const char *zFilename, int *pFd){ int ii; int fd = -1; char zDirname[MAX_PATHNAME+1]; sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--); if( ii>0 ){ zDirname[ii] = '\0'; }else{ if( zDirname[0]!='/' ) zDirname[0] = '.'; zDirname[1] = 0; } fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); if( fd>=0 ){ OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); } *pFd = fd; if( fd>=0 ) return SQLITE_OK; return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname); } /* ** Make sure all writes to a particular file are committed to disk. ** ** If dataOnly==0 then both the file itself and its metadata (file ** size, access time, etc) are synced. If dataOnly!=0 then only the ** file data is synced. ** ** Under Unix, also make sure that the directory entry for the file ** has been created by fsync-ing the directory that contains the file. ** If we do not do this and we encounter a power failure, the directory ** entry for the journal might not exist after we reboot. The next ** SQLite to access the file will not know that the journal exists (because ** the directory entry for the journal was never created) and the transaction ** will not roll back - possibly leading to database corruption. */ static int unixSync(sqlite3_file *id, int flags){ int rc; unixFile *pFile = (unixFile*)id; int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ assert((flags&0x0F)==SQLITE_SYNC_NORMAL || (flags&0x0F)==SQLITE_SYNC_FULL ); /* Unix cannot, but some systems may return SQLITE_FULL from here. This ** line is to test that doing so does not cause any problems. */ SimulateDiskfullError( return SQLITE_FULL ); assert( pFile ); OSTRACE(("SYNC %-3d\n", pFile->h)); rc = full_fsync(pFile->h, isFullsync, isDataOnly); SimulateIOError( rc=1 ); if( rc ){ storeLastErrno(pFile, errno); return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); } /* Also fsync the directory containing the file if the DIRSYNC flag ** is set. This is a one-time occurrence. Many systems (examples: AIX) ** are unable to fsync a directory, so ignore errors on the fsync. */ if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ int dirfd; OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, HAVE_FULLFSYNC, isFullsync)); rc = osOpenDirectory(pFile->zPath, &dirfd); if( rc==SQLITE_OK ){ full_fsync(dirfd, 0, 0); robust_close(pFile, dirfd, __LINE__); }else{ assert( rc==SQLITE_CANTOPEN ); rc = SQLITE_OK; } pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; } return rc; } /* ** Truncate an open file to a specified size */ static int unixTruncate(sqlite3_file *id, i64 nByte){ unixFile *pFile = (unixFile *)id; int rc; assert( pFile ); SimulateIOError( return SQLITE_IOERR_TRUNCATE ); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk>0 ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } rc = robust_ftruncate(pFile->h, nByte); if( rc ){ storeLastErrno(pFile, errno); return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); }else{ #ifdef SQLITE_DEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a ** normal database file) and we truncate the file to zero length, ** that effectively updates the change counter. This might happen ** when restoring a database using the backup API from a zero-length ** source. */ if( pFile->inNormalWrite && nByte==0 ){ pFile->transCntrChng = 1; } #endif #if SQLITE_MAX_MMAP_SIZE>0 /* If the file was just truncated to a size smaller than the currently ** mapped region, reduce the effective mapping size as well. SQLite will ** use read() and write() to access data beyond this point from now on. */ if( nBytemmapSize ){ pFile->mmapSize = nByte; } #endif return SQLITE_OK; } } /* ** Determine the current size of a file in bytes */ static int unixFileSize(sqlite3_file *id, i64 *pSize){ int rc; struct stat buf; assert( id ); rc = osFstat(((unixFile*)id)->h, &buf); SimulateIOError( rc=1 ); if( rc!=0 ){ storeLastErrno((unixFile*)id, errno); return SQLITE_IOERR_FSTAT; } *pSize = buf.st_size; /* When opening a zero-size database, the findInodeInfo() procedure ** writes a single byte into that file in order to work around a bug ** in the OS-X msdos filesystem. In order to avoid problems with upper ** layers, we need to report this file size as zero even though it is ** really 1. Ticket #3260. */ if( *pSize==1 ) *pSize = 0; return SQLITE_OK; } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) /* ** Handler for proxy-locking file-control verbs. Defined below in the ** proxying locking division. */ static int proxyFileControl(sqlite3_file*,int,void*); #endif /* ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT ** file-control operation. Enlarge the database to nBytes in size ** (rounded up to the next chunk-size). If the database is already ** nBytes or larger, this routine is a no-op. */ static int fcntlSizeHint(unixFile *pFile, i64 nByte){ if( pFile->szChunk>0 ){ i64 nSize; /* Required file size */ struct stat buf; /* Used to hold return values of fstat() */ if( osFstat(pFile->h, &buf) ){ return SQLITE_IOERR_FSTAT; } nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; if( nSize>(i64)buf.st_size ){ #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE /* The code below is handling the return value of osFallocate() ** correctly. posix_fallocate() is defined to "returns zero on success, ** or an error number on failure". See the manpage for details. */ int err; do{ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); }while( err==EINTR ); if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE; #else /* If the OS does not have posix_fallocate(), fake it. Write a ** single byte to the last byte in each block that falls entirely ** within the extended region. Then, if required, a single byte ** at offset (nSize-1), to set the size of the file correctly. ** This is a similar technique to that used by glibc on systems ** that do not have a real fallocate() call. */ int nBlk = buf.st_blksize; /* File-system block size */ int nWrite = 0; /* Number of bytes written by seekAndWrite */ i64 iWrite; /* Next offset to write to */ iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1; assert( iWrite>=buf.st_size ); assert( ((iWrite+1)%nBlk)==0 ); for(/*no-op*/; iWrite=nSize ) iWrite = nSize - 1; nWrite = seekAndWrite(pFile, iWrite, "", 1); if( nWrite!=1 ) return SQLITE_IOERR_WRITE; } #endif } } #if SQLITE_MAX_MMAP_SIZE>0 if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){ int rc; if( pFile->szChunk<=0 ){ if( robust_ftruncate(pFile->h, nByte) ){ storeLastErrno(pFile, errno); return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); } } rc = unixMapfile(pFile, nByte); return rc; } #endif return SQLITE_OK; } /* ** If *pArg is initially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* Forward declaration */ static int unixGetTempname(int nBuf, char *zBuf); #ifndef SQLITE_OMIT_WAL static int unixFcntlExternalReader(unixFile*, int*); #endif /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: { int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE); return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK; } case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: { int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE); return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK; } case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: { int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE); return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK; } #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->eFileLock; return SQLITE_OK; } case SQLITE_FCNTL_LAST_ERRNO: { *(int*)pArg = pFile->lastErrno; return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { pFile->szChunk = *(int *)pArg; return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { int rc; SimulateIOErrorBenign(1); rc = fcntlSizeHint(pFile, *(i64 *)pArg); SimulateIOErrorBenign(0); return rc; } case SQLITE_FCNTL_PERSIST_WAL: { unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); return SQLITE_OK; } case SQLITE_FCNTL_TEMPFILENAME: { char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname ); if( zTFile ){ unixGetTempname(pFile->pVfs->mxPathname, zTFile); *(char**)pArg = zTFile; } return SQLITE_OK; } case SQLITE_FCNTL_HAS_MOVED: { *(int*)pArg = fileHasMoved(pFile); return SQLITE_OK; } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT case SQLITE_FCNTL_LOCK_TIMEOUT: { int iOld = pFile->iBusyTimeout; #if SQLITE_ENABLE_SETLK_TIMEOUT==1 pFile->iBusyTimeout = *(int*)pArg; #elif SQLITE_ENABLE_SETLK_TIMEOUT==2 pFile->iBusyTimeout = !!(*(int*)pArg); #else # error "SQLITE_ENABLE_SETLK_TIMEOUT must be set to 1 or 2" #endif *(int*)pArg = iOld; return SQLITE_OK; } #endif #if SQLITE_MAX_MMAP_SIZE>0 case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; int rc = SQLITE_OK; if( newLimit>sqlite3GlobalConfig.mxMmap ){ newLimit = sqlite3GlobalConfig.mxMmap; } /* The value of newLimit may be eventually cast to (size_t) and passed ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a ** 64-bit type. */ if( newLimit>0 && sizeof(size_t)<8 ){ newLimit = (newLimit & 0x7FFFFFFF); } *(i64*)pArg = pFile->mmapSizeMax; if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ pFile->mmapSizeMax = newLimit; if( pFile->mmapSize>0 ){ unixUnmapfile(pFile); rc = unixMapfile(pFile, -1); } } return rc; } #endif #ifdef SQLITE_DEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. */ case SQLITE_FCNTL_DB_UNCHANGED: { ((unixFile*)id)->dbUpdate = 0; return SQLITE_OK; } #endif #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) case SQLITE_FCNTL_SET_LOCKPROXYFILE: case SQLITE_FCNTL_GET_LOCKPROXYFILE: { return proxyFileControl(id,op,pArg); } #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ case SQLITE_FCNTL_EXTERNAL_READER: { #ifndef SQLITE_OMIT_WAL return unixFcntlExternalReader((unixFile*)id, (int*)pArg); #else *(int*)pArg = 0; return SQLITE_OK; #endif } } return SQLITE_NOTFOUND; } /* ** If pFd->sectorSize is non-zero when this function is called, it is a ** no-op. Otherwise, the values of pFd->sectorSize and ** pFd->deviceCharacteristics are set according to the file-system ** characteristics. ** ** There are two versions of this function. One for QNX and one for all ** other systems. */ #ifndef __QNXNTO__ static void setDeviceCharacteristics(unixFile *pFd){ assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 ); if( pFd->sectorSize==0 ){ #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) int res; u32 f = 0; /* Check for support for F2FS atomic batch writes. */ res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f); if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){ pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC; } #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ /* Set the POWERSAFE_OVERWRITE flag if requested. */ if( pFd->ctrlFlags & UNIXFILE_PSOW ){ pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE; } pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; } } #else #include #include static void setDeviceCharacteristics(unixFile *pFile){ if( pFile->sectorSize == 0 ){ struct statvfs fsInfo; /* Set defaults for non-supported filesystems */ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; pFile->deviceCharacteristics = 0; if( fstatvfs(pFile->h, &fsInfo) == -1 ) { return; } if( !strcmp(fsInfo.f_basetype, "tmp") ) { pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( strstr(fsInfo.f_basetype, "etfs") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = /* etfs cluster size writes are atomic */ (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) | SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = /* full bitset of atomics from max sector size and smaller */ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else if( strstr(fsInfo.f_basetype, "dos") ){ pFile->sectorSize = fsInfo.f_bsize; pFile->deviceCharacteristics = /* full bitset of atomics from max sector size and smaller */ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind ** so it is ordered */ 0; }else{ pFile->deviceCharacteristics = SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until ** the write succeeds */ 0; } } /* Last chance verification. If the sector size isn't a multiple of 512 ** then it isn't valid.*/ if( pFile->sectorSize % 512 != 0 ){ pFile->deviceCharacteristics = 0; pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; } } #endif /* ** Return the sector size in bytes of the underlying block device for ** the specified file. This is almost always 512 bytes, but may be ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int unixSectorSize(sqlite3_file *id){ unixFile *pFd = (unixFile*)id; setDeviceCharacteristics(pFd); return pFd->sectorSize; } /* ** Return the device characteristics for the file. ** ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. ** However, that choice is controversial since technically the underlying ** file system does not always provide powersafe overwrites. (In other ** words, after a power-loss event, parts of the file that were never ** written might end up being altered.) However, non-PSOW behavior is very, ** very rare. And asserting PSOW makes a large reduction in the amount ** of required I/O for journaling, since a lot of padding is eliminated. ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control ** available to turn it off and URI query parameter available to turn it off. */ static int unixDeviceCharacteristics(sqlite3_file *id){ unixFile *pFd = (unixFile*)id; setDeviceCharacteristics(pFd); return pFd->deviceCharacteristics; } #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 /* ** Return the system page size. ** ** This function should not be called directly by other code in this file. ** Instead, it should be called via macro osGetpagesize(). */ static int unixGetpagesize(void){ #if OS_VXWORKS return 1024; #elif defined(_BSD_SOURCE) return getpagesize(); #else return (int)sysconf(_SC_PAGESIZE); #endif } #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */ #ifndef SQLITE_OMIT_WAL /* ** Object used to represent an shared memory buffer. ** ** When multiple threads all reference the same wal-index, each thread ** has its own unixShm object, but they all point to a single instance ** of this unixShmNode object. In other words, each wal-index is opened ** only once per process. ** ** Each unixShmNode object is connected to a single unixInodeInfo object. ** We could coalesce this object into unixInodeInfo, but that would mean ** every open file that does not use shared memory (in other words, most ** open files) would have to carry around this extra information. So ** the unixInodeInfo object contains a pointer to this unixShmNode object ** and the unixShmNode object is created only when needed. ** ** unixMutexHeld() must be true when creating or destroying ** this object or while reading or writing the following fields: ** ** nRef ** ** The following fields are read-only after the object is created: ** ** hShm ** zFilename ** ** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and ** unixMutexHeld() is true when reading or writing any other field ** in this structure. ** ** aLock[SQLITE_SHM_NLOCK]: ** This array records the various locks held by clients on each of the ** SQLITE_SHM_NLOCK slots. If the aLock[] entry is set to 0, then no ** locks are held by the process on this slot. If it is set to -1, then ** some client holds an EXCLUSIVE lock on the locking slot. If the aLock[] ** value is set to a positive value, then it is the number of shared ** locks currently held on the slot. ** ** aMutex[SQLITE_SHM_NLOCK]: ** Normally, when SQLITE_ENABLE_SETLK_TIMEOUT is not defined, mutex ** pShmMutex is used to protect the aLock[] array and the right to ** call fcntl() on unixShmNode.hShm to obtain or release locks. ** ** If SQLITE_ENABLE_SETLK_TIMEOUT is defined though, we use an array ** of mutexes - one for each locking slot. To read or write locking ** slot aLock[iSlot], the caller must hold the corresponding mutex ** aMutex[iSlot]. Similarly, to call fcntl() to obtain or release a ** lock corresponding to slot iSlot, mutex aMutex[iSlot] must be held. */ struct unixShmNode { unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ sqlite3_mutex *pShmMutex; /* Mutex to access this object */ char *zFilename; /* Name of the mmapped file */ int hShm; /* Open file descriptor */ int szRegion; /* Size of shared-memory regions */ u16 nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ u8 isUnlocked; /* True if no DMS lock held */ char **apRegion; /* Array of mapped shared-memory regions */ int nRef; /* Number of unixShm objects pointing to this */ unixShm *pFirst; /* All unixShm objects pointing to this */ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT sqlite3_mutex *aMutex[SQLITE_SHM_NLOCK]; #endif int aLock[SQLITE_SHM_NLOCK]; /* # shared locks on slot, -1==excl lock */ #ifdef SQLITE_DEBUG u8 nextShmId; /* Next available unixShm.id value */ #endif }; /* ** Structure used internally by this VFS to record the state of an ** open shared memory connection. ** ** The following fields are initialized when this object is created and ** are read-only thereafter: ** ** unixShm.pShmNode ** unixShm.id ** ** All other fields are read/write. The unixShm.pShmNode->pShmMutex must ** be held while accessing any read/write fields. */ struct unixShm { unixShmNode *pShmNode; /* The underlying unixShmNode object */ unixShm *pNext; /* Next unixShm with the same unixShmNode */ u8 hasMutex; /* True if holding the unixShmNode->pShmMutex */ u8 id; /* Id of this connection within its unixShmNode */ u16 sharedMask; /* Mask of shared locks held */ u16 exclMask; /* Mask of exclusive locks held */ }; /* ** Constants used for locking */ #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ /* ** Use F_GETLK to check whether or not there are any readers with open ** wal-mode transactions in other processes on database file pFile. If ** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are ** such transactions, or 0 otherwise. If an error occurs, return an ** SQLite error code. The final value of *piOut is undefined in this ** case. */ static int unixFcntlExternalReader(unixFile *pFile, int *piOut){ int rc = SQLITE_OK; *piOut = 0; if( pFile->pShm){ unixShmNode *pShmNode = pFile->pShm->pShmNode; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = F_WRLCK; f.l_whence = SEEK_SET; f.l_start = UNIX_SHM_BASE + 3; f.l_len = SQLITE_SHM_NLOCK - 3; sqlite3_mutex_enter(pShmNode->pShmMutex); if( osFcntl(pShmNode->hShm, F_GETLK, &f)<0 ){ rc = SQLITE_IOERR_LOCK; }else{ *piOut = (f.l_type!=F_UNLCK); } sqlite3_mutex_leave(pShmNode->pShmMutex); } return rc; } /* ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. ** ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking ** otherwise. */ static int unixShmSystemLock( unixFile *pFile, /* Open connection to the WAL file */ int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ int ofst, /* First byte of the locking range */ int n /* Number of bytes to lock */ ){ unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */ struct flock f; /* The posix advisory locking structure */ int rc = SQLITE_OK; /* Result code form fcntl() */ pShmNode = pFile->pInode->pShmNode; /* Assert that the parameters are within expected range and that the ** correct mutex or mutexes are held. */ assert( pShmNode->nRef>=0 ); assert( (ofst==UNIX_SHM_DMS && n==1) || (ofst>=UNIX_SHM_BASE && ofst+n<=(UNIX_SHM_BASE+SQLITE_SHM_NLOCK)) ); if( ofst==UNIX_SHM_DMS ){ assert( pShmNode->nRef>0 || unixMutexHeld() ); assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) ); }else{ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT int ii; for(ii=ofst-UNIX_SHM_BASE; iiaMutex[ii]) ); } #else assert( sqlite3_mutex_held(pShmNode->pShmMutex) ); assert( pShmNode->nRef>0 ); #endif } /* Shared locks never span more than one byte */ assert( n==1 || lockType!=F_RDLCK ); /* Locks are within range */ assert( n>=1 && n<=SQLITE_SHM_NLOCK ); assert( ofst>=UNIX_SHM_BASE && ofst<=(UNIX_SHM_DMS+SQLITE_SHM_NLOCK) ); if( pShmNode->hShm>=0 ){ int res; /* Initialize the locking parameters */ f.l_type = lockType; f.l_whence = SEEK_SET; f.l_start = ofst; f.l_len = n; res = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile); if( res==-1 ){ #if defined(SQLITE_ENABLE_SETLK_TIMEOUT) && SQLITE_ENABLE_SETLK_TIMEOUT==1 rc = (pFile->iBusyTimeout ? SQLITE_BUSY_TIMEOUT : SQLITE_BUSY); #else rc = SQLITE_BUSY; #endif } } /* Do debug tracing */ #ifdef SQLITE_DEBUG OSTRACE(("SHM-LOCK ")); if( rc==SQLITE_OK ){ if( lockType==F_UNLCK ){ OSTRACE(("unlock %d..%d ok\n", ofst, ofst+n-1)); }else if( lockType==F_RDLCK ){ OSTRACE(("read-lock %d..%d ok\n", ofst, ofst+n-1)); }else{ assert( lockType==F_WRLCK ); OSTRACE(("write-lock %d..%d ok\n", ofst, ofst+n-1)); } }else{ if( lockType==F_UNLCK ){ OSTRACE(("unlock %d..%d failed\n", ofst, ofst+n-1)); }else if( lockType==F_RDLCK ){ OSTRACE(("read-lock %d..%d failed\n", ofst, ofst+n-1)); }else{ assert( lockType==F_WRLCK ); OSTRACE(("write-lock %d..%d failed\n", ofst, ofst+n-1)); } } #endif return rc; } /* ** Return the minimum number of 32KB shm regions that should be mapped at ** a time, assuming that each mapping must be an integer multiple of the ** current system page-size. ** ** Usually, this is 1. The exception seems to be systems that are configured ** to use 64KB pages - in this case each mapping must cover at least two ** shm regions. */ static int unixShmRegionPerMap(void){ int shmsz = 32*1024; /* SHM region size */ int pgsz = osGetpagesize(); /* System page size */ assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */ if( pgszpInode->pShmNode; assert( unixMutexHeld() ); if( p && ALWAYS(p->nRef==0) ){ int nShmPerMap = unixShmRegionPerMap(); int i; assert( p->pInode==pFd->pInode ); sqlite3_mutex_free(p->pShmMutex); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT for(i=0; iaMutex[i]); } #endif for(i=0; inRegion; i+=nShmPerMap){ if( p->hShm>=0 ){ osMunmap(p->apRegion[i], p->szRegion); }else{ sqlite3_free(p->apRegion[i]); } } sqlite3_free(p->apRegion); if( p->hShm>=0 ){ robust_close(pFd, p->hShm, __LINE__); p->hShm = -1; } p->pInode->pShmNode = 0; sqlite3_free(p); } } /* ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to ** take it now. Return SQLITE_OK if successful, or an SQLite error ** code otherwise. ** ** If the DMS cannot be locked because this is a readonly_shm=1 ** connection and no other process already holds a lock, return ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1. */ static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){ struct flock lock; int rc = SQLITE_OK; /* Use F_GETLK to determine the locks other processes are holding ** on the DMS byte. If it indicates that another process is holding ** a SHARED lock, then this process may also take a SHARED lock ** and proceed with opening the *-shm file. ** ** Or, if no other process is holding any lock, then this process ** is the first to open it. In this case take an EXCLUSIVE lock on the ** DMS byte and truncate the *-shm file to zero bytes in size. Then ** downgrade to a SHARED lock on the DMS byte. ** ** If another process is holding an EXCLUSIVE lock on the DMS byte, ** return SQLITE_BUSY to the caller (it will try again). An earlier ** version of this code attempted the SHARED lock at this point. But ** this introduced a subtle race condition: if the process holding ** EXCLUSIVE failed just before truncating the *-shm file, then this ** process might open and use the *-shm file without truncating it. ** And if the *-shm file has been corrupted by a power failure or ** system crash, the database itself may also become corrupt. */ lock.l_whence = SEEK_SET; lock.l_start = UNIX_SHM_DMS; lock.l_len = 1; lock.l_type = F_WRLCK; if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) { rc = SQLITE_IOERR_LOCK; }else if( lock.l_type==F_UNLCK ){ if( pShmNode->isReadonly ){ pShmNode->isUnlocked = 1; rc = SQLITE_READONLY_CANTINIT; }else{ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* Do not use a blocking lock here. If the lock cannot be obtained ** immediately, it means some other connection is truncating the ** *-shm file. And after it has done so, it will not release its ** lock, but only downgrade it to a shared lock. So no point in ** blocking here. The call below to obtain the shared DMS lock may ** use a blocking lock. */ int iSaveTimeout = pDbFd->iBusyTimeout; pDbFd->iBusyTimeout = 0; #endif rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT pDbFd->iBusyTimeout = iSaveTimeout; #endif /* The first connection to attach must truncate the -shm file. We ** truncate to 3 bytes (an arbitrary small number, less than the ** -shm header size) rather than 0 as a system debugging aid, to ** help detect if a -shm file truncation is legitimate or is the work ** or a rogue process. */ if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){ rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename); } } }else if( lock.l_type==F_WRLCK ){ rc = SQLITE_BUSY; } if( rc==SQLITE_OK ){ assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK ); rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1); } return rc; } /* ** Open a shared-memory area associated with open database file pDbFd. ** This particular implementation uses mmapped files. ** ** The file used to implement shared-memory is in the same directory ** as the open database file and has the same name as the open database ** file with the "-shm" suffix added. For example, if the database file ** is "/home/user1/config.db" then the file that is created and mmapped ** for shared memory will be called "/home/user1/config.db-shm". ** ** Another approach to is to use files in /dev/shm or /dev/tmp or an ** some other tmpfs mount. But if a file in a different directory ** from the database file is used, then differing access permissions ** or a chroot() might cause two different processes on the same ** database to end up using different files for shared memory - ** meaning that their memory would not really be shared - resulting ** in database corruption. Nevertheless, this tmpfs file usage ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time ** option results in an incompatible build of SQLite; builds of SQLite ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the ** same database file at the same time, database corruption will likely ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered ** "unsupported" and may go away in a future SQLite release. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. ** ** If the original database file (pDbFd) is using the "unix-excl" VFS ** that means that an exclusive lock is held on the database file and ** that no other processes are able to read or write the database. In ** that case, we do not really need shared memory. No shared memory ** file is created. The shared memory will be simulated with heap memory. */ static int unixOpenSharedMemory(unixFile *pDbFd){ struct unixShm *p = 0; /* The connection to be opened */ struct unixShmNode *pShmNode; /* The underlying mmapped file */ int rc = SQLITE_OK; /* Result code */ unixInodeInfo *pInode; /* The inode of fd */ char *zShm; /* Name of the file used for SHM */ int nShmFilename; /* Size of the SHM filename in bytes */ /* Allocate space for the new unixShm object. */ p = sqlite3_malloc64( sizeof(*p) ); if( p==0 ) return SQLITE_NOMEM_BKPT; memset(p, 0, sizeof(*p)); assert( pDbFd->pShm==0 ); /* Check to see if a unixShmNode object already exists. Reuse an existing ** one if present. Create a new one if necessary. */ assert( unixFileMutexNotheld(pDbFd) ); unixEnterMutex(); pInode = pDbFd->pInode; pShmNode = pInode->pShmNode; if( pShmNode==0 ){ struct stat sStat; /* fstat() info for database file */ #ifndef SQLITE_SHM_DIRECTORY const char *zBasePath = pDbFd->zPath; #endif /* Call fstat() to figure out the permissions on the database file. If ** a new *-shm file is created, an attempt will be made to create it ** with the same permissions. */ if( osFstat(pDbFd->h, &sStat) ){ rc = SQLITE_IOERR_FSTAT; goto shm_open_err; } #ifdef SQLITE_SHM_DIRECTORY nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; #else nShmFilename = 6 + (int)strlen(zBasePath); #endif pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename ); if( pShmNode==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); zShm = pShmNode->zFilename = (char*)&pShmNode[1]; #ifdef SQLITE_SHM_DIRECTORY sqlite3_snprintf(nShmFilename, zShm, SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", (u32)sStat.st_ino, (u32)sStat.st_dev); #else sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath); sqlite3FileSuffix3(pDbFd->zPath, zShm); #endif pShmNode->hShm = -1; pDbFd->pInode->pShmNode = pShmNode; pShmNode->pInode = pDbFd->pInode; if( sqlite3GlobalConfig.bCoreMutex ){ pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->pShmMutex==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT { int ii; for(ii=0; iiaMutex[ii] = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->aMutex[ii]==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } } } #endif } if( pInode->bProcessLock==0 ){ if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT|O_NOFOLLOW, (sStat.st_mode&0777)); } if( pShmNode->hShm<0 ){ pShmNode->hShm = robust_open(zShm, O_RDONLY|O_NOFOLLOW, (sStat.st_mode&0777)); if( pShmNode->hShm<0 ){ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm); goto shm_open_err; } pShmNode->isReadonly = 1; } /* If this process is running as root, make sure that the SHM file ** is owned by the same user that owns the original database. Otherwise, ** the original owner will not be able to connect. */ robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid); rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; } } /* Make the new connection a child of the unixShmNode */ p->pShmNode = pShmNode; #ifdef SQLITE_DEBUG p->id = pShmNode->nextShmId++; #endif pShmNode->nRef++; pDbFd->pShm = p; unixLeaveMutex(); /* The reference count on pShmNode has already been incremented under ** the cover of the unixEnterMutex() mutex and the pointer from the ** new (struct unixShm) object to the pShmNode has been set. All that is ** left to do is to link the new object into the linked list starting ** at pShmNode->pFirst. This must be done while holding the ** pShmNode->pShmMutex. */ sqlite3_mutex_enter(pShmNode->pShmMutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->pShmMutex); return rc; /* Jump here on any error */ shm_open_err: unixShmPurge(pDbFd); /* This call frees pShmNode if required */ sqlite3_free(p); unixLeaveMutex(); return rc; } /* ** This function is called to obtain a pointer to region iRegion of the ** shared-memory associated with the database file fd. Shared-memory regions ** are numbered starting from zero. Each shared-memory region is szRegion ** bytes in size. ** ** If an error occurs, an error code is returned and *pp is set to NULL. ** ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory ** region has not been allocated (by any client, including one running in a ** separate process), then *pp is set to NULL and SQLITE_OK returned. If ** bExtend is non-zero and the requested shared-memory region has not yet ** been allocated, it is allocated by this function. ** ** If the shared-memory region has already been allocated or is allocated by ** this call as described above, then it is mapped into this processes ** address space (if it is not already), *pp is set to point to the mapped ** memory and SQLITE_OK returned. */ static int unixShmMap( sqlite3_file *fd, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int bExtend, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ unixFile *pDbFd = (unixFile*)fd; unixShm *p; unixShmNode *pShmNode; int rc = SQLITE_OK; int nShmPerMap = unixShmRegionPerMap(); int nReqRegion; /* If the shared-memory file has not yet been opened, open it now. */ if( pDbFd->pShm==0 ){ rc = unixOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; sqlite3_mutex_enter(pShmNode->pShmMutex); if( pShmNode->isUnlocked ){ rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK ) goto shmpage_out; pShmNode->isUnlocked = 0; } assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); assert( pShmNode->pInode==pDbFd->pInode ); assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); /* Minimum number of regions required to be mapped. */ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; if( pShmNode->nRegionszRegion = szRegion; if( pShmNode->hShm>=0 ){ /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ if( osFstat(pShmNode->hShm, &sStat) ){ rc = SQLITE_IOERR_SHMSIZE; goto shmpage_out; } if( sStat.st_sizehShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){ const char *zFile = pShmNode->zFilename; rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile); goto shmpage_out; } } } } } /* Map the requested memory region into this processes address space. */ apNew = (char **)sqlite3_realloc( pShmNode->apRegion, nReqRegion*sizeof(char *) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shmpage_out; } pShmNode->apRegion = apNew; while( pShmNode->nRegionhShm>=0 ){ pMem = osMmap(0, nMap, pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion ); if( pMem==MAP_FAILED ){ rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); goto shmpage_out; } }else{ pMem = sqlite3_malloc64(nMap); if( pMem==0 ){ rc = SQLITE_NOMEM_BKPT; goto shmpage_out; } memset(pMem, 0, nMap); } for(i=0; iapRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i]; } pShmNode->nRegion += nShmPerMap; } } shmpage_out: if( pShmNode->nRegion>iRegion ){ *pp = pShmNode->apRegion[iRegion]; }else{ *pp = 0; } if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; sqlite3_mutex_leave(pShmNode->pShmMutex); return rc; } /* ** Check that the pShmNode->aLock[] array comports with the locking bitmasks ** held by each client. Return true if it does, or false otherwise. This ** is to be used in an assert(). e.g. ** ** assert( assertLockingArrayOk(pShmNode) ); */ #ifdef SQLITE_DEBUG static int assertLockingArrayOk(unixShmNode *pShmNode){ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT return 1; #else unixShm *pX; int aLock[SQLITE_SHM_NLOCK]; memset(aLock, 0, sizeof(aLock)); for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ int i; for(i=0; iexclMask & (1<sharedMask & (1<=0 ); aLock[i]++; } } } assert( 0==memcmp(pShmNode->aLock, aLock, sizeof(aLock)) ); return (memcmp(pShmNode->aLock, aLock, sizeof(aLock))==0); #endif } #endif /* ** Change the lock state for a shared-memory segment. ** ** Note that the relationship between SHARED and EXCLUSIVE locks is a little ** different here than in posix. In xShmLock(), one can go from unlocked ** to shared and back or from unlocked to exclusive and back. But one may ** not go from shared to exclusive or from exclusive to shared. */ static int unixShmLock( sqlite3_file *fd, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ unixShm *p; /* The shared memory being locked */ unixShmNode *pShmNode; /* The underlying file iNode */ int rc = SQLITE_OK; /* Result code */ u16 mask = (1<<(ofst+n)) - (1<pShm; if( p==0 ) return SQLITE_IOERR_SHMLOCK; pShmNode = p->pShmNode; if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK; aLock = pShmNode->aLock; assert( pShmNode==pDbFd->pInode->pShmNode ); assert( pShmNode->pInode==pDbFd->pInode ); assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); /* Check that, if this to be a blocking lock, no locks that occur later ** in the following list than the lock being obtained are already held: ** ** 1. Checkpointer lock (ofst==1). ** 2. Write lock (ofst==0). ** 3. Read locks (ofst>=3 && ofstexclMask|p->sharedMask); assert( (flags & SQLITE_SHM_UNLOCK) || pDbFd->iBusyTimeout==0 || ( (ofst!=2) /* not RECOVER */ && (ofst!=1 || lockMask==0 || lockMask==2) && (ofst!=0 || lockMask<3) && (ofst<3 || lockMask<(1<exclMask & mask) ); if( ((flags & SQLITE_SHM_UNLOCK) && ((p->exclMask|p->sharedMask) & mask)) || (flags==(SQLITE_SHM_SHARED|SQLITE_SHM_LOCK) && 0==(p->sharedMask & mask)) || (flags==(SQLITE_SHM_EXCLUSIVE|SQLITE_SHM_LOCK)) ){ /* Take the required mutexes. In SETLK_TIMEOUT mode (blocking locks), if ** this is an attempt on an exclusive lock use sqlite3_mutex_try(). If any ** other thread is holding this mutex, then it is either holding or about ** to hold a lock exclusive to the one being requested, and we may ** therefore return SQLITE_BUSY to the caller. ** ** Doing this prevents some deadlock scenarios. For example, thread 1 may ** be a checkpointer blocked waiting on the WRITER lock. And thread 2 ** may be a normal SQL client upgrading to a write transaction. In this ** case thread 2 does a non-blocking request for the WRITER lock. But - ** if it were to use sqlite3_mutex_enter() then it would effectively ** become a (doomed) blocking request, as thread 2 would block until thread ** 1 obtained WRITER and released the mutex. Since thread 2 already holds ** a lock on a read-locking slot at this point, this breaks the ** anti-deadlock rules (see above). */ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT int iMutex; for(iMutex=ofst; iMutexaMutex[iMutex]); if( rc!=SQLITE_OK ) goto leave_shmnode_mutexes; }else{ sqlite3_mutex_enter(pShmNode->aMutex[iMutex]); } } #else sqlite3_mutex_enter(pShmNode->pShmMutex); #endif if( ALWAYS(rc==SQLITE_OK) ){ if( flags & SQLITE_SHM_UNLOCK ){ /* Case (a) - unlock. */ int bUnlock = 1; assert( (p->exclMask & p->sharedMask)==0 ); assert( !(flags & SQLITE_SHM_EXCLUSIVE) || (p->exclMask & mask)==mask ); assert( !(flags & SQLITE_SHM_SHARED) || (p->sharedMask & mask)==mask ); /* If this is a SHARED lock being unlocked, it is possible that other ** clients within this process are holding the same SHARED lock. In ** this case, set bUnlock to 0 so that the posix lock is not removed ** from the file-descriptor below. */ if( flags & SQLITE_SHM_SHARED ){ assert( n==1 ); assert( aLock[ofst]>=1 ); if( aLock[ofst]>1 ){ bUnlock = 0; aLock[ofst]--; p->sharedMask &= ~mask; } } if( bUnlock ){ rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n); if( rc==SQLITE_OK ){ memset(&aLock[ofst], 0, sizeof(int)*n); p->sharedMask &= ~mask; p->exclMask &= ~mask; } } }else if( flags & SQLITE_SHM_SHARED ){ /* Case (b) - a shared lock. */ if( aLock[ofst]<0 ){ /* An exclusive lock is held by some other connection. BUSY. */ rc = SQLITE_BUSY; }else if( aLock[ofst]==0 ){ rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n); } /* Get the local shared locks */ if( rc==SQLITE_OK ){ p->sharedMask |= mask; aLock[ofst]++; } }else{ /* Case (c) - an exclusive lock. */ int ii; assert( flags==(SQLITE_SHM_LOCK|SQLITE_SHM_EXCLUSIVE) ); assert( (p->sharedMask & mask)==0 ); assert( (p->exclMask & mask)==0 ); /* Make sure no sibling connections hold locks that will block this ** lock. If any do, return SQLITE_BUSY right away. */ for(ii=ofst; iiexclMask |= mask; for(ii=ofst; ii=ofst; iMutex--){ sqlite3_mutex_leave(pShmNode->aMutex[iMutex]); } #else sqlite3_mutex_leave(pShmNode->pShmMutex); #endif } OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", p->id, osGetpid(0), p->sharedMask, p->exclMask)); return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void unixShmBarrier( sqlite3_file *fd /* Database file holding the shared memory */ ){ UNUSED_PARAMETER(fd); sqlite3MemoryBarrier(); /* compiler-defined memory barrier */ assert( fd->pMethods->xLock==nolockLock || unixFileMutexNotheld((unixFile*)fd) ); unixEnterMutex(); /* Also mutex, for redundancy */ unixLeaveMutex(); } /* ** Close a connection to shared-memory. Delete the underlying ** storage if deleteFlag is true. ** ** If there is no shared memory associated with the connection then this ** routine is a harmless no-op. */ static int unixShmUnmap( sqlite3_file *fd, /* The underlying database file */ int deleteFlag /* Delete shared-memory if true */ ){ unixShm *p; /* The connection to be closed */ unixShmNode *pShmNode; /* The underlying shared-memory file */ unixShm **pp; /* For looping over sibling connections */ unixFile *pDbFd; /* The underlying database file */ pDbFd = (unixFile*)fd; p = pDbFd->pShm; if( p==0 ) return SQLITE_OK; pShmNode = p->pShmNode; assert( pShmNode==pDbFd->pInode->pShmNode ); assert( pShmNode->pInode==pDbFd->pInode ); /* Remove connection p from the set of connections associated ** with pShmNode */ sqlite3_mutex_enter(pShmNode->pShmMutex); for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} *pp = p->pNext; /* Free the connection p */ sqlite3_free(p); pDbFd->pShm = 0; sqlite3_mutex_leave(pShmNode->pShmMutex); /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ assert( unixFileMutexNotheld(pDbFd) ); unixEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ if( deleteFlag && pShmNode->hShm>=0 ){ osUnlink(pShmNode->zFilename); } unixShmPurge(pDbFd); } unixLeaveMutex(); return SQLITE_OK; } #else # define unixShmMap 0 # define unixShmLock 0 # define unixShmBarrier 0 # define unixShmUnmap 0 #endif /* #ifndef SQLITE_OMIT_WAL */ #if SQLITE_MAX_MMAP_SIZE>0 /* ** If it is currently memory mapped, unmap file pFd. */ static void unixUnmapfile(unixFile *pFd){ assert( pFd->nFetchOut==0 ); if( pFd->pMapRegion ){ osMunmap(pFd->pMapRegion, pFd->mmapSizeActual); pFd->pMapRegion = 0; pFd->mmapSize = 0; pFd->mmapSizeActual = 0; } } /* ** Attempt to set the size of the memory mapping maintained by file ** descriptor pFd to nNew bytes. Any existing mapping is discarded. ** ** If successful, this function sets the following variables: ** ** unixFile.pMapRegion ** unixFile.mmapSize ** unixFile.mmapSizeActual ** ** If unsuccessful, an error message is logged via sqlite3_log() and ** the three variables above are zeroed. In this case SQLite should ** continue accessing the database using the xRead() and xWrite() ** methods. */ static void unixRemapfile( unixFile *pFd, /* File descriptor object */ i64 nNew /* Required mapping size */ ){ const char *zErr = "mmap"; int h = pFd->h; /* File descriptor open on db file */ u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */ i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */ u8 *pNew = 0; /* Location of new mapping */ int flags = PROT_READ; /* Flags to pass to mmap() */ assert( pFd->nFetchOut==0 ); assert( nNew>pFd->mmapSize ); assert( nNew<=pFd->mmapSizeMax ); assert( nNew>0 ); assert( pFd->mmapSizeActual>=pFd->mmapSize ); assert( MAP_FAILED!=0 ); #ifdef SQLITE_MMAP_READWRITE if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE; #endif if( pOrig ){ #if HAVE_MREMAP i64 nReuse = pFd->mmapSize; #else const int szSyspage = osGetpagesize(); i64 nReuse = (pFd->mmapSize & ~(szSyspage-1)); #endif u8 *pReq = &pOrig[nReuse]; /* Unmap any pages of the existing mapping that cannot be reused. */ if( nReuse!=nOrig ){ osMunmap(pReq, nOrig-nReuse); } #if HAVE_MREMAP pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE); zErr = "mremap"; #else pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse); if( pNew!=MAP_FAILED ){ if( pNew!=pReq ){ osMunmap(pNew, nNew - nReuse); pNew = 0; }else{ pNew = pOrig; } } #endif /* The attempt to extend the existing mapping failed. Free it. */ if( pNew==MAP_FAILED || pNew==0 ){ osMunmap(pOrig, nReuse); } } /* If pNew is still NULL, try to create an entirely new mapping. */ if( pNew==0 ){ pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0); } if( pNew==MAP_FAILED ){ pNew = 0; nNew = 0; unixLogError(SQLITE_OK, zErr, pFd->zPath); /* If the mmap() above failed, assume that all subsequent mmap() calls ** will probably fail too. Fall back to using xRead/xWrite exclusively ** in this case. */ pFd->mmapSizeMax = 0; } pFd->pMapRegion = (void *)pNew; pFd->mmapSize = pFd->mmapSizeActual = nNew; } /* ** Memory map or remap the file opened by file-descriptor pFd (if the file ** is already mapped, the existing mapping is replaced by the new). Or, if ** there already exists a mapping for this file, and there are still ** outstanding xFetch() references to it, this function is a no-op. ** ** If parameter nByte is non-negative, then it is the requested size of ** the mapping to create. Otherwise, if nByte is less than zero, then the ** requested size is the size of the file on disk. The actual size of the ** created mapping is either the requested size or the value configured ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller. ** ** SQLITE_OK is returned if no error occurs (even if the mapping is not ** recreated as a result of outstanding references) or an SQLite error ** code otherwise. */ static int unixMapfile(unixFile *pFd, i64 nMap){ assert( nMap>=0 || pFd->nFetchOut==0 ); assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); if( pFd->nFetchOut>0 ) return SQLITE_OK; if( nMap<0 ){ struct stat statbuf; /* Low-level file information */ if( osFstat(pFd->h, &statbuf) ){ return SQLITE_IOERR_FSTAT; } nMap = statbuf.st_size; } if( nMap>pFd->mmapSizeMax ){ nMap = pFd->mmapSizeMax; } assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); if( nMap!=pFd->mmapSize ){ unixRemapfile(pFd, nMap); } return SQLITE_OK; } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* ** If possible, return a pointer to a mapping of file fd starting at offset ** iOff. The mapping must be valid for at least nAmt bytes. ** ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. ** Finally, if an error does occur, return an SQLite error code. The final ** value of *pp is undefined in this case. ** ** If this function does return a pointer, the caller must eventually ** release the reference by calling unixUnfetch(). */ static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ #if SQLITE_MAX_MMAP_SIZE>0 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ #endif *pp = 0; #if SQLITE_MAX_MMAP_SIZE>0 if( pFd->mmapSizeMax>0 ){ /* Ensure that there is always at least a 256 byte buffer of addressable ** memory following the returned page. If the database is corrupt, ** SQLite may overread the page slightly (in practice only a few bytes, ** but 256 is safe, round, number). */ const int nEofBuffer = 256; if( pFd->pMapRegion==0 ){ int rc = unixMapfile(pFd, -1); if( rc!=SQLITE_OK ) return rc; } if( pFd->mmapSize >= (iOff+nAmt+nEofBuffer) ){ *pp = &((u8 *)pFd->pMapRegion)[iOff]; pFd->nFetchOut++; } } #endif return SQLITE_OK; } /* ** If the third argument is non-NULL, then this function releases a ** reference obtained by an earlier call to unixFetch(). The second ** argument passed to this function must be the same as the corresponding ** argument that was passed to the unixFetch() invocation. ** ** Or, if the third argument is NULL, then this function is being called ** to inform the VFS layer that, according to POSIX, any existing mapping ** may now be invalid and should be unmapped. */ static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){ #if SQLITE_MAX_MMAP_SIZE>0 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ UNUSED_PARAMETER(iOff); /* If p==0 (unmap the entire file) then there must be no outstanding ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), ** then there must be at least one outstanding. */ assert( (p==0)==(pFd->nFetchOut==0) ); /* If p!=0, it must match the iOff value. */ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); if( p ){ pFd->nFetchOut--; }else{ unixUnmapfile(pFd); } assert( pFd->nFetchOut>=0 ); #else UNUSED_PARAMETER(fd); UNUSED_PARAMETER(p); UNUSED_PARAMETER(iOff); #endif return SQLITE_OK; } /* ** Here ends the implementation of all sqlite3_file methods. ** ********************** End sqlite3_file Methods ******************************* ******************************************************************************/ /* ** This division contains definitions of sqlite3_io_methods objects that ** implement various file locking strategies. It also contains definitions ** of "finder" functions. A finder-function is used to locate the appropriate ** sqlite3_io_methods object for a particular database file. The pAppData ** field of the sqlite3_vfs VFS objects are initialized to be pointers to ** the correct finder-function for that VFS. ** ** Most finder functions return a pointer to a fixed sqlite3_io_methods ** object. The only interesting finder-function is autolockIoFinder, which ** looks at the filesystem type and tries to guess the best locking ** strategy from that. ** ** For finder-function F, two objects are created: ** ** (1) The real finder-function named "FImpt()". ** ** (2) A constant pointer to this function named just "F". ** ** ** A pointer to the F pointer is used as the pAppData value for VFS ** objects. We have to do this instead of letting pAppData point ** directly at the finder-function since C90 rules prevent a void* ** from be cast into a function pointer. ** ** ** Each instance of this macro generates two objects: ** ** * A constant sqlite3_io_methods object call METHOD that has locking ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. ** ** * An I/O method finder function called FINDER that returns a pointer ** to the METHOD object in the previous bullet. */ #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \ static const sqlite3_io_methods METHOD = { \ VERSION, /* iVersion */ \ CLOSE, /* xClose */ \ unixRead, /* xRead */ \ unixWrite, /* xWrite */ \ unixTruncate, /* xTruncate */ \ unixSync, /* xSync */ \ unixFileSize, /* xFileSize */ \ LOCK, /* xLock */ \ UNLOCK, /* xUnlock */ \ CKLOCK, /* xCheckReservedLock */ \ unixFileControl, /* xFileControl */ \ unixSectorSize, /* xSectorSize */ \ unixDeviceCharacteristics, /* xDeviceCapabilities */ \ SHMMAP, /* xShmMap */ \ unixShmLock, /* xShmLock */ \ unixShmBarrier, /* xShmBarrier */ \ unixShmUnmap, /* xShmUnmap */ \ unixFetch, /* xFetch */ \ unixUnfetch, /* xUnfetch */ \ }; \ static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ return &METHOD; \ } \ static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ = FINDER##Impl; /* ** Here are all of the sqlite3_io_methods objects for each of the ** locking strategies. Functions that return pointers to these methods ** are also created. */ IOMETHODS( posixIoFinder, /* Finder function name */ posixIoMethods, /* sqlite3_io_methods object name */ 3, /* shared memory and mmap are enabled */ unixClose, /* xClose method */ unixLock, /* xLock method */ unixUnlock, /* xUnlock method */ unixCheckReservedLock, /* xCheckReservedLock method */ unixShmMap /* xShmMap method */ ) IOMETHODS( nolockIoFinder, /* Finder function name */ nolockIoMethods, /* sqlite3_io_methods object name */ 3, /* shared memory and mmap are enabled */ nolockClose, /* xClose method */ nolockLock, /* xLock method */ nolockUnlock, /* xUnlock method */ nolockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) IOMETHODS( dotlockIoFinder, /* Finder function name */ dotlockIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ dotlockClose, /* xClose method */ dotlockLock, /* xLock method */ dotlockUnlock, /* xUnlock method */ dotlockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #if SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( flockIoFinder, /* Finder function name */ flockIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ flockClose, /* xClose method */ flockLock, /* xLock method */ flockUnlock, /* xUnlock method */ flockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if OS_VXWORKS IOMETHODS( semIoFinder, /* Finder function name */ semIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ semXClose, /* xClose method */ semXLock, /* xLock method */ semXUnlock, /* xUnlock method */ semXCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( afpIoFinder, /* Finder function name */ afpIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ afpClose, /* xClose method */ afpLock, /* xLock method */ afpUnlock, /* xUnlock method */ afpCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif /* ** The proxy locking method is a "super-method" in the sense that it ** opens secondary file descriptors for the conch and lock files and ** it uses proxy, dot-file, AFP, and flock() locking methods on those ** secondary files. For this reason, the division that implements ** proxy locking is located much further down in the file. But we need ** to go ahead and define the sqlite3_io_methods and finder function ** for proxy locking here. So we forward declare the I/O methods. */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE static int proxyClose(sqlite3_file*); static int proxyLock(sqlite3_file*, int); static int proxyUnlock(sqlite3_file*, int); static int proxyCheckReservedLock(sqlite3_file*, int*); IOMETHODS( proxyIoFinder, /* Finder function name */ proxyIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ proxyClose, /* xClose method */ proxyLock, /* xLock method */ proxyUnlock, /* xUnlock method */ proxyCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( nfsIoFinder, /* Finder function name */ nfsIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ unixClose, /* xClose method */ unixLock, /* xLock method */ nfsUnlock, /* xUnlock method */ unixCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** This "finder" function attempts to determine the best locking strategy ** for the database file "filePath". It then returns the sqlite3_io_methods ** object that implements that strategy. ** ** This is for MacOSX only. */ static const sqlite3_io_methods *autolockIoFinderImpl( const char *filePath, /* name of the database file */ unixFile *pNew /* open file object for the database file */ ){ static const struct Mapping { const char *zFilesystem; /* Filesystem type name */ const sqlite3_io_methods *pMethods; /* Appropriate locking method */ } aMap[] = { { "hfs", &posixIoMethods }, { "ufs", &posixIoMethods }, { "afpfs", &afpIoMethods }, { "smbfs", &afpIoMethods }, { "webdav", &nolockIoMethods }, { 0, 0 } }; int i; struct statfs fsInfo; struct flock lockInfo; if( !filePath ){ /* If filePath==NULL that means we are dealing with a transient file ** that does not need to be locked. */ return &nolockIoMethods; } if( statfs(filePath, &fsInfo) != -1 ){ if( fsInfo.f_flags & MNT_RDONLY ){ return &nolockIoMethods; } for(i=0; aMap[i].zFilesystem; i++){ if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ return aMap[i].pMethods; } } } /* Default case. Handles, amongst others, "nfs". ** Test byte-range lock using fcntl(). If the call succeeds, ** assume that the file-system supports POSIX style locks. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ return &nfsIoMethods; } else { return &posixIoMethods; } }else{ return &dotlockIoMethods; } } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ #if OS_VXWORKS /* ** This "finder" function for VxWorks checks to see if posix advisory ** locking works. If it does, then that is what is used. If it does not ** work, then fallback to named semaphore locking. */ static const sqlite3_io_methods *vxworksIoFinderImpl( const char *filePath, /* name of the database file */ unixFile *pNew /* the open file object */ ){ struct flock lockInfo; if( !filePath ){ /* If filePath==NULL that means we are dealing with a transient file ** that does not need to be locked. */ return &nolockIoMethods; } /* Test if fcntl() is supported and use POSIX style locks. ** Otherwise fall back to the named semaphore method. */ lockInfo.l_len = 1; lockInfo.l_start = 0; lockInfo.l_whence = SEEK_SET; lockInfo.l_type = F_RDLCK; if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { return &posixIoMethods; }else{ return &semIoMethods; } } static const sqlite3_io_methods *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl; #endif /* OS_VXWORKS */ /* ** An abstract type for a pointer to an IO method finder function: */ typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** ** This division contains the implementation of methods on the ** sqlite3_vfs object. */ /* ** Initialize the contents of the unixFile structure pointed to by pId. */ static int fillInUnixFile( sqlite3_vfs *pVfs, /* Pointer to vfs object */ int h, /* Open file descriptor of file being opened */ sqlite3_file *pId, /* Write to the unixFile structure here */ const char *zFilename, /* Name of the file being opened */ int ctrlFlags /* Zero or more UNIXFILE_* values */ ){ const sqlite3_io_methods *pLockingStyle; unixFile *pNew = (unixFile *)pId; int rc = SQLITE_OK; assert( pNew->pInode==NULL ); /* No locking occurs in temporary files */ assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->pVfs = pVfs; pNew->zPath = zFilename; pNew->ctrlFlags = (u8)ctrlFlags; #if SQLITE_MAX_MMAP_SIZE>0 pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap; #endif if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pNew->ctrlFlags |= UNIXFILE_PSOW; } if( strcmp(pVfs->zName,"unix-excl")==0 ){ pNew->ctrlFlags |= UNIXFILE_EXCL; } #if OS_VXWORKS pNew->pId = vxworksFindFileId(zFilename); if( pNew->pId==0 ){ ctrlFlags |= UNIXFILE_NOLOCK; rc = SQLITE_NOMEM_BKPT; } #endif if( ctrlFlags & UNIXFILE_NOLOCK ){ pLockingStyle = &nolockIoMethods; }else{ pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); #if SQLITE_ENABLE_LOCKING_STYLE /* Cache zFilename in the locking context (AFP and dotlock override) for ** proxyLock activation is possible (remote proxy is based on db name) ** zFilename remains valid until file is closed, to support */ pNew->lockingContext = (void*)zFilename; #endif } if( pLockingStyle == &posixIoMethods #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE || pLockingStyle == &nfsIoMethods #endif ){ unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( rc!=SQLITE_OK ){ /* If an error occurred in findInodeInfo(), close the file descriptor ** immediately, before releasing the mutex. findInodeInfo() may fail ** in two scenarios: ** ** (a) A call to fstat() failed. ** (b) A malloc failed. ** ** Scenario (b) may only occur if the process is holding no other ** file descriptors open on the same file. If there were other file ** descriptors on this file, then no malloc would be required by ** findInodeInfo(). If this is the case, it is quite safe to close ** handle h - as it is guaranteed that no posix locks will be released ** by doing so. ** ** If scenario (a) caused the error then things are not so safe. The ** implicit assumption here is that if fstat() fails, things are in ** such bad shape that dropping a lock or two doesn't matter much. */ robust_close(pNew, h, __LINE__); h = -1; } unixLeaveMutex(); } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) else if( pLockingStyle == &afpIoMethods ){ /* AFP locking uses the file path so it needs to be included in ** the afpLockingContext. */ afpLockingContext *pCtx; pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) ); if( pCtx==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ /* NB: zFilename exists and remains valid until the file is closed ** according to requirement F11141. So we do not need to make a ** copy of the filename. */ pCtx->dbPath = zFilename; pCtx->reserved = 0; srandomdev(); unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( rc!=SQLITE_OK ){ sqlite3_free(pNew->lockingContext); robust_close(pNew, h, __LINE__); h = -1; } unixLeaveMutex(); } } #endif else if( pLockingStyle == &dotlockIoMethods ){ /* Dotfile locking uses the file path so it needs to be included in ** the dotlockLockingContext */ char *zLockFile; int nFilename; assert( zFilename!=0 ); nFilename = (int)strlen(zFilename) + 6; zLockFile = (char *)sqlite3_malloc64(nFilename); if( zLockFile==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); } pNew->lockingContext = zLockFile; } #if OS_VXWORKS else if( pLockingStyle == &semIoMethods ){ /* Named semaphore locking uses the file path so it needs to be ** included in the semLockingContext */ unixEnterMutex(); rc = findInodeInfo(pNew, &pNew->pInode); if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ char *zSemName = pNew->pInode->aSemName; int n; sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", pNew->pId->zCanonicalName); for( n=1; zSemName[n]; n++ ) if( zSemName[n]=='/' ) zSemName[n] = '_'; pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); if( pNew->pInode->pSem == SEM_FAILED ){ rc = SQLITE_NOMEM_BKPT; pNew->pInode->aSemName[0] = '\0'; } } unixLeaveMutex(); } #endif storeLastErrno(pNew, 0); #if OS_VXWORKS if( rc!=SQLITE_OK ){ if( h>=0 ) robust_close(pNew, h, __LINE__); h = -1; osUnlink(zFilename); pNew->ctrlFlags |= UNIXFILE_DELETE; } #endif if( rc!=SQLITE_OK ){ if( h>=0 ) robust_close(pNew, h, __LINE__); }else{ pId->pMethods = pLockingStyle; OpenCounter(+1); verifyDbFile(pNew); } return rc; } /* ** Directories to consider for temp files. */ static const char *azTempDirs[] = { 0, 0, "/var/tmp", "/usr/tmp", "/tmp", "." }; /* ** Initialize first two members of azTempDirs[] array. */ static void unixTempFileInit(void){ azTempDirs[0] = getenv("SQLITE_TMPDIR"); azTempDirs[1] = getenv("TMPDIR"); } /* ** Return the name of a directory in which to put temporary files. ** If no suitable temporary file directory can be found, return NULL. */ static const char *unixTempFileDir(void){ unsigned int i = 0; struct stat buf; const char *zDir = sqlite3_temp_directory; while(1){ if( zDir!=0 && osStat(zDir, &buf)==0 && S_ISDIR(buf.st_mode) && osAccess(zDir, 03)==0 ){ return zDir; } if( i>=sizeof(azTempDirs)/sizeof(azTempDirs[0]) ) break; zDir = azTempDirs[i++]; } return 0; } /* ** Create a temporary file name in zBuf. zBuf must be allocated ** by the calling process and must be big enough to hold at least ** pVfs->mxPathname bytes. */ static int unixGetTempname(int nBuf, char *zBuf){ const char *zDir; int iLimit = 0; int rc = SQLITE_OK; /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. */ zBuf[0] = 0; SimulateIOError( return SQLITE_IOERR ); sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); zDir = unixTempFileDir(); if( zDir==0 ){ rc = SQLITE_IOERR_GETTEMPPATH; }else{ do{ u64 r; sqlite3_randomness(sizeof(r), &r); assert( nBuf>2 ); zBuf[nBuf-2] = 0; sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c", zDir, r, 0); if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ){ rc = SQLITE_ERROR; break; } }while( osAccess(zBuf,0)==0 ); } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); return rc; } #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) /* ** Routine to transform a unixFile into a proxy-locking unixFile. ** Implementation in the proxy-lock division, but used by unixOpen() ** if SQLITE_PREFER_PROXY_LOCKING is defined. */ static int proxyTransformUnixFile(unixFile*, const char*); #endif /* ** Search for an unused file descriptor that was opened on the database ** file (not a journal or super-journal file) identified by pathname ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second ** argument to this function. ** ** Such a file descriptor may exist if a database connection was closed ** but the associated file descriptor could not be closed because some ** other file descriptor open on the same file is holding a file-lock. ** Refer to comments in the unixClose() function and the lengthy comment ** describing "Posix Advisory Locking" at the start of this file for ** further details. Also, ticket #4018. ** ** If a suitable file descriptor is found, then it is returned. If no ** such file descriptor is located, -1 is returned. */ static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ UnixUnusedFd *pUnused = 0; /* Do not search for an unused file descriptor on vxworks. Not because ** vxworks would not benefit from the change (it might, we're not sure), ** but because no way to test it is currently available. It is better ** not to risk breaking vxworks support for the sake of such an obscure ** feature. */ #if !OS_VXWORKS struct stat sStat; /* Results of stat() call */ unixEnterMutex(); /* A stat() call may fail for various reasons. If this happens, it is ** almost certain that an open() call on the same path will also fail. ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a reusable file descriptor are not dire. */ if( inodeList!=0 && 0==osStat(zPath, &sStat) ){ unixInodeInfo *pInode; pInode = inodeList; while( pInode && (pInode->fileId.dev!=sStat.st_dev || pInode->fileId.ino!=(u64)sStat.st_ino) ){ pInode = pInode->pNext; } if( pInode ){ UnixUnusedFd **pp; assert( sqlite3_mutex_notheld(pInode->pLockMutex) ); sqlite3_mutex_enter(pInode->pLockMutex); flags &= (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE); for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); pUnused = *pp; if( pUnused ){ *pp = pUnused->pNext; } sqlite3_mutex_leave(pInode->pLockMutex); } } unixLeaveMutex(); #endif /* if !OS_VXWORKS */ return pUnused; } /* ** Find the mode, uid and gid of file zFile. */ static int getFileMode( const char *zFile, /* File name */ mode_t *pMode, /* OUT: Permissions of zFile */ uid_t *pUid, /* OUT: uid of zFile. */ gid_t *pGid /* OUT: gid of zFile. */ ){ struct stat sStat; /* Output of stat() on database file */ int rc = SQLITE_OK; if( 0==osStat(zFile, &sStat) ){ *pMode = sStat.st_mode & 0777; *pUid = sStat.st_uid; *pGid = sStat.st_gid; }else{ rc = SQLITE_IOERR_FSTAT; } return rc; } /* ** This function is called by unixOpen() to determine the unix permissions ** to create new files with. If no error occurs, then SQLITE_OK is returned ** and a value suitable for passing as the third argument to open(2) is ** written to *pMode. If an IO error occurs, an SQLite error code is ** returned and the value of *pMode is not modified. ** ** In most cases, this routine sets *pMode to 0, which will become ** an indication to robust_open() to create the file using ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. ** But if the file being opened is a WAL or regular journal file, then ** this function queries the file-system for the permissions on the ** corresponding database file and sets *pMode to this value. Whenever ** possible, WAL and journal files are created using the same permissions ** as the associated database file. ** ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the ** original filename is unavailable. But 8_3_NAMES is only used for ** FAT filesystems and permissions do not matter there, so just use ** the default permissions. In 8_3_NAMES mode, leave *pMode set to zero. */ static int findCreateFileMode( const char *zPath, /* Path of file (possibly) being created */ int flags, /* Flags passed as 4th argument to xOpen() */ mode_t *pMode, /* OUT: Permissions to open file with */ uid_t *pUid, /* OUT: uid to set on the file */ gid_t *pGid /* OUT: gid to set on the file */ ){ int rc = SQLITE_OK; /* Return Code */ *pMode = 0; *pUid = 0; *pGid = 0; if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ char zDb[MAX_PATHNAME+1]; /* Database file path */ int nDb; /* Number of valid bytes in zDb */ /* zPath is a path to a WAL or journal file. The following block derives ** the path to the associated database file from zPath. This block handles ** the following naming conventions: ** ** "-journal" ** "-wal" ** "-journalNN" ** "-walNN" ** ** where NN is a decimal number. The NN naming schemes are ** used by the test_multiplex.c module. ** ** In normal operation, the journal file name will always contain ** a '-' character. However in 8+3 filename mode, or if a corrupt ** rollback journal specifies a super-journal with a goofy name, then ** the '-' might be missing or the '-' might be the first character in ** the filename. In that case, just return SQLITE_OK with *pMode==0. */ nDb = sqlite3Strlen30(zPath) - 1; while( nDb>0 && zPath[nDb]!='.' ){ if( zPath[nDb]=='-' ){ memcpy(zDb, zPath, nDb); zDb[nDb] = '\0'; rc = getFileMode(zDb, pMode, pUid, pGid); break; } nDb--; } }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ *pMode = 0600; }else if( flags & SQLITE_OPEN_URI ){ /* If this is a main database file and the file was opened using a URI ** filename, check for the "modeof" parameter. If present, interpret ** its value as a filename and try to copy the mode, uid and gid from ** that file. */ const char *z = sqlite3_uri_parameter(zPath, "modeof"); if( z ){ rc = getFileMode(z, pMode, pUid, pGid); } } return rc; } /* ** Open the file zPath. ** ** Previously, the SQLite OS layer used three functions in place of this ** one: ** ** sqlite3OsOpenReadWrite(); ** sqlite3OsOpenReadOnly(); ** sqlite3OsOpenExclusive(); ** ** These calls correspond to the following combinations of flags: ** ** ReadWrite() -> (READWRITE | CREATE) ** ReadOnly() -> (READONLY) ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) ** ** The old OpenExclusive() accepted a boolean argument - "delFlag". If ** true, the file was configured to be automatically deleted when the ** file handle closed. To achieve the same effect using this new ** interface, add the DELETEONCLOSE flag to those specified above for ** OpenExclusive(). */ static int unixOpen( sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ const char *zPath, /* Pathname of file to be opened */ sqlite3_file *pFile, /* The file descriptor to be filled in */ int flags, /* Input flags to control the opening */ int *pOutFlags /* Output flags returned to SQLite core */ ){ unixFile *p = (unixFile *)pFile; int fd = -1; /* File descriptor returned by open() */ int openFlags = 0; /* Flags to pass to open() */ int eType = flags&0x0FFF00; /* Type of file to open */ int noLock; /* True to omit locking primitives */ int rc = SQLITE_OK; /* Function Return Code */ int ctrlFlags = 0; /* UNIXFILE_* flags */ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); int isCreate = (flags & SQLITE_OPEN_CREATE); int isReadonly = (flags & SQLITE_OPEN_READONLY); int isReadWrite = (flags & SQLITE_OPEN_READWRITE); #if SQLITE_ENABLE_LOCKING_STYLE int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); #endif #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE struct statfs fsInfo; #endif /* If creating a super- or main-file journal, this function will open ** a file-descriptor on the directory too. The first time unixSync() ** is called the directory file descriptor will be fsync()ed and close()d. */ int isNewJrnl = (isCreate && ( eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_WAL )); /* If argument zPath is a NULL pointer, this function is required to open ** a temporary file. Use this buffer to store the file name in. */ char zTmpname[MAX_PATHNAME+2]; const char *zName = zPath; /* Check the following statements are true: ** ** (a) Exactly one of the READWRITE and READONLY flags must be set, and ** (b) if CREATE is set, then READWRITE must also be set, and ** (c) if EXCLUSIVE is set, then CREATE must also be set. ** (d) if DELETEONCLOSE is set, then CREATE must also be set. */ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); assert(isCreate==0 || isReadWrite); assert(isExclusive==0 || isCreate); assert(isDelete==0 || isCreate); /* The main DB, main journal, WAL file and super-journal are never ** automatically deleted. Nor are they ever temporary files. */ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); /* Assert that the upper layer has set one of the "file-type" flags. */ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL ); /* Detect a pid change and reset the PRNG. There is a race condition ** here such that two or more threads all trying to open databases at ** the same instant might all reset the PRNG. But multiple resets ** are harmless. */ if( randomnessPid!=osGetpid(0) ){ randomnessPid = osGetpid(0); sqlite3_randomness(0,0); } memset(p, 0, sizeof(unixFile)); #ifdef SQLITE_ASSERT_NO_FILES /* Applications that never read or write a persistent disk files */ assert( zName==0 ); #endif if( eType==SQLITE_OPEN_MAIN_DB ){ UnixUnusedFd *pUnused; pUnused = findReusableFd(zName, flags); if( pUnused ){ fd = pUnused->fd; }else{ pUnused = sqlite3_malloc64(sizeof(*pUnused)); if( !pUnused ){ return SQLITE_NOMEM_BKPT; } } p->pPreallocatedUnused = pUnused; /* Database filenames are double-zero terminated if they are not ** URIs with parameters. Hence, they can always be passed into ** sqlite3_uri_parameter(). */ assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 ); }else if( !zName ){ /* If zName is NULL, the upper layer is requesting a temp file. */ assert(isDelete && !isNewJrnl); rc = unixGetTempname(pVfs->mxPathname, zTmpname); if( rc!=SQLITE_OK ){ return rc; } zName = zTmpname; /* Generated temporary filenames are always double-zero terminated ** for use by sqlite3_uri_parameter(). */ assert( zName[strlen(zName)+1]==0 ); } /* Determine the value of the flags parameter passed to POSIX function ** open(). These must be calculated even if open() is not called, as ** they may be stored as part of the file handle and used by the ** 'conch file' locking functions later on. */ if( isReadonly ) openFlags |= O_RDONLY; if( isReadWrite ) openFlags |= O_RDWR; if( isCreate ) openFlags |= O_CREAT; if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); openFlags |= (O_LARGEFILE|O_BINARY|O_NOFOLLOW); if( fd<0 ){ mode_t openMode; /* Permissions to create file with */ uid_t uid; /* Userid for the file */ gid_t gid; /* Groupid for the file */ rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid); if( rc!=SQLITE_OK ){ assert( !p->pPreallocatedUnused ); assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); return rc; } fd = robust_open(zName, openFlags, openMode); OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); assert( !isExclusive || (openFlags & O_CREAT)!=0 ); if( fd<0 ){ if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){ /* If unable to create a journal because the directory is not ** writable, change the error code to indicate that. */ rc = SQLITE_READONLY_DIRECTORY; }else if( errno!=EISDIR && isReadWrite ){ /* Failed to open the file for read/write access. Try read-only. */ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); openFlags &= ~(O_RDWR|O_CREAT); flags |= SQLITE_OPEN_READONLY; openFlags |= O_RDONLY; isReadonly = 1; fd = robust_open(zName, openFlags, openMode); } } if( fd<0 ){ int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); if( rc==SQLITE_OK ) rc = rc2; goto open_finished; } /* The owner of the rollback journal or WAL file should always be the ** same as the owner of the database file. Try to ensure that this is ** the case. The chown() system call will be a no-op if the current ** process lacks root privileges, be we should at least try. Without ** this step, if a root process opens a database file, it can leave ** behinds a journal/WAL that is owned by root and hence make the ** database inaccessible to unprivileged processes. ** ** If openMode==0, then that means uid and gid are not set correctly ** (probably because SQLite is configured to use 8+3 filename mode) and ** in that case we do not want to attempt the chown(). */ if( openMode && (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))!=0 ){ robustFchown(fd, uid, gid); } } assert( fd>=0 ); if( pOutFlags ){ *pOutFlags = flags; } if( p->pPreallocatedUnused ){ p->pPreallocatedUnused->fd = fd; p->pPreallocatedUnused->flags = flags & (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE); } if( isDelete ){ #if OS_VXWORKS zPath = zName; #elif defined(SQLITE_UNLINK_AFTER_CLOSE) zPath = sqlite3_mprintf("%s", zName); if( zPath==0 ){ robust_close(p, fd, __LINE__); return SQLITE_NOMEM_BKPT; } #else osUnlink(zName); #endif } #if SQLITE_ENABLE_LOCKING_STYLE else{ p->openFlags = openFlags; } #endif #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE if( fstatfs(fd, &fsInfo) == -1 ){ storeLastErrno(p, errno); robust_close(p, fd, __LINE__); return SQLITE_IOERR_ACCESS; } if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; } if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) { ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; } #endif /* Set up appropriate ctrlFlags */ if( isDelete ) ctrlFlags |= UNIXFILE_DELETE; if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY; noLock = eType!=SQLITE_OPEN_MAIN_DB; if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK; if( isNewJrnl ) ctrlFlags |= UNIXFILE_DIRSYNC; if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI; #if SQLITE_ENABLE_LOCKING_STYLE #if SQLITE_PREFER_PROXY_LOCKING isAutoProxy = 1; #endif if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); int useProxy = 0; /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means ** never use proxy, NULL means use proxy for non-local files only. */ if( envforce!=NULL ){ useProxy = atoi(envforce)>0; }else{ useProxy = !(fsInfo.f_flags&MNT_LOCAL); } if( useProxy ){ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); if( rc==SQLITE_OK ){ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); if( rc!=SQLITE_OK ){ /* Use unixClose to clean up the resources added in fillInUnixFile ** and clear all the structure's references. Specifically, ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op */ unixClose(pFile); return rc; } } goto open_finished; } } #endif assert( zPath==0 || zPath[0]=='/' || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); open_finished: if( rc!=SQLITE_OK ){ sqlite3_free(p->pPreallocatedUnused); } return rc; } /* ** Delete the file at zPath. If the dirSync argument is true, fsync() ** the directory after deleting the file. */ static int unixDelete( sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ const char *zPath, /* Name of file to be deleted */ int dirSync /* If true, fsync() directory after deleting file */ ){ int rc = SQLITE_OK; UNUSED_PARAMETER(NotUsed); SimulateIOError(return SQLITE_IOERR_DELETE); if( osUnlink(zPath)==(-1) ){ if( errno==ENOENT #if OS_VXWORKS || osAccess(zPath,0)!=0 #endif ){ rc = SQLITE_IOERR_DELETE_NOENT; }else{ rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); } return rc; } #ifndef SQLITE_DISABLE_DIRSYNC if( (dirSync & 1)!=0 ){ int fd; rc = osOpenDirectory(zPath, &fd); if( rc==SQLITE_OK ){ if( full_fsync(fd,0,0) ){ rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); } robust_close(0, fd, __LINE__); }else{ assert( rc==SQLITE_CANTOPEN ); rc = SQLITE_OK; } } #endif return rc; } /* ** Test the existence of or access permissions of file zPath. The ** test performed depends on the value of flags: ** ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. ** ** Otherwise return 0. */ static int unixAccess( sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ const char *zPath, /* Path of the file to examine */ int flags, /* What do we want to learn about the zPath file? */ int *pResOut /* Write result boolean here */ ){ UNUSED_PARAMETER(NotUsed); SimulateIOError( return SQLITE_IOERR_ACCESS; ); assert( pResOut!=0 ); /* The spec says there are three possible values for flags. But only ** two of them are actually used */ assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE ); if( flags==SQLITE_ACCESS_EXISTS ){ struct stat buf; *pResOut = 0==osStat(zPath, &buf) && (!S_ISREG(buf.st_mode) || buf.st_size>0); }else{ *pResOut = osAccess(zPath, W_OK|R_OK)==0; } return SQLITE_OK; } /* ** A pathname under construction */ typedef struct DbPath DbPath; struct DbPath { int rc; /* Non-zero following any error */ int nSymlink; /* Number of symlinks resolved */ char *zOut; /* Write the pathname here */ int nOut; /* Bytes of space available to zOut[] */ int nUsed; /* Bytes of zOut[] currently being used */ }; /* Forward reference */ static void appendAllPathElements(DbPath*,const char*); /* ** Append a single path element to the DbPath under construction */ static void appendOnePathElement( DbPath *pPath, /* Path under construction, to which to append zName */ const char *zName, /* Name to append to pPath. Not zero-terminated */ int nName /* Number of significant bytes in zName */ ){ assert( nName>0 ); assert( zName!=0 ); if( zName[0]=='.' ){ if( nName==1 ) return; if( zName[1]=='.' && nName==2 ){ if( pPath->nUsed>1 ){ assert( pPath->zOut[0]=='/' ); while( pPath->zOut[--pPath->nUsed]!='/' ){} } return; } } if( pPath->nUsed + nName + 2 >= pPath->nOut ){ pPath->rc = SQLITE_ERROR; return; } pPath->zOut[pPath->nUsed++] = '/'; memcpy(&pPath->zOut[pPath->nUsed], zName, nName); pPath->nUsed += nName; #if defined(HAVE_READLINK) && defined(HAVE_LSTAT) if( pPath->rc==SQLITE_OK ){ const char *zIn; struct stat buf; pPath->zOut[pPath->nUsed] = 0; zIn = pPath->zOut; if( osLstat(zIn, &buf)!=0 ){ if( errno!=ENOENT ){ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn); } }else if( S_ISLNK(buf.st_mode) ){ ssize_t got; char zLnk[SQLITE_MAX_PATHLEN+2]; if( pPath->nSymlink++ > SQLITE_MAX_SYMLINK ){ pPath->rc = SQLITE_CANTOPEN_BKPT; return; } got = osReadlink(zIn, zLnk, sizeof(zLnk)-2); if( got<=0 || got>=(ssize_t)sizeof(zLnk)-2 ){ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn); return; } zLnk[got] = 0; if( zLnk[0]=='/' ){ pPath->nUsed = 0; }else{ pPath->nUsed -= nName + 1; } appendAllPathElements(pPath, zLnk); } } #endif } /* ** Append all path elements in zPath to the DbPath under construction. */ static void appendAllPathElements( DbPath *pPath, /* Path under construction, to which to append zName */ const char *zPath /* Path to append to pPath. Is zero-terminated */ ){ int i = 0; int j = 0; do{ while( zPath[i] && zPath[i]!='/' ){ i++; } if( i>j ){ appendOnePathElement(pPath, &zPath[j], i-j); } j = i+1; }while( zPath[i++] ); } /* ** Turn a relative pathname into a full pathname. The relative path ** is stored as a nul-terminated string in the buffer pointed to by ** zPath. ** ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes ** (in this case, MAX_PATHNAME bytes). The full-path is written to ** this buffer before returning. */ static int unixFullPathname( sqlite3_vfs *pVfs, /* Pointer to vfs object */ const char *zPath, /* Possibly relative input path */ int nOut, /* Size of output buffer in bytes */ char *zOut /* Output buffer */ ){ DbPath path; UNUSED_PARAMETER(pVfs); path.rc = 0; path.nUsed = 0; path.nSymlink = 0; path.nOut = nOut; path.zOut = zOut; if( zPath[0]!='/' ){ char zPwd[SQLITE_MAX_PATHLEN+2]; if( osGetcwd(zPwd, sizeof(zPwd)-2)==0 ){ return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); } appendAllPathElements(&path, zPwd); } appendAllPathElements(&path, zPath); zOut[path.nUsed] = 0; if( path.rc || path.nUsed<2 ) return SQLITE_CANTOPEN_BKPT; if( path.nSymlink ) return SQLITE_OK_SYMLINK; return SQLITE_OK; } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ #include static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ UNUSED_PARAMETER(NotUsed); return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); } /* ** SQLite calls this function immediately after a call to unixDlSym() or ** unixDlOpen() fails (returns a null pointer). If a more detailed error ** message is available, it is written to zBufOut. If no error message ** is available, zBufOut is left unmodified and SQLite uses a default ** error message. */ static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ const char *zErr; UNUSED_PARAMETER(NotUsed); unixEnterMutex(); zErr = dlerror(); if( zErr ){ sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); } unixLeaveMutex(); } static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ /* ** GCC with -pedantic-errors says that C90 does not allow a void* to be ** cast into a pointer to a function. And yet the library dlsym() routine ** returns a void* which is really a pointer to a function. So how do we ** use dlsym() with -pedantic-errors? ** ** Variable x below is defined to be a pointer to a function taking ** parameters void* and const char* and returning a pointer to a function. ** We initialize x by assigning it a pointer to the dlsym() function. ** (That assignment requires a cast.) Then we call the function that ** x points to. ** ** This work-around is unlikely to work correctly on any system where ** you really cannot cast a function pointer into void*. But then, on the ** other hand, dlsym() will not work on such a system either, so we have ** not really lost anything. */ void (*(*x)(void*,const char*))(void); UNUSED_PARAMETER(NotUsed); x = (void(*(*)(void*,const char*))(void))dlsym; return (*x)(p, zSym); } static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ UNUSED_PARAMETER(NotUsed); dlclose(pHandle); } #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ #define unixDlOpen 0 #define unixDlError 0 #define unixDlSym 0 #define unixDlClose 0 #endif /* ** Write nBuf bytes of random data to the supplied buffer zBuf. */ static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ UNUSED_PARAMETER(NotUsed); assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); /* We have to initialize zBuf to prevent valgrind from reporting ** errors. The reports issued by valgrind are incorrect - we would ** prefer that the randomness be increased by making use of the ** uninitialized space in zBuf - but valgrind errors tend to worry ** some users. Rather than argue, it seems easier just to initialize ** the whole array and silence valgrind, even if that means less randomness ** in the random seed. ** ** When testing, initializing zBuf[] to zero is all we do. That means ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); randomnessPid = osGetpid(0); #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) { int fd, got; fd = robust_open("/dev/urandom", O_RDONLY, 0); if( fd<0 ){ time_t t; time(&t); memcpy(zBuf, &t, sizeof(t)); memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid)); assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf ); nBuf = sizeof(t) + sizeof(randomnessPid); }else{ do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR ); robust_close(0, fd, __LINE__); } } #endif return nBuf; } /* ** Sleep for a little while. Return the amount of time slept. ** The argument is the number of microseconds we want to sleep. ** The return value is the number of microseconds of sleep actually ** requested from the underlying operating system, a number which ** might be greater than or equal to the argument, but not less ** than the argument. */ static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ #if !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP+0 struct timespec sp; sp.tv_sec = microseconds / 1000000; sp.tv_nsec = (microseconds % 1000000) * 1000; /* Almost all modern unix systems support nanosleep(). But if you are ** compiling for one of the rare exceptions, you can use ** -DHAVE_NANOSLEEP=0 (perhaps in conjuction with -DHAVE_USLEEP if ** usleep() is available) in order to bypass the use of nanosleep() */ nanosleep(&sp, NULL); UNUSED_PARAMETER(NotUsed); return microseconds; #elif defined(HAVE_USLEEP) && HAVE_USLEEP if( microseconds>=1000000 ) sleep(microseconds/1000000); if( microseconds%1000000 ) usleep(microseconds%1000000); UNUSED_PARAMETER(NotUsed); return microseconds; #else int seconds = (microseconds+999999)/1000000; sleep(seconds); UNUSED_PARAMETER(NotUsed); return seconds*1000000; #endif } /* ** The following variable, if set to a non-zero value, is interpreted as ** the number of seconds since 1970 and is used to set the result of ** sqlite3OsCurrentTime() during testing. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ #endif /* ** Find the current time (in Universal Coordinated Time). Write into *piNow ** the current time and date as a Julian Day number times 86_400_000. In ** other words, write into *piNow the number of milliseconds since the Julian ** epoch of noon in Greenwich on November 24, 4714 B.C according to the ** proleptic Gregorian calendar. ** ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date ** cannot be found. */ static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; int rc = SQLITE_OK; #if defined(NO_GETTOD) time_t t; time(&t); *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; #elif OS_VXWORKS struct timespec sNow; clock_gettime(CLOCK_REALTIME, &sNow); *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; #else struct timeval sNow; (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; #endif #ifdef SQLITE_TEST if( sqlite3_current_time ){ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; } #endif UNUSED_PARAMETER(NotUsed); return rc; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Find the current time (in Universal Coordinated Time). Write the ** current time and date as a Julian Day number into *prNow and ** return 0. Return 1 if the time and date cannot be found. */ static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ sqlite3_int64 i = 0; int rc; UNUSED_PARAMETER(NotUsed); rc = unixCurrentTimeInt64(0, &i); *prNow = i/86400000.0; return rc; } #else # define unixCurrentTime 0 #endif /* ** The xGetLastError() method is designed to return a better ** low-level error message when operating-system problems come up ** during SQLite operation. Only the integer return code is currently ** used. */ static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ UNUSED_PARAMETER(NotUsed); UNUSED_PARAMETER(NotUsed2); UNUSED_PARAMETER(NotUsed3); return errno; } /* ************************ End of sqlite3_vfs methods *************************** ******************************************************************************/ /****************************************************************************** ************************** Begin Proxy Locking ******************************** ** ** Proxy locking is a "uber-locking-method" in this sense: It uses the ** other locking methods on secondary lock files. Proxy locking is a ** meta-layer over top of the primitive locking implemented above. For ** this reason, the division that implements of proxy locking is deferred ** until late in the file (here) after all of the other I/O methods have ** been defined - so that the primitive locking methods are available ** as services to help with the implementation of proxy locking. ** **** ** ** The default locking schemes in SQLite use byte-range locks on the ** database file to coordinate safe, concurrent access by multiple readers ** and writers [http://sqlite.org/lockingv3.html]. The five file locking ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented ** as POSIX read & write locks over fixed set of locations (via fsctl), ** on AFP and SMB only exclusive byte-range locks are available via fsctl ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected ** address in the shared range is taken for a SHARED lock, the entire ** shared range is taken for an EXCLUSIVE lock): ** ** PENDING_BYTE 0x40000000 ** RESERVED_BYTE 0x40000001 ** SHARED_RANGE 0x40000002 -> 0x40000200 ** ** This works well on the local file system, but shows a nearly 100x ** slowdown in read performance on AFP because the AFP client disables ** the read cache when byte-range locks are present. Enabling the read ** cache exposes a cache coherency problem that is present on all OS X ** supported network file systems. NFS and AFP both observe the ** close-to-open semantics for ensuring cache coherency ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively ** address the requirements for concurrent database access by multiple ** readers and writers ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. ** ** To address the performance and cache coherency issues, proxy file locking ** changes the way database access is controlled by limiting access to a ** single host at a time and moving file locks off of the database file ** and onto a proxy file on the local file system. ** ** ** Using proxy locks ** ----------------- ** ** C APIs ** ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE, ** | ":auto:"); ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE, ** &); ** ** ** SQL pragmas ** ** PRAGMA [database.]lock_proxy_file= | :auto: ** PRAGMA [database.]lock_proxy_file ** ** Specifying ":auto:" means that if there is a conch file with a matching ** host ID in it, the proxy path in the conch file will be used, otherwise ** a proxy path based on the user's temp dir ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the ** actual proxy file name is generated from the name and path of the ** database file. For example: ** ** For database path "/Users/me/foo.db" ** The lock path will be "/sqliteplocks/_Users_me_foo.db:auto:") ** ** Once a lock proxy is configured for a database connection, it can not ** be removed, however it may be switched to a different proxy path via ** the above APIs (assuming the conch file is not being held by another ** connection or process). ** ** ** How proxy locking works ** ----------------------- ** ** Proxy file locking relies primarily on two new supporting files: ** ** * conch file to limit access to the database file to a single host ** at a time ** ** * proxy file to act as a proxy for the advisory locks normally ** taken on the database ** ** The conch file - to use a proxy file, sqlite must first "hold the conch" ** by taking an sqlite-style shared lock on the conch file, reading the ** contents and comparing the host's unique host ID (see below) and lock ** proxy path against the values stored in the conch. The conch file is ** stored in the same directory as the database file and the file name ** is patterned after the database file name as ".-conch". ** If the conch file does not exist, or its contents do not match the ** host ID and/or proxy path, then the lock is escalated to an exclusive ** lock and the conch file contents is updated with the host ID and proxy ** path and the lock is downgraded to a shared lock again. If the conch ** is held by another process (with a shared lock), the exclusive lock ** will fail and SQLITE_BUSY is returned. ** ** The proxy file - a single-byte file used for all advisory file locks ** normally taken on the database file. This allows for safe sharing ** of the database file for multiple readers and writers on the same ** host (the conch ensures that they all use the same local lock file). ** ** Requesting the lock proxy does not immediately take the conch, it is ** only taken when the first request to lock database file is made. ** This matches the semantics of the traditional locking behavior, where ** opening a connection to a database file does not take a lock on it. ** The shared lock and an open file descriptor are maintained until ** the connection to the database is closed. ** ** The proxy file and the lock file are never deleted so they only need ** to be created the first time they are used. ** ** Configuration options ** --------------------- ** ** SQLITE_PREFER_PROXY_LOCKING ** ** Database files accessed on non-local file systems are ** automatically configured for proxy locking, lock files are ** named automatically using the same logic as ** PRAGMA lock_proxy_file=":auto:" ** ** SQLITE_PROXY_DEBUG ** ** Enables the logging of error messages during host id file ** retrieval and creation ** ** LOCKPROXYDIR ** ** Overrides the default directory used for lock proxy files that ** are named automatically via the ":auto:" setting ** ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS ** ** Permissions to use when creating a directory for storing the ** lock proxy files, only used when LOCKPROXYDIR is not set. ** ** ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will ** force proxy locking to be used for every database file opened, and 0 ** will force automatic proxy locking to be disabled for all database ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). */ /* ** Proxy locking is only available on MacOSX */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE /* ** The proxyLockingContext has the path and file structures for the remote ** and local proxy files in it */ typedef struct proxyLockingContext proxyLockingContext; struct proxyLockingContext { unixFile *conchFile; /* Open conch file */ char *conchFilePath; /* Name of the conch file */ unixFile *lockProxy; /* Open proxy lock file */ char *lockProxyPath; /* Name of the proxy lock file */ char *dbPath; /* Name of the open file */ int conchHeld; /* 1 if the conch is held, -1 if lockless */ int nFails; /* Number of conch taking failures */ void *oldLockingContext; /* Original lockingcontext to restore on close */ sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ }; /* ** The proxy lock file path for the database at dbPath is written into lPath, ** which must point to valid, writable memory large enough for a maxLen length ** file path. */ static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ int len; int dbLen; int i; #ifdef LOCKPROXYDIR len = strlcpy(lPath, LOCKPROXYDIR, maxLen); #else # ifdef _CS_DARWIN_USER_TEMP_DIR { if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", lPath, errno, osGetpid(0))); return SQLITE_IOERR_LOCK; } len = strlcat(lPath, "sqliteplocks", maxLen); } # else len = strlcpy(lPath, "/tmp/", maxLen); # endif #endif if( lPath[len-1]!='/' ){ len = strlcat(lPath, "/", maxLen); } /* transform the db path to a unique cache name */ dbLen = (int)strlen(dbPath); for( i=0; i 0) ){ /* only mkdir if leaf dir != "." or "/" or ".." */ if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ buf[i]='\0'; if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ int err=errno; if( err!=EEXIST ) { OSTRACE(("CREATELOCKPATH FAILED creating %s, " "'%s' proxy lock path=%s pid=%d\n", buf, strerror(err), lockPath, osGetpid(0))); return err; } } } start=i+1; } buf[i] = lockPath[i]; } OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0))); return 0; } /* ** Create a new VFS file descriptor (stored in memory obtained from ** sqlite3_malloc) and open the file named "path" in the file descriptor. ** ** The caller is responsible not only for closing the file descriptor ** but also for freeing the memory associated with the file descriptor. */ static int proxyCreateUnixFile( const char *path, /* path for the new unixFile */ unixFile **ppFile, /* unixFile created and returned by ref */ int islockfile /* if non zero missing dirs will be created */ ) { int fd = -1; unixFile *pNew; int rc = SQLITE_OK; int openFlags = O_RDWR | O_CREAT | O_NOFOLLOW; sqlite3_vfs dummyVfs; int terrno = 0; UnixUnusedFd *pUnused = NULL; /* 1. first try to open/create the file ** 2. if that fails, and this is a lock file (not-conch), try creating ** the parent directories and then try again. ** 3. if that fails, try to open the file read-only ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file */ pUnused = findReusableFd(path, openFlags); if( pUnused ){ fd = pUnused->fd; }else{ pUnused = sqlite3_malloc64(sizeof(*pUnused)); if( !pUnused ){ return SQLITE_NOMEM_BKPT; } } if( fd<0 ){ fd = robust_open(path, openFlags, 0); terrno = errno; if( fd<0 && errno==ENOENT && islockfile ){ if( proxyCreateLockPath(path) == SQLITE_OK ){ fd = robust_open(path, openFlags, 0); } } } if( fd<0 ){ openFlags = O_RDONLY | O_NOFOLLOW; fd = robust_open(path, openFlags, 0); terrno = errno; } if( fd<0 ){ if( islockfile ){ return SQLITE_BUSY; } switch (terrno) { case EACCES: return SQLITE_PERM; case EIO: return SQLITE_IOERR_LOCK; /* even though it is the conch */ default: return SQLITE_CANTOPEN_BKPT; } } pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew)); if( pNew==NULL ){ rc = SQLITE_NOMEM_BKPT; goto end_create_proxy; } memset(pNew, 0, sizeof(unixFile)); pNew->openFlags = openFlags; memset(&dummyVfs, 0, sizeof(dummyVfs)); dummyVfs.pAppData = (void*)&autolockIoFinder; dummyVfs.zName = "dummy"; pUnused->fd = fd; pUnused->flags = openFlags; pNew->pPreallocatedUnused = pUnused; rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0); if( rc==SQLITE_OK ){ *ppFile = pNew; return SQLITE_OK; } end_create_proxy: robust_close(pNew, fd, __LINE__); sqlite3_free(pNew); sqlite3_free(pUnused); return rc; } #ifdef SQLITE_TEST /* simulate multiple hosts by creating unique hostid file paths */ SQLITE_API int sqlite3_hostid_num = 0; #endif #define PROXY_HOSTIDLEN 16 /* conch file host id length */ #if HAVE_GETHOSTUUID /* Not always defined in the headers as it ought to be */ extern int gethostuuid(uuid_t id, const struct timespec *wait); #endif /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN ** bytes of writable memory. */ static int proxyGetHostID(unsigned char *pHostID, int *pError){ assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); memset(pHostID, 0, PROXY_HOSTIDLEN); #if HAVE_GETHOSTUUID { struct timespec timeout = {1, 0}; /* 1 sec timeout */ if( gethostuuid(pHostID, &timeout) ){ int err = errno; if( pError ){ *pError = err; } return SQLITE_IOERR; } } #else UNUSED_PARAMETER(pError); #endif #ifdef SQLITE_TEST /* simulate multiple hosts by creating unique hostid file paths */ if( sqlite3_hostid_num != 0){ pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); } #endif return SQLITE_OK; } /* The conch file contains the header, host id and lock file path */ #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ #define PROXY_HEADERLEN 1 /* conch file header length */ #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) /* ** Takes an open conch file, copies the contents to a new path and then moves ** it back. The newly created file's file descriptor is assigned to the ** conch file structure and finally the original conch file descriptor is ** closed. Returns zero if successful. */ static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; unixFile *conchFile = pCtx->conchFile; char tPath[MAXPATHLEN]; char buf[PROXY_MAXCONCHLEN]; char *cPath = pCtx->conchFilePath; size_t readLen = 0; size_t pathLen = 0; char errmsg[64] = ""; int fd = -1; int rc = -1; UNUSED_PARAMETER(myHostID); /* create a new path by replace the trailing '-conch' with '-break' */ pathLen = strlcpy(tPath, cPath, MAXPATHLEN); if( pathLen>MAXPATHLEN || pathLen<6 || (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); goto end_breaklock; } /* read the conch content */ readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); if( readLenh, __LINE__); conchFile->h = fd; conchFile->openFlags = O_RDWR | O_CREAT; end_breaklock: if( rc ){ if( fd>=0 ){ osUnlink(tPath); robust_close(pFile, fd, __LINE__); } fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); } return rc; } /* Take the requested lock on the conch file and break a stale lock if the ** host id matches. */ static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; unixFile *conchFile = pCtx->conchFile; int rc = SQLITE_OK; int nTries = 0; struct timespec conchModTime; memset(&conchModTime, 0, sizeof(conchModTime)); do { rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); nTries ++; if( rc==SQLITE_BUSY ){ /* If the lock failed (busy): * 1st try: get the mod time of the conch, wait 0.5s and try again. * 2nd try: fail if the mod time changed or host id is different, wait * 10 sec and try again * 3rd try: break the lock unless the mod time has changed. */ struct stat buf; if( osFstat(conchFile->h, &buf) ){ storeLastErrno(pFile, errno); return SQLITE_IOERR_LOCK; } if( nTries==1 ){ conchModTime = buf.st_mtimespec; unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/ continue; } assert( nTries>1 ); if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ return SQLITE_BUSY; } if( nTries==2 ){ char tBuf[PROXY_MAXCONCHLEN]; int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); if( len<0 ){ storeLastErrno(pFile, errno); return SQLITE_IOERR_LOCK; } if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ /* don't break the lock if the host id doesn't match */ if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ return SQLITE_BUSY; } }else{ /* don't break the lock on short read or a version mismatch */ return SQLITE_BUSY; } unixSleep(0,10000000); /* wait 10 sec and try the lock again */ continue; } assert( nTries==3 ); if( 0==proxyBreakConchLock(pFile, myHostID) ){ rc = SQLITE_OK; if( lockType==EXCLUSIVE_LOCK ){ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); } if( !rc ){ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); } } } } while( rc==SQLITE_BUSY && nTries<3 ); return rc; } /* Takes the conch by taking a shared lock and read the contents conch, if ** lockPath is non-NULL, the host ID and lock file path must match. A NULL ** lockPath means that the lockPath in the conch file will be used if the ** host IDs match, or a new lock path will be generated automatically ** and written to the conch file. */ static int proxyTakeConch(unixFile *pFile){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld!=0 ){ return SQLITE_OK; }else{ unixFile *conchFile = pCtx->conchFile; uuid_t myHostID; int pError = 0; char readBuf[PROXY_MAXCONCHLEN]; char lockPath[MAXPATHLEN]; char *tempLockPath = NULL; int rc = SQLITE_OK; int createConch = 0; int hostIdMatch = 0; int readLen = 0; int tryOldLockPath = 0; int forceNewLockPath = 0; OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid(0))); rc = proxyGetHostID(myHostID, &pError); if( (rc&0xff)==SQLITE_IOERR ){ storeLastErrno(pFile, pError); goto end_takeconch; } rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); if( rc!=SQLITE_OK ){ goto end_takeconch; } /* read the existing conch file */ readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); if( readLen<0 ){ /* I/O error: lastErrno set by seekAndRead */ storeLastErrno(pFile, conchFile->lastErrno); rc = SQLITE_IOERR_READ; goto end_takeconch; }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || readBuf[0]!=(char)PROXY_CONCHVERSION ){ /* a short read or version format mismatch means we need to create a new ** conch file. */ createConch = 1; } /* if the host id matches and the lock path already exists in the conch ** we'll try to use the path there, if we can't open that path, we'll ** retry with a new auto-generated path */ do { /* in case we need to try again for an :auto: named lock file */ if( !createConch && !forceNewLockPath ){ hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); /* if the conch has data compare the contents */ if( !pCtx->lockProxyPath ){ /* for auto-named local lock file, just check the host ID and we'll ** use the local lock file path that's already in there */ if( hostIdMatch ){ size_t pathLen = (readLen - PROXY_PATHINDEX); if( pathLen>=MAXPATHLEN ){ pathLen=MAXPATHLEN-1; } memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); lockPath[pathLen] = 0; tempLockPath = lockPath; tryOldLockPath = 1; /* create a copy of the lock path if the conch is taken */ goto end_takeconch; } }else if( hostIdMatch && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], readLen-PROXY_PATHINDEX) ){ /* conch host and lock path match */ goto end_takeconch; } } /* if the conch isn't writable and doesn't match, we can't take it */ if( (conchFile->openFlags&O_RDWR) == 0 ){ rc = SQLITE_BUSY; goto end_takeconch; } /* either the conch didn't match or we need to create a new one */ if( !pCtx->lockProxyPath ){ proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); tempLockPath = lockPath; /* create a copy of the lock path _only_ if the conch is taken */ } /* update conch with host and path (this will fail if other process ** has a shared lock already), if the host id matches, use the big ** stick. */ futimes(conchFile->h, NULL); if( hostIdMatch && !createConch ){ if( conchFile->pInode && conchFile->pInode->nShared>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; } else { rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); } }else{ rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); } if( rc==SQLITE_OK ){ char writeBuffer[PROXY_MAXCONCHLEN]; int writeSize = 0; writeBuffer[0] = (char)PROXY_CONCHVERSION; memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); if( pCtx->lockProxyPath!=NULL ){ strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); }else{ strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); } writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); robust_ftruncate(conchFile->h, writeSize); rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); full_fsync(conchFile->h,0,0); /* If we created a new conch file (not just updated the contents of a ** valid conch file), try to match the permissions of the database */ if( rc==SQLITE_OK && createConch ){ struct stat buf; int err = osFstat(pFile->h, &buf); if( err==0 ){ mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | S_IROTH|S_IWOTH); /* try to match the database file R/W permissions, ignore failure */ #ifndef SQLITE_PROXY_DEBUG osFchmod(conchFile->h, cmode); #else do{ rc = osFchmod(conchFile->h, cmode); }while( rc==(-1) && errno==EINTR ); if( rc!=0 ){ int code = errno; fprintf(stderr, "fchmod %o FAILED with %d %s\n", cmode, code, strerror(code)); } else { fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); } }else{ int code = errno; fprintf(stderr, "STAT FAILED[%d] with %d %s\n", err, code, strerror(code)); #endif } } } conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); end_takeconch: OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); if( rc==SQLITE_OK && pFile->openFlags ){ int fd; if( pFile->h>=0 ){ robust_close(pFile, pFile->h, __LINE__); } pFile->h = -1; fd = robust_open(pCtx->dbPath, pFile->openFlags, 0); OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); if( fd>=0 ){ pFile->h = fd; }else{ rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called during locking */ } } if( rc==SQLITE_OK && !pCtx->lockProxy ){ char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ /* we couldn't create the proxy lock file with the old lock file path ** so try again via auto-naming */ forceNewLockPath = 1; tryOldLockPath = 0; continue; /* go back to the do {} while start point, try again */ } } if( rc==SQLITE_OK ){ /* Need to make a copy of path if we extracted the value ** from the conch file or the path was allocated on the stack */ if( tempLockPath ){ pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); if( !pCtx->lockProxyPath ){ rc = SQLITE_NOMEM_BKPT; } } } if( rc==SQLITE_OK ){ pCtx->conchHeld = 1; if( pCtx->lockProxy->pMethod == &afpIoMethods ){ afpLockingContext *afpCtx; afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; afpCtx->dbPath = pCtx->lockProxyPath; } } else { conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); } OSTRACE(("TAKECONCH %d %s\n", conchFile->h, rc==SQLITE_OK?"ok":"failed")); return rc; } while (1); /* in case we need to retry the :auto: lock file - ** we should never get here except via the 'continue' call. */ } } /* ** If pFile holds a lock on a conch file, then release that lock. */ static int proxyReleaseConch(unixFile *pFile){ int rc = SQLITE_OK; /* Subroutine return code */ proxyLockingContext *pCtx; /* The locking context for the proxy lock */ unixFile *conchFile; /* Name of the conch file */ pCtx = (proxyLockingContext *)pFile->lockingContext; conchFile = pCtx->conchFile; OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid(0))); if( pCtx->conchHeld>0 ){ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); } pCtx->conchHeld = 0; OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, (rc==SQLITE_OK ? "ok" : "failed"))); return rc; } /* ** Given the name of a database file, compute the name of its conch file. ** Store the conch filename in memory obtained from sqlite3_malloc64(). ** Make *pConchPath point to the new name. Return SQLITE_OK on success ** or SQLITE_NOMEM if unable to obtain memory. ** ** The caller is responsible for ensuring that the allocated memory ** space is eventually freed. ** ** *pConchPath is set to NULL if a memory allocation error occurs. */ static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ int i; /* Loop counter */ int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ char *conchPath; /* buffer in which to construct conch name */ /* Allocate space for the conch filename and initialize the name to ** the name of the original database file. */ *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8); if( conchPath==0 ){ return SQLITE_NOMEM_BKPT; } memcpy(conchPath, dbPath, len+1); /* now insert a "." before the last / character */ for( i=(len-1); i>=0; i-- ){ if( conchPath[i]=='/' ){ i++; break; } } conchPath[i]='.'; while ( ilockingContext; char *oldPath = pCtx->lockProxyPath; int rc = SQLITE_OK; if( pFile->eFileLock!=NO_LOCK ){ return SQLITE_BUSY; } /* nothing to do if the path is NULL, :auto: or matches the existing path */ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ return SQLITE_OK; }else{ unixFile *lockProxy = pCtx->lockProxy; pCtx->lockProxy=NULL; pCtx->conchHeld = 0; if( lockProxy!=NULL ){ rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); if( rc ) return rc; sqlite3_free(lockProxy); } sqlite3_free(oldPath); pCtx->lockProxyPath = sqlite3DbStrDup(0, path); } return rc; } /* ** pFile is a file that has been opened by a prior xOpen call. dbPath ** is a string buffer at least MAXPATHLEN+1 characters in size. ** ** This routine find the filename associated with pFile and writes it ** int dbPath. */ static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ #if defined(__APPLE__) if( pFile->pMethod == &afpIoMethods ){ /* afp style keeps a reference to the db path in the filePath field ** of the struct */ assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN); } else #endif if( pFile->pMethod == &dotlockIoMethods ){ /* dot lock style uses the locking context to store the dot lock ** file path */ int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); memcpy(dbPath, (char *)pFile->lockingContext, len + 1); }else{ /* all other styles use the locking context to store the db file path */ assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); } return SQLITE_OK; } /* ** Takes an already filled in unix file and alters it so all file locking ** will be performed on the local proxy lock file. The following fields ** are preserved in the locking context so that they can be restored and ** the unix structure properly cleaned up at close time: ** ->lockingContext ** ->pMethod */ static int proxyTransformUnixFile(unixFile *pFile, const char *path) { proxyLockingContext *pCtx; char dbPath[MAXPATHLEN+1]; /* Name of the database file */ char *lockPath=NULL; int rc = SQLITE_OK; if( pFile->eFileLock!=NO_LOCK ){ return SQLITE_BUSY; } proxyGetDbPathForUnixFile(pFile, dbPath); if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ lockPath=NULL; }else{ lockPath=(char *)path; } OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, (lockPath ? lockPath : ":auto:"), osGetpid(0))); pCtx = sqlite3_malloc64( sizeof(*pCtx) ); if( pCtx==0 ){ return SQLITE_NOMEM_BKPT; } memset(pCtx, 0, sizeof(*pCtx)); rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); if( rc==SQLITE_OK ){ rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and ** (c) the file system is read-only, then enable no-locking access. ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts ** that openFlags will have only one of O_RDONLY or O_RDWR. */ struct statfs fsInfo; struct stat conchInfo; int goLockless = 0; if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { int err = errno; if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; } } if( goLockless ){ pCtx->conchHeld = -1; /* read only FS/ lockless */ rc = SQLITE_OK; } } } if( rc==SQLITE_OK && lockPath ){ pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); } if( rc==SQLITE_OK ){ pCtx->dbPath = sqlite3DbStrDup(0, dbPath); if( pCtx->dbPath==NULL ){ rc = SQLITE_NOMEM_BKPT; } } if( rc==SQLITE_OK ){ /* all memory is allocated, proxys are created and assigned, ** switch the locking context and pMethod then return. */ pCtx->oldLockingContext = pFile->lockingContext; pFile->lockingContext = pCtx; pCtx->pOldMethod = pFile->pMethod; pFile->pMethod = &proxyIoMethods; }else{ if( pCtx->conchFile ){ pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); sqlite3_free(pCtx->conchFile); } sqlite3DbFree(0, pCtx->lockProxyPath); sqlite3_free(pCtx->conchFilePath); sqlite3_free(pCtx); } OSTRACE(("TRANSPROXY %d %s\n", pFile->h, (rc==SQLITE_OK ? "ok" : "failed"))); return rc; } /* ** This routine handles sqlite3_file_control() calls that are specific ** to proxy locking. */ static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_GET_LOCKPROXYFILE: { unixFile *pFile = (unixFile*)id; if( pFile->pMethod == &proxyIoMethods ){ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; proxyTakeConch(pFile); if( pCtx->lockProxyPath ){ *(const char **)pArg = pCtx->lockProxyPath; }else{ *(const char **)pArg = ":auto: (not held)"; } } else { *(const char **)pArg = NULL; } return SQLITE_OK; } case SQLITE_FCNTL_SET_LOCKPROXYFILE: { unixFile *pFile = (unixFile*)id; int rc = SQLITE_OK; int isProxyStyle = (pFile->pMethod == &proxyIoMethods); if( pArg==NULL || (const char *)pArg==0 ){ if( isProxyStyle ){ /* turn off proxy locking - not supported. If support is added for ** switching proxy locking mode off then it will need to fail if ** the journal mode is WAL mode. */ rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; }else{ /* turn off proxy locking - already off - NOOP */ rc = SQLITE_OK; } }else{ const char *proxyPath = (const char *)pArg; if( isProxyStyle ){ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; if( !strcmp(pArg, ":auto:") || (pCtx->lockProxyPath && !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) ){ rc = SQLITE_OK; }else{ rc = switchLockProxyPath(pFile, proxyPath); } }else{ /* turn on proxy file locking */ rc = proxyTransformUnixFile(pFile, proxyPath); } } return rc; } default: { assert( 0 ); /* The call assures that only valid opcodes are sent */ } } /*NOTREACHED*/ assert(0); return SQLITE_ERROR; } /* ** Within this division (the proxying locking implementation) the procedures ** above this point are all utilities. The lock-related methods of the ** proxy-locking sqlite3_io_method object follow. */ /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { unixFile *pFile = (unixFile*)id; int rc = proxyTakeConch(pFile); if( rc==SQLITE_OK ){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld>0 ){ unixFile *proxy = pCtx->lockProxy; return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); }else{ /* conchHeld < 0 is lockless */ pResOut=0; } } return rc; } /* ** Lock the file with the lock specified by parameter eFileLock - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int proxyLock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; int rc = proxyTakeConch(pFile); if( rc==SQLITE_OK ){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld>0 ){ unixFile *proxy = pCtx->lockProxy; rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); pFile->eFileLock = proxy->eFileLock; }else{ /* conchHeld < 0 is lockless */ } } return rc; } /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int proxyUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; int rc = proxyTakeConch(pFile); if( rc==SQLITE_OK ){ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; if( pCtx->conchHeld>0 ){ unixFile *proxy = pCtx->lockProxy; rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); pFile->eFileLock = proxy->eFileLock; }else{ /* conchHeld < 0 is lockless */ } } return rc; } /* ** Close a file that uses proxy locks. */ static int proxyClose(sqlite3_file *id) { if( ALWAYS(id) ){ unixFile *pFile = (unixFile*)id; proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; unixFile *lockProxy = pCtx->lockProxy; unixFile *conchFile = pCtx->conchFile; int rc = SQLITE_OK; if( lockProxy ){ rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); if( rc ) return rc; rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); if( rc ) return rc; sqlite3_free(lockProxy); pCtx->lockProxy = 0; } if( conchFile ){ if( pCtx->conchHeld ){ rc = proxyReleaseConch(pFile); if( rc ) return rc; } rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); if( rc ) return rc; sqlite3_free(conchFile); } sqlite3DbFree(0, pCtx->lockProxyPath); sqlite3_free(pCtx->conchFilePath); sqlite3DbFree(0, pCtx->dbPath); /* restore the original locking context and pMethod then close it */ pFile->lockingContext = pCtx->oldLockingContext; pFile->pMethod = pCtx->pOldMethod; sqlite3_free(pCtx); return pFile->pMethod->xClose(id); } return SQLITE_OK; } #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ /* ** The proxy locking style is intended for use with AFP filesystems. ** And since AFP is only supported on MacOSX, the proxy locking is also ** restricted to MacOSX. ** ** ******************* End of the proxy lock implementation ********************** ******************************************************************************/ /* ** Initialize the operating system interface. ** ** This routine registers all VFS implementations for unix-like operating ** systems. This routine, and the sqlite3_os_end() routine that follows, ** should be the only routines in this file that are visible from other ** files. ** ** This routine is called once during SQLite initialization and by a ** single thread. The memory allocation and mutex subsystems have not ** necessarily been initialized when this routine is called, and so they ** should not be used. */ SQLITE_API int sqlite3_os_init(void){ /* ** The following macro defines an initializer for an sqlite3_vfs object. ** The name of the VFS is NAME. The pAppData is a pointer to a pointer ** to the "finder" function. (pAppData is a pointer to a pointer because ** silly C90 rules prohibit a void* from being cast to a function pointer ** and so we have to go through the intermediate pointer to avoid problems ** when compiling with -pedantic-errors on GCC.) ** ** The FINDER parameter to this macro is the name of the pointer to the ** finder-function. The finder-function returns a pointer to the ** sqlite_io_methods object that implements the desired locking ** behaviors. See the division above that contains the IOMETHODS ** macro for addition information on finder-functions. ** ** Most finders simply return a pointer to a fixed sqlite3_io_methods ** object. But the "autolockIoFinder" available on MacOSX does a little ** more than that; it looks at the filesystem type that hosts the ** database file and tries to choose an locking method appropriate for ** that filesystem time. */ #define UNIXVFS(VFSNAME, FINDER) { \ 3, /* iVersion */ \ sizeof(unixFile), /* szOsFile */ \ MAX_PATHNAME, /* mxPathname */ \ 0, /* pNext */ \ VFSNAME, /* zName */ \ (void*)&FINDER, /* pAppData */ \ unixOpen, /* xOpen */ \ unixDelete, /* xDelete */ \ unixAccess, /* xAccess */ \ unixFullPathname, /* xFullPathname */ \ unixDlOpen, /* xDlOpen */ \ unixDlError, /* xDlError */ \ unixDlSym, /* xDlSym */ \ unixDlClose, /* xDlClose */ \ unixRandomness, /* xRandomness */ \ unixSleep, /* xSleep */ \ unixCurrentTime, /* xCurrentTime */ \ unixGetLastError, /* xGetLastError */ \ unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ unixSetSystemCall, /* xSetSystemCall */ \ unixGetSystemCall, /* xGetSystemCall */ \ unixNextSystemCall, /* xNextSystemCall */ \ } /* ** All default VFSes for unix are contained in the following array. ** ** Note that the sqlite3_vfs.pNext field of the VFS object is modified ** by the SQLite core when the VFS is registered. So the following ** array cannot be const. */ static sqlite3_vfs aVfs[] = { #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) UNIXVFS("unix", autolockIoFinder ), #elif OS_VXWORKS UNIXVFS("unix", vxworksIoFinder ), #else UNIXVFS("unix", posixIoFinder ), #endif UNIXVFS("unix-none", nolockIoFinder ), UNIXVFS("unix-dotfile", dotlockIoFinder ), UNIXVFS("unix-excl", posixIoFinder ), #if OS_VXWORKS UNIXVFS("unix-namedsem", semIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS UNIXVFS("unix-posix", posixIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE UNIXVFS("unix-flock", flockIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) UNIXVFS("unix-afp", afpIoFinder ), UNIXVFS("unix-nfs", nfsIoFinder ), UNIXVFS("unix-proxy", proxyIoFinder ), #endif }; unsigned int i; /* Loop counter */ /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==29 ); /* Register all VFSes defined in the aVfs[] array */ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ #ifdef SQLITE_DEFAULT_UNIX_VFS sqlite3_vfs_register(&aVfs[i], 0==strcmp(aVfs[i].zName,SQLITE_DEFAULT_UNIX_VFS)); #else sqlite3_vfs_register(&aVfs[i], i==0); #endif } #ifdef SQLITE_OS_KV_OPTIONAL sqlite3KvvfsInit(); #endif unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #ifndef SQLITE_OMIT_WAL /* Validate lock assumptions */ assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */ assert( UNIX_SHM_BASE==120 ); /* Start of locking area */ /* Locks: ** WRITE UNIX_SHM_BASE 120 ** CKPT UNIX_SHM_BASE+1 121 ** RECOVER UNIX_SHM_BASE+2 122 ** READ-0 UNIX_SHM_BASE+3 123 ** READ-1 UNIX_SHM_BASE+4 124 ** READ-2 UNIX_SHM_BASE+5 125 ** READ-3 UNIX_SHM_BASE+6 126 ** READ-4 UNIX_SHM_BASE+7 127 ** DMS UNIX_SHM_BASE+8 128 */ assert( UNIX_SHM_DMS==128 ); /* Byte offset of the deadman-switch */ #endif /* Initialize temp file dir array. */ unixTempFileInit(); return SQLITE_OK; } /* ** Shutdown the operating system interface. ** ** Some operating systems might need to do some cleanup in this routine, ** to release dynamically allocated objects. But not on unix. ** This routine is a no-op for unix. */ SQLITE_API int sqlite3_os_end(void){ unixBigLock = 0; return SQLITE_OK; } #endif /* SQLITE_OS_UNIX */ /************** End of os_unix.c *********************************************/ /************** Begin file os_win.c ******************************************/ /* ** 2004 May 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to Windows. */ /* #include "sqliteInt.h" */ #if SQLITE_OS_WIN /* This file is used for Windows only */ /* ** Include code that is common to all os_*.c files */ /* #include "os_common.h" */ /* ** Include the header file for the Windows VFS. */ /* #include "os_win.h" */ /* ** Compiling and using WAL mode requires several APIs that are only ** available in Windows platforms based on the NT kernel. */ #if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL) # error "WAL mode requires support from the Windows NT kernel, compile\ with SQLITE_OMIT_WAL." #endif #if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0 # error "Memory mapped files require support from the Windows NT kernel,\ compile with SQLITE_MAX_MMAP_SIZE=0." #endif /* ** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions ** based on the sub-platform)? */ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI) # define SQLITE_WIN32_HAS_ANSI #endif /* ** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions ** based on the sub-platform)? */ #if (SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT) && \ !defined(SQLITE_WIN32_NO_WIDE) # define SQLITE_WIN32_HAS_WIDE #endif /* ** Make sure at least one set of Win32 APIs is available. */ #if !defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_WIN32_HAS_WIDE) # error "At least one of SQLITE_WIN32_HAS_ANSI and SQLITE_WIN32_HAS_WIDE\ must be defined." #endif /* ** Define the required Windows SDK version constants if they are not ** already available. */ #ifndef NTDDI_WIN8 # define NTDDI_WIN8 0x06020000 #endif #ifndef NTDDI_WINBLUE # define NTDDI_WINBLUE 0x06030000 #endif #ifndef NTDDI_WINTHRESHOLD # define NTDDI_WINTHRESHOLD 0x06040000 #endif /* ** Check to see if the GetVersionEx[AW] functions are deprecated on the ** target system. GetVersionEx was first deprecated in Win8.1. */ #ifndef SQLITE_WIN32_GETVERSIONEX # if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE # define SQLITE_WIN32_GETVERSIONEX 0 /* GetVersionEx() is deprecated */ # else # define SQLITE_WIN32_GETVERSIONEX 1 /* GetVersionEx() is current */ # endif #endif /* ** Check to see if the CreateFileMappingA function is supported on the ** target system. It is unavailable when using "mincore.lib" on Win10. ** When compiling for Windows 10, always assume "mincore.lib" is in use. */ #ifndef SQLITE_WIN32_CREATEFILEMAPPINGA # if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINTHRESHOLD # define SQLITE_WIN32_CREATEFILEMAPPINGA 0 # else # define SQLITE_WIN32_CREATEFILEMAPPINGA 1 # endif #endif /* ** This constant should already be defined (in the "WinDef.h" SDK file). */ #ifndef MAX_PATH # define MAX_PATH (260) #endif /* ** Maximum pathname length (in chars) for Win32. This should normally be ** MAX_PATH. */ #ifndef SQLITE_WIN32_MAX_PATH_CHARS # define SQLITE_WIN32_MAX_PATH_CHARS (MAX_PATH) #endif /* ** This constant should already be defined (in the "WinNT.h" SDK file). */ #ifndef UNICODE_STRING_MAX_CHARS # define UNICODE_STRING_MAX_CHARS (32767) #endif /* ** Maximum pathname length (in chars) for WinNT. This should normally be ** UNICODE_STRING_MAX_CHARS. */ #ifndef SQLITE_WINNT_MAX_PATH_CHARS # define SQLITE_WINNT_MAX_PATH_CHARS (UNICODE_STRING_MAX_CHARS) #endif /* ** Maximum pathname length (in bytes) for Win32. The MAX_PATH macro is in ** characters, so we allocate 4 bytes per character assuming worst-case of ** 4-bytes-per-character for UTF8. */ #ifndef SQLITE_WIN32_MAX_PATH_BYTES # define SQLITE_WIN32_MAX_PATH_BYTES (SQLITE_WIN32_MAX_PATH_CHARS*4) #endif /* ** Maximum pathname length (in bytes) for WinNT. This should normally be ** UNICODE_STRING_MAX_CHARS * sizeof(WCHAR). */ #ifndef SQLITE_WINNT_MAX_PATH_BYTES # define SQLITE_WINNT_MAX_PATH_BYTES \ (sizeof(WCHAR) * SQLITE_WINNT_MAX_PATH_CHARS) #endif /* ** Maximum error message length (in chars) for WinRT. */ #ifndef SQLITE_WIN32_MAX_ERRMSG_CHARS # define SQLITE_WIN32_MAX_ERRMSG_CHARS (1024) #endif /* ** Returns non-zero if the character should be treated as a directory ** separator. */ #ifndef winIsDirSep # define winIsDirSep(a) (((a) == '/') || ((a) == '\\')) #endif /* ** This macro is used when a local variable is set to a value that is ** [sometimes] not used by the code (e.g. via conditional compilation). */ #ifndef UNUSED_VARIABLE_VALUE # define UNUSED_VARIABLE_VALUE(x) (void)(x) #endif /* ** Returns the character that should be used as the directory separator. */ #ifndef winGetDirSep # define winGetDirSep() '\\' #endif /* ** Do we need to manually define the Win32 file mapping APIs for use with WAL ** mode or memory mapped files (e.g. these APIs are available in the Windows ** CE SDK; however, they are not present in the header file)? */ #if SQLITE_WIN32_FILEMAPPING_API && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) /* ** Two of the file mapping APIs are different under WinRT. Figure out which ** set we need. */ #if SQLITE_OS_WINRT WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \ LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR); WINBASEAPI LPVOID WINAPI MapViewOfFileFromApp(HANDLE, ULONG, ULONG64, SIZE_T); #else #if defined(SQLITE_WIN32_HAS_ANSI) WINBASEAPI HANDLE WINAPI CreateFileMappingA(HANDLE, LPSECURITY_ATTRIBUTES, \ DWORD, DWORD, DWORD, LPCSTR); #endif /* defined(SQLITE_WIN32_HAS_ANSI) */ #if defined(SQLITE_WIN32_HAS_WIDE) WINBASEAPI HANDLE WINAPI CreateFileMappingW(HANDLE, LPSECURITY_ATTRIBUTES, \ DWORD, DWORD, DWORD, LPCWSTR); #endif /* defined(SQLITE_WIN32_HAS_WIDE) */ WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T); #endif /* SQLITE_OS_WINRT */ /* ** These file mapping APIs are common to both Win32 and WinRT. */ WINBASEAPI BOOL WINAPI FlushViewOfFile(LPCVOID, SIZE_T); WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); #endif /* SQLITE_WIN32_FILEMAPPING_API */ /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_FILE_ATTRIBUTES # define INVALID_FILE_ATTRIBUTES ((DWORD)-1) #endif #ifndef FILE_FLAG_MASK # define FILE_FLAG_MASK (0xFF3C0000) #endif #ifndef FILE_ATTRIBUTE_MASK # define FILE_ATTRIBUTE_MASK (0x0003FFF7) #endif #ifndef SQLITE_OMIT_WAL /* Forward references to structures used for WAL */ typedef struct winShm winShm; /* A connection to shared-memory */ typedef struct winShmNode winShmNode; /* A region of shared-memory */ #endif /* ** WinCE lacks native support for file locking so we have to fake it ** with some code of our own. */ #if SQLITE_OS_WINCE typedef struct winceLock { int nReaders; /* Number of reader locks obtained */ BOOL bPending; /* Indicates a pending lock has been obtained */ BOOL bReserved; /* Indicates a reserved lock has been obtained */ BOOL bExclusive; /* Indicates an exclusive lock has been obtained */ } winceLock; #endif /* ** The winFile structure is a subclass of sqlite3_file* specific to the win32 ** portability layer. */ typedef struct winFile winFile; struct winFile { const sqlite3_io_methods *pMethod; /*** Must be first ***/ sqlite3_vfs *pVfs; /* The VFS used to open this file */ HANDLE h; /* Handle for accessing the file */ u8 locktype; /* Type of lock currently held on this file */ short sharedLockByte; /* Randomly chosen byte used as a shared lock */ u8 ctrlFlags; /* Flags. See WINFILE_* below */ DWORD lastErrno; /* The Windows errno from the last I/O error */ #ifndef SQLITE_OMIT_WAL winShm *pShm; /* Instance of shared memory on this file */ #endif const char *zPath; /* Full pathname of this file */ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */ #if SQLITE_OS_WINCE LPWSTR zDeleteOnClose; /* Name of file to delete when closing */ HANDLE hMutex; /* Mutex used to control access to shared lock */ HANDLE hShared; /* Shared memory segment used for locking */ winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif #if SQLITE_MAX_MMAP_SIZE>0 int nFetchOut; /* Number of outstanding xFetch references */ HANDLE hMap; /* Handle for accessing memory mapping */ void *pMapRegion; /* Area memory mapped */ sqlite3_int64 mmapSize; /* Size of mapped region */ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ #endif }; /* ** The winVfsAppData structure is used for the pAppData member for all of the ** Win32 VFS variants. */ typedef struct winVfsAppData winVfsAppData; struct winVfsAppData { const sqlite3_io_methods *pMethod; /* The file I/O methods to use. */ void *pAppData; /* The extra pAppData, if any. */ BOOL bNoLock; /* Non-zero if locking is disabled. */ }; /* ** Allowed values for winFile.ctrlFlags */ #define WINFILE_RDONLY 0x02 /* Connection is read only */ #define WINFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #define WINFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ /* * The size of the buffer used by sqlite3_win32_write_debug(). */ #ifndef SQLITE_WIN32_DBG_BUF_SIZE # define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD))) #endif /* * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the * various Win32 API heap functions instead of our own. */ #ifdef SQLITE_WIN32_MALLOC /* * If this is non-zero, an isolated heap will be created by the native Win32 * allocator subsystem; otherwise, the default process heap will be used. This * setting has no effect when compiling for WinRT. By default, this is enabled * and an isolated heap will be created to store all allocated data. * ****************************************************************************** * WARNING: It is important to note that when this setting is non-zero and the * winMemShutdown function is called (e.g. by the sqlite3_shutdown * function), all data that was allocated using the isolated heap will * be freed immediately and any attempt to access any of that freed * data will almost certainly result in an immediate access violation. ****************************************************************************** */ #ifndef SQLITE_WIN32_HEAP_CREATE # define SQLITE_WIN32_HEAP_CREATE (TRUE) #endif /* * This is the maximum possible initial size of the Win32-specific heap, in * bytes. */ #ifndef SQLITE_WIN32_HEAP_MAX_INIT_SIZE # define SQLITE_WIN32_HEAP_MAX_INIT_SIZE (4294967295U) #endif /* * This is the extra space for the initial size of the Win32-specific heap, * in bytes. This value may be zero. */ #ifndef SQLITE_WIN32_HEAP_INIT_EXTRA # define SQLITE_WIN32_HEAP_INIT_EXTRA (4194304) #endif /* * Calculate the maximum legal cache size, in pages, based on the maximum * possible initial heap size and the default page size, setting aside the * needed extra space. */ #ifndef SQLITE_WIN32_MAX_CACHE_SIZE # define SQLITE_WIN32_MAX_CACHE_SIZE (((SQLITE_WIN32_HEAP_MAX_INIT_SIZE) - \ (SQLITE_WIN32_HEAP_INIT_EXTRA)) / \ (SQLITE_DEFAULT_PAGE_SIZE)) #endif /* * This is cache size used in the calculation of the initial size of the * Win32-specific heap. It cannot be negative. */ #ifndef SQLITE_WIN32_CACHE_SIZE # if SQLITE_DEFAULT_CACHE_SIZE>=0 # define SQLITE_WIN32_CACHE_SIZE (SQLITE_DEFAULT_CACHE_SIZE) # else # define SQLITE_WIN32_CACHE_SIZE (-(SQLITE_DEFAULT_CACHE_SIZE)) # endif #endif /* * Make sure that the calculated cache size, in pages, cannot cause the * initial size of the Win32-specific heap to exceed the maximum amount * of memory that can be specified in the call to HeapCreate. */ #if SQLITE_WIN32_CACHE_SIZE>SQLITE_WIN32_MAX_CACHE_SIZE # undef SQLITE_WIN32_CACHE_SIZE # define SQLITE_WIN32_CACHE_SIZE (2000) #endif /* * The initial size of the Win32-specific heap. This value may be zero. */ #ifndef SQLITE_WIN32_HEAP_INIT_SIZE # define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_WIN32_CACHE_SIZE) * \ (SQLITE_DEFAULT_PAGE_SIZE) + \ (SQLITE_WIN32_HEAP_INIT_EXTRA)) #endif /* * The maximum size of the Win32-specific heap. This value may be zero. */ #ifndef SQLITE_WIN32_HEAP_MAX_SIZE # define SQLITE_WIN32_HEAP_MAX_SIZE (0) #endif /* * The extra flags to use in calls to the Win32 heap APIs. This value may be * zero for the default behavior. */ #ifndef SQLITE_WIN32_HEAP_FLAGS # define SQLITE_WIN32_HEAP_FLAGS (0) #endif /* ** The winMemData structure stores information required by the Win32-specific ** sqlite3_mem_methods implementation. */ typedef struct winMemData winMemData; struct winMemData { #ifndef NDEBUG u32 magic1; /* Magic number to detect structure corruption. */ #endif HANDLE hHeap; /* The handle to our heap. */ BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */ #ifndef NDEBUG u32 magic2; /* Magic number to detect structure corruption. */ #endif }; #ifndef NDEBUG #define WINMEM_MAGIC1 0x42b2830b #define WINMEM_MAGIC2 0xbd4d7cf4 #endif static struct winMemData win_mem_data = { #ifndef NDEBUG WINMEM_MAGIC1, #endif NULL, FALSE #ifndef NDEBUG ,WINMEM_MAGIC2 #endif }; #ifndef NDEBUG #define winMemAssertMagic1() assert( win_mem_data.magic1==WINMEM_MAGIC1 ) #define winMemAssertMagic2() assert( win_mem_data.magic2==WINMEM_MAGIC2 ) #define winMemAssertMagic() winMemAssertMagic1(); winMemAssertMagic2(); #else #define winMemAssertMagic() #endif #define winMemGetDataPtr() &win_mem_data #define winMemGetHeap() win_mem_data.hHeap #define winMemGetOwned() win_mem_data.bOwned static void *winMemMalloc(int nBytes); static void winMemFree(void *pPrior); static void *winMemRealloc(void *pPrior, int nBytes); static int winMemSize(void *p); static int winMemRoundup(int n); static int winMemInit(void *pAppData); static void winMemShutdown(void *pAppData); SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void); #endif /* SQLITE_WIN32_MALLOC */ /* ** The following variable is (normally) set once and never changes ** thereafter. It records whether the operating system is Win9x ** or WinNT. ** ** 0: Operating system unknown. ** 1: Operating system is Win9x. ** 2: Operating system is WinNT. ** ** In order to facilitate testing on a WinNT system, the test fixture ** can manually set this value to 1 to emulate Win98 behavior. */ #ifdef SQLITE_TEST SQLITE_API LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0; #else static LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0; #endif #ifndef SYSCALL # define SYSCALL sqlite3_syscall_ptr #endif /* ** This function is not available on Windows CE or WinRT. */ #if SQLITE_OS_WINCE || SQLITE_OS_WINRT # define osAreFileApisANSI() 1 #endif /* ** Many system calls are accessed through pointer-to-functions so that ** they may be overridden at runtime to facilitate fault injection during ** testing and sandboxing. The following array holds the names and pointers ** to all overrideable system calls. */ static struct win_syscall { const char *zName; /* Name of the system call */ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ sqlite3_syscall_ptr pDefault; /* Default value */ } aSyscall[] = { #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "AreFileApisANSI", (SYSCALL)AreFileApisANSI, 0 }, #else { "AreFileApisANSI", (SYSCALL)0, 0 }, #endif #ifndef osAreFileApisANSI #define osAreFileApisANSI ((BOOL(WINAPI*)(VOID))aSyscall[0].pCurrent) #endif #if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE) { "CharLowerW", (SYSCALL)CharLowerW, 0 }, #else { "CharLowerW", (SYSCALL)0, 0 }, #endif #define osCharLowerW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[1].pCurrent) #if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE) { "CharUpperW", (SYSCALL)CharUpperW, 0 }, #else { "CharUpperW", (SYSCALL)0, 0 }, #endif #define osCharUpperW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[2].pCurrent) { "CloseHandle", (SYSCALL)CloseHandle, 0 }, #define osCloseHandle ((BOOL(WINAPI*)(HANDLE))aSyscall[3].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "CreateFileA", (SYSCALL)CreateFileA, 0 }, #else { "CreateFileA", (SYSCALL)0, 0 }, #endif #define osCreateFileA ((HANDLE(WINAPI*)(LPCSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[4].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "CreateFileW", (SYSCALL)CreateFileW, 0 }, #else { "CreateFileW", (SYSCALL)0, 0 }, #endif #define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) && \ SQLITE_WIN32_CREATEFILEMAPPINGA { "CreateFileMappingA", (SYSCALL)CreateFileMappingA, 0 }, #else { "CreateFileMappingA", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent) #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)) { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 }, #else { "CreateFileMappingW", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "CreateMutexW", (SYSCALL)CreateMutexW, 0 }, #else { "CreateMutexW", (SYSCALL)0, 0 }, #endif #define osCreateMutexW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,BOOL, \ LPCWSTR))aSyscall[8].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "DeleteFileA", (SYSCALL)DeleteFileA, 0 }, #else { "DeleteFileA", (SYSCALL)0, 0 }, #endif #define osDeleteFileA ((BOOL(WINAPI*)(LPCSTR))aSyscall[9].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "DeleteFileW", (SYSCALL)DeleteFileW, 0 }, #else { "DeleteFileW", (SYSCALL)0, 0 }, #endif #define osDeleteFileW ((BOOL(WINAPI*)(LPCWSTR))aSyscall[10].pCurrent) #if SQLITE_OS_WINCE { "FileTimeToLocalFileTime", (SYSCALL)FileTimeToLocalFileTime, 0 }, #else { "FileTimeToLocalFileTime", (SYSCALL)0, 0 }, #endif #define osFileTimeToLocalFileTime ((BOOL(WINAPI*)(CONST FILETIME*, \ LPFILETIME))aSyscall[11].pCurrent) #if SQLITE_OS_WINCE { "FileTimeToSystemTime", (SYSCALL)FileTimeToSystemTime, 0 }, #else { "FileTimeToSystemTime", (SYSCALL)0, 0 }, #endif #define osFileTimeToSystemTime ((BOOL(WINAPI*)(CONST FILETIME*, \ LPSYSTEMTIME))aSyscall[12].pCurrent) { "FlushFileBuffers", (SYSCALL)FlushFileBuffers, 0 }, #define osFlushFileBuffers ((BOOL(WINAPI*)(HANDLE))aSyscall[13].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "FormatMessageA", (SYSCALL)FormatMessageA, 0 }, #else { "FormatMessageA", (SYSCALL)0, 0 }, #endif #define osFormatMessageA ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPSTR, \ DWORD,va_list*))aSyscall[14].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "FormatMessageW", (SYSCALL)FormatMessageW, 0 }, #else { "FormatMessageW", (SYSCALL)0, 0 }, #endif #define osFormatMessageW ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPWSTR, \ DWORD,va_list*))aSyscall[15].pCurrent) #if !defined(SQLITE_OMIT_LOAD_EXTENSION) { "FreeLibrary", (SYSCALL)FreeLibrary, 0 }, #else { "FreeLibrary", (SYSCALL)0, 0 }, #endif #define osFreeLibrary ((BOOL(WINAPI*)(HMODULE))aSyscall[16].pCurrent) { "GetCurrentProcessId", (SYSCALL)GetCurrentProcessId, 0 }, #define osGetCurrentProcessId ((DWORD(WINAPI*)(VOID))aSyscall[17].pCurrent) #if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI) { "GetDiskFreeSpaceA", (SYSCALL)GetDiskFreeSpaceA, 0 }, #else { "GetDiskFreeSpaceA", (SYSCALL)0, 0 }, #endif #define osGetDiskFreeSpaceA ((BOOL(WINAPI*)(LPCSTR,LPDWORD,LPDWORD,LPDWORD, \ LPDWORD))aSyscall[18].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetDiskFreeSpaceW", (SYSCALL)GetDiskFreeSpaceW, 0 }, #else { "GetDiskFreeSpaceW", (SYSCALL)0, 0 }, #endif #define osGetDiskFreeSpaceW ((BOOL(WINAPI*)(LPCWSTR,LPDWORD,LPDWORD,LPDWORD, \ LPDWORD))aSyscall[19].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "GetFileAttributesA", (SYSCALL)GetFileAttributesA, 0 }, #else { "GetFileAttributesA", (SYSCALL)0, 0 }, #endif #define osGetFileAttributesA ((DWORD(WINAPI*)(LPCSTR))aSyscall[20].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetFileAttributesW", (SYSCALL)GetFileAttributesW, 0 }, #else { "GetFileAttributesW", (SYSCALL)0, 0 }, #endif #define osGetFileAttributesW ((DWORD(WINAPI*)(LPCWSTR))aSyscall[21].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "GetFileAttributesExW", (SYSCALL)GetFileAttributesExW, 0 }, #else { "GetFileAttributesExW", (SYSCALL)0, 0 }, #endif #define osGetFileAttributesExW ((BOOL(WINAPI*)(LPCWSTR,GET_FILEEX_INFO_LEVELS, \ LPVOID))aSyscall[22].pCurrent) #if !SQLITE_OS_WINRT { "GetFileSize", (SYSCALL)GetFileSize, 0 }, #else { "GetFileSize", (SYSCALL)0, 0 }, #endif #define osGetFileSize ((DWORD(WINAPI*)(HANDLE,LPDWORD))aSyscall[23].pCurrent) #if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI) { "GetFullPathNameA", (SYSCALL)GetFullPathNameA, 0 }, #else { "GetFullPathNameA", (SYSCALL)0, 0 }, #endif #define osGetFullPathNameA ((DWORD(WINAPI*)(LPCSTR,DWORD,LPSTR, \ LPSTR*))aSyscall[24].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetFullPathNameW", (SYSCALL)GetFullPathNameW, 0 }, #else { "GetFullPathNameW", (SYSCALL)0, 0 }, #endif #define osGetFullPathNameW ((DWORD(WINAPI*)(LPCWSTR,DWORD,LPWSTR, \ LPWSTR*))aSyscall[25].pCurrent) { "GetLastError", (SYSCALL)GetLastError, 0 }, #define osGetLastError ((DWORD(WINAPI*)(VOID))aSyscall[26].pCurrent) #if !defined(SQLITE_OMIT_LOAD_EXTENSION) #if SQLITE_OS_WINCE /* The GetProcAddressA() routine is only available on Windows CE. */ { "GetProcAddressA", (SYSCALL)GetProcAddressA, 0 }, #else /* All other Windows platforms expect GetProcAddress() to take ** an ANSI string regardless of the _UNICODE setting */ { "GetProcAddressA", (SYSCALL)GetProcAddress, 0 }, #endif #else { "GetProcAddressA", (SYSCALL)0, 0 }, #endif #define osGetProcAddressA ((FARPROC(WINAPI*)(HMODULE, \ LPCSTR))aSyscall[27].pCurrent) #if !SQLITE_OS_WINRT { "GetSystemInfo", (SYSCALL)GetSystemInfo, 0 }, #else { "GetSystemInfo", (SYSCALL)0, 0 }, #endif #define osGetSystemInfo ((VOID(WINAPI*)(LPSYSTEM_INFO))aSyscall[28].pCurrent) { "GetSystemTime", (SYSCALL)GetSystemTime, 0 }, #define osGetSystemTime ((VOID(WINAPI*)(LPSYSTEMTIME))aSyscall[29].pCurrent) #if !SQLITE_OS_WINCE { "GetSystemTimeAsFileTime", (SYSCALL)GetSystemTimeAsFileTime, 0 }, #else { "GetSystemTimeAsFileTime", (SYSCALL)0, 0 }, #endif #define osGetSystemTimeAsFileTime ((VOID(WINAPI*)( \ LPFILETIME))aSyscall[30].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "GetTempPathA", (SYSCALL)GetTempPathA, 0 }, #else { "GetTempPathA", (SYSCALL)0, 0 }, #endif #define osGetTempPathA ((DWORD(WINAPI*)(DWORD,LPSTR))aSyscall[31].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) { "GetTempPathW", (SYSCALL)GetTempPathW, 0 }, #else { "GetTempPathW", (SYSCALL)0, 0 }, #endif #define osGetTempPathW ((DWORD(WINAPI*)(DWORD,LPWSTR))aSyscall[32].pCurrent) #if !SQLITE_OS_WINRT { "GetTickCount", (SYSCALL)GetTickCount, 0 }, #else { "GetTickCount", (SYSCALL)0, 0 }, #endif #define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_GETVERSIONEX { "GetVersionExA", (SYSCALL)GetVersionExA, 0 }, #else { "GetVersionExA", (SYSCALL)0, 0 }, #endif #define osGetVersionExA ((BOOL(WINAPI*)( \ LPOSVERSIONINFOA))aSyscall[34].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ SQLITE_WIN32_GETVERSIONEX { "GetVersionExW", (SYSCALL)GetVersionExW, 0 }, #else { "GetVersionExW", (SYSCALL)0, 0 }, #endif #define osGetVersionExW ((BOOL(WINAPI*)( \ LPOSVERSIONINFOW))aSyscall[35].pCurrent) { "HeapAlloc", (SYSCALL)HeapAlloc, 0 }, #define osHeapAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD, \ SIZE_T))aSyscall[36].pCurrent) #if !SQLITE_OS_WINRT { "HeapCreate", (SYSCALL)HeapCreate, 0 }, #else { "HeapCreate", (SYSCALL)0, 0 }, #endif #define osHeapCreate ((HANDLE(WINAPI*)(DWORD,SIZE_T, \ SIZE_T))aSyscall[37].pCurrent) #if !SQLITE_OS_WINRT { "HeapDestroy", (SYSCALL)HeapDestroy, 0 }, #else { "HeapDestroy", (SYSCALL)0, 0 }, #endif #define osHeapDestroy ((BOOL(WINAPI*)(HANDLE))aSyscall[38].pCurrent) { "HeapFree", (SYSCALL)HeapFree, 0 }, #define osHeapFree ((BOOL(WINAPI*)(HANDLE,DWORD,LPVOID))aSyscall[39].pCurrent) { "HeapReAlloc", (SYSCALL)HeapReAlloc, 0 }, #define osHeapReAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD,LPVOID, \ SIZE_T))aSyscall[40].pCurrent) { "HeapSize", (SYSCALL)HeapSize, 0 }, #define osHeapSize ((SIZE_T(WINAPI*)(HANDLE,DWORD, \ LPCVOID))aSyscall[41].pCurrent) #if !SQLITE_OS_WINRT { "HeapValidate", (SYSCALL)HeapValidate, 0 }, #else { "HeapValidate", (SYSCALL)0, 0 }, #endif #define osHeapValidate ((BOOL(WINAPI*)(HANDLE,DWORD, \ LPCVOID))aSyscall[42].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "HeapCompact", (SYSCALL)HeapCompact, 0 }, #else { "HeapCompact", (SYSCALL)0, 0 }, #endif #define osHeapCompact ((UINT(WINAPI*)(HANDLE,DWORD))aSyscall[43].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_OMIT_LOAD_EXTENSION) { "LoadLibraryA", (SYSCALL)LoadLibraryA, 0 }, #else { "LoadLibraryA", (SYSCALL)0, 0 }, #endif #define osLoadLibraryA ((HMODULE(WINAPI*)(LPCSTR))aSyscall[44].pCurrent) #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ !defined(SQLITE_OMIT_LOAD_EXTENSION) { "LoadLibraryW", (SYSCALL)LoadLibraryW, 0 }, #else { "LoadLibraryW", (SYSCALL)0, 0 }, #endif #define osLoadLibraryW ((HMODULE(WINAPI*)(LPCWSTR))aSyscall[45].pCurrent) #if !SQLITE_OS_WINRT { "LocalFree", (SYSCALL)LocalFree, 0 }, #else { "LocalFree", (SYSCALL)0, 0 }, #endif #define osLocalFree ((HLOCAL(WINAPI*)(HLOCAL))aSyscall[46].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "LockFile", (SYSCALL)LockFile, 0 }, #else { "LockFile", (SYSCALL)0, 0 }, #endif #ifndef osLockFile #define osLockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ DWORD))aSyscall[47].pCurrent) #endif #if !SQLITE_OS_WINCE { "LockFileEx", (SYSCALL)LockFileEx, 0 }, #else { "LockFileEx", (SYSCALL)0, 0 }, #endif #ifndef osLockFileEx #define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[48].pCurrent) #endif #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)) { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 }, #else { "MapViewOfFile", (SYSCALL)0, 0 }, #endif #define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ SIZE_T))aSyscall[49].pCurrent) { "MultiByteToWideChar", (SYSCALL)MultiByteToWideChar, 0 }, #define osMultiByteToWideChar ((int(WINAPI*)(UINT,DWORD,LPCSTR,int,LPWSTR, \ int))aSyscall[50].pCurrent) { "QueryPerformanceCounter", (SYSCALL)QueryPerformanceCounter, 0 }, #define osQueryPerformanceCounter ((BOOL(WINAPI*)( \ LARGE_INTEGER*))aSyscall[51].pCurrent) { "ReadFile", (SYSCALL)ReadFile, 0 }, #define osReadFile ((BOOL(WINAPI*)(HANDLE,LPVOID,DWORD,LPDWORD, \ LPOVERLAPPED))aSyscall[52].pCurrent) { "SetEndOfFile", (SYSCALL)SetEndOfFile, 0 }, #define osSetEndOfFile ((BOOL(WINAPI*)(HANDLE))aSyscall[53].pCurrent) #if !SQLITE_OS_WINRT { "SetFilePointer", (SYSCALL)SetFilePointer, 0 }, #else { "SetFilePointer", (SYSCALL)0, 0 }, #endif #define osSetFilePointer ((DWORD(WINAPI*)(HANDLE,LONG,PLONG, \ DWORD))aSyscall[54].pCurrent) #if !SQLITE_OS_WINRT { "Sleep", (SYSCALL)Sleep, 0 }, #else { "Sleep", (SYSCALL)0, 0 }, #endif #define osSleep ((VOID(WINAPI*)(DWORD))aSyscall[55].pCurrent) { "SystemTimeToFileTime", (SYSCALL)SystemTimeToFileTime, 0 }, #define osSystemTimeToFileTime ((BOOL(WINAPI*)(CONST SYSTEMTIME*, \ LPFILETIME))aSyscall[56].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT { "UnlockFile", (SYSCALL)UnlockFile, 0 }, #else { "UnlockFile", (SYSCALL)0, 0 }, #endif #ifndef osUnlockFile #define osUnlockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ DWORD))aSyscall[57].pCurrent) #endif #if !SQLITE_OS_WINCE { "UnlockFileEx", (SYSCALL)UnlockFileEx, 0 }, #else { "UnlockFileEx", (SYSCALL)0, 0 }, #endif #define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[58].pCurrent) #if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 }, #else { "UnmapViewOfFile", (SYSCALL)0, 0 }, #endif #define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent) { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 }, #define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \ LPCSTR,LPBOOL))aSyscall[60].pCurrent) { "WriteFile", (SYSCALL)WriteFile, 0 }, #define osWriteFile ((BOOL(WINAPI*)(HANDLE,LPCVOID,DWORD,LPDWORD, \ LPOVERLAPPED))aSyscall[61].pCurrent) #if SQLITE_OS_WINRT { "CreateEventExW", (SYSCALL)CreateEventExW, 0 }, #else { "CreateEventExW", (SYSCALL)0, 0 }, #endif #define osCreateEventExW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,LPCWSTR, \ DWORD,DWORD))aSyscall[62].pCurrent) #if !SQLITE_OS_WINRT { "WaitForSingleObject", (SYSCALL)WaitForSingleObject, 0 }, #else { "WaitForSingleObject", (SYSCALL)0, 0 }, #endif #define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \ DWORD))aSyscall[63].pCurrent) #if !SQLITE_OS_WINCE { "WaitForSingleObjectEx", (SYSCALL)WaitForSingleObjectEx, 0 }, #else { "WaitForSingleObjectEx", (SYSCALL)0, 0 }, #endif #define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \ BOOL))aSyscall[64].pCurrent) #if SQLITE_OS_WINRT { "SetFilePointerEx", (SYSCALL)SetFilePointerEx, 0 }, #else { "SetFilePointerEx", (SYSCALL)0, 0 }, #endif #define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \ PLARGE_INTEGER,DWORD))aSyscall[65].pCurrent) #if SQLITE_OS_WINRT { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 }, #else { "GetFileInformationByHandleEx", (SYSCALL)0, 0 }, #endif #define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \ FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent) #if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 }, #else { "MapViewOfFileFromApp", (SYSCALL)0, 0 }, #endif #define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \ SIZE_T))aSyscall[67].pCurrent) #if SQLITE_OS_WINRT { "CreateFile2", (SYSCALL)CreateFile2, 0 }, #else { "CreateFile2", (SYSCALL)0, 0 }, #endif #define osCreateFile2 ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD,DWORD, \ LPCREATEFILE2_EXTENDED_PARAMETERS))aSyscall[68].pCurrent) #if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_LOAD_EXTENSION) { "LoadPackagedLibrary", (SYSCALL)LoadPackagedLibrary, 0 }, #else { "LoadPackagedLibrary", (SYSCALL)0, 0 }, #endif #define osLoadPackagedLibrary ((HMODULE(WINAPI*)(LPCWSTR, \ DWORD))aSyscall[69].pCurrent) #if SQLITE_OS_WINRT { "GetTickCount64", (SYSCALL)GetTickCount64, 0 }, #else { "GetTickCount64", (SYSCALL)0, 0 }, #endif #define osGetTickCount64 ((ULONGLONG(WINAPI*)(VOID))aSyscall[70].pCurrent) #if SQLITE_OS_WINRT { "GetNativeSystemInfo", (SYSCALL)GetNativeSystemInfo, 0 }, #else { "GetNativeSystemInfo", (SYSCALL)0, 0 }, #endif #define osGetNativeSystemInfo ((VOID(WINAPI*)( \ LPSYSTEM_INFO))aSyscall[71].pCurrent) #if defined(SQLITE_WIN32_HAS_ANSI) { "OutputDebugStringA", (SYSCALL)OutputDebugStringA, 0 }, #else { "OutputDebugStringA", (SYSCALL)0, 0 }, #endif #define osOutputDebugStringA ((VOID(WINAPI*)(LPCSTR))aSyscall[72].pCurrent) #if defined(SQLITE_WIN32_HAS_WIDE) { "OutputDebugStringW", (SYSCALL)OutputDebugStringW, 0 }, #else { "OutputDebugStringW", (SYSCALL)0, 0 }, #endif #define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent) { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 }, #define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent) #if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 }, #else { "CreateFileMappingFromApp", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent) /* ** NOTE: On some sub-platforms, the InterlockedCompareExchange "function" ** is really just a macro that uses a compiler intrinsic (e.g. x64). ** So do not try to make this is into a redefinable interface. */ #if defined(InterlockedCompareExchange) { "InterlockedCompareExchange", (SYSCALL)0, 0 }, #define osInterlockedCompareExchange InterlockedCompareExchange #else { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 }, #define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG \ SQLITE_WIN32_VOLATILE*, LONG,LONG))aSyscall[76].pCurrent) #endif /* defined(InterlockedCompareExchange) */ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID { "UuidCreate", (SYSCALL)UuidCreate, 0 }, #else { "UuidCreate", (SYSCALL)0, 0 }, #endif #define osUuidCreate ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[77].pCurrent) #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID { "UuidCreateSequential", (SYSCALL)UuidCreateSequential, 0 }, #else { "UuidCreateSequential", (SYSCALL)0, 0 }, #endif #define osUuidCreateSequential \ ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent) #if !defined(SQLITE_NO_SYNC) && SQLITE_MAX_MMAP_SIZE>0 { "FlushViewOfFile", (SYSCALL)FlushViewOfFile, 0 }, #else { "FlushViewOfFile", (SYSCALL)0, 0 }, #endif #define osFlushViewOfFile \ ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "win32" VFSes. Return SQLITE_OK upon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. */ static int winSetSystemCall( sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ const char *zName, /* Name of system call to override */ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ ){ unsigned int i; int rc = SQLITE_NOTFOUND; UNUSED_PARAMETER(pNotUsed); if( zName==0 ){ /* If no zName is given, restore all system calls to their default ** settings and return NULL */ rc = SQLITE_OK; for(i=0; i0 ){ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); memcpy(zDbgBuf, zBuf, nMin); osOutputDebugStringA(zDbgBuf); }else{ osOutputDebugStringA(zBuf); } #elif defined(SQLITE_WIN32_HAS_WIDE) memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); if ( osMultiByteToWideChar( osAreFileApisANSI() ? CP_ACP : CP_OEMCP, 0, zBuf, nMin, (LPWSTR)zDbgBuf, SQLITE_WIN32_DBG_BUF_SIZE/sizeof(WCHAR))<=0 ){ return; } osOutputDebugStringW((LPCWSTR)zDbgBuf); #else if( nMin>0 ){ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE); memcpy(zDbgBuf, zBuf, nMin); fprintf(stderr, "%s", zDbgBuf); }else{ fprintf(stderr, "%s", zBuf); } #endif } /* ** The following routine suspends the current thread for at least ms ** milliseconds. This is equivalent to the Win32 Sleep() interface. */ #if SQLITE_OS_WINRT static HANDLE sleepObj = NULL; #endif SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds){ #if SQLITE_OS_WINRT if ( sleepObj==NULL ){ sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET, SYNCHRONIZE); } assert( sleepObj!=NULL ); osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE); #else osSleep(milliseconds); #endif } #if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \ SQLITE_THREADSAFE>0 SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject){ DWORD rc; while( (rc = osWaitForSingleObjectEx(hObject, INFINITE, TRUE))==WAIT_IO_COMPLETION ){} return rc; } #endif /* ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, ** or WinCE. Return false (zero) for Win95, Win98, or WinME. ** ** Here is an interesting observation: Win95, Win98, and WinME lack ** the LockFileEx() API. But we can still statically link against that ** API as long as we don't call it when running Win95/98/ME. A call to ** this routine is used to determine if the host is Win95/98/ME or ** WinNT/2K/XP so that we will know whether or not we can safely call ** the LockFileEx() API. */ #if !SQLITE_WIN32_GETVERSIONEX # define osIsNT() (1) #elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI) # define osIsNT() (1) #elif !defined(SQLITE_WIN32_HAS_WIDE) # define osIsNT() (0) #else # define osIsNT() ((sqlite3_os_type==2) || sqlite3_win32_is_nt()) #endif /* ** This function determines if the machine is running a version of Windows ** based on the NT kernel. */ SQLITE_API int sqlite3_win32_is_nt(void){ #if SQLITE_OS_WINRT /* ** NOTE: The WinRT sub-platform is always assumed to be based on the NT ** kernel. */ return 1; #elif SQLITE_WIN32_GETVERSIONEX if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){ #if defined(SQLITE_WIN32_HAS_ANSI) OSVERSIONINFOA sInfo; sInfo.dwOSVersionInfoSize = sizeof(sInfo); osGetVersionExA(&sInfo); osInterlockedCompareExchange(&sqlite3_os_type, (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0); #elif defined(SQLITE_WIN32_HAS_WIDE) OSVERSIONINFOW sInfo; sInfo.dwOSVersionInfoSize = sizeof(sInfo); osGetVersionExW(&sInfo); osInterlockedCompareExchange(&sqlite3_os_type, (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0); #endif } return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2; #elif SQLITE_TEST return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2; #else /* ** NOTE: All sub-platforms where the GetVersionEx[AW] functions are ** deprecated are always assumed to be based on the NT kernel. */ return 1; #endif } #ifdef SQLITE_WIN32_MALLOC /* ** Allocate nBytes of memory. */ static void *winMemMalloc(int nBytes){ HANDLE hHeap; void *p; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); #endif assert( nBytes>=0 ); p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); if( !p ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%lu), heap=%p", nBytes, osGetLastError(), (void*)hHeap); } return p; } /* ** Free memory. */ static void winMemFree(void *pPrior){ HANDLE hHeap; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); #endif if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */ if( !osHeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%lu), heap=%p", pPrior, osGetLastError(), (void*)hHeap); } } /* ** Change the size of an existing memory allocation */ static void *winMemRealloc(void *pPrior, int nBytes){ HANDLE hHeap; void *p; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ); #endif assert( nBytes>=0 ); if( !pPrior ){ p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes); }else{ p = osHeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes); } if( !p ){ sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%lu), heap=%p", pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, osGetLastError(), (void*)hHeap); } return p; } /* ** Return the size of an outstanding allocation, in bytes. */ static int winMemSize(void *p){ HANDLE hHeap; SIZE_T n; winMemAssertMagic(); hHeap = winMemGetHeap(); assert( hHeap!=0 ); assert( hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, p) ); #endif if( !p ) return 0; n = osHeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p); if( n==(SIZE_T)-1 ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%lu), heap=%p", p, osGetLastError(), (void*)hHeap); return 0; } return (int)n; } /* ** Round up a request size to the next valid allocation size. */ static int winMemRoundup(int n){ return n; } /* ** Initialize this module. */ static int winMemInit(void *pAppData){ winMemData *pWinMemData = (winMemData *)pAppData; if( !pWinMemData ) return SQLITE_ERROR; assert( pWinMemData->magic1==WINMEM_MAGIC1 ); assert( pWinMemData->magic2==WINMEM_MAGIC2 ); #if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE if( !pWinMemData->hHeap ){ DWORD dwInitialSize = SQLITE_WIN32_HEAP_INIT_SIZE; DWORD dwMaximumSize = (DWORD)sqlite3GlobalConfig.nHeap; if( dwMaximumSize==0 ){ dwMaximumSize = SQLITE_WIN32_HEAP_MAX_SIZE; }else if( dwInitialSize>dwMaximumSize ){ dwInitialSize = dwMaximumSize; } pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS, dwInitialSize, dwMaximumSize); if( !pWinMemData->hHeap ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapCreate (%lu), flags=%u, initSize=%lu, maxSize=%lu", osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, dwInitialSize, dwMaximumSize); return SQLITE_NOMEM_BKPT; } pWinMemData->bOwned = TRUE; assert( pWinMemData->bOwned ); } #else pWinMemData->hHeap = osGetProcessHeap(); if( !pWinMemData->hHeap ){ sqlite3_log(SQLITE_NOMEM, "failed to GetProcessHeap (%lu)", osGetLastError()); return SQLITE_NOMEM_BKPT; } pWinMemData->bOwned = FALSE; assert( !pWinMemData->bOwned ); #endif assert( pWinMemData->hHeap!=0 ); assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); #endif return SQLITE_OK; } /* ** Deinitialize this module. */ static void winMemShutdown(void *pAppData){ winMemData *pWinMemData = (winMemData *)pAppData; if( !pWinMemData ) return; assert( pWinMemData->magic1==WINMEM_MAGIC1 ); assert( pWinMemData->magic2==WINMEM_MAGIC2 ); if( pWinMemData->hHeap ){ assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE ); #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE) assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) ); #endif if( pWinMemData->bOwned ){ if( !osHeapDestroy(pWinMemData->hHeap) ){ sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%lu), heap=%p", osGetLastError(), (void*)pWinMemData->hHeap); } pWinMemData->bOwned = FALSE; } pWinMemData->hHeap = NULL; } } /* ** Populate the low-level memory allocation function pointers in ** sqlite3GlobalConfig.m with pointers to the routines in this file. The ** arguments specify the block of memory to manage. ** ** This routine is only called by sqlite3_config(), and therefore ** is not required to be threadsafe (it is not). */ SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void){ static const sqlite3_mem_methods winMemMethods = { winMemMalloc, winMemFree, winMemRealloc, winMemSize, winMemRoundup, winMemInit, winMemShutdown, &win_mem_data }; return &winMemMethods; } SQLITE_PRIVATE void sqlite3MemSetDefault(void){ sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32()); } #endif /* SQLITE_WIN32_MALLOC */ /* ** Convert a UTF-8 string to Microsoft Unicode. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static LPWSTR winUtf8ToUnicode(const char *zText){ int nChar; LPWSTR zWideText; nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, NULL, 0); if( nChar==0 ){ return 0; } zWideText = sqlite3MallocZero( nChar*sizeof(WCHAR) ); if( zWideText==0 ){ return 0; } nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, zWideText, nChar); if( nChar==0 ){ sqlite3_free(zWideText); zWideText = 0; } return zWideText; } /* ** Convert a Microsoft Unicode string to UTF-8. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winUnicodeToUtf8(LPCWSTR zWideText){ int nByte; char *zText; nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, 0, 0, 0, 0); if( nByte == 0 ){ return 0; } zText = sqlite3MallocZero( nByte ); if( zText==0 ){ return 0; } nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, zText, nByte, 0, 0); if( nByte == 0 ){ sqlite3_free(zText); zText = 0; } return zText; } /* ** Convert an ANSI string to Microsoft Unicode, using the ANSI or OEM ** code page. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static LPWSTR winMbcsToUnicode(const char *zText, int useAnsi){ int nByte; LPWSTR zMbcsText; int codepage = useAnsi ? CP_ACP : CP_OEMCP; nByte = osMultiByteToWideChar(codepage, 0, zText, -1, NULL, 0)*sizeof(WCHAR); if( nByte==0 ){ return 0; } zMbcsText = sqlite3MallocZero( nByte*sizeof(WCHAR) ); if( zMbcsText==0 ){ return 0; } nByte = osMultiByteToWideChar(codepage, 0, zText, -1, zMbcsText, nByte); if( nByte==0 ){ sqlite3_free(zMbcsText); zMbcsText = 0; } return zMbcsText; } /* ** Convert a Microsoft Unicode string to a multi-byte character string, ** using the ANSI or OEM code page. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winUnicodeToMbcs(LPCWSTR zWideText, int useAnsi){ int nByte; char *zText; int codepage = useAnsi ? CP_ACP : CP_OEMCP; nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, 0, 0, 0, 0); if( nByte == 0 ){ return 0; } zText = sqlite3MallocZero( nByte ); if( zText==0 ){ return 0; } nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, zText, nByte, 0, 0); if( nByte == 0 ){ sqlite3_free(zText); zText = 0; } return zText; } /* ** Convert a multi-byte character string to UTF-8. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winMbcsToUtf8(const char *zText, int useAnsi){ char *zTextUtf8; LPWSTR zTmpWide; zTmpWide = winMbcsToUnicode(zText, useAnsi); if( zTmpWide==0 ){ return 0; } zTextUtf8 = winUnicodeToUtf8(zTmpWide); sqlite3_free(zTmpWide); return zTextUtf8; } /* ** Convert a UTF-8 string to a multi-byte character string. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). */ static char *winUtf8ToMbcs(const char *zText, int useAnsi){ char *zTextMbcs; LPWSTR zTmpWide; zTmpWide = winUtf8ToUnicode(zText); if( zTmpWide==0 ){ return 0; } zTextMbcs = winUnicodeToMbcs(zTmpWide, useAnsi); sqlite3_free(zTmpWide); return zTextMbcs; } /* ** This is a public wrapper for the winUtf8ToUnicode() function. */ SQLITE_API LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToUnicode(zText); } /* ** This is a public wrapper for the winUnicodeToUtf8() function. */ SQLITE_API char *sqlite3_win32_unicode_to_utf8(LPCWSTR zWideText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zWideText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUnicodeToUtf8(zWideText); } /* ** This is a public wrapper for the winMbcsToUtf8() function. */ SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winMbcsToUtf8(zText, osAreFileApisANSI()); } /* ** This is a public wrapper for the winMbcsToUtf8() function. */ SQLITE_API char *sqlite3_win32_mbcs_to_utf8_v2(const char *zText, int useAnsi){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winMbcsToUtf8(zText, useAnsi); } /* ** This is a public wrapper for the winUtf8ToMbcs() function. */ SQLITE_API char *sqlite3_win32_utf8_to_mbcs(const char *zText){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToMbcs(zText, osAreFileApisANSI()); } /* ** This is a public wrapper for the winUtf8ToMbcs() function. */ SQLITE_API char *sqlite3_win32_utf8_to_mbcs_v2(const char *zText, int useAnsi){ #ifdef SQLITE_ENABLE_API_ARMOR if( !zText ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return winUtf8ToMbcs(zText, useAnsi); } /* ** This function is the same as sqlite3_win32_set_directory (below); however, ** it accepts a UTF-8 string. */ SQLITE_API int sqlite3_win32_set_directory8( unsigned long type, /* Identifier for directory being set or reset */ const char *zValue /* New value for directory being set or reset */ ){ char **ppDirectory = 0; int rc; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){ ppDirectory = &sqlite3_data_directory; }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){ ppDirectory = &sqlite3_temp_directory; } assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ); assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) ); if( ppDirectory ){ char *zCopy = 0; if( zValue && zValue[0] ){ zCopy = sqlite3_mprintf("%s", zValue); if ( zCopy==0 ){ rc = SQLITE_NOMEM_BKPT; goto set_directory8_done; } } sqlite3_free(*ppDirectory); *ppDirectory = zCopy; rc = SQLITE_OK; }else{ rc = SQLITE_ERROR; } set_directory8_done: sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); return rc; } /* ** This function is the same as sqlite3_win32_set_directory (below); however, ** it accepts a UTF-16 string. */ SQLITE_API int sqlite3_win32_set_directory16( unsigned long type, /* Identifier for directory being set or reset */ const void *zValue /* New value for directory being set or reset */ ){ int rc; char *zUtf8 = 0; if( zValue ){ zUtf8 = sqlite3_win32_unicode_to_utf8(zValue); if( zUtf8==0 ) return SQLITE_NOMEM_BKPT; } rc = sqlite3_win32_set_directory8(type, zUtf8); if( zUtf8 ) sqlite3_free(zUtf8); return rc; } /* ** This function sets the data directory or the temporary directory based on ** the provided arguments. The type argument must be 1 in order to set the ** data directory or 2 in order to set the temporary directory. The zValue ** argument is the name of the directory to use. The return value will be ** SQLITE_OK if successful. */ SQLITE_API int sqlite3_win32_set_directory( unsigned long type, /* Identifier for directory being set or reset */ void *zValue /* New value for directory being set or reset */ ){ return sqlite3_win32_set_directory16(type, zValue); } /* ** The return value of winGetLastErrorMsg ** is zero if the error message fits in the buffer, or non-zero ** otherwise (if the message was truncated). */ static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){ /* FormatMessage returns 0 on failure. Otherwise it ** returns the number of TCHARs written to the output ** buffer, excluding the terminating null char. */ DWORD dwLen = 0; char *zOut = 0; if( osIsNT() ){ #if SQLITE_OS_WINRT WCHAR zTempWide[SQLITE_WIN32_MAX_ERRMSG_CHARS+1]; dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, lastErrno, 0, zTempWide, SQLITE_WIN32_MAX_ERRMSG_CHARS, 0); #else LPWSTR zTempWide = NULL; dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, lastErrno, 0, (LPWSTR) &zTempWide, 0, 0); #endif if( dwLen > 0 ){ /* allocate a buffer and convert to UTF8 */ sqlite3BeginBenignMalloc(); zOut = winUnicodeToUtf8(zTempWide); sqlite3EndBenignMalloc(); #if !SQLITE_OS_WINRT /* free the system buffer allocated by FormatMessage */ osLocalFree(zTempWide); #endif } } #ifdef SQLITE_WIN32_HAS_ANSI else{ char *zTemp = NULL; dwLen = osFormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, lastErrno, 0, (LPSTR) &zTemp, 0, 0); if( dwLen > 0 ){ /* allocate a buffer and convert to UTF8 */ sqlite3BeginBenignMalloc(); zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI()); sqlite3EndBenignMalloc(); /* free the system buffer allocated by FormatMessage */ osLocalFree(zTemp); } } #endif if( 0 == dwLen ){ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%lx (%lu)", lastErrno, lastErrno); }else{ /* copy a maximum of nBuf chars to output buffer */ sqlite3_snprintf(nBuf, zBuf, "%s", zOut); /* free the UTF8 buffer */ sqlite3_free(zOut); } return 0; } /* ** ** This function - winLogErrorAtLine() - is only ever called via the macro ** winLogError(). ** ** This routine is invoked after an error occurs in an OS function. ** It logs a message using sqlite3_log() containing the current value of ** error code and, if possible, the human-readable equivalent from ** FormatMessage. ** ** The first argument passed to the macro should be the error code that ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). ** The two subsequent arguments should be the name of the OS function that ** failed and the associated file-system path, if any. */ #define winLogError(a,b,c,d) winLogErrorAtLine(a,b,c,d,__LINE__) static int winLogErrorAtLine( int errcode, /* SQLite error code */ DWORD lastErrno, /* Win32 last error */ const char *zFunc, /* Name of OS function that failed */ const char *zPath, /* File path associated with error */ int iLine /* Source line number where error occurred */ ){ char zMsg[500]; /* Human readable error text */ int i; /* Loop counter */ zMsg[0] = 0; winGetLastErrorMsg(lastErrno, sizeof(zMsg), zMsg); assert( errcode!=SQLITE_OK ); if( zPath==0 ) zPath = ""; for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){} zMsg[i] = 0; sqlite3_log(errcode, "os_win.c:%d: (%lu) %s(%s) - %s", iLine, lastErrno, zFunc, zPath, zMsg ); return errcode; } /* ** The number of times that a ReadFile(), WriteFile(), and DeleteFile() ** will be retried following a locking error - probably caused by ** antivirus software. Also the initial delay before the first retry. ** The delay increases linearly with each retry. */ #ifndef SQLITE_WIN32_IOERR_RETRY # define SQLITE_WIN32_IOERR_RETRY 10 #endif #ifndef SQLITE_WIN32_IOERR_RETRY_DELAY # define SQLITE_WIN32_IOERR_RETRY_DELAY 25 #endif static int winIoerrRetry = SQLITE_WIN32_IOERR_RETRY; static int winIoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY; /* ** The "winIoerrCanRetry1" macro is used to determine if a particular I/O ** error code obtained via GetLastError() is eligible to be retried. It ** must accept the error code DWORD as its only argument and should return ** non-zero if the error code is transient in nature and the operation ** responsible for generating the original error might succeed upon being ** retried. The argument to this macro should be a variable. ** ** Additionally, a macro named "winIoerrCanRetry2" may be defined. If it ** is defined, it will be consulted only when the macro "winIoerrCanRetry1" ** returns zero. The "winIoerrCanRetry2" macro is completely optional and ** may be used to include additional error codes in the set that should ** result in the failing I/O operation being retried by the caller. If ** defined, the "winIoerrCanRetry2" macro must exhibit external semantics ** identical to those of the "winIoerrCanRetry1" macro. */ #if !defined(winIoerrCanRetry1) #define winIoerrCanRetry1(a) (((a)==ERROR_ACCESS_DENIED) || \ ((a)==ERROR_SHARING_VIOLATION) || \ ((a)==ERROR_LOCK_VIOLATION) || \ ((a)==ERROR_DEV_NOT_EXIST) || \ ((a)==ERROR_NETNAME_DELETED) || \ ((a)==ERROR_SEM_TIMEOUT) || \ ((a)==ERROR_NETWORK_UNREACHABLE)) #endif /* ** If a ReadFile() or WriteFile() error occurs, invoke this routine ** to see if it should be retried. Return TRUE to retry. Return FALSE ** to give up with an error. */ static int winRetryIoerr(int *pnRetry, DWORD *pError){ DWORD e = osGetLastError(); if( *pnRetry>=winIoerrRetry ){ if( pError ){ *pError = e; } return 0; } if( winIoerrCanRetry1(e) ){ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry)); ++*pnRetry; return 1; } #if defined(winIoerrCanRetry2) else if( winIoerrCanRetry2(e) ){ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry)); ++*pnRetry; return 1; } #endif if( pError ){ *pError = e; } return 0; } /* ** Log a I/O error retry episode. */ static void winLogIoerr(int nRetry, int lineno){ if( nRetry ){ sqlite3_log(SQLITE_NOTICE, "delayed %dms for lock/sharing conflict at line %d", winIoerrRetryDelay*nRetry*(nRetry+1)/2, lineno ); } } /* ** This #if does not rely on the SQLITE_OS_WINCE define because the ** corresponding section in "date.c" cannot use it. */ #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) /* ** The MSVC CRT on Windows CE may not have a localtime() function. ** So define a substitute. */ /* # include */ struct tm *__cdecl localtime(const time_t *t) { static struct tm y; FILETIME uTm, lTm; SYSTEMTIME pTm; sqlite3_int64 t64; t64 = *t; t64 = (t64 + 11644473600)*10000000; uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF); uTm.dwHighDateTime= (DWORD)(t64 >> 32); osFileTimeToLocalFileTime(&uTm,&lTm); osFileTimeToSystemTime(&lTm,&pTm); y.tm_year = pTm.wYear - 1900; y.tm_mon = pTm.wMonth - 1; y.tm_wday = pTm.wDayOfWeek; y.tm_mday = pTm.wDay; y.tm_hour = pTm.wHour; y.tm_min = pTm.wMinute; y.tm_sec = pTm.wSecond; return &y; } #endif #if SQLITE_OS_WINCE /************************************************************************* ** This section contains code for WinCE only. */ #define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)] /* ** Acquire a lock on the handle h */ static void winceMutexAcquire(HANDLE h){ DWORD dwErr; do { dwErr = osWaitForSingleObject(h, INFINITE); } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED); } /* ** Release a lock acquired by winceMutexAcquire() */ #define winceMutexRelease(h) ReleaseMutex(h) /* ** Create the mutex and shared memory used for locking in the file ** descriptor pFile */ static int winceCreateLock(const char *zFilename, winFile *pFile){ LPWSTR zTok; LPWSTR zName; DWORD lastErrno; BOOL bLogged = FALSE; BOOL bInit = TRUE; zName = winUtf8ToUnicode(zFilename); if( zName==0 ){ /* out of memory */ return SQLITE_IOERR_NOMEM_BKPT; } /* Initialize the local lockdata */ memset(&pFile->local, 0, sizeof(pFile->local)); /* Replace the backslashes from the filename and lowercase it ** to derive a mutex name. */ zTok = osCharLowerW(zName); for (;*zTok;zTok++){ if (*zTok == '\\') *zTok = '_'; } /* Create/open the named mutex */ pFile->hMutex = osCreateMutexW(NULL, FALSE, zName); if (!pFile->hMutex){ pFile->lastErrno = osGetLastError(); sqlite3_free(zName); return winLogError(SQLITE_IOERR, pFile->lastErrno, "winceCreateLock1", zFilename); } /* Acquire the mutex before continuing */ winceMutexAcquire(pFile->hMutex); /* Since the names of named mutexes, semaphores, file mappings etc are ** case-sensitive, take advantage of that by uppercasing the mutex name ** and using that as the shared filemapping name. */ osCharUpperW(zName); pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, sizeof(winceLock), zName); /* Set a flag that indicates we're the first to create the memory so it ** must be zero-initialized */ lastErrno = osGetLastError(); if (lastErrno == ERROR_ALREADY_EXISTS){ bInit = FALSE; } sqlite3_free(zName); /* If we succeeded in making the shared memory handle, map it. */ if( pFile->hShared ){ pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared, FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock)); /* If mapping failed, close the shared memory handle and erase it */ if( !pFile->shared ){ pFile->lastErrno = osGetLastError(); winLogError(SQLITE_IOERR, pFile->lastErrno, "winceCreateLock2", zFilename); bLogged = TRUE; osCloseHandle(pFile->hShared); pFile->hShared = NULL; } } /* If shared memory could not be created, then close the mutex and fail */ if( pFile->hShared==NULL ){ if( !bLogged ){ pFile->lastErrno = lastErrno; winLogError(SQLITE_IOERR, pFile->lastErrno, "winceCreateLock3", zFilename); bLogged = TRUE; } winceMutexRelease(pFile->hMutex); osCloseHandle(pFile->hMutex); pFile->hMutex = NULL; return SQLITE_IOERR; } /* Initialize the shared memory if we're supposed to */ if( bInit ){ memset(pFile->shared, 0, sizeof(winceLock)); } winceMutexRelease(pFile->hMutex); return SQLITE_OK; } /* ** Destroy the part of winFile that deals with wince locks */ static void winceDestroyLock(winFile *pFile){ if (pFile->hMutex){ /* Acquire the mutex */ winceMutexAcquire(pFile->hMutex); /* The following blocks should probably assert in debug mode, but they are to cleanup in case any locks remained open */ if (pFile->local.nReaders){ pFile->shared->nReaders --; } if (pFile->local.bReserved){ pFile->shared->bReserved = FALSE; } if (pFile->local.bPending){ pFile->shared->bPending = FALSE; } if (pFile->local.bExclusive){ pFile->shared->bExclusive = FALSE; } /* De-reference and close our copy of the shared memory handle */ osUnmapViewOfFile(pFile->shared); osCloseHandle(pFile->hShared); /* Done with the mutex */ winceMutexRelease(pFile->hMutex); osCloseHandle(pFile->hMutex); pFile->hMutex = NULL; } } /* ** An implementation of the LockFile() API of Windows for CE */ static BOOL winceLockFile( LPHANDLE phFile, DWORD dwFileOffsetLow, DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; UNUSED_PARAMETER(dwFileOffsetHigh); UNUSED_PARAMETER(nNumberOfBytesToLockHigh); if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Wanting an exclusive lock? */ if (dwFileOffsetLow == (DWORD)SHARED_FIRST && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){ if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){ pFile->shared->bExclusive = TRUE; pFile->local.bExclusive = TRUE; bReturn = TRUE; } } /* Want a read-only lock? */ else if (dwFileOffsetLow == (DWORD)SHARED_FIRST && nNumberOfBytesToLockLow == 1){ if (pFile->shared->bExclusive == 0){ pFile->local.nReaders ++; if (pFile->local.nReaders == 1){ pFile->shared->nReaders ++; } bReturn = TRUE; } } /* Want a pending lock? */ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){ /* If no pending lock has been acquired, then acquire it */ if (pFile->shared->bPending == 0) { pFile->shared->bPending = TRUE; pFile->local.bPending = TRUE; bReturn = TRUE; } } /* Want a reserved lock? */ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){ if (pFile->shared->bReserved == 0) { pFile->shared->bReserved = TRUE; pFile->local.bReserved = TRUE; bReturn = TRUE; } } winceMutexRelease(pFile->hMutex); return bReturn; } /* ** An implementation of the UnlockFile API of Windows for CE */ static BOOL winceUnlockFile( LPHANDLE phFile, DWORD dwFileOffsetLow, DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToUnlockLow, DWORD nNumberOfBytesToUnlockHigh ){ winFile *pFile = HANDLE_TO_WINFILE(phFile); BOOL bReturn = FALSE; UNUSED_PARAMETER(dwFileOffsetHigh); UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh); if (!pFile->hMutex) return TRUE; winceMutexAcquire(pFile->hMutex); /* Releasing a reader lock or an exclusive lock */ if (dwFileOffsetLow == (DWORD)SHARED_FIRST){ /* Did we have an exclusive lock? */ if (pFile->local.bExclusive){ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE); pFile->local.bExclusive = FALSE; pFile->shared->bExclusive = FALSE; bReturn = TRUE; } /* Did we just have a reader lock? */ else if (pFile->local.nReaders){ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1); pFile->local.nReaders --; if (pFile->local.nReaders == 0) { pFile->shared->nReaders --; } bReturn = TRUE; } } /* Releasing a pending lock */ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){ if (pFile->local.bPending){ pFile->local.bPending = FALSE; pFile->shared->bPending = FALSE; bReturn = TRUE; } } /* Releasing a reserved lock */ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){ if (pFile->local.bReserved) { pFile->local.bReserved = FALSE; pFile->shared->bReserved = FALSE; bReturn = TRUE; } } winceMutexRelease(pFile->hMutex); return bReturn; } /* ** End of the special code for wince *****************************************************************************/ #endif /* SQLITE_OS_WINCE */ /* ** Lock a file region. */ static BOOL winLockFile( LPHANDLE phFile, DWORD flags, DWORD offsetLow, DWORD offsetHigh, DWORD numBytesLow, DWORD numBytesHigh ){ #if SQLITE_OS_WINCE /* ** NOTE: Windows CE is handled differently here due its lack of the Win32 ** API LockFile. */ return winceLockFile(phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); #else if( osIsNT() ){ OVERLAPPED ovlp; memset(&ovlp, 0, sizeof(OVERLAPPED)); ovlp.Offset = offsetLow; ovlp.OffsetHigh = offsetHigh; return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp); }else{ return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); } #endif } /* ** Unlock a file region. */ static BOOL winUnlockFile( LPHANDLE phFile, DWORD offsetLow, DWORD offsetHigh, DWORD numBytesLow, DWORD numBytesHigh ){ #if SQLITE_OS_WINCE /* ** NOTE: Windows CE is handled differently here due its lack of the Win32 ** API UnlockFile. */ return winceUnlockFile(phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); #else if( osIsNT() ){ OVERLAPPED ovlp; memset(&ovlp, 0, sizeof(OVERLAPPED)); ovlp.Offset = offsetLow; ovlp.OffsetHigh = offsetHigh; return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp); }else{ return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow, numBytesHigh); } #endif } /***************************************************************************** ** The next group of routines implement the I/O methods specified ** by the sqlite3_io_methods object. ******************************************************************************/ /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_SET_FILE_POINTER # define INVALID_SET_FILE_POINTER ((DWORD)-1) #endif /* ** Move the current position of the file handle passed as the first ** argument to offset iOffset within the file. If successful, return 0. ** Otherwise, set pFile->lastErrno and return non-zero. */ static int winSeekFile(winFile *pFile, sqlite3_int64 iOffset){ #if !SQLITE_OS_WINRT LONG upperBits; /* Most sig. 32 bits of new offset */ LONG lowerBits; /* Least sig. 32 bits of new offset */ DWORD dwRet; /* Value returned by SetFilePointer() */ DWORD lastErrno; /* Value returned by GetLastError() */ OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset)); upperBits = (LONG)((iOffset>>32) & 0x7fffffff); lowerBits = (LONG)(iOffset & 0xffffffff); /* API oddity: If successful, SetFilePointer() returns a dword ** containing the lower 32-bits of the new file-offset. Or, if it fails, ** it returns INVALID_SET_FILE_POINTER. However according to MSDN, ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine ** whether an error has actually occurred, it is also necessary to call ** GetLastError(). */ dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); if( (dwRet==INVALID_SET_FILE_POINTER && ((lastErrno = osGetLastError())!=NO_ERROR)) ){ pFile->lastErrno = lastErrno; winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno, "winSeekFile", pFile->zPath); OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h)); return 1; } OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h)); return 0; #else /* ** Same as above, except that this implementation works for WinRT. */ LARGE_INTEGER x; /* The new offset */ BOOL bRet; /* Value returned by SetFilePointerEx() */ x.QuadPart = iOffset; bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN); if(!bRet){ pFile->lastErrno = osGetLastError(); winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno, "winSeekFile", pFile->zPath); OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h)); return 1; } OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h)); return 0; #endif } #if SQLITE_MAX_MMAP_SIZE>0 /* Forward references to VFS helper methods used for memory mapped files */ static int winMapfile(winFile*, sqlite3_int64); static int winUnmapfile(winFile*); #endif /* ** Close a file. ** ** It is reported that an attempt to close a handle might sometimes ** fail. This is a very unreasonable result, but Windows is notorious ** for being unreasonable so I do not doubt that it might happen. If ** the close fails, we pause for 100 milliseconds and try again. As ** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before ** giving up and returning an error. */ #define MX_CLOSE_ATTEMPT 3 static int winClose(sqlite3_file *id){ int rc, cnt = 0; winFile *pFile = (winFile*)id; assert( id!=0 ); #ifndef SQLITE_OMIT_WAL assert( pFile->pShm==0 ); #endif assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE ); OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p\n", osGetCurrentProcessId(), pFile, pFile->h)); #if SQLITE_MAX_MMAP_SIZE>0 winUnmapfile(pFile); #endif do{ rc = osCloseHandle(pFile->h); /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */ }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) ); #if SQLITE_OS_WINCE #define WINCE_DELETION_ATTEMPTS 3 { winVfsAppData *pAppData = (winVfsAppData*)pFile->pVfs->pAppData; if( pAppData==NULL || !pAppData->bNoLock ){ winceDestroyLock(pFile); } } if( pFile->zDeleteOnClose ){ int cnt = 0; while( osDeleteFileW(pFile->zDeleteOnClose)==0 && osGetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff && cnt++ < WINCE_DELETION_ATTEMPTS ){ sqlite3_win32_sleep(100); /* Wait a little before trying again */ } sqlite3_free(pFile->zDeleteOnClose); } #endif if( rc ){ pFile->h = NULL; } OpenCounter(-1); OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p, rc=%s\n", osGetCurrentProcessId(), pFile, pFile->h, rc ? "ok" : "failed")); return rc ? SQLITE_OK : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(), "winClose", pFile->zPath); } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. */ static int winRead( sqlite3_file *id, /* File to read from */ void *pBuf, /* Write content into this buffer */ int amt, /* Number of bytes to read */ sqlite3_int64 offset /* Begin reading at this offset */ ){ #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) OVERLAPPED overlapped; /* The offset for ReadFile. */ #endif winFile *pFile = (winFile*)id; /* file handle */ DWORD nRead; /* Number of bytes actually read from file */ int nRetry = 0; /* Number of retrys */ assert( id!=0 ); assert( amt>0 ); assert( offset>=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this read request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ int nCopy = (int)(pFile->mmapSize - offset); memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif #if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED) if( winSeekFile(pFile, offset) ){ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_FULL; } while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ #else memset(&overlapped, 0, sizeof(OVERLAPPED)); overlapped.Offset = (LONG)(offset & 0xffffffff); overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) && osGetLastError()!=ERROR_HANDLE_EOF ){ #endif DWORD lastErrno; if( winRetryIoerr(&nRetry, &lastErrno) ) continue; pFile->lastErrno = lastErrno; OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_READ\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_READ, pFile->lastErrno, "winRead", pFile->zPath); } winLogIoerr(nRetry, __LINE__); if( nRead<(DWORD)amt ){ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[nRead], 0, amt-nRead); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_SHORT_READ\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_IOERR_SHORT_READ; } OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; } /* ** Write data from a buffer into a file. Return SQLITE_OK on success ** or some other error code on failure. */ static int winWrite( sqlite3_file *id, /* File to write into */ const void *pBuf, /* The bytes to be written */ int amt, /* Number of bytes to write */ sqlite3_int64 offset /* Offset into the file to begin writing at */ ){ int rc = 0; /* True if error has occurred, else false */ winFile *pFile = (winFile*)id; /* File handle */ int nRetry = 0; /* Number of retries */ assert( amt>0 ); assert( pFile ); SimulateIOError(return SQLITE_IOERR_WRITE); SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this write request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offsetmmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ int nCopy = (int)(pFile->mmapSize - offset); memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif #if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED) rc = winSeekFile(pFile, offset); if( rc==0 ){ #else { #endif #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) OVERLAPPED overlapped; /* The offset for WriteFile. */ #endif u8 *aRem = (u8 *)pBuf; /* Data yet to be written */ int nRem = amt; /* Number of bytes yet to be written */ DWORD nWrite; /* Bytes written by each WriteFile() call */ DWORD lastErrno = NO_ERROR; /* Value returned by GetLastError() */ #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) memset(&overlapped, 0, sizeof(OVERLAPPED)); overlapped.Offset = (LONG)(offset & 0xffffffff); overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); #endif while( nRem>0 ){ #if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED) if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){ #else if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){ #endif if( winRetryIoerr(&nRetry, &lastErrno) ) continue; break; } assert( nWrite==0 || nWrite<=(DWORD)nRem ); if( nWrite==0 || nWrite>(DWORD)nRem ){ lastErrno = osGetLastError(); break; } #if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED) offset += nWrite; overlapped.Offset = (LONG)(offset & 0xffffffff); overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); #endif aRem += nWrite; nRem -= nWrite; } if( nRem>0 ){ pFile->lastErrno = lastErrno; rc = 1; } } if( rc ){ if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ) || ( pFile->lastErrno==ERROR_DISK_FULL )){ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_FULL, pFile->lastErrno, "winWrite1", pFile->zPath); } OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_WRITE\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno, "winWrite2", pFile->zPath); }else{ winLogIoerr(nRetry, __LINE__); } OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; } /* ** Truncate an open file to a specified size */ static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ winFile *pFile = (winFile*)id; /* File handle object */ int rc = SQLITE_OK; /* Return code for this function */ DWORD lastErrno; #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_int64 oldMmapSize; if( pFile->nFetchOut>0 ){ /* File truncation is a no-op if there are outstanding memory mapped ** pages. This is because truncating the file means temporarily unmapping ** the file, and that might delete memory out from under existing cursors. ** ** This can result in incremental vacuum not truncating the file, ** if there is an active read cursor when the incremental vacuum occurs. ** No real harm comes of this - the database file is not corrupted, ** though some folks might complain that the file is bigger than it ** needs to be. ** ** The only feasible work-around is to defer the truncation until after ** all references to memory-mapped content are closed. That is doable, ** but involves adding a few branches in the common write code path which ** could slow down normal operations slightly. Hence, we have decided for ** now to simply make transactions a no-op if there are pending reads. We ** can maybe revisit this decision in the future. */ return SQLITE_OK; } #endif assert( pFile ); SimulateIOError(return SQLITE_IOERR_TRUNCATE); OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype)); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk>0 ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } #if SQLITE_MAX_MMAP_SIZE>0 if( pFile->pMapRegion ){ oldMmapSize = pFile->mmapSize; }else{ oldMmapSize = 0; } winUnmapfile(pFile); #endif /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */ if( winSeekFile(pFile, nByte) ){ rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno, "winTruncate1", pFile->zPath); }else if( 0==osSetEndOfFile(pFile->h) && ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){ pFile->lastErrno = lastErrno; rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno, "winTruncate2", pFile->zPath); } #if SQLITE_MAX_MMAP_SIZE>0 if( rc==SQLITE_OK && oldMmapSize>0 ){ if( oldMmapSize>nByte ){ winMapfile(pFile, -1); }else{ winMapfile(pFile, oldMmapSize); } } #endif OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, rc=%s\n", osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc))); return rc; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occurring at the right times. */ SQLITE_API int sqlite3_sync_count = 0; SQLITE_API int sqlite3_fullsync_count = 0; #endif /* ** Make sure all writes to a particular file are committed to disk. */ static int winSync(sqlite3_file *id, int flags){ #ifndef SQLITE_NO_SYNC /* ** Used only when SQLITE_NO_SYNC is not defined. */ BOOL rc; #endif #if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \ defined(SQLITE_HAVE_OS_TRACE) /* ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or ** OSTRACE() macros. */ winFile *pFile = (winFile*)id; #else UNUSED_PARAMETER(id); #endif assert( pFile ); /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ assert((flags&0x0F)==SQLITE_SYNC_NORMAL || (flags&0x0F)==SQLITE_SYNC_FULL ); /* Unix cannot, but some systems may return SQLITE_FULL from here. This ** line is to test that doing so does not cause any problems. */ SimulateDiskfullError( return SQLITE_FULL ); OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, flags=%x, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, flags, pFile->locktype)); #ifndef SQLITE_TEST UNUSED_PARAMETER(flags); #else if( (flags&0x0F)==SQLITE_SYNC_FULL ){ sqlite3_fullsync_count++; } sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op */ #ifdef SQLITE_NO_SYNC OSTRACE(("SYNC-NOP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; #else #if SQLITE_MAX_MMAP_SIZE>0 if( pFile->pMapRegion ){ if( osFlushViewOfFile(pFile->pMapRegion, 0) ){ OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); }else{ pFile->lastErrno = osGetLastError(); OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winSync1", pFile->zPath); } } #endif rc = osFlushFileBuffers(pFile->h); SimulateIOError( rc=FALSE ); if( rc ){ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ pFile->lastErrno = osGetLastError(); OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_FSYNC\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno, "winSync2", pFile->zPath); } #endif } /* ** Determine the current size of a file in bytes */ static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){ winFile *pFile = (winFile*)id; int rc = SQLITE_OK; assert( id!=0 ); assert( pSize!=0 ); SimulateIOError(return SQLITE_IOERR_FSTAT); OSTRACE(("SIZE file=%p, pSize=%p\n", pFile->h, pSize)); #if SQLITE_OS_WINRT { FILE_STANDARD_INFO info; if( osGetFileInformationByHandleEx(pFile->h, FileStandardInfo, &info, sizeof(info)) ){ *pSize = info.EndOfFile.QuadPart; }else{ pFile->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno, "winFileSize", pFile->zPath); } } #else { DWORD upperBits; DWORD lowerBits; DWORD lastErrno; lowerBits = osGetFileSize(pFile->h, &upperBits); *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits; if( (lowerBits == INVALID_FILE_SIZE) && ((lastErrno = osGetLastError())!=NO_ERROR) ){ pFile->lastErrno = lastErrno; rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno, "winFileSize", pFile->zPath); } } #endif OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n", pFile->h, pSize, *pSize, sqlite3ErrName(rc))); return rc; } /* ** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems. */ #ifndef LOCKFILE_FAIL_IMMEDIATELY # define LOCKFILE_FAIL_IMMEDIATELY 1 #endif #ifndef LOCKFILE_EXCLUSIVE_LOCK # define LOCKFILE_EXCLUSIVE_LOCK 2 #endif /* ** Historically, SQLite has used both the LockFile and LockFileEx functions. ** When the LockFile function was used, it was always expected to fail ** immediately if the lock could not be obtained. Also, it always expected to ** obtain an exclusive lock. These flags are used with the LockFileEx function ** and reflect those expectations; therefore, they should not be changed. */ #ifndef SQLITE_LOCKFILE_FLAGS # define SQLITE_LOCKFILE_FLAGS (LOCKFILE_FAIL_IMMEDIATELY | \ LOCKFILE_EXCLUSIVE_LOCK) #endif /* ** Currently, SQLite never calls the LockFileEx function without wanting the ** call to fail immediately if the lock cannot be obtained. */ #ifndef SQLITE_LOCKFILEEX_FLAGS # define SQLITE_LOCKFILEEX_FLAGS (LOCKFILE_FAIL_IMMEDIATELY) #endif /* ** Acquire a reader lock. ** Different API routines are called depending on whether or not this ** is Win9x or WinNT. */ static int winGetReadLock(winFile *pFile){ int res; OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype)); if( osIsNT() ){ #if SQLITE_OS_WINCE /* ** NOTE: Windows CE is handled differently here due its lack of the Win32 ** API LockFileEx. */ res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0); #else res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS, SHARED_FIRST, 0, SHARED_SIZE, 0); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ int lk; sqlite3_randomness(sizeof(lk), &lk); pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1)); res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); } #endif if( res == 0 ){ pFile->lastErrno = osGetLastError(); /* No need to log a failure to lock */ } OSTRACE(("READ-LOCK file=%p, result=%d\n", pFile->h, res)); return res; } /* ** Undo a readlock */ static int winUnlockReadLock(winFile *pFile){ int res; DWORD lastErrno; OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype)); if( osIsNT() ){ res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); } #ifdef SQLITE_WIN32_HAS_ANSI else{ res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); } #endif if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){ pFile->lastErrno = lastErrno; winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno, "winUnlockReadLock", pFile->zPath); } OSTRACE(("READ-UNLOCK file=%p, result=%d\n", pFile->h, res)); return res; } /* ** Lock the file with the lock specified by parameter locktype - one ** of the following: ** ** (1) SHARED_LOCK ** (2) RESERVED_LOCK ** (3) PENDING_LOCK ** (4) EXCLUSIVE_LOCK ** ** Sometimes when requesting one lock state, additional lock states ** are inserted in between. The locking might fail on one of the later ** transitions leaving the lock state different from what it started but ** still short of its goal. The following chart shows the allowed ** transitions and the inserted intermediate states: ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. The winUnlock() routine ** erases all locks at once and returns us immediately to locking level 0. ** It is not possible to lower the locking level one step at a time. You ** must go straight to locking level 0. */ static int winLock(sqlite3_file *id, int locktype){ int rc = SQLITE_OK; /* Return code from subroutines */ int res = 1; /* Result of a Windows lock call */ int newLocktype; /* Set pFile->locktype to this value before exiting */ int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ winFile *pFile = (winFile*)id; DWORD lastErrno = NO_ERROR; assert( id!=0 ); OSTRACE(("LOCK file=%p, oldLock=%d(%d), newLock=%d\n", pFile->h, pFile->locktype, pFile->sharedLockByte, locktype)); /* If there is already a lock of this type or more restrictive on the ** OsFile, do nothing. Don't use the end_lock: exit path, as ** sqlite3OsEnterMutex() hasn't been called yet. */ if( pFile->locktype>=locktype ){ OSTRACE(("LOCK-HELD file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } /* Do not allow any kind of write-lock on a read-only database */ if( (pFile->ctrlFlags & WINFILE_RDONLY)!=0 && locktype>=RESERVED_LOCK ){ return SQLITE_IOERR_LOCK; } /* Make sure the locking sequence is correct */ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); assert( locktype!=PENDING_LOCK ); assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of ** the PENDING_LOCK byte is temporary. */ newLocktype = pFile->locktype; if( pFile->locktype==NO_LOCK || (locktype==EXCLUSIVE_LOCK && pFile->locktype<=RESERVED_LOCK) ){ int cnt = 3; while( cnt-->0 && (res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, PENDING_BYTE, 0, 1, 0))==0 ){ /* Try 3 times to get the pending lock. This is needed to work ** around problems caused by indexing and/or anti-virus software on ** Windows systems. ** If you are using this code as a model for alternative VFSes, do not ** copy this retry logic. It is a hack intended for Windows only. */ lastErrno = osGetLastError(); OSTRACE(("LOCK-PENDING-FAIL file=%p, count=%d, result=%d\n", pFile->h, cnt, res)); if( lastErrno==ERROR_INVALID_HANDLE ){ pFile->lastErrno = lastErrno; rc = SQLITE_IOERR_LOCK; OSTRACE(("LOCK-FAIL file=%p, count=%d, rc=%s\n", pFile->h, cnt, sqlite3ErrName(rc))); return rc; } if( cnt ) sqlite3_win32_sleep(1); } gotPendingLock = res; if( !res ){ lastErrno = osGetLastError(); } } /* Acquire a shared lock */ if( locktype==SHARED_LOCK && res ){ assert( pFile->locktype==NO_LOCK ); res = winGetReadLock(pFile); if( res ){ newLocktype = SHARED_LOCK; }else{ lastErrno = osGetLastError(); } } /* Acquire a RESERVED lock */ if( locktype==RESERVED_LOCK && res ){ assert( pFile->locktype==SHARED_LOCK ); res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0); if( res ){ newLocktype = RESERVED_LOCK; }else{ lastErrno = osGetLastError(); } } /* Acquire a PENDING lock */ if( locktype==EXCLUSIVE_LOCK && res ){ newLocktype = PENDING_LOCK; gotPendingLock = 0; } /* Acquire an EXCLUSIVE lock */ if( locktype==EXCLUSIVE_LOCK && res ){ assert( pFile->locktype>=SHARED_LOCK ); (void)winUnlockReadLock(pFile); res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0, SHARED_SIZE, 0); if( res ){ newLocktype = EXCLUSIVE_LOCK; }else{ lastErrno = osGetLastError(); winGetReadLock(pFile); } } /* If we are holding a PENDING lock that ought to be released, then ** release it now. */ if( gotPendingLock && locktype==SHARED_LOCK ){ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0); } /* Update the state of the lock has held in the file descriptor then ** return the appropriate result code. */ if( res ){ rc = SQLITE_OK; }else{ pFile->lastErrno = lastErrno; rc = SQLITE_BUSY; OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n", pFile->h, locktype, newLocktype)); } pFile->locktype = (u8)newLocktype; OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n", pFile->h, pFile->locktype, sqlite3ErrName(rc))); return rc; } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, return ** non-zero, otherwise zero. */ static int winCheckReservedLock(sqlite3_file *id, int *pResOut){ int res; winFile *pFile = (winFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut)); assert( id!=0 ); if( pFile->locktype>=RESERVED_LOCK ){ res = 1; OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res)); }else{ res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE,0,1,0); if( res ){ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0); } res = !res; OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res)); } *pResOut = res; OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n", pFile->h, pResOut, *pResOut)); return SQLITE_OK; } /* ** Lower the locking level on file descriptor id to locktype. locktype ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** It is not possible for this routine to fail if the second argument ** is NO_LOCK. If the second argument is SHARED_LOCK then this routine ** might return SQLITE_IOERR; */ static int winUnlock(sqlite3_file *id, int locktype){ int type; winFile *pFile = (winFile*)id; int rc = SQLITE_OK; assert( pFile!=0 ); assert( locktype<=SHARED_LOCK ); OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n", pFile->h, pFile->locktype, pFile->sharedLockByte, locktype)); type = pFile->locktype; if( type>=EXCLUSIVE_LOCK ){ winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); if( locktype==SHARED_LOCK && !winGetReadLock(pFile) ){ /* This should never happen. We should always be able to ** reacquire the read lock */ rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(), "winUnlock", pFile->zPath); } } if( type>=RESERVED_LOCK ){ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0); } if( locktype==NO_LOCK && type>=SHARED_LOCK ){ winUnlockReadLock(pFile); } if( type>=PENDING_LOCK ){ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0); } pFile->locktype = (u8)locktype; OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n", pFile->h, pFile->locktype, sqlite3ErrName(rc))); return rc; } /****************************************************************************** ****************************** No-op Locking ********************************** ** ** Of the various locking implementations available, this is by far the ** simplest: locking is ignored. No attempt is made to lock the database ** file for reading or writing. ** ** This locking mode is appropriate for use on read-only databases ** (ex: databases that are burned into CD-ROM, for example.) It can ** also be used if the application employs some external mechanism to ** prevent simultaneous access of the same database by two or more ** database connections. But there is a serious risk of database ** corruption if this locking mode is used in situations where multiple ** database connections are accessing the same database file at the same ** time and one or more of those connections are writing. */ static int winNolockLock(sqlite3_file *id, int locktype){ UNUSED_PARAMETER(id); UNUSED_PARAMETER(locktype); return SQLITE_OK; } static int winNolockCheckReservedLock(sqlite3_file *id, int *pResOut){ UNUSED_PARAMETER(id); UNUSED_PARAMETER(pResOut); return SQLITE_OK; } static int winNolockUnlock(sqlite3_file *id, int locktype){ UNUSED_PARAMETER(id); UNUSED_PARAMETER(locktype); return SQLITE_OK; } /******************* End of the no-op lock implementation ********************* ******************************************************************************/ /* ** If *pArg is initially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* Forward references to VFS helper methods used for temporary files */ static int winGetTempname(sqlite3_vfs *, char **); static int winIsDir(const void *); static BOOL winIsLongPathPrefix(const char *); static BOOL winIsDriveLetterAndColon(const char *); /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg)); switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->locktype; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_LAST_ERRNO: { *(int*)pArg = (int)pFile->lastErrno; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_CHUNK_SIZE: { pFile->szChunk = *(int *)pArg; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_SIZE_HINT: { if( pFile->szChunk>0 ){ sqlite3_int64 oldSz; int rc = winFileSize(id, &oldSz); if( rc==SQLITE_OK ){ sqlite3_int64 newSz = *(sqlite3_int64*)pArg; if( newSz>oldSz ){ SimulateIOErrorBenign(1); rc = winTruncate(id, newSz); SimulateIOErrorBenign(0); } } OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc))); return rc; } OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_PERSIST_WAL: { winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg); OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { winModeBit(pFile, WINFILE_PSOW, (int*)pArg); OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_WIN32_AV_RETRY: { int *a = (int*)pArg; if( a[0]>0 ){ winIoerrRetry = a[0]; }else{ a[0] = winIoerrRetry; } if( a[1]>0 ){ winIoerrRetryDelay = a[1]; }else{ a[1] = winIoerrRetryDelay; } OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } case SQLITE_FCNTL_WIN32_GET_HANDLE: { LPHANDLE phFile = (LPHANDLE)pArg; *phFile = pFile->h; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } #ifdef SQLITE_TEST case SQLITE_FCNTL_WIN32_SET_HANDLE: { LPHANDLE phFile = (LPHANDLE)pArg; HANDLE hOldFile = pFile->h; pFile->h = *phFile; *phFile = hOldFile; OSTRACE(("FCNTL oldFile=%p, newFile=%p, rc=SQLITE_OK\n", hOldFile, pFile->h)); return SQLITE_OK; } #endif case SQLITE_FCNTL_TEMPFILENAME: { char *zTFile = 0; int rc = winGetTempname(pFile->pVfs, &zTFile); if( rc==SQLITE_OK ){ *(char**)pArg = zTFile; } OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc))); return rc; } #if SQLITE_MAX_MMAP_SIZE>0 case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; int rc = SQLITE_OK; if( newLimit>sqlite3GlobalConfig.mxMmap ){ newLimit = sqlite3GlobalConfig.mxMmap; } /* The value of newLimit may be eventually cast to (SIZE_T) and passed ** to MapViewOfFile(). Restrict its value to 2GB if (SIZE_T) is not at ** least a 64-bit type. */ if( newLimit>0 && sizeof(SIZE_T)<8 ){ newLimit = (newLimit & 0x7FFFFFFF); } *(i64*)pArg = pFile->mmapSizeMax; if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ pFile->mmapSizeMax = newLimit; if( pFile->mmapSize>0 ){ winUnmapfile(pFile); rc = winMapfile(pFile, -1); } } OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc))); return rc; } #endif } OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h)); return SQLITE_NOTFOUND; } /* ** Return the sector size in bytes of the underlying block device for ** the specified file. This is almost always 512 bytes, but may be ** larger for some devices. ** ** SQLite code assumes this function cannot fail. It also assumes that ** if two files are created in the same file-system directory (i.e. ** a database and its journal file) that the sector size will be the ** same for both. */ static int winSectorSize(sqlite3_file *id){ (void)id; return SQLITE_DEFAULT_SECTOR_SIZE; } /* ** Return a vector of device characteristics. */ static int winDeviceCharacteristics(sqlite3_file *id){ winFile *p = (winFile*)id; return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN | ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0); } /* ** Windows will only let you create file view mappings ** on allocation size granularity boundaries. ** During sqlite3_os_init() we do a GetSystemInfo() ** to get the granularity size. */ static SYSTEM_INFO winSysInfo; #ifndef SQLITE_OMIT_WAL /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the winLockInfo objects used by ** this file, all of which may be shared by multiple threads. ** ** Function winShmMutexHeld() is used to assert() that the global mutex ** is held when required. This function is only used as part of assert() ** statements. e.g. ** ** winShmEnterMutex() ** assert( winShmMutexHeld() ); ** winShmLeaveMutex() */ static sqlite3_mutex *winBigLock = 0; static void winShmEnterMutex(void){ sqlite3_mutex_enter(winBigLock); } static void winShmLeaveMutex(void){ sqlite3_mutex_leave(winBigLock); } #ifndef NDEBUG static int winShmMutexHeld(void) { return sqlite3_mutex_held(winBigLock); } #endif /* ** Object used to represent a single file opened and mmapped to provide ** shared memory. When multiple threads all reference the same ** log-summary, each thread has its own winFile object, but they all ** point to a single instance of this object. In other words, each ** log-summary is opened only once per process. ** ** winShmMutexHeld() must be true when creating or destroying ** this object or while reading or writing the following fields: ** ** nRef ** pNext ** ** The following fields are read-only after the object is created: ** ** fid ** zFilename ** ** Either winShmNode.mutex must be held or winShmNode.nRef==0 and ** winShmMutexHeld() is true when reading or writing any other field ** in this structure. ** */ struct winShmNode { sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the file */ winFile hFile; /* File handle from winOpen */ int szRegion; /* Size of shared-memory regions */ int nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ u8 isUnlocked; /* True if no DMS lock held */ struct ShmRegion { HANDLE hMap; /* File handle from CreateFileMapping */ void *pMap; } *aRegion; DWORD lastErrno; /* The Windows errno from the last I/O error */ int nRef; /* Number of winShm objects pointing to this */ winShm *pFirst; /* All winShm objects pointing to this */ winShmNode *pNext; /* Next in list of all winShmNode objects */ #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) u8 nextShmId; /* Next available winShm.id value */ #endif }; /* ** A global array of all winShmNode objects. ** ** The winShmMutexHeld() must be true while reading or writing this list. */ static winShmNode *winShmNodeList = 0; /* ** Structure used internally by this VFS to record the state of an ** open shared memory connection. ** ** The following fields are initialized when this object is created and ** are read-only thereafter: ** ** winShm.pShmNode ** winShm.id ** ** All other fields are read/write. The winShm.pShmNode->mutex must be held ** while accessing any read/write fields. */ struct winShm { winShmNode *pShmNode; /* The underlying winShmNode object */ winShm *pNext; /* Next winShm with the same winShmNode */ u8 hasMutex; /* True if holding the winShmNode mutex */ u16 sharedMask; /* Mask of shared locks held */ u16 exclMask; /* Mask of exclusive locks held */ #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) u8 id; /* Id of this connection with its winShmNode */ #endif }; /* ** Constants used for locking */ #define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ #define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ /* ** Apply advisory locks for all n bytes beginning at ofst. */ #define WINSHM_UNLCK 1 #define WINSHM_RDLCK 2 #define WINSHM_WRLCK 3 static int winShmSystemLock( winShmNode *pFile, /* Apply locks to this open shared-memory segment */ int lockType, /* WINSHM_UNLCK, WINSHM_RDLCK, or WINSHM_WRLCK */ int ofst, /* Offset to first byte to be locked/unlocked */ int nByte /* Number of bytes to lock or unlock */ ){ int rc = 0; /* Result code form Lock/UnlockFileEx() */ /* Access to the winShmNode object is serialized by the caller */ assert( pFile->nRef==0 || sqlite3_mutex_held(pFile->mutex) ); OSTRACE(("SHM-LOCK file=%p, lock=%d, offset=%d, size=%d\n", pFile->hFile.h, lockType, ofst, nByte)); /* Release/Acquire the system-level lock */ if( lockType==WINSHM_UNLCK ){ rc = winUnlockFile(&pFile->hFile.h, ofst, 0, nByte, 0); }else{ /* Initialize the locking parameters */ DWORD dwFlags = LOCKFILE_FAIL_IMMEDIATELY; if( lockType == WINSHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK; rc = winLockFile(&pFile->hFile.h, dwFlags, ofst, 0, nByte, 0); } if( rc!= 0 ){ rc = SQLITE_OK; }else{ pFile->lastErrno = osGetLastError(); rc = SQLITE_BUSY; } OSTRACE(("SHM-LOCK file=%p, func=%s, errno=%lu, rc=%s\n", pFile->hFile.h, (lockType == WINSHM_UNLCK) ? "winUnlockFile" : "winLockFile", pFile->lastErrno, sqlite3ErrName(rc))); return rc; } /* Forward references to VFS methods */ static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*); static int winDelete(sqlite3_vfs *,const char*,int); /* ** Purge the winShmNodeList list of all entries with winShmNode.nRef==0. ** ** This is not a VFS shared-memory method; it is a utility function called ** by VFS shared-memory methods. */ static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){ winShmNode **pp; winShmNode *p; assert( winShmMutexHeld() ); OSTRACE(("SHM-PURGE pid=%lu, deleteFlag=%d\n", osGetCurrentProcessId(), deleteFlag)); pp = &winShmNodeList; while( (p = *pp)!=0 ){ if( p->nRef==0 ){ int i; if( p->mutex ){ sqlite3_mutex_free(p->mutex); } for(i=0; inRegion; i++){ BOOL bRc = osUnmapViewOfFile(p->aRegion[i].pMap); OSTRACE(("SHM-PURGE-UNMAP pid=%lu, region=%d, rc=%s\n", osGetCurrentProcessId(), i, bRc ? "ok" : "failed")); UNUSED_VARIABLE_VALUE(bRc); bRc = osCloseHandle(p->aRegion[i].hMap); OSTRACE(("SHM-PURGE-CLOSE pid=%lu, region=%d, rc=%s\n", osGetCurrentProcessId(), i, bRc ? "ok" : "failed")); UNUSED_VARIABLE_VALUE(bRc); } if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){ SimulateIOErrorBenign(1); winClose((sqlite3_file *)&p->hFile); SimulateIOErrorBenign(0); } if( deleteFlag ){ SimulateIOErrorBenign(1); sqlite3BeginBenignMalloc(); winDelete(pVfs, p->zFilename, 0); sqlite3EndBenignMalloc(); SimulateIOErrorBenign(0); } *pp = p->pNext; sqlite3_free(p->aRegion); sqlite3_free(p); }else{ pp = &p->pNext; } } } /* ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to ** take it now. Return SQLITE_OK if successful, or an SQLite error ** code otherwise. ** ** If the DMS cannot be locked because this is a readonly_shm=1 ** connection and no other process already holds a lock, return ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1. */ static int winLockSharedMemory(winShmNode *pShmNode){ int rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, WIN_SHM_DMS, 1); if( rc==SQLITE_OK ){ if( pShmNode->isReadonly ){ pShmNode->isUnlocked = 1; winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); return SQLITE_READONLY_CANTINIT; }else if( winTruncate((sqlite3_file*)&pShmNode->hFile, 0) ){ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); return winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(), "winLockSharedMemory", pShmNode->zFilename); } } if( rc==SQLITE_OK ){ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); } return winShmSystemLock(pShmNode, WINSHM_RDLCK, WIN_SHM_DMS, 1); } /* ** Open the shared-memory area associated with database file pDbFd. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. */ static int winOpenSharedMemory(winFile *pDbFd){ struct winShm *p; /* The connection to be opened */ winShmNode *pShmNode = 0; /* The underlying mmapped file */ int rc = SQLITE_OK; /* Result code */ winShmNode *pNew; /* Newly allocated winShmNode */ int nName; /* Size of zName in bytes */ assert( pDbFd->pShm==0 ); /* Not previously opened */ /* Allocate space for the new sqlite3_shm object. Also speculatively ** allocate space for a new winShmNode and filename. */ p = sqlite3MallocZero( sizeof(*p) ); if( p==0 ) return SQLITE_IOERR_NOMEM_BKPT; nName = sqlite3Strlen30(pDbFd->zPath); pNew = sqlite3MallocZero( sizeof(*pShmNode) + nName + 17 ); if( pNew==0 ){ sqlite3_free(p); return SQLITE_IOERR_NOMEM_BKPT; } pNew->zFilename = (char*)&pNew[1]; sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath); sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename); /* Look to see if there is an existing winShmNode that can be used. ** If no matching winShmNode currently exists, create a new one. */ winShmEnterMutex(); for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){ /* TBD need to come up with better match here. Perhaps ** use FILE_ID_BOTH_DIR_INFO Structure. */ if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break; } if( pShmNode ){ sqlite3_free(pNew); }else{ int inFlags = SQLITE_OPEN_WAL; int outFlags = 0; pShmNode = pNew; pNew = 0; ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE; pShmNode->pNext = winShmNodeList; winShmNodeList = pShmNode; if( sqlite3GlobalConfig.bCoreMutex ){ pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shm_open_err; } } if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ inFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE; }else{ inFlags |= SQLITE_OPEN_READONLY; } rc = winOpen(pDbFd->pVfs, pShmNode->zFilename, (sqlite3_file*)&pShmNode->hFile, inFlags, &outFlags); if( rc!=SQLITE_OK ){ rc = winLogError(rc, osGetLastError(), "winOpenShm", pShmNode->zFilename); goto shm_open_err; } if( outFlags==SQLITE_OPEN_READONLY ) pShmNode->isReadonly = 1; rc = winLockSharedMemory(pShmNode); if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; } /* Make the new connection a child of the winShmNode */ p->pShmNode = pShmNode; #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) p->id = pShmNode->nextShmId++; #endif pShmNode->nRef++; pDbFd->pShm = p; winShmLeaveMutex(); /* The reference count on pShmNode has already been incremented under ** the cover of the winShmEnterMutex() mutex and the pointer from the ** new (struct winShm) object to the pShmNode has been set. All that is ** left to do is to link the new object into the linked list starting ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex ** mutex. */ sqlite3_mutex_enter(pShmNode->mutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->mutex); return rc; /* Jump here on any error */ shm_open_err: winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */ sqlite3_free(p); sqlite3_free(pNew); winShmLeaveMutex(); return rc; } /* ** Close a connection to shared-memory. Delete the underlying ** storage if deleteFlag is true. */ static int winShmUnmap( sqlite3_file *fd, /* Database holding shared memory */ int deleteFlag /* Delete after closing if true */ ){ winFile *pDbFd; /* Database holding shared-memory */ winShm *p; /* The connection to be closed */ winShmNode *pShmNode; /* The underlying shared-memory file */ winShm **pp; /* For looping over sibling connections */ pDbFd = (winFile*)fd; p = pDbFd->pShm; if( p==0 ) return SQLITE_OK; pShmNode = p->pShmNode; /* Remove connection p from the set of connections associated ** with pShmNode */ sqlite3_mutex_enter(pShmNode->mutex); for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} *pp = p->pNext; /* Free the connection p */ sqlite3_free(p); pDbFd->pShm = 0; sqlite3_mutex_leave(pShmNode->mutex); /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ winShmEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ winShmPurge(pDbFd->pVfs, deleteFlag); } winShmLeaveMutex(); return SQLITE_OK; } /* ** Change the lock state for a shared-memory segment. */ static int winShmLock( sqlite3_file *fd, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */ winShm *p = pDbFd->pShm; /* The shared memory being locked */ winShm *pX; /* For looping over all siblings */ winShmNode *pShmNode; int rc = SQLITE_OK; /* Result code */ u16 mask; /* Mask of locks to take or release */ if( p==0 ) return SQLITE_IOERR_SHMLOCK; pShmNode = p->pShmNode; if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK; assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); mask = (u16)((1U<<(ofst+n)) - (1U<1 || mask==(1<mutex); if( flags & SQLITE_SHM_UNLOCK ){ u16 allMask = 0; /* Mask of locks held by siblings */ /* See if any siblings hold this same lock */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( pX==p ) continue; assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); allMask |= pX->sharedMask; } /* Unlock the system-level locks */ if( (mask & allMask)==0 ){ rc = winShmSystemLock(pShmNode, WINSHM_UNLCK, ofst+WIN_SHM_BASE, n); }else{ rc = SQLITE_OK; } /* Undo the local locks */ if( rc==SQLITE_OK ){ p->exclMask &= ~mask; p->sharedMask &= ~mask; } }else if( flags & SQLITE_SHM_SHARED ){ u16 allShared = 0; /* Union of locks held by connections other than "p" */ /* Find out which shared locks are already held by sibling connections. ** If any sibling already holds an exclusive lock, go ahead and return ** SQLITE_BUSY. */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( (pX->exclMask & mask)!=0 ){ rc = SQLITE_BUSY; break; } allShared |= pX->sharedMask; } /* Get shared locks at the system level, if necessary */ if( rc==SQLITE_OK ){ if( (allShared & mask)==0 ){ rc = winShmSystemLock(pShmNode, WINSHM_RDLCK, ofst+WIN_SHM_BASE, n); }else{ rc = SQLITE_OK; } } /* Get the local shared locks */ if( rc==SQLITE_OK ){ p->sharedMask |= mask; } }else{ /* Make sure no sibling connections hold locks that will block this ** lock. If any do, return SQLITE_BUSY right away. */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ rc = SQLITE_BUSY; break; } } /* Get the exclusive locks at the system level. Then if successful ** also mark the local connection as being locked. */ if( rc==SQLITE_OK ){ rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, ofst+WIN_SHM_BASE, n); if( rc==SQLITE_OK ){ assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } sqlite3_mutex_leave(pShmNode->mutex); OSTRACE(("SHM-LOCK pid=%lu, id=%d, sharedMask=%03x, exclMask=%03x, rc=%s\n", osGetCurrentProcessId(), p->id, p->sharedMask, p->exclMask, sqlite3ErrName(rc))); return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void winShmBarrier( sqlite3_file *fd /* Database holding the shared memory */ ){ UNUSED_PARAMETER(fd); sqlite3MemoryBarrier(); /* compiler-defined memory barrier */ winShmEnterMutex(); /* Also mutex, for redundancy */ winShmLeaveMutex(); } /* ** This function is called to obtain a pointer to region iRegion of the ** shared-memory associated with the database file fd. Shared-memory regions ** are numbered starting from zero. Each shared-memory region is szRegion ** bytes in size. ** ** If an error occurs, an error code is returned and *pp is set to NULL. ** ** Otherwise, if the isWrite parameter is 0 and the requested shared-memory ** region has not been allocated (by any client, including one running in a ** separate process), then *pp is set to NULL and SQLITE_OK returned. If ** isWrite is non-zero and the requested shared-memory region has not yet ** been allocated, it is allocated by this function. ** ** If the shared-memory region has already been allocated or is allocated by ** this call as described above, then it is mapped into this processes ** address space (if it is not already), *pp is set to point to the mapped ** memory and SQLITE_OK returned. */ static int winShmMap( sqlite3_file *fd, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int isWrite, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ winFile *pDbFd = (winFile*)fd; winShm *pShm = pDbFd->pShm; winShmNode *pShmNode; DWORD protect = PAGE_READWRITE; DWORD flags = FILE_MAP_WRITE | FILE_MAP_READ; int rc = SQLITE_OK; if( !pShm ){ rc = winOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; pShm = pDbFd->pShm; assert( pShm!=0 ); } pShmNode = pShm->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); if( pShmNode->isUnlocked ){ rc = winLockSharedMemory(pShmNode); if( rc!=SQLITE_OK ) goto shmpage_out; pShmNode->isUnlocked = 0; } assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); if( pShmNode->nRegion<=iRegion ){ struct ShmRegion *apNew; /* New aRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ sqlite3_int64 sz; /* Current size of wal-index file */ pShmNode->szRegion = szRegion; /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz); if( rc!=SQLITE_OK ){ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(), "winShmMap1", pDbFd->zPath); goto shmpage_out; } if( szhFile, nByte); if( rc!=SQLITE_OK ){ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(), "winShmMap2", pDbFd->zPath); goto shmpage_out; } } /* Map the requested memory region into this processes address space. */ apNew = (struct ShmRegion *)sqlite3_realloc64( pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shmpage_out; } pShmNode->aRegion = apNew; if( pShmNode->isReadonly ){ protect = PAGE_READONLY; flags = FILE_MAP_READ; } while( pShmNode->nRegion<=iRegion ){ HANDLE hMap = NULL; /* file-mapping handle */ void *pMap = 0; /* Mapped memory region */ #if SQLITE_OS_WINRT hMap = osCreateFileMappingFromApp(pShmNode->hFile.h, NULL, protect, nByte, NULL ); #elif defined(SQLITE_WIN32_HAS_WIDE) hMap = osCreateFileMappingW(pShmNode->hFile.h, NULL, protect, 0, nByte, NULL ); #elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA hMap = osCreateFileMappingA(pShmNode->hFile.h, NULL, protect, 0, nByte, NULL ); #endif OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n", osGetCurrentProcessId(), pShmNode->nRegion, nByte, hMap ? "ok" : "failed")); if( hMap ){ int iOffset = pShmNode->nRegion*szRegion; int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; #if SQLITE_OS_WINRT pMap = osMapViewOfFileFromApp(hMap, flags, iOffset - iOffsetShift, szRegion + iOffsetShift ); #else pMap = osMapViewOfFile(hMap, flags, 0, iOffset - iOffsetShift, szRegion + iOffsetShift ); #endif OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n", osGetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion, pMap ? "ok" : "failed")); } if( !pMap ){ pShmNode->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno, "winShmMap3", pDbFd->zPath); if( hMap ) osCloseHandle(hMap); goto shmpage_out; } pShmNode->aRegion[pShmNode->nRegion].pMap = pMap; pShmNode->aRegion[pShmNode->nRegion].hMap = hMap; pShmNode->nRegion++; } } shmpage_out: if( pShmNode->nRegion>iRegion ){ int iOffset = iRegion*szRegion; int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; char *p = (char *)pShmNode->aRegion[iRegion].pMap; *pp = (void *)&p[iOffsetShift]; }else{ *pp = 0; } if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; sqlite3_mutex_leave(pShmNode->mutex); return rc; } #else # define winShmMap 0 # define winShmLock 0 # define winShmBarrier 0 # define winShmUnmap 0 #endif /* #ifndef SQLITE_OMIT_WAL */ /* ** Cleans up the mapped region of the specified file, if any. */ #if SQLITE_MAX_MMAP_SIZE>0 static int winUnmapfile(winFile *pFile){ assert( pFile!=0 ); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, " "mmapSize=%lld, mmapSizeMax=%lld\n", osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion, pFile->mmapSize, pFile->mmapSizeMax)); if( pFile->pMapRegion ){ if( !osUnmapViewOfFile(pFile->pMapRegion) ){ pFile->lastErrno = osGetLastError(); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winUnmapfile1", pFile->zPath); } pFile->pMapRegion = 0; pFile->mmapSize = 0; } if( pFile->hMap!=NULL ){ if( !osCloseHandle(pFile->hMap) ){ pFile->lastErrno = osGetLastError(); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->hMap)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winUnmapfile2", pFile->zPath); } pFile->hMap = NULL; } OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile)); return SQLITE_OK; } /* ** Memory map or remap the file opened by file-descriptor pFd (if the file ** is already mapped, the existing mapping is replaced by the new). Or, if ** there already exists a mapping for this file, and there are still ** outstanding xFetch() references to it, this function is a no-op. ** ** If parameter nByte is non-negative, then it is the requested size of ** the mapping to create. Otherwise, if nByte is less than zero, then the ** requested size is the size of the file on disk. The actual size of the ** created mapping is either the requested size or the value configured ** using SQLITE_FCNTL_MMAP_SIZE, whichever is smaller. ** ** SQLITE_OK is returned if no error occurs (even if the mapping is not ** recreated as a result of outstanding references) or an SQLite error ** code otherwise. */ static int winMapfile(winFile *pFd, sqlite3_int64 nByte){ sqlite3_int64 nMap = nByte; int rc; assert( nMap>=0 || pFd->nFetchOut==0 ); OSTRACE(("MAP-FILE pid=%lu, pFile=%p, size=%lld\n", osGetCurrentProcessId(), pFd, nByte)); if( pFd->nFetchOut>0 ) return SQLITE_OK; if( nMap<0 ){ rc = winFileSize((sqlite3_file*)pFd, &nMap); if( rc ){ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_IOERR_FSTAT\n", osGetCurrentProcessId(), pFd)); return SQLITE_IOERR_FSTAT; } } if( nMap>pFd->mmapSizeMax ){ nMap = pFd->mmapSizeMax; } nMap &= ~(sqlite3_int64)(winSysInfo.dwPageSize - 1); if( nMap==0 && pFd->mmapSize>0 ){ winUnmapfile(pFd); } if( nMap!=pFd->mmapSize ){ void *pNew = 0; DWORD protect = PAGE_READONLY; DWORD flags = FILE_MAP_READ; winUnmapfile(pFd); #ifdef SQLITE_MMAP_READWRITE if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){ protect = PAGE_READWRITE; flags |= FILE_MAP_WRITE; } #endif #if SQLITE_OS_WINRT pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL); #elif defined(SQLITE_WIN32_HAS_WIDE) pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect, (DWORD)((nMap>>32) & 0xffffffff), (DWORD)(nMap & 0xffffffff), NULL); #elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect, (DWORD)((nMap>>32) & 0xffffffff), (DWORD)(nMap & 0xffffffff), NULL); #endif if( pFd->hMap==NULL ){ pFd->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno, "winMapfile1", pFd->zPath); /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return SQLITE_OK; } assert( (nMap % winSysInfo.dwPageSize)==0 ); assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff ); #if SQLITE_OS_WINRT pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, (SIZE_T)nMap); #else pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap); #endif if( pNew==NULL ){ osCloseHandle(pFd->hMap); pFd->hMap = NULL; pFd->lastErrno = osGetLastError(); rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno, "winMapfile2", pFd->zPath); /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return SQLITE_OK; } pFd->pMapRegion = pNew; pFd->mmapSize = nMap; } OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFd)); return SQLITE_OK; } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* ** If possible, return a pointer to a mapping of file fd starting at offset ** iOff. The mapping must be valid for at least nAmt bytes. ** ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. ** Finally, if an error does occur, return an SQLite error code. The final ** value of *pp is undefined in this case. ** ** If this function does return a pointer, the caller must eventually ** release the reference by calling winUnfetch(). */ static int winFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ #if SQLITE_MAX_MMAP_SIZE>0 winFile *pFd = (winFile*)fd; /* The underlying database file */ #endif *pp = 0; OSTRACE(("FETCH pid=%lu, pFile=%p, offset=%lld, amount=%d, pp=%p\n", osGetCurrentProcessId(), fd, iOff, nAmt, pp)); #if SQLITE_MAX_MMAP_SIZE>0 if( pFd->mmapSizeMax>0 ){ /* Ensure that there is always at least a 256 byte buffer of addressable ** memory following the returned page. If the database is corrupt, ** SQLite may overread the page slightly (in practice only a few bytes, ** but 256 is safe, round, number). */ const int nEofBuffer = 256; if( pFd->pMapRegion==0 ){ int rc = winMapfile(pFd, -1); if( rc!=SQLITE_OK ){ OSTRACE(("FETCH pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return rc; } } if( pFd->mmapSize >= (iOff+nAmt+nEofBuffer) ){ assert( pFd->pMapRegion!=0 ); *pp = &((u8 *)pFd->pMapRegion)[iOff]; pFd->nFetchOut++; } } #endif OSTRACE(("FETCH pid=%lu, pFile=%p, pp=%p, *pp=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), fd, pp, *pp)); return SQLITE_OK; } /* ** If the third argument is non-NULL, then this function releases a ** reference obtained by an earlier call to winFetch(). The second ** argument passed to this function must be the same as the corresponding ** argument that was passed to the winFetch() invocation. ** ** Or, if the third argument is NULL, then this function is being called ** to inform the VFS layer that, according to POSIX, any existing mapping ** may now be invalid and should be unmapped. */ static int winUnfetch(sqlite3_file *fd, i64 iOff, void *p){ #if SQLITE_MAX_MMAP_SIZE>0 winFile *pFd = (winFile*)fd; /* The underlying database file */ /* If p==0 (unmap the entire file) then there must be no outstanding ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), ** then there must be at least one outstanding. */ assert( (p==0)==(pFd->nFetchOut==0) ); /* If p!=0, it must match the iOff value. */ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); OSTRACE(("UNFETCH pid=%lu, pFile=%p, offset=%lld, p=%p\n", osGetCurrentProcessId(), pFd, iOff, p)); if( p ){ pFd->nFetchOut--; }else{ /* FIXME: If Windows truly always prevents truncating or deleting a ** file while a mapping is held, then the following winUnmapfile() call ** is unnecessary can be omitted - potentially improving ** performance. */ winUnmapfile(pFd); } assert( pFd->nFetchOut>=0 ); #endif OSTRACE(("UNFETCH pid=%lu, pFile=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), fd)); return SQLITE_OK; } /* ** Here ends the implementation of all sqlite3_file methods. ** ********************** End sqlite3_file Methods ******************************* ******************************************************************************/ /* ** This vector defines all the methods that can operate on an ** sqlite3_file for win32. */ static const sqlite3_io_methods winIoMethod = { 3, /* iVersion */ winClose, /* xClose */ winRead, /* xRead */ winWrite, /* xWrite */ winTruncate, /* xTruncate */ winSync, /* xSync */ winFileSize, /* xFileSize */ winLock, /* xLock */ winUnlock, /* xUnlock */ winCheckReservedLock, /* xCheckReservedLock */ winFileControl, /* xFileControl */ winSectorSize, /* xSectorSize */ winDeviceCharacteristics, /* xDeviceCharacteristics */ winShmMap, /* xShmMap */ winShmLock, /* xShmLock */ winShmBarrier, /* xShmBarrier */ winShmUnmap, /* xShmUnmap */ winFetch, /* xFetch */ winUnfetch /* xUnfetch */ }; /* ** This vector defines all the methods that can operate on an ** sqlite3_file for win32 without performing any locking. */ static const sqlite3_io_methods winIoNolockMethod = { 3, /* iVersion */ winClose, /* xClose */ winRead, /* xRead */ winWrite, /* xWrite */ winTruncate, /* xTruncate */ winSync, /* xSync */ winFileSize, /* xFileSize */ winNolockLock, /* xLock */ winNolockUnlock, /* xUnlock */ winNolockCheckReservedLock, /* xCheckReservedLock */ winFileControl, /* xFileControl */ winSectorSize, /* xSectorSize */ winDeviceCharacteristics, /* xDeviceCharacteristics */ winShmMap, /* xShmMap */ winShmLock, /* xShmLock */ winShmBarrier, /* xShmBarrier */ winShmUnmap, /* xShmUnmap */ winFetch, /* xFetch */ winUnfetch /* xUnfetch */ }; static winVfsAppData winAppData = { &winIoMethod, /* pMethod */ 0, /* pAppData */ 0 /* bNoLock */ }; static winVfsAppData winNolockAppData = { &winIoNolockMethod, /* pMethod */ 0, /* pAppData */ 1 /* bNoLock */ }; /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** ** This division contains the implementation of methods on the ** sqlite3_vfs object. */ #if defined(__CYGWIN__) /* ** Convert a filename from whatever the underlying operating system ** supports for filenames into UTF-8. Space to hold the result is ** obtained from malloc and must be freed by the calling function. */ static char *winConvertToUtf8Filename(const void *zFilename){ char *zConverted = 0; if( osIsNT() ){ zConverted = winUnicodeToUtf8(zFilename); } #ifdef SQLITE_WIN32_HAS_ANSI else{ zConverted = winMbcsToUtf8(zFilename, osAreFileApisANSI()); } #endif /* caller will handle out of memory */ return zConverted; } #endif /* ** Convert a UTF-8 filename into whatever form the underlying ** operating system wants filenames in. Space to hold the result ** is obtained from malloc and must be freed by the calling ** function. */ static void *winConvertFromUtf8Filename(const char *zFilename){ void *zConverted = 0; if( osIsNT() ){ zConverted = winUtf8ToUnicode(zFilename); } #ifdef SQLITE_WIN32_HAS_ANSI else{ zConverted = winUtf8ToMbcs(zFilename, osAreFileApisANSI()); } #endif /* caller will handle out of memory */ return zConverted; } /* ** This function returns non-zero if the specified UTF-8 string buffer ** ends with a directory separator character or one was successfully ** added to it. */ static int winMakeEndInDirSep(int nBuf, char *zBuf){ if( zBuf ){ int nLen = sqlite3Strlen30(zBuf); if( nLen>0 ){ if( winIsDirSep(zBuf[nLen-1]) ){ return 1; }else if( nLen+1mxPathname; nBuf = nMax + 2; zBuf = sqlite3MallocZero( nBuf ); if( !zBuf ){ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n")); return SQLITE_IOERR_NOMEM_BKPT; } /* Figure out the effective temporary directory. First, check if one ** has been explicitly set by the application; otherwise, use the one ** configured by the operating system. */ nDir = nMax - (nPre + 15); assert( nDir>0 ); if( winTempDirDefined() ){ int nDirLen = sqlite3Strlen30(sqlite3_temp_directory); if( nDirLen>0 ){ if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){ nDirLen++; } if( nDirLen>nDir ){ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); sqlite3_free(zBuf); OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n")); return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0); } sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory); } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); } #if defined(__CYGWIN__) else{ static const char *azDirs[] = { 0, /* getenv("SQLITE_TMPDIR") */ 0, /* getenv("TMPDIR") */ 0, /* getenv("TMP") */ 0, /* getenv("TEMP") */ 0, /* getenv("USERPROFILE") */ "/var/tmp", "/usr/tmp", "/tmp", ".", 0 /* List terminator */ }; unsigned int i; const char *zDir = 0; if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR"); if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); if( !azDirs[2] ) azDirs[2] = getenv("TMP"); if( !azDirs[3] ) azDirs[3] = getenv("TEMP"); if( !azDirs[4] ) azDirs[4] = getenv("USERPROFILE"); for(i=0; i/etilqs_XXXXXXXXXXXXXXX\0\0" ** ** If not, return SQLITE_ERROR. The number 17 is used here in order to ** account for the space used by the 15 character random suffix and the ** two trailing NUL characters. The final directory separator character ** has already added if it was not already present. */ nLen = sqlite3Strlen30(zBuf); if( (nLen + nPre + 17) > nBuf ){ sqlite3_free(zBuf); OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n")); return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0); } sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX); j = sqlite3Strlen30(zBuf); sqlite3_randomness(15, &zBuf[j]); pid = osGetCurrentProcessId(); for(i=0; i<15; i++, j++){ zBuf[j] += pid & 0xff; pid >>= 8; zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; } zBuf[j] = 0; zBuf[j+1] = 0; *pzBuf = zBuf; OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf)); return SQLITE_OK; } /* ** Return TRUE if the named file is really a directory. Return false if ** it is something other than a directory, or if there is any kind of memory ** allocation failure. */ static int winIsDir(const void *zConverted){ DWORD attr; int rc = 0; DWORD lastErrno; if( osIsNT() ){ int cnt = 0; WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted, GetFileExInfoStandard, &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){} if( !rc ){ return 0; /* Invalid name? */ } attr = sAttrData.dwFileAttributes; #if SQLITE_OS_WINCE==0 }else{ attr = osGetFileAttributesA((char*)zConverted); #endif } return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY); } /* forward reference */ static int winAccess( sqlite3_vfs *pVfs, /* Not used on win32 */ const char *zFilename, /* Name of file to check */ int flags, /* Type of test to make on this file */ int *pResOut /* OUT: Result */ ); /* ** Open a file. */ static int winOpen( sqlite3_vfs *pVfs, /* Used to get maximum path length and AppData */ const char *zName, /* Name of the file (UTF-8) */ sqlite3_file *id, /* Write the SQLite file handle here */ int flags, /* Open mode flags */ int *pOutFlags /* Status return flags */ ){ HANDLE h; DWORD lastErrno = 0; DWORD dwDesiredAccess; DWORD dwShareMode; DWORD dwCreationDisposition; DWORD dwFlagsAndAttributes = 0; #if SQLITE_OS_WINCE int isTemp = 0; #endif winVfsAppData *pAppData; winFile *pFile = (winFile*)id; void *zConverted; /* Filename in OS encoding */ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */ int cnt = 0; /* If argument zPath is a NULL pointer, this function is required to open ** a temporary file. Use this buffer to store the file name in. */ char *zTmpname = 0; /* For temporary filename, if necessary. */ int rc = SQLITE_OK; /* Function Return Code */ #if !defined(NDEBUG) || SQLITE_OS_WINCE int eType = flags&0xFFFFFF00; /* Type of file to open */ #endif int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); int isCreate = (flags & SQLITE_OPEN_CREATE); int isReadonly = (flags & SQLITE_OPEN_READONLY); int isReadWrite = (flags & SQLITE_OPEN_READWRITE); #ifndef NDEBUG int isOpenJournal = (isCreate && ( eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_WAL )); #endif OSTRACE(("OPEN name=%s, pFile=%p, flags=%x, pOutFlags=%p\n", zUtf8Name, id, flags, pOutFlags)); /* Check the following statements are true: ** ** (a) Exactly one of the READWRITE and READONLY flags must be set, and ** (b) if CREATE is set, then READWRITE must also be set, and ** (c) if EXCLUSIVE is set, then CREATE must also be set. ** (d) if DELETEONCLOSE is set, then CREATE must also be set. */ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); assert(isCreate==0 || isReadWrite); assert(isExclusive==0 || isCreate); assert(isDelete==0 || isCreate); /* The main DB, main journal, WAL file and super-journal are never ** automatically deleted. Nor are they ever temporary files. */ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL ); assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); /* Assert that the upper layer has set one of the "file-type" flags. */ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL ); assert( pFile!=0 ); memset(pFile, 0, sizeof(winFile)); pFile->h = INVALID_HANDLE_VALUE; #if SQLITE_OS_WINRT if( !zUtf8Name && !sqlite3_temp_directory ){ sqlite3_log(SQLITE_ERROR, "sqlite3_temp_directory variable should be set for WinRT"); } #endif /* If the second argument to this function is NULL, generate a ** temporary file name to use */ if( !zUtf8Name ){ assert( isDelete && !isOpenJournal ); rc = winGetTempname(pVfs, &zTmpname); if( rc!=SQLITE_OK ){ OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc))); return rc; } zUtf8Name = zTmpname; } /* Database filenames are double-zero terminated if they are not ** URIs with parameters. Hence, they can always be passed into ** sqlite3_uri_parameter(). */ assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) || zUtf8Name[sqlite3Strlen30(zUtf8Name)+1]==0 ); /* Convert the filename to the system encoding. */ zConverted = winConvertFromUtf8Filename(zUtf8Name); if( zConverted==0 ){ sqlite3_free(zTmpname); OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name)); return SQLITE_IOERR_NOMEM_BKPT; } if( winIsDir(zConverted) ){ sqlite3_free(zConverted); sqlite3_free(zTmpname); OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name)); return SQLITE_CANTOPEN_ISDIR; } if( isReadWrite ){ dwDesiredAccess = GENERIC_READ | GENERIC_WRITE; }else{ dwDesiredAccess = GENERIC_READ; } /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is ** created. SQLite doesn't use it to indicate "exclusive access" ** as it is usually understood. */ if( isExclusive ){ /* Creates a new file, only if it does not already exist. */ /* If the file exists, it fails. */ dwCreationDisposition = CREATE_NEW; }else if( isCreate ){ /* Open existing file, or create if it doesn't exist */ dwCreationDisposition = OPEN_ALWAYS; }else{ /* Opens a file, only if it exists. */ dwCreationDisposition = OPEN_EXISTING; } if( 0==sqlite3_uri_boolean(zName, "exclusive", 0) ){ dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; }else{ dwShareMode = 0; } if( isDelete ){ #if SQLITE_OS_WINCE dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN; isTemp = 1; #else dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY | FILE_ATTRIBUTE_HIDDEN | FILE_FLAG_DELETE_ON_CLOSE; #endif }else{ dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL; } /* Reports from the internet are that performance is always ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */ #if SQLITE_OS_WINCE dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS; #endif if( osIsNT() ){ #if SQLITE_OS_WINRT CREATEFILE2_EXTENDED_PARAMETERS extendedParameters; extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS); extendedParameters.dwFileAttributes = dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK; extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK; extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS; extendedParameters.lpSecurityAttributes = NULL; extendedParameters.hTemplateFile = NULL; do{ h = osCreateFile2((LPCWSTR)zConverted, dwDesiredAccess, dwShareMode, dwCreationDisposition, &extendedParameters); if( h!=INVALID_HANDLE_VALUE ) break; if( isReadWrite ){ int rc2, isRO = 0; sqlite3BeginBenignMalloc(); rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO); sqlite3EndBenignMalloc(); if( rc2==SQLITE_OK && isRO ) break; } }while( winRetryIoerr(&cnt, &lastErrno) ); #else do{ h = osCreateFileW((LPCWSTR)zConverted, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, dwFlagsAndAttributes, NULL); if( h!=INVALID_HANDLE_VALUE ) break; if( isReadWrite ){ int rc2, isRO = 0; sqlite3BeginBenignMalloc(); rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO); sqlite3EndBenignMalloc(); if( rc2==SQLITE_OK && isRO ) break; } }while( winRetryIoerr(&cnt, &lastErrno) ); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ do{ h = osCreateFileA((LPCSTR)zConverted, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, dwFlagsAndAttributes, NULL); if( h!=INVALID_HANDLE_VALUE ) break; if( isReadWrite ){ int rc2, isRO = 0; sqlite3BeginBenignMalloc(); rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO); sqlite3EndBenignMalloc(); if( rc2==SQLITE_OK && isRO ) break; } }while( winRetryIoerr(&cnt, &lastErrno) ); } #endif winLogIoerr(cnt, __LINE__); OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name, dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok")); if( h==INVALID_HANDLE_VALUE ){ sqlite3_free(zConverted); sqlite3_free(zTmpname); if( isReadWrite && !isExclusive ){ return winOpen(pVfs, zName, id, ((flags|SQLITE_OPEN_READONLY) & ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags); }else{ pFile->lastErrno = lastErrno; winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name); return SQLITE_CANTOPEN_BKPT; } } if( pOutFlags ){ if( isReadWrite ){ *pOutFlags = SQLITE_OPEN_READWRITE; }else{ *pOutFlags = SQLITE_OPEN_READONLY; } } OSTRACE(("OPEN file=%p, name=%s, access=%lx, pOutFlags=%p, *pOutFlags=%d, " "rc=%s\n", h, zUtf8Name, dwDesiredAccess, pOutFlags, pOutFlags ? *pOutFlags : 0, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok")); pAppData = (winVfsAppData*)pVfs->pAppData; #if SQLITE_OS_WINCE { if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB && ((pAppData==NULL) || !pAppData->bNoLock) && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK ){ osCloseHandle(h); sqlite3_free(zConverted); sqlite3_free(zTmpname); OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc))); return rc; } } if( isTemp ){ pFile->zDeleteOnClose = zConverted; }else #endif { sqlite3_free(zConverted); } sqlite3_free(zTmpname); id->pMethods = pAppData ? pAppData->pMethod : &winIoMethod; pFile->pVfs = pVfs; pFile->h = h; if( isReadonly ){ pFile->ctrlFlags |= WINFILE_RDONLY; } if( (flags & SQLITE_OPEN_MAIN_DB) && sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pFile->ctrlFlags |= WINFILE_PSOW; } pFile->lastErrno = NO_ERROR; pFile->zPath = zName; #if SQLITE_MAX_MMAP_SIZE>0 pFile->hMap = NULL; pFile->pMapRegion = 0; pFile->mmapSize = 0; pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap; #endif OpenCounter(+1); return rc; } /* ** Delete the named file. ** ** Note that Windows does not allow a file to be deleted if some other ** process has it open. Sometimes a virus scanner or indexing program ** will open a journal file shortly after it is created in order to do ** whatever it does. While this other process is holding the ** file open, we will be unable to delete it. To work around this ** problem, we delay 100 milliseconds and try to delete again. Up ** to MX_DELETION_ATTEMPTs deletion attempts are run before giving ** up and returning an error. */ static int winDelete( sqlite3_vfs *pVfs, /* Not used on win32 */ const char *zFilename, /* Name of file to delete */ int syncDir /* Not used on win32 */ ){ int cnt = 0; int rc; DWORD attr; DWORD lastErrno = 0; void *zConverted; UNUSED_PARAMETER(pVfs); UNUSED_PARAMETER(syncDir); SimulateIOError(return SQLITE_IOERR_DELETE); OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir)); zConverted = winConvertFromUtf8Filename(zFilename); if( zConverted==0 ){ OSTRACE(("DELETE name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename)); return SQLITE_IOERR_NOMEM_BKPT; } if( osIsNT() ){ do { #if SQLITE_OS_WINRT WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard, &sAttrData) ){ attr = sAttrData.dwFileAttributes; }else{ lastErrno = osGetLastError(); if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ }else{ rc = SQLITE_ERROR; } break; } #else attr = osGetFileAttributesW(zConverted); #endif if ( attr==INVALID_FILE_ATTRIBUTES ){ lastErrno = osGetLastError(); if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ }else{ rc = SQLITE_ERROR; } break; } if ( attr&FILE_ATTRIBUTE_DIRECTORY ){ rc = SQLITE_ERROR; /* Files only. */ break; } if ( osDeleteFileW(zConverted) ){ rc = SQLITE_OK; /* Deleted OK. */ break; } if ( !winRetryIoerr(&cnt, &lastErrno) ){ rc = SQLITE_ERROR; /* No more retries. */ break; } } while(1); } #ifdef SQLITE_WIN32_HAS_ANSI else{ do { attr = osGetFileAttributesA(zConverted); if ( attr==INVALID_FILE_ATTRIBUTES ){ lastErrno = osGetLastError(); if( lastErrno==ERROR_FILE_NOT_FOUND || lastErrno==ERROR_PATH_NOT_FOUND ){ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */ }else{ rc = SQLITE_ERROR; } break; } if ( attr&FILE_ATTRIBUTE_DIRECTORY ){ rc = SQLITE_ERROR; /* Files only. */ break; } if ( osDeleteFileA(zConverted) ){ rc = SQLITE_OK; /* Deleted OK. */ break; } if ( !winRetryIoerr(&cnt, &lastErrno) ){ rc = SQLITE_ERROR; /* No more retries. */ break; } } while(1); } #endif if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){ rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename); }else{ winLogIoerr(cnt, __LINE__); } sqlite3_free(zConverted); OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc))); return rc; } /* ** Check the existence and status of a file. */ static int winAccess( sqlite3_vfs *pVfs, /* Not used on win32 */ const char *zFilename, /* Name of file to check */ int flags, /* Type of test to make on this file */ int *pResOut /* OUT: Result */ ){ DWORD attr; int rc = 0; DWORD lastErrno = 0; void *zConverted; UNUSED_PARAMETER(pVfs); SimulateIOError( return SQLITE_IOERR_ACCESS; ); OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n", zFilename, flags, pResOut)); if( zFilename==0 ){ *pResOut = 0; OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n", zFilename, pResOut, *pResOut)); return SQLITE_OK; } zConverted = winConvertFromUtf8Filename(zFilename); if( zConverted==0 ){ OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename)); return SQLITE_IOERR_NOMEM_BKPT; } if( osIsNT() ){ int cnt = 0; WIN32_FILE_ATTRIBUTE_DATA sAttrData; memset(&sAttrData, 0, sizeof(sAttrData)); while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted, GetFileExInfoStandard, &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){} if( rc ){ /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file ** as if it does not exist. */ if( flags==SQLITE_ACCESS_EXISTS && sAttrData.nFileSizeHigh==0 && sAttrData.nFileSizeLow==0 ){ attr = INVALID_FILE_ATTRIBUTES; }else{ attr = sAttrData.dwFileAttributes; } }else{ winLogIoerr(cnt, __LINE__); if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){ sqlite3_free(zConverted); return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess", zFilename); }else{ attr = INVALID_FILE_ATTRIBUTES; } } } #ifdef SQLITE_WIN32_HAS_ANSI else{ attr = osGetFileAttributesA((char*)zConverted); } #endif sqlite3_free(zConverted); switch( flags ){ case SQLITE_ACCESS_READ: case SQLITE_ACCESS_EXISTS: rc = attr!=INVALID_FILE_ATTRIBUTES; break; case SQLITE_ACCESS_READWRITE: rc = attr!=INVALID_FILE_ATTRIBUTES && (attr & FILE_ATTRIBUTE_READONLY)==0; break; default: assert(!"Invalid flags argument"); } *pResOut = rc; OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n", zFilename, pResOut, *pResOut)); return SQLITE_OK; } /* ** Returns non-zero if the specified path name starts with the "long path" ** prefix. */ static BOOL winIsLongPathPrefix( const char *zPathname ){ return ( zPathname[0]=='\\' && zPathname[1]=='\\' && zPathname[2]=='?' && zPathname[3]=='\\' ); } /* ** Returns non-zero if the specified path name starts with a drive letter ** followed by a colon character. */ static BOOL winIsDriveLetterAndColon( const char *zPathname ){ return ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' ); } /* ** Returns non-zero if the specified path name should be used verbatim. If ** non-zero is returned from this function, the calling function must simply ** use the provided path name verbatim -OR- resolve it into a full path name ** using the GetFullPathName Win32 API function (if available). */ static BOOL winIsVerbatimPathname( const char *zPathname ){ /* ** If the path name starts with a forward slash or a backslash, it is either ** a legal UNC name, a volume relative path, or an absolute path name in the ** "Unix" format on Windows. There is no easy way to differentiate between ** the final two cases; therefore, we return the safer return value of TRUE ** so that callers of this function will simply use it verbatim. */ if ( winIsDirSep(zPathname[0]) ){ return TRUE; } /* ** If the path name starts with a letter and a colon it is either a volume ** relative path or an absolute path. Callers of this function must not ** attempt to treat it as a relative path name (i.e. they should simply use ** it verbatim). */ if ( winIsDriveLetterAndColon(zPathname) ){ return TRUE; } /* ** If we get to this point, the path name should almost certainly be a purely ** relative one (i.e. not a UNC name, not absolute, and not volume relative). */ return FALSE; } /* ** Turn a relative pathname into a full pathname. Write the full ** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname ** bytes in size. */ static int winFullPathnameNoMutex( sqlite3_vfs *pVfs, /* Pointer to vfs object */ const char *zRelative, /* Possibly relative input path */ int nFull, /* Size of output buffer in bytes */ char *zFull /* Output buffer */ ){ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__) DWORD nByte; void *zConverted; char *zOut; #endif /* If this path name begins with "/X:" or "\\?\", where "X" is any ** alphabetic character, discard the initial "/" from the pathname. */ if( zRelative[0]=='/' && (winIsDriveLetterAndColon(zRelative+1) || winIsLongPathPrefix(zRelative+1)) ){ zRelative++; } #if defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); UNUSED_PARAMETER(nFull); assert( nFull>=pVfs->mxPathname ); if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ /* ** NOTE: We are dealing with a relative path name and the data ** directory has been set. Therefore, use it as the basis ** for converting the relative path name to an absolute ** one by prepending the data directory and a slash. */ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 ); if( !zOut ){ return SQLITE_IOERR_NOMEM_BKPT; } if( cygwin_conv_path( (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A) | CCP_RELATIVE, zRelative, zOut, pVfs->mxPathname+1)<0 ){ sqlite3_free(zOut); return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno, "winFullPathname1", zRelative); }else{ char *zUtf8 = winConvertToUtf8Filename(zOut); if( !zUtf8 ){ sqlite3_free(zOut); return SQLITE_IOERR_NOMEM_BKPT; } sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s", sqlite3_data_directory, winGetDirSep(), zUtf8); sqlite3_free(zUtf8); sqlite3_free(zOut); } }else{ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 ); if( !zOut ){ return SQLITE_IOERR_NOMEM_BKPT; } if( cygwin_conv_path( (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A), zRelative, zOut, pVfs->mxPathname+1)<0 ){ sqlite3_free(zOut); return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno, "winFullPathname2", zRelative); }else{ char *zUtf8 = winConvertToUtf8Filename(zOut); if( !zUtf8 ){ sqlite3_free(zOut); return SQLITE_IOERR_NOMEM_BKPT; } sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zUtf8); sqlite3_free(zUtf8); sqlite3_free(zOut); } } return SQLITE_OK; #endif #if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); /* WinCE has no concept of a relative pathname, or so I am told. */ /* WinRT has no way to convert a relative path to an absolute one. */ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ /* ** NOTE: We are dealing with a relative path name and the data ** directory has been set. Therefore, use it as the basis ** for converting the relative path name to an absolute ** one by prepending the data directory and a backslash. */ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s", sqlite3_data_directory, winGetDirSep(), zRelative); }else{ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative); } return SQLITE_OK; #endif #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__) /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. This function could fail if, for example, the ** current working directory has been unlinked. */ SimulateIOError( return SQLITE_ERROR ); if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ /* ** NOTE: We are dealing with a relative path name and the data ** directory has been set. Therefore, use it as the basis ** for converting the relative path name to an absolute ** one by prepending the data directory and a backslash. */ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s", sqlite3_data_directory, winGetDirSep(), zRelative); return SQLITE_OK; } zConverted = winConvertFromUtf8Filename(zRelative); if( zConverted==0 ){ return SQLITE_IOERR_NOMEM_BKPT; } if( osIsNT() ){ LPWSTR zTemp; nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0); if( nByte==0 ){ sqlite3_free(zConverted); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname1", zRelative); } nByte += 3; zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) ); if( zTemp==0 ){ sqlite3_free(zConverted); return SQLITE_IOERR_NOMEM_BKPT; } nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0); if( nByte==0 ){ sqlite3_free(zConverted); sqlite3_free(zTemp); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname2", zRelative); } sqlite3_free(zConverted); zOut = winUnicodeToUtf8(zTemp); sqlite3_free(zTemp); } #ifdef SQLITE_WIN32_HAS_ANSI else{ char *zTemp; nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0); if( nByte==0 ){ sqlite3_free(zConverted); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname3", zRelative); } nByte += 3; zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) ); if( zTemp==0 ){ sqlite3_free(zConverted); return SQLITE_IOERR_NOMEM_BKPT; } nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0); if( nByte==0 ){ sqlite3_free(zConverted); sqlite3_free(zTemp); return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(), "winFullPathname4", zRelative); } sqlite3_free(zConverted); zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI()); sqlite3_free(zTemp); } #endif if( zOut ){ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut); sqlite3_free(zOut); return SQLITE_OK; }else{ return SQLITE_IOERR_NOMEM_BKPT; } #endif } static int winFullPathname( sqlite3_vfs *pVfs, /* Pointer to vfs object */ const char *zRelative, /* Possibly relative input path */ int nFull, /* Size of output buffer in bytes */ char *zFull /* Output buffer */ ){ int rc; MUTEX_LOGIC( sqlite3_mutex *pMutex; ) MUTEX_LOGIC( pMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR); ) sqlite3_mutex_enter(pMutex); rc = winFullPathnameNoMutex(pVfs, zRelative, nFull, zFull); sqlite3_mutex_leave(pMutex); return rc; } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; #if defined(__CYGWIN__) int nFull = pVfs->mxPathname+1; char *zFull = sqlite3MallocZero( nFull ); void *zConverted = 0; if( zFull==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){ sqlite3_free(zFull); OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } zConverted = winConvertFromUtf8Filename(zFull); sqlite3_free(zFull); #else void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); #endif if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); #else h = osLoadLibraryW((LPCWSTR)zConverted); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ h = osLoadLibraryA((char*)zConverted); } #endif OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h)); sqlite3_free(zConverted); return (void*)h; } static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ UNUSED_PARAMETER(pVfs); winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut); } static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){ FARPROC proc; UNUSED_PARAMETER(pVfs); proc = osGetProcAddressA((HANDLE)pH, zSym); OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n", (void*)pH, zSym, (void*)proc)); return (void(*)(void))proc; } static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){ UNUSED_PARAMETER(pVfs); osFreeLibrary((HANDLE)pHandle); OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle)); } #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ #define winDlOpen 0 #define winDlError 0 #define winDlSym 0 #define winDlClose 0 #endif /* State information for the randomness gatherer. */ typedef struct EntropyGatherer EntropyGatherer; struct EntropyGatherer { unsigned char *a; /* Gather entropy into this buffer */ int na; /* Size of a[] in bytes */ int i; /* XOR next input into a[i] */ int nXor; /* Number of XOR operations done */ }; #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) /* Mix sz bytes of entropy into p. */ static void xorMemory(EntropyGatherer *p, unsigned char *x, int sz){ int j, k; for(j=0, k=p->i; ja[k++] ^= x[j]; if( k>=p->na ) k = 0; } p->i = k; p->nXor += sz; } #endif /* !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) */ /* ** Write up to nBuf bytes of randomness into zBuf. */ static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ #if defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS) UNUSED_PARAMETER(pVfs); memset(zBuf, 0, nBuf); return nBuf; #else EntropyGatherer e; UNUSED_PARAMETER(pVfs); memset(zBuf, 0, nBuf); e.a = (unsigned char*)zBuf; e.na = nBuf; e.nXor = 0; e.i = 0; { SYSTEMTIME x; osGetSystemTime(&x); xorMemory(&e, (unsigned char*)&x, sizeof(SYSTEMTIME)); } { DWORD pid = osGetCurrentProcessId(); xorMemory(&e, (unsigned char*)&pid, sizeof(DWORD)); } #if SQLITE_OS_WINRT { ULONGLONG cnt = osGetTickCount64(); xorMemory(&e, (unsigned char*)&cnt, sizeof(ULONGLONG)); } #else { DWORD cnt = osGetTickCount(); xorMemory(&e, (unsigned char*)&cnt, sizeof(DWORD)); } #endif /* SQLITE_OS_WINRT */ { LARGE_INTEGER i; osQueryPerformanceCounter(&i); xorMemory(&e, (unsigned char*)&i, sizeof(LARGE_INTEGER)); } #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID { UUID id; memset(&id, 0, sizeof(UUID)); osUuidCreate(&id); xorMemory(&e, (unsigned char*)&id, sizeof(UUID)); memset(&id, 0, sizeof(UUID)); osUuidCreateSequential(&id); xorMemory(&e, (unsigned char*)&id, sizeof(UUID)); } #endif /* !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID */ return e.nXor>nBuf ? nBuf : e.nXor; #endif /* defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS) */ } /* ** Sleep for a little while. Return the amount of time slept. */ static int winSleep(sqlite3_vfs *pVfs, int microsec){ sqlite3_win32_sleep((microsec+999)/1000); UNUSED_PARAMETER(pVfs); return ((microsec+999)/1000)*1000; } /* ** The following variable, if set to a non-zero value, is interpreted as ** the number of seconds since 1970 and is used to set the result of ** sqlite3OsCurrentTime() during testing. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ #endif /* ** Find the current time (in Universal Coordinated Time). Write into *piNow ** the current time and date as a Julian Day number times 86_400_000. In ** other words, write into *piNow the number of milliseconds since the Julian ** epoch of noon in Greenwich on November 24, 4714 B.C according to the ** proleptic Gregorian calendar. ** ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date ** cannot be found. */ static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){ /* FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). */ FILETIME ft; static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000; #ifdef SQLITE_TEST static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; #endif /* 2^32 - to avoid use of LL and warnings in gcc */ static const sqlite3_int64 max32BitValue = (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296; #if SQLITE_OS_WINCE SYSTEMTIME time; osGetSystemTime(&time); /* if SystemTimeToFileTime() fails, it returns zero. */ if (!osSystemTimeToFileTime(&time,&ft)){ return SQLITE_ERROR; } #else osGetSystemTimeAsFileTime( &ft ); #endif *piNow = winFiletimeEpoch + ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) + (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000; #ifdef SQLITE_TEST if( sqlite3_current_time ){ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; } #endif UNUSED_PARAMETER(pVfs); return SQLITE_OK; } /* ** Find the current time (in Universal Coordinated Time). Write the ** current time and date as a Julian Day number into *prNow and ** return 0. Return 1 if the time and date cannot be found. */ static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){ int rc; sqlite3_int64 i; rc = winCurrentTimeInt64(pVfs, &i); if( !rc ){ *prNow = i/86400000.0; } return rc; } /* ** The idea is that this function works like a combination of ** GetLastError() and FormatMessage() on Windows (or errno and ** strerror_r() on Unix). After an error is returned by an OS ** function, SQLite calls this function with zBuf pointing to ** a buffer of nBuf bytes. The OS layer should populate the ** buffer with a nul-terminated UTF-8 encoded error message ** describing the last IO error to have occurred within the calling ** thread. ** ** If the error message is too large for the supplied buffer, ** it should be truncated. The return value of xGetLastError ** is zero if the error message fits in the buffer, or non-zero ** otherwise (if the message was truncated). If non-zero is returned, ** then it is not necessary to include the nul-terminator character ** in the output buffer. ** ** Not supplying an error message will have no adverse effect ** on SQLite. It is fine to have an implementation that never ** returns an error message: ** ** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ ** assert(zBuf[0]=='\0'); ** return 0; ** } ** ** However if an error message is supplied, it will be incorporated ** by sqlite into the error message available to the user using ** sqlite3_errmsg(), possibly making IO errors easier to debug. */ static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ DWORD e = osGetLastError(); UNUSED_PARAMETER(pVfs); if( nBuf>0 ) winGetLastErrorMsg(e, nBuf, zBuf); return e; } /* ** Initialize and deinitialize the operating system interface. */ SQLITE_API int sqlite3_os_init(void){ static sqlite3_vfs winVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32", /* zName */ &winAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #if defined(SQLITE_WIN32_HAS_WIDE) static sqlite3_vfs winLongPathVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32-longpath", /* zName */ &winAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif static sqlite3_vfs winNolockVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32-none", /* zName */ &winNolockAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #if defined(SQLITE_WIN32_HAS_WIDE) static sqlite3_vfs winLongPathNolockVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */ 0, /* pNext */ "win32-longpath-none", /* zName */ &winNolockAppData, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ winDlOpen, /* xDlOpen */ winDlError, /* xDlError */ winDlSym, /* xDlSym */ winDlClose, /* xDlClose */ winRandomness, /* xRandomness */ winSleep, /* xSleep */ winCurrentTime, /* xCurrentTime */ winGetLastError, /* xGetLastError */ winCurrentTimeInt64, /* xCurrentTimeInt64 */ winSetSystemCall, /* xSetSystemCall */ winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==80 ); /* get memory map allocation granularity */ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO)); #if SQLITE_OS_WINRT osGetNativeSystemInfo(&winSysInfo); #else osGetSystemInfo(&winSysInfo); #endif assert( winSysInfo.dwAllocationGranularity>0 ); assert( winSysInfo.dwPageSize>0 ); sqlite3_vfs_register(&winVfs, 1); #if defined(SQLITE_WIN32_HAS_WIDE) sqlite3_vfs_register(&winLongPathVfs, 0); #endif sqlite3_vfs_register(&winNolockVfs, 0); #if defined(SQLITE_WIN32_HAS_WIDE) sqlite3_vfs_register(&winLongPathNolockVfs, 0); #endif #ifndef SQLITE_OMIT_WAL winBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #endif return SQLITE_OK; } SQLITE_API int sqlite3_os_end(void){ #if SQLITE_OS_WINRT if( sleepObj!=NULL ){ osCloseHandle(sleepObj); sleepObj = NULL; } #endif #ifndef SQLITE_OMIT_WAL winBigLock = 0; #endif return SQLITE_OK; } #endif /* SQLITE_OS_WIN */ /************** End of os_win.c **********************************************/ /************** Begin file memdb.c *******************************************/ /* ** 2016-09-07 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file implements an in-memory VFS. A database is held as a contiguous ** block of memory. ** ** This file also implements interface sqlite3_serialize() and ** sqlite3_deserialize(). */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_DESERIALIZE /* ** Forward declaration of objects used by this utility */ typedef struct sqlite3_vfs MemVfs; typedef struct MemFile MemFile; typedef struct MemStore MemStore; /* Access to a lower-level VFS that (might) implement dynamic loading, ** access to randomness, etc. */ #define ORIGVFS(p) ((sqlite3_vfs*)((p)->pAppData)) /* Storage for a memdb file. ** ** An memdb object can be shared or separate. Shared memdb objects can be ** used by more than one database connection. Mutexes are used by shared ** memdb objects to coordinate access. Separate memdb objects are only ** connected to a single database connection and do not require additional ** mutexes. ** ** Shared memdb objects have .zFName!=0 and .pMutex!=0. They are created ** using "file:/name?vfs=memdb". The first character of the name must be ** "/" or else the object will be a separate memdb object. All shared ** memdb objects are stored in memdb_g.apMemStore[] in an arbitrary order. ** ** Separate memdb objects are created using a name that does not begin ** with "/" or using sqlite3_deserialize(). ** ** Access rules for shared MemStore objects: ** ** * .zFName is initialized when the object is created and afterwards ** is unchanged until the object is destroyed. So it can be accessed ** at any time as long as we know the object is not being destroyed, ** which means while either the SQLITE_MUTEX_STATIC_VFS1 or ** .pMutex is held or the object is not part of memdb_g.apMemStore[]. ** ** * Can .pMutex can only be changed while holding the ** SQLITE_MUTEX_STATIC_VFS1 mutex or while the object is not part ** of memdb_g.apMemStore[]. ** ** * Other fields can only be changed while holding the .pMutex mutex ** or when the .nRef is less than zero and the object is not part of ** memdb_g.apMemStore[]. ** ** * The .aData pointer has the added requirement that it can can only ** be changed (for resizing) when nMmap is zero. ** */ struct MemStore { sqlite3_int64 sz; /* Size of the file */ sqlite3_int64 szAlloc; /* Space allocated to aData */ sqlite3_int64 szMax; /* Maximum allowed size of the file */ unsigned char *aData; /* content of the file */ sqlite3_mutex *pMutex; /* Used by shared stores only */ int nMmap; /* Number of memory mapped pages */ unsigned mFlags; /* Flags */ int nRdLock; /* Number of readers */ int nWrLock; /* Number of writers. (Always 0 or 1) */ int nRef; /* Number of users of this MemStore */ char *zFName; /* The filename for shared stores */ }; /* An open file */ struct MemFile { sqlite3_file base; /* IO methods */ MemStore *pStore; /* The storage */ int eLock; /* Most recent lock against this file */ }; /* ** File-scope variables for holding the memdb files that are accessible ** to multiple database connections in separate threads. ** ** Must hold SQLITE_MUTEX_STATIC_VFS1 to access any part of this object. */ static struct MemFS { int nMemStore; /* Number of shared MemStore objects */ MemStore **apMemStore; /* Array of all shared MemStore objects */ } memdb_g; /* ** Methods for MemFile */ static int memdbClose(sqlite3_file*); static int memdbRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); static int memdbWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64 iOfst); static int memdbTruncate(sqlite3_file*, sqlite3_int64 size); static int memdbSync(sqlite3_file*, int flags); static int memdbFileSize(sqlite3_file*, sqlite3_int64 *pSize); static int memdbLock(sqlite3_file*, int); static int memdbUnlock(sqlite3_file*, int); /* static int memdbCheckReservedLock(sqlite3_file*, int *pResOut);// not used */ static int memdbFileControl(sqlite3_file*, int op, void *pArg); /* static int memdbSectorSize(sqlite3_file*); // not used */ static int memdbDeviceCharacteristics(sqlite3_file*); static int memdbFetch(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp); static int memdbUnfetch(sqlite3_file*, sqlite3_int64 iOfst, void *p); /* ** Methods for MemVfs */ static int memdbOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); /* static int memdbDelete(sqlite3_vfs*, const char *zName, int syncDir); */ static int memdbAccess(sqlite3_vfs*, const char *zName, int flags, int *); static int memdbFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut); static void *memdbDlOpen(sqlite3_vfs*, const char *zFilename); static void memdbDlError(sqlite3_vfs*, int nByte, char *zErrMsg); static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char*zSym))(void); static void memdbDlClose(sqlite3_vfs*, void*); static int memdbRandomness(sqlite3_vfs*, int nByte, char *zOut); static int memdbSleep(sqlite3_vfs*, int microseconds); /* static int memdbCurrentTime(sqlite3_vfs*, double*); */ static int memdbGetLastError(sqlite3_vfs*, int, char *); static int memdbCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*); static sqlite3_vfs memdb_vfs = { 2, /* iVersion */ 0, /* szOsFile (set when registered) */ 1024, /* mxPathname */ 0, /* pNext */ "memdb", /* zName */ 0, /* pAppData (set when registered) */ memdbOpen, /* xOpen */ 0, /* memdbDelete, */ /* xDelete */ memdbAccess, /* xAccess */ memdbFullPathname, /* xFullPathname */ memdbDlOpen, /* xDlOpen */ memdbDlError, /* xDlError */ memdbDlSym, /* xDlSym */ memdbDlClose, /* xDlClose */ memdbRandomness, /* xRandomness */ memdbSleep, /* xSleep */ 0, /* memdbCurrentTime, */ /* xCurrentTime */ memdbGetLastError, /* xGetLastError */ memdbCurrentTimeInt64, /* xCurrentTimeInt64 */ 0, /* xSetSystemCall */ 0, /* xGetSystemCall */ 0, /* xNextSystemCall */ }; static const sqlite3_io_methods memdb_io_methods = { 3, /* iVersion */ memdbClose, /* xClose */ memdbRead, /* xRead */ memdbWrite, /* xWrite */ memdbTruncate, /* xTruncate */ memdbSync, /* xSync */ memdbFileSize, /* xFileSize */ memdbLock, /* xLock */ memdbUnlock, /* xUnlock */ 0, /* memdbCheckReservedLock, */ /* xCheckReservedLock */ memdbFileControl, /* xFileControl */ 0, /* memdbSectorSize,*/ /* xSectorSize */ memdbDeviceCharacteristics, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ memdbFetch, /* xFetch */ memdbUnfetch /* xUnfetch */ }; /* ** Enter/leave the mutex on a MemStore */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0 static void memdbEnter(MemStore *p){ UNUSED_PARAMETER(p); } static void memdbLeave(MemStore *p){ UNUSED_PARAMETER(p); } #else static void memdbEnter(MemStore *p){ sqlite3_mutex_enter(p->pMutex); } static void memdbLeave(MemStore *p){ sqlite3_mutex_leave(p->pMutex); } #endif /* ** Close an memdb-file. ** Free the underlying MemStore object when its refcount drops to zero ** or less. */ static int memdbClose(sqlite3_file *pFile){ MemStore *p = ((MemFile*)pFile)->pStore; if( p->zFName ){ int i; #ifndef SQLITE_MUTEX_OMIT sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #endif sqlite3_mutex_enter(pVfsMutex); for(i=0; ALWAYS(inRef==1 ){ memdb_g.apMemStore[i] = memdb_g.apMemStore[--memdb_g.nMemStore]; if( memdb_g.nMemStore==0 ){ sqlite3_free(memdb_g.apMemStore); memdb_g.apMemStore = 0; } } break; } } sqlite3_mutex_leave(pVfsMutex); }else{ memdbEnter(p); } p->nRef--; if( p->nRef<=0 ){ if( p->mFlags & SQLITE_DESERIALIZE_FREEONCLOSE ){ sqlite3_free(p->aData); } memdbLeave(p); sqlite3_mutex_free(p->pMutex); sqlite3_free(p); }else{ memdbLeave(p); } return SQLITE_OK; } /* ** Read data from an memdb-file. */ static int memdbRead( sqlite3_file *pFile, void *zBuf, int iAmt, sqlite_int64 iOfst ){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); if( iOfst+iAmt>p->sz ){ memset(zBuf, 0, iAmt); if( iOfstsz ) memcpy(zBuf, p->aData+iOfst, p->sz - iOfst); memdbLeave(p); return SQLITE_IOERR_SHORT_READ; } memcpy(zBuf, p->aData+iOfst, iAmt); memdbLeave(p); return SQLITE_OK; } /* ** Try to enlarge the memory allocation to hold at least sz bytes */ static int memdbEnlarge(MemStore *p, sqlite3_int64 newSz){ unsigned char *pNew; if( (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)==0 || NEVER(p->nMmap>0) ){ return SQLITE_FULL; } if( newSz>p->szMax ){ return SQLITE_FULL; } newSz *= 2; if( newSz>p->szMax ) newSz = p->szMax; pNew = sqlite3Realloc(p->aData, newSz); if( pNew==0 ) return SQLITE_IOERR_NOMEM; p->aData = pNew; p->szAlloc = newSz; return SQLITE_OK; } /* ** Write data to an memdb-file. */ static int memdbWrite( sqlite3_file *pFile, const void *z, int iAmt, sqlite_int64 iOfst ){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); if( NEVER(p->mFlags & SQLITE_DESERIALIZE_READONLY) ){ /* Can't happen: memdbLock() will return SQLITE_READONLY before ** reaching this point */ memdbLeave(p); return SQLITE_IOERR_WRITE; } if( iOfst+iAmt>p->sz ){ int rc; if( iOfst+iAmt>p->szAlloc && (rc = memdbEnlarge(p, iOfst+iAmt))!=SQLITE_OK ){ memdbLeave(p); return rc; } if( iOfst>p->sz ) memset(p->aData+p->sz, 0, iOfst-p->sz); p->sz = iOfst+iAmt; } memcpy(p->aData+iOfst, z, iAmt); memdbLeave(p); return SQLITE_OK; } /* ** Truncate an memdb-file. ** ** In rollback mode (which is always the case for memdb, as it does not ** support WAL mode) the truncate() method is only used to reduce ** the size of a file, never to increase the size. */ static int memdbTruncate(sqlite3_file *pFile, sqlite_int64 size){ MemStore *p = ((MemFile*)pFile)->pStore; int rc = SQLITE_OK; memdbEnter(p); if( size>p->sz ){ /* This can only happen with a corrupt wal mode db */ rc = SQLITE_CORRUPT; }else{ p->sz = size; } memdbLeave(p); return rc; } /* ** Sync an memdb-file. */ static int memdbSync(sqlite3_file *pFile, int flags){ UNUSED_PARAMETER(pFile); UNUSED_PARAMETER(flags); return SQLITE_OK; } /* ** Return the current file-size of an memdb-file. */ static int memdbFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); *pSize = p->sz; memdbLeave(p); return SQLITE_OK; } /* ** Lock an memdb-file. */ static int memdbLock(sqlite3_file *pFile, int eLock){ MemFile *pThis = (MemFile*)pFile; MemStore *p = pThis->pStore; int rc = SQLITE_OK; if( eLock<=pThis->eLock ) return SQLITE_OK; memdbEnter(p); assert( p->nWrLock==0 || p->nWrLock==1 ); assert( pThis->eLock<=SQLITE_LOCK_SHARED || p->nWrLock==1 ); assert( pThis->eLock==SQLITE_LOCK_NONE || p->nRdLock>=1 ); if( eLock>SQLITE_LOCK_SHARED && (p->mFlags & SQLITE_DESERIALIZE_READONLY) ){ rc = SQLITE_READONLY; }else{ switch( eLock ){ case SQLITE_LOCK_SHARED: { assert( pThis->eLock==SQLITE_LOCK_NONE ); if( p->nWrLock>0 ){ rc = SQLITE_BUSY; }else{ p->nRdLock++; } break; }; case SQLITE_LOCK_RESERVED: case SQLITE_LOCK_PENDING: { assert( pThis->eLock>=SQLITE_LOCK_SHARED ); if( ALWAYS(pThis->eLock==SQLITE_LOCK_SHARED) ){ if( p->nWrLock>0 ){ rc = SQLITE_BUSY; }else{ p->nWrLock = 1; } } break; } default: { assert( eLock==SQLITE_LOCK_EXCLUSIVE ); assert( pThis->eLock>=SQLITE_LOCK_SHARED ); if( p->nRdLock>1 ){ rc = SQLITE_BUSY; }else if( pThis->eLock==SQLITE_LOCK_SHARED ){ p->nWrLock = 1; } break; } } } if( rc==SQLITE_OK ) pThis->eLock = eLock; memdbLeave(p); return rc; } /* ** Unlock an memdb-file. */ static int memdbUnlock(sqlite3_file *pFile, int eLock){ MemFile *pThis = (MemFile*)pFile; MemStore *p = pThis->pStore; if( eLock>=pThis->eLock ) return SQLITE_OK; memdbEnter(p); assert( eLock==SQLITE_LOCK_SHARED || eLock==SQLITE_LOCK_NONE ); if( eLock==SQLITE_LOCK_SHARED ){ if( ALWAYS(pThis->eLock>SQLITE_LOCK_SHARED) ){ p->nWrLock--; } }else{ if( pThis->eLock>SQLITE_LOCK_SHARED ){ p->nWrLock--; } p->nRdLock--; } pThis->eLock = eLock; memdbLeave(p); return SQLITE_OK; } #if 0 /* ** This interface is only used for crash recovery, which does not ** occur on an in-memory database. */ static int memdbCheckReservedLock(sqlite3_file *pFile, int *pResOut){ *pResOut = 0; return SQLITE_OK; } #endif /* ** File control method. For custom operations on an memdb-file. */ static int memdbFileControl(sqlite3_file *pFile, int op, void *pArg){ MemStore *p = ((MemFile*)pFile)->pStore; int rc = SQLITE_NOTFOUND; memdbEnter(p); if( op==SQLITE_FCNTL_VFSNAME ){ *(char**)pArg = sqlite3_mprintf("memdb(%p,%lld)", p->aData, p->sz); rc = SQLITE_OK; } if( op==SQLITE_FCNTL_SIZE_LIMIT ){ sqlite3_int64 iLimit = *(sqlite3_int64*)pArg; if( iLimitsz ){ if( iLimit<0 ){ iLimit = p->szMax; }else{ iLimit = p->sz; } } p->szMax = iLimit; *(sqlite3_int64*)pArg = iLimit; rc = SQLITE_OK; } memdbLeave(p); return rc; } #if 0 /* Not used because of SQLITE_IOCAP_POWERSAFE_OVERWRITE */ /* ** Return the sector-size in bytes for an memdb-file. */ static int memdbSectorSize(sqlite3_file *pFile){ return 1024; } #endif /* ** Return the device characteristic flags supported by an memdb-file. */ static int memdbDeviceCharacteristics(sqlite3_file *pFile){ UNUSED_PARAMETER(pFile); return SQLITE_IOCAP_ATOMIC | SQLITE_IOCAP_POWERSAFE_OVERWRITE | SQLITE_IOCAP_SAFE_APPEND | SQLITE_IOCAP_SEQUENTIAL; } /* Fetch a page of a memory-mapped file */ static int memdbFetch( sqlite3_file *pFile, sqlite3_int64 iOfst, int iAmt, void **pp ){ MemStore *p = ((MemFile*)pFile)->pStore; memdbEnter(p); if( iOfst+iAmt>p->sz || (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)!=0 ){ *pp = 0; }else{ p->nMmap++; *pp = (void*)(p->aData + iOfst); } memdbLeave(p); return SQLITE_OK; } /* Release a memory-mapped page */ static int memdbUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *pPage){ MemStore *p = ((MemFile*)pFile)->pStore; UNUSED_PARAMETER(iOfst); UNUSED_PARAMETER(pPage); memdbEnter(p); p->nMmap--; memdbLeave(p); return SQLITE_OK; } /* ** Open an mem file handle. */ static int memdbOpen( sqlite3_vfs *pVfs, const char *zName, sqlite3_file *pFd, int flags, int *pOutFlags ){ MemFile *pFile = (MemFile*)pFd; MemStore *p = 0; int szName; UNUSED_PARAMETER(pVfs); memset(pFile, 0, sizeof(*pFile)); szName = sqlite3Strlen30(zName); if( szName>1 && (zName[0]=='/' || zName[0]=='\\') ){ int i; #ifndef SQLITE_MUTEX_OMIT sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #endif sqlite3_mutex_enter(pVfsMutex); for(i=0; izFName,zName)==0 ){ p = memdb_g.apMemStore[i]; break; } } if( p==0 ){ MemStore **apNew; p = sqlite3Malloc( sizeof(*p) + szName + 3 ); if( p==0 ){ sqlite3_mutex_leave(pVfsMutex); return SQLITE_NOMEM; } apNew = sqlite3Realloc(memdb_g.apMemStore, sizeof(apNew[0])*(memdb_g.nMemStore+1) ); if( apNew==0 ){ sqlite3_free(p); sqlite3_mutex_leave(pVfsMutex); return SQLITE_NOMEM; } apNew[memdb_g.nMemStore++] = p; memdb_g.apMemStore = apNew; memset(p, 0, sizeof(*p)); p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE|SQLITE_DESERIALIZE_FREEONCLOSE; p->szMax = sqlite3GlobalConfig.mxMemdbSize; p->zFName = (char*)&p[1]; memcpy(p->zFName, zName, szName+1); p->pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( p->pMutex==0 ){ memdb_g.nMemStore--; sqlite3_free(p); sqlite3_mutex_leave(pVfsMutex); return SQLITE_NOMEM; } p->nRef = 1; memdbEnter(p); }else{ memdbEnter(p); p->nRef++; } sqlite3_mutex_leave(pVfsMutex); }else{ p = sqlite3Malloc( sizeof(*p) ); if( p==0 ){ return SQLITE_NOMEM; } memset(p, 0, sizeof(*p)); p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE | SQLITE_DESERIALIZE_FREEONCLOSE; p->szMax = sqlite3GlobalConfig.mxMemdbSize; } pFile->pStore = p; if( pOutFlags!=0 ){ *pOutFlags = flags | SQLITE_OPEN_MEMORY; } pFd->pMethods = &memdb_io_methods; memdbLeave(p); return SQLITE_OK; } #if 0 /* Only used to delete rollback journals, super-journals, and WAL ** files, none of which exist in memdb. So this routine is never used */ /* ** Delete the file located at zPath. If the dirSync argument is true, ** ensure the file-system modifications are synced to disk before ** returning. */ static int memdbDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ return SQLITE_IOERR_DELETE; } #endif /* ** Test for access permissions. Return true if the requested permission ** is available, or false otherwise. ** ** With memdb, no files ever exist on disk. So always return false. */ static int memdbAccess( sqlite3_vfs *pVfs, const char *zPath, int flags, int *pResOut ){ UNUSED_PARAMETER(pVfs); UNUSED_PARAMETER(zPath); UNUSED_PARAMETER(flags); *pResOut = 0; return SQLITE_OK; } /* ** Populate buffer zOut with the full canonical pathname corresponding ** to the pathname in zPath. zOut is guaranteed to point to a buffer ** of at least (INST_MAX_PATHNAME+1) bytes. */ static int memdbFullPathname( sqlite3_vfs *pVfs, const char *zPath, int nOut, char *zOut ){ UNUSED_PARAMETER(pVfs); sqlite3_snprintf(nOut, zOut, "%s", zPath); return SQLITE_OK; } /* ** Open the dynamic library located at zPath and return a handle. */ static void *memdbDlOpen(sqlite3_vfs *pVfs, const char *zPath){ return ORIGVFS(pVfs)->xDlOpen(ORIGVFS(pVfs), zPath); } /* ** Populate the buffer zErrMsg (size nByte bytes) with a human readable ** utf-8 string describing the most recent error encountered associated ** with dynamic libraries. */ static void memdbDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){ ORIGVFS(pVfs)->xDlError(ORIGVFS(pVfs), nByte, zErrMsg); } /* ** Return a pointer to the symbol zSymbol in the dynamic library pHandle. */ static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char *zSym))(void){ return ORIGVFS(pVfs)->xDlSym(ORIGVFS(pVfs), p, zSym); } /* ** Close the dynamic library handle pHandle. */ static void memdbDlClose(sqlite3_vfs *pVfs, void *pHandle){ ORIGVFS(pVfs)->xDlClose(ORIGVFS(pVfs), pHandle); } /* ** Populate the buffer pointed to by zBufOut with nByte bytes of ** random data. */ static int memdbRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ return ORIGVFS(pVfs)->xRandomness(ORIGVFS(pVfs), nByte, zBufOut); } /* ** Sleep for nMicro microseconds. Return the number of microseconds ** actually slept. */ static int memdbSleep(sqlite3_vfs *pVfs, int nMicro){ return ORIGVFS(pVfs)->xSleep(ORIGVFS(pVfs), nMicro); } #if 0 /* Never used. Modern cores only call xCurrentTimeInt64() */ /* ** Return the current time as a Julian Day number in *pTimeOut. */ static int memdbCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ return ORIGVFS(pVfs)->xCurrentTime(ORIGVFS(pVfs), pTimeOut); } #endif static int memdbGetLastError(sqlite3_vfs *pVfs, int a, char *b){ return ORIGVFS(pVfs)->xGetLastError(ORIGVFS(pVfs), a, b); } static int memdbCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *p){ return ORIGVFS(pVfs)->xCurrentTimeInt64(ORIGVFS(pVfs), p); } /* ** Translate a database connection pointer and schema name into a ** MemFile pointer. */ static MemFile *memdbFromDbSchema(sqlite3 *db, const char *zSchema){ MemFile *p = 0; MemStore *pStore; int rc = sqlite3_file_control(db, zSchema, SQLITE_FCNTL_FILE_POINTER, &p); if( rc ) return 0; if( p->base.pMethods!=&memdb_io_methods ) return 0; pStore = p->pStore; memdbEnter(pStore); if( pStore->zFName!=0 ) p = 0; memdbLeave(pStore); return p; } /* ** Return the serialization of a database */ SQLITE_API unsigned char *sqlite3_serialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which database within the connection */ sqlite3_int64 *piSize, /* Write size here, if not NULL */ unsigned int mFlags /* Maybe SQLITE_SERIALIZE_NOCOPY */ ){ MemFile *p; int iDb; Btree *pBt; sqlite3_int64 sz; int szPage = 0; sqlite3_stmt *pStmt = 0; unsigned char *pOut; char *zSql; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( zSchema==0 ) zSchema = db->aDb[0].zDbSName; p = memdbFromDbSchema(db, zSchema); iDb = sqlite3FindDbName(db, zSchema); if( piSize ) *piSize = -1; if( iDb<0 ) return 0; if( p ){ MemStore *pStore = p->pStore; assert( pStore->pMutex==0 ); if( piSize ) *piSize = pStore->sz; if( mFlags & SQLITE_SERIALIZE_NOCOPY ){ pOut = pStore->aData; }else{ pOut = sqlite3_malloc64( pStore->sz ); if( pOut ) memcpy(pOut, pStore->aData, pStore->sz); } return pOut; } pBt = db->aDb[iDb].pBt; if( pBt==0 ) return 0; szPage = sqlite3BtreeGetPageSize(pBt); zSql = sqlite3_mprintf("PRAGMA \"%w\".page_count", zSchema); rc = zSql ? sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0) : SQLITE_NOMEM; sqlite3_free(zSql); if( rc ) return 0; rc = sqlite3_step(pStmt); if( rc!=SQLITE_ROW ){ pOut = 0; }else{ sz = sqlite3_column_int64(pStmt, 0)*szPage; if( sz==0 ){ sqlite3_reset(pStmt); sqlite3_exec(db, "BEGIN IMMEDIATE; COMMIT;", 0, 0, 0); rc = sqlite3_step(pStmt); if( rc==SQLITE_ROW ){ sz = sqlite3_column_int64(pStmt, 0)*szPage; } } if( piSize ) *piSize = sz; if( mFlags & SQLITE_SERIALIZE_NOCOPY ){ pOut = 0; }else{ pOut = sqlite3_malloc64( sz ); if( pOut ){ int nPage = sqlite3_column_int(pStmt, 0); Pager *pPager = sqlite3BtreePager(pBt); int pgno; for(pgno=1; pgno<=nPage; pgno++){ DbPage *pPage = 0; unsigned char *pTo = pOut + szPage*(sqlite3_int64)(pgno-1); rc = sqlite3PagerGet(pPager, pgno, (DbPage**)&pPage, 0); if( rc==SQLITE_OK ){ memcpy(pTo, sqlite3PagerGetData(pPage), szPage); }else{ memset(pTo, 0, szPage); } sqlite3PagerUnref(pPage); } } } } sqlite3_finalize(pStmt); return pOut; } /* Convert zSchema to a MemDB and initialize its content. */ SQLITE_API int sqlite3_deserialize( sqlite3 *db, /* The database connection */ const char *zSchema, /* Which DB to reopen with the deserialization */ unsigned char *pData, /* The serialized database content */ sqlite3_int64 szDb, /* Number bytes in the deserialization */ sqlite3_int64 szBuf, /* Total size of buffer pData[] */ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */ ){ MemFile *p; char *zSql; sqlite3_stmt *pStmt = 0; int rc; int iDb; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } if( szDb<0 ) return SQLITE_MISUSE_BKPT; if( szBuf<0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); if( zSchema==0 ) zSchema = db->aDb[0].zDbSName; iDb = sqlite3FindDbName(db, zSchema); testcase( iDb==1 ); if( iDb<2 && iDb!=0 ){ rc = SQLITE_ERROR; goto end_deserialize; } zSql = sqlite3_mprintf("ATTACH x AS %Q", zSchema); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } if( rc ) goto end_deserialize; db->init.iDb = (u8)iDb; db->init.reopenMemdb = 1; rc = sqlite3_step(pStmt); db->init.reopenMemdb = 0; if( rc!=SQLITE_DONE ){ rc = SQLITE_ERROR; goto end_deserialize; } p = memdbFromDbSchema(db, zSchema); if( p==0 ){ rc = SQLITE_ERROR; }else{ MemStore *pStore = p->pStore; pStore->aData = pData; pData = 0; pStore->sz = szDb; pStore->szAlloc = szBuf; pStore->szMax = szBuf; if( pStore->szMaxszMax = sqlite3GlobalConfig.mxMemdbSize; } pStore->mFlags = mFlags; rc = SQLITE_OK; } end_deserialize: sqlite3_finalize(pStmt); if( pData && (mFlags & SQLITE_DESERIALIZE_FREEONCLOSE)!=0 ){ sqlite3_free(pData); } sqlite3_mutex_leave(db->mutex); return rc; } /* ** Return true if the VFS is the memvfs. */ SQLITE_PRIVATE int sqlite3IsMemdb(const sqlite3_vfs *pVfs){ return pVfs==&memdb_vfs; } /* ** This routine is called when the extension is loaded. ** Register the new VFS. */ SQLITE_PRIVATE int sqlite3MemdbInit(void){ sqlite3_vfs *pLower = sqlite3_vfs_find(0); unsigned int sz; if( NEVER(pLower==0) ) return SQLITE_ERROR; sz = pLower->szOsFile; memdb_vfs.pAppData = pLower; /* The following conditional can only be true when compiled for ** Windows x86 and SQLITE_MAX_MMAP_SIZE=0. We always leave ** it in, to be safe, but it is marked as NO_TEST since there ** is no way to reach it under most builds. */ if( szBITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is ** a hash table that will hold up to BITVEC_MXHASH distinct values. ** ** Otherwise, the value i is redirected into one of BITVEC_NPTR ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap ** handles up to iDivisor separate values of i. apSub[0] holds ** values between 1 and iDivisor. apSub[1] holds values between ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized ** to hold deal with values between 1 and iDivisor. */ struct Bitvec { u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ u32 nSet; /* Number of bits that are set - only valid for aHash ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, ** this would be 125. */ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ /* Should >=0 for apSub element. */ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ /* For a BITVEC_SZ of 512, this would be 34,359,739. */ union { BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ u32 aHash[BITVEC_NINT]; /* Hash table representation */ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ } u; }; /* ** Create a new bitmap object able to handle bits between 0 and iSize, ** inclusive. Return a pointer to the new object. Return NULL if ** malloc fails. */ SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){ Bitvec *p; assert( sizeof(*p)==BITVEC_SZ ); p = sqlite3MallocZero( sizeof(*p) ); if( p ){ p->iSize = iSize; } return p; } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ assert( p!=0 ); i--; if( i>=p->iSize ) return 0; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return 0; } } if( p->iSize<=BITVEC_NBIT ){ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; } else{ u32 h = BITVEC_HASH(i++); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return 1; h = (h+1) % BITVEC_NINT; } return 0; } } SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){ return p!=0 && sqlite3BitvecTestNotNull(p,i); } /* ** Set the i-th bit. Return 0 on success and an error code if ** anything goes wrong. ** ** This routine might cause sub-bitmaps to be allocated. Failing ** to get the memory needed to hold the sub-bitmap is the only ** that can go wrong with an insert, assuming p and i are valid. ** ** The calling function must ensure that p is a valid Bitvec object ** and that the value for "i" is within range of the Bitvec object. ** Otherwise the behavior is undefined. */ SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){ u32 h; if( p==0 ) return SQLITE_OK; assert( i>0 ); assert( i<=p->iSize ); i--; while((p->iSize > BITVEC_NBIT) && p->iDivisor) { u32 bin = i/p->iDivisor; i = i%p->iDivisor; if( p->u.apSub[bin]==0 ){ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT; } p = p->u.apSub[bin]; } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); return SQLITE_OK; } h = BITVEC_HASH(i++); /* if there wasn't a hash collision, and this doesn't */ /* completely fill the hash, then just add it without */ /* worrying about sub-dividing and re-hashing. */ if( !p->u.aHash[h] ){ if (p->nSet<(BITVEC_NINT-1)) { goto bitvec_set_end; } else { goto bitvec_set_rehash; } } /* there was a collision, check to see if it's already */ /* in hash, if not, try to find a spot for it */ do { if( p->u.aHash[h]==i ) return SQLITE_OK; h++; if( h>=BITVEC_NINT ) h = 0; } while( p->u.aHash[h] ); /* we didn't find it in the hash. h points to the first */ /* available free spot. check to see if this is going to */ /* make our hash too "full". */ bitvec_set_rehash: if( p->nSet>=BITVEC_MXHASH ){ unsigned int j; int rc; u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); if( aiValues==0 ){ return SQLITE_NOMEM_BKPT; }else{ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); memset(p->u.apSub, 0, sizeof(p->u.apSub)); p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; rc = sqlite3BitvecSet(p, i); for(j=0; jnSet++; p->u.aHash[h] = i; return SQLITE_OK; } /* ** Clear the i-th bit. ** ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage ** that BitvecClear can use to rebuilt its hash table. */ SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ if( p==0 ) return; assert( i>0 ); i--; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return; } } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); }else{ unsigned int j; u32 *aiValues = pBuf; memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); memset(p->u.aHash, 0, sizeof(p->u.aHash)); p->nSet = 0; for(j=0; jnSet++; while( p->u.aHash[h] ){ h++; if( h>=BITVEC_NINT ) h = 0; } p->u.aHash[h] = aiValues[j]; } } } } /* ** Destroy a bitmap object. Reclaim all memory used. */ SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){ if( p==0 ) return; if( p->iDivisor ){ unsigned int i; for(i=0; iu.apSub[i]); } } sqlite3_free(p); } /* ** Return the value of the iSize parameter specified when Bitvec *p ** was created. */ SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){ return p->iSize; } #ifndef SQLITE_UNTESTABLE /* ** Let V[] be an array of unsigned characters sufficient to hold ** up to N bits. Let I be an integer between 0 and N. 0<=I>3] |= (1<<(I&7)) #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 /* ** This routine runs an extensive test of the Bitvec code. ** ** The input is an array of integers that acts as a program ** to test the Bitvec. The integers are opcodes followed ** by 0, 1, or 3 operands, depending on the opcode. Another ** opcode follows immediately after the last operand. ** ** There are 6 opcodes numbered from 0 through 5. 0 is the ** "halt" opcode and causes the test to end. ** ** 0 Halt and return the number of errors ** 1 N S X Set N bits beginning with S and incrementing by X ** 2 N S X Clear N bits beginning with S and incrementing by X ** 3 N Set N randomly chosen bits ** 4 N Clear N randomly chosen bits ** 5 N S X Set N bits from S increment X in array only, not in bitvec ** ** The opcodes 1 through 4 perform set and clear operations are performed ** on both a Bitvec object and on a linear array of bits obtained from malloc. ** Opcode 5 works on the linear array only, not on the Bitvec. ** Opcode 5 is used to deliberately induce a fault in order to ** confirm that error detection works. ** ** At the conclusion of the test the linear array is compared ** against the Bitvec object. If there are any differences, ** an error is returned. If they are the same, zero is returned. ** ** If a memory allocation error occurs, return -1. */ SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){ Bitvec *pBitvec = 0; unsigned char *pV = 0; int rc = -1; int i, nx, pc, op; void *pTmpSpace; /* Allocate the Bitvec to be tested and a linear array of ** bits to act as the reference */ pBitvec = sqlite3BitvecCreate( sz ); pV = sqlite3MallocZero( (sz+7)/8 + 1 ); pTmpSpace = sqlite3_malloc64(BITVEC_SZ); if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; /* NULL pBitvec tests */ sqlite3BitvecSet(0, 1); sqlite3BitvecClear(0, 1, pTmpSpace); /* Run the program */ pc = i = 0; while( (op = aOp[pc])!=0 ){ switch( op ){ case 1: case 2: case 5: { nx = 4; i = aOp[pc+2] - 1; aOp[pc+2] += aOp[pc+3]; break; } case 3: case 4: default: { nx = 2; sqlite3_randomness(sizeof(i), &i); break; } } if( (--aOp[pc+1]) > 0 ) nx = 0; pc += nx; i = (i & 0x7fffffff)%sz; if( (op & 1)!=0 ){ SETBIT(pV, (i+1)); if( op!=5 ){ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; } }else{ CLEARBIT(pV, (i+1)); sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); } } /* Test to make sure the linear array exactly matches the ** Bitvec object. Start with the assumption that they do ** match (rc==0). Change rc to non-zero if a discrepancy ** is found. */ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) + sqlite3BitvecTest(pBitvec, 0) + (sqlite3BitvecSize(pBitvec) - sz); for(i=1; i<=sz; i++){ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ rc = i; break; } } /* Free allocated structure */ bitvec_end: sqlite3_free(pTmpSpace); sqlite3_free(pV); sqlite3BitvecDestroy(pBitvec); return rc; } #endif /* SQLITE_UNTESTABLE */ /************** End of bitvec.c **********************************************/ /************** Begin file pcache.c ******************************************/ /* ** 2008 August 05 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements that page cache. */ /* #include "sqliteInt.h" */ /* ** A complete page cache is an instance of this structure. Every ** entry in the cache holds a single page of the database file. The ** btree layer only operates on the cached copy of the database pages. ** ** A page cache entry is "clean" if it exactly matches what is currently ** on disk. A page is "dirty" if it has been modified and needs to be ** persisted to disk. ** ** pDirty, pDirtyTail, pSynced: ** All dirty pages are linked into the doubly linked list using ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order ** such that p was added to the list more recently than p->pDirtyNext. ** PCache.pDirty points to the first (newest) element in the list and ** pDirtyTail to the last (oldest). ** ** The PCache.pSynced variable is used to optimize searching for a dirty ** page to eject from the cache mid-transaction. It is better to eject ** a page that does not require a journal sync than one that does. ** Therefore, pSynced is maintained so that it *almost* always points ** to either the oldest page in the pDirty/pDirtyTail list that has a ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one ** (so that the right page to eject can be found by following pDirtyPrev ** pointers). */ struct PCache { PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ PgHdr *pSynced; /* Last synced page in dirty page list */ i64 nRefSum; /* Sum of ref counts over all pages */ int szCache; /* Configured cache size */ int szSpill; /* Size before spilling occurs */ int szPage; /* Size of every page in this cache */ int szExtra; /* Size of extra space for each page */ u8 bPurgeable; /* True if pages are on backing store */ u8 eCreate; /* eCreate value for for xFetch() */ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ void *pStress; /* Argument to xStress */ sqlite3_pcache *pCache; /* Pluggable cache module */ }; /********************************** Test and Debug Logic **********************/ /* ** Debug tracing macros. Enable by by changing the "0" to "1" and ** recompiling. ** ** When sqlite3PcacheTrace is 1, single line trace messages are issued. ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries ** is displayed for many operations, resulting in a lot of output. */ #if defined(SQLITE_DEBUG) && 0 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} static void pcachePageTrace(int i, sqlite3_pcache_page *pLower){ PgHdr *pPg; unsigned char *a; int j; if( pLower==0 ){ printf("%3d: NULL\n", i); }else{ pPg = (PgHdr*)pLower->pExtra; printf("%3d: nRef %2lld flgs %02x data ", i, pPg->nRef, pPg->flags); a = (unsigned char *)pLower->pBuf; for(j=0; j<12; j++) printf("%02x", a[j]); printf(" ptr %p\n", pPg); } } static void pcacheDump(PCache *pCache){ int N; int i; sqlite3_pcache_page *pLower; if( sqlite3PcacheTrace<2 ) return; if( pCache->pCache==0 ) return; N = sqlite3PcachePagecount(pCache); if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; for(i=1; i<=N; i++){ pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); pcachePageTrace(i, pLower); if( pLower && ((PgHdr*)pLower)->pPage==0 ){ sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); } } } #else # define pcacheTrace(X) # define pcachePageTrace(PGNO, X) # define pcacheDump(X) #endif /* ** Return 1 if pPg is on the dirty list for pCache. Return 0 if not. ** This routine runs inside of assert() statements only. */ #if defined(SQLITE_ENABLE_EXPENSIVE_ASSERT) static int pageOnDirtyList(PCache *pCache, PgHdr *pPg){ PgHdr *p; for(p=pCache->pDirty; p; p=p->pDirtyNext){ if( p==pPg ) return 1; } return 0; } static int pageNotOnDirtyList(PCache *pCache, PgHdr *pPg){ PgHdr *p; for(p=pCache->pDirty; p; p=p->pDirtyNext){ if( p==pPg ) return 0; } return 1; } #else # define pageOnDirtyList(A,B) 1 # define pageNotOnDirtyList(A,B) 1 #endif /* ** Check invariants on a PgHdr entry. Return true if everything is OK. ** Return false if any invariant is violated. ** ** This routine is for use inside of assert() statements only. For ** example: ** ** assert( sqlite3PcachePageSanity(pPg) ); */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr *pPg){ PCache *pCache; assert( pPg!=0 ); assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ pCache = pPg->pCache; assert( pCache!=0 ); /* Every page has an associated PCache */ if( pPg->flags & PGHDR_CLEAN ){ assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ assert( pageNotOnDirtyList(pCache, pPg) );/* CLEAN pages not on dirtylist */ }else{ assert( (pPg->flags & PGHDR_DIRTY)!=0 );/* If not CLEAN must be DIRTY */ assert( pPg->pDirtyNext==0 || pPg->pDirtyNext->pDirtyPrev==pPg ); assert( pPg->pDirtyPrev==0 || pPg->pDirtyPrev->pDirtyNext==pPg ); assert( pPg->pDirtyPrev!=0 || pCache->pDirty==pPg ); assert( pageOnDirtyList(pCache, pPg) ); } /* WRITEABLE pages must also be DIRTY */ if( pPg->flags & PGHDR_WRITEABLE ){ assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ } /* NEED_SYNC can be set independently of WRITEABLE. This can happen, ** for example, when using the sqlite3PagerDontWrite() optimization: ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. ** (2) Page X moved to freelist, WRITEABLE is cleared ** (3) Page X reused, WRITEABLE is set again ** If NEED_SYNC had been cleared in step 2, then it would not be reset ** in step 3, and page might be written into the database without first ** syncing the rollback journal, which might cause corruption on a power ** loss. ** ** Another example is when the database page size is smaller than the ** disk sector size. When any page of a sector is journalled, all pages ** in that sector are marked NEED_SYNC even if they are still CLEAN, just ** in case they are later modified, since all pages in the same sector ** must be journalled and synced before any of those pages can be safely ** written. */ return 1; } #endif /* SQLITE_DEBUG */ /********************************** Linked List Management ********************/ /* Allowed values for second argument to pcacheManageDirtyList() */ #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ /* ** Manage pPage's participation on the dirty list. Bits of the addRemove ** argument determines what operation to do. The 0x01 bit means first ** remove pPage from the dirty list. The 0x02 means add pPage back to ** the dirty list. Doing both moves pPage to the front of the dirty list. */ static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ PCache *p = pPage->pCache; pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", pPage->pgno)); if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); assert( pPage->pDirtyPrev || pPage==p->pDirty ); /* Update the PCache1.pSynced variable if necessary. */ if( p->pSynced==pPage ){ p->pSynced = pPage->pDirtyPrev; } if( pPage->pDirtyNext ){ pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; }else{ assert( pPage==p->pDirtyTail ); p->pDirtyTail = pPage->pDirtyPrev; } if( pPage->pDirtyPrev ){ pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; }else{ /* If there are now no dirty pages in the cache, set eCreate to 2. ** This is an optimization that allows sqlite3PcacheFetch() to skip ** searching for a dirty page to eject from the cache when it might ** otherwise have to. */ assert( pPage==p->pDirty ); p->pDirty = pPage->pDirtyNext; assert( p->bPurgeable || p->eCreate==2 ); if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ assert( p->bPurgeable==0 || p->eCreate==1 ); p->eCreate = 2; } } } if( addRemove & PCACHE_DIRTYLIST_ADD ){ pPage->pDirtyPrev = 0; pPage->pDirtyNext = p->pDirty; if( pPage->pDirtyNext ){ assert( pPage->pDirtyNext->pDirtyPrev==0 ); pPage->pDirtyNext->pDirtyPrev = pPage; }else{ p->pDirtyTail = pPage; if( p->bPurgeable ){ assert( p->eCreate==2 ); p->eCreate = 1; } } p->pDirty = pPage; /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set ** pSynced to point to it. Checking the NEED_SYNC flag is an ** optimization, as if pSynced points to a page with the NEED_SYNC ** flag set sqlite3PcacheFetchStress() searches through all newer ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ ){ p->pSynced = pPage; } } pcacheDump(p); } /* ** Wrapper around the pluggable caches xUnpin method. If the cache is ** being used for an in-memory database, this function is a no-op. */ static void pcacheUnpin(PgHdr *p){ if( p->pCache->bPurgeable ){ pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); pcacheDump(p->pCache); } } /* ** Compute the number of pages of cache requested. p->szCache is the ** cache size requested by the "PRAGMA cache_size" statement. */ static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the ** suggested cache size is set to N. */ return p->szCache; }else{ i64 n; /* IMPLEMENTATION-OF: R-59858-46238 If the argument N is negative, then the ** number of cache pages is adjusted to be a number of pages that would ** use approximately abs(N*1024) bytes of memory based on the current ** page size. */ n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); if( n>1000000000 ) n = 1000000000; return (int)n; } } /*************************************************** General Interfaces ****** ** ** Initialize and shutdown the page cache subsystem. Neither of these ** functions are threadsafe. */ SQLITE_PRIVATE int sqlite3PcacheInitialize(void){ if( sqlite3GlobalConfig.pcache2.xInit==0 ){ /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the ** built-in default page cache is used instead of the application defined ** page cache. */ sqlite3PCacheSetDefault(); assert( sqlite3GlobalConfig.pcache2.xInit!=0 ); } return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); } SQLITE_PRIVATE void sqlite3PcacheShutdown(void){ if( sqlite3GlobalConfig.pcache2.xShutdown ){ /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); } } /* ** Return the size in bytes of a PCache object. */ SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); } /* ** Create a new PCache object. Storage space to hold the object ** has already been allocated and is passed in as the p pointer. ** The caller discovers how much space needs to be allocated by ** calling sqlite3PcacheSize(). ** ** szExtra is some extra space allocated for each page. The first ** 8 bytes of the extra space will be zeroed as the page is allocated, ** but remaining content will be uninitialized. Though it is opaque ** to this module, the extra space really ends up being the MemPage ** structure in the pager. */ SQLITE_PRIVATE int sqlite3PcacheOpen( int szPage, /* Size of every page */ int szExtra, /* Extra space associated with each page */ int bPurgeable, /* True if pages are on backing store */ int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ void *pStress, /* Argument to xStress */ PCache *p /* Preallocated space for the PCache */ ){ memset(p, 0, sizeof(PCache)); p->szPage = 1; p->szExtra = szExtra; assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ p->bPurgeable = bPurgeable; p->eCreate = 2; p->xStress = xStress; p->pStress = pStress; p->szCache = 100; p->szSpill = 1; pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); return sqlite3PcacheSetPageSize(p, szPage); } /* ** Change the page size for PCache object. The caller must ensure that there ** are no outstanding page references when this function is called. */ SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ assert( pCache->nRefSum==0 && pCache->pDirty==0 ); if( pCache->szPage ){ sqlite3_pcache *pNew; pNew = sqlite3GlobalConfig.pcache2.xCreate( szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), pCache->bPurgeable ); if( pNew==0 ) return SQLITE_NOMEM_BKPT; sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); if( pCache->pCache ){ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } pCache->pCache = pNew; pCache->szPage = szPage; pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); } return SQLITE_OK; } /* ** Try to obtain a page from the cache. ** ** This routine returns a pointer to an sqlite3_pcache_page object if ** such an object is already in cache, or if a new one is created. ** This routine returns a NULL pointer if the object was not in cache ** and could not be created. ** ** The createFlags should be 0 to check for existing pages and should ** be 3 (not 1, but 3) to try to create a new page. ** ** If the createFlag is 0, then NULL is always returned if the page ** is not already in the cache. If createFlag is 1, then a new page ** is created only if that can be done without spilling dirty pages ** and without exceeding the cache size limit. ** ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly ** initialize the sqlite3_pcache_page object and convert it into a ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() ** routines are split this way for performance reasons. When separated ** they can both (usually) operate without having to push values to ** the stack on entry and pop them back off on exit, which saves a ** lot of pushing and popping. */ SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ int createFlag /* If true, create page if it does not exist already */ ){ int eCreate; sqlite3_pcache_page *pRes; assert( pCache!=0 ); assert( pCache->pCache!=0 ); assert( createFlag==3 || createFlag==0 ); assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); /* eCreate defines what to do if the page does not exist. ** 0 Do not allocate a new page. (createFlag==0) ** 1 Allocate a new page if doing so is inexpensive. ** (createFlag==1 AND bPurgeable AND pDirty) ** 2 Allocate a new page even it doing so is difficult. ** (createFlag==1 AND !(bPurgeable AND pDirty) */ eCreate = createFlag & pCache->eCreate; assert( eCreate==0 || eCreate==1 || eCreate==2 ); assert( createFlag==0 || pCache->eCreate==eCreate ); assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache,pgno, createFlag?" create":"",pRes)); pcachePageTrace(pgno, pRes); return pRes; } /* ** If the sqlite3PcacheFetch() routine is unable to allocate a new ** page because no clean pages are available for reuse and the cache ** size limit has been reached, then this routine can be invoked to ** try harder to allocate a page. This routine might invoke the stress ** callback to spill dirty pages to the journal. It will then try to ** allocate the new page and will only fail to allocate a new page on ** an OOM error. ** ** This routine should be invoked only after sqlite3PcacheFetch() fails. */ SQLITE_PRIVATE int sqlite3PcacheFetchStress( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ sqlite3_pcache_page **ppPage /* Write result here */ ){ PgHdr *pPg; if( pCache->eCreate==2 ) return 0; if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ /* Find a dirty page to write-out and recycle. First try to find a ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC ** cleared), but if that is not possible settle for any other ** unreferenced dirty page. ** ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC ** flag is currently referenced, then the following may leave pSynced ** set incorrectly (pointing to other than the LRU page with NEED_SYNC ** cleared). This is Ok, as pSynced is just an optimization. */ for(pPg=pCache->pSynced; pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); pPg=pPg->pDirtyPrev ); pCache->pSynced = pPg; if( !pPg ){ for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); } if( pPg ){ int rc; #ifdef SQLITE_LOG_CACHE_SPILL sqlite3_log(SQLITE_FULL, "spill page %d making room for %d - cache used: %d/%d", pPg->pgno, pgno, sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache), numberOfCachePages(pCache)); #endif pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); rc = pCache->xStress(pCache->pStress, pPg); pcacheDump(pCache); if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ return rc; } } } *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; } /* ** This is a helper routine for sqlite3PcacheFetchFinish() ** ** In the uncommon case where the page being fetched has not been ** initialized, this routine is invoked to do the initialization. ** This routine is broken out into a separate function since it ** requires extra stack manipulation that can be avoided in the common ** case. */ static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr*)pPage->pExtra; assert( pPgHdr->pPage==0 ); memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); pPgHdr->pPage = pPage; pPgHdr->pData = pPage->pBuf; pPgHdr->pExtra = (void *)&pPgHdr[1]; memset(pPgHdr->pExtra, 0, 8); pPgHdr->pCache = pCache; pPgHdr->pgno = pgno; pPgHdr->flags = PGHDR_CLEAN; return sqlite3PcacheFetchFinish(pCache,pgno,pPage); } /* ** This routine converts the sqlite3_pcache_page object returned by ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine ** must be called after sqlite3PcacheFetch() in order to get a usable ** result. */ SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr *)pPage->pExtra; if( !pPgHdr->pPage ){ return pcacheFetchFinishWithInit(pCache, pgno, pPage); } pCache->nRefSum++; pPgHdr->nRef++; assert( sqlite3PcachePageSanity(pPgHdr) ); return pPgHdr; } /* ** Decrement the reference count on a page. If the page is clean and the ** reference count drops to 0, then it is made eligible for recycling. */ SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ assert( p->nRef>0 ); p->pCache->nRefSum--; if( (--p->nRef)==0 ){ if( p->flags&PGHDR_CLEAN ){ pcacheUnpin(p); }else{ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); assert( sqlite3PcachePageSanity(p) ); } } } /* ** Increase the reference count of a supplied page by 1. */ SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){ assert(p->nRef>0); assert( sqlite3PcachePageSanity(p) ); p->nRef++; p->pCache->nRefSum++; } /* ** Drop a page from the cache. There must be exactly one reference to the ** page. This function deletes that reference, so after it returns the ** page pointed to by p is invalid. */ SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){ assert( p->nRef==1 ); assert( sqlite3PcachePageSanity(p) ); if( p->flags&PGHDR_DIRTY ){ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); } p->pCache->nRefSum--; sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); } /* ** Make sure the page is marked as dirty. If it isn't dirty already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){ assert( p->nRef>0 ); assert( sqlite3PcachePageSanity(p) ); if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ p->flags &= ~PGHDR_DONT_WRITE; if( p->flags & PGHDR_CLEAN ){ p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); assert( sqlite3PcachePageSanity(p) ); } assert( sqlite3PcachePageSanity(p) ); } } /* ** Make sure the page is marked as clean. If it isn't clean already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){ assert( sqlite3PcachePageSanity(p) ); assert( (p->flags & PGHDR_DIRTY)!=0 ); assert( (p->flags & PGHDR_CLEAN)==0 ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); p->flags |= PGHDR_CLEAN; pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); assert( sqlite3PcachePageSanity(p) ); if( p->nRef==0 ){ pcacheUnpin(p); } } /* ** Make every page in the cache clean. */ SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){ PgHdr *p; pcacheTrace(("%p.CLEAN-ALL\n",pCache)); while( (p = pCache->pDirty)!=0 ){ sqlite3PcacheMakeClean(p); } } /* ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. */ SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache *pCache){ PgHdr *p; pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); for(p=pCache->pDirty; p; p=p->pDirtyNext){ p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); } pCache->pSynced = pCache->pDirtyTail; } /* ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. */ SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){ PgHdr *p; for(p=pCache->pDirty; p; p=p->pDirtyNext){ p->flags &= ~PGHDR_NEED_SYNC; } pCache->pSynced = pCache->pDirtyTail; } /* ** Change the page number of page p to newPgno. */ SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ PCache *pCache = p->pCache; sqlite3_pcache_page *pOther; assert( p->nRef>0 ); assert( newPgno>0 ); assert( sqlite3PcachePageSanity(p) ); pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0); if( pOther ){ PgHdr *pXPage = (PgHdr*)pOther->pExtra; assert( pXPage->nRef==0 ); pXPage->nRef++; pCache->nRefSum++; sqlite3PcacheDrop(pXPage); } sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); p->pgno = newPgno; if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); assert( sqlite3PcachePageSanity(p) ); } } /* ** Drop every cache entry whose page number is greater than "pgno". The ** caller must ensure that there are no outstanding references to any pages ** other than page 1 with a page number greater than pgno. ** ** If there is a reference to page 1 and the pgno parameter passed to this ** function is 0, then the data area associated with page 1 is zeroed, but ** the page object is not dropped. */ SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ if( pCache->pCache ){ PgHdr *p; PgHdr *pNext; pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); for(p=pCache->pDirty; p; p=pNext){ pNext = p->pDirtyNext; /* This routine never gets call with a positive pgno except right ** after sqlite3PcacheCleanAll(). So if there are dirty pages, ** it must be that pgno==0. */ assert( p->pgno>0 ); if( p->pgno>pgno ){ assert( p->flags&PGHDR_DIRTY ); sqlite3PcacheMakeClean(p); } } if( pgno==0 && pCache->nRefSum ){ sqlite3_pcache_page *pPage1; pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because ** pCache->nRefSum>0 */ memset(pPage1->pBuf, 0, pCache->szPage); pgno = 1; } } sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); } } /* ** Close a cache. */ SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){ assert( pCache->pCache!=0 ); pcacheTrace(("%p.CLOSE\n",pCache)); sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } /* ** Discard the contents of the cache. */ SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){ sqlite3PcacheTruncate(pCache, 0); } /* ** Merge two lists of pages connected by pDirty and in pgno order. ** Do not bother fixing the pDirtyPrev pointers. */ static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ PgHdr result, *pTail; pTail = &result; assert( pA!=0 && pB!=0 ); for(;;){ if( pA->pgnopgno ){ pTail->pDirty = pA; pTail = pA; pA = pA->pDirty; if( pA==0 ){ pTail->pDirty = pB; break; } }else{ pTail->pDirty = pB; pTail = pB; pB = pB->pDirty; if( pB==0 ){ pTail->pDirty = pA; break; } } } return result.pDirty; } /* ** Sort the list of pages in ascending order by pgno. Pages are ** connected by pDirty pointers. The pDirtyPrev pointers are ** corrupted by this sort. ** ** Since there cannot be more than 2^31 distinct pages in a database, ** there cannot be more than 31 buckets required by the merge sorter. ** One extra bucket is added to catch overflow in case something ** ever changes to make the previous sentence incorrect. */ #define N_SORT_BUCKET 32 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ PgHdr *a[N_SORT_BUCKET], *p; int i; memset(a, 0, sizeof(a)); while( pIn ){ p = pIn; pIn = p->pDirty; p->pDirty = 0; for(i=0; ALWAYS(ipDirty; p; p=p->pDirtyNext){ p->pDirty = p->pDirtyNext; } return pcacheSortDirtyList(pCache->pDirty); } /* ** Return the total number of references to all pages held by the cache. ** ** This is not the total number of pages referenced, but the sum of the ** reference count for all pages. */ SQLITE_PRIVATE i64 sqlite3PcacheRefCount(PCache *pCache){ return pCache->nRefSum; } /* ** Return the number of references to the page supplied as an argument. */ SQLITE_PRIVATE i64 sqlite3PcachePageRefcount(PgHdr *p){ return p->nRef; } /* ** Return the total number of pages in the cache. */ SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){ assert( pCache->pCache!=0 ); return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); } #ifdef SQLITE_TEST /* ** Get the suggested cache-size value. */ SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){ return numberOfCachePages(pCache); } #endif /* ** Set the suggested cache-size value. */ SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ assert( pCache->pCache!=0 ); pCache->szCache = mxPage; sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, numberOfCachePages(pCache)); } /* ** Set the suggested cache-spill value. Make no changes if if the ** argument is zero. Return the effective cache-spill size, which will ** be the larger of the szSpill and szCache. */ SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ int res; assert( p->pCache!=0 ); if( mxPage ){ if( mxPage<0 ){ mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); } p->szSpill = mxPage; } res = numberOfCachePages(p); if( resszSpill ) res = p->szSpill; return res; } /* ** Free up as much memory as possible from the page cache. */ SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){ assert( pCache->pCache!=0 ); sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); } /* ** Return the size of the header added by this middleware layer ** in the page-cache hierarchy. */ SQLITE_PRIVATE int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } /* ** Return the number of dirty pages currently in the cache, as a percentage ** of the configured cache size. */ SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){ PgHdr *pDirty; int nDirty = 0; int nCache = numberOfCachePages(pCache); for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; } #ifdef SQLITE_DIRECT_OVERFLOW_READ /* ** Return true if there are one or more dirty pages in the cache. Else false. */ SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache){ return (pCache->pDirty!=0); } #endif #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ PgHdr *pDirty; for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ xIter(pDirty); } } #endif /************** End of pcache.c **********************************************/ /************** Begin file pcache1.c *****************************************/ /* ** 2008 November 05 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements the default page cache implementation (the ** sqlite3_pcache interface). It also contains part of the implementation ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. ** If the default page cache implementation is overridden, then neither of ** these two features are available. ** ** A Page cache line looks like this: ** ** ------------------------------------------------------------- ** | database page content | PgHdr1 | MemPage | PgHdr | ** ------------------------------------------------------------- ** ** The database page content is up front (so that buffer overreads tend to ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage ** is the extension added by the btree.c module containing information such ** as the database page number and how that database page is used. PgHdr ** is added by the pcache.c layer and contains information used to keep track ** of which pages are "dirty". PgHdr1 is an extension added by this ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. ** PgHdr1 contains information needed to look up a page by its page number. ** The superclass sqlite3_pcache_page.pBuf points to the start of the ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. ** ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this ** size can vary according to architecture, compile-time options, and ** SQLite library version number. ** ** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER ** was defined, then the page content would be held in a separate memory ** allocation from the PgHdr1. This was intended to avoid clownshoe memory ** allocations. However, the btree layer needs a small (16-byte) overrun ** area after the page content buffer. The header serves as that overrun ** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid ** any possibility of a memory error. ** ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates ** with this module. Information is passed back and forth as PgHdr1 pointers. ** ** The pcache.c and pager.c modules deal pointers to PgHdr objects. ** The btree.c module deals with pointers to MemPage objects. ** ** SOURCE OF PAGE CACHE MEMORY: ** ** Memory for a page might come from any of three sources: ** ** (1) The general-purpose memory allocator - sqlite3Malloc() ** (2) Global page-cache memory provided using sqlite3_config() with ** SQLITE_CONFIG_PAGECACHE. ** (3) PCache-local bulk allocation. ** ** The third case is a chunk of heap memory (defaulting to 100 pages worth) ** that is allocated when the page cache is created. The size of the local ** bulk allocation can be adjusted using ** ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). ** ** If N is positive, then N pages worth of memory are allocated using a single ** sqlite3Malloc() call and that memory is used for the first N pages allocated. ** Or if N is negative, then -1024*N bytes of memory are allocated and used ** for as many pages as can be accommodated. ** ** Only one of (2) or (3) can be used. Once the memory available to (2) or ** (3) is exhausted, subsequent allocations fail over to the general-purpose ** memory allocator (1). ** ** Earlier versions of SQLite used only methods (1) and (2). But experiments ** show that method (3) with N==100 provides about a 5% performance boost for ** common workloads. */ /* #include "sqliteInt.h" */ typedef struct PCache1 PCache1; typedef struct PgHdr1 PgHdr1; typedef struct PgFreeslot PgFreeslot; typedef struct PGroup PGroup; /* ** Each cache entry is represented by an instance of the following ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated ** directly before this structure and is used to cache the page content. ** ** When reading a corrupt database file, it is possible that SQLite might ** read a few bytes (no more than 16 bytes) past the end of the page buffer. ** It will only read past the end of the page buffer, never write. This ** object is positioned immediately after the page buffer to serve as an ** overrun area, so that overreads are harmless. ** ** Variables isBulkLocal and isAnchor were once type "u8". That works, ** but causes a 2-byte gap in the structure for most architectures (since ** pointers must be either 4 or 8-byte aligned). As this structure is located ** in memory directly after the associated page data, if the database is ** corrupt, code at the b-tree layer may overread the page buffer and ** read part of this structure before the corruption is detected. This ** can cause a valgrind error if the uninitialized gap is accessed. Using u16 ** ensures there is no such gap, and therefore no bytes of uninitialized ** memory in the structure. ** ** The pLruNext and pLruPrev pointers form a double-linked circular list ** of all pages that are unpinned. The PGroup.lru element (which should be ** the only element on the list with PgHdr1.isAnchor set to 1) forms the ** beginning and the end of the list. */ struct PgHdr1 { sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ unsigned int iKey; /* Key value (page number) */ u16 isBulkLocal; /* This page from bulk local storage */ u16 isAnchor; /* This is the PGroup.lru element */ PgHdr1 *pNext; /* Next in hash table chain */ PCache1 *pCache; /* Cache that currently owns this page */ PgHdr1 *pLruNext; /* Next in circular LRU list of unpinned pages */ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ /* NB: pLruPrev is only valid if pLruNext!=0 */ }; /* ** A page is pinned if it is not on the LRU list. To be "pinned" means ** that the page is in active use and must not be deallocated. */ #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set ** of one or more PCaches that are able to recycle each other's unpinned ** pages when they are under memory pressure. A PGroup is an instance of ** the following object. ** ** This page cache implementation works in one of two modes: ** ** (1) Every PCache is the sole member of its own PGroup. There is ** one PGroup per PCache. ** ** (2) There is a single global PGroup that all PCaches are a member ** of. ** ** Mode 1 uses more memory (since PCache instances are not able to rob ** unused pages from other PCaches) but it also operates without a mutex, ** and is therefore often faster. Mode 2 requires a mutex in order to be ** threadsafe, but recycles pages more efficiently. ** ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single ** PGroup which is the pcache1.grp global variable and its mutex is ** SQLITE_MUTEX_STATIC_LRU. */ struct PGroup { sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ unsigned int nMinPage; /* Sum of nMin for purgeable caches */ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ unsigned int nPurgeable; /* Number of purgeable pages allocated */ PgHdr1 lru; /* The beginning and end of the LRU list */ }; /* Each page cache is an instance of the following object. Every ** open database file (including each in-memory database and each ** temporary or transient database) has a single page cache which ** is an instance of this object. ** ** Pointers to structures of this type are cast and returned as ** opaque sqlite3_pcache* handles. */ struct PCache1 { /* Cache configuration parameters. Page size (szPage) and the purgeable ** flag (bPurgeable) and the pnPurgeable pointer are all set when the ** cache is created and are never changed thereafter. nMax may be ** modified at any time by a call to the pcache1Cachesize() method. ** The PGroup mutex must be held when accessing nMax. */ PGroup *pGroup; /* PGroup this cache belongs to */ unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ int szPage; /* Size of database content section */ int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ int szAlloc; /* Total size of one pcache line */ int bPurgeable; /* True if cache is purgeable */ unsigned int nMin; /* Minimum number of pages reserved */ unsigned int nMax; /* Configured "cache_size" value */ unsigned int n90pct; /* nMax*9/10 */ unsigned int iMaxKey; /* Largest key seen since xTruncate() */ unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/ /* Hash table of all pages. The following variables may only be accessed ** when the accessor is holding the PGroup mutex. */ unsigned int nRecyclable; /* Number of pages in the LRU list */ unsigned int nPage; /* Total number of pages in apHash */ unsigned int nHash; /* Number of slots in apHash[] */ PgHdr1 **apHash; /* Hash table for fast lookup by key */ PgHdr1 *pFree; /* List of unused pcache-local pages */ void *pBulk; /* Bulk memory used by pcache-local */ }; /* ** Free slots in the allocator used to divide up the global page cache ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. */ struct PgFreeslot { PgFreeslot *pNext; /* Next free slot */ }; /* ** Global data used by this cache. */ static SQLITE_WSD struct PCacheGlobal { PGroup grp; /* The global PGroup for mode (2) */ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all ** fixed at sqlite3_initialize() time and do not require mutex protection. ** The nFreeSlot and pFree values do require mutex protection. */ int isInit; /* True if initialized */ int separateCache; /* Use a new PGroup for each PCache */ int nInitPage; /* Initial bulk allocation size */ int szSlot; /* Size of each free slot */ int nSlot; /* The number of pcache slots */ int nReserve; /* Try to keep nFreeSlot above this */ void *pStart, *pEnd; /* Bounds of global page cache memory */ /* Above requires no mutex. Use mutex below for variable that follow. */ sqlite3_mutex *mutex; /* Mutex for accessing the following: */ PgFreeslot *pFree; /* Free page blocks */ int nFreeSlot; /* Number of unused pcache slots */ /* The following value requires a mutex to change. We skip the mutex on ** reading because (1) most platforms read a 32-bit integer atomically and ** (2) even if an incorrect value is read, no great harm is done since this ** is really just an optimization. */ int bUnderPressure; /* True if low on PAGECACHE memory */ } pcache1_g; /* ** All code in this file should access the global structure above via the ** alias "pcache1". This ensures that the WSD emulation is used when ** compiling for systems that do not support real WSD. */ #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) /* ** Macros to enter and leave the PCache LRU mutex. */ #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 # define pcache1EnterMutex(X) assert((X)->mutex==0) # define pcache1LeaveMutex(X) assert((X)->mutex==0) # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 #else # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 #endif /******************************************************************************/ /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ /* ** This function is called during initialization if a static buffer is ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE ** verb to sqlite3_config(). Parameter pBuf points to an allocation large ** enough to contain 'n' buffers of 'sz' bytes each. ** ** This routine is called from sqlite3_initialize() and so it is guaranteed ** to be serialized already. There is no need for further mutexing. */ SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ if( pcache1.isInit ){ PgFreeslot *p; if( pBuf==0 ) sz = n = 0; if( n==0 ) sz = 0; sz = ROUNDDOWN8(sz); pcache1.szSlot = sz; pcache1.nSlot = pcache1.nFreeSlot = n; pcache1.nReserve = n>90 ? 10 : (n/10 + 1); pcache1.pStart = pBuf; pcache1.pFree = 0; pcache1.bUnderPressure = 0; while( n-- ){ p = (PgFreeslot*)pBuf; p->pNext = pcache1.pFree; pcache1.pFree = p; pBuf = (void*)&((char*)pBuf)[sz]; } pcache1.pEnd = pBuf; } } /* ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return ** true if pCache->pFree ends up containing one or more free pages. */ static int pcache1InitBulk(PCache1 *pCache){ i64 szBulk; char *zBulk; if( pcache1.nInitPage==0 ) return 0; /* Do not bother with a bulk allocation if the cache size very small */ if( pCache->nMax<3 ) return 0; sqlite3BeginBenignMalloc(); if( pcache1.nInitPage>0 ){ szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; }else{ szBulk = -1024 * (i64)pcache1.nInitPage; } if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ szBulk = pCache->szAlloc*(i64)pCache->nMax; } zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); sqlite3EndBenignMalloc(); if( zBulk ){ int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; do{ PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; pX->page.pBuf = zBulk; pX->page.pExtra = &pX[1]; pX->isBulkLocal = 1; pX->isAnchor = 0; pX->pNext = pCache->pFree; pX->pLruPrev = 0; /* Initializing this saves a valgrind error */ pCache->pFree = pX; zBulk += pCache->szAlloc; }while( --nBulk ); } return pCache->pFree!=0; } /* ** Malloc function used within this file to allocate space from the buffer ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no ** such buffer exists or there is no space left in it, this function falls ** back to sqlite3Malloc(). ** ** Multiple threads can run this routine at the same time. Global variables ** in pcache1 need to be protected via mutex. */ static void *pcache1Alloc(int nByte){ void *p = 0; assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); if( nByte<=pcache1.szSlot ){ sqlite3_mutex_enter(pcache1.mutex); p = (PgHdr1 *)pcache1.pFree; if( p ){ pcache1.pFree = pcache1.pFree->pNext; pcache1.nFreeSlot--; pcache1.bUnderPressure = pcache1.nFreeSlot=0 ); sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); } sqlite3_mutex_leave(pcache1.mutex); } if( p==0 ){ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get ** it from sqlite3Malloc instead. */ p = sqlite3Malloc(nByte); #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS if( p ){ int sz = sqlite3MallocSize(p); sqlite3_mutex_enter(pcache1.mutex); sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); sqlite3_mutex_leave(pcache1.mutex); } #endif sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); } return p; } /* ** Free an allocated buffer obtained from pcache1Alloc(). */ static void pcache1Free(void *p){ if( p==0 ) return; if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ PgFreeslot *pSlot; sqlite3_mutex_enter(pcache1.mutex); sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); pSlot = (PgFreeslot*)p; pSlot->pNext = pcache1.pFree; pcache1.pFree = pSlot; pcache1.nFreeSlot++; pcache1.bUnderPressure = pcache1.nFreeSlot=pcache1.pStart && ppGroup->mutex) ); if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ assert( pCache->pFree!=0 ); p = pCache->pFree; pCache->pFree = p->pNext; p->pNext = 0; }else{ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* The group mutex must be released before pcache1Alloc() is called. This ** is because it might call sqlite3_release_memory(), which assumes that ** this mutex is not held. */ assert( pcache1.separateCache==0 ); assert( pCache->pGroup==&pcache1.grp ); pcache1LeaveMutex(pCache->pGroup); #endif if( benignMalloc ){ sqlite3BeginBenignMalloc(); } pPg = pcache1Alloc(pCache->szAlloc); if( benignMalloc ){ sqlite3EndBenignMalloc(); } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT pcache1EnterMutex(pCache->pGroup); #endif if( pPg==0 ) return 0; p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; p->page.pBuf = pPg; p->page.pExtra = &p[1]; p->isBulkLocal = 0; p->isAnchor = 0; p->pLruPrev = 0; /* Initializing this saves a valgrind error */ } (*pCache->pnPurgeable)++; return p; } /* ** Free a page object allocated by pcache1AllocPage(). */ static void pcache1FreePage(PgHdr1 *p){ PCache1 *pCache; assert( p!=0 ); pCache = p->pCache; assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); if( p->isBulkLocal ){ p->pNext = pCache->pFree; pCache->pFree = p; }else{ pcache1Free(p->page.pBuf); } (*pCache->pnPurgeable)--; } /* ** Malloc function used by SQLite to obtain space from the buffer configured ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer ** exists, this function falls back to sqlite3Malloc(). */ SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){ assert( sz<=65536+8 ); /* These allocations are never very large */ return pcache1Alloc(sz); } /* ** Free an allocated buffer obtained from sqlite3PageMalloc(). */ SQLITE_PRIVATE void sqlite3PageFree(void *p){ pcache1Free(p); } /* ** Return true if it desirable to avoid allocating a new page cache ** entry. ** ** If memory was allocated specifically to the page cache using ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then ** it is desirable to avoid allocating a new page cache entry because ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient ** for all page cache needs and we should not need to spill the ** allocation onto the heap. ** ** Or, the heap is used for all page cache memory but the heap is ** under memory pressure, then again it is desirable to avoid ** allocating a new page cache entry in order to avoid stressing ** the heap even further. */ static int pcache1UnderMemoryPressure(PCache1 *pCache){ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ return pcache1.bUnderPressure; }else{ return sqlite3HeapNearlyFull(); } } /******************************************************************************/ /******** General Implementation Functions ************************************/ /* ** This function is used to resize the hash table used by the cache passed ** as the first argument. ** ** The PCache mutex must be held when this function is called. */ static void pcache1ResizeHash(PCache1 *p){ PgHdr1 **apNew; unsigned int nNew; unsigned int i; assert( sqlite3_mutex_held(p->pGroup->mutex) ); nNew = p->nHash*2; if( nNew<256 ){ nNew = 256; } pcache1LeaveMutex(p->pGroup); if( p->nHash ){ sqlite3BeginBenignMalloc(); } apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); if( p->nHash ){ sqlite3EndBenignMalloc(); } pcache1EnterMutex(p->pGroup); if( apNew ){ for(i=0; inHash; i++){ PgHdr1 *pPage; PgHdr1 *pNext = p->apHash[i]; while( (pPage = pNext)!=0 ){ unsigned int h = pPage->iKey % nNew; pNext = pPage->pNext; pPage->pNext = apNew[h]; apNew[h] = pPage; } } sqlite3_free(p->apHash); p->apHash = apNew; p->nHash = nNew; } } /* ** This function is used internally to remove the page pPage from the ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup ** LRU list, then this function is a no-op. ** ** The PGroup mutex must be held when this function is called. */ static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ assert( pPage!=0 ); assert( PAGE_IS_UNPINNED(pPage) ); assert( pPage->pLruNext ); assert( pPage->pLruPrev ); assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); pPage->pLruPrev->pLruNext = pPage->pLruNext; pPage->pLruNext->pLruPrev = pPage->pLruPrev; pPage->pLruNext = 0; /* pPage->pLruPrev = 0; ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ assert( pPage->isAnchor==0 ); assert( pPage->pCache->pGroup->lru.isAnchor==1 ); pPage->pCache->nRecyclable--; return pPage; } /* ** Remove the page supplied as an argument from the hash table ** (PCache1.apHash structure) that it is currently stored in. ** Also free the page if freePage is true. ** ** The PGroup mutex must be held when this function is called. */ static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ unsigned int h; PCache1 *pCache = pPage->pCache; PgHdr1 **pp; assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); h = pPage->iKey % pCache->nHash; for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); *pp = (*pp)->pNext; pCache->nPage--; if( freeFlag ) pcache1FreePage(pPage); } /* ** If there are currently more than nMaxPage pages allocated, try ** to recycle pages to reduce the number allocated to nMaxPage. */ static void pcache1EnforceMaxPage(PCache1 *pCache){ PGroup *pGroup = pCache->pGroup; PgHdr1 *p; assert( sqlite3_mutex_held(pGroup->mutex) ); while( pGroup->nPurgeable>pGroup->nMaxPage && (p=pGroup->lru.pLruPrev)->isAnchor==0 ){ assert( p->pCache->pGroup==pGroup ); assert( PAGE_IS_UNPINNED(p) ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } if( pCache->nPage==0 && pCache->pBulk ){ sqlite3_free(pCache->pBulk); pCache->pBulk = pCache->pFree = 0; } } /* ** Discard all pages from cache pCache with a page number (key value) ** greater than or equal to iLimit. Any pinned pages that meet this ** criteria are unpinned before they are discarded. ** ** The PCache mutex must be held when this function is called. */ static void pcache1TruncateUnsafe( PCache1 *pCache, /* The cache to truncate */ unsigned int iLimit /* Drop pages with this pgno or larger */ ){ TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ unsigned int h, iStop; assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); assert( pCache->iMaxKey >= iLimit ); assert( pCache->nHash > 0 ); if( pCache->iMaxKey - iLimit < pCache->nHash ){ /* If we are just shaving the last few pages off the end of the ** cache, then there is no point in scanning the entire hash table. ** Only scan those hash slots that might contain pages that need to ** be removed. */ h = iLimit % pCache->nHash; iStop = pCache->iMaxKey % pCache->nHash; TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ }else{ /* This is the general case where many pages are being removed. ** It is necessary to scan the entire hash table */ h = pCache->nHash/2; iStop = h - 1; } for(;;){ PgHdr1 **pp; PgHdr1 *pPage; assert( hnHash ); pp = &pCache->apHash[h]; while( (pPage = *pp)!=0 ){ if( pPage->iKey>=iLimit ){ pCache->nPage--; *pp = pPage->pNext; if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); pcache1FreePage(pPage); }else{ pp = &pPage->pNext; TESTONLY( if( nPage>=0 ) nPage++; ) } } if( h==iStop ) break; h = (h+1) % pCache->nHash; } assert( nPage<0 || pCache->nPage==(unsigned)nPage ); } /******************************************************************************/ /******** sqlite3_pcache Methods **********************************************/ /* ** Implementation of the sqlite3_pcache.xInit method. */ static int pcache1Init(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit==0 ); memset(&pcache1, 0, sizeof(pcache1)); /* ** The pcache1.separateCache variable is true if each PCache has its own ** private PGroup (mode-1). pcache1.separateCache is false if the single ** PGroup in pcache1.grp is used for all page caches (mode-2). ** ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT ** ** * Use a unified cache in single-threaded applications that have ** configured a start-time buffer for use as page-cache memory using ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL ** pBuf argument. ** ** * Otherwise use separate caches (mode-1) */ #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) pcache1.separateCache = 0; #elif SQLITE_THREADSAFE pcache1.separateCache = sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.bCoreMutex>0; #else pcache1.separateCache = sqlite3GlobalConfig.pPage==0; #endif #if SQLITE_THREADSAFE if( sqlite3GlobalConfig.bCoreMutex ){ pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); } #endif if( pcache1.separateCache && sqlite3GlobalConfig.nPage!=0 && sqlite3GlobalConfig.pPage==0 ){ pcache1.nInitPage = sqlite3GlobalConfig.nPage; }else{ pcache1.nInitPage = 0; } pcache1.grp.mxPinned = 10; pcache1.isInit = 1; return SQLITE_OK; } /* ** Implementation of the sqlite3_pcache.xShutdown method. ** Note that the static mutex allocated in xInit does ** not need to be freed. */ static void pcache1Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit!=0 ); memset(&pcache1, 0, sizeof(pcache1)); } /* forward declaration */ static void pcache1Destroy(sqlite3_pcache *p); /* ** Implementation of the sqlite3_pcache.xCreate method. ** ** Allocate a new cache. */ static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ PCache1 *pCache; /* The newly created page cache */ PGroup *pGroup; /* The group the new page cache will belong to */ int sz; /* Bytes of memory required to allocate the new cache */ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); assert( szExtra < 300 ); sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; pCache = (PCache1 *)sqlite3MallocZero(sz); if( pCache ){ if( pcache1.separateCache ){ pGroup = (PGroup*)&pCache[1]; pGroup->mxPinned = 10; }else{ pGroup = &pcache1.grp; } pcache1EnterMutex(pGroup); if( pGroup->lru.isAnchor==0 ){ pGroup->lru.isAnchor = 1; pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; } pCache->pGroup = pGroup; pCache->szPage = szPage; pCache->szExtra = szExtra; pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); pCache->bPurgeable = (bPurgeable ? 1 : 0); pcache1ResizeHash(pCache); if( bPurgeable ){ pCache->nMin = 10; pGroup->nMinPage += pCache->nMin; pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pCache->pnPurgeable = &pGroup->nPurgeable; }else{ pCache->pnPurgeable = &pCache->nPurgeableDummy; } pcache1LeaveMutex(pGroup); if( pCache->nHash==0 ){ pcache1Destroy((sqlite3_pcache*)pCache); pCache = 0; } } return (sqlite3_pcache *)pCache; } /* ** Implementation of the sqlite3_pcache.xCachesize method. ** ** Configure the cache_size limit for a cache. */ static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ PCache1 *pCache = (PCache1 *)p; u32 n; assert( nMax>=0 ); if( pCache->bPurgeable ){ PGroup *pGroup = pCache->pGroup; pcache1EnterMutex(pGroup); n = (u32)nMax; if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){ n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax; } pGroup->nMaxPage += (n - pCache->nMax); pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pCache->nMax = n; pCache->n90pct = pCache->nMax*9/10; pcache1EnforceMaxPage(pCache); pcache1LeaveMutex(pGroup); } } /* ** Implementation of the sqlite3_pcache.xShrink method. ** ** Free up as much memory as possible. */ static void pcache1Shrink(sqlite3_pcache *p){ PCache1 *pCache = (PCache1*)p; if( pCache->bPurgeable ){ PGroup *pGroup = pCache->pGroup; unsigned int savedMaxPage; pcache1EnterMutex(pGroup); savedMaxPage = pGroup->nMaxPage; pGroup->nMaxPage = 0; pcache1EnforceMaxPage(pCache); pGroup->nMaxPage = savedMaxPage; pcache1LeaveMutex(pGroup); } } /* ** Implementation of the sqlite3_pcache.xPagecount method. */ static int pcache1Pagecount(sqlite3_pcache *p){ int n; PCache1 *pCache = (PCache1*)p; pcache1EnterMutex(pCache->pGroup); n = pCache->nPage; pcache1LeaveMutex(pCache->pGroup); return n; } /* ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described ** in the header of the pcache1Fetch() procedure. ** ** This steps are broken out into a separate procedure because they are ** usually not needed, and by avoiding the stack initialization required ** for these steps, the main pcache1Fetch() procedure can run faster. */ static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( PCache1 *pCache, unsigned int iKey, int createFlag ){ unsigned int nPinned; PGroup *pGroup = pCache->pGroup; PgHdr1 *pPage = 0; /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ assert( pCache->nPage >= pCache->nRecyclable ); nPinned = pCache->nPage - pCache->nRecyclable; assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); assert( pCache->n90pct == pCache->nMax*9/10 ); if( createFlag==1 && ( nPinned>=pGroup->mxPinned || nPinned>=pCache->n90pct || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclablenPage>=pCache->nHash ) pcache1ResizeHash(pCache); assert( pCache->nHash>0 && pCache->apHash ); /* Step 4. Try to recycle a page. */ if( pCache->bPurgeable && !pGroup->lru.pLruPrev->isAnchor && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) ){ PCache1 *pOther; pPage = pGroup->lru.pLruPrev; assert( PAGE_IS_UNPINNED(pPage) ); pcache1RemoveFromHash(pPage, 0); pcache1PinPage(pPage); pOther = pPage->pCache; if( pOther->szAlloc != pCache->szAlloc ){ pcache1FreePage(pPage); pPage = 0; }else{ pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); } } /* Step 5. If a usable page buffer has still not been found, ** attempt to allocate a new one. */ if( !pPage ){ pPage = pcache1AllocPage(pCache, createFlag==1); } if( pPage ){ unsigned int h = iKey % pCache->nHash; pCache->nPage++; pPage->iKey = iKey; pPage->pNext = pCache->apHash[h]; pPage->pCache = pCache; pPage->pLruNext = 0; /* pPage->pLruPrev = 0; ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ *(void **)pPage->page.pExtra = 0; pCache->apHash[h] = pPage; if( iKey>pCache->iMaxKey ){ pCache->iMaxKey = iKey; } } return pPage; } /* ** Implementation of the sqlite3_pcache.xFetch method. ** ** Fetch a page by key value. ** ** Whether or not a new page may be allocated by this function depends on ** the value of the createFlag argument. 0 means do not allocate a new ** page. 1 means allocate a new page if space is easily available. 2 ** means to try really hard to allocate a new page. ** ** For a non-purgeable cache (a cache used as the storage for an in-memory ** database) there is really no difference between createFlag 1 and 2. So ** the calling function (pcache.c) will never have a createFlag of 1 on ** a non-purgeable cache. ** ** There are three different approaches to obtaining space for a page, ** depending on the value of parameter createFlag (which may be 0, 1 or 2). ** ** 1. Regardless of the value of createFlag, the cache is searched for a ** copy of the requested page. If one is found, it is returned. ** ** 2. If createFlag==0 and the page is not already in the cache, NULL is ** returned. ** ** 3. If createFlag is 1, and the page is not already in the cache, then ** return NULL (do not allocate a new page) if any of the following ** conditions are true: ** ** (a) the number of pages pinned by the cache is greater than ** PCache1.nMax, or ** ** (b) the number of pages pinned by the cache is greater than ** the sum of nMax for all purgeable caches, less the sum of ** nMin for all other purgeable caches, or ** ** 4. If none of the first three conditions apply and the cache is marked ** as purgeable, and if one of the following is true: ** ** (a) The number of pages allocated for the cache is already ** PCache1.nMax, or ** ** (b) The number of pages allocated for all purgeable caches is ** already equal to or greater than the sum of nMax for all ** purgeable caches, ** ** (c) The system is under memory pressure and wants to avoid ** unnecessary pages cache entry allocations ** ** then attempt to recycle a page from the LRU list. If it is the right ** size, return the recycled buffer. Otherwise, free the buffer and ** proceed to step 5. ** ** 5. Otherwise, allocate and return a new page buffer. ** ** There are two versions of this routine. pcache1FetchWithMutex() is ** the general case. pcache1FetchNoMutex() is a faster implementation for ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper ** invokes the appropriate routine. */ static PgHdr1 *pcache1FetchNoMutex( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage = 0; /* Step 1: Search the hash table for an existing entry. */ pPage = pCache->apHash[iKey % pCache->nHash]; while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } /* Step 2: If the page was found in the hash table, then return it. ** If the page was not in the hash table and createFlag is 0, abort. ** Otherwise (page not in hash and createFlag!=0) continue with ** subsequent steps to try to create the page. */ if( pPage ){ if( PAGE_IS_UNPINNED(pPage) ){ return pcache1PinPage(pPage); }else{ return pPage; } }else if( createFlag ){ /* Steps 3, 4, and 5 implemented by this subroutine */ return pcache1FetchStage2(pCache, iKey, createFlag); }else{ return 0; } } #if PCACHE1_MIGHT_USE_GROUP_MUTEX static PgHdr1 *pcache1FetchWithMutex( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage; pcache1EnterMutex(pCache->pGroup); pPage = pcache1FetchNoMutex(p, iKey, createFlag); assert( pPage==0 || pCache->iMaxKey>=iKey ); pcache1LeaveMutex(pCache->pGroup); return pPage; } #endif static sqlite3_pcache_page *pcache1Fetch( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) PCache1 *pCache = (PCache1 *)p; #endif assert( offsetof(PgHdr1,page)==0 ); assert( pCache->bPurgeable || createFlag!=1 ); assert( pCache->bPurgeable || pCache->nMin==0 ); assert( pCache->bPurgeable==0 || pCache->nMin==10 ); assert( pCache->nMin==0 || pCache->bPurgeable ); assert( pCache->nHash>0 ); #if PCACHE1_MIGHT_USE_GROUP_MUTEX if( pCache->pGroup->mutex ){ return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); }else #endif { return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); } } /* ** Implementation of the sqlite3_pcache.xUnpin method. ** ** Mark a page as unpinned (eligible for asynchronous recycling). */ static void pcache1Unpin( sqlite3_pcache *p, sqlite3_pcache_page *pPg, int reuseUnlikely ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage = (PgHdr1 *)pPg; PGroup *pGroup = pCache->pGroup; assert( pPage->pCache==pCache ); pcache1EnterMutex(pGroup); /* It is an error to call this function if the page is already ** part of the PGroup LRU list. */ assert( pPage->pLruNext==0 ); assert( PAGE_IS_PINNED(pPage) ); if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ pcache1RemoveFromHash(pPage, 1); }else{ /* Add the page to the PGroup LRU list. */ PgHdr1 **ppFirst = &pGroup->lru.pLruNext; pPage->pLruPrev = &pGroup->lru; (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; *ppFirst = pPage; pCache->nRecyclable++; } pcache1LeaveMutex(pCache->pGroup); } /* ** Implementation of the sqlite3_pcache.xRekey method. */ static void pcache1Rekey( sqlite3_pcache *p, sqlite3_pcache_page *pPg, unsigned int iOld, unsigned int iNew ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage = (PgHdr1 *)pPg; PgHdr1 **pp; unsigned int hOld, hNew; assert( pPage->iKey==iOld ); assert( pPage->pCache==pCache ); assert( iOld!=iNew ); /* The page number really is changing */ pcache1EnterMutex(pCache->pGroup); assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */ hOld = iOld%pCache->nHash; pp = &pCache->apHash[hOld]; while( (*pp)!=pPage ){ pp = &(*pp)->pNext; } *pp = pPage->pNext; assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */ hNew = iNew%pCache->nHash; pPage->iKey = iNew; pPage->pNext = pCache->apHash[hNew]; pCache->apHash[hNew] = pPage; if( iNew>pCache->iMaxKey ){ pCache->iMaxKey = iNew; } pcache1LeaveMutex(pCache->pGroup); } /* ** Implementation of the sqlite3_pcache.xTruncate method. ** ** Discard all unpinned pages in the cache with a page number equal to ** or greater than parameter iLimit. Any pinned pages with a page number ** equal to or greater than iLimit are implicitly unpinned. */ static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ PCache1 *pCache = (PCache1 *)p; pcache1EnterMutex(pCache->pGroup); if( iLimit<=pCache->iMaxKey ){ pcache1TruncateUnsafe(pCache, iLimit); pCache->iMaxKey = iLimit-1; } pcache1LeaveMutex(pCache->pGroup); } /* ** Implementation of the sqlite3_pcache.xDestroy method. ** ** Destroy a cache allocated using pcache1Create(). */ static void pcache1Destroy(sqlite3_pcache *p){ PCache1 *pCache = (PCache1 *)p; PGroup *pGroup = pCache->pGroup; assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); pcache1EnterMutex(pGroup); if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); assert( pGroup->nMaxPage >= pCache->nMax ); pGroup->nMaxPage -= pCache->nMax; assert( pGroup->nMinPage >= pCache->nMin ); pGroup->nMinPage -= pCache->nMin; pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; pcache1EnforceMaxPage(pCache); pcache1LeaveMutex(pGroup); sqlite3_free(pCache->pBulk); sqlite3_free(pCache->apHash); sqlite3_free(pCache); } /* ** This function is called during initialization (sqlite3_initialize()) to ** install the default pluggable cache module, assuming the user has not ** already provided an alternative. */ SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){ static const sqlite3_pcache_methods2 defaultMethods = { 1, /* iVersion */ 0, /* pArg */ pcache1Init, /* xInit */ pcache1Shutdown, /* xShutdown */ pcache1Create, /* xCreate */ pcache1Cachesize, /* xCachesize */ pcache1Pagecount, /* xPagecount */ pcache1Fetch, /* xFetch */ pcache1Unpin, /* xUnpin */ pcache1Rekey, /* xRekey */ pcache1Truncate, /* xTruncate */ pcache1Destroy, /* xDestroy */ pcache1Shrink /* xShrink */ }; sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); } /* ** Return the size of the header on each page of this PCACHE implementation. */ SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } /* ** Return the global mutex used by this PCACHE implementation. The ** sqlite3_status() routine needs access to this mutex. */ SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void){ return pcache1.mutex; } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* ** This function is called to free superfluous dynamically allocated memory ** held by the pager system. Memory in use by any SQLite pager allocated ** by the current thread may be sqlite3_free()ed. ** ** nReq is the number of bytes of memory required. Once this much has ** been released, the function returns. The return value is the total number ** of bytes of memory released. */ SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){ int nFree = 0; assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); assert( sqlite3_mutex_notheld(pcache1.mutex) ); if( sqlite3GlobalConfig.pPage==0 ){ PgHdr1 *p; pcache1EnterMutex(&pcache1.grp); while( (nReq<0 || nFreeisAnchor==0 ){ nFree += pcache1MemSize(p->page.pBuf); assert( PAGE_IS_UNPINNED(p) ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } pcache1LeaveMutex(&pcache1.grp); } return nFree; } #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ #ifdef SQLITE_TEST /* ** This function is used by test procedures to inspect the internal state ** of the global cache. */ SQLITE_PRIVATE void sqlite3PcacheStats( int *pnCurrent, /* OUT: Total number of pages cached */ int *pnMax, /* OUT: Global maximum cache size */ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ int *pnRecyclable /* OUT: Total number of pages available for recycling */ ){ PgHdr1 *p; int nRecyclable = 0; for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ assert( PAGE_IS_UNPINNED(p) ); nRecyclable++; } *pnCurrent = pcache1.grp.nPurgeable; *pnMax = (int)pcache1.grp.nMaxPage; *pnMin = (int)pcache1.grp.nMinPage; *pnRecyclable = nRecyclable; } #endif /************** End of pcache1.c *********************************************/ /************** Begin file rowset.c ******************************************/ /* ** 2008 December 3 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This module implements an object we call a "RowSet". ** ** The RowSet object is a collection of rowids. Rowids ** are inserted into the RowSet in an arbitrary order. Inserts ** can be intermixed with tests to see if a given rowid has been ** previously inserted into the RowSet. ** ** After all inserts are finished, it is possible to extract the ** elements of the RowSet in sorted order. Once this extraction ** process has started, no new elements may be inserted. ** ** Hence, the primitive operations for a RowSet are: ** ** CREATE ** INSERT ** TEST ** SMALLEST ** DESTROY ** ** The CREATE and DESTROY primitives are the constructor and destructor, ** obviously. The INSERT primitive adds a new element to the RowSet. ** TEST checks to see if an element is already in the RowSet. SMALLEST ** extracts the least value from the RowSet. ** ** The INSERT primitive might allocate additional memory. Memory is ** allocated in chunks so most INSERTs do no allocation. There is an ** upper bound on the size of allocated memory. No memory is freed ** until DESTROY. ** ** The TEST primitive includes a "batch" number. The TEST primitive ** will only see elements that were inserted before the last change ** in the batch number. In other words, if an INSERT occurs between ** two TESTs where the TESTs have the same batch number, then the ** value added by the INSERT will not be visible to the second TEST. ** The initial batch number is zero, so if the very first TEST contains ** a non-zero batch number, it will see all prior INSERTs. ** ** No INSERTs may occurs after a SMALLEST. An assertion will fail if ** that is attempted. ** ** The cost of an INSERT is roughly constant. (Sometimes new memory ** has to be allocated on an INSERT.) The cost of a TEST with a new ** batch number is O(NlogN) where N is the number of elements in the RowSet. ** The cost of a TEST using the same batch number is O(logN). The cost ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST ** primitives are constant time. The cost of DESTROY is O(N). ** ** TEST and SMALLEST may not be used by the same RowSet. This used to ** be possible, but the feature was not used, so it was removed in order ** to simplify the code. */ /* #include "sqliteInt.h" */ /* ** Target size for allocation chunks. */ #define ROWSET_ALLOCATION_SIZE 1024 /* ** The number of rowset entries per allocation chunk. */ #define ROWSET_ENTRY_PER_CHUNK \ ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) /* ** Each entry in a RowSet is an instance of the following object. ** ** This same object is reused to store a linked list of trees of RowSetEntry ** objects. In that alternative use, pRight points to the next entry ** in the list, pLeft points to the tree, and v is unused. The ** RowSet.pForest value points to the head of this forest list. */ struct RowSetEntry { i64 v; /* ROWID value for this entry */ struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ }; /* ** RowSetEntry objects are allocated in large chunks (instances of the ** following structure) to reduce memory allocation overhead. The ** chunks are kept on a linked list so that they can be deallocated ** when the RowSet is destroyed. */ struct RowSetChunk { struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ }; /* ** A RowSet in an instance of the following structure. ** ** A typedef of this structure if found in sqliteInt.h. */ struct RowSet { struct RowSetChunk *pChunk; /* List of all chunk allocations */ sqlite3 *db; /* The database connection */ struct RowSetEntry *pEntry; /* List of entries using pRight */ struct RowSetEntry *pLast; /* Last entry on the pEntry list */ struct RowSetEntry *pFresh; /* Source of new entry objects */ struct RowSetEntry *pForest; /* List of binary trees of entries */ u16 nFresh; /* Number of objects on pFresh */ u16 rsFlags; /* Various flags */ int iBatch; /* Current insert batch */ }; /* ** Allowed values for RowSet.rsFlags */ #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ /* ** Allocate a RowSet object. Return NULL if a memory allocation ** error occurs. */ SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db){ RowSet *p = sqlite3DbMallocRawNN(db, sizeof(*p)); if( p ){ int N = sqlite3DbMallocSize(db, p); p->pChunk = 0; p->db = db; p->pEntry = 0; p->pLast = 0; p->pForest = 0; p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); p->rsFlags = ROWSET_SORTED; p->iBatch = 0; } return p; } /* ** Deallocate all chunks from a RowSet. This frees all memory that ** the RowSet has allocated over its lifetime. This routine is ** the destructor for the RowSet. */ SQLITE_PRIVATE void sqlite3RowSetClear(void *pArg){ RowSet *p = (RowSet*)pArg; struct RowSetChunk *pChunk, *pNextChunk; for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ pNextChunk = pChunk->pNextChunk; sqlite3DbFree(p->db, pChunk); } p->pChunk = 0; p->nFresh = 0; p->pEntry = 0; p->pLast = 0; p->pForest = 0; p->rsFlags = ROWSET_SORTED; } /* ** Deallocate all chunks from a RowSet. This frees all memory that ** the RowSet has allocated over its lifetime. This routine is ** the destructor for the RowSet. */ SQLITE_PRIVATE void sqlite3RowSetDelete(void *pArg){ sqlite3RowSetClear(pArg); sqlite3DbFree(((RowSet*)pArg)->db, pArg); } /* ** Allocate a new RowSetEntry object that is associated with the ** given RowSet. Return a pointer to the new and completely uninitialized ** object. ** ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this ** routine returns NULL. */ static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ assert( p!=0 ); if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/ /* We could allocate a fresh RowSetEntry each time one is needed, but it ** is more efficient to pull a preallocated entry from the pool */ struct RowSetChunk *pNew; pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew)); if( pNew==0 ){ return 0; } pNew->pNextChunk = p->pChunk; p->pChunk = pNew; p->pFresh = pNew->aEntry; p->nFresh = ROWSET_ENTRY_PER_CHUNK; } p->nFresh--; return p->pFresh++; } /* ** Insert a new value into a RowSet. ** ** The mallocFailed flag of the database connection is set if a ** memory allocation fails. */ SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){ struct RowSetEntry *pEntry; /* The new entry */ struct RowSetEntry *pLast; /* The last prior entry */ /* This routine is never called after sqlite3RowSetNext() */ assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); pEntry = rowSetEntryAlloc(p); if( pEntry==0 ) return; pEntry->v = rowid; pEntry->pRight = 0; pLast = p->pLast; if( pLast ){ if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/ /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags ** where possible */ p->rsFlags &= ~ROWSET_SORTED; } pLast->pRight = pEntry; }else{ p->pEntry = pEntry; } p->pLast = pEntry; } /* ** Merge two lists of RowSetEntry objects. Remove duplicates. ** ** The input lists are connected via pRight pointers and are ** assumed to each already be in sorted order. */ static struct RowSetEntry *rowSetEntryMerge( struct RowSetEntry *pA, /* First sorted list to be merged */ struct RowSetEntry *pB /* Second sorted list to be merged */ ){ struct RowSetEntry head; struct RowSetEntry *pTail; pTail = &head; assert( pA!=0 && pB!=0 ); for(;;){ assert( pA->pRight==0 || pA->v<=pA->pRight->v ); assert( pB->pRight==0 || pB->v<=pB->pRight->v ); if( pA->v<=pB->v ){ if( pA->vv ) pTail = pTail->pRight = pA; pA = pA->pRight; if( pA==0 ){ pTail->pRight = pB; break; } }else{ pTail = pTail->pRight = pB; pB = pB->pRight; if( pB==0 ){ pTail->pRight = pA; break; } } } return head.pRight; } /* ** Sort all elements on the list of RowSetEntry objects into order of ** increasing v. */ static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){ unsigned int i; struct RowSetEntry *pNext, *aBucket[40]; memset(aBucket, 0, sizeof(aBucket)); while( pIn ){ pNext = pIn->pRight; pIn->pRight = 0; for(i=0; aBucket[i]; i++){ pIn = rowSetEntryMerge(aBucket[i], pIn); aBucket[i] = 0; } aBucket[i] = pIn; pIn = pNext; } pIn = aBucket[0]; for(i=1; ipLeft ){ struct RowSetEntry *p; rowSetTreeToList(pIn->pLeft, ppFirst, &p); p->pRight = pIn; }else{ *ppFirst = pIn; } if( pIn->pRight ){ rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); }else{ *ppLast = pIn; } assert( (*ppLast)->pRight==0 ); } /* ** Convert a sorted list of elements (connected by pRight) into a binary ** tree with depth of iDepth. A depth of 1 means the tree contains a single ** node taken from the head of *ppList. A depth of 2 means a tree with ** three nodes. And so forth. ** ** Use as many entries from the input list as required and update the ** *ppList to point to the unused elements of the list. If the input ** list contains too few elements, then construct an incomplete tree ** and leave *ppList set to NULL. ** ** Return a pointer to the root of the constructed binary tree. */ static struct RowSetEntry *rowSetNDeepTree( struct RowSetEntry **ppList, int iDepth ){ struct RowSetEntry *p; /* Root of the new tree */ struct RowSetEntry *pLeft; /* Left subtree */ if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/ /* Prevent unnecessary deep recursion when we run out of entries */ return 0; } if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/ /* This branch causes a *balanced* tree to be generated. A valid tree ** is still generated without this branch, but the tree is wildly ** unbalanced and inefficient. */ pLeft = rowSetNDeepTree(ppList, iDepth-1); p = *ppList; if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/ /* It is safe to always return here, but the resulting tree ** would be unbalanced */ return pLeft; } p->pLeft = pLeft; *ppList = p->pRight; p->pRight = rowSetNDeepTree(ppList, iDepth-1); }else{ p = *ppList; *ppList = p->pRight; p->pLeft = p->pRight = 0; } return p; } /* ** Convert a sorted list of elements into a binary tree. Make the tree ** as deep as it needs to be in order to contain the entire list. */ static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ int iDepth; /* Depth of the tree so far */ struct RowSetEntry *p; /* Current tree root */ struct RowSetEntry *pLeft; /* Left subtree */ assert( pList!=0 ); p = pList; pList = p->pRight; p->pLeft = p->pRight = 0; for(iDepth=1; pList; iDepth++){ pLeft = p; p = pList; pList = p->pRight; p->pLeft = pLeft; p->pRight = rowSetNDeepTree(&pList, iDepth); } return p; } /* ** Extract the smallest element from the RowSet. ** Write the element into *pRowid. Return 1 on success. Return ** 0 if the RowSet is already empty. ** ** After this routine has been called, the sqlite3RowSetInsert() ** routine may not be called again. ** ** This routine may not be called after sqlite3RowSetTest() has ** been used. Older versions of RowSet allowed that, but as the ** capability was not used by the code generator, it was removed ** for code economy. */ SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ assert( p!=0 ); assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */ /* Merge the forest into a single sorted list on first call */ if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/ if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ p->pEntry = rowSetEntrySort(p->pEntry); } p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT; } /* Return the next entry on the list */ if( p->pEntry ){ *pRowid = p->pEntry->v; p->pEntry = p->pEntry->pRight; if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/ /* Free memory immediately, rather than waiting on sqlite3_finalize() */ sqlite3RowSetClear(p); } return 1; }else{ return 0; } } /* ** Check to see if element iRowid was inserted into the rowset as ** part of any insert batch prior to iBatch. Return 1 or 0. ** ** If this is the first test of a new batch and if there exist entries ** on pRowSet->pEntry, then sort those entries into the forest at ** pRowSet->pForest so that they can be tested. */ SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ struct RowSetEntry *p, *pTree; /* This routine is never called after sqlite3RowSetNext() */ assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); /* Sort entries into the forest on the first test of a new batch. ** To save unnecessary work, only do this when the batch number changes. */ if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/ p = pRowSet->pEntry; if( p ){ struct RowSetEntry **ppPrevTree = &pRowSet->pForest; if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/ /* Only sort the current set of entries if they need it */ p = rowSetEntrySort(p); } for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ ppPrevTree = &pTree->pRight; if( pTree->pLeft==0 ){ pTree->pLeft = rowSetListToTree(p); break; }else{ struct RowSetEntry *pAux, *pTail; rowSetTreeToList(pTree->pLeft, &pAux, &pTail); pTree->pLeft = 0; p = rowSetEntryMerge(pAux, p); } } if( pTree==0 ){ *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet); if( pTree ){ pTree->v = 0; pTree->pRight = 0; pTree->pLeft = rowSetListToTree(p); } } pRowSet->pEntry = 0; pRowSet->pLast = 0; pRowSet->rsFlags |= ROWSET_SORTED; } pRowSet->iBatch = iBatch; } /* Test to see if the iRowid value appears anywhere in the forest. ** Return 1 if it does and 0 if not. */ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ p = pTree->pLeft; while( p ){ if( p->vpRight; }else if( p->v>iRowid ){ p = p->pLeft; }else{ return 1; } } } return 0; } /************** End of rowset.c **********************************************/ /************** Begin file pager.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the implementation of the page cache subsystem or "pager". ** ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. */ #ifndef SQLITE_OMIT_DISKIO /* #include "sqliteInt.h" */ /************** Include wal.h in the middle of pager.c ***********************/ /************** Begin file wal.h *********************************************/ /* ** 2010 February 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface to the write-ahead logging ** system. Refer to the comments below and the header comment attached to ** the implementation of each function in log.c for further details. */ #ifndef SQLITE_WAL_H #define SQLITE_WAL_H /* #include "sqliteInt.h" */ /* Macros for extracting appropriate sync flags for either transaction ** commits (WAL_SYNC_FLAGS(X)) or for checkpoint ops (CKPT_SYNC_FLAGS(X)): */ #define WAL_SYNC_FLAGS(X) ((X)&0x03) #define CKPT_SYNC_FLAGS(X) (((X)>>2)&0x03) #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(x,y,z) 0 # define sqlite3WalLimit(x,y) # define sqlite3WalClose(v,w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalDbsize(y) 0 # define sqlite3WalBeginWriteTransaction(y) 0 # define sqlite3WalEndWriteTransaction(x) 0 # define sqlite3WalUndo(x,y,z) 0 # define sqlite3WalSavepoint(y,z) # define sqlite3WalSavepointUndo(y,z) 0 # define sqlite3WalFrames(u,v,w,x,y,z) 0 # define sqlite3WalCheckpoint(q,r,s,t,u,v,w,x,y,z) 0 # define sqlite3WalCallback(z) 0 # define sqlite3WalExclusiveMode(y,z) 0 # define sqlite3WalHeapMemory(z) 0 # define sqlite3WalFramesize(z) 0 # define sqlite3WalFindFrame(x,y,z) 0 # define sqlite3WalFile(x) 0 # undef SQLITE_USE_SEH #else #define WAL_SAVEPOINT_NDATA 4 /* Connection to a write-ahead log (WAL) file. ** There is one object of this type for each pager. */ typedef struct Wal Wal; /* Open and close a connection to a write-ahead log. */ SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**); SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, sqlite3*, int sync_flags, int, u8 *); /* Set the limiting size of a WAL file. */ SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64); /* Used by readers to open (lock) and close (unlock) a snapshot. A ** snapshot is like a read-transaction. It is the state of the database ** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and ** preserves the current state even if the other threads or processes ** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the ** transaction and releases the lock. */ SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *); SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal); /* Read a page from the write-ahead log, if it is present. */ SQLITE_PRIVATE int sqlite3WalFindFrame(Wal *, Pgno, u32 *); SQLITE_PRIVATE int sqlite3WalReadFrame(Wal *, u32, int, u8 *); /* If the WAL is not empty, return the size of the database. */ SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal); /* Obtain or release the WRITER lock. */ SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal); SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal); /* Undo any frames written (but not committed) to the log */ SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx); /* Return an integer that records the current (uncommitted) write ** position in the WAL */ SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData); /* Move the write position of the WAL back to iFrame. Called in ** response to a ROLLBACK TO command. */ SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData); /* Write a frame or frames to the log. */ SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int); /* Copy pages from the log to the database file */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Write-ahead log connection */ sqlite3 *db, /* Check this handle's interrupt flag */ int eMode, /* One of PASSIVE, FULL and RESTART */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of buffer nBuf */ u8 *zBuf, /* Temporary buffer to use */ int *pnLog, /* OUT: Number of frames in WAL */ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ ); /* Return the value to pass to a sqlite3_wal_hook callback, the ** number of frames in the WAL at the point of the last commit since ** sqlite3WalCallback() was called. If no commits have occurred since ** the last call, then return 0. */ SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal); /* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released) ** by the pager layer on the database file. */ SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op); /* Return true if the argument is non-NULL and the WAL module is using ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the ** WAL module is using shared-memory, return false. */ SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal); #ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal); SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal); #endif #ifdef SQLITE_ENABLE_ZIPVFS /* If the WAL file is not empty, return the number of bytes of content ** stored in each frame (i.e. the db page-size when the WAL was created). */ SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal); #endif /* Return the sqlite3_file object for the WAL file */ SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock); SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db); #endif #ifdef SQLITE_USE_SEH SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal*); #endif #endif /* ifndef SQLITE_OMIT_WAL */ #endif /* SQLITE_WAL_H */ /************** End of wal.h *************************************************/ /************** Continuing where we left off in pager.c **********************/ /******************* NOTES ON THE DESIGN OF THE PAGER ************************ ** ** This comment block describes invariants that hold when using a rollback ** journal. These invariants do not apply for journal_mode=WAL, ** journal_mode=MEMORY, or journal_mode=OFF. ** ** Within this comment block, a page is deemed to have been synced ** automatically as soon as it is written when PRAGMA synchronous=OFF. ** Otherwise, the page is not synced until the xSync method of the VFS ** is called successfully on the file containing the page. ** ** Definition: A page of the database file is said to be "overwriteable" if ** one or more of the following are true about the page: ** ** (a) The original content of the page as it was at the beginning of ** the transaction has been written into the rollback journal and ** synced. ** ** (b) The page was a freelist leaf page at the start of the transaction. ** ** (c) The page number is greater than the largest page that existed in ** the database file at the start of the transaction. ** ** (1) A page of the database file is never overwritten unless one of the ** following are true: ** ** (a) The page and all other pages on the same sector are overwriteable. ** ** (b) The atomic page write optimization is enabled, and the entire ** transaction other than the update of the transaction sequence ** number consists of a single page change. ** ** (2) The content of a page written into the rollback journal exactly matches ** both the content in the database when the rollback journal was written ** and the content in the database at the beginning of the current ** transaction. ** ** (3) Writes to the database file are an integer multiple of the page size ** in length and are aligned on a page boundary. ** ** (4) Reads from the database file are either aligned on a page boundary and ** an integer multiple of the page size in length or are taken from the ** first 100 bytes of the database file. ** ** (5) All writes to the database file are synced prior to the rollback journal ** being deleted, truncated, or zeroed. ** ** (6) If a super-journal file is used, then all writes to the database file ** are synced prior to the super-journal being deleted. ** ** Definition: Two databases (or the same database at two points it time) ** are said to be "logically equivalent" if they give the same answer to ** all queries. Note in particular the content of freelist leaf ** pages can be changed arbitrarily without affecting the logical equivalence ** of the database. ** ** (7) At any time, if any subset, including the empty set and the total set, ** of the unsynced changes to a rollback journal are removed and the ** journal is rolled back, the resulting database file will be logically ** equivalent to the database file at the beginning of the transaction. ** ** (8) When a transaction is rolled back, the xTruncate method of the VFS ** is called to restore the database file to the same size it was at ** the beginning of the transaction. (In some VFSes, the xTruncate ** method is a no-op, but that does not change the fact the SQLite will ** invoke it.) ** ** (9) Whenever the database file is modified, at least one bit in the range ** of bytes from 24 through 39 inclusive will be changed prior to releasing ** the EXCLUSIVE lock, thus signaling other connections on the same ** database to flush their caches. ** ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less ** than one billion transactions. ** ** (11) A database file is well-formed at the beginning and at the conclusion ** of every transaction. ** ** (12) An EXCLUSIVE lock is held on the database file when writing to ** the database file. ** ** (13) A SHARED lock is held on the database file while reading any ** content out of the database file. ** ******************************************************************************/ /* ** Macros for troubleshooting. Normally turned off */ #if 0 int sqlite3PagerTrace=1; /* True to enable tracing */ #define sqlite3DebugPrintf printf #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } #else #define PAGERTRACE(X) #endif /* ** The following two macros are used within the PAGERTRACE() macros above ** to print out file-descriptors. ** ** PAGERID() takes a pointer to a Pager struct as its argument. The ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file ** struct as its argument. */ #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) /* ** The Pager.eState variable stores the current 'state' of a pager. A ** pager may be in any one of the seven states shown in the following ** state diagram. ** ** OPEN <------+------+ ** | | | ** V | | ** +---------> READER-------+ | ** | | | ** | V | ** |<-------WRITER_LOCKED------> ERROR ** | | ^ ** | V | ** |<------WRITER_CACHEMOD-------->| ** | | | ** | V | ** |<-------WRITER_DBMOD---------->| ** | | | ** | V | ** +<------WRITER_FINISHED-------->+ ** ** ** List of state transitions and the C [function] that performs each: ** ** OPEN -> READER [sqlite3PagerSharedLock] ** READER -> OPEN [pager_unlock] ** ** READER -> WRITER_LOCKED [sqlite3PagerBegin] ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] ** WRITER_*** -> READER [pager_end_transaction] ** ** WRITER_*** -> ERROR [pager_error] ** ERROR -> OPEN [pager_unlock] ** ** ** OPEN: ** ** The pager starts up in this state. Nothing is guaranteed in this ** state - the file may or may not be locked and the database size is ** unknown. The database may not be read or written. ** ** * No read or write transaction is active. ** * Any lock, or no lock at all, may be held on the database file. ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. ** ** READER: ** ** In this state all the requirements for reading the database in ** rollback (non-WAL) mode are met. Unless the pager is (or recently ** was) in exclusive-locking mode, a user-level read transaction is ** open. The database size is known in this state. ** ** A connection running with locking_mode=normal enters this state when ** it opens a read-transaction on the database and returns to state ** OPEN after the read-transaction is completed. However a connection ** running in locking_mode=exclusive (including temp databases) remains in ** this state even after the read-transaction is closed. The only way ** a locking_mode=exclusive connection can transition from READER to OPEN ** is via the ERROR state (see below). ** ** * A read transaction may be active (but a write-transaction cannot). ** * A SHARED or greater lock is held on the database file. ** * The dbSize variable may be trusted (even if a user-level read ** transaction is not active). The dbOrigSize and dbFileSize variables ** may not be trusted at this point. ** * If the database is a WAL database, then the WAL connection is open. ** * Even if a read-transaction is not open, it is guaranteed that ** there is no hot-journal in the file-system. ** ** WRITER_LOCKED: ** ** The pager moves to this state from READER when a write-transaction ** is first opened on the database. In WRITER_LOCKED state, all locks ** required to start a write-transaction are held, but no actual ** modifications to the cache or database have taken place. ** ** In rollback mode, a RESERVED or (if the transaction was opened with ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when ** moving to this state, but the journal file is not written to or opened ** to in this state. If the transaction is committed or rolled back while ** in WRITER_LOCKED state, all that is required is to unlock the database ** file. ** ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. ** If the connection is running with locking_mode=exclusive, an attempt ** is made to obtain an EXCLUSIVE lock on the database file. ** ** * A write transaction is active. ** * If the connection is open in rollback-mode, a RESERVED or greater ** lock is held on the database file. ** * If the connection is open in WAL-mode, a WAL write transaction ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully ** called). ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. ** * The contents of the pager cache have not been modified. ** * The journal file may or may not be open. ** * Nothing (not even the first header) has been written to the journal. ** ** WRITER_CACHEMOD: ** ** A pager moves from WRITER_LOCKED state to this state when a page is ** first modified by the upper layer. In rollback mode the journal file ** is opened (if it is not already open) and a header written to the ** start of it. The database file on disk has not been modified. ** ** * A write transaction is active. ** * A RESERVED or greater lock is held on the database file. ** * The journal file is open and the first header has been written ** to it, but the header has not been synced to disk. ** * The contents of the page cache have been modified. ** ** WRITER_DBMOD: ** ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state ** when it modifies the contents of the database file. WAL connections ** never enter this state (since they do not modify the database file, ** just the log file). ** ** * A write transaction is active. ** * An EXCLUSIVE or greater lock is held on the database file. ** * The journal file is open and the first header has been written ** and synced to disk. ** * The contents of the page cache have been modified (and possibly ** written to disk). ** ** WRITER_FINISHED: ** ** It is not possible for a WAL connection to enter this state. ** ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD ** state after the entire transaction has been successfully written into the ** database file. In this state the transaction may be committed simply ** by finalizing the journal file. Once in WRITER_FINISHED state, it is ** not possible to modify the database further. At this point, the upper ** layer must either commit or rollback the transaction. ** ** * A write transaction is active. ** * An EXCLUSIVE or greater lock is held on the database file. ** * All writing and syncing of journal and database data has finished. ** If no error occurred, all that remains is to finalize the journal to ** commit the transaction. If an error did occur, the caller will need ** to rollback the transaction. ** ** ERROR: ** ** The ERROR state is entered when an IO or disk-full error (including ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it ** difficult to be sure that the in-memory pager state (cache contents, ** db size etc.) are consistent with the contents of the file-system. ** ** Temporary pager files may enter the ERROR state, but in-memory pagers ** cannot. ** ** For example, if an IO error occurs while performing a rollback, ** the contents of the page-cache may be left in an inconsistent state. ** At this point it would be dangerous to change back to READER state ** (as usually happens after a rollback). Any subsequent readers might ** report database corruption (due to the inconsistent cache), and if ** they upgrade to writers, they may inadvertently corrupt the database ** file. To avoid this hazard, the pager switches into the ERROR state ** instead of READER following such an error. ** ** Once it has entered the ERROR state, any attempt to use the pager ** to read or write data returns an error. Eventually, once all ** outstanding transactions have been abandoned, the pager is able to ** transition back to OPEN state, discarding the contents of the ** page-cache and any other in-memory state at the same time. Everything ** is reloaded from disk (and, if necessary, hot-journal rollback performed) ** when a read-transaction is next opened on the pager (transitioning ** the pager into READER state). At that point the system has recovered ** from the error. ** ** Specifically, the pager jumps into the ERROR state if: ** ** 1. An error occurs while attempting a rollback. This happens in ** function sqlite3PagerRollback(). ** ** 2. An error occurs while attempting to finalize a journal file ** following a commit in function sqlite3PagerCommitPhaseTwo(). ** ** 3. An error occurs while attempting to write to the journal or ** database file in function pagerStress() in order to free up ** memory. ** ** In other cases, the error is returned to the b-tree layer. The b-tree ** layer then attempts a rollback operation. If the error condition ** persists, the pager enters the ERROR state via condition (1) above. ** ** Condition (3) is necessary because it can be triggered by a read-only ** statement executed within a transaction. In this case, if the error ** code were simply returned to the user, the b-tree layer would not ** automatically attempt a rollback, as it assumes that an error in a ** read-only statement cannot leave the pager in an internally inconsistent ** state. ** ** * The Pager.errCode variable is set to something other than SQLITE_OK. ** * There are one or more outstanding references to pages (after the ** last reference is dropped the pager should move back to OPEN state). ** * The pager is not an in-memory pager. ** ** ** Notes: ** ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the ** connection is open in WAL mode. A WAL connection is always in one ** of the first four states. ** ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN ** state. There are two exceptions: immediately after exclusive-mode has ** been turned on (and before any read or write transactions are ** executed), and when the pager is leaving the "error state". ** ** * See also: assert_pager_state(). */ #define PAGER_OPEN 0 #define PAGER_READER 1 #define PAGER_WRITER_LOCKED 2 #define PAGER_WRITER_CACHEMOD 3 #define PAGER_WRITER_DBMOD 4 #define PAGER_WRITER_FINISHED 5 #define PAGER_ERROR 6 /* ** The Pager.eLock variable is almost always set to one of the ** following locking-states, according to the lock currently held on ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. ** This variable is kept up to date as locks are taken and released by ** the pagerLockDb() and pagerUnlockDb() wrappers. ** ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not ** the operation was successful. In these circumstances pagerLockDb() and ** pagerUnlockDb() take a conservative approach - eLock is always updated ** when unlocking the file, and only updated when locking the file if the ** VFS call is successful. This way, the Pager.eLock variable may be set ** to a less exclusive (lower) value than the lock that is actually held ** at the system level, but it is never set to a more exclusive value. ** ** This is usually safe. If an xUnlock fails or appears to fail, there may ** be a few redundant xLock() calls or a lock may be held for longer than ** required, but nothing really goes wrong. ** ** The exception is when the database file is unlocked as the pager moves ** from ERROR to OPEN state. At this point there may be a hot-journal file ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED ** transition, by the same pager or any other). If the call to xUnlock() ** fails at this point and the pager is left holding an EXCLUSIVE lock, this ** can confuse the call to xCheckReservedLock() call made later as part ** of hot-journal detection. ** ** xCheckReservedLock() is defined as returning true "if there is a RESERVED ** lock held by this process or any others". So xCheckReservedLock may ** return true because the caller itself is holding an EXCLUSIVE lock (but ** doesn't know it because of a previous error in xUnlock). If this happens ** a hot-journal may be mistaken for a journal being created by an active ** transaction in another process, causing SQLite to read from the database ** without rolling it back. ** ** To work around this, if a call to xUnlock() fails when unlocking the ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It ** is only changed back to a real locking state after a successful call ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE ** lock on the database file before attempting to roll it back. See function ** PagerSharedLock() for more detail. ** ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in ** PAGER_OPEN state. */ #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) /* ** A macro used for invoking the codec if there is one */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC # define CODEC1(P,D,N,X,E) \ if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } # define CODEC2(P,D,N,X,E,O) \ if( P->xCodec==0 ){ O=(char*)D; }else \ if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } #else # define CODEC1(P,D,N,X,E) /* NO-OP */ # define CODEC2(P,D,N,X,E,O) O=(char*)D #endif /* END SQLCIPHER */ /* ** The maximum allowed sector size. 64KiB. If the xSectorsize() method ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. ** This could conceivably cause corruption following a power failure on ** such a system. This is currently an undocumented limit. */ #define MAX_SECTOR_SIZE 0x10000 /* ** An instance of the following structure is allocated for each active ** savepoint and statement transaction in the system. All such structures ** are stored in the Pager.aSavepoint[] array, which is allocated and ** resized using sqlite3Realloc(). ** ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is ** set to 0. If a journal-header is written into the main journal while ** the savepoint is active, then iHdrOffset is set to the byte offset ** immediately following the last journal record written into the main ** journal before the journal-header. This is required during savepoint ** rollback (see pagerPlaybackSavepoint()). */ typedef struct PagerSavepoint PagerSavepoint; struct PagerSavepoint { i64 iOffset; /* Starting offset in main journal */ i64 iHdrOffset; /* See above */ Bitvec *pInSavepoint; /* Set of pages in this savepoint */ Pgno nOrig; /* Original number of pages in file */ Pgno iSubRec; /* Index of first record in sub-journal */ int bTruncateOnRelease; /* If stmt journal may be truncated on RELEASE */ #ifndef SQLITE_OMIT_WAL u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** Bits of the Pager.doNotSpill flag. See further description below. */ #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ /* ** An open page cache is an instance of struct Pager. A description of ** some of the more important member variables follows: ** ** eState ** ** The current 'state' of the pager object. See the comment and state ** diagram above for a description of the pager state. ** ** eLock ** ** For a real on-disk database, the current lock held on the database file - ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. ** ** For a temporary or in-memory database (neither of which require any ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such ** databases always have Pager.exclusiveMode==1, this tricks the pager ** logic into thinking that it already has all the locks it will ever ** need (and no reason to release them). ** ** In some (obscure) circumstances, this variable may also be set to ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for ** details. ** ** changeCountDone ** ** This boolean variable is used to make sure that the change-counter ** (the 4-byte header field at byte offset 24 of the database file) is ** not updated more often than necessary. ** ** It is set to true when the change-counter field is updated, which ** can only happen if an exclusive lock is held on the database file. ** It is cleared (set to false) whenever an exclusive lock is ** relinquished on the database file. Each time a transaction is committed, ** The changeCountDone flag is inspected. If it is true, the work of ** updating the change-counter is omitted for the current transaction. ** ** This mechanism means that when running in exclusive mode, a connection ** need only update the change-counter once, for the first transaction ** committed. ** ** setSuper ** ** When PagerCommitPhaseOne() is called to commit a transaction, it may ** (or may not) specify a super-journal name to be written into the ** journal file before it is synced to disk. ** ** Whether or not a journal file contains a super-journal pointer affects ** the way in which the journal file is finalized after the transaction is ** committed or rolled back when running in "journal_mode=PERSIST" mode. ** If a journal file does not contain a super-journal pointer, it is ** finalized by overwriting the first journal header with zeroes. If ** it does contain a super-journal pointer the journal file is finalized ** by truncating it to zero bytes, just as if the connection were ** running in "journal_mode=truncate" mode. ** ** Journal files that contain super-journal pointers cannot be finalized ** simply by overwriting the first journal-header with zeroes, as the ** super-journal pointer could interfere with hot-journal rollback of any ** subsequently interrupted transaction that reuses the journal file. ** ** The flag is cleared as soon as the journal file is finalized (either ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the ** journal file from being successfully finalized, the setSuper flag ** is cleared anyway (and the pager will move to ERROR state). ** ** doNotSpill ** ** This variables control the behavior of cache-spills (calls made by ** the pcache module to the pagerStress() routine to write cached data ** to the file-system in order to free up memory). ** ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, ** writing to the database from pagerStress() is disabled altogether. ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF ** case is a user preference. ** ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from ** pagerStress() is permitted, but syncing the journal file is not. ** This flag is set by sqlite3PagerWrite() when the file-system sector-size ** is larger than the database page-size in order to prevent a journal sync ** from happening in between the journalling of two pages on the same sector. ** ** subjInMemory ** ** This is a boolean variable. If true, then any required sub-journal ** is opened as an in-memory journal file. If false, then in-memory ** sub-journals are only used for in-memory pager files. ** ** This variable is updated by the upper layer each time a new ** write-transaction is opened. ** ** dbSize, dbOrigSize, dbFileSize ** ** Variable dbSize is set to the number of pages in the database file. ** It is valid in PAGER_READER and higher states (all states except for ** OPEN and ERROR). ** ** dbSize is set based on the size of the database file, which may be ** larger than the size of the database (the value stored at offset ** 28 of the database header by the btree). If the size of the file ** is not an integer multiple of the page-size, the value stored in ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). ** Except, any file that is greater than 0 bytes in size is considered ** to have at least one page. (i.e. a 1KB file with 2K page-size leads ** to dbSize==1). ** ** During a write-transaction, if pages with page-numbers greater than ** dbSize are modified in the cache, dbSize is updated accordingly. ** Similarly, if the database is truncated using PagerTruncateImage(), ** dbSize is updated. ** ** Variables dbOrigSize and dbFileSize are valid in states ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize ** variable at the start of the transaction. It is used during rollback, ** and to determine whether or not pages need to be journalled before ** being modified. ** ** Throughout a write-transaction, dbFileSize contains the size of ** the file on disk in pages. It is set to a copy of dbSize when the ** write-transaction is first opened, and updated when VFS calls are made ** to write or truncate the database file on disk. ** ** The only reason the dbFileSize variable is required is to suppress ** unnecessary calls to xTruncate() after committing a transaction. If, ** when a transaction is committed, the dbFileSize variable indicates ** that the database file is larger than the database image (Pager.dbSize), ** pager_truncate() is called. The pager_truncate() call uses xFilesize() ** to measure the database file on disk, and then truncates it if required. ** dbFileSize is not used when rolling back a transaction. In this case ** pager_truncate() is called unconditionally (which means there may be ** a call to xFilesize() that is not strictly required). In either case, ** pager_truncate() may cause the file to become smaller or larger. ** ** dbHintSize ** ** The dbHintSize variable is used to limit the number of calls made to ** the VFS xFileControl(FCNTL_SIZE_HINT) method. ** ** dbHintSize is set to a copy of the dbSize variable when a ** write-transaction is opened (at the same time as dbFileSize and ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, ** dbHintSize is increased to the number of pages that correspond to the ** size-hint passed to the method call. See pager_write_pagelist() for ** details. ** ** errCode ** ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX ** sub-codes. ** ** syncFlags, walSyncFlags ** ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode ** and contains the flags used to sync the checkpoint operations in the ** lower two bits, and sync flags used for transaction commits in the WAL ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced ** meaning that the 0x04 and 0x08 bits are both zero. */ struct Pager { sqlite3_vfs *pVfs; /* OS functions to use for IO */ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ u8 useJournal; /* Use a rollback journal on this file */ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ u8 extraSync; /* sync directory after journal delete */ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ u8 walSyncFlags; /* See description above */ u8 tempFile; /* zFilename is a temporary or immutable file */ u8 noLock; /* Do not lock (except in WAL mode) */ u8 readOnly; /* True for a read-only database */ u8 memDb; /* True to inhibit all file I/O */ u8 memVfs; /* VFS-implemented memory database */ /************************************************************************** ** The following block contains those class members that change during ** routine operation. Class members not in this block are either fixed ** when the pager is first created or else only change when there is a ** significant mode change (such as changing the page_size, locking_mode, ** or the journal_mode). From another view, these class members describe ** the "state" of the pager, while other class members describe the ** "configuration" of the pager. */ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setSuper; /* Super-jrnl name is written into jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 subjInMemory; /* True to use in-memory sub-journals */ u8 bUseFetch; /* True to use xFetch() */ u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ Pgno dbSize; /* Number of pages in the database */ Pgno dbOrigSize; /* dbSize before the current transaction */ Pgno dbFileSize; /* Number of pages in the database file */ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ int errCode; /* One of several kinds of errors */ int nRec; /* Pages journalled since last j-header written */ u32 cksumInit; /* Quasi-random value added to every checksum */ u32 nSubRec; /* Number of records written to sub-journal */ Bitvec *pInJournal; /* One bit for each page in the database file */ sqlite3_file *fd; /* File descriptor for database */ sqlite3_file *jfd; /* File descriptor for main journal */ sqlite3_file *sjfd; /* File descriptor for sub-journal */ i64 journalOff; /* Current write offset in the journal file */ i64 journalHdr; /* Byte offset to previous journal header */ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ PagerSavepoint *aSavepoint; /* Array of active savepoints */ int nSavepoint; /* Number of elements in aSavepoint[] */ u32 iDataVersion; /* Changes whenever database content changes */ char dbFileVers[16]; /* Changes whenever database file changes */ int nMmapOut; /* Number of mmap pages currently outstanding */ sqlite3_int64 szMmap; /* Desired maximum mmap size */ PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ /* ** End of the routinely-changing class members ***************************************************************************/ u16 nExtra; /* Add this many bytes to each in-memory page */ i16 nReserve; /* Number of unused bytes at end of each page */ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ u32 sectorSize; /* Assumed sector size during rollback */ Pgno mxPgno; /* Maximum allowed size of the database */ Pgno lckPgno; /* Page number for the locking page */ i64 pageSize; /* Number of bytes in a page */ i64 journalSizeLimit; /* Size limit for persistent journal files */ char *zFilename; /* Name of the database file */ char *zJournal; /* Name of the journal file */ int (*xBusyHandler)(void*); /* Function to call when busy */ void *pBusyHandlerArg; /* Context argument for xBusyHandler */ u32 aStat[4]; /* Total cache hits, misses, writes, spills */ #ifdef SQLITE_TEST int nRead; /* Database pages read */ #endif void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ void (*xCodecFree)(void*); /* Destructor for the codec */ void *pCodec; /* First argument to xCodec... methods */ #endif /* END SQLCIPHER */ char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ PCache *pPCache; /* Pointer to page cache object */ #ifndef SQLITE_OMIT_WAL Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ char *zWal; /* File name for write-ahead log */ #endif }; /* ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS ** or CACHE_WRITE to sqlite3_db_status(). */ #define PAGER_STAT_HIT 0 #define PAGER_STAT_MISS 1 #define PAGER_STAT_WRITE 2 #define PAGER_STAT_SPILL 3 /* ** The following global variables hold counters used for ** testing purposes only. These variables do not exist in ** a non-testing build. These variables are not thread-safe. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ # define PAGER_INCR(v) v++ #else # define PAGER_INCR(v) #endif /* ** Journal files begin with the following magic string. The data ** was obtained from /dev/random. It is used only as a sanity check. ** ** Since version 2.8.0, the journal format contains additional sanity ** checking information. If the power fails while the journal is being ** written, semi-random garbage data might appear in the journal ** file after power is restored. If an attempt is then made ** to roll the journal back, the database could be corrupted. The additional ** sanity checking data is an attempt to discover the garbage in the ** journal and ignore it. ** ** The sanity checking information for the new journal format consists ** of a 32-bit checksum on each page of data. The checksum covers both ** the page number and the pPager->pageSize bytes of data for the page. ** This cksum is initialized to a 32-bit random value that appears in the ** journal file right after the header. The random initializer is important, ** because garbage data that appears at the end of a journal is likely ** data that was once in other files that have now been deleted. If the ** garbage data came from an obsolete journal file, the checksums might ** be correct. But by initializing the checksum to random value which ** is different for every journal, we minimize that risk. */ static const unsigned char aJournalMagic[] = { 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, }; /* ** The size of the of each page record in the journal is given by ** the following macro. */ #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) /* ** The journal header size for this pager. This is usually the same ** size as a single disk sector. See also setSectorSize(). */ #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) /* ** The macro MEMDB is true if we are dealing with an in-memory database. ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, ** the value of MEMDB will be a constant and the compiler will optimize ** out code that would never execute. */ #ifdef SQLITE_OMIT_MEMORYDB # define MEMDB 0 #else # define MEMDB pPager->memDb #endif /* ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch ** interfaces to access the database using memory-mapped I/O. */ #if SQLITE_MAX_MMAP_SIZE>0 # define USEFETCH(x) ((x)->bUseFetch) #else # define USEFETCH(x) 0 #endif /* ** The argument to this macro is a file descriptor (type sqlite3_file*). ** Return 0 if it is not open, or non-zero (but not 1) if it is. ** ** This is so that expressions can be written as: ** ** if( isOpen(pPager->jfd) ){ ... ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ #define isOpen(pFd) ((pFd)->pMethods!=0) #ifdef SQLITE_DIRECT_OVERFLOW_READ /* ** Return true if page pgno can be read directly from the database file ** by the b-tree layer. This is the case if: ** ** * the database file is open, ** * there are no dirty pages in the cache, and ** * the desired page is not currently in the wal file. */ SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ if( pPager->fd->pMethods==0 ) return 0; if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC if( pPager->xCodec!=0 ) return 0; #endif /* END SQLCIPHER */ #ifndef SQLITE_OMIT_WAL if( pPager->pWal ){ u32 iRead = 0; (void)sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); return iRead==0; } #endif return 1; } #endif #ifndef SQLITE_OMIT_WAL # define pagerUseWal(x) ((x)->pWal!=0) #else # define pagerUseWal(x) 0 # define pagerRollbackWal(x) 0 # define pagerWalFrames(v,w,x,y) 0 # define pagerOpenWalIfPresent(z) SQLITE_OK # define pagerBeginReadTransaction(z) SQLITE_OK #endif #ifndef NDEBUG /* ** Usage: ** ** assert( assert_pager_state(pPager) ); ** ** This function runs many asserts to try to find inconsistencies in ** the internal state of the Pager object. */ static int assert_pager_state(Pager *p){ Pager *pPager = p; /* State must be valid. */ assert( p->eState==PAGER_OPEN || p->eState==PAGER_READER || p->eState==PAGER_WRITER_LOCKED || p->eState==PAGER_WRITER_CACHEMOD || p->eState==PAGER_WRITER_DBMOD || p->eState==PAGER_WRITER_FINISHED || p->eState==PAGER_ERROR ); /* Regardless of the current state, a temp-file connection always behaves ** as if it has an exclusive lock on the database file. It never updates ** the change-counter field, so the changeCountDone flag is always set. */ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); assert( p->tempFile==0 || pPager->changeCountDone ); /* If the useJournal flag is clear, the journal-mode must be "OFF". ** And if the journal-mode is "OFF", the journal file must not be open. */ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); /* Check that MEMDB implies noSync. And an in-memory journal. Since ** this means an in-memory pager performs no IO at all, it cannot encounter ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing ** a journal file. (although the in-memory journal implementation may ** return SQLITE_IOERR_NOMEM while the journal file is being written). It ** is therefore not possible for an in-memory pager to enter the ERROR ** state. */ if( MEMDB ){ assert( !isOpen(p->fd) ); assert( p->noSync ); assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_MEMORY ); assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); assert( pagerUseWal(p)==0 ); } /* If changeCountDone is set, a RESERVED lock or greater must be held ** on the file. */ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); assert( p->eLock!=PENDING_LOCK ); switch( p->eState ){ case PAGER_OPEN: assert( !MEMDB ); assert( pPager->errCode==SQLITE_OK ); assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); break; case PAGER_READER: assert( pPager->errCode==SQLITE_OK ); assert( p->eLock!=UNKNOWN_LOCK ); assert( p->eLock>=SHARED_LOCK ); break; case PAGER_WRITER_LOCKED: assert( p->eLock!=UNKNOWN_LOCK ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) ){ assert( p->eLock>=RESERVED_LOCK ); } assert( pPager->dbSize==pPager->dbOrigSize ); assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); assert( pPager->setSuper==0 ); break; case PAGER_WRITER_CACHEMOD: assert( p->eLock!=UNKNOWN_LOCK ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) ){ /* It is possible that if journal_mode=wal here that neither the ** journal file nor the WAL file are open. This happens during ** a rollback transaction that switches from journal_mode=off ** to journal_mode=wal. */ assert( p->eLock>=RESERVED_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL ); } assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); break; case PAGER_WRITER_DBMOD: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( p->eLock>=EXCLUSIVE_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); assert( pPager->dbOrigSize<=pPager->dbHintSize ); break; case PAGER_WRITER_FINISHED: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); break; case PAGER_ERROR: /* There must be at least one outstanding reference to the pager if ** in ERROR state. Otherwise the pager should have already dropped ** back to OPEN state. */ assert( pPager->errCode!=SQLITE_OK ); assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); break; } return 1; } #endif /* ifndef NDEBUG */ #ifdef SQLITE_DEBUG /* ** Return a pointer to a human readable string in a static buffer ** containing the state of the Pager object passed as an argument. This ** is intended to be used within debuggers. For example, as an alternative ** to "print *pPager" in gdb: ** ** (gdb) printf "%s", print_pager_state(pPager) ** ** This routine has external linkage in order to suppress compiler warnings ** about an unused function. It is enclosed within SQLITE_DEBUG and so does ** not appear in normal builds. */ char *print_pager_state(Pager *p){ static char zRet[1024]; sqlite3_snprintf(1024, zRet, "Filename: %s\n" "State: %s errCode=%d\n" "Lock: %s\n" "Locking mode: locking_mode=%s\n" "Journal mode: journal_mode=%s\n" "Backing store: tempFile=%d memDb=%d useJournal=%d\n" "Journal: journalOff=%lld journalHdr=%lld\n" "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" , p->zFilename , p->eState==PAGER_OPEN ? "OPEN" : p->eState==PAGER_READER ? "READER" : p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : p->eState==PAGER_ERROR ? "ERROR" : "?error?" , (int)p->errCode , p->eLock==NO_LOCK ? "NO_LOCK" : p->eLock==RESERVED_LOCK ? "RESERVED" : p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : p->eLock==SHARED_LOCK ? "SHARED" : p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" , p->exclusiveMode ? "exclusive" : "normal" , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" , (int)p->tempFile, (int)p->memDb, (int)p->useJournal , p->journalOff, p->journalHdr , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize ); return zRet; } #endif /* Forward references to the various page getters */ static int getPageNormal(Pager*,Pgno,DbPage**,int); static int getPageError(Pager*,Pgno,DbPage**,int); #if SQLITE_MAX_MMAP_SIZE>0 static int getPageMMap(Pager*,Pgno,DbPage**,int); #endif /* ** Set the Pager.xGet method for the appropriate routine used to fetch ** content from the pager. */ static void setGetterMethod(Pager *pPager){ if( pPager->errCode ){ pPager->xGet = getPageError; #if SQLITE_MAX_MMAP_SIZE>0 }else if( USEFETCH(pPager) /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC && pPager->xCodec==0 #endif /* END SQLCIPHER */ ){ pPager->xGet = getPageMMap; #endif /* SQLITE_MAX_MMAP_SIZE>0 */ }else{ pPager->xGet = getPageNormal; } } /* ** Return true if it is necessary to write page *pPg into the sub-journal. ** A page needs to be written into the sub-journal if there exists one ** or more open savepoints for which: ** ** * The page-number is less than or equal to PagerSavepoint.nOrig, and ** * The bit corresponding to the page-number is not set in ** PagerSavepoint.pInSavepoint. */ static int subjRequiresPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; PagerSavepoint *p; Pgno pgno = pPg->pgno; int i; for(i=0; inSavepoint; i++){ p = &pPager->aSavepoint[i]; if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ for(i=i+1; inSavepoint; i++){ pPager->aSavepoint[i].bTruncateOnRelease = 0; } return 1; } } return 0; } #ifdef SQLITE_DEBUG /* ** Return true if the page is already in the journal file. */ static int pageInJournal(Pager *pPager, PgHdr *pPg){ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); } #endif /* ** Read a 32-bit integer from the given file descriptor. Store the integer ** that is read in *pRes. Return SQLITE_OK if everything worked, or an ** error code is something goes wrong. ** ** All values are stored on disk as big-endian. */ static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ unsigned char ac[4]; int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); if( rc==SQLITE_OK ){ *pRes = sqlite3Get4byte(ac); } return rc; } /* ** Write a 32-bit integer into a string buffer in big-endian byte order. */ #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) /* ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK ** on success or an error code is something goes wrong. */ static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ char ac[4]; put32bits(ac, val); return sqlite3OsWrite(fd, ac, 4, offset); } /* ** Unlock the database file to level eLock, which must be either NO_LOCK ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. ** ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is ** called, do not modify it. See the comment above the #define of ** UNKNOWN_LOCK for an explanation of this. */ static int pagerUnlockDb(Pager *pPager, int eLock){ int rc = SQLITE_OK; assert( !pPager->exclusiveMode || pPager->eLock==eLock ); assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); if( isOpen(pPager->fd) ){ assert( pPager->eLock>=eLock ); rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); if( pPager->eLock!=UNKNOWN_LOCK ){ pPager->eLock = (u8)eLock; } IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) } pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */ return rc; } /* ** Lock the database file to level eLock, which must be either SHARED_LOCK, ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the ** Pager.eLock variable to the new locking state. ** ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. ** See the comment above the #define of UNKNOWN_LOCK for an explanation ** of this. */ static int pagerLockDb(Pager *pPager, int eLock){ int rc = SQLITE_OK; assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); if( pPager->eLockeLock==UNKNOWN_LOCK ){ rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ pPager->eLock = (u8)eLock; IOTRACE(("LOCK %p %d\n", pPager, eLock)) } } return rc; } /* ** This function determines whether or not the atomic-write or ** atomic-batch-write optimizations can be used with this pager. The ** atomic-write optimization can be used if: ** ** (a) the value returned by OsDeviceCharacteristics() indicates that ** a database page may be written atomically, and ** (b) the value returned by OsSectorSize() is less than or equal ** to the page size. ** ** If it can be used, then the value returned is the size of the journal ** file when it contains rollback data for exactly one page. ** ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is ** returned in this case. ** ** If neither optimization can be used, 0 is returned. */ static int jrnlBufferSize(Pager *pPager){ assert( !MEMDB ); #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) int dc; /* Device characteristics */ assert( isOpen(pPager->fd) ); dc = sqlite3OsDeviceCharacteristics(pPager->fd); #else UNUSED_PARAMETER(pPager); #endif #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ return -1; } #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE { int nSector = pPager->sectorSize; int szPage = pPager->pageSize; assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ return 0; } } return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); #endif return 0; } /* ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking ** on the cache using a hash function. This is used for testing ** and debugging only. */ #ifdef SQLITE_CHECK_PAGES /* ** Return a 32-bit hash of the page data for pPage. */ static u32 pager_datahash(int nByte, unsigned char *pData){ u32 hash = 0; int i; for(i=0; ipPager->pageSize, (unsigned char *)pPage->pData); } static void pager_set_pagehash(PgHdr *pPage){ pPage->pageHash = pager_pagehash(pPage); } /* ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES ** is defined, and NDEBUG is not defined, an assert() statement checks ** that the page is either dirty or still matches the calculated page-hash. */ #define CHECK_PAGE(x) checkPage(x) static void checkPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( pPager->eState!=PAGER_ERROR ); assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); } #else #define pager_datahash(X,Y) 0 #define pager_pagehash(X) 0 #define pager_set_pagehash(X) #define CHECK_PAGE(x) #endif /* SQLITE_CHECK_PAGES */ /* ** When this is called the journal file for pager pPager must be open. ** This function attempts to read a super-journal file name from the ** end of the file and, if successful, copies it into memory supplied ** by the caller. See comments above writeSuperJournal() for the format ** used to store a super-journal file name at the end of a journal file. ** ** zSuper must point to a buffer of at least nSuper bytes allocated by ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is ** enough space to write the super-journal name). If the super-journal ** name in the journal is longer than nSuper bytes (including a ** nul-terminator), then this is handled as if no super-journal name ** were present in the journal. ** ** If a super-journal file name is present at the end of the journal ** file, then it is copied into the buffer pointed to by zSuper. A ** nul-terminator byte is appended to the buffer following the ** super-journal file name. ** ** If it is determined that no super-journal file name is present ** zSuper[0] is set to 0 and SQLITE_OK returned. ** ** If an error occurs while reading from the journal file, an SQLite ** error code is returned. */ static int readSuperJournal(sqlite3_file *pJrnl, char *zSuper, u32 nSuper){ int rc; /* Return code */ u32 len; /* Length in bytes of super-journal name */ i64 szJ; /* Total size in bytes of journal file pJrnl */ u32 cksum; /* MJ checksum value read from journal */ u32 u; /* Unsigned loop counter */ unsigned char aMagic[8]; /* A buffer to hold the magic header */ zSuper[0] = '\0'; if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) || szJ<16 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) || len>=nSuper || len>szJ-16 || len==0 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) || memcmp(aMagic, aJournalMagic, 8) || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zSuper, len, szJ-16-len)) ){ return rc; } /* See if the checksum matches the super-journal name */ for(u=0; ujournalOff, assuming a sector ** size of pPager->sectorSize bytes. ** ** i.e for a sector size of 512: ** ** Pager.journalOff Return value ** --------------------------------------- ** 0 0 ** 512 512 ** 100 512 ** 2000 2048 ** */ static i64 journalHdrOffset(Pager *pPager){ i64 offset = 0; i64 c = pPager->journalOff; if( c ){ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); } assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); assert( offset>=c ); assert( (offset-c)jfd) ); assert( !sqlite3JournalIsInMemory(pPager->jfd) ); if( pPager->journalOff ){ const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ IOTRACE(("JZEROHDR %p\n", pPager)) if( doTruncate || iLimit==0 ){ rc = sqlite3OsTruncate(pPager->jfd, 0); }else{ static const char zeroHdr[28] = {0}; rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); } if( rc==SQLITE_OK && !pPager->noSync ){ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); } /* At this point the transaction is committed but the write lock ** is still held on the file. If there is a size limit configured for ** the persistent journal and the journal file currently consumes more ** space than that limit allows for, truncate it now. There is no need ** to sync the file following this operation. */ if( rc==SQLITE_OK && iLimit>0 ){ i64 sz; rc = sqlite3OsFileSize(pPager->jfd, &sz); if( rc==SQLITE_OK && sz>iLimit ){ rc = sqlite3OsTruncate(pPager->jfd, iLimit); } } } return rc; } /* ** The journal file must be open when this routine is called. A journal ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the ** current location. ** ** The format for the journal header is as follows: ** - 8 bytes: Magic identifying journal format. ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. ** - 4 bytes: Random number used for page hash. ** - 4 bytes: Initial database page count. ** - 4 bytes: Sector size used by the process that wrote this journal. ** - 4 bytes: Database page size. ** ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. */ static int writeJournalHdr(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ u32 nWrite; /* Bytes of header sector written */ int ii; /* Loop counter */ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ if( nHeader>JOURNAL_HDR_SZ(pPager) ){ nHeader = JOURNAL_HDR_SZ(pPager); } /* If there are active savepoints and any of them were created ** since the most recent journal header was written, update the ** PagerSavepoint.iHdrOffset fields now. */ for(ii=0; iinSavepoint; ii++){ if( pPager->aSavepoint[ii].iHdrOffset==0 ){ pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; } } pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); /* ** Write the nRec Field - the number of page records that follow this ** journal header. Normally, zero is written to this value at this time. ** After the records are added to the journal (and the journal synced, ** if in full-sync mode), the zero is overwritten with the true number ** of records (see syncJournal()). ** ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When ** reading the journal this value tells SQLite to assume that the ** rest of the journal file contains valid page records. This assumption ** is dangerous, as if a failure occurred whilst writing to the journal ** file it may contain some garbage data. There are two scenarios ** where this risk can be ignored: ** ** * When the pager is in no-sync mode. Corruption can follow a ** power failure in this case anyway. ** ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees ** that garbage data is never appended to the journal file. */ assert( isOpen(pPager->fd) || pPager->noSync ); if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) ){ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); }else{ memset(zHeader, 0, sizeof(aJournalMagic)+4); } /* The random check-hash initializer */ if( pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); } #ifdef SQLITE_DEBUG else{ /* The Pager.cksumInit variable is usually randomized above to protect ** against there being existing records in the journal file. This is ** dangerous, as following a crash they may be mistaken for records ** written by the current transaction and rolled back into the database ** file, causing corruption. The following assert statements verify ** that this is not required in "journal_mode=memory" mode, as in that ** case the journal file is always 0 bytes in size at this point. ** It is advantageous to avoid the sqlite3_randomness() call if possible ** as it takes the global PRNG mutex. */ i64 sz = 0; sqlite3OsFileSize(pPager->jfd, &sz); assert( sz==0 ); assert( pPager->journalOff==journalHdrOffset(pPager) ); assert( sqlite3JournalIsInMemory(pPager->jfd) ); } #endif put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); /* The initial database size */ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); /* The assumed sector size for this process */ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); /* The page size */ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); /* Initializing the tail of the buffer is not necessary. Everything ** works find if the following memset() is omitted. But initializing ** the memory prevents valgrind from complaining, so we are willing to ** take the performance hit. */ memset(&zHeader[sizeof(aJournalMagic)+20], 0, nHeader-(sizeof(aJournalMagic)+20)); /* In theory, it is only necessary to write the 28 bytes that the ** journal header consumes to the journal file here. Then increment the ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next ** record is written to the following sector (leaving a gap in the file ** that will be implicitly filled in by the OS). ** ** However it has been discovered that on some systems this pattern can ** be significantly slower than contiguously writing data to the file, ** even if that means explicitly writing data to the block of ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what ** is done. ** ** The loop is required here in case the sector-size is larger than the ** database page size. Since the zHeader buffer is only Pager.pageSize ** bytes in size, more than one call to sqlite3OsWrite() may be required ** to populate the entire journal header sector. */ for(nWrite=0; rc==SQLITE_OK&&nWritejournalHdr, nHeader)) rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); assert( pPager->journalHdr <= pPager->journalOff ); pPager->journalOff += nHeader; } return rc; } /* ** The journal file must be open when this is called. A journal header file ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal ** file. The current location in the journal file is given by ** pPager->journalOff. See comments above function writeJournalHdr() for ** a description of the journal header format. ** ** If the header is read successfully, *pNRec is set to the number of ** page records following this header and *pDbSize is set to the size of the ** database before the transaction began, in pages. Also, pPager->cksumInit ** is set to the value read from the journal header. SQLITE_OK is returned ** in this case. ** ** If the journal header file appears to be corrupted, SQLITE_DONE is ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes ** cannot be read from the journal file an error code is returned. */ static int readJournalHdr( Pager *pPager, /* Pager object */ int isHot, i64 journalSize, /* Size of the open journal file in bytes */ u32 *pNRec, /* OUT: Value read from the nRec field */ u32 *pDbSize /* OUT: Value of original database size field */ ){ int rc; /* Return code */ unsigned char aMagic[8]; /* A buffer to hold the magic header */ i64 iHdrOff; /* Offset of journal header being read */ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ /* Advance Pager.journalOff to the start of the next sector. If the ** journal file is too small for there to be a header stored at this ** point, return SQLITE_DONE. */ pPager->journalOff = journalHdrOffset(pPager); if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ return SQLITE_DONE; } iHdrOff = pPager->journalOff; /* Read in the first 8 bytes of the journal header. If they do not match ** the magic string found at the start of each journal header, return ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, ** proceed. */ if( isHot || iHdrOff!=pPager->journalHdr ){ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); if( rc ){ return rc; } if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ return SQLITE_DONE; } } /* Read the first three 32-bit fields of the journal header: The nRec ** field, the checksum-initializer and the database size at the start ** of the transaction. Return an error code if anything goes wrong. */ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) ){ return rc; } if( pPager->journalOff==0 ){ u32 iPageSize; /* Page-size field of journal header */ u32 iSectorSize; /* Sector-size field of journal header */ /* Read the page-size and sector-size journal header fields. */ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) ){ return rc; } /* Versions of SQLite prior to 3.5.8 set the page-size field of the ** journal header to zero. In this case, assume that the Pager.pageSize ** variable is already set to the correct page size. */ if( iPageSize==0 ){ iPageSize = pPager->pageSize; } /* Check that the values read from the page-size and sector-size fields ** are within range. To be 'in range', both values need to be a power ** of two greater than or equal to 512 or 32, and not greater than their ** respective compile time maximum limits. */ if( iPageSize<512 || iSectorSize<32 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 ){ /* If the either the page-size or sector-size in the journal-header is ** invalid, then the process that wrote the journal-header must have ** crashed before the header was synced. In this case stop reading ** the journal file here. */ return SQLITE_DONE; } /* Update the page-size to match the value read from the journal. ** Use a testcase() macro to make sure that malloc failure within ** PagerSetPagesize() is tested. */ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); testcase( rc!=SQLITE_OK ); /* Update the assumed sector-size to match the value used by ** the process that created this journal. If this journal was ** created by a process other than this one, then this routine ** is being called from within pager_playback(). The local value ** of Pager.sectorSize is restored at the end of that routine. */ pPager->sectorSize = iSectorSize; } pPager->journalOff += JOURNAL_HDR_SZ(pPager); return rc; } /* ** Write the supplied super-journal name into the journal file for pager ** pPager at the current location. The super-journal name must be the last ** thing written to a journal file. If the pager is in full-sync mode, the ** journal file descriptor is advanced to the next sector boundary before ** anything is written. The format is: ** ** + 4 bytes: PAGER_SJ_PGNO. ** + N bytes: super-journal filename in utf-8. ** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator). ** + 4 bytes: super-journal name checksum. ** + 8 bytes: aJournalMagic[]. ** ** The super-journal page checksum is the sum of the bytes in the super-journal ** name, where each byte is interpreted as a signed 8-bit integer. ** ** If zSuper is a NULL pointer (occurs for a single database transaction), ** this call is a no-op. */ static int writeSuperJournal(Pager *pPager, const char *zSuper){ int rc; /* Return code */ int nSuper; /* Length of string zSuper */ i64 iHdrOff; /* Offset of header in journal file */ i64 jrnlSize; /* Size of journal file on disk */ u32 cksum = 0; /* Checksum of string zSuper */ assert( pPager->setSuper==0 ); assert( !pagerUseWal(pPager) ); if( !zSuper || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || !isOpen(pPager->jfd) ){ return SQLITE_OK; } pPager->setSuper = 1; assert( pPager->journalHdr <= pPager->journalOff ); /* Calculate the length in bytes and the checksum of zSuper */ for(nSuper=0; zSuper[nSuper]; nSuper++){ cksum += zSuper[nSuper]; } /* If in full-sync mode, advance to the next disk sector before writing ** the super-journal name. This is in case the previous page written to ** the journal has already been synced. */ if( pPager->fullSync ){ pPager->journalOff = journalHdrOffset(pPager); } iHdrOff = pPager->journalOff; /* Write the super-journal data to the end of the journal file. If ** an error occurs, return the error code to the caller. */ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_SJ_PGNO(pPager)))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, zSuper, nSuper, iHdrOff+4))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper, nSuper))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper+4, cksum))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nSuper+8))) ){ return rc; } pPager->journalOff += (nSuper+20); /* If the pager is in persistent-journal mode, then the physical ** journal-file may extend past the end of the super-journal name ** and 8 bytes of magic data just written to the file. This is ** dangerous because the code to rollback a hot-journal file ** will not be able to find the super-journal name to determine ** whether or not the journal is hot. ** ** Easiest thing to do in this scenario is to truncate the journal ** file to the required size. */ if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) && jrnlSize>pPager->journalOff ){ rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); } return rc; } /* ** Discard the entire contents of the in-memory page-cache. */ static void pager_reset(Pager *pPager){ pPager->iDataVersion++; sqlite3BackupRestart(pPager->pBackup); sqlite3PcacheClear(pPager->pPCache); } /* ** Return the pPager->iDataVersion value */ SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager *pPager){ return pPager->iDataVersion; } /* ** Free all structures in the Pager.aSavepoint[] array and set both ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal ** if it is open and the pager is not in exclusive mode. */ static void releaseAllSavepoints(Pager *pPager){ int ii; /* Iterator for looping through Pager.aSavepoint */ for(ii=0; iinSavepoint; ii++){ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); } if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ sqlite3OsClose(pPager->sjfd); } sqlite3_free(pPager->aSavepoint); pPager->aSavepoint = 0; pPager->nSavepoint = 0; pPager->nSubRec = 0; } /* ** Set the bit number pgno in the PagerSavepoint.pInSavepoint ** bitvecs of all open savepoints. Return SQLITE_OK if successful ** or SQLITE_NOMEM if a malloc failure occurs. */ static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ int ii; /* Loop counter */ int rc = SQLITE_OK; /* Result code */ for(ii=0; iinSavepoint; ii++){ PagerSavepoint *p = &pPager->aSavepoint[ii]; if( pgno<=p->nOrig ){ rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); testcase( rc==SQLITE_NOMEM ); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); } } return rc; } /* ** This function is a no-op if the pager is in exclusive mode and not ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN ** state. ** ** If the pager is not in exclusive-access mode, the database file is ** completely unlocked. If the file is unlocked and the file-system does ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is ** closed (if it is open). ** ** If the pager is in ERROR state when this function is called, the ** contents of the pager cache are discarded before switching back to ** the OPEN state. Regardless of whether the pager is in exclusive-mode ** or not, any journal file left in the file-system will be treated ** as a hot-journal and rolled back the next time a read-transaction ** is opened (by this or by any other connection). */ static void pager_unlock(Pager *pPager){ assert( pPager->eState==PAGER_READER || pPager->eState==PAGER_OPEN || pPager->eState==PAGER_ERROR ); sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; releaseAllSavepoints(pPager); if( pagerUseWal(pPager) ){ assert( !isOpen(pPager->jfd) ); sqlite3WalEndReadTransaction(pPager->pWal); pPager->eState = PAGER_OPEN; }else if( !pPager->exclusiveMode ){ int rc; /* Error code returned by pagerUnlockDb() */ int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; /* If the operating system support deletion of open files, then ** close the journal file when dropping the database lock. Otherwise ** another connection with journal_mode=delete might delete the file ** out from under us. */ assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) || 1!=(pPager->journalMode & 5) ){ sqlite3OsClose(pPager->jfd); } /* If the pager is in the ERROR state and the call to unlock the database ** file fails, set the current lock to UNKNOWN_LOCK. See the comment ** above the #define for UNKNOWN_LOCK for an explanation of why this ** is necessary. */ rc = pagerUnlockDb(pPager, NO_LOCK); if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ pPager->eLock = UNKNOWN_LOCK; } /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here ** without clearing the error code. This is intentional - the error ** code is cleared and the cache reset in the block below. */ assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); pPager->eState = PAGER_OPEN; } /* If Pager.errCode is set, the contents of the pager cache cannot be ** trusted. Now that there are no outstanding references to the pager, ** it can safely move back to PAGER_OPEN state. This happens in both ** normal and exclusive-locking mode. */ assert( pPager->errCode==SQLITE_OK || !MEMDB ); if( pPager->errCode ){ if( pPager->tempFile==0 ){ pager_reset(pPager); pPager->changeCountDone = 0; pPager->eState = PAGER_OPEN; }else{ pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); } if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); pPager->errCode = SQLITE_OK; setGetterMethod(pPager); } pPager->journalOff = 0; pPager->journalHdr = 0; pPager->setSuper = 0; } /* ** This function is called whenever an IOERR or FULL error that requires ** the pager to transition into the ERROR state may have occurred. ** The first argument is a pointer to the pager structure, the second ** the error-code about to be returned by a pager API function. The ** value returned is a copy of the second argument to this function. ** ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the ** IOERR sub-codes, the pager enters the ERROR state and the error code ** is stored in Pager.errCode. While the pager remains in the ERROR state, ** all major API calls on the Pager will immediately return Pager.errCode. ** ** The ERROR state indicates that the contents of the pager-cache ** cannot be trusted. This state can be cleared by completely discarding ** the contents of the pager-cache. If a transaction was active when ** the persistent error occurred, then the rollback journal may need ** to be replayed to restore the contents of the database file (as if ** it were a hot-journal). */ static int pager_error(Pager *pPager, int rc){ int rc2 = rc & 0xff; assert( rc==SQLITE_OK || !MEMDB ); assert( pPager->errCode==SQLITE_FULL || pPager->errCode==SQLITE_OK || (pPager->errCode & 0xff)==SQLITE_IOERR ); if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ pPager->errCode = rc; pPager->eState = PAGER_ERROR; setGetterMethod(pPager); } return rc; } static int pager_truncate(Pager *pPager, Pgno nPage); /* ** The write transaction open on pPager is being committed (bCommit==1) ** or rolled back (bCommit==0). ** ** Return TRUE if and only if all dirty pages should be flushed to disk. ** ** Rules: ** ** * For non-TEMP databases, always sync to disk. This is necessary ** for transactions to be durable. ** ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing ** file has been created already (via a spill on pagerStress()) and ** when the number of dirty pages in memory exceeds 25% of the total ** cache size. */ static int pagerFlushOnCommit(Pager *pPager, int bCommit){ if( pPager->tempFile==0 ) return 1; if( !bCommit ) return 0; if( !isOpen(pPager->fd) ) return 0; return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); } /* ** This routine ends a transaction. A transaction is usually ended by ** either a COMMIT or a ROLLBACK operation. This routine may be called ** after rollback of a hot-journal, or if an error occurs while opening ** the journal file or writing the very first journal-header of a ** database transaction. ** ** This routine is never called in PAGER_ERROR state. If it is called ** in PAGER_NONE or PAGER_SHARED state and the lock held is less ** exclusive than a RESERVED lock, it is a no-op. ** ** Otherwise, any active savepoints are released. ** ** If the journal file is open, then it is "finalized". Once a journal ** file has been finalized it is not possible to use it to roll back a ** transaction. Nor will it be considered to be a hot-journal by this ** or any other database connection. Exactly how a journal is finalized ** depends on whether or not the pager is running in exclusive mode and ** the current journal-mode (Pager.journalMode value), as follows: ** ** journalMode==MEMORY ** Journal file descriptor is simply closed. This destroys an ** in-memory journal. ** ** journalMode==TRUNCATE ** Journal file is truncated to zero bytes in size. ** ** journalMode==PERSIST ** The first 28 bytes of the journal file are zeroed. This invalidates ** the first journal header in the file, and hence the entire journal ** file. An invalid journal file cannot be rolled back. ** ** journalMode==DELETE ** The journal file is closed and deleted using sqlite3OsDelete(). ** ** If the pager is running in exclusive mode, this method of finalizing ** the journal file is never used. Instead, if the journalMode is ** DELETE and the pager is in exclusive mode, the method described under ** journalMode==PERSIST is used instead. ** ** After the journal is finalized, the pager moves to PAGER_READER state. ** If running in non-exclusive rollback mode, the lock on the file is ** downgraded to a SHARED_LOCK. ** ** SQLITE_OK is returned if no error occurs. If an error occurs during ** any of the IO operations to finalize the journal file or unlock the ** database then the IO error code is returned to the user. If the ** operation to finalize the journal file fails, then the code still ** tries to unlock the database file if not in exclusive mode. If the ** unlock operation fails as well, then the first error code related ** to the first error encountered (the journal finalization one) is ** returned. */ static int pager_end_transaction(Pager *pPager, int hasSuper, int bCommit){ int rc = SQLITE_OK; /* Error code from journal finalization operation */ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ /* Do nothing if the pager does not have an open write transaction ** or at least a RESERVED lock. This function may be called when there ** is no write-transaction active but a RESERVED or greater lock is ** held under two circumstances: ** ** 1. After a successful hot-journal rollback, it is called with ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. ** ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE ** lock switches back to locking_mode=normal and then executes a ** read-transaction, this function is called with eState==PAGER_READER ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. */ assert( assert_pager_state(pPager) ); assert( pPager->eState!=PAGER_ERROR ); if( pPager->eStateeLockjfd) || pPager->pInJournal==0 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); if( isOpen(pPager->jfd) ){ assert( !pagerUseWal(pPager) ); /* Finalize the journal file. */ if( sqlite3JournalIsInMemory(pPager->jfd) ){ /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ sqlite3OsClose(pPager->jfd); }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ if( pPager->journalOff==0 ){ rc = SQLITE_OK; }else{ rc = sqlite3OsTruncate(pPager->jfd, 0); if( rc==SQLITE_OK && pPager->fullSync ){ /* Make sure the new file size is written into the inode right away. ** Otherwise the journal might resurrect following a power loss and ** cause the last transaction to roll back. See ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 */ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); } } pPager->journalOff = 0; }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) ){ rc = zeroJournalHdr(pPager, hasSuper||pPager->tempFile); pPager->journalOff = 0; }else{ /* This branch may be executed with Pager.journalMode==MEMORY if ** a hot-journal was just rolled back. In this case the journal ** file should be closed and deleted. If this connection writes to ** the database file, it will do so using an in-memory journal. */ int bDelete = !pPager->tempFile; assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->journalMode==PAGER_JOURNALMODE_WAL ); sqlite3OsClose(pPager->jfd); if( bDelete ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); } } } #ifdef SQLITE_CHECK_PAGES sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ PgHdr *p = sqlite3PagerLookup(pPager, 1); if( p ){ p->pageHash = 0; sqlite3PagerUnrefNotNull(p); } } #endif sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; pPager->nRec = 0; if( rc==SQLITE_OK ){ if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ sqlite3PcacheCleanAll(pPager->pPCache); }else{ sqlite3PcacheClearWritable(pPager->pPCache); } sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); } if( pagerUseWal(pPager) ){ /* Drop the WAL write-lock, if any. Also, if the connection was in ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE ** lock held on the database file. */ rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); assert( rc2==SQLITE_OK ); }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ /* This branch is taken when committing a transaction in rollback-journal ** mode if the database file on disk is larger than the database image. ** At this point the journal has been finalized and the transaction ** successfully committed, but the EXCLUSIVE lock is still held on the ** file. So it is safe to truncate the database file to its minimum ** required size. */ assert( pPager->eLock==EXCLUSIVE_LOCK ); rc = pager_truncate(pPager, pPager->dbSize); } if( rc==SQLITE_OK && bCommit ){ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; } if( !pPager->exclusiveMode && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) ){ rc2 = pagerUnlockDb(pPager, SHARED_LOCK); } pPager->eState = PAGER_READER; pPager->setSuper = 0; return (rc==SQLITE_OK?rc2:rc); } /* Forward reference */ static int pager_playback(Pager *pPager, int isHot); /* ** Execute a rollback if a transaction is active and unlock the ** database file. ** ** If the pager has already entered the ERROR state, do not attempt ** the rollback at this time. Instead, pager_unlock() is called. The ** call to pager_unlock() will discard all in-memory pages, unlock ** the database file and move the pager back to OPEN state. If this ** means that there is a hot-journal left in the file-system, the next ** connection to obtain a shared lock on the pager (which may be this one) ** will roll it back. ** ** If the pager has not already entered the ERROR state, but an IO or ** malloc error occurs during a rollback, then this will itself cause ** the pager to enter the ERROR state. Which will be cleared by the ** call to pager_unlock(), as described above. */ static void pagerUnlockAndRollback(Pager *pPager){ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ assert( assert_pager_state(pPager) ); if( pPager->eState>=PAGER_WRITER_LOCKED ){ sqlite3BeginBenignMalloc(); sqlite3PagerRollback(pPager); sqlite3EndBenignMalloc(); }else if( !pPager->exclusiveMode ){ assert( pPager->eState==PAGER_READER ); pager_end_transaction(pPager, 0, 0); } }else if( pPager->eState==PAGER_ERROR && pPager->journalMode==PAGER_JOURNALMODE_MEMORY && isOpen(pPager->jfd) ){ /* Special case for a ROLLBACK due to I/O error with an in-memory ** journal: We have to rollback immediately, before the journal is ** closed, because once it is closed, all content is forgotten. */ int errCode = pPager->errCode; u8 eLock = pPager->eLock; pPager->eState = PAGER_OPEN; pPager->errCode = SQLITE_OK; pPager->eLock = EXCLUSIVE_LOCK; pager_playback(pPager, 1); pPager->errCode = errCode; pPager->eLock = eLock; } pager_unlock(pPager); } /* ** Parameter aData must point to a buffer of pPager->pageSize bytes ** of data. Compute and return a checksum based on the contents of the ** page of data and the current value of pPager->cksumInit. ** ** This is not a real checksum. It is really just the sum of the ** random initial value (pPager->cksumInit) and every 200th byte ** of the page data, starting with byte offset (pPager->pageSize%200). ** Each byte is interpreted as an 8-bit unsigned integer. ** ** Changing the formula used to compute this checksum results in an ** incompatible journal file format. ** ** If journal corruption occurs due to a power failure, the most likely ** scenario is that one end or the other of the record will be changed. ** It is much less likely that the two ends of the journal record will be ** correct and the middle be corrupt. Thus, this "checksum" scheme, ** though fast and simple, catches the mostly likely kind of corruption. */ static u32 pager_cksum(Pager *pPager, const u8 *aData){ u32 cksum = pPager->cksumInit; /* Checksum value to return */ int i = pPager->pageSize-200; /* Loop counter */ while( i>0 ){ cksum += aData[i]; i -= 200; } return cksum; } /* ** Report the current page size and number of reserved bytes back ** to the codec. */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC static void pagerReportSize(Pager *pPager){ if( pPager->xCodecSizeChng ){ pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize, (int)pPager->nReserve); } } #else # define pagerReportSize(X) /* No-op if we do not support a codec */ #endif /* END SQLCIPHER */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* ** Make sure the number of reserved bits is the same in the destination ** pager as it is in the source. This comes up when a VACUUM changes the ** number of reserved bits to the "optimal" amount. */ SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager *pDest, Pager *pSrc){ if( pDest->nReserve!=pSrc->nReserve ){ pDest->nReserve = pSrc->nReserve; pagerReportSize(pDest); } } #endif /* END SQLCIPHER */ /* ** Read a single page from either the journal file (if isMainJrnl==1) or ** from the sub-journal (if isMainJrnl==0) and playback that page. ** The page begins at offset *pOffset into the file. The *pOffset ** value is increased to the start of the next page in the journal. ** ** The main rollback journal uses checksums - the statement journal does ** not. ** ** If the page number of the page record read from the (sub-)journal file ** is greater than the current value of Pager.dbSize, then playback is ** skipped and SQLITE_OK is returned. ** ** If pDone is not NULL, then it is a record of pages that have already ** been played back. If the page at *pOffset has already been played back ** (if the corresponding pDone bit is set) then skip the playback. ** Make sure the pDone bit corresponding to the *pOffset page is set ** prior to returning. ** ** If the page record is successfully read from the (sub-)journal file ** and played back, then SQLITE_OK is returned. If an IO error occurs ** while reading the record from the (sub-)journal file or while writing ** to the database file, then the IO error code is returned. If data ** is successfully read from the (sub-)journal file but appears to be ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in ** two circumstances: ** ** * If the record page-number is illegal (0 or PAGER_SJ_PGNO), or ** * If the record is being rolled back from the main journal file ** and the checksum field does not match the record content. ** ** Neither of these two scenarios are possible during a savepoint rollback. ** ** If this is a savepoint rollback, then memory may have to be dynamically ** allocated by this function. If this is the case and an allocation fails, ** SQLITE_NOMEM is returned. */ static int pager_playback_one_page( Pager *pPager, /* The pager being played back */ i64 *pOffset, /* Offset of record to playback */ Bitvec *pDone, /* Bitvec of pages already played back */ int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ int isSavepnt /* True for a savepoint rollback */ ){ int rc; PgHdr *pPg; /* An existing page in the cache */ Pgno pgno; /* The page number of a page in journal */ u32 cksum; /* Checksum used for sanity checking */ char *aData; /* Temporary storage for the page */ sqlite3_file *jfd; /* The file descriptor for the journal file */ int isSynced; /* True if journal page is synced */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* The jrnlEnc flag is true if Journal pages should be passed through ** the codec. It is false for pure in-memory journals. */ const int jrnlEnc = (isMainJrnl || pPager->subjInMemory==0); #endif /* END SQLCIPHER */ assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ aData = pPager->pTmpSpace; assert( aData ); /* Temp storage must have already been allocated */ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction ** or savepoint rollback done at the request of the caller) or this is ** a hot-journal rollback. If it is a hot-journal rollback, the pager ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback ** only reads from the main journal, not the sub-journal. */ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) ); assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); /* Read the page number and page data from the journal or sub-journal ** file. Return an error code to the caller if an IO error occurs. */ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; rc = read32bits(jfd, *pOffset, &pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); if( rc!=SQLITE_OK ) return rc; *pOffset += pPager->pageSize + 4 + isMainJrnl*4; /* Sanity checking on the page. This is more important that I originally ** thought. If a power failure occurs while the journal is being written, ** it could cause invalid data to be written into the journal. We need to ** detect this invalid data (with high probability) and ignore it. */ if( pgno==0 || pgno==PAGER_SJ_PGNO(pPager) ){ assert( !isSavepnt ); return SQLITE_DONE; } if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ return SQLITE_OK; } if( isMainJrnl ){ rc = read32bits(jfd, (*pOffset)-4, &cksum); if( rc ) return rc; if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ return SQLITE_DONE; } } /* If this page has already been played back before during the current ** rollback, then don't bother to play it back again. */ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ return rc; } /* When playing back page 1, restore the nReserve setting */ if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ pPager->nReserve = ((u8*)aData)[20]; pagerReportSize(pPager); } /* If the pager is in CACHEMOD state, then there must be a copy of this ** page in the pager cache. In this case just update the pager cache, ** not the database file. The page is left marked dirty in this case. ** ** An exception to the above rule: If the database is in no-sync mode ** and a page is moved during an incremental vacuum then the page may ** not be in the pager cache. Later: if a malloc() or IO error occurs ** during a Movepage() call, then the page may not be in the cache ** either. So the condition described in the above paragraph is not ** assert()able. ** ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the ** pager cache if it exists and the main file. The page is then marked ** not dirty. Since this code is only executed in PAGER_OPEN state for ** a hot-journal rollback, it is guaranteed that the page-cache is empty ** if the pager is in OPEN state. ** ** Ticket #1171: The statement journal might contain page content that is ** different from the page content at the start of the transaction. ** This occurs when a page is changed prior to the start of a statement ** then changed again within the statement. When rolling back such a ** statement we must not write to the original database unless we know ** for certain that original page contents are synced into the main rollback ** journal. Otherwise, a power loss might leave modified data in the ** database file without an entry in the rollback journal that can ** restore the database to its original form. Two conditions must be ** met before writing to the database files. (1) the database must be ** locked. (2) we know that the original page content is fully synced ** in the main journal either because the page is not in cache or else ** the page is marked as needSync==0. ** ** 2008-04-14: When attempting to vacuum a corrupt database file, it ** is possible to fail a statement on a database that does not yet exist. ** Do not attempt to write if database file has never been opened. */ if( pagerUseWal(pPager) ){ pPg = 0; }else{ pPg = sqlite3PagerLookup(pPager, pgno); } assert( pPg || !MEMDB ); assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), (isMainJrnl?"main-journal":"sub-journal") )); if( isMainJrnl ){ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); }else{ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); } if( isOpen(pPager->fd) && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) && isSynced ){ i64 ofst = (pgno-1)*(i64)pPager->pageSize; testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); assert( !pagerUseWal(pPager) ); /* Write the data read from the journal back into the database file. ** This is usually safe even for an encrypted database - as the data ** was encrypted before it was written to the journal file. The exception ** is if the data was just read from an in-memory sub-journal. In that ** case it must be encrypted here before it is copied into the database ** file. */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC if( !jrnlEnc ){ CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT, aData); rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT); }else #endif /* END SQLCIPHER */ rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); if( pgno>pPager->dbFileSize ){ pPager->dbFileSize = pgno; } if( pPager->pBackup ){ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC if( jrnlEnc ){ CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT); sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT,aData); }else #endif /* END SQLCIPHER */ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); } }else if( !isMainJrnl && pPg==0 ){ /* If this is a rollback of a savepoint and data was not written to ** the database and the page is not in-memory, there is a potential ** problem. When the page is next fetched by the b-tree layer, it ** will be read from the database file, which may or may not be ** current. ** ** There are a couple of different ways this can happen. All are quite ** obscure. When running in synchronous mode, this can only happen ** if the page is on the free-list at the start of the transaction, then ** populated, then moved using sqlite3PagerMovepage(). ** ** The solution is to add an in-memory page to the cache containing ** the data just read from the sub-journal. Mark the page as dirty ** and if the pager requires a journal-sync, then mark the page as ** requiring a journal-sync before it is written. */ assert( isSavepnt ); assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); pPager->doNotSpill |= SPILLFLAG_ROLLBACK; rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; if( rc!=SQLITE_OK ) return rc; sqlite3PcacheMakeDirty(pPg); } if( pPg ){ /* No page should ever be explicitly rolled back that is in use, except ** for page 1 which is held in use in order to keep the lock on the ** database active. However such a page may be rolled back as a result ** of an internal error resulting in an automatic call to ** sqlite3PagerRollback(). */ void *pData; pData = pPg->pData; memcpy(pData, (u8*)aData, pPager->pageSize); pPager->xReiniter(pPg); /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But ** that call was dangerous and had no detectable benefit since the cache ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so ** has been removed. */ pager_set_pagehash(pPg); /* If this was page 1, then restore the value of Pager.dbFileVers. ** Do this before any decoding. */ if( pgno==1 ){ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); } /* Decode the page just read from disk */ /* BEGIN SQLCIPHER */ #if SQLITE_HAS_CODEC if( jrnlEnc ){ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM_BKPT); } #endif /* END SQLCIPHER */ sqlite3PcacheRelease(pPg); } return rc; } /* ** Parameter zSuper is the name of a super-journal file. A single journal ** file that referred to the super-journal file has just been rolled back. ** This routine checks if it is possible to delete the super-journal file, ** and does so if it is. ** ** Argument zSuper may point to Pager.pTmpSpace. So that buffer is not ** available for use within this function. ** ** When a super-journal file is created, it is populated with the names ** of all of its child journals, one after another, formatted as utf-8 ** encoded text. The end of each child journal file is marked with a ** nul-terminator byte (0x00). i.e. the entire contents of a super-journal ** file for a transaction involving two databases might be: ** ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" ** ** A super-journal file may only be deleted once all of its child ** journals have been rolled back. ** ** This function reads the contents of the super-journal file into ** memory and loops through each of the child journal names. For ** each child journal, it checks if: ** ** * if the child journal exists, and if so ** * if the child journal contains a reference to super-journal ** file zSuper ** ** If a child journal can be found that matches both of the criteria ** above, this function returns without doing anything. Otherwise, if ** no such child journal can be found, file zSuper is deleted from ** the file-system using sqlite3OsDelete(). ** ** If an IO error within this function, an error code is returned. This ** function allocates memory by calling sqlite3Malloc(). If an allocation ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors ** occur, SQLITE_OK is returned. ** ** TODO: This function allocates a single block of memory to load ** the entire contents of the super-journal file. This could be ** a couple of kilobytes or so - potentially larger than the page ** size. */ static int pager_delsuper(Pager *pPager, const char *zSuper){ sqlite3_vfs *pVfs = pPager->pVfs; int rc; /* Return code */ sqlite3_file *pSuper; /* Malloc'd super-journal file descriptor */ sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ char *zSuperJournal = 0; /* Contents of super-journal file */ i64 nSuperJournal; /* Size of super-journal file */ char *zJournal; /* Pointer to one journal within MJ file */ char *zSuperPtr; /* Space to hold super-journal filename */ char *zFree = 0; /* Free this buffer */ int nSuperPtr; /* Amount of space allocated to zSuperPtr[] */ /* Allocate space for both the pJournal and pSuper file descriptors. ** If successful, open the super-journal file for reading. */ pSuper = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); if( !pSuper ){ rc = SQLITE_NOMEM_BKPT; pJournal = 0; }else{ const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL); rc = sqlite3OsOpen(pVfs, zSuper, pSuper, flags, 0); pJournal = (sqlite3_file *)(((u8 *)pSuper) + pVfs->szOsFile); } if( rc!=SQLITE_OK ) goto delsuper_out; /* Load the entire super-journal file into space obtained from ** sqlite3_malloc() and pointed to by zSuperJournal. Also obtain ** sufficient space (in zSuperPtr) to hold the names of super-journal ** files extracted from regular rollback-journals. */ rc = sqlite3OsFileSize(pSuper, &nSuperJournal); if( rc!=SQLITE_OK ) goto delsuper_out; nSuperPtr = pVfs->mxPathname+1; zFree = sqlite3Malloc(4 + nSuperJournal + nSuperPtr + 2); if( !zFree ){ rc = SQLITE_NOMEM_BKPT; goto delsuper_out; } zFree[0] = zFree[1] = zFree[2] = zFree[3] = 0; zSuperJournal = &zFree[4]; zSuperPtr = &zSuperJournal[nSuperJournal+2]; rc = sqlite3OsRead(pSuper, zSuperJournal, (int)nSuperJournal, 0); if( rc!=SQLITE_OK ) goto delsuper_out; zSuperJournal[nSuperJournal] = 0; zSuperJournal[nSuperJournal+1] = 0; zJournal = zSuperJournal; while( (zJournal-zSuperJournal)pageSize bytes). ** If the file on disk is currently larger than nPage pages, then use the VFS ** xTruncate() method to truncate it. ** ** Or, it might be the case that the file on disk is smaller than ** nPage pages. Some operating system implementations can get confused if ** you try to truncate a file to some size that is larger than it ** currently is, so detect this case and write a single zero byte to ** the end of the new file instead. ** ** If successful, return SQLITE_OK. If an IO error occurs while modifying ** the database file, return the error code to the caller. */ static int pager_truncate(Pager *pPager, Pgno nPage){ int rc = SQLITE_OK; assert( pPager->eState!=PAGER_ERROR ); assert( pPager->eState!=PAGER_READER ); PAGERTRACE(("Truncate %d npage %u\n", PAGERID(pPager), nPage)); if( isOpen(pPager->fd) && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) ){ i64 currentSize, newSize; int szPage = pPager->pageSize; assert( pPager->eLock==EXCLUSIVE_LOCK ); /* TODO: Is it safe to use Pager.dbFileSize here? */ rc = sqlite3OsFileSize(pPager->fd, ¤tSize); newSize = szPage*(i64)nPage; if( rc==SQLITE_OK && currentSize!=newSize ){ if( currentSize>newSize ){ rc = sqlite3OsTruncate(pPager->fd, newSize); }else if( (currentSize+szPage)<=newSize ){ char *pTmp = pPager->pTmpSpace; memset(pTmp, 0, szPage); testcase( (newSize-szPage) == currentSize ); testcase( (newSize-szPage) > currentSize ); sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &newSize); rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); } if( rc==SQLITE_OK ){ pPager->dbFileSize = nPage; } } } return rc; } /* ** Return a sanitized version of the sector-size of OS file pFile. The ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. */ SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){ int iRet = sqlite3OsSectorSize(pFile); if( iRet<32 ){ iRet = 512; }else if( iRet>MAX_SECTOR_SIZE ){ assert( MAX_SECTOR_SIZE>=512 ); iRet = MAX_SECTOR_SIZE; } return iRet; } /* ** Set the value of the Pager.sectorSize variable for the given ** pager based on the value returned by the xSectorSize method ** of the open database file. The sector size will be used ** to determine the size and alignment of journal header and ** super-journal pointers within created journal files. ** ** For temporary files the effective sector size is always 512 bytes. ** ** Otherwise, for non-temporary files, the effective sector size is ** the value returned by the xSectorSize() method rounded up to 32 if ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it ** is greater than MAX_SECTOR_SIZE. ** ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set ** the effective sector size to its minimum value (512). The purpose of ** pPager->sectorSize is to define the "blast radius" of bytes that ** might change if a crash occurs while writing to a single byte in ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector ** size. For backwards compatibility of the rollback journal file format, ** we cannot reduce the effective sector size below 512. */ static void setSectorSize(Pager *pPager){ assert( isOpen(pPager->fd) || pPager->tempFile ); if( pPager->tempFile || (sqlite3OsDeviceCharacteristics(pPager->fd) & SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 ){ /* Sector size doesn't matter for temporary files. Also, the file ** may not have been opened yet, in which case the OsSectorSize() ** call will segfault. */ pPager->sectorSize = 512; }else{ pPager->sectorSize = sqlite3SectorSize(pPager->fd); } } /* ** Playback the journal and thus restore the database file to ** the state it was in before we started making changes. ** ** The journal file format is as follows: ** ** (1) 8 byte prefix. A copy of aJournalMagic[]. ** (2) 4 byte big-endian integer which is the number of valid page records ** in the journal. If this value is 0xffffffff, then compute the ** number of page records from the journal size. ** (3) 4 byte big-endian integer which is the initial value for the ** sanity checksum. ** (4) 4 byte integer which is the number of pages to truncate the ** database to during a rollback. ** (5) 4 byte big-endian integer which is the sector size. The header ** is this many bytes in size. ** (6) 4 byte big-endian integer which is the page size. ** (7) zero padding out to the next sector size. ** (8) Zero or more pages instances, each as follows: ** + 4 byte page number. ** + pPager->pageSize bytes of data. ** + 4 byte checksum ** ** When we speak of the journal header, we mean the first 7 items above. ** Each entry in the journal is an instance of the 8th item. ** ** Call the value from the second bullet "nRec". nRec is the number of ** valid page entries in the journal. In most cases, you can compute the ** value of nRec from the size of the journal file. But if a power ** failure occurred while the journal was being written, it could be the ** case that the size of the journal file had already been increased but ** the extra entries had not yet made it safely to disk. In such a case, ** the value of nRec computed from the file size would be too large. For ** that reason, we always use the nRec value in the header. ** ** If the nRec value is 0xffffffff it means that nRec should be computed ** from the file size. This value is used when the user selects the ** no-sync option for the journal. A power failure could lead to corruption ** in this case. But for things like temporary table (which will be ** deleted when the power is restored) we don't care. ** ** If the file opened as the journal file is not a well-formed ** journal file then all pages up to the first corrupted page are rolled ** back (or no pages if the journal header is corrupted). The journal file ** is then deleted and SQLITE_OK returned, just as if no corruption had ** been encountered. ** ** If an I/O or malloc() error occurs, the journal-file is not deleted ** and an error code is returned. ** ** The isHot parameter indicates that we are trying to rollback a journal ** that might be a hot journal. Or, it could be that the journal is ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. ** If the journal really is hot, reset the pager cache prior rolling ** back any content. If the journal is merely persistent, no reset is ** needed. */ static int pager_playback(Pager *pPager, int isHot){ sqlite3_vfs *pVfs = pPager->pVfs; i64 szJ; /* Size of the journal file in bytes */ u32 nRec; /* Number of Records in the journal */ u32 u; /* Unsigned loop counter */ Pgno mxPg = 0; /* Size of the original file in pages */ int rc; /* Result code of a subroutine */ int res = 1; /* Value returned by sqlite3OsAccess() */ char *zSuper = 0; /* Name of super-journal file if any */ int needPagerReset; /* True to reset page prior to first page rollback */ int nPlayback = 0; /* Total number of pages restored from journal */ u32 savedPageSize = pPager->pageSize; /* Figure out how many records are in the journal. Abort early if ** the journal is empty. */ assert( isOpen(pPager->jfd) ); rc = sqlite3OsFileSize(pPager->jfd, &szJ); if( rc!=SQLITE_OK ){ goto end_playback; } /* Read the super-journal name from the journal, if it is present. ** If a super-journal file name is specified, but the file is not ** present on disk, then the journal is not hot and does not need to be ** played back. ** ** TODO: Technically the following is an error because it assumes that ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, ** mxPathname is 512, which is the same as the minimum allowable value ** for pageSize. */ zSuper = pPager->pTmpSpace; rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); if( rc==SQLITE_OK && zSuper[0] ){ rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); } zSuper = 0; if( rc!=SQLITE_OK || !res ){ goto end_playback; } pPager->journalOff = 0; needPagerReset = isHot; /* This loop terminates either when a readJournalHdr() or ** pager_playback_one_page() call returns SQLITE_DONE or an IO error ** occurs. */ while( 1 ){ /* Read the next journal header from the journal file. If there are ** not enough bytes left in the journal file for a complete header, or ** it is corrupted, then a process must have failed while writing it. ** This indicates nothing more needs to be rolled back. */ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; } goto end_playback; } /* If nRec is 0xffffffff, then this journal was created by a process ** working in no-sync mode. This means that the rest of the journal ** file consists of pages, there are no more journal headers. Compute ** the value of nRec based on this assumption. */ if( nRec==0xffffffff ){ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); } /* If nRec is 0 and this rollback is of a transaction created by this ** process and if this is the final header in the journal, then it means ** that this part of the journal was being filled but has not yet been ** synced to disk. Compute the number of pages based on the remaining ** size of the file. ** ** The third term of the test was added to fix ticket #2565. ** When rolling back a hot journal, nRec==0 always means that the next ** chunk of the journal contains zero pages to be rolled back. But ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in ** the journal, it means that the journal might contain additional ** pages that need to be rolled back and that the number of pages ** should be computed based on the journal file size. */ if( nRec==0 && !isHot && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); } /* If this is the first header read from the journal, truncate the ** database file back to its original size. */ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ rc = pager_truncate(pPager, mxPg); if( rc!=SQLITE_OK ){ goto end_playback; } pPager->dbSize = mxPg; if( pPager->mxPgnomxPgno = mxPg; } } /* Copy original pages out of the journal and back into the ** database file and/or page cache. */ for(u=0; ujournalOff,0,1,0); if( rc==SQLITE_OK ){ nPlayback++; }else{ if( rc==SQLITE_DONE ){ pPager->journalOff = szJ; break; }else if( rc==SQLITE_IOERR_SHORT_READ ){ /* If the journal has been truncated, simply stop reading and ** processing the journal. This might happen if the journal was ** not completely written and synced prior to a crash. In that ** case, the database should have never been written in the ** first place so it is OK to simply abandon the rollback. */ rc = SQLITE_OK; goto end_playback; }else{ /* If we are unable to rollback, quit and return the error ** code. This will cause the pager to enter the error state ** so that no further harm will be done. Perhaps the next ** process to come along will be able to rollback the database. */ goto end_playback; } } } } /*NOTREACHED*/ assert( 0 ); end_playback: if( rc==SQLITE_OK ){ rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); } /* Following a rollback, the database file should be back in its original ** state prior to the start of the transaction, so invoke the ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the ** assertion that the transaction counter was modified. */ #ifdef SQLITE_DEBUG sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); #endif /* If this playback is happening automatically as a result of an IO or ** malloc error that occurred after the change-counter was updated but ** before the transaction was committed, then the change-counter ** modification may just have been reverted. If this happens in exclusive ** mode, then subsequent transactions performed by the connection will not ** update the change-counter at all. This may lead to cache inconsistency ** problems for other processes at some point in the future. So, just ** in case this has happened, clear the changeCountDone flag now. */ pPager->changeCountDone = pPager->tempFile; if( rc==SQLITE_OK ){ /* Leave 4 bytes of space before the super-journal filename in memory. ** This is because it may end up being passed to sqlite3OsOpen(), in ** which case it requires 4 0x00 bytes in memory immediately before ** the filename. */ zSuper = &pPager->pTmpSpace[4]; rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); testcase( rc!=SQLITE_OK ); } if( rc==SQLITE_OK && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) ){ rc = sqlite3PagerSync(pPager, 0); } if( rc==SQLITE_OK ){ rc = pager_end_transaction(pPager, zSuper[0]!='\0', 0); testcase( rc!=SQLITE_OK ); } if( rc==SQLITE_OK && zSuper[0] && res ){ /* If there was a super-journal and this routine will return success, ** see if it is possible to delete the super-journal. */ assert( zSuper==&pPager->pTmpSpace[4] ); memset(pPager->pTmpSpace, 0, 4); rc = pager_delsuper(pPager, zSuper); testcase( rc!=SQLITE_OK ); } if( isHot && nPlayback ){ sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", nPlayback, pPager->zJournal); } /* The Pager.sectorSize variable may have been updated while rolling ** back a journal created by a process with a different sector size ** value. Reset it to the correct value for this process. */ setSectorSize(pPager); return rc; } /* ** Read the content for page pPg out of the database file (or out of ** the WAL if that is where the most recent copy if found) into ** pPg->pData. A shared lock or greater must be held on the database ** file before this function is called. ** ** If page 1 is read, then the value of Pager.dbFileVers[] is set to ** the value read from the database file. ** ** If an IO error occurs, then the IO error is returned to the caller. ** Otherwise, SQLITE_OK is returned. */ static int readDbPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ int rc = SQLITE_OK; /* Return code */ #ifndef SQLITE_OMIT_WAL u32 iFrame = 0; /* Frame of WAL containing pgno */ assert( pPager->eState>=PAGER_READER && !MEMDB ); assert( isOpen(pPager->fd) ); if( pagerUseWal(pPager) ){ rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); if( rc ) return rc; } if( iFrame ){ rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); }else #endif { i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } } if( pPg->pgno==1 ){ if( rc ){ /* If the read is unsuccessful, set the dbFileVers[] to something ** that will never be a valid file version. dbFileVers[] is a copy ** of bytes 24..39 of the database. Bytes 28..31 should always be ** zero or the size of the database in page. Bytes 32..35 and 35..39 ** should be page numbers which are never 0xffffffff. So filling ** pPager->dbFileVers[] with all 0xff bytes should suffice. ** ** For an encrypted database, the situation is more complex: bytes ** 24..39 of the database are white noise. But the probability of ** white noise equaling 16 bytes of 0xff is vanishingly small so ** we should still be ok. */ memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); }else{ u8 *dbFileVers = &((u8*)pPg->pData)[24]; memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); } } CODEC1(pPager, pPg->pData, pPg->pgno, 3, rc = SQLITE_NOMEM_BKPT); PAGER_INCR(sqlite3_pager_readdb_count); PAGER_INCR(pPager->nRead); IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); PAGERTRACE(("FETCH %d page %d hash(%08x)\n", PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); return rc; } /* ** Update the value of the change-counter at offsets 24 and 92 in ** the header and the sqlite version number at offset 96. ** ** This is an unconditional update. See also the pager_incr_changecounter() ** routine which only updates the change-counter if the update is actually ** needed, as determined by the pPager->changeCountDone state variable. */ static void pager_write_changecounter(PgHdr *pPg){ u32 change_counter; if( NEVER(pPg==0) ) return; /* Increment the value just read and write it back to byte 24. */ change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; put32bits(((char*)pPg->pData)+24, change_counter); /* Also store the SQLite version number in bytes 96..99 and in ** bytes 92..95 store the change counter for which the version number ** is valid. */ put32bits(((char*)pPg->pData)+92, change_counter); put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); } #ifndef SQLITE_OMIT_WAL /* ** This function is invoked once for each page that has already been ** written into the log file when a WAL transaction is rolled back. ** Parameter iPg is the page number of said page. The pCtx argument ** is actually a pointer to the Pager structure. ** ** If page iPg is present in the cache, and has no outstanding references, ** it is discarded. Otherwise, if there are one or more outstanding ** references, the page content is reloaded from the database. If the ** attempt to reload content from the database is required and fails, ** return an SQLite error code. Otherwise, SQLITE_OK. */ static int pagerUndoCallback(void *pCtx, Pgno iPg){ int rc = SQLITE_OK; Pager *pPager = (Pager *)pCtx; PgHdr *pPg; assert( pagerUseWal(pPager) ); pPg = sqlite3PagerLookup(pPager, iPg); if( pPg ){ if( sqlite3PcachePageRefcount(pPg)==1 ){ sqlite3PcacheDrop(pPg); }else{ rc = readDbPage(pPg); if( rc==SQLITE_OK ){ pPager->xReiniter(pPg); } sqlite3PagerUnrefNotNull(pPg); } } /* Normally, if a transaction is rolled back, any backup processes are ** updated as data is copied out of the rollback journal and into the ** database. This is not generally possible with a WAL database, as ** rollback involves simply truncating the log file. Therefore, if one ** or more frames have already been written to the log (and therefore ** also copied into the backup databases) as part of this transaction, ** the backups must be restarted. */ sqlite3BackupRestart(pPager->pBackup); return rc; } /* ** This function is called to rollback a transaction on a WAL database. */ static int pagerRollbackWal(Pager *pPager){ int rc; /* Return Code */ PgHdr *pList; /* List of dirty pages to revert */ /* For all pages in the cache that are currently dirty or have already ** been written (but not committed) to the log file, do one of the ** following: ** ** + Discard the cached page (if refcount==0), or ** + Reload page content from the database (if refcount>0). */ pPager->dbSize = pPager->dbOrigSize; rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); pList = sqlite3PcacheDirtyList(pPager->pPCache); while( pList && rc==SQLITE_OK ){ PgHdr *pNext = pList->pDirty; rc = pagerUndoCallback((void *)pPager, pList->pgno); pList = pNext; } return rc; } /* ** This function is a wrapper around sqlite3WalFrames(). As well as logging ** the contents of the list of pages headed by pList (connected by pDirty), ** this function notifies any active backup processes that the pages have ** changed. ** ** The list of pages passed into this routine is always sorted by page number. ** Hence, if page 1 appears anywhere on the list, it will be the first page. */ static int pagerWalFrames( Pager *pPager, /* Pager object */ PgHdr *pList, /* List of frames to log */ Pgno nTruncate, /* Database size after this commit */ int isCommit /* True if this is a commit */ ){ int rc; /* Return code */ int nList; /* Number of pages in pList */ PgHdr *p; /* For looping over pages */ assert( pPager->pWal ); assert( pList ); #ifdef SQLITE_DEBUG /* Verify that the page list is in ascending order */ for(p=pList; p && p->pDirty; p=p->pDirty){ assert( p->pgno < p->pDirty->pgno ); } #endif assert( pList->pDirty==0 || isCommit ); if( isCommit ){ /* If a WAL transaction is being committed, there is no point in writing ** any pages with page numbers greater than nTruncate into the WAL file. ** They will never be read by any client. So remove them from the pDirty ** list here. */ PgHdr **ppNext = &pList; nList = 0; for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ if( p->pgno<=nTruncate ){ ppNext = &p->pDirty; nList++; } } assert( pList ); }else{ nList = 1; } pPager->aStat[PAGER_STAT_WRITE] += nList; if( pList->pgno==1 ) pager_write_changecounter(pList); rc = sqlite3WalFrames(pPager->pWal, pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags ); if( rc==SQLITE_OK && pPager->pBackup ){ for(p=pList; p; p=p->pDirty){ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); } } #ifdef SQLITE_CHECK_PAGES pList = sqlite3PcacheDirtyList(pPager->pPCache); for(p=pList; p; p=p->pDirty){ pager_set_pagehash(p); } #endif return rc; } /* ** Begin a read transaction on the WAL. ** ** This routine used to be called "pagerOpenSnapshot()" because it essentially ** makes a snapshot of the database at the current point in time and preserves ** that snapshot for use by the reader in spite of concurrently changes by ** other writers or checkpointers. */ static int pagerBeginReadTransaction(Pager *pPager){ int rc; /* Return code */ int changed = 0; /* True if cache must be reset */ assert( pagerUseWal(pPager) ); assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); /* sqlite3WalEndReadTransaction() was not called for the previous ** transaction in locking_mode=EXCLUSIVE. So call it now. If we ** are in locking_mode=NORMAL and EndRead() was previously called, ** the duplicate call is harmless. */ sqlite3WalEndReadTransaction(pPager->pWal); rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); if( rc!=SQLITE_OK || changed ){ pager_reset(pPager); if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); } return rc; } #endif /* ** This function is called as part of the transition from PAGER_OPEN ** to PAGER_READER state to determine the size of the database file ** in pages (assuming the page size currently stored in Pager.pageSize). ** ** If no error occurs, SQLITE_OK is returned and the size of the database ** in pages is stored in *pnPage. Otherwise, an error code (perhaps ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. */ static int pagerPagecount(Pager *pPager, Pgno *pnPage){ Pgno nPage; /* Value to return via *pnPage */ /* Query the WAL sub-system for the database size. The WalDbsize() ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or ** if the database size is not available. The database size is not ** available from the WAL sub-system if the log file is empty or ** contains no valid committed transactions. */ assert( pPager->eState==PAGER_OPEN ); assert( pPager->eLock>=SHARED_LOCK ); assert( isOpen(pPager->fd) ); assert( pPager->tempFile==0 ); nPage = sqlite3WalDbsize(pPager->pWal); /* If the number of pages in the database is not available from the ** WAL sub-system, determine the page count based on the size of ** the database file. If the size of the database file is not an ** integer multiple of the page-size, round up the result. */ if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ i64 n = 0; /* Size of db file in bytes */ int rc = sqlite3OsFileSize(pPager->fd, &n); if( rc!=SQLITE_OK ){ return rc; } nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); } /* If the current number of pages in the file is greater than the ** configured maximum pager number, increase the allowed limit so ** that the file can be read. */ if( nPage>pPager->mxPgno ){ pPager->mxPgno = (Pgno)nPage; } *pnPage = nPage; return SQLITE_OK; } #ifndef SQLITE_OMIT_WAL /* ** Check if the *-wal file that corresponds to the database opened by pPager ** exists if the database is not empty, or verify that the *-wal file does ** not exist (by deleting it) if the database file is empty. ** ** If the database is not empty and the *-wal file exists, open the pager ** in WAL mode. If the database is empty or if no *-wal file exists and ** if no error occurs, make sure Pager.journalMode is not set to ** PAGER_JOURNALMODE_WAL. ** ** Return SQLITE_OK or an error code. ** ** The caller must hold a SHARED lock on the database file to call this ** function. Because an EXCLUSIVE lock on the db file is required to delete ** a WAL on a none-empty database, this ensures there is no race condition ** between the xAccess() below and an xDelete() being executed by some ** other connection. */ static int pagerOpenWalIfPresent(Pager *pPager){ int rc = SQLITE_OK; assert( pPager->eState==PAGER_OPEN ); assert( pPager->eLock>=SHARED_LOCK ); if( !pPager->tempFile ){ int isWal; /* True if WAL file exists */ rc = sqlite3OsAccess( pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal ); if( rc==SQLITE_OK ){ if( isWal ){ Pgno nPage; /* Size of the database file */ rc = pagerPagecount(pPager, &nPage); if( rc ) return rc; if( nPage==0 ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); }else{ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); rc = sqlite3PagerOpenWal(pPager, 0); } }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ pPager->journalMode = PAGER_JOURNALMODE_DELETE; } } } return rc; } #endif /* ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback ** the entire super-journal file. The case pSavepoint==NULL occurs when ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction ** savepoint. ** ** When pSavepoint is not NULL (meaning a non-transaction savepoint is ** being rolled back), then the rollback consists of up to three stages, ** performed in the order specified: ** ** * Pages are played back from the main journal starting at byte ** offset PagerSavepoint.iOffset and continuing to ** PagerSavepoint.iHdrOffset, or to the end of the main journal ** file if PagerSavepoint.iHdrOffset is zero. ** ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played ** back starting from the journal header immediately following ** PagerSavepoint.iHdrOffset to the end of the main journal file. ** ** * Pages are then played back from the sub-journal file, starting ** with the PagerSavepoint.iSubRec and continuing to the end of ** the journal file. ** ** Throughout the rollback process, each time a page is rolled back, the ** corresponding bit is set in a bitvec structure (variable pDone in the ** implementation below). This is used to ensure that a page is only ** rolled back the first time it is encountered in either journal. ** ** If pSavepoint is NULL, then pages are only played back from the main ** journal file. There is no need for a bitvec in this case. ** ** In either case, before playback commences the Pager.dbSize variable ** is reset to the value that it held at the start of the savepoint ** (or transaction). No page with a page-number greater than this value ** is played back. If one is encountered it is simply skipped. */ static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ i64 szJ; /* Effective size of the main journal */ i64 iHdrOff; /* End of first segment of main-journal records */ int rc = SQLITE_OK; /* Return code */ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ assert( pPager->eState!=PAGER_ERROR ); assert( pPager->eState>=PAGER_WRITER_LOCKED ); /* Allocate a bitvec to use to store the set of pages rolled back */ if( pSavepoint ){ pDone = sqlite3BitvecCreate(pSavepoint->nOrig); if( !pDone ){ return SQLITE_NOMEM_BKPT; } } /* Set the database size back to the value it was before the savepoint ** being reverted was opened. */ pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; pPager->changeCountDone = pPager->tempFile; if( !pSavepoint && pagerUseWal(pPager) ){ return pagerRollbackWal(pPager); } /* Use pPager->journalOff as the effective size of the main rollback ** journal. The actual file might be larger than this in ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything ** past pPager->journalOff is off-limits to us. */ szJ = pPager->journalOff; assert( pagerUseWal(pPager)==0 || szJ==0 ); /* Begin by rolling back records from the main journal starting at ** PagerSavepoint.iOffset and continuing to the next journal header. ** There might be records in the main journal that have a page number ** greater than the current database size (pPager->dbSize) but those ** will be skipped automatically. Pages are added to pDone as they ** are played back. */ if( pSavepoint && !pagerUseWal(pPager) ){ iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; pPager->journalOff = pSavepoint->iOffset; while( rc==SQLITE_OK && pPager->journalOffjournalOff, pDone, 1, 1); } assert( rc!=SQLITE_DONE ); }else{ pPager->journalOff = 0; } /* Continue rolling back records out of the main journal starting at ** the first journal header seen and continuing until the effective end ** of the main journal file. Continue to skip out-of-range pages and ** continue adding pages rolled back to pDone. */ while( rc==SQLITE_OK && pPager->journalOffjournalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" ** test is related to ticket #2565. See the discussion in the ** pager_playback() function for additional information. */ if( nJRec==0 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); } for(ii=0; rc==SQLITE_OK && iijournalOffjournalOff, pDone, 1, 1); } assert( rc!=SQLITE_DONE ); } assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); /* Finally, rollback pages from the sub-journal. Page that were ** previously rolled back out of the main journal (and are hence in pDone) ** will be skipped. Out-of-range pages are also skipped. */ if( pSavepoint ){ u32 ii; /* Loop counter */ i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); if( pagerUseWal(pPager) ){ rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); } for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && iinSubRec; ii++){ assert( offset==(i64)ii*(4+pPager->pageSize) ); rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); } assert( rc!=SQLITE_DONE ); } sqlite3BitvecDestroy(pDone); if( rc==SQLITE_OK ){ pPager->journalOff = szJ; } return rc; } /* ** Change the maximum number of in-memory pages that are allowed ** before attempting to recycle clean and unused pages. */ SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); } /* ** Change the maximum number of in-memory pages that are allowed ** before attempting to spill pages to journal. */ SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); } /* ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. */ static void pagerFixMaplimit(Pager *pPager){ #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_file *fd = pPager->fd; if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ sqlite3_int64 sz; sz = pPager->szMmap; pPager->bUseFetch = (sz>0); setGetterMethod(pPager); sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); } #endif } /* ** Change the maximum size of any memory mapping made of the database file. */ SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ pPager->szMmap = szMmap; pagerFixMaplimit(pPager); } /* ** Free as much memory as possible from the pager. */ SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){ sqlite3PcacheShrink(pPager->pPCache); } /* ** Adjust settings of the pager to those specified in the pgFlags parameter. ** ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness ** of the database to damage due to OS crashes or power failures by ** changing the number of syncs()s when writing the journals. ** There are four levels: ** ** OFF sqlite3OsSync() is never called. This is the default ** for temporary and transient files. ** ** NORMAL The journal is synced once before writes begin on the ** database. This is normally adequate protection, but ** it is theoretically possible, though very unlikely, ** that an inopertune power failure could leave the journal ** in a state which would cause damage to the database ** when it is rolled back. ** ** FULL The journal is synced twice before writes begin on the ** database (with some additional information - the nRec field ** of the journal header - being written in between the two ** syncs). If we assume that writing a ** single disk sector is atomic, then this mode provides ** assurance that the journal will not be corrupted to the ** point of causing damage to the database during rollback. ** ** EXTRA This is like FULL except that is also syncs the directory ** that contains the rollback journal after the rollback ** journal is unlinked. ** ** The above is for a rollback-journal mode. For WAL mode, OFF continues ** to mean that no syncs ever occur. NORMAL means that the WAL is synced ** prior to the start of checkpoint and that the database file is synced ** at the conclusion of the checkpoint if the entire content of the WAL ** was written back into the database. But no sync operations occur for ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL ** file is synced following each commit operation, in addition to the ** syncs associated with NORMAL. There is no difference between FULL ** and EXTRA for WAL mode. ** ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the ** synchronous=FULL versus synchronous=NORMAL setting determines when ** the xSync primitive is called and is relevant to all platforms. ** ** Numeric values associated with these states are OFF==1, NORMAL=2, ** and FULL=3. */ SQLITE_PRIVATE void sqlite3PagerSetFlags( Pager *pPager, /* The pager to set safety level for */ unsigned pgFlags /* Various flags */ ){ unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; if( pPager->tempFile ){ pPager->noSync = 1; pPager->fullSync = 0; pPager->extraSync = 0; }else{ pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; } if( pPager->noSync ){ pPager->syncFlags = 0; }else if( pgFlags & PAGER_FULLFSYNC ){ pPager->syncFlags = SQLITE_SYNC_FULL; }else{ pPager->syncFlags = SQLITE_SYNC_NORMAL; } pPager->walSyncFlags = (pPager->syncFlags<<2); if( pPager->fullSync ){ pPager->walSyncFlags |= pPager->syncFlags; } if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); } if( pgFlags & PAGER_CACHESPILL ){ pPager->doNotSpill &= ~SPILLFLAG_OFF; }else{ pPager->doNotSpill |= SPILLFLAG_OFF; } } /* ** The following global variable is incremented whenever the library ** attempts to open a temporary file. This information is used for ** testing and analysis only. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_opentemp_count = 0; #endif /* ** Open a temporary file. ** ** Write the file descriptor into *pFile. Return SQLITE_OK on success ** or some other error code if we fail. The OS will automatically ** delete the temporary file when it is closed. ** ** The flags passed to the VFS layer xOpen() call are those specified ** by parameter vfsFlags ORed with the following: ** ** SQLITE_OPEN_READWRITE ** SQLITE_OPEN_CREATE ** SQLITE_OPEN_EXCLUSIVE ** SQLITE_OPEN_DELETEONCLOSE */ static int pagerOpentemp( Pager *pPager, /* The pager object */ sqlite3_file *pFile, /* Write the file descriptor here */ int vfsFlags /* Flags passed through to the VFS */ ){ int rc; /* Return code */ #ifdef SQLITE_TEST sqlite3_opentemp_count++; /* Used for testing and analysis only */ #endif vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); assert( rc!=SQLITE_OK || isOpen(pFile) ); return rc; } /* ** Set the busy handler function. ** ** The pager invokes the busy-handler if sqlite3OsLock() returns ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE ** lock. It does *not* invoke the busy handler when upgrading from ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE ** (which occurs during hot-journal rollback). Summary: ** ** Transition | Invokes xBusyHandler ** -------------------------------------------------------- ** NO_LOCK -> SHARED_LOCK | Yes ** SHARED_LOCK -> RESERVED_LOCK | No ** SHARED_LOCK -> EXCLUSIVE_LOCK | No ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes ** ** If the busy-handler callback returns non-zero, the lock is ** retried. If it returns zero, then the SQLITE_BUSY error is ** returned to the caller of the pager API function. */ SQLITE_PRIVATE void sqlite3PagerSetBusyHandler( Pager *pPager, /* Pager object */ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ ){ void **ap; pPager->xBusyHandler = xBusyHandler; pPager->pBusyHandlerArg = pBusyHandlerArg; ap = (void **)&pPager->xBusyHandler; assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); assert( ap[1]==pBusyHandlerArg ); sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); } /* ** Change the page size used by the Pager object. The new page size ** is passed in *pPageSize. ** ** If the pager is in the error state when this function is called, it ** is a no-op. The value returned is the error state error code (i.e. ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). ** ** Otherwise, if all of the following are true: ** ** * the new page size (value of *pPageSize) is valid (a power ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and ** ** * there are no outstanding page references, and ** ** * the database is either not an in-memory database or it is ** an in-memory database that currently consists of zero pages. ** ** then the pager object page size is set to *pPageSize. ** ** If the page size is changed, then this function uses sqlite3PagerMalloc() ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. ** In all other cases, SQLITE_OK is returned. ** ** If the page size is not changed, either because one of the enumerated ** conditions above is not true, the pager was in error state when this ** function was called, or because the memory allocation attempt failed, ** then *pPageSize is set to the old, retained page size before returning. */ SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ int rc = SQLITE_OK; /* It is not possible to do a full assert_pager_state() here, as this ** function may be called from within PagerOpen(), before the state ** of the Pager object is internally consistent. ** ** At one point this function returned an error if the pager was in ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that ** there is at least one outstanding page reference, this function ** is a no-op for that case anyhow. */ u32 pageSize = *pPageSize; assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); if( (pPager->memDb==0 || pPager->dbSize==0) && sqlite3PcacheRefCount(pPager->pPCache)==0 && pageSize && pageSize!=(u32)pPager->pageSize ){ char *pNew = NULL; /* New temp space */ i64 nByte = 0; if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ rc = sqlite3OsFileSize(pPager->fd, &nByte); } if( rc==SQLITE_OK ){ /* 8 bytes of zeroed overrun space is sufficient so that the b-tree * cell header parser will never run off the end of the allocation */ pNew = (char *)sqlite3PageMalloc(pageSize+8); if( !pNew ){ rc = SQLITE_NOMEM_BKPT; }else{ memset(pNew+pageSize, 0, 8); } } if( rc==SQLITE_OK ){ pager_reset(pPager); rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); } if( rc==SQLITE_OK ){ sqlite3PageFree(pPager->pTmpSpace); pPager->pTmpSpace = pNew; pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); pPager->pageSize = pageSize; pPager->lckPgno = (Pgno)(PENDING_BYTE/pageSize) + 1; }else{ sqlite3PageFree(pNew); } } *pPageSize = pPager->pageSize; if( rc==SQLITE_OK ){ if( nReserve<0 ) nReserve = pPager->nReserve; assert( nReserve>=0 && nReserve<1000 ); pPager->nReserve = (i16)nReserve; pagerReportSize(pPager); pagerFixMaplimit(pPager); } return rc; } /* ** Return a pointer to the "temporary page" buffer held internally ** by the pager. This is a buffer that is big enough to hold the ** entire content of a database page. This buffer is used internally ** during rollback and will be overwritten whenever a rollback ** occurs. But other modules are free to use it too, as long as ** no rollbacks are happening. */ SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){ return pPager->pTmpSpace; } /* ** Attempt to set the maximum database page count if mxPage is positive. ** Make no changes if mxPage is zero or negative. And never reduce the ** maximum page count below the current size of the database. ** ** Regardless of mxPage, return the current maximum page count. */ SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){ if( mxPage>0 ){ pPager->mxPgno = mxPage; } assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ /* assert( pPager->mxPgno>=pPager->dbSize ); */ /* OP_MaxPgcnt ensures that the parameter passed to this function is not ** less than the total number of valid pages in the database. But this ** may be less than Pager.dbSize, and so the assert() above is not valid */ return pPager->mxPgno; } /* ** The following set of routines are used to disable the simulated ** I/O error mechanism. These routines are used to avoid simulated ** errors in places where we do not care about errors. ** ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops ** and generate no code. */ #ifdef SQLITE_TEST SQLITE_API extern int sqlite3_io_error_pending; SQLITE_API extern int sqlite3_io_error_hit; static int saved_cnt; void disable_simulated_io_errors(void){ saved_cnt = sqlite3_io_error_pending; sqlite3_io_error_pending = -1; } void enable_simulated_io_errors(void){ sqlite3_io_error_pending = saved_cnt; } #else # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif /* ** Read the first N bytes from the beginning of the file into memory ** that pDest points to. ** ** If the pager was opened on a transient file (zFilename==""), or ** opened on a file less than N bytes in size, the output buffer is ** zeroed and SQLITE_OK returned. The rationale for this is that this ** function is used to read database headers, and a new transient or ** zero sized database has a header than consists entirely of zeroes. ** ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, ** the error code is returned to the caller and the contents of the ** output buffer undefined. */ SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ int rc = SQLITE_OK; memset(pDest, 0, N); assert( isOpen(pPager->fd) || pPager->tempFile ); /* This routine is only called by btree immediately after creating ** the Pager object. There has not been an opportunity to transition ** to WAL mode yet. */ assert( !pagerUseWal(pPager) ); if( isOpen(pPager->fd) ){ IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) rc = sqlite3OsRead(pPager->fd, pDest, N, 0); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } } return rc; } /* ** This function may only be called when a read-transaction is open on ** the pager. It returns the total number of pages in the database. ** ** However, if the file is between 1 and bytes in size, then ** this is considered a 1 page file. */ SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ assert( pPager->eState>=PAGER_READER ); assert( pPager->eState!=PAGER_WRITER_FINISHED ); *pnPage = (int)pPager->dbSize; } /* ** Try to obtain a lock of type locktype on the database file. If ** a similar or greater lock is already held, this function is a no-op ** (returning SQLITE_OK immediately). ** ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke ** the busy callback if the lock is currently not available. Repeat ** until the busy callback returns false or until the attempt to ** obtain the lock succeeds. ** ** Return SQLITE_OK on success and an error code if we cannot obtain ** the lock. If the lock is obtained successfully, set the Pager.state ** variable to locktype before returning. */ static int pager_wait_on_lock(Pager *pPager, int locktype){ int rc; /* Return code */ /* Check that this is either a no-op (because the requested lock is ** already held), or one of the transitions that the busy-handler ** may be invoked during, according to the comment above ** sqlite3PagerSetBusyhandler(). */ assert( (pPager->eLock>=locktype) || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) ); do { rc = pagerLockDb(pPager, locktype); }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); return rc; } /* ** Function assertTruncateConstraint(pPager) checks that one of the ** following is true for all dirty pages currently in the page-cache: ** ** a) The page number is less than or equal to the size of the ** current database image, in pages, OR ** ** b) if the page content were written at this time, it would not ** be necessary to write the current content out to the sub-journal. ** ** If the condition asserted by this function were not true, and the ** dirty page were to be discarded from the cache via the pagerStress() ** routine, pagerStress() would not write the current page content to ** the database file. If a savepoint transaction were rolled back after ** this happened, the correct behavior would be to restore the current ** content of the page. However, since this content is not present in either ** the database file or the portion of the rollback journal and ** sub-journal rolled back the content could not be restored and the ** database image would become corrupt. It is therefore fortunate that ** this circumstance cannot arise. */ #if defined(SQLITE_DEBUG) static void assertTruncateConstraintCb(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( pPg->flags&PGHDR_DIRTY ); if( pPg->pgno>pPager->dbSize ){ /* if (a) is false */ Pgno pgno = pPg->pgno; int i; for(i=0; ipPager->nSavepoint; i++){ PagerSavepoint *p = &pPager->aSavepoint[i]; assert( p->nOrigpInSavepoint,pgno) ); } } } static void assertTruncateConstraint(Pager *pPager){ sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); } #else # define assertTruncateConstraint(pPager) #endif /* ** Truncate the in-memory database file image to nPage pages. This ** function does not actually modify the database file on disk. It ** just sets the internal state of the pager object so that the ** truncation will be done when the current transaction is committed. ** ** This function is only called right before committing a transaction. ** Once this function has been called, the transaction must either be ** rolled back or committed. It is not safe to call this function and ** then continue writing to the database. */ SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ assert( pPager->dbSize>=nPage || CORRUPT_DB ); assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); pPager->dbSize = nPage; /* At one point the code here called assertTruncateConstraint() to ** ensure that all pages being truncated away by this operation are, ** if one or more savepoints are open, present in the savepoint ** journal so that they can be restored if the savepoint is rolled ** back. This is no longer necessary as this function is now only ** called right before committing a transaction. So although the ** Pager object may still have open savepoints (Pager.nSavepoint!=0), ** they cannot be rolled back. So the assertTruncateConstraint() call ** is no longer correct. */ } /* ** This function is called before attempting a hot-journal rollback. It ** syncs the journal file to disk, then sets pPager->journalHdr to the ** size of the journal file so that the pager_playback() routine knows ** that the entire journal file has been synced. ** ** Syncing a hot-journal to disk before attempting to roll it back ensures ** that if a power-failure occurs during the rollback, the process that ** attempts rollback following system recovery sees the same journal ** content as this process. ** ** If everything goes as planned, SQLITE_OK is returned. Otherwise, ** an SQLite error code. */ static int pagerSyncHotJournal(Pager *pPager){ int rc = SQLITE_OK; if( !pPager->noSync ){ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); } if( rc==SQLITE_OK ){ rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); } return rc; } #if SQLITE_MAX_MMAP_SIZE>0 /* ** Obtain a reference to a memory mapped page object for page number pgno. ** The new object will use the pointer pData, obtained from xFetch(). ** If successful, set *ppPage to point to the new page reference ** and return SQLITE_OK. Otherwise, return an SQLite error code and set ** *ppPage to zero. ** ** Page references obtained by calling this function should be released ** by calling pagerReleaseMapPage(). */ static int pagerAcquireMapPage( Pager *pPager, /* Pager object */ Pgno pgno, /* Page number */ void *pData, /* xFetch()'d data for this page */ PgHdr **ppPage /* OUT: Acquired page object */ ){ PgHdr *p; /* Memory mapped page to return */ if( pPager->pMmapFreelist ){ *ppPage = p = pPager->pMmapFreelist; pPager->pMmapFreelist = p->pDirty; p->pDirty = 0; assert( pPager->nExtra>=8 ); memset(p->pExtra, 0, 8); }else{ *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); if( p==0 ){ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); return SQLITE_NOMEM_BKPT; } p->pExtra = (void *)&p[1]; p->flags = PGHDR_MMAP; p->nRef = 1; p->pPager = pPager; } assert( p->pExtra==(void *)&p[1] ); assert( p->pPage==0 ); assert( p->flags==PGHDR_MMAP ); assert( p->pPager==pPager ); assert( p->nRef==1 ); p->pgno = pgno; p->pData = pData; pPager->nMmapOut++; return SQLITE_OK; } #endif /* ** Release a reference to page pPg. pPg must have been returned by an ** earlier call to pagerAcquireMapPage(). */ static void pagerReleaseMapPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; pPager->nMmapOut--; pPg->pDirty = pPager->pMmapFreelist; pPager->pMmapFreelist = pPg; assert( pPager->fd->pMethods->iVersion>=3 ); sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); } /* ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. */ static void pagerFreeMapHdrs(Pager *pPager){ PgHdr *p; PgHdr *pNext; for(p=pPager->pMmapFreelist; p; p=pNext){ pNext = p->pDirty; sqlite3_free(p); } } /* Verify that the database file has not be deleted or renamed out from ** under the pager. Return SQLITE_OK if the database is still where it ought ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error ** code from sqlite3OsAccess()) if the database has gone missing. */ static int databaseIsUnmoved(Pager *pPager){ int bHasMoved = 0; int rc; if( pPager->tempFile ) return SQLITE_OK; if( pPager->dbSize==0 ) return SQLITE_OK; assert( pPager->zFilename && pPager->zFilename[0] ); rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); if( rc==SQLITE_NOTFOUND ){ /* If the HAS_MOVED file-control is unimplemented, assume that the file ** has not been moved. That is the historical behavior of SQLite: prior to ** version 3.8.3, it never checked */ rc = SQLITE_OK; }else if( rc==SQLITE_OK && bHasMoved ){ rc = SQLITE_READONLY_DBMOVED; } return rc; } /* ** Shutdown the page cache. Free all memory and close all files. ** ** If a transaction was in progress when this routine is called, that ** transaction is rolled back. All outstanding pages are invalidated ** and their memory is freed. Any attempt to use a page associated ** with this page cache after this function returns will likely ** result in a coredump. ** ** This function always succeeds. If a transaction is active an attempt ** is made to roll it back. If an error occurs during the rollback ** a hot journal may be left in the filesystem but no error is returned ** to the caller. */ SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ u8 *pTmp = (u8*)pPager->pTmpSpace; assert( db || pagerUseWal(pPager)==0 ); assert( assert_pager_state(pPager) ); disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); pagerFreeMapHdrs(pPager); /* pPager->errCode = 0; */ pPager->exclusiveMode = 0; #ifndef SQLITE_OMIT_WAL { u8 *a = 0; assert( db || pPager->pWal==0 ); if( db && 0==(db->flags & SQLITE_NoCkptOnClose) && SQLITE_OK==databaseIsUnmoved(pPager) ){ a = pTmp; } sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); pPager->pWal = 0; } #endif pager_reset(pPager); if( MEMDB ){ pager_unlock(pPager); }else{ /* If it is open, sync the journal file before calling UnlockAndRollback. ** If this is not done, then an unsynced portion of the open journal ** file may be played back into the database. If a power failure occurs ** while this is happening, the database could become corrupt. ** ** If an error occurs while trying to sync the journal, shift the pager ** into the ERROR state. This causes UnlockAndRollback to unlock the ** database and close the journal file without attempting to roll it ** back or finalize it. The next database user will have to do hot-journal ** rollback before accessing the database file. */ if( isOpen(pPager->jfd) ){ pager_error(pPager, pagerSyncHotJournal(pPager)); } pagerUnlockAndRollback(pPager); } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); IOTRACE(("CLOSE %p\n", pPager)) sqlite3OsClose(pPager->jfd); sqlite3OsClose(pPager->fd); sqlite3PageFree(pTmp); sqlite3PcacheClose(pPager->pPCache); /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); #endif /* END SQLCIPHER */ assert( !pPager->aSavepoint && !pPager->pInJournal ); assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); sqlite3_free(pPager); return SQLITE_OK; } #if !defined(NDEBUG) || defined(SQLITE_TEST) /* ** Return the page number for page pPg. */ SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){ return pPg->pgno; } #endif /* ** Increment the reference count for page pPg. */ SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){ sqlite3PcacheRef(pPg); } /* ** Sync the journal. In other words, make sure all the pages that have ** been written to the journal have actually reached the surface of the ** disk and can be restored in the event of a hot-journal rollback. ** ** If the Pager.noSync flag is set, then this function is a no-op. ** Otherwise, the actions required depend on the journal-mode and the ** device characteristics of the file-system, as follows: ** ** * If the journal file is an in-memory journal file, no action need ** be taken. ** ** * Otherwise, if the device does not support the SAFE_APPEND property, ** then the nRec field of the most recently written journal header ** is updated to contain the number of journal records that have ** been written following it. If the pager is operating in full-sync ** mode, then the journal file is synced before this field is updated. ** ** * If the device does not support the SEQUENTIAL property, then ** journal file is synced. ** ** Or, in pseudo-code: ** ** if( NOT ){ ** if( NOT SAFE_APPEND ){ ** if( ) xSync(); ** ** } ** if( NOT SEQUENTIAL ) xSync(); ** } ** ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every ** page currently held in memory before returning SQLITE_OK. If an IO ** error is encountered, then the IO error code is returned to the caller. */ static int syncJournal(Pager *pPager, int newHdr){ int rc; /* Return code */ assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); assert( !pagerUseWal(pPager) ); rc = sqlite3PagerExclusiveLock(pPager); if( rc!=SQLITE_OK ) return rc; if( !pPager->noSync ){ assert( !pPager->tempFile ); if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); assert( isOpen(pPager->jfd) ); if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ /* This block deals with an obscure problem. If the last connection ** that wrote to this database was operating in persistent-journal ** mode, then the journal file may at this point actually be larger ** than Pager.journalOff bytes. If the next thing in the journal ** file happens to be a journal-header (written as part of the ** previous connection's transaction), and a crash or power-failure ** occurs after nRec is updated but before this connection writes ** anything else to the journal file (or commits/rolls back its ** transaction), then SQLite may become confused when doing the ** hot-journal rollback following recovery. It may roll back all ** of this connections data, then proceed to rolling back the old, ** out-of-date data that follows it. Database corruption. ** ** To work around this, if the journal file does appear to contain ** a valid header following Pager.journalOff, then write a 0x00 ** byte to the start of it to prevent it from being recognized. ** ** Variable iNextHdrOffset is set to the offset at which this ** problematic header will occur, if it exists. aMagic is used ** as a temporary buffer to inspect the first couple of bytes of ** the potential journal header. */ i64 iNextHdrOffset; u8 aMagic[8]; u8 zHeader[sizeof(aJournalMagic)+4]; memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); iNextHdrOffset = journalHdrOffset(pPager); rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ static const u8 zerobyte = 0; rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); } if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ return rc; } /* Write the nRec value into the journal file header. If in ** full-synchronous mode, sync the journal first. This ensures that ** all data has really hit the disk before nRec is updated to mark ** it as a candidate for rollback. ** ** This is not required if the persistent media supports the ** SAFE_APPEND property. Because in this case it is not possible ** for garbage data to be appended to the file, the nRec field ** is populated with 0xFFFFFFFF when the journal header is written ** and never needs to be updated. */ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); if( rc!=SQLITE_OK ) return rc; } IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); rc = sqlite3OsWrite( pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr ); if( rc!=SQLITE_OK ) return rc; } if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) ); if( rc!=SQLITE_OK ) return rc; } pPager->journalHdr = pPager->journalOff; if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ pPager->nRec = 0; rc = writeJournalHdr(pPager); if( rc!=SQLITE_OK ) return rc; } }else{ pPager->journalHdr = pPager->journalOff; } } /* Unless the pager is in noSync mode, the journal file was just ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on ** all pages. */ sqlite3PcacheClearSyncFlags(pPager->pPCache); pPager->eState = PAGER_WRITER_DBMOD; assert( assert_pager_state(pPager) ); return SQLITE_OK; } /* ** The argument is the first in a linked list of dirty pages connected ** by the PgHdr.pDirty pointer. This function writes each one of the ** in-memory pages in the list to the database file. The argument may ** be NULL, representing an empty list. In this case this function is ** a no-op. ** ** The pager must hold at least a RESERVED lock when this function ** is called. Before writing anything to the database file, this lock ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, ** SQLITE_BUSY is returned and no data is written to the database file. ** ** If the pager is a temp-file pager and the actual file-system file ** is not yet open, it is created and opened before any data is ** written out. ** ** Once the lock has been upgraded and, if necessary, the file opened, ** the pages are written out to the database file in list order. Writing ** a page is skipped if it meets either of the following criteria: ** ** * The page number is greater than Pager.dbSize, or ** * The PGHDR_DONT_WRITE flag is set on the page. ** ** If writing out a page causes the database file to grow, Pager.dbFileSize ** is updated accordingly. If page 1 is written out, then the value cached ** in Pager.dbFileVers[] is updated to match the new value stored in ** the database file. ** ** If everything is successful, SQLITE_OK is returned. If an IO error ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot ** be obtained, SQLITE_BUSY is returned. */ static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ int rc = SQLITE_OK; /* Return code */ /* This function is only called for rollback pagers in WRITER_DBMOD state. */ assert( !pagerUseWal(pPager) ); assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); assert( pPager->eLock==EXCLUSIVE_LOCK ); assert( isOpen(pPager->fd) || pList->pDirty==0 ); /* If the file is a temp-file has not yet been opened, open it now. It ** is not possible for rc to be other than SQLITE_OK if this branch ** is taken, as pager_wait_on_lock() is a no-op for temp-files. */ if( !isOpen(pPager->fd) ){ assert( pPager->tempFile && rc==SQLITE_OK ); rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); } /* Before the first write, give the VFS a hint of what the final ** file size will be. */ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); if( rc==SQLITE_OK && pPager->dbHintSizedbSize && (pList->pDirty || pList->pgno>pPager->dbHintSize) ){ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); pPager->dbHintSize = pPager->dbSize; } while( rc==SQLITE_OK && pList ){ Pgno pgno = pList->pgno; /* If there are dirty pages in the page cache with page numbers greater ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to ** make the file smaller (presumably by auto-vacuum code). Do not write ** any such pages to the file. ** ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag ** set (set by sqlite3PagerDontWrite()). */ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ char *pData; /* Data to write */ assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); if( pList->pgno==1 ) pager_write_changecounter(pList); /* Encode the database */ CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM_BKPT, pData); /* Write out the page data. */ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); /* If page 1 was just written, update Pager.dbFileVers to match ** the value now stored in the database file. If writing this ** page caused the database file to grow, update dbFileSize. */ if( pgno==1 ){ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); } if( pgno>pPager->dbFileSize ){ pPager->dbFileSize = pgno; } pPager->aStat[PAGER_STAT_WRITE]++; /* Update any backup objects copying the contents of this pager. */ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); PAGERTRACE(("STORE %d page %d hash(%08x)\n", PAGERID(pPager), pgno, pager_pagehash(pList))); IOTRACE(("PGOUT %p %d\n", pPager, pgno)); PAGER_INCR(sqlite3_pager_writedb_count); }else{ PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); } pager_set_pagehash(pList); pList = pList->pDirty; } return rc; } /* ** Ensure that the sub-journal file is open. If it is already open, this ** function is a no-op. ** ** SQLITE_OK is returned if everything goes according to plan. An ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() ** fails. */ static int openSubJournal(Pager *pPager){ int rc = SQLITE_OK; if( !isOpen(pPager->sjfd) ){ const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; int nStmtSpill = sqlite3Config.nStmtSpill; if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ nStmtSpill = -1; } rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); } return rc; } /* ** Append a record of the current state of page pPg to the sub-journal. ** ** If successful, set the bit corresponding to pPg->pgno in the bitvecs ** for all open savepoints before returning. ** ** This function returns SQLITE_OK if everything is successful, an IO ** error code if the attempt to write to the sub-journal fails, or ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint ** bitvec. */ static int subjournalPage(PgHdr *pPg){ int rc = SQLITE_OK; Pager *pPager = pPg->pPager; if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ /* Open the sub-journal, if it has not already been opened */ assert( pPager->useJournal ); assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); assert( pagerUseWal(pPager) || pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); rc = openSubJournal(pPager); /* If the sub-journal was opened successfully (or was already open), ** write the journal record into the file. */ if( rc==SQLITE_OK ){ void *pData = pPg->pData; i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); char *pData2; /* BEGIN SQLCIPHER */ #if SQLITE_HAS_CODEC if( !pPager->subjInMemory ){ CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2); }else #endif /* END SQLCIPHER */ pData2 = pData; PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); rc = write32bits(pPager->sjfd, offset, pPg->pgno); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); } } } if( rc==SQLITE_OK ){ pPager->nSubRec++; assert( pPager->nSavepoint>0 ); rc = addToSavepointBitvecs(pPager, pPg->pgno); } return rc; } static int subjournalPageIfRequired(PgHdr *pPg){ if( subjRequiresPage(pPg) ){ return subjournalPage(pPg); }else{ return SQLITE_OK; } } /* ** This function is called by the pcache layer when it has reached some ** soft memory limit. The first argument is a pointer to a Pager object ** (cast as a void*). The pager is always 'purgeable' (not an in-memory ** database). The second argument is a reference to a page that is ** currently dirty but has no outstanding references. The page ** is always associated with the Pager object passed as the first ** argument. ** ** The job of this function is to make pPg clean by writing its contents ** out to the database file, if possible. This may involve syncing the ** journal file. ** ** If successful, sqlite3PcacheMakeClean() is called on the page and ** SQLITE_OK returned. If an IO error occurs while trying to make the ** page clean, the IO error code is returned. If the page cannot be ** made clean for some other reason, but no error occurs, then SQLITE_OK ** is returned by sqlite3PcacheMakeClean() is not called. */ static int pagerStress(void *p, PgHdr *pPg){ Pager *pPager = (Pager *)p; int rc = SQLITE_OK; assert( pPg->pPager==pPager ); assert( pPg->flags&PGHDR_DIRTY ); /* The doNotSpill NOSYNC bit is set during times when doing a sync of ** journal (and adding a new header) is not allowed. This occurs ** during calls to sqlite3PagerWrite() while trying to journal multiple ** pages belonging to the same sector. ** ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling ** regardless of whether or not a sync is required. This is set during ** a rollback or by user request, respectively. ** ** Spilling is also prohibited when in an error state since that could ** lead to database corruption. In the current implementation it ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 ** while in the error state, hence it is impossible for this routine to ** be called in the error state. Nevertheless, we include a NEVER() ** test for the error state as a safeguard against future changes. */ if( NEVER(pPager->errCode) ) return SQLITE_OK; testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); testcase( pPager->doNotSpill & SPILLFLAG_OFF ); testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); if( pPager->doNotSpill && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 || (pPg->flags & PGHDR_NEED_SYNC)!=0) ){ return SQLITE_OK; } pPager->aStat[PAGER_STAT_SPILL]++; pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ rc = subjournalPageIfRequired(pPg); if( rc==SQLITE_OK ){ rc = pagerWalFrames(pPager, pPg, 0, 0); } }else{ #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( pPager->tempFile==0 ){ rc = sqlite3JournalCreate(pPager->jfd); if( rc!=SQLITE_OK ) return pager_error(pPager, rc); } #endif /* Sync the journal file if required. */ if( pPg->flags&PGHDR_NEED_SYNC || pPager->eState==PAGER_WRITER_CACHEMOD ){ rc = syncJournal(pPager, 1); } /* Write the contents of the page out to the database file. */ if( rc==SQLITE_OK ){ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); rc = pager_write_pagelist(pPager, pPg); } } /* Mark the page as clean. */ if( rc==SQLITE_OK ){ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); sqlite3PcacheMakeClean(pPg); } return pager_error(pPager, rc); } /* ** Flush all unreferenced dirty pages to disk. */ SQLITE_PRIVATE int sqlite3PagerFlush(Pager *pPager){ int rc = pPager->errCode; if( !MEMDB ){ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); assert( assert_pager_state(pPager) ); while( rc==SQLITE_OK && pList ){ PgHdr *pNext = pList->pDirty; if( pList->nRef==0 ){ rc = pagerStress((void*)pPager, pList); } pList = pNext; } } return rc; } /* ** Allocate and initialize a new Pager object and put a pointer to it ** in *ppPager. The pager should eventually be freed by passing it ** to sqlite3PagerClose(). ** ** The zFilename argument is the path to the database file to open. ** If zFilename is NULL then a randomly-named temporary file is created ** and used as the file to be cached. Temporary files are be deleted ** automatically when they are closed. If zFilename is ":memory:" then ** all information is held in cache. It is never written to disk. ** This can be used to implement an in-memory database. ** ** The nExtra parameter specifies the number of bytes of space allocated ** along with each page reference. This space is available to the user ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the ** first 8 bytes of this space are zeroed but the remainder is uninitialized. ** (The extra space is used by btree as the MemPage object.) ** ** The flags argument is used to specify properties that affect the ** operation of the pager. It should be passed some bitwise combination ** of the PAGER_* flags. ** ** The vfsFlags parameter is a bitmask to pass to the flags parameter ** of the xOpen() method of the supplied VFS when opening files. ** ** If the pager object is allocated and the specified file opened ** successfully, SQLITE_OK is returned and *ppPager set to point to ** the new pager object. If an error occurs, *ppPager is set to NULL ** and error code returned. This function may return SQLITE_NOMEM ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or ** various SQLITE_IO_XXX errors. */ SQLITE_PRIVATE int sqlite3PagerOpen( sqlite3_vfs *pVfs, /* The virtual file system to use */ Pager **ppPager, /* OUT: Return the Pager structure here */ const char *zFilename, /* Name of the database file to open */ int nExtra, /* Extra bytes append to each in-memory page */ int flags, /* flags controlling this file */ int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ void (*xReinit)(DbPage*) /* Function to reinitialize pages */ ){ u8 *pPtr; Pager *pPager = 0; /* Pager object to allocate and return */ int rc = SQLITE_OK; /* Return code */ int tempFile = 0; /* True for temp files (incl. in-memory files) */ int memDb = 0; /* True if this is an in-memory file */ int memJM = 0; /* Memory journal mode */ int readOnly = 0; /* True if this is a read-only file */ int journalFileSize; /* Bytes to allocate for each journal fd */ char *zPathname = 0; /* Full path to database file */ int nPathname = 0; /* Number of bytes in zPathname */ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ const char *zUri = 0; /* URI args to copy */ int nUriByte = 1; /* Number of bytes of URI args at *zUri */ /* Figure out how much space is required for each journal file-handle ** (there are two of them, the main journal and the sub-journal). */ journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); /* Set the output variable to NULL in case an error occurs. */ *ppPager = 0; #ifndef SQLITE_OMIT_MEMORYDB if( flags & PAGER_MEMORY ){ memDb = 1; if( zFilename && zFilename[0] ){ zPathname = sqlite3DbStrDup(0, zFilename); if( zPathname==0 ) return SQLITE_NOMEM_BKPT; nPathname = sqlite3Strlen30(zPathname); zFilename = 0; } } #endif /* Compute and store the full pathname in an allocated buffer pointed ** to by zPathname, length nPathname. Or, if this is a temporary file, ** leave both nPathname and zPathname set to 0. */ if( zFilename && zFilename[0] ){ const char *z; nPathname = pVfs->mxPathname+1; zPathname = sqlite3DbMallocRaw(0, nPathname*2); if( zPathname==0 ){ return SQLITE_NOMEM_BKPT; } zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); if( rc!=SQLITE_OK ){ if( rc==SQLITE_OK_SYMLINK ){ if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){ rc = SQLITE_CANTOPEN_SYMLINK; }else{ rc = SQLITE_OK; } } } nPathname = sqlite3Strlen30(zPathname); z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; while( *z ){ z += strlen(z)+1; z += strlen(z)+1; } nUriByte = (int)(&z[1] - zUri); assert( nUriByte>=1 ); if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ /* This branch is taken when the journal path required by ** the database being opened will be more than pVfs->mxPathname ** bytes in length. This means the database cannot be opened, ** as it will not be possible to open the journal file or even ** check for a hot-journal before reading. */ rc = SQLITE_CANTOPEN_BKPT; } if( rc!=SQLITE_OK ){ sqlite3DbFree(0, zPathname); return rc; } } /* Allocate memory for the Pager structure, PCache object, the ** three file descriptors, the database file name and the journal ** file name. The layout in memory is as follows: ** ** Pager object (sizeof(Pager) bytes) ** PCache object (sqlite3PcacheSize() bytes) ** Database file handle (pVfs->szOsFile bytes) ** Sub-journal file handle (journalFileSize bytes) ** Main journal file handle (journalFileSize bytes) ** Ptr back to the Pager (sizeof(Pager*) bytes) ** \0\0\0\0 database prefix (4 bytes) ** Database file name (nPathname+1 bytes) ** URI query parameters (nUriByte bytes) ** Journal filename (nPathname+8+1 bytes) ** WAL filename (nPathname+4+1 bytes) ** \0\0\0 terminator (3 bytes) ** ** Some 3rd-party software, over which we have no control, depends on ** the specific order of the filenames and the \0 separators between them ** so that it can (for example) find the database filename given the WAL ** filename without using the sqlite3_filename_database() API. This is a ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party ** software is in widespread use, so we try to avoid changing the filename ** order and formatting if possible. In particular, the details of the ** filename format expected by 3rd-party software should be as follows: ** ** - Main Database Path ** - \0 ** - Multiple URI components consisting of: ** - Key ** - \0 ** - Value ** - \0 ** - \0 ** - Journal Path ** - \0 ** - WAL Path (zWALName) ** - \0 ** ** The sqlite3_create_filename() interface and the databaseFilename() utility ** that is used by sqlite3_filename_database() and kin also depend on the ** specific formatting and order of the various filenames, so if the format ** changes here, be sure to change it there as well. */ assert( SQLITE_PTRSIZE==sizeof(Pager*) ); pPtr = (u8 *)sqlite3MallocZero( ROUND8(sizeof(*pPager)) + /* Pager structure */ ROUND8(pcacheSize) + /* PCache object */ ROUND8(pVfs->szOsFile) + /* The main db file */ journalFileSize * 2 + /* The two journal files */ SQLITE_PTRSIZE + /* Space to hold a pointer */ 4 + /* Database prefix */ nPathname + 1 + /* database filename */ nUriByte + /* query parameters */ nPathname + 8 + 1 + /* Journal filename */ #ifndef SQLITE_OMIT_WAL nPathname + 4 + 1 + /* WAL filename */ #endif 3 /* Terminator */ ); assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); if( !pPtr ){ sqlite3DbFree(0, zPathname); return SQLITE_NOMEM_BKPT; } pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager)); pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize); pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile); pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); memcpy(pPtr, &pPager, SQLITE_PTRSIZE); pPtr += SQLITE_PTRSIZE; /* Fill in the Pager.zFilename and pPager.zQueryParam fields */ pPtr += 4; /* Skip zero prefix */ pPager->zFilename = (char*)pPtr; if( nPathname>0 ){ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1; if( zUri ){ memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte; }else{ pPtr++; } } /* Fill in Pager.zJournal */ if( nPathname>0 ){ pPager->zJournal = (char*)pPtr; memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; memcpy(pPtr, "-journal",8); pPtr += 8 + 1; #ifdef SQLITE_ENABLE_8_3_NAMES sqlite3FileSuffix3(zFilename,pPager->zJournal); pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1); #endif }else{ pPager->zJournal = 0; } #ifndef SQLITE_OMIT_WAL /* Fill in Pager.zWal */ if( nPathname>0 ){ pPager->zWal = (char*)pPtr; memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; #ifdef SQLITE_ENABLE_8_3_NAMES sqlite3FileSuffix3(zFilename, pPager->zWal); pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); #endif }else{ pPager->zWal = 0; } #endif (void)pPtr; /* Suppress warning about unused pPtr value */ if( nPathname ) sqlite3DbFree(0, zPathname); pPager->pVfs = pVfs; pPager->vfsFlags = vfsFlags; /* Open the pager file. */ if( zFilename && zFilename[0] ){ int fout = 0; /* VFS flags returned by xOpen() */ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); assert( !memDb ); pPager->memVfs = memJM = (fout&SQLITE_OPEN_MEMORY)!=0; readOnly = (fout&SQLITE_OPEN_READONLY)!=0; /* If the file was successfully opened for read/write access, ** choose a default page size in case we have to create the ** database file. The default page size is the maximum of: ** ** + SQLITE_DEFAULT_PAGE_SIZE, ** + The value returned by sqlite3OsSectorSize() ** + The largest page size that can be written atomically. */ if( rc==SQLITE_OK ){ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); if( !readOnly ){ setSectorSize(pPager); assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); if( szPageDfltsectorSize ){ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; }else{ szPageDflt = (u32)pPager->sectorSize; } } #ifdef SQLITE_ENABLE_ATOMIC_WRITE { int ii; assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ szPageDflt = ii; } } } #endif } pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0); if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){ vfsFlags |= SQLITE_OPEN_READONLY; goto act_like_temp_file; } } }else{ /* If a temporary file is requested, it is not opened immediately. ** In this case we accept the default page size and delay actually ** opening the file until the first call to OsWrite(). ** ** This branch is also run for an in-memory database. An in-memory ** database is the same as a temp-file that is never written out to ** disk and uses an in-memory rollback journal. ** ** This branch also runs for files marked as immutable. */ act_like_temp_file: tempFile = 1; pPager->eState = PAGER_READER; /* Pretend we already have a lock */ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ pPager->noLock = 1; /* Do no locking */ readOnly = (vfsFlags&SQLITE_OPEN_READONLY); } /* The following call to PagerSetPagesize() serves to set the value of ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. */ if( rc==SQLITE_OK ){ assert( pPager->memDb==0 ); rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); testcase( rc!=SQLITE_OK ); } /* Initialize the PCache object. */ if( rc==SQLITE_OK ){ nExtra = ROUND8(nExtra); assert( nExtra>=8 && nExtra<1000 ); rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); } /* If an error occurred above, free the Pager structure and close the file. */ if( rc!=SQLITE_OK ){ sqlite3OsClose(pPager->fd); sqlite3PageFree(pPager->pTmpSpace); sqlite3_free(pPager); return rc; } PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) pPager->useJournal = (u8)useJournal; /* pPager->stmtOpen = 0; */ /* pPager->stmtInUse = 0; */ /* pPager->nRef = 0; */ /* pPager->stmtSize = 0; */ /* pPager->stmtJSize = 0; */ /* pPager->nPage = 0; */ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; /* pPager->state = PAGER_UNLOCK; */ /* pPager->errMask = 0; */ pPager->tempFile = (u8)tempFile; assert( tempFile==PAGER_LOCKINGMODE_NORMAL || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); pPager->exclusiveMode = (u8)tempFile; pPager->changeCountDone = pPager->tempFile; pPager->memDb = (u8)memDb; pPager->readOnly = (u8)readOnly; assert( useJournal || pPager->tempFile ); sqlite3PagerSetFlags(pPager, (SQLITE_DEFAULT_SYNCHRONOUS+1)|PAGER_CACHESPILL); /* pPager->pFirst = 0; */ /* pPager->pFirstSynced = 0; */ /* pPager->pLast = 0; */ pPager->nExtra = (u16)nExtra; pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; assert( isOpen(pPager->fd) || tempFile ); setSectorSize(pPager); if( !useJournal ){ pPager->journalMode = PAGER_JOURNALMODE_OFF; }else if( memDb || memJM ){ pPager->journalMode = PAGER_JOURNALMODE_MEMORY; } /* pPager->xBusyHandler = 0; */ /* pPager->pBusyHandlerArg = 0; */ pPager->xReiniter = xReinit; setGetterMethod(pPager); /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ *ppPager = pPager; return SQLITE_OK; } /* ** Return the sqlite3_file for the main database given the name ** of the corresponding WAL or Journal name as passed into ** xOpen. */ SQLITE_API sqlite3_file *sqlite3_database_file_object(const char *zName){ Pager *pPager; const char *p; while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ zName--; } p = zName - 4 - sizeof(Pager*); assert( EIGHT_BYTE_ALIGNMENT(p) ); pPager = *(Pager**)p; return pPager->fd; } /* ** This function is called after transitioning from PAGER_UNLOCK to ** PAGER_SHARED state. It tests if there is a hot journal present in ** the file-system for the given pager. A hot journal is one that ** needs to be played back. According to this function, a hot-journal ** file exists if the following criteria are met: ** ** * The journal file exists in the file system, and ** * No process holds a RESERVED or greater lock on the database file, and ** * The database file itself is greater than 0 bytes in size, and ** * The first byte of the journal file exists and is not 0x00. ** ** If the current size of the database file is 0 but a journal file ** exists, that is probably an old journal left over from a prior ** database with the same name. In this case the journal file is ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK ** is returned. ** ** This routine does not check if there is a super-journal filename ** at the end of the file. If there is, and that super-journal file ** does not exist, then the journal file is not really hot. In this ** case this routine will return a false-positive. The pager_playback() ** routine will discover that the journal file is not really hot and ** will not roll it back. ** ** If a hot-journal file is found to exist, *pExists is set to 1 and ** SQLITE_OK returned. If no hot-journal file is present, *pExists is ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying ** to determine whether or not a hot-journal file exists, the IO error ** code is returned and the value of *pExists is undefined. */ static int hasHotJournal(Pager *pPager, int *pExists){ sqlite3_vfs * const pVfs = pPager->pVfs; int rc = SQLITE_OK; /* Return code */ int exists = 1; /* True if a journal file is present */ int jrnlOpen = !!isOpen(pPager->jfd); assert( pPager->useJournal ); assert( isOpen(pPager->fd) ); assert( pPager->eState==PAGER_OPEN ); assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN )); *pExists = 0; if( !jrnlOpen ){ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); } if( rc==SQLITE_OK && exists ){ int locked = 0; /* True if some process holds a RESERVED lock */ /* Race condition here: Another process might have been holding the ** the RESERVED lock and have a journal open at the sqlite3OsAccess() ** call above, but then delete the journal and drop the lock before ** we get to the following sqlite3OsCheckReservedLock() call. If that ** is the case, this routine might think there is a hot journal when ** in fact there is none. This results in a false-positive which will ** be dealt with by the playback routine. Ticket #3883. */ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); if( rc==SQLITE_OK && !locked ){ Pgno nPage; /* Number of pages in database file */ assert( pPager->tempFile==0 ); rc = pagerPagecount(pPager, &nPage); if( rc==SQLITE_OK ){ /* If the database is zero pages in size, that means that either (1) the ** journal is a remnant from a prior database with the same name where ** the database file but not the journal was deleted, or (2) the initial ** transaction that populates a new database is being rolled back. ** In either case, the journal file can be deleted. However, take care ** not to delete the journal file if it is already open due to ** journal_mode=PERSIST. */ if( nPage==0 && !jrnlOpen ){ sqlite3BeginBenignMalloc(); if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ sqlite3OsDelete(pVfs, pPager->zJournal, 0); if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); } sqlite3EndBenignMalloc(); }else{ /* The journal file exists and no other connection has a reserved ** or greater lock on the database file. Now check that there is ** at least one non-zero bytes at the start of the journal file. ** If there is, then we consider this journal to be hot. If not, ** it can be ignored. */ if( !jrnlOpen ){ int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); } if( rc==SQLITE_OK ){ u8 first = 0; rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } if( !jrnlOpen ){ sqlite3OsClose(pPager->jfd); } *pExists = (first!=0); }else if( rc==SQLITE_CANTOPEN ){ /* If we cannot open the rollback journal file in order to see if ** it has a zero header, that might be due to an I/O error, or ** it might be due to the race condition described above and in ** ticket #3883. Either way, assume that the journal is hot. ** This might be a false positive. But if it is, then the ** automatic journal playback and recovery mechanism will deal ** with it under an EXCLUSIVE lock where we do not need to ** worry so much with race conditions. */ *pExists = 1; rc = SQLITE_OK; } } } } } return rc; } /* ** This function is called to obtain a shared lock on the database file. ** It is illegal to call sqlite3PagerGet() until after this function ** has been successfully called. If a shared-lock is already held when ** this function is called, it is a no-op. ** ** The following operations are also performed by this function. ** ** 1) If the pager is currently in PAGER_OPEN state (no lock held ** on the database file), then an attempt is made to obtain a ** SHARED lock on the database file. Immediately after obtaining ** the SHARED lock, the file-system is checked for a hot-journal, ** which is played back if present. Following any hot-journal ** rollback, the contents of the cache are validated by checking ** the 'change-counter' field of the database file header and ** discarded if they are found to be invalid. ** ** 2) If the pager is running in exclusive-mode, and there are currently ** no outstanding references to any pages, and is in the error state, ** then an attempt is made to clear the error state by discarding ** the contents of the page cache and rolling back any open journal ** file. ** ** If everything is successful, SQLITE_OK is returned. If an IO error ** occurs while locking the database, checking for a hot-journal file or ** rolling back a journal file, the IO error code is returned. */ SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ /* This routine is only called from b-tree and only when there are no ** outstanding pages. This implies that the pager state should either ** be OPEN or READER. READER is only possible if the pager is or was in ** exclusive access mode. */ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); assert( pPager->errCode==SQLITE_OK ); if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ int bHotJournal = 1; /* True if there exists a hot journal-file */ assert( !MEMDB ); assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); rc = pager_wait_on_lock(pPager, SHARED_LOCK); if( rc!=SQLITE_OK ){ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); goto failed; } /* If a journal file exists, and there is no RESERVED lock on the ** database file, then it either needs to be played back or deleted. */ if( pPager->eLock<=SHARED_LOCK ){ rc = hasHotJournal(pPager, &bHotJournal); } if( rc!=SQLITE_OK ){ goto failed; } if( bHotJournal ){ if( pPager->readOnly ){ rc = SQLITE_READONLY_ROLLBACK; goto failed; } /* Get an EXCLUSIVE lock on the database file. At this point it is ** important that a RESERVED lock is not obtained on the way to the ** EXCLUSIVE lock. If it were, another process might open the ** database file, detect the RESERVED lock, and conclude that the ** database is safe to read while this process is still rolling the ** hot-journal back. ** ** Because the intermediate RESERVED lock is not requested, any ** other process attempting to access the database file will get to ** this point in the code and fail to obtain its own EXCLUSIVE lock ** on the database file. ** ** Unless the pager is in locking_mode=exclusive mode, the lock is ** downgraded to SHARED_LOCK before this function returns. */ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ goto failed; } /* If it is not already open and the file exists on disk, open the ** journal for read/write access. Write access is required because ** in exclusive-access mode the file descriptor will be kept open ** and possibly used for a transaction later on. Also, write-access ** is usually required to finalize the journal in journal_mode=persist ** mode (and also for journal_mode=truncate on some systems). ** ** If the journal does not exist, it usually means that some ** other connection managed to get in and roll it back before ** this connection obtained the exclusive lock above. Or, it ** may mean that the pager was in the error-state when this ** function was called and the journal file does not exist. */ if( !isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ sqlite3_vfs * const pVfs = pPager->pVfs; int bExists; /* True if journal file exists */ rc = sqlite3OsAccess( pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); if( rc==SQLITE_OK && bExists ){ int fout = 0; int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; assert( !pPager->tempFile ); rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ rc = SQLITE_CANTOPEN_BKPT; sqlite3OsClose(pPager->jfd); } } } /* Playback and delete the journal. Drop the database write ** lock and reacquire the read lock. Purge the cache before ** playing back the hot-journal so that we don't end up with ** an inconsistent cache. Sync the hot journal before playing ** it back since the process that crashed and left the hot journal ** probably did not sync it and we are required to always sync ** the journal before playing it back. */ if( isOpen(pPager->jfd) ){ assert( rc==SQLITE_OK ); rc = pagerSyncHotJournal(pPager); if( rc==SQLITE_OK ){ rc = pager_playback(pPager, !pPager->tempFile); pPager->eState = PAGER_OPEN; } }else if( !pPager->exclusiveMode ){ pagerUnlockDb(pPager, SHARED_LOCK); } if( rc!=SQLITE_OK ){ /* This branch is taken if an error occurs while trying to open ** or roll back a hot-journal while holding an EXCLUSIVE lock. The ** pager_unlock() routine will be called before returning to unlock ** the file. If the unlock attempt fails, then Pager.eLock must be ** set to UNKNOWN_LOCK (see the comment above the #define for ** UNKNOWN_LOCK above for an explanation). ** ** In order to get pager_unlock() to do this, set Pager.eState to ** PAGER_ERROR now. This is not actually counted as a transition ** to ERROR state in the state diagram at the top of this file, ** since we know that the same call to pager_unlock() will very ** shortly transition the pager object to the OPEN state. Calling ** assert_pager_state() would fail now, as it should not be possible ** to be in ERROR state when there are zero outstanding page ** references. */ pager_error(pPager, rc); goto failed; } assert( pPager->eState==PAGER_OPEN ); assert( (pPager->eLock==SHARED_LOCK) || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) ); } if( !pPager->tempFile && pPager->hasHeldSharedLock ){ /* The shared-lock has just been acquired then check to ** see if the database has been modified. If the database has changed, ** flush the cache. The hasHeldSharedLock flag prevents this from ** occurring on the very first access to a file, in order to save a ** single unnecessary sqlite3OsRead() call at the start-up. ** ** Database changes are detected by looking at 15 bytes beginning ** at offset 24 into the file. The first 4 of these 16 bytes are ** a 32-bit counter that is incremented with each change. The ** other bytes change randomly with each file change when ** a codec is in use. ** ** There is a vanishingly small chance that a change will not be ** detected. The chance of an undetected change is so small that ** it can be neglected. */ char dbFileVers[sizeof(pPager->dbFileVers)]; IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); if( rc!=SQLITE_OK ){ if( rc!=SQLITE_IOERR_SHORT_READ ){ goto failed; } memset(dbFileVers, 0, sizeof(dbFileVers)); } if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ pager_reset(pPager); /* Unmap the database file. It is possible that external processes ** may have truncated the database file and then extended it back ** to its original size while this process was not holding a lock. ** In this case there may exist a Pager.pMap mapping that appears ** to be the right size but is not actually valid. Avoid this ** possibility by unmapping the db here. */ if( USEFETCH(pPager) ){ sqlite3OsUnfetch(pPager->fd, 0, 0); } } } /* If there is a WAL file in the file-system, open this database in WAL ** mode. Otherwise, the following function call is a no-op. */ rc = pagerOpenWalIfPresent(pPager); #ifndef SQLITE_OMIT_WAL assert( pPager->pWal==0 || rc==SQLITE_OK ); #endif } if( pagerUseWal(pPager) ){ assert( rc==SQLITE_OK ); rc = pagerBeginReadTransaction(pPager); } if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ rc = pagerPagecount(pPager, &pPager->dbSize); } failed: if( rc!=SQLITE_OK ){ assert( !MEMDB ); pager_unlock(pPager); assert( pPager->eState==PAGER_OPEN ); }else{ pPager->eState = PAGER_READER; pPager->hasHeldSharedLock = 1; } return rc; } /* ** If the reference count has reached zero, rollback any active ** transaction and unlock the pager. ** ** Except, in locking_mode=EXCLUSIVE when there is nothing to in ** the rollback journal, the unlock is not performed and there is ** nothing to rollback, so this routine is a no-op. */ static void pagerUnlockIfUnused(Pager *pPager){ if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ pagerUnlockAndRollback(pPager); } } /* ** The page getter methods each try to acquire a reference to a ** page with page number pgno. If the requested reference is ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. ** ** There are different implementations of the getter method depending ** on the current state of the pager. ** ** getPageNormal() -- The normal getter ** getPageError() -- Used if the pager is in an error state ** getPageMmap() -- Used if memory-mapped I/O is enabled ** ** If the requested page is already in the cache, it is returned. ** Otherwise, a new page object is allocated and populated with data ** read from the database file. In some cases, the pcache module may ** choose not to allocate a new page object and may reuse an existing ** object with no outstanding references. ** ** The extra data appended to a page is always initialized to zeros the ** first time a page is loaded into memory. If the page requested is ** already in the cache when this function is called, then the extra ** data is left as it was when the page object was last used. ** ** If the database image is smaller than the requested page or if ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the ** requested page is not already stored in the cache, then no ** actual disk read occurs. In this case the memory image of the ** page is initialized to all zeros. ** ** If PAGER_GET_NOCONTENT is true, it means that we do not care about ** the contents of the page. This occurs in two scenarios: ** ** a) When reading a free-list leaf page from the database, and ** ** b) When a savepoint is being rolled back and we need to load ** a new page into the cache to be filled with the data read ** from the savepoint journal. ** ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead ** of being read from the database. Additionally, the bits corresponding ** to pgno in Pager.pInJournal (bitvec of pages already written to the ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open ** savepoints are set. This means if the page is made writable at any ** point in the future, using a call to sqlite3PagerWrite(), its contents ** will not be journaled. This saves IO. ** ** The acquisition might fail for several reasons. In all cases, ** an appropriate error code is returned and *ppPage is set to NULL. ** ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt ** to find a page in the in-memory cache first. If the page is not already ** in memory, this routine goes to disk to read it in whereas Lookup() ** just returns 0. This routine acquires a read-lock the first time it ** has to go to disk, and could also playback an old journal if necessary. ** Since Lookup() never goes to disk, it never has to deal with locks ** or journal files. */ static int getPageNormal( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ int rc = SQLITE_OK; PgHdr *pPg; u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ sqlite3_pcache_page *pBase; assert( pPager->errCode==SQLITE_OK ); assert( pPager->eState>=PAGER_READER ); assert( assert_pager_state(pPager) ); assert( pPager->hasHeldSharedLock==1 ); if( pgno==0 ) return SQLITE_CORRUPT_BKPT; pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); if( pBase==0 ){ pPg = 0; rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); if( rc!=SQLITE_OK ) goto pager_acquire_err; if( pBase==0 ){ rc = SQLITE_NOMEM_BKPT; goto pager_acquire_err; } } pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); assert( pPg==(*ppPage) ); assert( pPg->pgno==pgno ); assert( pPg->pPager==pPager || pPg->pPager==0 ); noContent = (flags & PAGER_GET_NOCONTENT)!=0; if( pPg->pPager && !noContent ){ /* In this case the pcache already contains an initialized copy of ** the page. Return without further ado. */ assert( pgno!=PAGER_SJ_PGNO(pPager) ); pPager->aStat[PAGER_STAT_HIT]++; return SQLITE_OK; }else{ /* The pager cache has created a new page. Its content needs to ** be initialized. But first some error checks: ** ** (*) obsolete. Was: maximum page number is 2^31 ** (2) Never try to fetch the locking page */ if( pgno==PAGER_SJ_PGNO(pPager) ){ rc = SQLITE_CORRUPT_BKPT; goto pager_acquire_err; } pPg->pPager = pPager; assert( !isOpen(pPager->fd) || !MEMDB ); if( !isOpen(pPager->fd) || pPager->dbSizepPager->mxPgno ){ rc = SQLITE_FULL; if( pgno<=pPager->dbSize ){ sqlite3PcacheRelease(pPg); pPg = 0; } goto pager_acquire_err; } if( noContent ){ /* Failure to set the bits in the InJournal bit-vectors is benign. ** It merely means that we might do some extra work to journal a ** page that does not need to be journaled. Nevertheless, be sure ** to test the case where a malloc error occurs while trying to set ** a bit in a bit vector. */ sqlite3BeginBenignMalloc(); if( pgno<=pPager->dbOrigSize ){ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); testcase( rc==SQLITE_NOMEM ); } TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); testcase( rc==SQLITE_NOMEM ); sqlite3EndBenignMalloc(); } memset(pPg->pData, 0, pPager->pageSize); IOTRACE(("ZERO %p %d\n", pPager, pgno)); }else{ assert( pPg->pPager==pPager ); pPager->aStat[PAGER_STAT_MISS]++; rc = readDbPage(pPg); if( rc!=SQLITE_OK ){ goto pager_acquire_err; } } pager_set_pagehash(pPg); } return SQLITE_OK; pager_acquire_err: assert( rc!=SQLITE_OK ); if( pPg ){ sqlite3PcacheDrop(pPg); } pagerUnlockIfUnused(pPager); *ppPage = 0; return rc; } #if SQLITE_MAX_MMAP_SIZE>0 /* The page getter for when memory-mapped I/O is enabled */ static int getPageMMap( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ int rc = SQLITE_OK; PgHdr *pPg = 0; u32 iFrame = 0; /* Frame to read from WAL file */ /* It is acceptable to use a read-only (mmap) page for any page except ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY ** flag was specified by the caller. And so long as the db is not a ** temporary or in-memory database. */ const int bMmapOk = (pgno>1 && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) ); assert( USEFETCH(pPager) ); /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC assert( pPager->xCodec==0 ); #endif /* END SQLCIPHER */ /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here ** allows the compiler optimizer to reuse the results of the "pgno>1" ** test in the previous statement, and avoid testing pgno==0 in the ** common case where pgno is large. */ if( pgno<=1 && pgno==0 ){ return SQLITE_CORRUPT_BKPT; } assert( pPager->eState>=PAGER_READER ); assert( assert_pager_state(pPager) ); assert( pPager->hasHeldSharedLock==1 ); assert( pPager->errCode==SQLITE_OK ); if( bMmapOk && pagerUseWal(pPager) ){ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); if( rc!=SQLITE_OK ){ *ppPage = 0; return rc; } } if( bMmapOk && iFrame==0 ){ void *pData = 0; rc = sqlite3OsFetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData ); if( rc==SQLITE_OK && pData ){ if( pPager->eState>PAGER_READER || pPager->tempFile ){ pPg = sqlite3PagerLookup(pPager, pgno); } if( pPg==0 ){ rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); }else{ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); } if( pPg ){ assert( rc==SQLITE_OK ); *ppPage = pPg; return SQLITE_OK; } } if( rc!=SQLITE_OK ){ *ppPage = 0; return rc; } } return getPageNormal(pPager, pgno, ppPage, flags); } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* The page getter method for when the pager is an error state */ static int getPageError( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ UNUSED_PARAMETER(pgno); UNUSED_PARAMETER(flags); assert( pPager->errCode!=SQLITE_OK ); *ppPage = 0; return pPager->errCode; } /* Dispatch all page fetch requests to the appropriate getter method. */ SQLITE_PRIVATE int sqlite3PagerGet( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int flags /* PAGER_GET_XXX flags */ ){ #if 0 /* Trace page fetch by setting to 1 */ int rc; printf("PAGE %u\n", pgno); fflush(stdout); rc = pPager->xGet(pPager, pgno, ppPage, flags); if( rc ){ printf("PAGE %u failed with 0x%02x\n", pgno, rc); fflush(stdout); } return rc; #else /* Normal, high-speed version of sqlite3PagerGet() */ return pPager->xGet(pPager, pgno, ppPage, flags); #endif } /* ** Acquire a page if it is already in the in-memory cache. Do ** not read the page from disk. Return a pointer to the page, ** or 0 if the page is not in cache. ** ** See also sqlite3PagerGet(). The difference between this routine ** and sqlite3PagerGet() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine ** returns NULL if the page is not in cache or if a disk I/O error ** has ever happened. */ SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ sqlite3_pcache_page *pPage; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); assert( pPage==0 || pPager->hasHeldSharedLock ); if( pPage==0 ) return 0; return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); } /* ** Release a page reference. ** ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be used ** if we know that the page being released is not the last reference to page1. ** The btree layer always holds page1 open until the end, so these first ** two routines can be used to release any page other than BtShared.pPage1. ** The assert() at tag-20230419-2 proves that this constraint is always ** honored. ** ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine ** checks the total number of outstanding pages and if the number of ** pages reaches zero it drops the database lock. */ SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage *pPg){ TESTONLY( Pager *pPager = pPg->pPager; ) assert( pPg!=0 ); if( pPg->flags & PGHDR_MMAP ){ assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ pagerReleaseMapPage(pPg); }else{ sqlite3PcacheRelease(pPg); } /* Do not use this routine to release the last reference to page1 */ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); /* tag-20230419-2 */ } SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){ if( pPg ) sqlite3PagerUnrefNotNull(pPg); } SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage *pPg){ Pager *pPager; assert( pPg!=0 ); assert( pPg->pgno==1 ); assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ pPager = pPg->pPager; sqlite3PcacheRelease(pPg); pagerUnlockIfUnused(pPager); } /* ** This function is called at the start of every write transaction. ** There must already be a RESERVED or EXCLUSIVE lock on the database ** file when this routine is called. ** ** Open the journal file for pager pPager and write a journal header ** to the start of it. If there are active savepoints, open the sub-journal ** as well. This function is only used when the journal file is being ** opened to write a rollback log for a transaction. It is not used ** when opening a hot journal file to roll it back. ** ** If the journal file is already open (as it may be in exclusive mode), ** then this function just writes a journal header to the start of the ** already open file. ** ** Whether or not the journal file is opened by this function, the ** Pager.pInJournal bitvec structure is allocated. ** ** Return SQLITE_OK if everything is successful. Otherwise, return ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or ** an IO error code if opening or writing the journal file fails. */ static int pager_open_journal(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ assert( pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); assert( pPager->pInJournal==0 ); /* If already in the error state, this function is a no-op. But on ** the other hand, this routine is never called if we are already in ** an error state. */ if( NEVER(pPager->errCode) ) return pPager->errCode; if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); if( pPager->pInJournal==0 ){ return SQLITE_NOMEM_BKPT; } /* Open the journal file if it is not already open. */ if( !isOpen(pPager->jfd) ){ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ sqlite3MemJournalOpen(pPager->jfd); }else{ int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; int nSpill; if( pPager->tempFile ){ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); flags |= SQLITE_OPEN_EXCLUSIVE; nSpill = sqlite3Config.nStmtSpill; }else{ flags |= SQLITE_OPEN_MAIN_JOURNAL; nSpill = jrnlBufferSize(pPager); } /* Verify that the database still has the same name as it did when ** it was originally opened. */ rc = databaseIsUnmoved(pPager); if( rc==SQLITE_OK ){ rc = sqlite3JournalOpen ( pVfs, pPager->zJournal, pPager->jfd, flags, nSpill ); } } assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); } /* Write the first journal header to the journal file and open ** the sub-journal if necessary. */ if( rc==SQLITE_OK ){ /* TODO: Check if all of these are really required. */ pPager->nRec = 0; pPager->journalOff = 0; pPager->setSuper = 0; pPager->journalHdr = 0; rc = writeJournalHdr(pPager); } } if( rc!=SQLITE_OK ){ sqlite3BitvecDestroy(pPager->pInJournal); pPager->pInJournal = 0; pPager->journalOff = 0; }else{ assert( pPager->eState==PAGER_WRITER_LOCKED ); pPager->eState = PAGER_WRITER_CACHEMOD; } return rc; } /* ** Begin a write-transaction on the specified pager object. If a ** write-transaction has already been opened, this function is a no-op. ** ** If the exFlag argument is false, then acquire at least a RESERVED ** lock on the database file. If exFlag is true, then acquire at least ** an EXCLUSIVE lock. If such a lock is already held, no locking ** functions need be called. ** ** If the subjInMemory argument is non-zero, then any sub-journal opened ** within this transaction will be opened as an in-memory file. This ** has no effect if the sub-journal is already opened (as it may be when ** running in exclusive mode) or if the transaction does not require a ** sub-journal. If the subjInMemory argument is zero, then any required ** sub-journal is implemented in-memory if pPager is an in-memory database, ** or using a temporary file otherwise. */ SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ int rc = SQLITE_OK; if( pPager->errCode ) return pPager->errCode; assert( pPager->eState>=PAGER_READER && pPager->eStatesubjInMemory = (u8)subjInMemory; if( pPager->eState==PAGER_READER ){ assert( pPager->pInJournal==0 ); if( pagerUseWal(pPager) ){ /* If the pager is configured to use locking_mode=exclusive, and an ** exclusive lock on the database is not already held, obtain it now. */ if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ return rc; } (void)sqlite3WalExclusiveMode(pPager->pWal, 1); } /* Grab the write lock on the log file. If successful, upgrade to ** PAGER_RESERVED state. Otherwise, return an error code to the caller. ** The busy-handler is not invoked if another connection already ** holds the write-lock. If possible, the upper layer will call it. */ rc = sqlite3WalBeginWriteTransaction(pPager->pWal); }else{ /* Obtain a RESERVED lock on the database file. If the exFlag parameter ** is true, then immediately upgrade this to an EXCLUSIVE lock. The ** busy-handler callback can be used when upgrading to the EXCLUSIVE ** lock, but not when obtaining the RESERVED lock. */ rc = pagerLockDb(pPager, RESERVED_LOCK); if( rc==SQLITE_OK && exFlag ){ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); } } if( rc==SQLITE_OK ){ /* Change to WRITER_LOCKED state. ** ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD ** when it has an open transaction, but never to DBMOD or FINISHED. ** This is because in those states the code to roll back savepoint ** transactions may copy data from the sub-journal into the database ** file as well as into the page cache. Which would be incorrect in ** WAL mode. */ pPager->eState = PAGER_WRITER_LOCKED; pPager->dbHintSize = pPager->dbSize; pPager->dbFileSize = pPager->dbSize; pPager->dbOrigSize = pPager->dbSize; pPager->journalOff = 0; } assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); } PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); return rc; } /* ** Write page pPg onto the end of the rollback journal. */ static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc; u32 cksum; char *pData2; i64 iOff = pPager->journalOff; /* We should never write to the journal file the page that ** contains the database locks. The following assert verifies ** that we do not. */ assert( pPg->pgno!=PAGER_SJ_PGNO(pPager) ); assert( pPager->journalHdr<=pPager->journalOff ); CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2); cksum = pager_cksum(pPager, (u8*)pData2); /* Even if an IO or diskfull error occurs while journalling the ** page in the block above, set the need-sync flag for the page. ** Otherwise, when the transaction is rolled back, the logic in ** playback_one_page() will think that the page needs to be restored ** in the database file. And if an IO error occurs while doing so, ** then corruption may follow. */ pPg->flags |= PGHDR_NEED_SYNC; rc = write32bits(pPager->jfd, iOff, pPg->pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); if( rc!=SQLITE_OK ) return rc; rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); if( rc!=SQLITE_OK ) return rc; IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, pPager->journalOff, pPager->pageSize)); PAGER_INCR(sqlite3_pager_writej_count); PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); pPager->journalOff += 8 + pPager->pageSize; pPager->nRec++; assert( pPager->pInJournal!=0 ); rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); testcase( rc==SQLITE_NOMEM ); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); rc |= addToSavepointBitvecs(pPager, pPg->pgno); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); return rc; } /* ** Mark a single data page as writeable. The page is written into the ** main journal or sub-journal as required. If the page is written into ** one of the journals, the corresponding bit is set in the ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs ** of any open savepoints as appropriate. */ static int pager_write(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc = SQLITE_OK; /* This routine is not called unless a write-transaction has already ** been started. The journal file may or may not be open at this point. ** It is never called in the ERROR state. */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); assert( pPager->errCode==0 ); assert( pPager->readOnly==0 ); CHECK_PAGE(pPg); /* The journal file needs to be opened. Higher level routines have already ** obtained the necessary locks to begin the write-transaction, but the ** rollback journal might not yet be open. Open it now if this is the case. ** ** This is done before calling sqlite3PcacheMakeDirty() on the page. ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then ** an error might occur and the pager would end up in WRITER_LOCKED state ** with pages marked as dirty in the cache. */ if( pPager->eState==PAGER_WRITER_LOCKED ){ rc = pager_open_journal(pPager); if( rc!=SQLITE_OK ) return rc; } assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); assert( assert_pager_state(pPager) ); /* Mark the page that is about to be modified as dirty. */ sqlite3PcacheMakeDirty(pPg); /* If a rollback journal is in use, them make sure the page that is about ** to change is in the rollback journal, or if the page is a new page off ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. */ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); if( pPager->pInJournal!=0 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 ){ assert( pagerUseWal(pPager)==0 ); if( pPg->pgno<=pPager->dbOrigSize ){ rc = pagerAddPageToRollbackJournal(pPg); if( rc!=SQLITE_OK ){ return rc; } }else{ if( pPager->eState!=PAGER_WRITER_DBMOD ){ pPg->flags |= PGHDR_NEED_SYNC; } PAGERTRACE(("APPEND %d page %d needSync=%d\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); } } /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list ** and before writing the page into the rollback journal. Wait until now, ** after the page has been successfully journalled, before setting the ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. */ pPg->flags |= PGHDR_WRITEABLE; /* If the statement journal is open and the page is not in it, ** then write the page into the statement journal. */ if( pPager->nSavepoint>0 ){ rc = subjournalPageIfRequired(pPg); } /* Update the database size and return. */ if( pPager->dbSizepgno ){ pPager->dbSize = pPg->pgno; } return rc; } /* ** This is a variant of sqlite3PagerWrite() that runs when the sector size ** is larger than the page size. SQLite makes the (reasonable) assumption that ** all bytes of a sector are written together by hardware. Hence, all bytes of ** a sector need to be journalled in case of a power loss in the middle of ** a write. ** ** Usually, the sector size is less than or equal to the page size, in which ** case pages can be individually written. This routine only runs in the ** exceptional case where the page size is smaller than the sector size. */ static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ int rc = SQLITE_OK; /* Return code */ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ Pager *pPager = pPg->pPager; /* The pager that owns pPg */ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow ** a journal header to be written between the pages journaled by ** this function. */ assert( !MEMDB ); assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); pPager->doNotSpill |= SPILLFLAG_NOSYNC; /* This trick assumes that both the page-size and sector-size are ** an integer power of 2. It sets variable pg1 to the identifier ** of the first page of the sector pPg is located on. */ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; nPageCount = pPager->dbSize; if( pPg->pgno>nPageCount ){ nPage = (pPg->pgno - pg1)+1; }else if( (pg1+nPagePerSector-1)>nPageCount ){ nPage = nPageCount+1-pg1; }else{ nPage = nPagePerSector; } assert(nPage>0); assert(pg1<=pPg->pgno); assert((pg1+nPage)>pPg->pgno); for(ii=0; iipgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ if( pg!=PAGER_SJ_PGNO(pPager) ){ rc = sqlite3PagerGet(pPager, pg, &pPage, 0); if( rc==SQLITE_OK ){ rc = pager_write(pPage); if( pPage->flags&PGHDR_NEED_SYNC ){ needSync = 1; } sqlite3PagerUnrefNotNull(pPage); } } }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ if( pPage->flags&PGHDR_NEED_SYNC ){ needSync = 1; } sqlite3PagerUnrefNotNull(pPage); } } /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages ** starting at pg1, then it needs to be set for all of them. Because ** writing to any of these nPage pages may damage the others, the ** journal file must contain sync()ed copies of all of them ** before any of them can be written out to the database file. */ if( rc==SQLITE_OK && needSync ){ assert( !MEMDB ); for(ii=0; iiflags |= PGHDR_NEED_SYNC; sqlite3PagerUnrefNotNull(pPage); } } } assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; return rc; } /* ** Mark a data page as writeable. This routine must be called before ** making changes to a page. The caller must check the return value ** of this function and be careful not to change any page data unless ** this routine returns SQLITE_OK. ** ** The difference between this function and pager_write() is that this ** function also deals with the special case where 2 or more pages ** fit on a single disk sector. In this case all co-resident pages ** must have been written to the journal file before returning. ** ** If an error occurs, SQLITE_NOMEM or an IO error code is returned ** as appropriate. Otherwise, SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( (pPg->flags & PGHDR_MMAP)==0 ); assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); return SQLITE_OK; }else if( pPager->errCode ){ return pPager->errCode; }else if( pPager->sectorSize > (u32)pPager->pageSize ){ assert( pPager->tempFile==0 ); return pagerWriteLargeSector(pPg); }else{ return pager_write(pPg); } } /* ** Return TRUE if the page given in the argument was previously passed ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok ** to change the content of the page. */ #ifndef NDEBUG SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){ return pPg->flags & PGHDR_WRITEABLE; } #endif /* ** A call to this routine tells the pager that it is not necessary to ** write the information on page pPg back to the disk, even though ** that page might be marked as dirty. This happens, for example, when ** the page has been added as a leaf of the freelist and so its ** content no longer matters. ** ** The overlying software layer calls this routine when all of the data ** on the given page is unused. The pager marks the page as clean so ** that it does not get written to disk. ** ** Tests show that this optimization can quadruple the speed of large ** DELETE operations. ** ** This optimization cannot be used with a temp-file, as the page may ** have been dirty at the start of the transaction. In that case, if ** memory pressure forces page pPg out of the cache, the data does need ** to be written out to disk so that it may be read back in if the ** current transaction is rolled back. */ SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) pPg->flags |= PGHDR_DONT_WRITE; pPg->flags &= ~PGHDR_WRITEABLE; testcase( pPg->flags & PGHDR_NEED_SYNC ); pager_set_pagehash(pPg); } } /* ** This routine is called to increment the value of the database file ** change-counter, stored as a 4-byte big-endian integer starting at ** byte offset 24 of the pager file. The secondary change counter at ** 92 is also updated, as is the SQLite version number at offset 96. ** ** But this only happens if the pPager->changeCountDone flag is false. ** To avoid excess churning of page 1, the update only happens once. ** See also the pager_write_changecounter() routine that does an ** unconditional update of the change counters. ** ** If the isDirectMode flag is zero, then this is done by calling ** sqlite3PagerWrite() on page 1, then modifying the contents of the ** page data. In this case the file will be updated when the current ** transaction is committed. ** ** The isDirectMode flag may only be non-zero if the library was compiled ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, ** if isDirect is non-zero, then the database file is updated directly ** by writing an updated version of page 1 using a call to the ** sqlite3OsWrite() function. */ static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ int rc = SQLITE_OK; assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); /* Declare and initialize constant integer 'isDirect'. If the ** atomic-write optimization is enabled in this build, then isDirect ** is initialized to the value passed as the isDirectMode parameter ** to this function. Otherwise, it is always set to zero. ** ** The idea is that if the atomic-write optimization is not ** enabled at compile time, the compiler can omit the tests of ** 'isDirect' below, as well as the block enclosed in the ** "if( isDirect )" condition. */ #ifndef SQLITE_ENABLE_ATOMIC_WRITE # define DIRECT_MODE 0 assert( isDirectMode==0 ); UNUSED_PARAMETER(isDirectMode); #else # define DIRECT_MODE isDirectMode #endif if( !pPager->changeCountDone && pPager->dbSize>0 ){ PgHdr *pPgHdr; /* Reference to page 1 */ assert( !pPager->tempFile && isOpen(pPager->fd) ); /* Open page 1 of the file for writing. */ rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); assert( pPgHdr==0 || rc==SQLITE_OK ); /* If page one was fetched successfully, and this function is not ** operating in direct-mode, make page 1 writable. When not in ** direct mode, page 1 is always held in cache and hence the PagerGet() ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. */ if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ rc = sqlite3PagerWrite(pPgHdr); } if( rc==SQLITE_OK ){ /* Actually do the update of the change counter */ pager_write_changecounter(pPgHdr); /* If running in direct mode, write the contents of page 1 to the file. */ if( DIRECT_MODE ){ const void *zBuf; assert( pPager->dbFileSize>0 ); CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM_BKPT, zBuf); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); pPager->aStat[PAGER_STAT_WRITE]++; } if( rc==SQLITE_OK ){ /* Update the pager's copy of the change-counter. Otherwise, the ** next time a read transaction is opened the cache will be ** flushed (as the change-counter values will not match). */ const void *pCopy = (const void *)&((const char *)zBuf)[24]; memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); pPager->changeCountDone = 1; } }else{ pPager->changeCountDone = 1; } } /* Release the page reference. */ sqlite3PagerUnref(pPgHdr); } return rc; } /* ** Sync the database file to disk. This is a no-op for in-memory databases ** or pages with the Pager.noSync flag set. ** ** If successful, or if called on a pager for which it is a no-op, this ** function returns SQLITE_OK. Otherwise, an IO error code is returned. */ SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper){ int rc = SQLITE_OK; void *pArg = (void*)zSuper; rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; if( rc==SQLITE_OK && !pPager->noSync ){ assert( !MEMDB ); rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); } return rc; } /* ** This function may only be called while a write-transaction is active in ** rollback. If the connection is in WAL mode, this call is a no-op. ** Otherwise, if the connection does not already have an EXCLUSIVE lock on ** the database file, an attempt is made to obtain one. ** ** If the EXCLUSIVE lock is already held or the attempt to obtain it is ** successful, or the connection is in WAL mode, SQLITE_OK is returned. ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is ** returned. */ SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){ int rc = pPager->errCode; assert( assert_pager_state(pPager) ); if( rc==SQLITE_OK ){ assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( 0==pagerUseWal(pPager) ){ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); } } return rc; } /* ** Sync the database file for the pager pPager. zSuper points to the name ** of a super-journal file that should be written into the individual ** journal file. zSuper may be NULL, which is interpreted as no ** super-journal (a single database transaction). ** ** This routine ensures that: ** ** * The database file change-counter is updated, ** * the journal is synced (unless the atomic-write optimization is used), ** * all dirty pages are written to the database file, ** * the database file is truncated (if required), and ** * the database file synced. ** ** The only thing that remains to commit the transaction is to finalize ** (delete, truncate or zero the first part of) the journal file (or ** delete the super-journal file if specified). ** ** Note that if zSuper==NULL, this does not overwrite a previous value ** passed to an sqlite3PagerCommitPhaseOne() call. ** ** If the final parameter - noSync - is true, then the database file itself ** is not synced. The caller must call sqlite3PagerSync() directly to ** sync the database file before calling CommitPhaseTwo() to delete the ** journal file in this case. */ SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne( Pager *pPager, /* Pager object */ const char *zSuper, /* If not NULL, the super-journal name */ int noSync /* True to omit the xSync on the db file */ ){ int rc = SQLITE_OK; /* Return code */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD || pPager->eState==PAGER_ERROR ); assert( assert_pager_state(pPager) ); /* If a prior error occurred, report that error again. */ if( NEVER(pPager->errCode) ) return pPager->errCode; /* Provide the ability to easily simulate an I/O error during testing */ if( sqlite3FaultSim(400) ) return SQLITE_IOERR; PAGERTRACE(("DATABASE SYNC: File=%s zSuper=%s nSize=%d\n", pPager->zFilename, zSuper, pPager->dbSize)); /* If no database changes have been made, return early. */ if( pPager->eStatetempFile ); assert( isOpen(pPager->fd) || pPager->tempFile ); if( 0==pagerFlushOnCommit(pPager, 1) ){ /* If this is an in-memory db, or no pages have been written to, or this ** function has already been called, it is mostly a no-op. However, any ** backup in progress needs to be restarted. */ sqlite3BackupRestart(pPager->pBackup); }else{ PgHdr *pList; if( pagerUseWal(pPager) ){ PgHdr *pPageOne = 0; pList = sqlite3PcacheDirtyList(pPager->pPCache); if( pList==0 ){ /* Must have at least one page for the WAL commit flag. ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); pList = pPageOne; pList->pDirty = 0; } assert( rc==SQLITE_OK ); if( ALWAYS(pList) ){ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); } sqlite3PagerUnref(pPageOne); if( rc==SQLITE_OK ){ sqlite3PcacheCleanAll(pPager->pPCache); } }else{ /* The bBatch boolean is true if the batch-atomic-write commit method ** should be used. No rollback journal is created if batch-atomic-write ** is enabled. */ #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE sqlite3_file *fd = pPager->fd; int bBatch = zSuper==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) && !pPager->noSync && sqlite3JournalIsInMemory(pPager->jfd); #else # define bBatch 0 #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE /* The following block updates the change-counter. Exactly how it ** does this depends on whether or not the atomic-update optimization ** was enabled at compile time, and if this transaction meets the ** runtime criteria to use the operation: ** ** * The file-system supports the atomic-write property for ** blocks of size page-size, and ** * This commit is not part of a multi-file transaction, and ** * Exactly one page has been modified and store in the journal file. ** ** If the optimization was not enabled at compile time, then the ** pager_incr_changecounter() function is called to update the change ** counter in 'indirect-mode'. If the optimization is compiled in but ** is not applicable to this transaction, call sqlite3JournalCreate() ** to make sure the journal file has actually been created, then call ** pager_incr_changecounter() to update the change-counter in indirect ** mode. ** ** Otherwise, if the optimization is both enabled and applicable, ** then call pager_incr_changecounter() to update the change-counter ** in 'direct' mode. In this case the journal file will never be ** created for this transaction. */ if( bBatch==0 ){ PgHdr *pPg; assert( isOpen(pPager->jfd) || pPager->journalMode==PAGER_JOURNALMODE_OFF || pPager->journalMode==PAGER_JOURNALMODE_WAL ); if( !zSuper && isOpen(pPager->jfd) && pPager->journalOff==jrnlBufferSize(pPager) && pPager->dbSize>=pPager->dbOrigSize && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) ){ /* Update the db file change counter via the direct-write method. The ** following call will modify the in-memory representation of page 1 ** to include the updated change counter and then write page 1 ** directly to the database file. Because of the atomic-write ** property of the host file-system, this is safe. */ rc = pager_incr_changecounter(pPager, 1); }else{ rc = sqlite3JournalCreate(pPager->jfd); if( rc==SQLITE_OK ){ rc = pager_incr_changecounter(pPager, 0); } } } #else /* SQLITE_ENABLE_ATOMIC_WRITE */ #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( zSuper ){ rc = sqlite3JournalCreate(pPager->jfd); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; assert( bBatch==0 ); } #endif rc = pager_incr_changecounter(pPager, 0); #endif /* !SQLITE_ENABLE_ATOMIC_WRITE */ if( rc!=SQLITE_OK ) goto commit_phase_one_exit; /* Write the super-journal name into the journal file. If a ** super-journal file name has already been written to the journal file, ** or if zSuper is NULL (no super-journal), then this call is a no-op. */ rc = writeSuperJournal(pPager, zSuper); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; /* Sync the journal file and write all dirty pages to the database. ** If the atomic-update optimization is being used, this sync will not ** create the journal file or perform any real IO. ** ** Because the change-counter page was just modified, unless the ** atomic-update optimization is used it is almost certain that the ** journal requires a sync here. However, in locking_mode=exclusive ** on a system under memory pressure it is just possible that this is ** not the case. In this case it is likely enough that the redundant ** xSync() call will be changed to a no-op by the OS anyhow. */ rc = syncJournal(pPager, 0); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; pList = sqlite3PcacheDirtyList(pPager->pPCache); #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE if( bBatch ){ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); if( rc==SQLITE_OK ){ rc = pager_write_pagelist(pPager, pList); if( rc==SQLITE_OK && pPager->dbSize>pPager->dbFileSize ){ char *pTmp = pPager->pTmpSpace; int szPage = (int)pPager->pageSize; memset(pTmp, 0, szPage); rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, ((i64)pPager->dbSize*pPager->pageSize)-szPage); } if( rc==SQLITE_OK ){ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); } if( rc!=SQLITE_OK ){ sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); } } if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){ rc = sqlite3JournalCreate(pPager->jfd); if( rc!=SQLITE_OK ){ sqlite3OsClose(pPager->jfd); goto commit_phase_one_exit; } bBatch = 0; }else{ sqlite3OsClose(pPager->jfd); } } #endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ if( bBatch==0 ){ rc = pager_write_pagelist(pPager, pList); } if( rc!=SQLITE_OK ){ assert( rc!=SQLITE_IOERR_BLOCKED ); goto commit_phase_one_exit; } sqlite3PcacheCleanAll(pPager->pPCache); /* If the file on disk is smaller than the database image, use ** pager_truncate to grow the file here. This can happen if the database ** image was extended as part of the current transaction and then the ** last page in the db image moved to the free-list. In this case the ** last page is never written out to disk, leaving the database file ** undersized. Fix this now if it is the case. */ if( pPager->dbSize>pPager->dbFileSize ){ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_SJ_PGNO(pPager)); assert( pPager->eState==PAGER_WRITER_DBMOD ); rc = pager_truncate(pPager, nNew); if( rc!=SQLITE_OK ) goto commit_phase_one_exit; } /* Finally, sync the database file. */ if( !noSync ){ rc = sqlite3PagerSync(pPager, zSuper); } IOTRACE(("DBSYNC %p\n", pPager)) } } commit_phase_one_exit: if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ pPager->eState = PAGER_WRITER_FINISHED; } return rc; } /* ** When this function is called, the database file has been completely ** updated to reflect the changes made by the current transaction and ** synced to disk. The journal file still exists in the file-system ** though, and if a failure occurs at this point it will eventually ** be used as a hot-journal and the current transaction rolled back. ** ** This function finalizes the journal file, either by deleting, ** truncating or partially zeroing it, so that it cannot be used ** for hot-journal rollback. Once this is done the transaction is ** irrevocably committed. ** ** If an error occurs, an IO error code is returned and the pager ** moves into the error state. Otherwise, SQLITE_OK is returned. */ SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ /* This routine should not be called if a prior error has occurred. ** But if (due to a coding error elsewhere in the system) it does get ** called, just return the same error code without doing anything. */ if( NEVER(pPager->errCode) ) return pPager->errCode; pPager->iDataVersion++; assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_FINISHED || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) ); assert( assert_pager_state(pPager) ); /* An optimization. If the database was not actually modified during ** this transaction, the pager is running in exclusive-mode and is ** using persistent journals, then this function is a no-op. ** ** The start of the journal file currently contains a single journal ** header with the nRec field set to 0. If such a journal is used as ** a hot-journal during hot-journal rollback, 0 changes will be made ** to the database file. So there is no need to zero the journal ** header. Since the pager is in exclusive mode, there is no need ** to drop any locks either. */ if( pPager->eState==PAGER_WRITER_LOCKED && pPager->exclusiveMode && pPager->journalMode==PAGER_JOURNALMODE_PERSIST ){ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); pPager->eState = PAGER_READER; return SQLITE_OK; } PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); rc = pager_end_transaction(pPager, pPager->setSuper, 1); return pager_error(pPager, rc); } /* ** If a write transaction is open, then all changes made within the ** transaction are reverted and the current write-transaction is closed. ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR ** state if an error occurs. ** ** If the pager is already in PAGER_ERROR state when this function is called, ** it returns Pager.errCode immediately. No work is performed in this case. ** ** Otherwise, in rollback mode, this function performs two functions: ** ** 1) It rolls back the journal file, restoring all database file and ** in-memory cache pages to the state they were in when the transaction ** was opened, and ** ** 2) It finalizes the journal file, so that it is not used for hot ** rollback at any point in the future. ** ** Finalization of the journal file (task 2) is only performed if the ** rollback is successful. ** ** In WAL mode, all cache-entries containing data modified within the ** current transaction are either expelled from the cache or reverted to ** their pre-transaction state by re-reading data from the database or ** WAL files. The WAL transaction is then closed. */ SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){ int rc = SQLITE_OK; /* Return code */ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); /* PagerRollback() is a no-op if called in READER or OPEN state. If ** the pager is already in the ERROR state, the rollback is not ** attempted here. Instead, the error code is returned to the caller. */ assert( assert_pager_state(pPager) ); if( pPager->eState==PAGER_ERROR ) return pPager->errCode; if( pPager->eState<=PAGER_READER ) return SQLITE_OK; if( pagerUseWal(pPager) ){ int rc2; rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); rc2 = pager_end_transaction(pPager, pPager->setSuper, 0); if( rc==SQLITE_OK ) rc = rc2; }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ int eState = pPager->eState; rc = pager_end_transaction(pPager, 0, 0); if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ /* This can happen using journal_mode=off. Move the pager to the error ** state to indicate that the contents of the cache may not be trusted. ** Any active readers will get SQLITE_ABORT. */ pPager->errCode = SQLITE_ABORT; pPager->eState = PAGER_ERROR; setGetterMethod(pPager); return rc; } }else{ rc = pager_playback(pPager, 0); } assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR || rc==SQLITE_CANTOPEN ); /* If an error occurs during a ROLLBACK, we can no longer trust the pager ** cache. So call pager_error() on the way out to make any error persistent. */ return pager_error(pPager, rc); } /* ** Return TRUE if the database file is opened read-only. Return FALSE ** if the database is (in theory) writable. */ SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){ return pPager->readOnly; } #ifdef SQLITE_DEBUG /* ** Return the sum of the reference counts for all pages held by pPager. */ SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){ return sqlite3PcacheRefCount(pPager->pPCache); } #endif /* ** Return the approximate number of bytes of memory currently ** used by the pager and its associated cache. */ SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){ int perPageSize = pPager->pageSize + pPager->nExtra + (int)(sizeof(PgHdr) + 5*sizeof(void*)); return perPageSize*sqlite3PcachePagecount(pPager->pPCache) + sqlite3MallocSize(pPager) + pPager->pageSize; } /* ** Return the number of references to the specified page. */ SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){ return sqlite3PcachePageRefcount(pPage); } #ifdef SQLITE_TEST /* ** This routine is used for testing and analysis only. */ SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){ static int a[11]; a[0] = sqlite3PcacheRefCount(pPager->pPCache); a[1] = sqlite3PcachePagecount(pPager->pPCache); a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; a[4] = pPager->eState; a[5] = pPager->errCode; a[6] = (int)pPager->aStat[PAGER_STAT_HIT] & 0x7fffffff; a[7] = (int)pPager->aStat[PAGER_STAT_MISS] & 0x7fffffff; a[8] = 0; /* Used to be pPager->nOvfl */ a[9] = pPager->nRead; a[10] = (int)pPager->aStat[PAGER_STAT_WRITE] & 0x7fffffff; return a; } #endif /* ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because ** it was added later. ** ** Before returning, *pnVal is incremented by the ** current cache hit or miss count, according to the value of eStat. If the ** reset parameter is non-zero, the cache hit or miss count is zeroed before ** returning. */ SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, u64 *pnVal){ assert( eStat==SQLITE_DBSTATUS_CACHE_HIT || eStat==SQLITE_DBSTATUS_CACHE_MISS || eStat==SQLITE_DBSTATUS_CACHE_WRITE || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 ); assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); eStat -= SQLITE_DBSTATUS_CACHE_HIT; *pnVal += pPager->aStat[eStat]; if( reset ){ pPager->aStat[eStat] = 0; } } /* ** Return true if this is an in-memory or temp-file backed pager. */ SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){ return pPager->tempFile || pPager->memVfs; } /* ** Check that there are at least nSavepoint savepoints open. If there are ** currently less than nSavepoints open, then open one or more savepoints ** to make up the difference. If the number of savepoints is already ** equal to nSavepoint, then this function is a no-op. ** ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ int rc = SQLITE_OK; /* Return code */ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ int ii; /* Iterator variable */ PagerSavepoint *aNew; /* New Pager.aSavepoint array */ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); assert( nSavepoint>nCurrent && pPager->useJournal ); /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM ** if the allocation fails. Otherwise, zero the new portion in case a ** malloc failure occurs while populating it in the for(...) loop below. */ aNew = (PagerSavepoint *)sqlite3Realloc( pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint ); if( !aNew ){ return SQLITE_NOMEM_BKPT; } memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); pPager->aSavepoint = aNew; /* Populate the PagerSavepoint structures just allocated. */ for(ii=nCurrent; iidbSize; if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ aNew[ii].iOffset = pPager->journalOff; }else{ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); } aNew[ii].iSubRec = pPager->nSubRec; aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); aNew[ii].bTruncateOnRelease = 1; if( !aNew[ii].pInSavepoint ){ return SQLITE_NOMEM_BKPT; } if( pagerUseWal(pPager) ){ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); } pPager->nSavepoint = ii+1; } assert( pPager->nSavepoint==nSavepoint ); assertTruncateConstraint(pPager); return rc; } SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ return pagerOpenSavepoint(pPager, nSavepoint); }else{ return SQLITE_OK; } } /* ** This function is called to rollback or release (commit) a savepoint. ** The savepoint to release or rollback need not be the most recently ** created savepoint. ** ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes ** that have occurred since the specified savepoint was created. ** ** The savepoint to rollback or release is identified by parameter ** iSavepoint. A value of 0 means to operate on the outermost savepoint ** (the first created). A value of (Pager.nSavepoint-1) means operate ** on the most recently created savepoint. If iSavepoint is greater than ** (Pager.nSavepoint-1), then this function is a no-op. ** ** If a negative value is passed to this function, then the current ** transaction is rolled back. This is different to calling ** sqlite3PagerRollback() because this function does not terminate ** the transaction or unlock the database, it just restores the ** contents of the database to its original state. ** ** In any case, all savepoints with an index greater than iSavepoint ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), ** then savepoint iSavepoint is also destroyed. ** ** This function may return SQLITE_NOMEM if a memory allocation fails, ** or an IO error code if an IO error occurs while rolling back a ** savepoint. If no errors occur, SQLITE_OK is returned. */ SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ int rc = pPager->errCode; #ifdef SQLITE_ENABLE_ZIPVFS if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; #endif assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); if( rc==SQLITE_OK && iSavepointnSavepoint ){ int ii; /* Iterator variable */ int nNew; /* Number of remaining savepoints after this op. */ /* Figure out how many savepoints will still be active after this ** operation. Store this value in nNew. Then free resources associated ** with any savepoints that are destroyed by this operation. */ nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); for(ii=nNew; iinSavepoint; ii++){ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); } pPager->nSavepoint = nNew; /* Truncate the sub-journal so that it only includes the parts ** that are still in use. */ if( op==SAVEPOINT_RELEASE ){ PagerSavepoint *pRel = &pPager->aSavepoint[nNew]; if( pRel->bTruncateOnRelease && isOpen(pPager->sjfd) ){ /* Only truncate if it is an in-memory sub-journal. */ if( sqlite3JournalIsInMemory(pPager->sjfd) ){ i64 sz = (pPager->pageSize+4)*(i64)pRel->iSubRec; rc = sqlite3OsTruncate(pPager->sjfd, sz); assert( rc==SQLITE_OK ); } pPager->nSubRec = pRel->iSubRec; } } /* Else this is a rollback operation, playback the specified savepoint. ** If this is a temp-file, it is possible that the journal file has ** not yet been opened. In this case there have been no changes to ** the database file, so the playback operation can be skipped. */ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; rc = pagerPlaybackSavepoint(pPager, pSavepoint); assert(rc!=SQLITE_DONE); } #ifdef SQLITE_ENABLE_ZIPVFS /* If the cache has been modified but the savepoint cannot be rolled ** back journal_mode=off, put the pager in the error state. This way, ** if the VFS used by this pager includes ZipVFS, the entire transaction ** can be rolled back at the ZipVFS level. */ else if( pPager->journalMode==PAGER_JOURNALMODE_OFF && pPager->eState>=PAGER_WRITER_CACHEMOD ){ pPager->errCode = SQLITE_ABORT; pPager->eState = PAGER_ERROR; setGetterMethod(pPager); } #endif } return rc; } /* ** Return the full pathname of the database file. ** ** Except, if the pager is in-memory only, then return an empty string if ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when ** used to report the filename to the user, for compatibility with legacy ** behavior. But when the Btree needs to know the filename for matching to ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can ** participate in shared-cache. ** ** The return value to this routine is always safe to use with ** sqlite3_uri_parameter() and sqlite3_filename_database() and friends. */ SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){ static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; if( nullIfMemDb && (pPager->memDb || sqlite3IsMemdb(pPager->pVfs)) ){ return &zFake[4]; }else{ return pPager->zFilename; } } /* ** Return the VFS structure for the pager. */ SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ return pPager->pVfs; } /* ** Return the file handle for the database file associated ** with the pager. This might return NULL if the file has ** not yet been opened. */ SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){ return pPager->fd; } /* ** Return the file handle for the journal file (if it exists). ** This will be either the rollback journal or the WAL file. */ SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ #ifdef SQLITE_OMIT_WAL return pPager->jfd; #else return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; #endif } /* ** Return the full pathname of the journal file. */ SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){ return pPager->zJournal; } /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* ** Set or retrieve the codec for this pager */ void sqlcipherPagerSetCodec( Pager *pPager, void *(*xCodec)(void*,void*,Pgno,int), void (*xCodecSizeChng)(void*,int,int), void (*xCodecFree)(void*), void *pCodec ){ if( pPager->xCodecFree ){ pPager->xCodecFree(pPager->pCodec); }else{ pager_reset(pPager); } pPager->xCodec = pPager->memDb ? 0 : xCodec; pPager->xCodecSizeChng = xCodecSizeChng; pPager->xCodecFree = xCodecFree; pPager->pCodec = pCodec; setGetterMethod(pPager); pagerReportSize(pPager); } void *sqlcipherPagerGetCodec(Pager *pPager){ return pPager->pCodec; } /* ** This function is called by the wal module when writing page content ** into the log file. ** ** This function returns a pointer to a buffer containing the encrypted ** page content. If a malloc fails, this function may return NULL. */ void *sqlcipherPagerCodec(PgHdr *pPg){ void *aData = 0; CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); return aData; } #endif /* SQLITE_HAS_CODEC */ /* END SQLCIPHER */ #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Move the page pPg to location pgno in the file. ** ** There must be no references to the page previously located at ** pgno (which we call pPgOld) though that page is allowed to be ** in cache. If the page previously located at pgno is not already ** in the rollback journal, it is not put there by by this routine. ** ** References to the page pPg remain valid. Updating any ** meta-data associated with pPg (i.e. data stored in the nExtra bytes ** allocated along with the page) is the responsibility of the caller. ** ** A transaction must be active when this routine is called. It used to be ** required that a statement transaction was not active, but this restriction ** has been removed (CREATE INDEX needs to move a page when a statement ** transaction is active). ** ** If the fourth argument, isCommit, is non-zero, then this page is being ** moved as part of a database reorganization just before the transaction ** is being committed. In this case, it is guaranteed that the database page ** pPg refers to will not be written to again within this transaction. ** ** This function may return SQLITE_NOMEM or an IO error code if an error ** occurs. Otherwise, it returns SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ PgHdr *pPgOld; /* The page being overwritten. */ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ int rc; /* Return code */ Pgno origPgno; /* The original page number */ assert( pPg->nRef>0 ); assert( pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); /* In order to be able to rollback, an in-memory database must journal ** the page we are moving from. */ assert( pPager->tempFile || !MEMDB ); if( pPager->tempFile ){ rc = sqlite3PagerWrite(pPg); if( rc ) return rc; } /* If the page being moved is dirty and has not been saved by the latest ** savepoint, then save the current contents of the page into the ** sub-journal now. This is required to handle the following scenario: ** ** BEGIN; ** ** SAVEPOINT one; ** ** ROLLBACK TO one; ** ** If page X were not written to the sub-journal here, it would not ** be possible to restore its contents when the "ROLLBACK TO one" ** statement were is processed. ** ** subjournalPage() may need to allocate space to store pPg->pgno into ** one or more savepoint bitvecs. This is the reason this function ** may return SQLITE_NOMEM. */ if( (pPg->flags & PGHDR_DIRTY)!=0 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) ){ return rc; } PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) /* If the journal needs to be sync()ed before page pPg->pgno can ** be written to, store pPg->pgno in local variable needSyncPgno. ** ** If the isCommit flag is set, there is no need to remember that ** the journal needs to be sync()ed before database page pPg->pgno ** can be written to. The caller has already promised not to write to it. */ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ needSyncPgno = pPg->pgno; assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); assert( pPg->flags&PGHDR_DIRTY ); } /* If the cache contains a page with page-number pgno, remove it ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for ** page pgno before the 'move' operation, it needs to be retained ** for the page moved there. */ pPg->flags &= ~PGHDR_NEED_SYNC; pPgOld = sqlite3PagerLookup(pPager, pgno); assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB ); if( pPgOld ){ if( NEVER(pPgOld->nRef>1) ){ sqlite3PagerUnrefNotNull(pPgOld); return SQLITE_CORRUPT_BKPT; } pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); if( pPager->tempFile ){ /* Do not discard pages from an in-memory database since we might ** need to rollback later. Just move the page out of the way. */ sqlite3PcacheMove(pPgOld, pPager->dbSize+1); }else{ sqlite3PcacheDrop(pPgOld); } } origPgno = pPg->pgno; sqlite3PcacheMove(pPg, pgno); sqlite3PcacheMakeDirty(pPg); /* For an in-memory database, make sure the original page continues ** to exist, in case the transaction needs to roll back. Use pPgOld ** as the original page since it has already been allocated. */ if( pPager->tempFile && pPgOld ){ sqlite3PcacheMove(pPgOld, origPgno); sqlite3PagerUnrefNotNull(pPgOld); } if( needSyncPgno ){ /* If needSyncPgno is non-zero, then the journal file needs to be ** sync()ed before any data is written to database file page needSyncPgno. ** Currently, no such page exists in the page-cache and the ** "is journaled" bitvec flag has been set. This needs to be remedied by ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC ** flag. ** ** If the attempt to load the page into the page-cache fails, (due ** to a malloc() or IO failure), clear the bit in the pInJournal[] ** array. Otherwise, if the page is loaded and written again in ** this transaction, it may be written to the database file before ** it is synced into the journal file. This way, it may end up in ** the journal file twice, but that is not a problem. */ PgHdr *pPgHdr; rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); if( rc!=SQLITE_OK ){ if( needSyncPgno<=pPager->dbOrigSize ){ assert( pPager->pTmpSpace!=0 ); sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); } return rc; } pPgHdr->flags |= PGHDR_NEED_SYNC; sqlite3PcacheMakeDirty(pPgHdr); sqlite3PagerUnrefNotNull(pPgHdr); } return SQLITE_OK; } #endif /* ** The page handle passed as the first argument refers to a dirty page ** with a page number other than iNew. This function changes the page's ** page number to iNew and sets the value of the PgHdr.flags field to ** the value passed as the third parameter. */ SQLITE_PRIVATE void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ assert( pPg->pgno!=iNew ); pPg->flags = flags; sqlite3PcacheMove(pPg, iNew); } /* ** Return a pointer to the data for the specified page. */ SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){ assert( pPg->nRef>0 || pPg->pPager->memDb ); return pPg->pData; } /* ** Return a pointer to the Pager.nExtra bytes of "extra" space ** allocated along with the specified page. */ SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){ return pPg->pExtra; } /* ** Get/set the locking-mode for this pager. Parameter eMode must be one ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then ** the locking-mode is set to the value specified. ** ** The returned value is either PAGER_LOCKINGMODE_NORMAL or ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) ** locking-mode. */ SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){ assert( eMode==PAGER_LOCKINGMODE_QUERY || eMode==PAGER_LOCKINGMODE_NORMAL || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); assert( PAGER_LOCKINGMODE_QUERY<0 ); assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ pPager->exclusiveMode = (u8)eMode; } return (int)pPager->exclusiveMode; } /* ** Set the journal-mode for this pager. Parameter eMode must be one of: ** ** PAGER_JOURNALMODE_DELETE ** PAGER_JOURNALMODE_TRUNCATE ** PAGER_JOURNALMODE_PERSIST ** PAGER_JOURNALMODE_OFF ** PAGER_JOURNALMODE_MEMORY ** PAGER_JOURNALMODE_WAL ** ** The journalmode is set to the value specified if the change is allowed. ** The change may be disallowed for the following reasons: ** ** * An in-memory database can only have its journal_mode set to _OFF ** or _MEMORY. ** ** * Temporary databases cannot have _WAL journalmode. ** ** The returned indicate the current (possibly updated) journal-mode. */ SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ u8 eOld = pPager->journalMode; /* Prior journalmode */ /* The eMode parameter is always valid */ assert( eMode==PAGER_JOURNALMODE_DELETE /* 0 */ || eMode==PAGER_JOURNALMODE_PERSIST /* 1 */ || eMode==PAGER_JOURNALMODE_OFF /* 2 */ || eMode==PAGER_JOURNALMODE_TRUNCATE /* 3 */ || eMode==PAGER_JOURNALMODE_MEMORY /* 4 */ || eMode==PAGER_JOURNALMODE_WAL /* 5 */ ); /* This routine is only called from the OP_JournalMode opcode, and ** the logic there will never allow a temporary file to be changed ** to WAL mode. */ assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); /* Do allow the journalmode of an in-memory database to be set to ** anything other than MEMORY or OFF */ if( MEMDB ){ assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ eMode = eOld; } } if( eMode!=eOld ){ /* Change the journal mode. */ assert( pPager->eState!=PAGER_ERROR ); pPager->journalMode = (u8)eMode; /* When transitioning from TRUNCATE or PERSIST to any other journal ** mode except WAL, unless the pager is in locking_mode=exclusive mode, ** delete the journal file. */ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); assert( isOpen(pPager->fd) || pPager->exclusiveMode ); if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ /* In this case we would like to delete the journal file. If it is ** not possible, then that is not a problem. Deleting the journal file ** here is an optimization only. ** ** Before deleting the journal file, obtain a RESERVED lock on the ** database file. This ensures that the journal file is not deleted ** while it is in use by some other client. */ sqlite3OsClose(pPager->jfd); if( pPager->eLock>=RESERVED_LOCK ){ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); }else{ int rc = SQLITE_OK; int state = pPager->eState; assert( state==PAGER_OPEN || state==PAGER_READER ); if( state==PAGER_OPEN ){ rc = sqlite3PagerSharedLock(pPager); } if( pPager->eState==PAGER_READER ){ assert( rc==SQLITE_OK ); rc = pagerLockDb(pPager, RESERVED_LOCK); } if( rc==SQLITE_OK ){ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); } if( rc==SQLITE_OK && state==PAGER_READER ){ pagerUnlockDb(pPager, SHARED_LOCK); }else if( state==PAGER_OPEN ){ pager_unlock(pPager); } assert( state==pPager->eState ); } }else if( eMode==PAGER_JOURNALMODE_OFF || eMode==PAGER_JOURNALMODE_MEMORY ){ sqlite3OsClose(pPager->jfd); } } /* Return the new journal mode */ return (int)pPager->journalMode; } /* ** Return the current journal mode. */ SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){ return (int)pPager->journalMode; } /* ** Return TRUE if the pager is in a state where it is OK to change the ** journalmode. Journalmode changes can only happen when the database ** is unmodified. */ SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ assert( assert_pager_state(pPager) ); if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; return 1; } /* ** Get/set the size-limit used for persistent journal files. ** ** Setting the size limit to -1 means no limit is enforced. ** An attempt to set a limit smaller than -1 is a no-op. */ SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ if( iLimit>=-1 ){ pPager->journalSizeLimit = iLimit; sqlite3WalLimit(pPager->pWal, iLimit); } return pPager->journalSizeLimit; } /* ** Return a pointer to the pPager->pBackup variable. The backup module ** in backup.c maintains the content of this variable. This module ** uses it opaquely as an argument to sqlite3BackupRestart() and ** sqlite3BackupUpdate() only. */ SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ return &pPager->pBackup; } #ifndef SQLITE_OMIT_VACUUM /* ** Unless this is an in-memory or temporary database, clear the pager cache. */ SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){ assert( MEMDB==0 || pPager->tempFile ); if( pPager->tempFile==0 ) pager_reset(pPager); } #endif #ifndef SQLITE_OMIT_WAL /* ** This function is called when the user invokes "PRAGMA wal_checkpoint", ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() ** or wal_blocking_checkpoint() API functions. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. */ SQLITE_PRIVATE int sqlite3PagerCheckpoint( Pager *pPager, /* Checkpoint on this pager */ sqlite3 *db, /* Db handle used to check for interrupts */ int eMode, /* Type of checkpoint */ int *pnLog, /* OUT: Final number of frames in log */ int *pnCkpt /* OUT: Final number of checkpointed frames */ ){ int rc = SQLITE_OK; if( pPager->pWal==0 && pPager->journalMode==PAGER_JOURNALMODE_WAL ){ /* This only happens when a database file is zero bytes in size opened and ** then "PRAGMA journal_mode=WAL" is run and then sqlite3_wal_checkpoint() ** is invoked without any intervening transactions. We need to start ** a transaction to initialize pWal. The PRAGMA table_list statement is ** used for this since it starts transactions on every database file, ** including all ATTACHed databases. This seems expensive for a single ** sqlite3_wal_checkpoint() call, but it happens very rarely. ** https://sqlite.org/forum/forumpost/fd0f19d229156939 */ sqlite3_exec(db, "PRAGMA table_list",0,0,0); } if( pPager->pWal ){ rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), pPager->pBusyHandlerArg, pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, pnLog, pnCkpt ); } return rc; } SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){ return sqlite3WalCallback(pPager->pWal); } /* ** Return true if the underlying VFS for the given pager supports the ** primitives necessary for write-ahead logging. */ SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){ const sqlite3_io_methods *pMethods = pPager->fd->pMethods; if( pPager->noLock ) return 0; return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); } /* ** Attempt to take an exclusive lock on the database file. If a PENDING lock ** is obtained instead, immediately release it. */ static int pagerExclusiveLock(Pager *pPager){ int rc; /* Return code */ u8 eOrigLock; /* Original lock */ assert( pPager->eLock>=SHARED_LOCK ); eOrigLock = pPager->eLock; rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ /* If the attempt to grab the exclusive lock failed, release the ** pending lock that may have been obtained instead. */ pagerUnlockDb(pPager, eOrigLock); } return rc; } /* ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in ** exclusive-locking mode when this function is called, take an EXCLUSIVE ** lock on the database file and use heap-memory to store the wal-index ** in. Otherwise, use the normal shared-memory. */ static int pagerOpenWal(Pager *pPager){ int rc = SQLITE_OK; assert( pPager->pWal==0 && pPager->tempFile==0 ); assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); /* If the pager is already in exclusive-mode, the WAL module will use ** heap-memory for the wal-index instead of the VFS shared-memory ** implementation. Take the exclusive lock now, before opening the WAL ** file, to make sure this is safe. */ if( pPager->exclusiveMode ){ rc = pagerExclusiveLock(pPager); } /* Open the connection to the log file. If this operation fails, ** (e.g. due to malloc() failure), return an error code. */ if( rc==SQLITE_OK ){ rc = sqlite3WalOpen(pPager->pVfs, pPager->fd, pPager->zWal, pPager->exclusiveMode, pPager->journalSizeLimit, &pPager->pWal ); } pagerFixMaplimit(pPager); return rc; } /* ** The caller must be holding a SHARED lock on the database file to call ** this function. ** ** If the pager passed as the first argument is open on a real database ** file (not a temp file or an in-memory database), and the WAL file ** is not already open, make an attempt to open it now. If successful, ** return SQLITE_OK. If an error occurs or the VFS used by the pager does ** not support the xShmXXX() methods, return an error code. *pbOpen is ** not modified in either case. ** ** If the pager is open on a temp-file (or in-memory database), or if ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK ** without doing anything. */ SQLITE_PRIVATE int sqlite3PagerOpenWal( Pager *pPager, /* Pager object */ int *pbOpen /* OUT: Set to true if call is a no-op */ ){ int rc = SQLITE_OK; /* Return code */ assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pbOpen ); assert( pPager->eState==PAGER_READER || !pbOpen ); assert( pbOpen==0 || *pbOpen==0 ); assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); if( !pPager->tempFile && !pPager->pWal ){ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; /* Close any rollback journal previously open */ sqlite3OsClose(pPager->jfd); rc = pagerOpenWal(pPager); if( rc==SQLITE_OK ){ pPager->journalMode = PAGER_JOURNALMODE_WAL; pPager->eState = PAGER_OPEN; } }else{ *pbOpen = 1; } return rc; } /* ** This function is called to close the connection to the log file prior ** to switching from WAL to rollback mode. ** ** Before closing the log file, this function attempts to take an ** EXCLUSIVE lock on the database file. If this cannot be obtained, an ** error (SQLITE_BUSY) is returned and the log connection is not closed. ** If successful, the EXCLUSIVE lock is not released before returning. */ SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ int rc = SQLITE_OK; assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); /* If the log file is not already open, but does exist in the file-system, ** it may need to be checkpointed before the connection can switch to ** rollback mode. Open it now so this can happen. */ if( !pPager->pWal ){ int logexists = 0; rc = pagerLockDb(pPager, SHARED_LOCK); if( rc==SQLITE_OK ){ rc = sqlite3OsAccess( pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists ); } if( rc==SQLITE_OK && logexists ){ rc = pagerOpenWal(pPager); } } /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on ** the database file, the log and log-summary files will be deleted. */ if( rc==SQLITE_OK && pPager->pWal ){ rc = pagerExclusiveLock(pPager); if( rc==SQLITE_OK ){ rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize, (u8*)pPager->pTmpSpace); pPager->pWal = 0; pagerFixMaplimit(pPager); if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); } } return rc; } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* ** If pager pPager is a wal-mode database not in exclusive locking mode, ** invoke the sqlite3WalWriteLock() function on the associated Wal object ** with the same db and bLock parameters as were passed to this function. ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. */ SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){ int rc = SQLITE_OK; if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){ rc = sqlite3WalWriteLock(pPager->pWal, bLock); } return rc; } /* ** Set the database handle used by the wal layer to determine if ** blocking locks are required. */ SQLITE_PRIVATE void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){ if( pagerUseWal(pPager) ){ sqlite3WalDb(pPager->pWal, db); } } #endif #ifdef SQLITE_ENABLE_SNAPSHOT /* ** If this is a WAL database, obtain a snapshot handle for the snapshot ** currently open. Otherwise, return an error. */ SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_ERROR; if( pPager->pWal ){ rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); } return rc; } /* ** If this is a WAL database, store a pointer to pSnapshot. Next time a ** read transaction is opened, attempt to read from the snapshot it ** identifies. If this is not a WAL database, return an error. */ SQLITE_PRIVATE int sqlite3PagerSnapshotOpen( Pager *pPager, sqlite3_snapshot *pSnapshot ){ int rc = SQLITE_OK; if( pPager->pWal ){ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); }else{ rc = SQLITE_ERROR; } return rc; } /* ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this ** is not a WAL database, return an error. */ SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager){ int rc; if( pPager->pWal ){ rc = sqlite3WalSnapshotRecover(pPager->pWal); }else{ rc = SQLITE_ERROR; } return rc; } /* ** The caller currently has a read transaction open on the database. ** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise, ** this function takes a SHARED lock on the CHECKPOINTER slot and then ** checks if the snapshot passed as the second argument is still ** available. If so, SQLITE_OK is returned. ** ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){ int rc; if( pPager->pWal ){ rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot); }else{ rc = SQLITE_ERROR; } return rc; } /* ** Release a lock obtained by an earlier successful call to ** sqlite3PagerSnapshotCheck(). */ SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager){ assert( pPager->pWal ); sqlite3WalSnapshotUnlock(pPager->pWal); } #endif /* SQLITE_ENABLE_SNAPSHOT */ #endif /* !SQLITE_OMIT_WAL */ #ifdef SQLITE_ENABLE_ZIPVFS /* ** A read-lock must be held on the pager when this function is called. If ** the pager is in WAL mode and the WAL file currently contains one or more ** frames, return the size in bytes of the page images stored within the ** WAL frames. Otherwise, if this is not a WAL database or the WAL file ** is empty, return 0. */ SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ assert( pPager->eState>=PAGER_READER ); return sqlite3WalFramesize(pPager->pWal); } #endif #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL) SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager *pPager){ return sqlite3WalSystemErrno(pPager->pWal); } #endif #endif /* SQLITE_OMIT_DISKIO */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC SQLITE_API int sqlite3pager_is_sj_pgno(Pager *pPager, Pgno pgno) { return (PAGER_SJ_PGNO(pPager) == pgno) ? 1 : 0; } SQLITE_API void sqlite3pager_error(Pager *pPager, int error) { pPager->errCode = error; pPager->eState = PAGER_ERROR; setGetterMethod(pPager); } SQLITE_API void sqlite3pager_reset(Pager *pPager){ pager_reset(pPager); } #endif /* END SQLCIPHER */ /************** End of pager.c ***********************************************/ /************** Begin file wal.c *********************************************/ /* ** 2010 February 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the implementation of a write-ahead log (WAL) used in ** "journal_mode=WAL" mode. ** ** WRITE-AHEAD LOG (WAL) FILE FORMAT ** ** A WAL file consists of a header followed by zero or more "frames". ** Each frame records the revised content of a single page from the ** database file. All changes to the database are recorded by writing ** frames into the WAL. Transactions commit when a frame is written that ** contains a commit marker. A single WAL can and usually does record ** multiple transactions. Periodically, the content of the WAL is ** transferred back into the database file in an operation called a ** "checkpoint". ** ** A single WAL file can be used multiple times. In other words, the ** WAL can fill up with frames and then be checkpointed and then new ** frames can overwrite the old ones. A WAL always grows from beginning ** toward the end. Checksums and counters attached to each frame are ** used to determine which frames within the WAL are valid and which ** are leftovers from prior checkpoints. ** ** The WAL header is 32 bytes in size and consists of the following eight ** big-endian 32-bit unsigned integer values: ** ** 0: Magic number. 0x377f0682 or 0x377f0683 ** 4: File format version. Currently 3007000 ** 8: Database page size. Example: 1024 ** 12: Checkpoint sequence number ** 16: Salt-1, random integer incremented with each checkpoint ** 20: Salt-2, a different random integer changing with each ckpt ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). ** ** Immediately following the wal-header are zero or more frames. Each ** frame consists of a 24-byte frame-header followed by a bytes ** of page data. The frame-header is six big-endian 32-bit unsigned ** integer values, as follows: ** ** 0: Page number. ** 4: For commit records, the size of the database image in pages ** after the commit. For all other records, zero. ** 8: Salt-1 (copied from the header) ** 12: Salt-2 (copied from the header) ** 16: Checksum-1. ** 20: Checksum-2. ** ** A frame is considered valid if and only if the following conditions are ** true: ** ** (1) The salt-1 and salt-2 values in the frame-header match ** salt values in the wal-header ** ** (2) The checksum values in the final 8 bytes of the frame-header ** exactly match the checksum computed consecutively on the ** WAL header and the first 8 bytes and the content of all frames ** up to and including the current frame. ** ** The checksum is computed using 32-bit big-endian integers if the ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it ** is computed using little-endian if the magic number is 0x377f0682. ** The checksum values are always stored in the frame header in a ** big-endian format regardless of which byte order is used to compute ** the checksum. The checksum is computed by interpreting the input as ** an even number of unsigned 32-bit integers: x[0] through x[N]. The ** algorithm used for the checksum is as follows: ** ** for i from 0 to n-1 step 2: ** s0 += x[i] + s1; ** s1 += x[i+1] + s0; ** endfor ** ** Note that s0 and s1 are both weighted checksums using fibonacci weights ** in reverse order (the largest fibonacci weight occurs on the first element ** of the sequence being summed.) The s1 value spans all 32-bit ** terms of the sequence whereas s0 omits the final term. ** ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the ** WAL is transferred into the database, then the database is VFS.xSync-ed. ** The VFS.xSync operations serve as write barriers - all writes launched ** before the xSync must complete before any write that launches after the ** xSync begins. ** ** After each checkpoint, the salt-1 value is incremented and the salt-2 ** value is randomized. This prevents old and new frames in the WAL from ** being considered valid at the same time and being checkpointing together ** following a crash. ** ** READER ALGORITHM ** ** To read a page from the database (call it page number P), a reader ** first checks the WAL to see if it contains page P. If so, then the ** last valid instance of page P that is a followed by a commit frame ** or is a commit frame itself becomes the value read. If the WAL ** contains no copies of page P that are valid and which are a commit ** frame or are followed by a commit frame, then page P is read from ** the database file. ** ** To start a read transaction, the reader records the index of the last ** valid frame in the WAL. The reader uses this recorded "mxFrame" value ** for all subsequent read operations. New transactions can be appended ** to the WAL, but as long as the reader uses its original mxFrame value ** and ignores the newly appended content, it will see a consistent snapshot ** of the database from a single point in time. This technique allows ** multiple concurrent readers to view different versions of the database ** content simultaneously. ** ** The reader algorithm in the previous paragraphs works correctly, but ** because frames for page P can appear anywhere within the WAL, the ** reader has to scan the entire WAL looking for page P frames. If the ** WAL is large (multiple megabytes is typical) that scan can be slow, ** and read performance suffers. To overcome this problem, a separate ** data structure called the wal-index is maintained to expedite the ** search for frames of a particular page. ** ** WAL-INDEX FORMAT ** ** Conceptually, the wal-index is shared memory, though VFS implementations ** might choose to implement the wal-index using a mmapped file. Because ** the wal-index is shared memory, SQLite does not support journal_mode=WAL ** on a network filesystem. All users of the database must be able to ** share memory. ** ** In the default unix and windows implementation, the wal-index is a mmapped ** file whose name is the database name with a "-shm" suffix added. For that ** reason, the wal-index is sometimes called the "shm" file. ** ** The wal-index is transient. After a crash, the wal-index can (and should ** be) reconstructed from the original WAL file. In fact, the VFS is required ** to either truncate or zero the header of the wal-index when the last ** connection to it closes. Because the wal-index is transient, it can ** use an architecture-specific format; it does not have to be cross-platform. ** Hence, unlike the database and WAL file formats which store all values ** as big endian, the wal-index can store multi-byte values in the native ** byte order of the host computer. ** ** The purpose of the wal-index is to answer this question quickly: Given ** a page number P and a maximum frame index M, return the index of the ** last frame in the wal before frame M for page P in the WAL, or return ** NULL if there are no frames for page P in the WAL prior to M. ** ** The wal-index consists of a header region, followed by an one or ** more index blocks. ** ** The wal-index header contains the total number of frames within the WAL ** in the mxFrame field. ** ** Each index block except for the first contains information on ** HASHTABLE_NPAGE frames. The first index block contains information on ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and ** HASHTABLE_NPAGE are selected so that together the wal-index header and ** first index block are the same size as all other index blocks in the ** wal-index. The values are: ** ** HASHTABLE_NPAGE 4096 ** HASHTABLE_NPAGE_ONE 4062 ** ** Each index block contains two sections, a page-mapping that contains the ** database page number associated with each wal frame, and a hash-table ** that allows readers to query an index block for a specific page number. ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE ** for the first index block) 32-bit page numbers. The first entry in the ** first index-block contains the database page number corresponding to the ** first frame in the WAL file. The first entry in the second index block ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in ** the log, and so on. ** ** The last index block in a wal-index usually contains less than the full ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, ** depending on the contents of the WAL file. This does not change the ** allocated size of the page-mapping array - the page-mapping array merely ** contains unused entries. ** ** Even without using the hash table, the last frame for page P ** can be found by scanning the page-mapping sections of each index block ** starting with the last index block and moving toward the first, and ** within each index block, starting at the end and moving toward the ** beginning. The first entry that equals P corresponds to the frame ** holding the content for that page. ** ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the ** hash table for each page number in the mapping section, so the hash ** table is never more than half full. The expected number of collisions ** prior to finding a match is 1. Each entry of the hash table is an ** 1-based index of an entry in the mapping section of the same ** index block. Let K be the 1-based index of the largest entry in ** the mapping section. (For index blocks other than the last, K will ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table ** contain a value of 0. ** ** To look for page P in the hash table, first compute a hash iKey on ** P as follows: ** ** iKey = (P * 383) % HASHTABLE_NSLOT ** ** Then start scanning entries of the hash table, starting with iKey ** (wrapping around to the beginning when the end of the hash table is ** reached) until an unused hash slot is found. Let the first unused slot ** be at index iUnused. (iUnused might be less than iKey if there was ** wrap-around.) Because the hash table is never more than half full, ** the search is guaranteed to eventually hit an unused entry. Let ** iMax be the value between iKey and iUnused, closest to iUnused, ** where aHash[iMax]==P. If there is no iMax entry (if there exists ** no hash slot such that aHash[i]==p) then page P is not in the ** current index block. Otherwise the iMax-th mapping entry of the ** current index block corresponds to the last entry that references ** page P. ** ** A hash search begins with the last index block and moves toward the ** first index block, looking for entries corresponding to page P. On ** average, only two or three slots in each index block need to be ** examined in order to either find the last entry for page P, or to ** establish that no such entry exists in the block. Each index block ** holds over 4000 entries. So two or three index blocks are sufficient ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 ** comparisons (on average) suffice to either locate a frame in the ** WAL or to establish that the frame does not exist in the WAL. This ** is much faster than scanning the entire 10MB WAL. ** ** Note that entries are added in order of increasing K. Hence, one ** reader might be using some value K0 and a second reader that started ** at a later time (after additional transactions were added to the WAL ** and to the wal-index) might be using a different value K1, where K1>K0. ** Both readers can use the same hash table and mapping section to get ** the correct result. There may be entries in the hash table with ** K>K0 but to the first reader, those entries will appear to be unused ** slots in the hash table and so the first reader will get an answer as ** if no values greater than K0 had ever been inserted into the hash table ** in the first place - which is what reader one wants. Meanwhile, the ** second reader using K1 will see additional values that were inserted ** later, which is exactly what reader two wants. ** ** When a rollback occurs, the value of K is decreased. Hash table entries ** that correspond to frames greater than the new K value are removed ** from the hash table at this point. */ #ifndef SQLITE_OMIT_WAL /* #include "wal.h" */ /* ** Trace output macros */ #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) SQLITE_PRIVATE int sqlite3WalTrace = 0; # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X #else # define WALTRACE(X) #endif /* ** The maximum (and only) versions of the wal and wal-index formats ** that may be interpreted by this version of SQLite. ** ** If a client begins recovering a WAL file and finds that (a) the checksum ** values in the wal-header are correct and (b) the version field is not ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. ** ** Similarly, if a client successfully reads a wal-index header (i.e. the ** checksum test is successful) and finds that the version field is not ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite ** returns SQLITE_CANTOPEN. */ #define WAL_MAX_VERSION 3007000 #define WALINDEX_MAX_VERSION 3007000 /* ** Index numbers for various locking bytes. WAL_NREADER is the number ** of available reader locks and should be at least 3. The default ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. ** ** Technically, the various VFSes are free to implement these locks however ** they see fit. However, compatibility is encouraged so that VFSes can ** interoperate. The standard implementation used on both unix and windows ** is for the index number to indicate a byte offset into the ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which ** should be 120) is the location in the shm file for the first locking ** byte. */ #define WAL_WRITE_LOCK 0 #define WAL_ALL_BUT_WRITE 1 #define WAL_CKPT_LOCK 1 #define WAL_RECOVER_LOCK 2 #define WAL_READ_LOCK(I) (3+(I)) #define WAL_NREADER (SQLITE_SHM_NLOCK-3) /* Object declarations */ typedef struct WalIndexHdr WalIndexHdr; typedef struct WalIterator WalIterator; typedef struct WalCkptInfo WalCkptInfo; /* ** The following object holds a copy of the wal-index header content. ** ** The actual header in the wal-index consists of two copies of this ** object followed by one instance of the WalCkptInfo object. ** For all versions of SQLite through 3.10.0 and probably beyond, ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and ** the total header size is 136 bytes. ** ** The szPage value can be any power of 2 between 512 and 32768, inclusive. ** Or it can be 1 to represent a 65536-byte page. The latter case was ** added in 3.7.1 when support for 64K pages was added. */ struct WalIndexHdr { u32 iVersion; /* Wal-index version */ u32 unused; /* Unused (padding) field */ u32 iChange; /* Counter incremented each transaction */ u8 isInit; /* 1 when initialized */ u8 bigEndCksum; /* True if checksums in WAL are big-endian */ u16 szPage; /* Database page size in bytes. 1==64K */ u32 mxFrame; /* Index of last valid frame in the WAL */ u32 nPage; /* Size of database in pages */ u32 aFrameCksum[2]; /* Checksum of last frame in log */ u32 aSalt[2]; /* Two salt values copied from WAL header */ u32 aCksum[2]; /* Checksum over all prior fields */ }; /* ** A copy of the following object occurs in the wal-index immediately ** following the second copy of the WalIndexHdr. This object stores ** information used by checkpoint. ** ** nBackfill is the number of frames in the WAL that have been written ** back into the database. (We call the act of moving content from WAL to ** database "backfilling".) The nBackfill number is never greater than ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from ** mxFrame back to zero when the WAL is reset. ** ** nBackfillAttempted is the largest value of nBackfill that a checkpoint ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however ** the nBackfillAttempted is set before any backfilling is done and the ** nBackfill is only set after all backfilling completes. So if a checkpoint ** crashes, nBackfillAttempted might be larger than nBackfill. The ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. ** ** The aLock[] field is a set of bytes used for locking. These bytes should ** never be read or written. ** ** There is one entry in aReadMark[] for each reader lock. If a reader ** holds read-lock K, then the value in aReadMark[K] is no greater than ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) ** for any aReadMark[] means that entry is unused. aReadMark[0] is ** a special case; its value is never used and it exists as a place-holder ** to avoid having to offset aReadMark[] indexes by one. Readers holding ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content ** directly from the database. ** ** The value of aReadMark[K] may only be changed by a thread that ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of ** aReadMark[K] cannot changed while there is a reader is using that mark ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). ** ** The checkpointer may only transfer frames from WAL to database where ** the frame numbers are less than or equal to every aReadMark[] that is ** in use (that is, every aReadMark[j] for which there is a corresponding ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the ** largest value and will increase an unused aReadMark[] to mxFrame if there ** is not already an aReadMark[] equal to mxFrame. The exception to the ** previous sentence is when nBackfill equals mxFrame (meaning that everything ** in the WAL has been backfilled into the database) then new readers ** will choose aReadMark[0] which has value 0 and hence such reader will ** get all their all content directly from the database file and ignore ** the WAL. ** ** Writers normally append new frames to the end of the WAL. However, ** if nBackfill equals mxFrame (meaning that all WAL content has been ** written back into the database) and if no readers are using the WAL ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then ** the writer will first "reset" the WAL back to the beginning and start ** writing new content beginning at frame 1. ** ** We assume that 32-bit loads are atomic and so no locks are needed in ** order to read from any aReadMark[] entries. */ struct WalCkptInfo { u32 nBackfill; /* Number of WAL frames backfilled into DB */ u32 aReadMark[WAL_NREADER]; /* Reader marks */ u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ u32 notUsed0; /* Available for future enhancements */ }; #define READMARK_NOT_USED 0xffffffff /* ** This is a schematic view of the complete 136-byte header of the ** wal-index file (also known as the -shm file): ** ** +-----------------------------+ ** 0: | iVersion | \ ** +-----------------------------+ | ** 4: | (unused padding) | | ** +-----------------------------+ | ** 8: | iChange | | ** +-------+-------+-------------+ | ** 12: | bInit | bBig | szPage | | ** +-------+-------+-------------+ | ** 16: | mxFrame | | First copy of the ** +-----------------------------+ | WalIndexHdr object ** 20: | nPage | | ** +-----------------------------+ | ** 24: | aFrameCksum | | ** | | | ** +-----------------------------+ | ** 32: | aSalt | | ** | | | ** +-----------------------------+ | ** 40: | aCksum | | ** | | / ** +-----------------------------+ ** 48: | iVersion | \ ** +-----------------------------+ | ** 52: | (unused padding) | | ** +-----------------------------+ | ** 56: | iChange | | ** +-------+-------+-------------+ | ** 60: | bInit | bBig | szPage | | ** +-------+-------+-------------+ | Second copy of the ** 64: | mxFrame | | WalIndexHdr ** +-----------------------------+ | ** 68: | nPage | | ** +-----------------------------+ | ** 72: | aFrameCksum | | ** | | | ** +-----------------------------+ | ** 80: | aSalt | | ** | | | ** +-----------------------------+ | ** 88: | aCksum | | ** | | / ** +-----------------------------+ ** 96: | nBackfill | ** +-----------------------------+ ** 100: | 5 read marks | ** | | ** | | ** | | ** | | ** +-------+-------+------+------+ ** 120: | Write | Ckpt | Rcvr | Rd0 | \ ** +-------+-------+------+------+ ) 8 lock bytes ** | Read1 | Read2 | Rd3 | Rd4 | / ** +-------+-------+------+------+ ** 128: | nBackfillAttempted | ** +-----------------------------+ ** 132: | (unused padding) | ** +-----------------------------+ */ /* A block of WALINDEX_LOCK_RESERVED bytes beginning at ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems ** only support mandatory file-locks, we do not read or write data ** from the region of the file on which locks are applied. */ #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) /* Size of header before each frame in wal */ #define WAL_FRAME_HDRSIZE 24 /* Size of write ahead log header, including checksum. */ #define WAL_HDRSIZE 32 /* WAL magic value. Either this value, or the same value with the least ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit ** big-endian format in the first 4 bytes of a WAL file. ** ** If the LSB is set, then the checksums for each frame within the WAL ** file are calculated by treating all data as an array of 32-bit ** big-endian words. Otherwise, they are calculated by interpreting ** all data as 32-bit little-endian words. */ #define WAL_MAGIC 0x377f0682 /* ** Return the offset of frame iFrame in the write-ahead log file, ** assuming a database page size of szPage bytes. The offset returned ** is to the start of the write-ahead log frame-header. */ #define walFrameOffset(iFrame, szPage) ( \ WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ ) /* ** An open write-ahead log file is represented by an instance of the ** following object. */ struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ i64 mxWalSize; /* Truncate WAL to this size upon reset */ int nWiData; /* Size of array apWiData */ int szFirstBlock; /* Size of first block written to WAL file */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ u32 szPage; /* Database page size */ i16 readLock; /* Which read lock is being held. -1 for none */ u8 syncFlags; /* Flags to use to sync header writes */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ u8 truncateOnCommit; /* True to truncate WAL file on commit */ u8 syncHeader; /* Fsync the WAL header if true */ u8 padToSectorBoundary; /* Pad transactions out to the next sector */ u8 bShmUnreliable; /* SHM content is read-only and unreliable */ WalIndexHdr hdr; /* Wal-index header for current transaction */ u32 minFrame; /* Ignore wal frames before this one */ u32 iReCksum; /* On commit, recalculate checksums from here */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_USE_SEH u32 lockMask; /* Mask of locks held */ void *pFree; /* Pointer to sqlite3_free() if exception thrown */ u32 *pWiValue; /* Value to write into apWiData[iWiPg] */ int iWiPg; /* Write pWiValue into apWiData[iWiPg] */ int iSysErrno; /* System error code following exception */ #endif #ifdef SQLITE_DEBUG int nSehTry; /* Number of nested SEH_TRY{} blocks */ u8 lockError; /* True if a locking error has occurred */ #endif #ifdef SQLITE_ENABLE_SNAPSHOT WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ #endif #ifdef SQLITE_ENABLE_SETLK_TIMEOUT sqlite3 *db; #endif }; /* ** Candidate values for Wal.exclusiveMode. */ #define WAL_NORMAL_MODE 0 #define WAL_EXCLUSIVE_MODE 1 #define WAL_HEAPMEMORY_MODE 2 /* ** Possible values for WAL.readOnly */ #define WAL_RDWR 0 /* Normal read/write connection */ #define WAL_RDONLY 1 /* The WAL file is readonly */ #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ /* ** Each page of the wal-index mapping contains a hash-table made up of ** an array of HASHTABLE_NSLOT elements of the following type. */ typedef u16 ht_slot; /* ** This structure is used to implement an iterator that loops through ** all frames in the WAL in database page order. Where two or more frames ** correspond to the same database page, the iterator visits only the ** frame most recently written to the WAL (in other words, the frame with ** the largest index). ** ** The internals of this structure are only accessed by: ** ** walIteratorInit() - Create a new iterator, ** walIteratorNext() - Step an iterator, ** walIteratorFree() - Free an iterator. ** ** This functionality is used by the checkpoint code (see walCheckpoint()). */ struct WalIterator { u32 iPrior; /* Last result returned from the iterator */ int nSegment; /* Number of entries in aSegment[] */ struct WalSegment { int iNext; /* Next slot in aIndex[] not yet returned */ ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ u32 *aPgno; /* Array of page numbers. */ int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ int iZero; /* Frame number associated with aPgno[0] */ } aSegment[1]; /* One for every 32KB page in the wal-index */ }; /* ** Define the parameters of the hash tables in the wal-index file. There ** is a hash-table following every HASHTABLE_NPAGE page numbers in the ** wal-index. ** ** Changing any of these constants will alter the wal-index format and ** create incompatibilities. */ #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ #define HASHTABLE_HASH_1 383 /* Should be prime */ #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ /* ** The block of page numbers associated with the first hash-table in a ** wal-index is smaller than usual. This is so that there is a complete ** hash-table on each aligned 32KB page of the wal-index. */ #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ #define WALINDEX_PGSZ ( \ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ ) /* ** Structured Exception Handling (SEH) is a Windows-specific technique ** for catching exceptions raised while accessing memory-mapped files. ** ** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and ** deal with system-level errors that arise during WAL -shm file processing. ** Without this compile-time option, any system-level faults that appear ** while accessing the memory-mapped -shm file will cause a process-wide ** signal to be deliver, which will more than likely cause the entire ** process to exit. */ #ifdef SQLITE_USE_SEH #include /* Beginning of a block of code in which an exception might occur */ # define SEH_TRY __try { \ assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \ VVA_ONLY(pWal->nSehTry++); /* The end of a block of code in which an exception might occur */ # define SEH_EXCEPT(X) \ VVA_ONLY(pWal->nSehTry--); \ assert( pWal->nSehTry==0 ); \ } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X } /* Simulate a memory-mapping fault in the -shm file for testing purposes */ # define SEH_INJECT_FAULT sehInjectFault(pWal) /* ** The second argument is the return value of GetExceptionCode() for the ** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code ** indicates that the exception may have been caused by accessing the *-shm ** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise. */ static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){ VVA_ONLY(pWal->nSehTry--); if( eCode==EXCEPTION_IN_PAGE_ERROR ){ if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){ /* From MSDN: For this type of exception, the first element of the ** ExceptionInformation[] array is a read-write flag - 0 if the exception ** was thrown while reading, 1 if while writing. The second element is ** the virtual address being accessed. The "third array element specifies ** the underlying NTSTATUS code that resulted in the exception". */ pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2]; } return EXCEPTION_EXECUTE_HANDLER; } return EXCEPTION_CONTINUE_SEARCH; } /* ** If one is configured, invoke the xTestCallback callback with 650 as ** the argument. If it returns true, throw the same exception that is ** thrown by the system if the *-shm file mapping is accessed after it ** has been invalidated. */ static void sehInjectFault(Wal *pWal){ int res; assert( pWal->nSehTry>0 ); res = sqlite3FaultSim(650); if( res!=0 ){ ULONG_PTR aArg[3]; aArg[0] = 0; aArg[1] = 0; aArg[2] = (ULONG_PTR)res; RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg); } } /* ** There are two ways to use this macro. To set a pointer to be freed ** if an exception is thrown: ** ** SEH_FREE_ON_ERROR(0, pPtr); ** ** and to cancel the same: ** ** SEH_FREE_ON_ERROR(pPtr, 0); ** ** In the first case, there must not already be a pointer registered to ** be freed. In the second case, pPtr must be the registered pointer. */ #define SEH_FREE_ON_ERROR(X,Y) \ assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y /* ** There are two ways to use this macro. To arrange for pWal->apWiData[iPg] ** to be set to pValue if an exception is thrown: ** ** SEH_SET_ON_ERROR(iPg, pValue); ** ** and to cancel the same: ** ** SEH_SET_ON_ERROR(0, 0); */ #define SEH_SET_ON_ERROR(X,Y) pWal->iWiPg = X; pWal->pWiValue = Y #else # define SEH_TRY VVA_ONLY(pWal->nSehTry++); # define SEH_EXCEPT(X) VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 ); # define SEH_INJECT_FAULT assert( pWal->nSehTry>0 ); # define SEH_FREE_ON_ERROR(X,Y) # define SEH_SET_ON_ERROR(X,Y) #endif /* ifdef SQLITE_USE_SEH */ /* ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are ** numbered from zero. ** ** If the wal-index is currently smaller the iPage pages then the size ** of the wal-index might be increased, but only if it is safe to do ** so. It is safe to enlarge the wal-index if pWal->writeLock is true ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. ** ** Three possible result scenarios: ** ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page ** (2) rc>=SQLITE_ERROR and *ppPage==NULL ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 ** ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 */ static SQLITE_NOINLINE int walIndexPageRealloc( Wal *pWal, /* The WAL context */ int iPage, /* The page we seek */ volatile u32 **ppPage /* Write the page pointer here */ ){ int rc = SQLITE_OK; /* Enlarge the pWal->apWiData[] array if required */ if( pWal->nWiData<=iPage ){ sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); volatile u32 **apNew; apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); if( !apNew ){ *ppPage = 0; return SQLITE_NOMEM_BKPT; } memset((void*)&apNew[pWal->nWiData], 0, sizeof(u32*)*(iPage+1-pWal->nWiData)); pWal->apWiData = apNew; pWal->nWiData = iPage+1; } /* Request a pointer to the required page from the VFS */ assert( pWal->apWiData[iPage]==0 ); if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; }else{ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] ); assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || (pWal->writeLock==0 && iPage==0) ); testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); if( rc==SQLITE_OK ){ if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; }else if( (rc&0xff)==SQLITE_READONLY ){ pWal->readOnly |= WAL_SHM_RDONLY; if( rc==SQLITE_READONLY ){ rc = SQLITE_OK; } } } *ppPage = pWal->apWiData[iPage]; assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); return rc; } static int walIndexPage( Wal *pWal, /* The WAL context */ int iPage, /* The page we seek */ volatile u32 **ppPage /* Write the page pointer here */ ){ SEH_INJECT_FAULT; if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ return walIndexPageRealloc(pWal, iPage, ppPage); } return SQLITE_OK; } /* ** Return a pointer to the WalCkptInfo structure in the wal-index. */ static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); SEH_INJECT_FAULT; return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); } /* ** Return a pointer to the WalIndexHdr structure in the wal-index. */ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); SEH_INJECT_FAULT; return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it ** returns the value that would be produced by interpreting the 4 bytes ** of the input value as a little-endian integer. */ #define BYTESWAP32(x) ( \ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ ) /* ** Generate or extend an 8 byte checksum based on the data in ** array aByte[] and the initial values of aIn[0] and aIn[1] (or ** initial values of 0 and 0 if aIn==NULL). ** ** The checksum is written back into aOut[] before returning. ** ** nByte must be a positive multiple of 8. */ static void walChecksumBytes( int nativeCksum, /* True for native byte-order, false for non-native */ u8 *a, /* Content to be checksummed */ int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ const u32 *aIn, /* Initial checksum value input */ u32 *aOut /* OUT: Final checksum value output */ ){ u32 s1, s2; u32 *aData = (u32 *)a; u32 *aEnd = (u32 *)&a[nByte]; if( aIn ){ s1 = aIn[0]; s2 = aIn[1]; }else{ s1 = s2 = 0; } assert( nByte>=8 ); assert( (nByte&0x00000007)==0 ); assert( nByte<=65536 ); assert( nByte%4==0 ); if( !nativeCksum ){ do { s1 += BYTESWAP32(aData[0]) + s2; s2 += BYTESWAP32(aData[1]) + s1; aData += 2; }while( aDataexclusiveMode!=WAL_HEAPMEMORY_MODE ){ sqlite3OsShmBarrier(pWal->pDbFd); } } /* ** Add the SQLITE_NO_TSAN as part of the return-type of a function ** definition as a hint that the function contains constructs that ** might give false-positive TSAN warnings. ** ** See tag-20200519-1. */ #if defined(__clang__) && !defined(SQLITE_NO_TSAN) # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) #else # define SQLITE_NO_TSAN #endif /* ** Write the header information in pWal->hdr into the wal-index. ** ** The checksum on pWal->hdr is updated before it is written. */ static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ volatile WalIndexHdr *aHdr = walIndexHdr(pWal); const int nCksum = offsetof(WalIndexHdr, aCksum); assert( pWal->writeLock ); pWal->hdr.isInit = 1; pWal->hdr.iVersion = WALINDEX_MAX_VERSION; walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); /* Possible TSAN false-positive. See tag-20200519-1 */ memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); walShmBarrier(pWal); memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); } /* ** This function encodes a single frame header and writes it to a buffer ** supplied by the caller. A frame-header is made up of a series of ** 4-byte big-endian integers, as follows: ** ** 0: Page number. ** 4: For commit records, the size of the database image in pages ** after the commit. For all other records, zero. ** 8: Salt-1 (copied from the wal-header) ** 12: Salt-2 (copied from the wal-header) ** 16: Checksum-1. ** 20: Checksum-2. */ static void walEncodeFrame( Wal *pWal, /* The write-ahead log */ u32 iPage, /* Database page number for frame */ u32 nTruncate, /* New db size (or 0 for non-commit frames) */ u8 *aData, /* Pointer to page data */ u8 *aFrame /* OUT: Write encoded frame here */ ){ int nativeCksum; /* True for native byte-order checksums */ u32 *aCksum = pWal->hdr.aFrameCksum; assert( WAL_FRAME_HDRSIZE==24 ); sqlite3Put4byte(&aFrame[0], iPage); sqlite3Put4byte(&aFrame[4], nTruncate); if( pWal->iReCksum==0 ){ memcpy(&aFrame[8], pWal->hdr.aSalt, 8); nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); sqlite3Put4byte(&aFrame[16], aCksum[0]); sqlite3Put4byte(&aFrame[20], aCksum[1]); }else{ memset(&aFrame[8], 0, 16); } } /* ** Check to see if the frame with header in aFrame[] and content ** in aData[] is valid. If it is a valid frame, fill *piPage and ** *pnTruncate and return true. Return if the frame is not valid. */ static int walDecodeFrame( Wal *pWal, /* The write-ahead log */ u32 *piPage, /* OUT: Database page number for frame */ u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ u8 *aData, /* Pointer to page data (for checksum) */ u8 *aFrame /* Frame data */ ){ int nativeCksum; /* True for native byte-order checksums */ u32 *aCksum = pWal->hdr.aFrameCksum; u32 pgno; /* Page number of the frame */ assert( WAL_FRAME_HDRSIZE==24 ); /* A frame is only valid if the salt values in the frame-header ** match the salt values in the wal-header. */ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ return 0; } /* A frame is only valid if the page number is greater than zero. */ pgno = sqlite3Get4byte(&aFrame[0]); if( pgno==0 ){ return 0; } /* A frame is only valid if a checksum of the WAL header, ** all prior frames, the first 16 bytes of this frame-header, ** and the frame-data matches the checksum in the last 8 ** bytes of this frame-header. */ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) ){ /* Checksum failed. */ return 0; } /* If we reach this point, the frame is valid. Return the page number ** and the new database size. */ *piPage = pgno; *pnTruncate = sqlite3Get4byte(&aFrame[4]); return 1; } #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) /* ** Names of locks. This routine is used to provide debugging output and is not ** a part of an ordinary build. */ static const char *walLockName(int lockIdx){ if( lockIdx==WAL_WRITE_LOCK ){ return "WRITE-LOCK"; }else if( lockIdx==WAL_CKPT_LOCK ){ return "CKPT-LOCK"; }else if( lockIdx==WAL_RECOVER_LOCK ){ return "RECOVER-LOCK"; }else{ static char zName[15]; sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", lockIdx-WAL_READ_LOCK(0)); return zName; } } #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ /* ** Set or release locks on the WAL. Locks are either shared or exclusive. ** A lock cannot be moved directly between shared and exclusive - it must go ** through the unlocked state first. ** ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. */ static int walLockShared(Wal *pWal, int lockIdx){ int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, walLockName(lockIdx), rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) #ifdef SQLITE_USE_SEH if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx); #endif return rc; } static void walUnlockShared(Wal *pWal, int lockIdx){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); #ifdef SQLITE_USE_SEH pWal->lockMask &= ~(1 << lockIdx); #endif WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); } static int walLockExclusive(Wal *pWal, int lockIdx, int n){ int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, walLockName(lockIdx), n, rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) #ifdef SQLITE_USE_SEH if( rc==SQLITE_OK ){ pWal->lockMask |= (((1<exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); #ifdef SQLITE_USE_SEH pWal->lockMask &= ~(((1<0 ); assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); } static int walNextHash(int iPriorHash){ return (iPriorHash+1)&(HASHTABLE_NSLOT-1); } /* ** An instance of the WalHashLoc object is used to describe the location ** of a page hash table in the wal-index. This becomes the return value ** from walHashGet(). */ typedef struct WalHashLoc WalHashLoc; struct WalHashLoc { volatile ht_slot *aHash; /* Start of the wal-index hash table */ volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ u32 iZero; /* One less than the frame number of first indexed*/ }; /* ** Return pointers to the hash table and page number array stored on ** page iHash of the wal-index. The wal-index is broken into 32KB pages ** numbered starting from 0. ** ** Set output variable pLoc->aHash to point to the start of the hash table ** in the wal-index file. Set pLoc->iZero to one less than the frame ** number of the first frame indexed by this hash table. If a ** slot in the hash table is set to N, it refers to frame number ** (pLoc->iZero+N) in the log. ** ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the ** first frame indexed by the hash table, frame (pLoc->iZero). */ static int walHashGet( Wal *pWal, /* WAL handle */ int iHash, /* Find the iHash'th table */ WalHashLoc *pLoc /* OUT: Hash table location */ ){ int rc; /* Return code */ rc = walIndexPage(pWal, iHash, &pLoc->aPgno); assert( rc==SQLITE_OK || iHash>0 ); if( pLoc->aPgno ){ pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; if( iHash==0 ){ pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; pLoc->iZero = 0; }else{ pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; } }else if( NEVER(rc==SQLITE_OK) ){ rc = SQLITE_ERROR; } return rc; } /* ** Return the number of the wal-index page that contains the hash-table ** and page-number array that contain entries corresponding to WAL frame ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages ** are numbered starting from 0. */ static int walFramePage(u32 iFrame){ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) ); assert( iHash>=0 ); return iHash; } /* ** Return the page number associated with frame iFrame in this WAL. */ static u32 walFramePgno(Wal *pWal, u32 iFrame){ int iHash = walFramePage(iFrame); SEH_INJECT_FAULT; if( iHash==0 ){ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; } return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; } /* ** Remove entries from the hash table that point to WAL slots greater ** than pWal->hdr.mxFrame. ** ** This function is called whenever pWal->hdr.mxFrame is decreased due ** to a rollback or savepoint. ** ** At most only the hash table containing pWal->hdr.mxFrame needs to be ** updated. Any later hash tables will be automatically cleared when ** pWal->hdr.mxFrame advances to the point where those hash tables are ** actually needed. */ static void walCleanupHash(Wal *pWal){ WalHashLoc sLoc; /* Hash table location */ int iLimit = 0; /* Zero values greater than this */ int nByte; /* Number of bytes to zero in aPgno[] */ int i; /* Used to iterate through aHash[] */ assert( pWal->writeLock ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); if( pWal->hdr.mxFrame==0 ) return; /* Obtain pointers to the hash-table and page-number array containing ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed ** that the page said hash-table and array reside on is already mapped.(1) */ assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ /* Zero all hash-table entries that correspond to frame numbers greater ** than pWal->hdr.mxFrame. */ iLimit = pWal->hdr.mxFrame - sLoc.iZero; assert( iLimit>0 ); for(i=0; iiLimit ){ sLoc.aHash[i] = 0; } } /* Zero the entries in the aPgno array that correspond to frames with ** frame numbers greater than pWal->hdr.mxFrame. */ nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); assert( nByte>=0 ); memset((void *)&sLoc.aPgno[iLimit], 0, nByte); #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* Verify that the every entry in the mapping region is still reachable ** via the hash table even after the cleanup. */ if( iLimit ){ int j; /* Loop counter */ int iKey; /* Hash key */ for(j=0; j=0 ); memset((void*)sLoc.aPgno, 0, nByte); } /* If the entry in aPgno[] is already set, then the previous writer ** must have exited unexpectedly in the middle of a transaction (after ** writing one or more dirty pages to the WAL to free up memory). ** Remove the remnants of that writers uncommitted transaction from ** the hash-table before writing any new entries. */ if( sLoc.aPgno[idx-1] ){ walCleanupHash(pWal); assert( !sLoc.aPgno[idx-1] ); } /* Write the aPgno[] array entry and the hash-table slot. */ nCollide = idx; for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; } sLoc.aPgno[idx-1] = iPage; AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* Verify that the number of entries in the hash table exactly equals ** the number of entries in the mapping region. */ { int i; /* Loop counter */ int nEntry = 0; /* Number of entries in the hash table */ for(i=0; ickptLock==1 || pWal->ckptLock==0 ); assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); assert( pWal->writeLock ); iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); if( rc ){ return rc; } WALTRACE(("WAL%p: recovery begin...\n", pWal)); memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); if( rc!=SQLITE_OK ){ goto recovery_error; } if( nSize>WAL_HDRSIZE ){ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ int szPage; /* Page size according to the log */ u32 magic; /* Magic value read from WAL header */ u32 version; /* Magic value read from WAL header */ int isValid; /* True if this frame is valid */ u32 iPg; /* Current 32KB wal-index page */ u32 iLastFrame; /* Last frame in wal, based on nSize alone */ /* Read in the WAL header. */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto recovery_error; } /* If the database page size is not a power of two, or is greater than ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid ** data. Similarly, if the 'magic' value is invalid, ignore the whole ** WAL file. */ magic = sqlite3Get4byte(&aBuf[0]); szPage = sqlite3Get4byte(&aBuf[8]); if( (magic&0xFFFFFFFE)!=WAL_MAGIC || szPage&(szPage-1) || szPage>SQLITE_MAX_PAGE_SIZE || szPage<512 ){ goto finished; } pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); pWal->szPage = szPage; pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); /* Verify that the WAL header checksum is correct */ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum ); if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) ){ goto finished; } /* Verify that the version number on the WAL format is one that ** are able to understand */ version = sqlite3Get4byte(&aBuf[4]); if( version!=WAL_MAX_VERSION ){ rc = SQLITE_CANTOPEN_BKPT; goto finished; } /* Malloc a buffer to read frames into. */ szFrame = szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); SEH_FREE_ON_ERROR(0, aFrame); if( !aFrame ){ rc = SQLITE_NOMEM_BKPT; goto recovery_error; } aData = &aFrame[WAL_FRAME_HDRSIZE]; aPrivate = (u32*)&aData[szPage]; /* Read all frames from the log file. */ iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ u32 *aShare; u32 iFrame; /* Index of last frame read */ u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); u32 nHdr, nHdr32; rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); assert( aShare!=0 || rc!=SQLITE_OK ); if( aShare==0 ) break; SEH_SET_ON_ERROR(iPg, aShare); pWal->apWiData[iPg] = aPrivate; for(iFrame=iFirst; iFrame<=iLast; iFrame++){ i64 iOffset = walFrameOffset(iFrame, szPage); u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); if( !isValid ) break; rc = walIndexAppend(pWal, iFrame, pgno); if( NEVER(rc!=SQLITE_OK) ) break; /* If nTruncate is non-zero, this is a commit record. */ if( nTruncate ){ pWal->hdr.mxFrame = iFrame; pWal->hdr.nPage = nTruncate; pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); testcase( szPage<=32768 ); testcase( szPage>=65536 ); aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; } } pWal->apWiData[iPg] = aShare; SEH_SET_ON_ERROR(0,0); nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); nHdr32 = nHdr / sizeof(u32); #ifndef SQLITE_SAFER_WALINDEX_RECOVERY /* Memcpy() should work fine here, on all reasonable implementations. ** Technically, memcpy() might change the destination to some ** intermediate value before setting to the final value, and that might ** cause a concurrent reader to malfunction. Memcpy() is allowed to ** do that, according to the spec, but no memcpy() implementation that ** we know of actually does that, which is why we say that memcpy() ** is safe for this. Memcpy() is certainly a lot faster. */ memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); #else /* In the event that some platform is found for which memcpy() ** changes the destination to some intermediate value before ** setting the final value, this alternative copy routine is ** provided. */ { int i; for(i=nHdr32; ihdr.aFrameCksum[0] = aFrameCksum[0]; pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; walIndexWriteHdr(pWal); /* Reset the checkpoint-header. This is safe because this thread is ** currently holding locks that exclude all other writers and ** checkpointers. Then set the values of read-mark slots 1 through N. */ pInfo = walCkptInfo(pWal); pInfo->nBackfill = 0; pInfo->nBackfillAttempted = pWal->hdr.mxFrame; pInfo->aReadMark[0] = 0; for(i=1; ihdr.mxFrame ){ pInfo->aReadMark[i] = pWal->hdr.mxFrame; }else{ pInfo->aReadMark[i] = READMARK_NOT_USED; } SEH_INJECT_FAULT; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc!=SQLITE_BUSY ){ goto recovery_error; } } /* If more than one frame was recovered from the log file, report an ** event via sqlite3_log(). This is to help with identifying performance ** problems caused by applications routinely shutting down without ** checkpointing the log file. */ if( pWal->hdr.nPage ){ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, "recovered %d frames from WAL file %s", pWal->hdr.mxFrame, pWal->zWalName ); } } recovery_error: WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); return rc; } /* ** Close an open wal-index. */ static void walIndexClose(Wal *pWal, int isDelete){ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ int i; for(i=0; inWiData; i++){ sqlite3_free((void *)pWal->apWiData[i]); pWal->apWiData[i] = 0; } } if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ sqlite3OsShmUnmap(pWal->pDbFd, isDelete); } } /* ** Open a connection to the WAL file zWalName. The database file must ** already be opened on connection pDbFd. The buffer that zWalName points ** to must remain valid for the lifetime of the returned Wal* handle. ** ** A SHARED lock should be held on the database file when this function ** is called. The purpose of this SHARED lock is to prevent any other ** client from unlinking the WAL or wal-index file. If another process ** were to do this just after this client opened one of these files, the ** system would be badly broken. ** ** If the log file is successfully opened, SQLITE_OK is returned and ** *ppWal is set to point to a new WAL handle. If an error occurs, ** an SQLite error code is returned and *ppWal is left unmodified. */ SQLITE_PRIVATE int sqlite3WalOpen( sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ sqlite3_file *pDbFd, /* The open database file */ const char *zWalName, /* Name of the WAL file */ int bNoShm, /* True to run in heap-memory mode */ i64 mxWalSize, /* Truncate WAL to this size on reset */ Wal **ppWal /* OUT: Allocated Wal handle */ ){ int rc; /* Return Code */ Wal *pRet; /* Object to allocate and return */ int flags; /* Flags passed to OsOpen() */ assert( zWalName && zWalName[0] ); assert( pDbFd ); /* Verify the values of various constants. Any changes to the values ** of these constants would result in an incompatible on-disk format ** for the -shm file. Any change that causes one of these asserts to ** fail is a backward compatibility problem, even if the change otherwise ** works. ** ** This table also serves as a helpful cross-reference when trying to ** interpret hex dumps of the -shm file. */ assert( 48 == sizeof(WalIndexHdr) ); assert( 40 == sizeof(WalCkptInfo) ); assert( 120 == WALINDEX_LOCK_OFFSET ); assert( 136 == WALINDEX_HDR_SIZE ); assert( 4096 == HASHTABLE_NPAGE ); assert( 4062 == HASHTABLE_NPAGE_ONE ); assert( 8192 == HASHTABLE_NSLOT ); assert( 383 == HASHTABLE_HASH_1 ); assert( 32768 == WALINDEX_PGSZ ); assert( 8 == SQLITE_SHM_NLOCK ); assert( 5 == WAL_NREADER ); assert( 24 == WAL_FRAME_HDRSIZE ); assert( 32 == WAL_HDRSIZE ); assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); /* In the amalgamation, the os_unix.c and os_win.c source files come before ** this source file. Verify that the #defines of the locking byte offsets ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. ** For that matter, if the lock offset ever changes from its initial design ** value of 120, we need to know that so there is an assert() to check it. */ #ifdef WIN_SHM_BASE assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif #ifdef UNIX_SHM_BASE assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif /* Allocate an instance of struct Wal to return. */ *ppWal = 0; pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); if( !pRet ){ return SQLITE_NOMEM_BKPT; } pRet->pVfs = pVfs; pRet->pWalFd = (sqlite3_file *)&pRet[1]; pRet->pDbFd = pDbFd; pRet->readLock = -1; pRet->mxWalSize = mxWalSize; pRet->zWalName = zWalName; pRet->syncHeader = 1; pRet->padToSectorBoundary = 1; pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); /* Open file handle on the write-ahead log file. */ flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ pRet->readOnly = WAL_RDONLY; } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ int iDC = sqlite3OsDeviceCharacteristics(pDbFd); if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ pRet->padToSectorBoundary = 0; } *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } return rc; } /* ** Change the size to which the WAL file is truncated on each reset. */ SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){ if( pWal ) pWal->mxWalSize = iLimit; } /* ** Find the smallest page number out of all pages held in the WAL that ** has not been returned by any prior invocation of this method on the ** same WalIterator object. Write into *piFrame the frame index where ** that page was last written into the WAL. Write into *piPage the page ** number. ** ** Return 0 on success. If there are no pages in the WAL with a page ** number larger than *piPage, then return 1. */ static int walIteratorNext( WalIterator *p, /* Iterator */ u32 *piPage, /* OUT: The page number of the next page */ u32 *piFrame /* OUT: Wal frame index of next page */ ){ u32 iMin; /* Result pgno must be greater than iMin */ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ int i; /* For looping through segments */ iMin = p->iPrior; assert( iMin<0xffffffff ); for(i=p->nSegment-1; i>=0; i--){ struct WalSegment *pSegment = &p->aSegment[i]; while( pSegment->iNextnEntry ){ u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; if( iPg>iMin ){ if( iPgiZero + pSegment->aIndex[pSegment->iNext]; } break; } pSegment->iNext++; } } *piPage = p->iPrior = iRet; return (iRet==0xFFFFFFFF); } /* ** This function merges two sorted lists into a single sorted list. ** ** aLeft[] and aRight[] are arrays of indices. The sort key is ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following ** is guaranteed for all J0 && nRight>0 ); while( iRight=nRight || aContent[aLeft[iLeft]]=nLeft || aContent[aLeft[iLeft]]>dbpage ); assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); } *paRight = aLeft; *pnRight = iOut; memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); } /* ** Sort the elements in list aList using aContent[] as the sort key. ** Remove elements with duplicate keys, preferring to keep the ** larger aList[] values. ** ** The aList[] entries are indices into aContent[]. The values in ** aList[] are to be sorted so that for all J0 ); assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); for(iList=0; iListaList && p->nList<=(1<aList==&aList[iList&~((2<aList, p->nList, &aMerge, &nMerge, aBuffer); } aSub[iSub].aList = aMerge; aSub[iSub].nList = nMerge; } for(iSub++; iSubnList<=(1<aList==&aList[nList&~((2<aList, p->nList, &aMerge, &nMerge, aBuffer); } } assert( aMerge==aList ); *pnList = nMerge; #ifdef SQLITE_DEBUG { int i; for(i=1; i<*pnList; i++){ assert( aContent[aList[i]] > aContent[aList[i-1]] ); } } #endif } /* ** Free an iterator allocated by walIteratorInit(). */ static void walIteratorFree(WalIterator *p){ sqlite3_free(p); } /* ** Construct a WalInterator object that can be used to loop over all ** pages in the WAL following frame nBackfill in ascending order. Frames ** nBackfill or earlier may be included - excluding them is an optimization ** only. The caller must hold the checkpoint lock. ** ** On success, make *pp point to the newly allocated WalInterator object ** return SQLITE_OK. Otherwise, return an error code. If this routine ** returns an error, the value of *pp is undefined. ** ** The calling routine should invoke walIteratorFree() to destroy the ** WalIterator object when it has finished with it. */ static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ WalIterator *p; /* Return value */ int nSegment; /* Number of segments to merge */ u32 iLast; /* Last frame in log */ sqlite3_int64 nByte; /* Number of bytes to allocate */ int i; /* Iterator variable */ ht_slot *aTmp; /* Temp space used by merge-sort */ int rc = SQLITE_OK; /* Return Code */ /* This routine only runs while holding the checkpoint lock. And ** it only runs if there is actually content in the log (mxFrame>0). */ assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); iLast = pWal->hdr.mxFrame; /* Allocate space for the WalIterator object. */ nSegment = walFramePage(iLast) + 1; nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + iLast*sizeof(ht_slot); p = (WalIterator *)sqlite3_malloc64(nByte + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) ); if( !p ){ return SQLITE_NOMEM_BKPT; } memset(p, 0, nByte); p->nSegment = nSegment; aTmp = (ht_slot*)&(((u8*)p)[nByte]); SEH_FREE_ON_ERROR(0, p); for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && iaSegment[p->nSegment])[sLoc.iZero]; sLoc.iZero++; for(j=0; jaSegment[i].iZero = sLoc.iZero; p->aSegment[i].nEntry = nEntry; p->aSegment[i].aIndex = aIndex; p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; } } if( rc!=SQLITE_OK ){ SEH_FREE_ON_ERROR(p, 0); walIteratorFree(p); p = 0; } *pp = p; return rc; } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* ** Attempt to enable blocking locks that block for nMs ms. Return 1 if ** blocking locks are successfully enabled, or 0 otherwise. */ static int walEnableBlockingMs(Wal *pWal, int nMs){ int rc = sqlite3OsFileControl( pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&nMs ); return (rc==SQLITE_OK); } /* ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) ** they are supported by the VFS, and (b) the database handle is configured ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, ** or 0 otherwise. */ static int walEnableBlocking(Wal *pWal){ int res = 0; if( pWal->db ){ int tmout = pWal->db->busyTimeout; if( tmout ){ res = walEnableBlockingMs(pWal, tmout); } } return res; } /* ** Disable blocking locks. */ static void walDisableBlocking(Wal *pWal){ int tmout = 0; sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); } /* ** If parameter bLock is true, attempt to enable blocking locks, take ** the WRITER lock, and then disable blocking locks. If blocking locks ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not ** an error if blocking locks can not be enabled. ** ** If the bLock parameter is false and the WRITER lock is held, release it. */ SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock){ int rc = SQLITE_OK; assert( pWal->readLock<0 || bLock==0 ); if( bLock ){ assert( pWal->db ); if( walEnableBlocking(pWal) ){ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); if( rc==SQLITE_OK ){ pWal->writeLock = 1; } walDisableBlocking(pWal); } }else if( pWal->writeLock ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; } return rc; } /* ** Set the database handle used to determine if blocking locks are required. */ SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db){ pWal->db = db; } #else # define walEnableBlocking(x) 0 # define walDisableBlocking(x) # define walEnableBlockingMs(pWal, ms) 0 # define sqlite3WalDb(pWal, db) #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ /* ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and ** n. If the attempt fails and parameter xBusy is not NULL, then it is a ** busy-handler function. Invoke it and retry the lock until either the ** lock is successfully obtained or the busy-handler returns 0. */ static int walBusyLock( Wal *pWal, /* WAL connection */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int lockIdx, /* Offset of first byte to lock */ int n /* Number of bytes to lock */ ){ int rc; do { rc = walLockExclusive(pWal, lockIdx, n); }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT if( rc==SQLITE_BUSY_TIMEOUT ){ walDisableBlocking(pWal); rc = SQLITE_BUSY; } #endif return rc; } /* ** The cache of the wal-index header must be valid to call this function. ** Return the page-size in bytes used by the database. */ static int walPagesize(Wal *pWal){ return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); } /* ** The following is guaranteed when this function is called: ** ** a) the WRITER lock is held, ** b) the entire log file has been checkpointed, and ** c) any existing readers are reading exclusively from the database ** file - there are no readers that may attempt to read a frame from ** the log file. ** ** This function updates the shared-memory structures so that the next ** client to write to the database (which may be this one) does so by ** writing frames into the start of the log file. ** ** The value of parameter salt1 is used as the aSalt[1] value in the ** new wal-index header. It should be passed a pseudo-random value (i.e. ** one obtained from sqlite3_randomness()). */ static void walRestartHdr(Wal *pWal, u32 salt1){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ pWal->nCkpt++; pWal->hdr.mxFrame = 0; sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); memcpy(&pWal->hdr.aSalt[1], &salt1, 4); walIndexWriteHdr(pWal); AtomicStore(&pInfo->nBackfill, 0); pInfo->nBackfillAttempted = 0; pInfo->aReadMark[1] = 0; for(i=2; iaReadMark[i] = READMARK_NOT_USED; assert( pInfo->aReadMark[0]==0 ); } /* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** ** The amount of information copies from WAL to database might be limited ** by active readers. This routine will never overwrite a database page ** that a concurrent reader might be using. ** ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if ** checkpoints are always run by a background thread or background ** process, foreground threads will never block on a lengthy fsync call. ** ** Fsync is called on the WAL before writing content out of the WAL and ** into the database. This ensures that if the new content is persistent ** in the WAL and can be recovered following a power-loss or hard reset. ** ** Fsync is also called on the database file if (and only if) the entire ** WAL content is copied into the database file. This second fsync makes ** it safe to delete the WAL since the new content will persist in the ** database file. ** ** This routine uses and updates the nBackfill field of the wal-index header. ** This is the only routine that will increase the value of nBackfill. ** (A WAL reset or recovery will revert nBackfill to zero, but not increase ** its value.) ** ** The caller must be holding sufficient locks to ensure that no other ** checkpoint is running (in any other thread or process) at the same ** time. */ static int walCheckpoint( Wal *pWal, /* Wal connection */ sqlite3 *db, /* Check for interrupts on this handle */ int eMode, /* One of PASSIVE, FULL or RESTART */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags for OsSync() (or 0) */ u8 *zBuf /* Temporary buffer to use */ ){ int rc = SQLITE_OK; /* Return code */ int szPage; /* Database page-size */ WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ u32 mxPage; /* Max database page to write */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ szPage = walPagesize(pWal); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pInfo = walCkptInfo(pWal); if( pInfo->nBackfillhdr.mxFrame ){ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); /* Compute in mxSafeFrame the index of the last frame of the WAL that is ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; iaReadMark+i); SEH_INJECT_FAULT; if( mxSafeFrame>y ){ assert( y<=pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc==SQLITE_BUSY ){ mxSafeFrame = y; xBusy = 0; }else{ goto walcheckpoint_out; } } } /* Allocate the iterator */ if( pInfo->nBackfillnBackfill, &pIter); assert( rc==SQLITE_OK || pIter==0 ); } if( pIter && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK ){ u32 nBackfill = pInfo->nBackfill; pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT; /* Sync the WAL to disk */ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); /* If the database may grow as a result of this checkpoint, hint ** about the eventual size of the db file to the VFS layer. */ if( rc==SQLITE_OK ){ i64 nReq = ((i64)mxPage * szPage); i64 nSize; /* Current size of database file */ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); if( rc==SQLITE_OK && nSizehdr.mxFrame*szPage)pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); } } } /* Iterate through the contents of the WAL, copying data to the db file */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ i64 iOffset; assert( walFramePgno(pWal, iFrame)==iDbpage ); SEH_INJECT_FAULT; if( AtomicLoad(&db->u1.isInterrupted) ){ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; break; } if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ continue; } iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); if( rc!=SQLITE_OK ) break; iOffset = (iDbpage-1)*(i64)szPage; testcase( IS_BIG_INT(iOffset) ); rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); if( rc!=SQLITE_OK ) break; } sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); /* If work was actually accomplished... */ if( rc==SQLITE_OK ){ if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ i64 szDb = pWal->hdr.nPage*(i64)szPage; testcase( IS_BIG_INT(szDb) ); rc = sqlite3OsTruncate(pWal->pDbFd, szDb); if( rc==SQLITE_OK ){ rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); } } if( rc==SQLITE_OK ){ AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT; } } /* Release the reader lock held while backfilling */ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); } if( rc==SQLITE_BUSY ){ /* Reset the return code so as not to report a checkpoint failure ** just because there are active readers. */ rc = SQLITE_OK; } } /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the ** entire wal file has been copied into the database file, then block ** until all readers have finished using the wal file. This ensures that ** the next process to write to the database restarts the wal file. */ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ assert( pWal->writeLock ); SEH_INJECT_FAULT; if( pInfo->nBackfillhdr.mxFrame ){ rc = SQLITE_BUSY; }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ u32 salt1; sqlite3_randomness(4, &salt1); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as ** SQLITE_CHECKPOINT_RESTART with the addition that it also ** truncates the log file to zero bytes just prior to a ** successful return. ** ** In theory, it might be safe to do this without updating the ** wal-index header in shared memory, as all subsequent reader or ** writer clients should see that the entire log file has been ** checkpointed and behave accordingly. This seems unsafe though, ** as it would leave the system in a state where the contents of ** the wal-index header do not match the contents of the ** file-system. To avoid this, update the wal-index header to ** indicate that the log file contains zero valid frames. */ walRestartHdr(pWal, salt1); rc = sqlite3OsTruncate(pWal->pWalFd, 0); } walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); } } } walcheckpoint_out: SEH_FREE_ON_ERROR(pIter, 0); walIteratorFree(pIter); return rc; } /* ** If the WAL file is currently larger than nMax bytes in size, truncate ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. */ static void walLimitSize(Wal *pWal, i64 nMax){ i64 sz; int rx; sqlite3BeginBenignMalloc(); rx = sqlite3OsFileSize(pWal->pWalFd, &sz); if( rx==SQLITE_OK && (sz > nMax ) ){ rx = sqlite3OsTruncate(pWal->pWalFd, nMax); } sqlite3EndBenignMalloc(); if( rx ){ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); } } #ifdef SQLITE_USE_SEH /* ** This is the "standard" exception handler used in a few places to handle ** an exception thrown by reading from the *-shm mapping after it has become ** invalid in SQLITE_USE_SEH builds. It is used as follows: ** ** SEH_TRY { ... } ** SEH_EXCEPT( rc = walHandleException(pWal); ) ** ** This function does three things: ** ** 1) Determines the locks that should be held, based on the contents of ** the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other ** held locks are assumed to be transient locks that would have been ** released had the exception not been thrown and are dropped. ** ** 2) Frees the pointer at Wal.pFree, if any, using sqlite3_free(). ** ** 3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL ** ** 4) Returns SQLITE_IOERR. */ static int walHandleException(Wal *pWal){ if( pWal->exclusiveMode==0 ){ static const int S = 1; static const int E = (1<lockMask & ~( (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) ); for(ii=0; iipFree); pWal->pFree = 0; if( pWal->pWiValue ){ pWal->apWiData[pWal->iWiPg] = pWal->pWiValue; pWal->pWiValue = 0; } return SQLITE_IOERR_IN_PAGE; } /* ** Assert that the Wal.lockMask mask, which indicates the locks held ** by the connenction, is consistent with the Wal.readLock, Wal.writeLock ** and Wal.ckptLock variables. To be used as: ** ** assert( walAssertLockmask(pWal) ); */ static int walAssertLockmask(Wal *pWal){ if( pWal->exclusiveMode==0 ){ static const int S = 1; static const int E = (1<readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) #ifdef SQLITE_ENABLE_SNAPSHOT | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0) #endif ); assert( mExpect==pWal->lockMask ); } return 1; } /* ** Return and zero the "system error" field set when an ** EXCEPTION_IN_PAGE_ERROR exception is caught. */ SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal *pWal){ int iRet = 0; if( pWal ){ iRet = pWal->iSysErrno; pWal->iSysErrno = 0; } return iRet; } #else # define walAssertLockmask(x) 1 #endif /* ifdef SQLITE_USE_SEH */ /* ** Close a connection to a log file. */ SQLITE_PRIVATE int sqlite3WalClose( Wal *pWal, /* Wal to close */ sqlite3 *db, /* For interrupt flag */ int sync_flags, /* Flags to pass to OsSync() (or 0) */ int nBuf, u8 *zBuf /* Buffer of at least nBuf bytes */ ){ int rc = SQLITE_OK; if( pWal ){ int isDelete = 0; /* True to unlink wal and wal-index files */ assert( walAssertLockmask(pWal) ); /* If an EXCLUSIVE lock can be obtained on the database file (using the ** ordinary, rollback-mode locking methods, this guarantees that the ** connection associated with this log file is the only connection to ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ if( zBuf!=0 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) ){ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = sqlite3WalCheckpoint(pWal, db, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); if( rc==SQLITE_OK ){ int bPersist = -1; sqlite3OsFileControlHint( pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist ); if( bPersist!=1 ){ /* Try to delete the WAL file if the checkpoint completed and ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal ** mode (!bPersist) */ isDelete = 1; }else if( pWal->mxWalSize>=0 ){ /* Try to truncate the WAL file to zero bytes if the checkpoint ** completed and fsynced (rc==SQLITE_OK) and we are in persistent ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a ** non-negative value (pWal->mxWalSize>=0). Note that we truncate ** to zero bytes as truncating to the journal_size_limit might ** leave a corrupt WAL file on disk. */ walLimitSize(pWal, 0); } } } walIndexClose(pWal, isDelete); sqlite3OsClose(pWal->pWalFd); if( isDelete ){ sqlite3BeginBenignMalloc(); sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); sqlite3EndBenignMalloc(); } WALTRACE(("WAL%p: closed\n", pWal)); sqlite3_free((void *)pWal->apWiData); sqlite3_free(pWal); } return rc; } /* ** Try to read the wal-index header. Return 0 on success and 1 if ** there is a problem. ** ** The wal-index is in shared memory. Another thread or process might ** be writing the header at the same time this procedure is trying to ** read it, which might result in inconsistency. A dirty read is detected ** by verifying that both copies of the header are the same and also by ** a checksum on the header. ** ** If and only if the read is consistent and the header is different from ** pWal->hdr, then pWal->hdr is updated to the content of the new header ** and *pChanged is set to 1. ** ** If the checksum cannot be verified return non-zero. If the header ** is read successfully and the checksum verified, return zero. */ static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ u32 aCksum[2]; /* Checksum on the header content */ WalIndexHdr h1, h2; /* Two copies of the header content */ WalIndexHdr volatile *aHdr; /* Header in shared memory */ /* The first page of the wal-index must be mapped at this point. */ assert( pWal->nWiData>0 && pWal->apWiData[0] ); /* Read the header. This might happen concurrently with a write to the ** same area of shared memory on a different CPU in a SMP, ** meaning it is possible that an inconsistent snapshot is read ** from the file. If this happens, return non-zero. ** ** tag-20200519-1: ** There are two copies of the header at the beginning of the wal-index. ** When reading, read [0] first then [1]. Writes are in the reverse order. ** Memory barriers are used to prevent the compiler or the hardware from ** reordering the reads and writes. TSAN and similar tools can sometimes ** give false-positive warnings about these accesses because the tools do not ** account for the double-read and the memory barrier. The use of mutexes ** here would be problematic as the memory being accessed is potentially ** shared among multiple processes and not all mutex implementations work ** reliably in that environment. */ aHdr = walIndexHdr(pWal); memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ walShmBarrier(pWal); memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ return 1; /* Dirty read */ } if( h1.isInit==0 ){ return 1; /* Malformed header - probably all zeros */ } walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ return 1; /* Checksum does not match */ } if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ *pChanged = 1; memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); testcase( pWal->szPage<=32768 ); testcase( pWal->szPage>=65536 ); } /* The header was successfully read. Return zero. */ return 0; } /* ** This is the value that walTryBeginRead returns when it needs to ** be retried. */ #define WAL_RETRY (-1) /* ** Read the wal-index header from the wal-index and into pWal->hdr. ** If the wal-header appears to be corrupt, try to reconstruct the ** wal-index from the WAL before returning. ** ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is ** changed by this operation. If pWal->hdr is unchanged, set *pChanged ** to 0. ** ** If the wal-index header is successfully read, return SQLITE_OK. ** Otherwise an SQLite error code. */ static int walIndexReadHdr(Wal *pWal, int *pChanged){ int rc; /* Return code */ int badHdr; /* True if a header read failed */ volatile u32 *page0; /* Chunk of wal-index containing header */ /* Ensure that page 0 of the wal-index (the page that contains the ** wal-index header) is mapped. Return early if an error occurs here. */ assert( pChanged ); rc = walIndexPage(pWal, 0, &page0); if( rc!=SQLITE_OK ){ assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ if( rc==SQLITE_READONLY_CANTINIT ){ /* The SQLITE_READONLY_CANTINIT return means that the shared-memory ** was openable but is not writable, and this thread is unable to ** confirm that another write-capable connection has the shared-memory ** open, and hence the content of the shared-memory is unreliable, ** since the shared-memory might be inconsistent with the WAL file ** and there is no writer on hand to fix it. */ assert( page0==0 ); assert( pWal->writeLock==0 ); assert( pWal->readOnly & WAL_SHM_RDONLY ); pWal->bShmUnreliable = 1; pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; *pChanged = 1; }else{ return rc; /* Any other non-OK return is just an error */ } }else{ /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock ** is zero, which prevents the SHM from growing */ testcase( page0!=0 ); } assert( page0!=0 || pWal->writeLock==0 ); /* If the first page of the wal-index has been mapped, try to read the ** wal-index header immediately, without holding any lock. This usually ** works, but may fail if the wal-index header is corrupt or currently ** being modified by another thread or process. */ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); /* If the first attempt failed, it might have been due to a race ** with a writer. So get a WRITE lock and try again. */ if( badHdr ){ if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ walUnlockShared(pWal, WAL_WRITE_LOCK); rc = SQLITE_READONLY_RECOVERY; } }else{ int bWriteLock = pWal->writeLock; if( bWriteLock || SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ pWal->writeLock = 1; if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ badHdr = walIndexTryHdr(pWal, pChanged); if( badHdr ){ /* If the wal-index header is still malformed even while holding ** a WRITE lock, it can only mean that the header is corrupted and ** needs to be reconstructed. So run recovery to do exactly that. ** Disable blocking locks first. */ walDisableBlocking(pWal); rc = walIndexRecover(pWal); *pChanged = 1; } } if( bWriteLock==0 ){ pWal->writeLock = 0; walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); } } } } /* If the header is read successfully, check the version number to make ** sure the wal-index was not constructed with some future format that ** this version of SQLite cannot understand. */ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ rc = SQLITE_CANTOPEN_BKPT; } if( pWal->bShmUnreliable ){ if( rc!=SQLITE_OK ){ walIndexClose(pWal, 0); pWal->bShmUnreliable = 0; assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); /* walIndexRecover() might have returned SHORT_READ if a concurrent ** writer truncated the WAL out from under it. If that happens, it ** indicates that a writer has fixed the SHM file for us, so retry */ if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; } pWal->exclusiveMode = WAL_NORMAL_MODE; } return rc; } /* ** Open a transaction in a connection where the shared-memory is read-only ** and where we cannot verify that there is a separate write-capable connection ** on hand to keep the shared-memory up-to-date with the WAL file. ** ** This can happen, for example, when the shared-memory is implemented by ** memory-mapping a *-shm file, where a prior writer has shut down and ** left the *-shm file on disk, and now the present connection is trying ** to use that database but lacks write permission on the *-shm file. ** Other scenarios are also possible, depending on the VFS implementation. ** ** Precondition: ** ** The *-wal file has been read and an appropriate wal-index has been ** constructed in pWal->apWiData[] using heap memory instead of shared ** memory. ** ** If this function returns SQLITE_OK, then the read transaction has ** been successfully opened. In this case output variable (*pChanged) ** is set to true before returning if the caller should discard the ** contents of the page cache before proceeding. Or, if it returns ** WAL_RETRY, then the heap memory wal-index has been discarded and ** the caller should retry opening the read transaction from the ** beginning (including attempting to map the *-shm file). ** ** If an error occurs, an SQLite error code is returned. */ static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ i64 szWal; /* Size of wal file on disk in bytes */ i64 iOffset; /* Current offset when reading wal file */ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ volatile void *pDummy; /* Dummy argument for xShmMap */ int rc; /* Return code */ u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ assert( pWal->bShmUnreliable ); assert( pWal->readOnly & WAL_SHM_RDONLY ); assert( pWal->nWiData>0 && pWal->apWiData[0] ); /* Take WAL_READ_LOCK(0). This has the effect of preventing any ** writers from running a checkpoint, but does not stop them ** from running recovery. */ rc = walLockShared(pWal, WAL_READ_LOCK(0)); if( rc!=SQLITE_OK ){ if( rc==SQLITE_BUSY ) rc = WAL_RETRY; goto begin_unreliable_shm_out; } pWal->readLock = 0; /* Check to see if a separate writer has attached to the shared-memory area, ** thus making the shared-memory "reliable" again. Do this by invoking ** the xShmMap() routine of the VFS and looking to see if the return ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. ** ** If the shared-memory is now "reliable" return WAL_RETRY, which will ** cause the heap-memory WAL-index to be discarded and the actual ** shared memory to be used in its place. ** ** This step is important because, even though this connection is holding ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might ** have already checkpointed the WAL file and, while the current ** is active, wrap the WAL and start overwriting frames that this ** process wants to use. ** ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, ** even if some external agent does a "chmod" to make the shared-memory ** writable by us, until sqlite3OsShmUnmap() has been called. ** This is a requirement on the VFS implementation. */ rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ if( rc!=SQLITE_READONLY_CANTINIT ){ rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); goto begin_unreliable_shm_out; } /* We reach this point only if the real shared-memory is still unreliable. ** Assume the in-memory WAL-index substitute is correct and load it ** into pWal->hdr. */ memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); /* Make sure some writer hasn't come in and changed the WAL file out ** from under us, then disconnected, while we were not looking. */ rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( szWalhdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); goto begin_unreliable_shm_out; } /* Check the salt keys at the start of the wal file still match. */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ /* Some writer has wrapped the WAL file while we were not looking. ** Return WAL_RETRY which will cause the in-memory WAL-index to be ** rebuilt. */ rc = WAL_RETRY; goto begin_unreliable_shm_out; } /* Allocate a buffer to read frames into */ assert( (pWal->szPage & (pWal->szPage-1))==0 ); assert( pWal->szPage>=512 && pWal->szPage<=65536 ); szFrame = pWal->szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame); if( aFrame==0 ){ rc = SQLITE_NOMEM_BKPT; goto begin_unreliable_shm_out; } aData = &aFrame[WAL_FRAME_HDRSIZE]; /* Check to see if a complete transaction has been appended to the ** wal file since the heap-memory wal-index was created. If so, the ** heap-memory wal-index is discarded and WAL_RETRY returned to ** the caller. */ aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); iOffset+szFrame<=szWal; iOffset+=szFrame ){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; /* If nTruncate is non-zero, then a complete transaction has been ** appended to this wal file. Set rc to WAL_RETRY and break out of ** the loop. */ if( nTruncate ){ rc = WAL_RETRY; break; } } pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; begin_unreliable_shm_out: sqlite3_free(aFrame); if( rc!=SQLITE_OK ){ int i; for(i=0; inWiData; i++){ sqlite3_free((void*)pWal->apWiData[i]); pWal->apWiData[i] = 0; } pWal->bShmUnreliable = 0; sqlite3WalEndReadTransaction(pWal); *pChanged = 1; } return rc; } /* ** The final argument passed to walTryBeginRead() is of type (int*). The ** caller should invoke walTryBeginRead as follows: ** ** int cnt = 0; ** do { ** rc = walTryBeginRead(..., &cnt); ** }while( rc==WAL_RETRY ); ** ** The final value of "cnt" is of no use to the caller. It is used by ** the implementation of walTryBeginRead() as follows: ** ** + Each time walTryBeginRead() is called, it is incremented. Once ** it reaches WAL_RETRY_PROTOCOL_LIMIT - indicating that walTryBeginRead() ** has many times been invoked and failed with WAL_RETRY - walTryBeginRead() ** returns SQLITE_PROTOCOL. ** ** + If SQLITE_ENABLE_SETLK_TIMEOUT is defined and walTryBeginRead() failed ** because a blocking lock timed out (SQLITE_BUSY_TIMEOUT from the OS ** layer), the WAL_RETRY_BLOCKED_MASK bit is set in "cnt". In this case ** the next invocation of walTryBeginRead() may omit an expected call to ** sqlite3OsSleep(). There has already been a delay when the previous call ** waited on a lock. */ #define WAL_RETRY_PROTOCOL_LIMIT 100 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT # define WAL_RETRY_BLOCKED_MASK 0x10000000 #else # define WAL_RETRY_BLOCKED_MASK 0 #endif /* ** Attempt to start a read transaction. This might fail due to a race or ** other transient condition. When that happens, it returns WAL_RETRY to ** indicate to the caller that it is safe to retry immediately. ** ** On success return SQLITE_OK. On a permanent failure (such an ** I/O error or an SQLITE_BUSY because another process is running ** recovery) return a positive error code. ** ** The useWal parameter is true to force the use of the WAL and disable ** the case where the WAL is bypassed because it has been completely ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() ** to make a copy of the wal-index header into pWal->hdr. If the ** wal-index header has changed, *pChanged is set to 1 (as an indication ** to the caller that the local page cache is obsolete and needs to be ** flushed.) When useWal==1, the wal-index header is assumed to already ** be loaded and the pChanged parameter is unused. ** ** The caller must set the cnt parameter to the number of prior calls to ** this routine during the current read attempt that returned WAL_RETRY. ** This routine will start taking more aggressive measures to clear the ** race conditions after multiple WAL_RETRY returns, and after an excessive ** number of errors will ultimately return SQLITE_PROTOCOL. The ** SQLITE_PROTOCOL return indicates that some other process has gone rogue ** and is not honoring the locking protocol. There is a vanishingly small ** chance that SQLITE_PROTOCOL could be returned because of a run of really ** bad luck when there is lots of contention for the wal-index, but that ** possibility is so small that it can be safely neglected, we believe. ** ** On success, this routine obtains a read lock on ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) ** that means the Wal does not hold any read lock. The reader must not ** access any database page that is modified by a WAL frame up to and ** including frame number aReadMark[pWal->readLock]. The reader will ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 ** Or if pWal->readLock==0, then the reader will ignore the WAL ** completely and get all content directly from the database file. ** If the useWal parameter is 1 then the WAL will never be ignored and ** this routine will always set pWal->readLock>0 on success. ** When the read transaction is completed, the caller must release the ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. ** ** This routine uses the nBackfill and aReadMark[] fields of the header ** to select a particular WAL_READ_LOCK() that strives to let the ** checkpoint process do as much work as possible. This routine might ** update values of the aReadMark[] array in the header, but if it does ** so it takes care to hold an exclusive lock on the corresponding ** WAL_READ_LOCK() while changing values. */ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int *pCnt){ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ u32 mxReadMark; /* Largest aReadMark[] value */ int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ u32 mxFrame; /* Wal frame to lock to */ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT int nBlockTmout = 0; #endif assert( pWal->readLock<0 ); /* Not currently locked */ /* useWal may only be set for read/write connections */ assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); /* Take steps to avoid spinning forever if there is a protocol error. ** ** Circumstances that cause a RETRY should only last for the briefest ** instances of time. No I/O or other system calls are done while the ** locks are held, so the locks should not be held for very long. But ** if we are unlucky, another process that is holding a lock might get ** paged out or take a page-fault that is time-consuming to resolve, ** during the few nanoseconds that it is holding the lock. In that case, ** it might take longer than normal for the lock to free. ** ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this ** is more of a scheduler yield than an actual delay. But on the 10th ** an subsequent retries, the delays start becoming longer and longer, ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. ** The total delay time before giving up is less than 10 seconds. */ (*pCnt)++; if( *pCnt>5 ){ int nDelay = 1; /* Pause time in microseconds */ int cnt = (*pCnt & ~WAL_RETRY_BLOCKED_MASK); if( cnt>WAL_RETRY_PROTOCOL_LIMIT ){ VVA_ONLY( pWal->lockError = 1; ) return SQLITE_PROTOCOL; } if( *pCnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* In SQLITE_ENABLE_SETLK_TIMEOUT builds, configure the file-descriptor ** to block for locks for approximately nDelay us. This affects three ** locks: (a) the shared lock taken on the DMS slot in os_unix.c (if ** using os_unix.c), (b) the WRITER lock taken in walIndexReadHdr() if the ** first attempted read fails, and (c) the shared lock taken on the ** read-mark. ** ** If the previous call failed due to an SQLITE_BUSY_TIMEOUT error, ** then sleep for the minimum of 1us. The previous call already provided ** an extra delay while it was blocking on the lock. */ nBlockTmout = (nDelay+998) / 1000; if( !useWal && walEnableBlockingMs(pWal, nBlockTmout) ){ if( *pCnt & WAL_RETRY_BLOCKED_MASK ) nDelay = 1; } #endif sqlite3OsSleep(pWal->pVfs, nDelay); *pCnt &= ~WAL_RETRY_BLOCKED_MASK; } if( !useWal ){ assert( rc==SQLITE_OK ); if( pWal->bShmUnreliable==0 ){ rc = walIndexReadHdr(pWal, pChanged); } #ifdef SQLITE_ENABLE_SETLK_TIMEOUT walDisableBlocking(pWal); if( rc==SQLITE_BUSY_TIMEOUT ){ rc = SQLITE_BUSY; *pCnt |= WAL_RETRY_BLOCKED_MASK; } #endif if( rc==SQLITE_BUSY ){ /* If there is not a recovery running in another thread or process ** then convert BUSY errors to WAL_RETRY. If recovery is known to ** be running, convert BUSY to BUSY_RECOVERY. There is a race here ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY ** would be technically correct. But the race is benign since with ** WAL_RETRY this routine will be called again and will probably be ** right on the second iteration. */ if( pWal->apWiData[0]==0 ){ /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. ** We assume this is a transient condition, so return WAL_RETRY. The ** xShmMap() implementation used by the default unix and win32 VFS ** modules may return SQLITE_BUSY due to a race condition in the ** code that determines whether or not the shared-memory region ** must be zeroed before the requested page is returned. */ rc = WAL_RETRY; }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ walUnlockShared(pWal, WAL_RECOVER_LOCK); rc = WAL_RETRY; }else if( rc==SQLITE_BUSY ){ rc = SQLITE_BUSY_RECOVERY; } } if( rc!=SQLITE_OK ){ return rc; } else if( pWal->bShmUnreliable ){ return walBeginShmUnreliable(pWal, pChanged); } } assert( pWal->nWiData>0 ); assert( pWal->apWiData[0]!=0 ); pInfo = walCkptInfo(pWal); SEH_INJECT_FAULT; if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame #ifdef SQLITE_ENABLE_SNAPSHOT && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) #endif ){ /* The WAL has been completely backfilled (or it is empty). ** and can be safely ignored. */ rc = walLockShared(pWal, WAL_READ_LOCK(0)); walShmBarrier(pWal); if( rc==SQLITE_OK ){ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ /* It is not safe to allow the reader to continue here if frames ** may have been appended to the log before READ_LOCK(0) was obtained. ** When holding READ_LOCK(0), the reader ignores the entire log file, ** which implies that the database file contains a trustworthy ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from ** happening, this is usually correct. ** ** However, if frames have been appended to the log (or if the log ** is wrapped and written for that matter) before the READ_LOCK(0) ** is obtained, that is not necessarily true. A checkpointer may ** have started to backfill the appended frames but crashed before ** it finished. Leaving a corrupt image in the database file. */ walUnlockShared(pWal, WAL_READ_LOCK(0)); return WAL_RETRY; } pWal->readLock = 0; return SQLITE_OK; }else if( rc!=SQLITE_BUSY ){ return rc; } } /* If we get this far, it means that the reader will want to use ** the WAL to get at content from recent commits. The job now is ** to select one of the aReadMark[] entries that is closest to ** but not exceeding pWal->hdr.mxFrame and lock that entry. */ mxReadMark = 0; mxI = 0; mxFrame = pWal->hdr.mxFrame; #ifdef SQLITE_ENABLE_SNAPSHOT if( pWal->pSnapshot && pWal->pSnapshot->mxFramepSnapshot->mxFrame; } #endif for(i=1; iaReadMark+i); SEH_INJECT_FAULT; if( mxReadMark<=thisMark && thisMark<=mxFrame ){ assert( thisMark!=READMARK_NOT_USED ); mxReadMark = thisMark; mxI = i; } } if( (pWal->readOnly & WAL_SHM_RDONLY)==0 && (mxReadMarkaReadMark+i,mxFrame); mxReadMark = mxFrame; mxI = i; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); break; }else if( rc!=SQLITE_BUSY ){ return rc; } } } if( mxI==0 ){ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; } (void)walEnableBlockingMs(pWal, nBlockTmout); rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); walDisableBlocking(pWal); if( rc ){ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT if( rc==SQLITE_BUSY_TIMEOUT ){ *pCnt |= WAL_RETRY_BLOCKED_MASK; } #else assert( rc!=SQLITE_BUSY_TIMEOUT ); #endif assert( (rc&0xFF)!=SQLITE_BUSY||rc==SQLITE_BUSY||rc==SQLITE_BUSY_TIMEOUT ); return (rc&0xFF)==SQLITE_BUSY ? WAL_RETRY : rc; } /* Now that the read-lock has been obtained, check that neither the ** value in the aReadMark[] array or the contents of the wal-index ** header have changed. ** ** It is necessary to check that the wal-index header did not change ** between the time it was read and when the shared-lock was obtained ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility ** that the log file may have been wrapped by a writer, or that frames ** that occur later in the log than pWal->hdr.mxFrame may have been ** copied into the database by a checkpointer. If either of these things ** happened, then reading the database with the current value of ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry ** instead. ** ** Before checking that the live wal-index header has not changed ** since it was read, set Wal.minFrame to the first frame in the wal ** file that has not yet been checkpointed. This client will not need ** to read any frames earlier than minFrame from the wal file - they ** can be safely read directly from the database file. ** ** Because a ShmBarrier() call is made between taking the copy of ** nBackfill and checking that the wal-header in shared-memory still ** matches the one cached in pWal->hdr, it is guaranteed that the ** checkpointer that set nBackfill was not working with a wal-index ** header newer than that cached in pWal->hdr. If it were, that could ** cause a problem. The checkpointer could omit to checkpoint ** a version of page X that lies before pWal->minFrame (call that version ** A) on the basis that there is a newer version (version B) of the same ** page later in the wal file. But if version B happens to like past ** frame pWal->hdr.mxFrame - then the client would incorrectly assume ** that it can read version A from the database file. However, since ** we can guarantee that the checkpointer that set nBackfill could not ** see any pages past pWal->hdr.mxFrame, this problem does not come up. */ pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT; walShmBarrier(pWal); if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ walUnlockShared(pWal, WAL_READ_LOCK(mxI)); return WAL_RETRY; }else{ assert( mxReadMark<=pWal->hdr.mxFrame ); pWal->readLock = (i16)mxI; } return rc; } #ifdef SQLITE_ENABLE_SNAPSHOT /* ** This function does the work of sqlite3WalSnapshotRecover(). */ static int walSnapshotRecover( Wal *pWal, /* WAL handle */ void *pBuf1, /* Temp buffer pWal->szPage bytes in size */ void *pBuf2 /* Temp buffer pWal->szPage bytes in size */ ){ int szPage = (int)pWal->szPage; int rc; i64 szDb; /* Size of db file in bytes */ rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); u32 i = pInfo->nBackfillAttempted; for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ WalHashLoc sLoc; /* Hash table location */ u32 pgno; /* Page number in db file */ i64 iDbOff; /* Offset of db file entry */ i64 iWalOff; /* Offset of wal file entry */ rc = walHashGet(pWal, walFramePage(i), &sLoc); if( rc!=SQLITE_OK ) break; assert( i - sLoc.iZero - 1 >=0 ); pgno = sLoc.aPgno[i-sLoc.iZero-1]; iDbOff = (i64)(pgno-1) * szPage; if( iDbOff+szPage<=szDb ){ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); if( rc==SQLITE_OK ){ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); } if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ break; } } pInfo->nBackfillAttempted = i-1; } } return rc; } /* ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted ** variable so that older snapshots can be accessed. To do this, loop ** through all wal frames from nBackfillAttempted to (nBackfill+1), ** comparing their content to the corresponding page with the database ** file, if any. Set nBackfillAttempted to the frame number of the ** first frame for which the wal file content matches the db file. ** ** This is only really safe if the file-system is such that any page ** writes made by earlier checkpointers were atomic operations, which ** is not always true. It is also possible that nBackfillAttempted ** may be left set to a value larger than expected, if a wal frame ** contains content that duplicate of an earlier version of the same ** page. ** ** SQLITE_OK is returned if successful, or an SQLite error code if an ** error occurs. It is not an error if nBackfillAttempted cannot be ** decreased at all. */ SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){ int rc; assert( pWal->readLock>=0 ); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc==SQLITE_OK ){ void *pBuf1 = sqlite3_malloc(pWal->szPage); void *pBuf2 = sqlite3_malloc(pWal->szPage); if( pBuf1==0 || pBuf2==0 ){ rc = SQLITE_NOMEM; }else{ pWal->ckptLock = 1; SEH_TRY { rc = walSnapshotRecover(pWal, pBuf1, pBuf2); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) pWal->ckptLock = 0; } sqlite3_free(pBuf1); sqlite3_free(pBuf2); walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); } return rc; } #endif /* SQLITE_ENABLE_SNAPSHOT */ /* ** This function does the work of sqlite3WalBeginReadTransaction() (see ** below). That function simply calls this one inside an SEH_TRY{...} block. */ static int walBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; /* Return code */ int cnt = 0; /* Number of TryBeginRead attempts */ #ifdef SQLITE_ENABLE_SNAPSHOT int ckptLock = 0; int bChanged = 0; WalIndexHdr *pSnapshot = pWal->pSnapshot; #endif assert( pWal->ckptLock==0 ); assert( pWal->nSehTry>0 ); #ifdef SQLITE_ENABLE_SNAPSHOT if( pSnapshot ){ if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ bChanged = 1; } /* It is possible that there is a checkpointer thread running ** concurrent with this code. If this is the case, it may be that the ** checkpointer has already determined that it will checkpoint ** snapshot X, where X is later in the wal file than pSnapshot, but ** has not yet set the pInfo->nBackfillAttempted variable to indicate ** its intent. To avoid the race condition this leads to, ensure that ** there is no checkpointer process by taking a shared CKPT lock ** before checking pInfo->nBackfillAttempted. */ (void)walEnableBlocking(pWal); rc = walLockShared(pWal, WAL_CKPT_LOCK); walDisableBlocking(pWal); if( rc!=SQLITE_OK ){ return rc; } ckptLock = 1; } #endif do{ rc = walTryBeginRead(pWal, pChanged, 0, &cnt); }while( rc==WAL_RETRY ); testcase( (rc&0xff)==SQLITE_BUSY ); testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); #ifdef SQLITE_ENABLE_SNAPSHOT if( rc==SQLITE_OK ){ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ /* At this point the client has a lock on an aReadMark[] slot holding ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr ** is populated with the wal-index header corresponding to the head ** of the wal file. Verify that pSnapshot is still valid before ** continuing. Reasons why pSnapshot might no longer be valid: ** ** (1) The WAL file has been reset since the snapshot was taken. ** In this case, the salt will have changed. ** ** (2) A checkpoint as been attempted that wrote frames past ** pSnapshot->mxFrame into the database file. Note that the ** checkpoint need not have completed for this to cause problems. */ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); /* Check that the wal file has not been wrapped. Assuming that it has ** not, also check that no checkpointer has attempted to checkpoint any ** frames beyond pSnapshot->mxFrame. If either of these conditions are ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr ** with *pSnapshot and set *pChanged as appropriate for opening the ** snapshot. */ if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) && pSnapshot->mxFrame>=pInfo->nBackfillAttempted ){ assert( pWal->readLock>0 ); memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); *pChanged = bChanged; }else{ rc = SQLITE_ERROR_SNAPSHOT; } /* A client using a non-current snapshot may not ignore any frames ** from the start of the wal file. This is because, for a system ** where (minFrame < iSnapshot < maxFrame), a checkpointer may ** have omitted to checkpoint a frame earlier than minFrame in ** the file because there exists a frame after iSnapshot that ** is the same database page. */ pWal->minFrame = 1; if( rc!=SQLITE_OK ){ sqlite3WalEndReadTransaction(pWal); } } } /* Release the shared CKPT lock obtained above. */ if( ckptLock ){ assert( pSnapshot ); walUnlockShared(pWal, WAL_CKPT_LOCK); } #endif return rc; } /* ** Begin a read transaction on the database. ** ** This routine used to be called sqlite3OpenSnapshot() and with good reason: ** it takes a snapshot of the state of the WAL and wal-index for the current ** instant in time. The current thread will continue to use this snapshot. ** Other threads might append new content to the WAL and wal-index but ** that extra content is ignored by the current thread. ** ** If the database contents have changes since the previous read ** transaction, then *pChanged is set to 1 before returning. The ** Pager layer will use this to know that its cache is stale and ** needs to be flushed. */ SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; SEH_TRY { rc = walBeginReadTransaction(pWal, pChanged); } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){ sqlite3WalEndWriteTransaction(pWal); if( pWal->readLock>=0 ){ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->readLock = -1; } } /* ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. */ static int walFindFrame( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ u32 *piRead /* OUT: Frame number (or zero) */ ){ u32 iRead = 0; /* If !=0, WAL frame to return data from */ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ int iHash; /* Used to loop through N hash tables */ int iMinHash; /* This routine is only be called from within a read transaction. */ assert( pWal->readLock>=0 || pWal->lockError ); /* If the "last page" field of the wal-index header snapshot is 0, then ** no data will be read from the wal under any circumstances. Return early ** in this case as an optimization. Likewise, if pWal->readLock==0, ** then the WAL is ignored by the reader so return early, as if the ** WAL were empty. */ if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ *piRead = 0; return SQLITE_OK; } /* Search the hash table or tables for an entry matching page number ** pgno. Each iteration of the following for() loop searches one ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). ** ** This code might run concurrently to the code in walIndexAppend() ** that adds entries to the wal-index (and possibly to this hash ** table). This means the value just read from the hash ** slot (aHash[iKey]) may have been added before or after the ** current read transaction was opened. Values added after the ** read transaction was opened may have been written incorrectly - ** i.e. these slots may contain garbage data. However, we assume ** that any slots written before the current read transaction was ** opened remain unmodified. ** ** For the reasons above, the if(...) condition featured in the inner ** loop of the following block is more stringent that would be required ** if we had exclusive access to the hash-table: ** ** (aPgno[iFrame]==pgno): ** This condition filters out normal hash-table collisions. ** ** (iFrame<=iLast): ** This condition filters out entries that were added to the hash ** table after the current read-transaction had started. */ iMinHash = walFramePage(pWal->minFrame); for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ WalHashLoc sLoc; /* Hash table location */ int iKey; /* Hash slot index */ int nCollide; /* Number of hash collisions remaining */ int rc; /* Error code */ u32 iH; rc = walHashGet(pWal, iHash, &sLoc); if( rc!=SQLITE_OK ){ return rc; } nCollide = HASHTABLE_NSLOT; iKey = walHash(pgno); SEH_INJECT_FAULT; while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ u32 iFrame = iH + sLoc.iZero; if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ assert( iFrame>iRead || CORRUPT_DB ); iRead = iFrame; } if( (nCollide--)==0 ){ *piRead = 0; return SQLITE_CORRUPT_BKPT; } iKey = walNextHash(iKey); } if( iRead ) break; } #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* If expensive assert() statements are available, do a linear search ** of the wal-index file content. Make sure the results agree with the ** result obtained using the hash indexes above. */ { u32 iRead2 = 0; u32 iTest; assert( pWal->bShmUnreliable || pWal->minFrame>0 ); for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ if( walFramePgno(pWal, iTest)==pgno ){ iRead2 = iTest; break; } } assert( iRead==iRead2 ); } #endif *piRead = iRead; return SQLITE_OK; } /* ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. ** ** The difference between this function and walFindFrame() is that this ** function wraps walFindFrame() in an SEH_TRY{...} block. */ SQLITE_PRIVATE int sqlite3WalFindFrame( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ u32 *piRead /* OUT: Frame number (or zero) */ ){ int rc; SEH_TRY { rc = walFindFrame(pWal, pgno, piRead); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) return rc; } /* ** Read the contents of frame iRead from the wal file into buffer pOut ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an ** error code otherwise. */ SQLITE_PRIVATE int sqlite3WalReadFrame( Wal *pWal, /* WAL handle */ u32 iRead, /* Frame to read */ int nOut, /* Size of buffer pOut in bytes */ u8 *pOut /* Buffer to write page data to */ ){ int sz; i64 iOffset; sz = pWal->hdr.szPage; sz = (sz&0xfe00) + ((sz&0x0001)<<16); testcase( sz<=32768 ); testcase( sz>=65536 ); iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); } /* ** Return the size of the database in pages (or zero, if unknown). */ SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){ if( pWal && ALWAYS(pWal->readLock>=0) ){ return pWal->hdr.nPage; } return 0; } /* ** This function starts a write transaction on the WAL. ** ** A read transaction must have already been started by a prior call ** to sqlite3WalBeginReadTransaction(). ** ** If another thread or process has written into the database since ** the read transaction was started, then it is not possible for this ** thread to write as doing so would cause a fork. So this routine ** returns SQLITE_BUSY in that case and no write transaction is started. ** ** There can only be a single writer active at a time. */ SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){ int rc; #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* If the write-lock is already held, then it was obtained before the ** read-transaction was even opened, making this call a no-op. ** Return early. */ if( pWal->writeLock ){ assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); return SQLITE_OK; } #endif /* Cannot start a write transaction without first holding a read ** transaction. */ assert( pWal->readLock>=0 ); assert( pWal->writeLock==0 && pWal->iReCksum==0 ); if( pWal->readOnly ){ return SQLITE_READONLY; } /* Only one writer allowed at a time. Get the write lock. Return ** SQLITE_BUSY if unable. */ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); if( rc ){ return rc; } pWal->writeLock = 1; /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ SEH_TRY { if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ rc = SQLITE_BUSY_SNAPSHOT; } } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) if( rc!=SQLITE_OK ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; } return rc; } /* ** End a write transaction. The commit has already been done. This ** routine merely releases the lock. */ SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){ if( pWal->writeLock ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; pWal->iReCksum = 0; pWal->truncateOnCommit = 0; } return SQLITE_OK; } /* ** If any data has been written (but not committed) to the log file, this ** function moves the write-pointer back to the start of the transaction. ** ** Additionally, the callback function is invoked for each frame written ** to the WAL since the start of the transaction. If the callback returns ** other than SQLITE_OK, it is not invoked again and the error code is ** returned to the caller. ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( ALWAYS(pWal->writeLock) ){ Pgno iMax = pWal->hdr.mxFrame; Pgno iFrame; SEH_TRY { /* Restore the clients cache of the wal-index header to the state it ** was in before the client began writing to the database. */ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); for(iFrame=pWal->hdr.mxFrame+1; ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; iFrame++ ){ /* This call cannot fail. Unless the page for which the page number ** is passed as the second argument is (a) in the cache and ** (b) has an outstanding reference, then xUndo is either a no-op ** (if (a) is false) or simply expels the page from the cache (if (b) ** is false). ** ** If the upper layer is doing a rollback, it is guaranteed that there ** are no outstanding references to any page other than page 1. And ** page 1 is never written to the log until the transaction is ** committed. As a result, the call to xUndo may not fail. */ assert( walFramePgno(pWal, iFrame)!=1 ); rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); } if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 ** values. This function populates the array with values required to ** "rollback" the write position of the WAL handle back to the current ** point in the event of a savepoint rollback (via WalSavepointUndo()). */ SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ assert( pWal->writeLock ); aWalData[0] = pWal->hdr.mxFrame; aWalData[1] = pWal->hdr.aFrameCksum[0]; aWalData[2] = pWal->hdr.aFrameCksum[1]; aWalData[3] = pWal->nCkpt; } /* ** Move the write position of the WAL back to the point identified by ** the values in the aWalData[] array. aWalData must point to an array ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated ** by a call to WalSavepoint(). */ SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ int rc = SQLITE_OK; assert( pWal->writeLock ); assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); if( aWalData[3]!=pWal->nCkpt ){ /* This savepoint was opened immediately after the write-transaction ** was started. Right after that, the writer decided to wrap around ** to the start of the log. Update the savepoint values to match. */ aWalData[0] = 0; aWalData[3] = pWal->nCkpt; } if( aWalData[0]hdr.mxFrame ){ pWal->hdr.mxFrame = aWalData[0]; pWal->hdr.aFrameCksum[0] = aWalData[1]; pWal->hdr.aFrameCksum[1] = aWalData[2]; SEH_TRY { walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** This function is called just before writing a set of frames to the log ** file (see sqlite3WalFrames()). It checks to see if, instead of appending ** to the current log file, it is possible to overwrite the start of the ** existing log file with the new frames (i.e. "reset" the log). If so, ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left ** unchanged. ** ** SQLITE_OK is returned if no error is encountered (regardless of whether ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned ** if an error occurs. */ static int walRestartLog(Wal *pWal){ int rc = SQLITE_OK; int cnt; if( pWal->readLock==0 ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ u32 salt1; sqlite3_randomness(4, &salt1); rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ /* If all readers are using WAL_READ_LOCK(0) (in other words if no ** readers are currently using the WAL), then the transactions ** frames will overwrite the start of the existing log. Update the ** wal-index header to reflect this. ** ** In theory it would be Ok to update the cache of the header only ** at this point. But updating the actual wal-index header is also ** safe and means there is no special case for sqlite3WalUndo() ** to handle if this transaction is rolled back. */ walRestartHdr(pWal, salt1); walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); }else if( rc!=SQLITE_BUSY ){ return rc; } } walUnlockShared(pWal, WAL_READ_LOCK(0)); pWal->readLock = -1; cnt = 0; do{ int notUsed; rc = walTryBeginRead(pWal, ¬Used, 1, &cnt); }while( rc==WAL_RETRY ); assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); } return rc; } /* ** Information about the current state of the WAL file and where ** the next fsync should occur - passed from sqlite3WalFrames() into ** walWriteToLog(). */ typedef struct WalWriter { Wal *pWal; /* The complete WAL information */ sqlite3_file *pFd; /* The WAL file to which we write */ sqlite3_int64 iSyncPoint; /* Fsync at this offset */ int syncFlags; /* Flags for the fsync */ int szPage; /* Size of one page */ } WalWriter; /* ** Write iAmt bytes of content into the WAL file beginning at iOffset. ** Do a sync when crossing the p->iSyncPoint boundary. ** ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, ** first write the part before iSyncPoint, then sync, then write the ** rest. */ static int walWriteToLog( WalWriter *p, /* WAL to write to */ void *pContent, /* Content to be written */ int iAmt, /* Number of bytes to write */ sqlite3_int64 iOffset /* Start writing at this offset */ ){ int rc; if( iOffsetiSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ int iFirstAmt = (int)(p->iSyncPoint - iOffset); rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); if( rc ) return rc; iOffset += iFirstAmt; iAmt -= iFirstAmt; pContent = (void*)(iFirstAmt + (char*)pContent); assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); if( iAmt==0 || rc ) return rc; } rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); return rc; } /* ** Write out a single frame of the WAL */ static int walWriteOneFrame( WalWriter *p, /* Where to write the frame */ PgHdr *pPage, /* The page of the frame to be written */ int nTruncate, /* The commit flag. Usually 0. >0 for commit */ sqlite3_int64 iOffset /* Byte offset at which to write */ ){ int rc; /* Result code from subfunctions */ void *pData; /* Data actually written */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ #if defined(SQLITE_HAS_CODEC) if( (pData = sqlcipherPagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT; #else pData = pPage->pData; #endif walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); if( rc ) return rc; /* Write the page data */ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); return rc; } /* ** This function is called as part of committing a transaction within which ** one or more frames have been overwritten. It updates the checksums for ** all frames written to the wal file by the current transaction starting ** with the earliest to have been overwritten. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int walRewriteChecksums(Wal *pWal, u32 iLast){ const int szPage = pWal->szPage;/* Database page size */ int rc = SQLITE_OK; /* Return code */ u8 *aBuf; /* Buffer to load data from wal file into */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ u32 iRead; /* Next frame to read from wal file */ i64 iCksumOff; aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); if( aBuf==0 ) return SQLITE_NOMEM_BKPT; /* Find the checksum values to use as input for the recalculating the ** first checksum. If the first frame is frame 1 (implying that the current ** transaction restarted the wal file), these values must be read from the ** wal-file header. Otherwise, read them from the frame header of the ** previous frame. */ assert( pWal->iReCksum>0 ); if( pWal->iReCksum==1 ){ iCksumOff = 24; }else{ iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; } rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); iRead = pWal->iReCksum; pWal->iReCksum = 0; for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ i64 iOff = walFrameOffset(iRead, szPage); rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); if( rc==SQLITE_OK ){ u32 iPgno, nDbSize; iPgno = sqlite3Get4byte(aBuf); nDbSize = sqlite3Get4byte(&aBuf[4]); walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); } } sqlite3_free(aBuf); return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). */ static int walFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; /* Used to catch return codes */ u32 iFrame; /* Next frame address */ PgHdr *p; /* Iterator to run through pList with. */ PgHdr *pLast = 0; /* Last frame in list */ int nExtra = 0; /* Number of extra copies of last page */ int szFrame; /* The size of a single frame */ i64 iOffset; /* Next byte to write in WAL file */ WalWriter w; /* The writer */ u32 iFirst = 0; /* First frame that may be overwritten */ WalIndexHdr *pLive; /* Pointer to shared header */ assert( pList ); assert( pWal->writeLock ); /* If this frame set completes a transaction, then nTruncate>0. If ** nTruncate==0 then this frame set does not complete the transaction. */ assert( (isCommit!=0)==(nTruncate!=0) ); #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); } #endif pLive = (WalIndexHdr*)walIndexHdr(pWal); if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ iFirst = pLive->mxFrame+1; } /* See if it is possible to write these frames into the start of the ** log file, instead of appending to it at pWal->hdr.mxFrame. */ if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ return rc; } /* If this is the first frame written into the log, write the WAL ** header to the start of the WAL file. See comments at the top of ** this source file for a description of the WAL header format. */ iFrame = pWal->hdr.mxFrame; if( iFrame==0 ){ u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ u32 aCksum[2]; /* Checksum for wal-header */ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); sqlite3Put4byte(&aWalHdr[8], szPage); sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); sqlite3Put4byte(&aWalHdr[24], aCksum[0]); sqlite3Put4byte(&aWalHdr[28], aCksum[1]); pWal->szPage = szPage; pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; pWal->hdr.aFrameCksum[0] = aCksum[0]; pWal->hdr.aFrameCksum[1] = aCksum[1]; pWal->truncateOnCommit = 1; rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); if( rc!=SQLITE_OK ){ return rc; } /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise ** an out-of-order write following a WAL restart could result in ** database corruption. See the ticket: ** ** https://sqlite.org/src/info/ff5be73dee */ if( pWal->syncHeader ){ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); if( rc ) return rc; } } if( (int)pWal->szPage!=szPage ){ return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */ } /* Setup information needed to write frames into the WAL */ w.pWal = pWal; w.pFd = pWal->pWalFd; w.iSyncPoint = 0; w.syncFlags = sync_flags; w.szPage = szPage; iOffset = walFrameOffset(iFrame+1, szPage); szFrame = szPage + WAL_FRAME_HDRSIZE; /* Write all frames into the log file exactly once */ for(p=pList; p; p=p->pDirty){ int nDbSize; /* 0 normally. Positive == commit flag */ /* Check if this page has already been written into the wal file by ** the current transaction. If so, overwrite the existing frame and ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that ** checksums must be recomputed when the transaction is committed. */ if( iFirst && (p->pDirty || isCommit==0) ){ u32 iWrite = 0; VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite); assert( rc==SQLITE_OK || iWrite==0 ); if( iWrite>=iFirst ){ i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; void *pData; if( pWal->iReCksum==0 || iWriteiReCksum ){ pWal->iReCksum = iWrite; } #if defined(SQLITE_HAS_CODEC) if( (pData = sqlcipherPagerCodec(p))==0 ) return SQLITE_NOMEM; #else pData = p->pData; #endif rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); if( rc ) return rc; p->flags &= ~PGHDR_WAL_APPEND; continue; } } iFrame++; assert( iOffset==walFrameOffset(iFrame, szPage) ); nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; rc = walWriteOneFrame(&w, p, nDbSize, iOffset); if( rc ) return rc; pLast = p; iOffset += szFrame; p->flags |= PGHDR_WAL_APPEND; } /* Recalculate checksums within the wal file if required. */ if( isCommit && pWal->iReCksum ){ rc = walRewriteChecksums(pWal, iFrame); if( rc ) return rc; } /* If this is the end of a transaction, then we might need to pad ** the transaction and/or sync the WAL file. ** ** Padding and syncing only occur if this set of frames complete a ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL ** or synchronous==OFF, then no padding or syncing are needed. ** ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not ** needed and only the sync is done. If padding is needed, then the ** final frame is repeated (with its commit mark) until the next sector ** boundary is crossed. Only the part of the WAL prior to the last ** sector boundary is synced; the part of the last frame that extends ** past the sector boundary is written after the sync. */ if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ int bSync = 1; if( pWal->padToSectorBoundary ){ int sectorSize = sqlite3SectorSize(pWal->pWalFd); w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; bSync = (w.iSyncPoint==iOffset); testcase( bSync ); while( iOffsettruncateOnCommit && pWal->mxWalSize>=0 ){ i64 sz = pWal->mxWalSize; if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ sz = walFrameOffset(iFrame+nExtra+1, szPage); } walLimitSize(pWal, sz); pWal->truncateOnCommit = 0; } /* Append data to the wal-index. It is not necessary to lock the ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. */ iFrame = pWal->hdr.mxFrame; for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; iFrame++; rc = walIndexAppend(pWal, iFrame, p->pgno); } assert( pLast!=0 || nExtra==0 ); while( rc==SQLITE_OK && nExtra>0 ){ iFrame++; nExtra--; rc = walIndexAppend(pWal, iFrame, pLast->pgno); } if( rc==SQLITE_OK ){ /* Update the private copy of the header. */ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pWal->hdr.mxFrame = iFrame; if( isCommit ){ pWal->hdr.iChange++; pWal->hdr.nPage = nTruncate; } /* If this is a commit, update the wal-index header too. */ if( isCommit ){ walIndexWriteHdr(pWal); pWal->iCallback = iFrame; } } WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). ** ** The difference between this function and walFrames() is that this ** function wraps walFrames() in an SEH_TRY{...} block. */ SQLITE_PRIVATE int sqlite3WalFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; SEH_TRY { rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags); } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** ** Obtain a CHECKPOINT lock and then backfill as much information as ** we can from WAL into the database. ** ** If parameter xBusy is not NULL, it is a pointer to a busy-handler ** callback. In this case this function runs a blocking checkpoint. */ SQLITE_PRIVATE int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ sqlite3 *db, /* Check this handle's interrupt flag */ int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of temporary buffer */ u8 *zBuf, /* Temporary buffer to use */ int *pnLog, /* OUT: Number of frames in WAL */ int *pnCkpt /* OUT: Number of backfilled frames in WAL */ ){ int rc; /* Return code */ int isChanged = 0; /* True if a new wal-index header is loaded */ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ assert( pWal->ckptLock==0 ); assert( pWal->writeLock==0 ); /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); if( pWal->readOnly ) return SQLITE_READONLY; WALTRACE(("WAL%p: checkpoint begins\n", pWal)); /* Enable blocking locks, if possible. */ sqlite3WalDb(pWal, db); if( xBusy2 ) (void)walEnableBlocking(pWal); /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive ** "checkpoint" lock on the database file. ** EVIDENCE-OF: R-10421-19736 If any other process is running a ** checkpoint operation at the same time, the lock cannot be obtained and ** SQLITE_BUSY is returned. ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, ** it will not be invoked in this case. */ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); testcase( rc==SQLITE_BUSY ); testcase( rc!=SQLITE_OK && xBusy2!=0 ); if( rc==SQLITE_OK ){ pWal->ckptLock = 1; /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and ** TRUNCATE modes also obtain the exclusive "writer" lock on the database ** file. ** ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained ** immediately, and a busy-handler is configured, it is invoked and the ** writer lock retried until either the busy-handler returns 0 or the ** lock is successfully obtained. */ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); if( rc==SQLITE_OK ){ pWal->writeLock = 1; }else if( rc==SQLITE_BUSY ){ eMode2 = SQLITE_CHECKPOINT_PASSIVE; xBusy2 = 0; rc = SQLITE_OK; } } } /* Read the wal-index header. */ SEH_TRY { if( rc==SQLITE_OK ){ /* For a passive checkpoint, do not re-enable blocking locks after ** reading the wal-index header. A passive checkpoint should not block ** or invoke the busy handler. The only lock such a checkpoint may ** attempt to obtain is a lock on a read-slot, and it should give up ** immediately and do a partial checkpoint if it cannot obtain it. */ walDisableBlocking(pWal); rc = walIndexReadHdr(pWal, &isChanged); if( eMode2!=SQLITE_CHECKPOINT_PASSIVE ) (void)walEnableBlocking(pWal); if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ sqlite3OsUnfetch(pWal->pDbFd, 0, 0); } } /* Copy data from the log to the database file. */ if( rc==SQLITE_OK ){ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf); } /* If no error occurred, set the output variables. */ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; SEH_INJECT_FAULT; if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); } } } SEH_EXCEPT( rc = walHandleException(pWal); ) if( isChanged ){ /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); } walDisableBlocking(pWal); sqlite3WalDb(pWal, 0); /* Release the locks. */ sqlite3WalEndWriteTransaction(pWal); if( pWal->ckptLock ){ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); pWal->ckptLock = 0; } WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; #endif return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); } /* Return the value to pass to a sqlite3_wal_hook callback, the ** number of frames in the WAL at the point of the last commit since ** sqlite3WalCallback() was called. If no commits have occurred since ** the last call, then return 0. */ SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){ u32 ret = 0; if( pWal ){ ret = pWal->iCallback; pWal->iCallback = 0; } return (int)ret; } /* ** This function is called to change the WAL subsystem into or out ** of locking_mode=EXCLUSIVE. ** ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE ** into locking_mode=NORMAL. This means that we must acquire a lock ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL ** or if the acquisition of the lock fails, then return 0. If the ** transition out of exclusive-mode is successful, return 1. This ** operation must occur while the pager is still holding the exclusive ** lock on the main database file. ** ** If op is one, then change from locking_mode=NORMAL into ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must ** be released. Return 1 if the transition is made and 0 if the ** WAL is already in exclusive-locking mode - meaning that this ** routine is a no-op. The pager must already hold the exclusive lock ** on the main database file before invoking this operation. ** ** If op is negative, then do a dry-run of the op==1 case but do ** not actually change anything. The pager uses this to see if it ** should acquire the database exclusive lock prior to invoking ** the op==1 case. */ SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){ int rc; assert( pWal->writeLock==0 ); assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); /* pWal->readLock is usually set, but might be -1 if there was a ** prior error while attempting to acquire are read-lock. This cannot ** happen if the connection is actually in exclusive mode (as no xShmLock ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ #ifndef SQLITE_USE_SEH assert( pWal->readLock>=0 || pWal->lockError ); #endif assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); if( op==0 ){ if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_NORMAL_MODE; if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = pWal->exclusiveMode==WAL_NORMAL_MODE; }else{ /* Already in locking_mode=NORMAL */ rc = 0; } }else if( op>0 ){ assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); assert( pWal->readLock>=0 ); walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; rc = 1; }else{ rc = pWal->exclusiveMode==WAL_NORMAL_MODE; } return rc; } /* ** Return true if the argument is non-NULL and the WAL module is using ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the ** WAL module is using shared-memory, return false. */ SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){ return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); } #ifdef SQLITE_ENABLE_SNAPSHOT /* Create a snapshot object. The content of a snapshot is opaque to ** every other subsystem, so the WAL module can put whatever it needs ** in the object. */ SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_OK; WalIndexHdr *pRet; static const u32 aZero[4] = { 0, 0, 0, 0 }; assert( pWal->readLock>=0 && pWal->writeLock==0 ); if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ *ppSnapshot = 0; return SQLITE_ERROR; } pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); if( pRet==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); *ppSnapshot = (sqlite3_snapshot*)pRet; } return rc; } /* Try to open on pSnapshot when the next read-transaction starts */ SQLITE_PRIVATE void sqlite3WalSnapshotOpen( Wal *pWal, sqlite3_snapshot *pSnapshot ){ pWal->pSnapshot = (WalIndexHdr*)pSnapshot; } /* ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. */ SQLITE_API int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; /* aSalt[0] is a copy of the value stored in the wal file header. It ** is incremented each time the wal file is restarted. */ if( pHdr1->aSalt[0]aSalt[0] ) return -1; if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; if( pHdr1->mxFramemxFrame ) return -1; if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; return 0; } /* ** The caller currently has a read transaction open on the database. ** This function takes a SHARED lock on the CHECKPOINTER slot and then ** checks if the snapshot passed as the second argument is still ** available. If so, SQLITE_OK is returned. ** ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ int rc; SEH_TRY { rc = walLockShared(pWal, WAL_CKPT_LOCK); if( rc==SQLITE_OK ){ WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) || pNew->mxFramenBackfillAttempted ){ rc = SQLITE_ERROR_SNAPSHOT; walUnlockShared(pWal, WAL_CKPT_LOCK); } } } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** Release a lock obtained by an earlier successful call to ** sqlite3WalSnapshotCheck(). */ SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal){ assert( pWal ); walUnlockShared(pWal, WAL_CKPT_LOCK); } #endif /* SQLITE_ENABLE_SNAPSHOT */ #ifdef SQLITE_ENABLE_ZIPVFS /* ** If the argument is not NULL, it points to a Wal object that holds a ** read-lock. This function returns the database page-size if it is known, ** or zero if it is not (or if pWal is NULL). */ SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){ assert( pWal==0 || pWal->readLock>=0 ); return (pWal ? pWal->szPage : 0); } #endif /* Return the sqlite3_file object for the WAL file */ SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal){ return pWal->pWalFd; } #endif /* #ifndef SQLITE_OMIT_WAL */ /************** End of wal.c *************************************************/ /************** Begin file btmutex.c *****************************************/ /* ** 2007 August 27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement mutexes on Btree objects. ** This code really belongs in btree.c. But btree.c is getting too ** big and we want to break it down some. This packaged seemed like ** a good breakout. */ /************** Include btreeInt.h in the middle of btmutex.c ****************/ /************** Begin file btreeInt.h ****************************************/ /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. ** ** The basic idea is that each page of the file contains N database ** entries and N+1 pointers to subpages. ** ** ---------------------------------------------------------------- ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | ** ---------------------------------------------------------------- ** ** All of the keys on the page that Ptr(0) points to have values less ** than Key(0). All of the keys on page Ptr(1) and its subpages have ** values greater than Key(0) and less than Key(1). All of the keys ** on Ptr(N) and its subpages have values greater than Key(N-1). And ** so forth. ** ** Finding a particular key requires reading O(log(M)) pages from the ** disk where M is the number of entries in the tree. ** ** In this implementation, a single file can hold one or more separate ** BTrees. Each BTree is identified by the index of its root page. The ** key and data for any entry are combined to form the "payload". A ** fixed amount of payload can be carried directly on the database ** page. If the payload is larger than the preset amount then surplus ** bytes are stored on overflow pages. The payload for an entry ** and the preceding pointer are combined to form a "Cell". Each ** page has a small header which contains the Ptr(N) pointer and other ** information such as the size of key and data. ** ** FORMAT DETAILS ** ** The file is divided into pages. The first page is called page 1, ** the second is page 2, and so forth. A page number of zero indicates ** "no such page". The page size can be any power of 2 between 512 and 65536. ** Each page can be either a btree page, a freelist page, an overflow ** page, or a pointer-map page. ** ** The first page is always a btree page. The first 100 bytes of the first ** page contain a special header (the "file header") that describes the file. ** The format of the file header is as follows: ** ** OFFSET SIZE DESCRIPTION ** 0 16 Header string: "SQLite format 3\000" ** 16 2 Page size in bytes. (1 means 65536) ** 18 1 File format write version ** 19 1 File format read version ** 20 1 Bytes of unused space at the end of each page ** 21 1 Max embedded payload fraction (must be 64) ** 22 1 Min embedded payload fraction (must be 32) ** 23 1 Min leaf payload fraction (must be 32) ** 24 4 File change counter ** 28 4 The size of the database in pages ** 32 4 First freelist page ** 36 4 Number of freelist pages in the file ** 40 60 15 4-byte meta values passed to higher layers ** ** 40 4 Schema cookie ** 44 4 File format of schema layer ** 48 4 Size of page cache ** 52 4 Largest root-page (auto/incr_vacuum) ** 56 4 1=UTF-8 2=UTF16le 3=UTF16be ** 60 4 User version ** 64 4 Incremental vacuum mode ** 68 4 Application-ID ** 72 20 unused ** 92 4 The version-valid-for number ** 96 4 SQLITE_VERSION_NUMBER ** ** All of the integer values are big-endian (most significant byte first). ** ** The file change counter is incremented when the database is changed ** This counter allows other processes to know when the file has changed ** and thus when they need to flush their cache. ** ** The max embedded payload fraction is the amount of the total usable ** space in a page that can be consumed by a single cell for standard ** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default ** is to limit the maximum cell size so that at least 4 cells will fit ** on one page. Thus the default max embedded payload fraction is 64. ** ** If the payload for a cell is larger than the max payload, then extra ** payload is spilled to overflow pages. Once an overflow page is allocated, ** as many bytes as possible are moved into the overflow pages without letting ** the cell size drop below the min embedded payload fraction. ** ** The min leaf payload fraction is like the min embedded payload fraction ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it ** not specified in the header. ** ** Each btree pages is divided into three sections: The header, the ** cell pointer array, and the cell content area. Page 1 also has a 100-byte ** file header that occurs before the page header. ** ** |----------------| ** | file header | 100 bytes. Page 1 only. ** |----------------| ** | page header | 8 bytes for leaves. 12 bytes for interior nodes ** |----------------| ** | cell pointer | | 2 bytes per cell. Sorted order. ** | array | | Grows downward ** | | v ** |----------------| ** | unallocated | ** | space | ** |----------------| ^ Grows upwards ** | cell content | | Arbitrary order interspersed with freeblocks. ** | area | | and free space fragments. ** |----------------| ** ** The page headers looks like this: ** ** OFFSET SIZE DESCRIPTION ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf ** 1 2 byte offset to the first freeblock ** 3 2 number of cells on this page ** 5 2 first byte of the cell content area ** 7 1 number of fragmented free bytes ** 8 4 Right child (the Ptr(N) value). Omitted on leaves. ** ** The flags define the format of this btree page. The leaf flag means that ** this page has no children. The zerodata flag means that this page carries ** only keys and no data. The intkey flag means that the key is an integer ** which is stored in the key size entry of the cell header rather than in ** the payload area. ** ** The cell pointer array begins on the first byte after the page header. ** The cell pointer array contains zero or more 2-byte numbers which are ** offsets from the beginning of the page to the cell content in the cell ** content area. The cell pointers occur in sorted order. The system strives ** to keep free space after the last cell pointer so that new cells can ** be easily added without having to defragment the page. ** ** Cell content is stored at the very end of the page and grows toward the ** beginning of the page. ** ** Unused space within the cell content area is collected into a linked list of ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset ** to the first freeblock is given in the header. Freeblocks occur in ** increasing order. Because a freeblock must be at least 4 bytes in size, ** any group of 3 or fewer unused bytes in the cell content area cannot ** exist on the freeblock chain. A group of 3 or fewer free bytes is called ** a fragment. The total number of bytes in all fragments is recorded. ** in the page header at offset 7. ** ** SIZE DESCRIPTION ** 2 Byte offset of the next freeblock ** 2 Bytes in this freeblock ** ** Cells are of variable length. Cells are stored in the cell content area at ** the end of the page. Pointers to the cells are in the cell pointer array ** that immediately follows the page header. Cells is not necessarily ** contiguous or in order, but cell pointers are contiguous and in order. ** ** Cell content makes use of variable length integers. A variable ** length integer is 1 to 9 bytes where the lower 7 bits of each ** byte are used. The integer consists of all bytes that have bit 8 set and ** the first byte with bit 8 clear. The most significant byte of the integer ** appears first. A variable-length integer may not be more than 9 bytes long. ** As a special case, all 8 bits of the 9th byte are used as data. This ** allows a 64-bit integer to be encoded in 9 bytes. ** ** 0x00 becomes 0x00000000 ** 0x7f becomes 0x0000007f ** 0x81 0x00 becomes 0x00000080 ** 0x82 0x00 becomes 0x00000100 ** 0x80 0x7f becomes 0x0000007f ** 0x81 0x91 0xd1 0xac 0x78 becomes 0x12345678 ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 ** ** Variable length integers are used for rowids and to hold the number of ** bytes of key and data in a btree cell. ** ** The content of a cell looks like this: ** ** SIZE DESCRIPTION ** 4 Page number of the left child. Omitted if leaf flag is set. ** var Number of bytes of data. Omitted if the zerodata flag is set. ** var Number of bytes of key. Or the key itself if intkey flag is set. ** * Payload ** 4 First page of the overflow chain. Omitted if no overflow ** ** Overflow pages form a linked list. Each page except the last is completely ** filled with data (pagesize - 4 bytes). The last page can have as little ** as 1 byte of data. ** ** SIZE DESCRIPTION ** 4 Page number of next overflow page ** * Data ** ** Freelist pages come in two subtypes: trunk pages and leaf pages. The ** file header points to the first in a linked list of trunk page. Each trunk ** page points to multiple leaf pages. The content of a leaf page is ** unspecified. A trunk page looks like this: ** ** SIZE DESCRIPTION ** 4 Page number of next trunk page ** 4 Number of leaf pointers on this page ** * zero or more pages numbers of leaves */ /* #include "sqliteInt.h" */ /* The following value is the maximum cell size assuming a maximum page ** size give above. */ #define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8)) /* The maximum number of cells on a single page of the database. This ** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself ** plus 2 bytes for the index to the cell in the page header). Such ** small cells will be rare, but they are possible. */ #define MX_CELL(pBt) ((pBt->pageSize-8)/6) /* Forward declarations */ typedef struct MemPage MemPage; typedef struct BtLock BtLock; typedef struct CellInfo CellInfo; /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. ** ** You can change this value at compile-time by specifying a ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The ** header must be exactly 16 bytes including the zero-terminator so ** the string itself should be 15 characters long. If you change ** the header, then your custom library will not be able to read ** databases generated by the standard tools and the standard tools ** will not be able to read databases created by your custom library. */ #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ # define SQLITE_FILE_HEADER "SQLite format 3" #endif /* ** Page type flags. An ORed combination of these flags appear as the ** first byte of on-disk image of every BTree page. */ #define PTF_INTKEY 0x01 #define PTF_ZERODATA 0x02 #define PTF_LEAFDATA 0x04 #define PTF_LEAF 0x08 /* ** An instance of this object stores information about each a single database ** page that has been loaded into memory. The information in this object ** is derived from the raw on-disk page content. ** ** As each database page is loaded into memory, the pager allocates an ** instance of this object and zeros the first 8 bytes. (This is the ** "extra" information associated with each page of the pager.) ** ** Access to all fields of this structure is controlled by the mutex ** stored in MemPage.pBt->mutex. */ struct MemPage { u8 isInit; /* True if previously initialized. MUST BE FIRST! */ u8 intKey; /* True if table b-trees. False for index b-trees */ u8 intKeyLeaf; /* True if the leaf of an intKey table */ Pgno pgno; /* Page number for this page */ /* Only the first 8 bytes (above) are zeroed by pager.c when a new page ** is allocated. All fields that follow must be initialized before use */ u8 leaf; /* True if a leaf page */ u8 hdrOffset; /* 100 for page 1. 0 otherwise */ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ u8 max1bytePayload; /* min(maxLocal,127) */ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ u16 cellOffset; /* Index in aData of first cell pointer */ int nFree; /* Number of free bytes on the page. -1 for unknown */ u16 nCell; /* Number of cells on this page, local and ovfl */ u16 maskPage; /* Mask for page offset */ u16 aiOvfl[4]; /* Insert the i-th overflow cell before the aiOvfl-th ** non-overflow cell */ u8 *apOvfl[4]; /* Pointers to the body of overflow cells */ BtShared *pBt; /* Pointer to BtShared that this page is part of */ u8 *aData; /* Pointer to disk image of the page data */ u8 *aDataEnd; /* One byte past the end of the entire page - not just ** the usable space, the entire page. Used to prevent ** corruption-induced buffer overflow. */ u8 *aCellIdx; /* The cell index area */ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */ DbPage *pDbPage; /* Pager page handle */ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */ }; /* ** A linked list of the following structures is stored at BtShared.pLock. ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor ** is opened on the table with root page BtShared.iTable. Locks are removed ** from this list when a transaction is committed or rolled back, or when ** a btree handle is closed. */ struct BtLock { Btree *pBtree; /* Btree handle holding this lock */ Pgno iTable; /* Root page of table */ u8 eLock; /* READ_LOCK or WRITE_LOCK */ BtLock *pNext; /* Next in BtShared.pLock list */ }; /* Candidate values for BtLock.eLock */ #define READ_LOCK 1 #define WRITE_LOCK 2 /* A Btree handle ** ** A database connection contains a pointer to an instance of ** this object for every database file that it has open. This structure ** is opaque to the database connection. The database connection cannot ** see the internals of this structure and only deals with pointers to ** this structure. ** ** For some database files, the same underlying database cache might be ** shared between multiple connections. In that case, each connection ** has it own instance of this object. But each instance of this object ** points to the same BtShared object. The database cache and the ** schema associated with the database file are all contained within ** the BtShared object. ** ** All fields in this structure are accessed under sqlite3.mutex. ** The pBt pointer itself may not be changed while there exists cursors ** in the referenced BtShared that point back to this Btree since those ** cursors have to go through this Btree to find their BtShared and ** they often do so without holding sqlite3.mutex. */ struct Btree { sqlite3 *db; /* The database connection holding this btree */ BtShared *pBt; /* Sharable content of this btree */ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ u8 sharable; /* True if we can share pBt with another db */ u8 locked; /* True if db currently has pBt locked */ u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ int nBackup; /* Number of backup operations reading this btree */ u32 iBDataVersion; /* Combines with pBt->pPager->iDataVersion */ Btree *pNext; /* List of other sharable Btrees from the same db */ Btree *pPrev; /* Back pointer of the same list */ #ifdef SQLITE_DEBUG u64 nSeek; /* Calls to sqlite3BtreeMovetoUnpacked() */ #endif #ifndef SQLITE_OMIT_SHARED_CACHE BtLock lock; /* Object used to lock page 1 */ #endif }; /* ** Btree.inTrans may take one of the following values. ** ** If the shared-data extension is enabled, there may be multiple users ** of the Btree structure. At most one of these may open a write transaction, ** but any number may have active read transactions. ** ** These values must match SQLITE_TXN_NONE, SQLITE_TXN_READ, and ** SQLITE_TXN_WRITE */ #define TRANS_NONE 0 #define TRANS_READ 1 #define TRANS_WRITE 2 #if TRANS_NONE!=SQLITE_TXN_NONE # error wrong numeric code for no-transaction #endif #if TRANS_READ!=SQLITE_TXN_READ # error wrong numeric code for read-transaction #endif #if TRANS_WRITE!=SQLITE_TXN_WRITE # error wrong numeric code for write-transaction #endif /* ** An instance of this object represents a single database file. ** ** A single database file can be in use at the same time by two ** or more database connections. When two or more connections are ** sharing the same database file, each connection has it own ** private Btree object for the file and each of those Btrees points ** to this one BtShared object. BtShared.nRef is the number of ** connections currently sharing this database file. ** ** Fields in this structure are accessed under the BtShared.mutex ** mutex, except for nRef and pNext which are accessed under the ** global SQLITE_MUTEX_STATIC_MAIN mutex. The pPager field ** may not be modified once it is initially set as long as nRef>0. ** The pSchema field may be set once under BtShared.mutex and ** thereafter is unchanged as long as nRef>0. ** ** isPending: ** ** If a BtShared client fails to obtain a write-lock on a database ** table (because there exists one or more read-locks on the table), ** the shared-cache enters 'pending-lock' state and isPending is ** set to true. ** ** The shared-cache leaves the 'pending lock' state when either of ** the following occur: ** ** 1) The current writer (BtShared.pWriter) concludes its transaction, OR ** 2) The number of locks held by other connections drops to zero. ** ** while in the 'pending-lock' state, no connection may start a new ** transaction. ** ** This feature is included to help prevent writer-starvation. */ struct BtShared { Pager *pPager; /* The page cache */ sqlite3 *db; /* Database connection currently using this Btree */ BtCursor *pCursor; /* A list of all open cursors */ MemPage *pPage1; /* First page of the database */ u8 openFlags; /* Flags to sqlite3BtreeOpen() */ #ifndef SQLITE_OMIT_AUTOVACUUM u8 autoVacuum; /* True if auto-vacuum is enabled */ u8 incrVacuum; /* True if incr-vacuum is enabled */ u8 bDoTruncate; /* True to truncate db on commit */ #endif u8 inTransaction; /* Transaction state */ u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */ u8 nReserveWanted; /* Desired number of extra bytes per page */ u16 btsFlags; /* Boolean parameters. See BTS_* macros below */ u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */ u32 pageSize; /* Total number of bytes on a page */ u32 usableSize; /* Number of usable bytes on each page */ int nTransaction; /* Number of open transactions (read + write) */ u32 nPage; /* Number of pages in the database */ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */ #ifndef SQLITE_OMIT_SHARED_CACHE int nRef; /* Number of references to this structure */ BtShared *pNext; /* Next on a list of sharable BtShared structs */ BtLock *pLock; /* List of locks held on this shared-btree struct */ Btree *pWriter; /* Btree with currently open write transaction */ #endif u8 *pTmpSpace; /* Temp space sufficient to hold a single cell */ int nPreformatSize; /* Size of last cell written by TransferRow() */ }; /* ** Allowed values for BtShared.btsFlags */ #define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */ #define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */ #define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */ #define BTS_OVERWRITE 0x0008 /* Overwrite deleted content with zeros */ #define BTS_FAST_SECURE 0x000c /* Combination of the previous two */ #define BTS_INITIALLY_EMPTY 0x0010 /* Database was empty at trans start */ #define BTS_NO_WAL 0x0020 /* Do not open write-ahead-log files */ #define BTS_EXCLUSIVE 0x0040 /* pWriter has an exclusive lock */ #define BTS_PENDING 0x0080 /* Waiting for read-locks to clear */ /* ** An instance of the following structure is used to hold information ** about a cell. The parseCellPtr() function fills in this structure ** based on information extract from the raw disk page. */ struct CellInfo { i64 nKey; /* The key for INTKEY tables, or nPayload otherwise */ u8 *pPayload; /* Pointer to the start of payload */ u32 nPayload; /* Bytes of payload */ u16 nLocal; /* Amount of payload held locally, not on overflow */ u16 nSize; /* Size of the cell content on the main b-tree page */ }; /* ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than ** this will be declared corrupt. This value is calculated based on a ** maximum database size of 2^31 pages a minimum fanout of 2 for a ** root-node and 3 for all other internal nodes. ** ** If a tree that appears to be taller than this is encountered, it is ** assumed that the database is corrupt. */ #define BTCURSOR_MAX_DEPTH 20 /* ** A cursor is a pointer to a particular entry within a particular ** b-tree within a database file. ** ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. ** ** A single database file can be shared by two more database connections, ** but cursors cannot be shared. Each cursor is associated with a ** particular database connection identified BtCursor.pBtree.db. ** ** Fields in this structure are accessed under the BtShared.mutex ** found at self->pBt->mutex. ** ** skipNext meaning: ** The meaning of skipNext depends on the value of eState: ** ** eState Meaning of skipNext ** VALID skipNext is meaningless and is ignored ** INVALID skipNext is meaningless and is ignored ** SKIPNEXT sqlite3BtreeNext() is a no-op if skipNext>0 and ** sqlite3BtreePrevious() is no-op if skipNext<0. ** REQUIRESEEK restoreCursorPosition() restores the cursor to ** eState=SKIPNEXT if skipNext!=0 ** FAULT skipNext holds the cursor fault error code. */ struct BtCursor { u8 eState; /* One of the CURSOR_XXX constants (see below) */ u8 curFlags; /* zero or more BTCF_* flags defined below */ u8 curPagerFlags; /* Flags to send to sqlite3PagerGet() */ u8 hints; /* As configured by CursorSetHints() */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive. ** Error code if eState==CURSOR_FAULT */ Btree *pBtree; /* The Btree to which this cursor belongs */ Pgno *aOverflow; /* Cache of overflow page locations */ void *pKey; /* Saved key that was cursor last known position */ /* All fields above are zeroed when the cursor is allocated. See ** sqlite3BtreeCursorZero(). Fields that follow must be manually ** initialized. */ #define BTCURSOR_FIRST_UNINIT pBt /* Name of first uninitialized field */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext; /* Forms a linked list of all cursors */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ Pgno pgnoRoot; /* The root page of this tree */ i8 iPage; /* Index of current page in apPage */ u8 curIntKey; /* Value of apPage[0]->intKey */ u16 ix; /* Current index for apPage[iPage] */ u16 aiIdx[BTCURSOR_MAX_DEPTH-1]; /* Current index in apPage[i] */ struct KeyInfo *pKeyInfo; /* Arg passed to comparison function */ MemPage *pPage; /* Current page */ MemPage *apPage[BTCURSOR_MAX_DEPTH-1]; /* Stack of parents of current page */ }; /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ #define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ #define BTCF_AtLast 0x08 /* Cursor is pointing to the last entry */ #define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */ #define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */ #define BTCF_Pinned 0x40 /* Cursor is busy and cannot be moved */ /* ** Potential values for BtCursor.eState. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been ** called. ** ** CURSOR_VALID: ** Cursor points to a valid entry. getPayload() etc. may be called. ** ** CURSOR_SKIPNEXT: ** Cursor is valid except that the Cursor.skipNext field is non-zero ** indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious() ** operation should be a no-op. ** ** CURSOR_REQUIRESEEK: ** The table that this cursor was opened on still exists, but has been ** modified since the cursor was last used. The cursor position is saved ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in ** this state, restoreCursorPosition() can be called to attempt to ** seek the cursor to the saved position. ** ** CURSOR_FAULT: ** An unrecoverable error (an I/O error or a malloc failure) has occurred ** on a different connection that shares the BtShared cache with this ** cursor. The error has left the cache in an inconsistent state. ** Do nothing else with this cursor. Any attempt to use the cursor ** should return the error code stored in BtCursor.skipNext */ #define CURSOR_VALID 0 #define CURSOR_INVALID 1 #define CURSOR_SKIPNEXT 2 #define CURSOR_REQUIRESEEK 3 #define CURSOR_FAULT 4 /* ** The database page the PENDING_BYTE occupies. This page is never used. */ #define PENDING_BYTE_PAGE(pBt) ((Pgno)((PENDING_BYTE/((pBt)->pageSize))+1)) /* ** These macros define the location of the pointer-map entry for a ** database page. The first argument to each is the number of usable ** bytes on each page of the database (often 1024). The second is the ** page number to look up in the pointer map. ** ** PTRMAP_PAGENO returns the database page number of the pointer-map ** page that stores the required pointer. PTRMAP_PTROFFSET returns ** the offset of the requested map entry. ** ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements ** this test. */ #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1)) #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) /* ** The pointer map is a lookup table that identifies the parent page for ** each child page in the database file. The parent page is the page that ** contains a pointer to the child. Every page in the database contains ** 0 or 1 parent pages. (In this context 'database page' refers ** to any page that is not part of the pointer map itself.) Each pointer map ** entry consists of a single byte 'type' and a 4 byte parent page number. ** The PTRMAP_XXX identifiers below are the valid types. ** ** The purpose of the pointer map is to facility moving pages from one ** position in the file to another as part of autovacuum. When a page ** is moved, the pointer in its parent must be updated to point to the ** new location. The pointer map is used to locate the parent page quickly. ** ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not ** used in this case. ** ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number ** is not used in this case. ** ** PTRMAP_OVERFLOW1: The database page is the first page in a list of ** overflow pages. The page number identifies the page that ** contains the cell with a pointer to this overflow page. ** ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of ** overflow pages. The page-number identifies the previous ** page in the overflow page list. ** ** PTRMAP_BTREE: The database page is a non-root btree page. The page number ** identifies the parent page in the btree. */ #define PTRMAP_ROOTPAGE 1 #define PTRMAP_FREEPAGE 2 #define PTRMAP_OVERFLOW1 3 #define PTRMAP_OVERFLOW2 4 #define PTRMAP_BTREE 5 /* A bunch of assert() statements to check the transaction state variables ** of handle p (type Btree*) are internally consistent. */ #define btreeIntegrity(p) \ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ assert( p->pBt->inTransaction>=p->inTrans ); /* ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine ** if the database supports auto-vacuum or not. Because it is used ** within an expression that is an argument to another macro ** (sqliteMallocRaw), it is not possible to use conditional compilation. ** So, this macro is defined instead. */ #ifndef SQLITE_OMIT_AUTOVACUUM #define ISAUTOVACUUM(pBt) (pBt->autoVacuum) #else #define ISAUTOVACUUM(pBt) 0 #endif /* ** This structure is passed around through all the PRAGMA integrity_check ** checking routines in order to keep track of some global state information. ** ** The aRef[] array is allocated so that there is 1 bit for each page in ** the database. As the integrity-check proceeds, for each page used in ** the database the corresponding bit is set. This allows integrity-check to ** detect pages that are used twice and orphaned pages (both of which ** indicate corruption). */ typedef struct IntegrityCk IntegrityCk; struct IntegrityCk { BtShared *pBt; /* The tree being checked out */ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ u8 *aPgRef; /* 1 bit per page in the db (see above) */ Pgno nCkPage; /* Pages in the database. 0 for partial check */ int mxErr; /* Stop accumulating errors when this reaches zero */ int nErr; /* Number of messages written to zErrMsg so far */ int rc; /* SQLITE_OK, SQLITE_NOMEM, or SQLITE_INTERRUPT */ u32 nStep; /* Number of steps into the integrity_check process */ const char *zPfx; /* Error message prefix */ Pgno v0; /* Value for first %u substitution in zPfx (root page) */ Pgno v1; /* Value for second %u substitution in zPfx (current pg) */ int v2; /* Value for third %d substitution in zPfx */ StrAccum errMsg; /* Accumulate the error message text here */ u32 *heap; /* Min-heap used for analyzing cell coverage */ sqlite3 *db; /* Database connection running the check */ }; /* ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /* ** get2byteAligned(), unlike get2byte(), requires that its argument point to a ** two-byte aligned address. get2byteAligned() is only used for accessing the ** cell addresses in a btree header. */ #if SQLITE_BYTEORDER==4321 # define get2byteAligned(x) (*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000 # define get2byteAligned(x) __builtin_bswap16(*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 # define get2byteAligned(x) _byteswap_ushort(*(u16*)(x)) #else # define get2byteAligned(x) ((x)[0]<<8 | (x)[1]) #endif /************** End of btreeInt.h ********************************************/ /************** Continuing where we left off in btmutex.c ********************/ #ifndef SQLITE_OMIT_SHARED_CACHE #if SQLITE_THREADSAFE /* ** Obtain the BtShared mutex associated with B-Tree handle p. Also, ** set BtShared.db to the database handle associated with p and the ** p->locked boolean to true. */ static void lockBtreeMutex(Btree *p){ assert( p->locked==0 ); assert( sqlite3_mutex_notheld(p->pBt->mutex) ); assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3_mutex_enter(p->pBt->mutex); p->pBt->db = p->db; p->locked = 1; } /* ** Release the BtShared mutex associated with B-Tree handle p and ** clear the p->locked boolean. */ static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){ BtShared *pBt = p->pBt; assert( p->locked==1 ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( sqlite3_mutex_held(p->db->mutex) ); assert( p->db==pBt->db ); sqlite3_mutex_leave(pBt->mutex); p->locked = 0; } /* Forward reference */ static void SQLITE_NOINLINE btreeLockCarefully(Btree *p); /* ** Enter a mutex on the given BTree object. ** ** If the object is not sharable, then no mutex is ever required ** and this routine is a no-op. The underlying mutex is non-recursive. ** But we keep a reference count in Btree.wantToLock so the behavior ** of this interface is recursive. ** ** To avoid deadlocks, multiple Btrees are locked in the same order ** by all database connections. The p->pNext is a list of other ** Btrees belonging to the same database connection as the p Btree ** which need to be locked after p. If we cannot get a lock on ** p, then first unlock all of the others on p->pNext, then wait ** for the lock to become available on p, then relock all of the ** subsequent Btrees that desire a lock. */ SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ /* Some basic sanity checking on the Btree. The list of Btrees ** connected by pNext and pPrev should be in sorted order by ** Btree.pBt value. All elements of the list should belong to ** the same connection. Only shared Btrees are on the list. */ assert( p->pNext==0 || p->pNext->pBt>p->pBt ); assert( p->pPrev==0 || p->pPrev->pBtpBt ); assert( p->pNext==0 || p->pNext->db==p->db ); assert( p->pPrev==0 || p->pPrev->db==p->db ); assert( p->sharable || (p->pNext==0 && p->pPrev==0) ); /* Check for locking consistency */ assert( !p->locked || p->wantToLock>0 ); assert( p->sharable || p->wantToLock==0 ); /* We should already hold a lock on the database connection */ assert( sqlite3_mutex_held(p->db->mutex) ); /* Unless the database is sharable and unlocked, then BtShared.db ** should already be set correctly. */ assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db ); if( !p->sharable ) return; p->wantToLock++; if( p->locked ) return; btreeLockCarefully(p); } /* This is a helper function for sqlite3BtreeLock(). By moving ** complex, but seldom used logic, out of sqlite3BtreeLock() and ** into this routine, we avoid unnecessary stack pointer changes ** and thus help the sqlite3BtreeLock() routine to run much faster ** in the common case. */ static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){ Btree *pLater; /* In most cases, we should be able to acquire the lock we ** want without having to go through the ascending lock ** procedure that follows. Just be sure not to block. */ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ p->pBt->db = p->db; p->locked = 1; return; } /* To avoid deadlock, first release all locks with a larger ** BtShared address. Then acquire our lock. Then reacquire ** the other BtShared locks that we used to hold in ascending ** order. */ for(pLater=p->pNext; pLater; pLater=pLater->pNext){ assert( pLater->sharable ); assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt ); assert( !pLater->locked || pLater->wantToLock>0 ); if( pLater->locked ){ unlockBtreeMutex(pLater); } } lockBtreeMutex(p); for(pLater=p->pNext; pLater; pLater=pLater->pNext){ if( pLater->wantToLock ){ lockBtreeMutex(pLater); } } } /* ** Exit the recursive mutex on a Btree. */ SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){ assert( sqlite3_mutex_held(p->db->mutex) ); if( p->sharable ){ assert( p->wantToLock>0 ); p->wantToLock--; if( p->wantToLock==0 ){ unlockBtreeMutex(p); } } } #ifndef NDEBUG /* ** Return true if the BtShared mutex is held on the btree, or if the ** B-Tree is not marked as sharable. ** ** This routine is used only from within assert() statements. */ SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){ assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 ); assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db ); assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) ); assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) ); return (p->sharable==0 || p->locked); } #endif /* ** Enter the mutex on every Btree associated with a database ** connection. This is needed (for example) prior to parsing ** a statement since we will be comparing table and column names ** against all schemas and we do not want those schemas being ** reset out from under us. ** ** There is a corresponding leave-all procedures. ** ** Enter the mutexes in ascending order by BtShared pointer address ** to avoid the possibility of deadlock when two threads with ** two or more btrees in common both try to lock all their btrees ** at the same instant. */ static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){ int i; int skipOk = 1; Btree *p; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; inDb; i++){ p = db->aDb[i].pBt; if( p && p->sharable ){ sqlite3BtreeEnter(p); skipOk = 0; } } db->noSharedCache = skipOk; } SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ if( db->noSharedCache==0 ) btreeEnterAll(db); } static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){ int i; Btree *p; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; inDb; i++){ p = db->aDb[i].pBt; if( p ) sqlite3BtreeLeave(p); } } SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){ if( db->noSharedCache==0 ) btreeLeaveAll(db); } #ifndef NDEBUG /* ** Return true if the current thread holds the database connection ** mutex and all required BtShared mutexes. ** ** This routine is used inside assert() statements only. */ SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){ int i; if( !sqlite3_mutex_held(db->mutex) ){ return 0; } for(i=0; inDb; i++){ Btree *p; p = db->aDb[i].pBt; if( p && p->sharable && (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){ return 0; } } return 1; } #endif /* NDEBUG */ #ifndef NDEBUG /* ** Return true if the correct mutexes are held for accessing the ** db->aDb[iDb].pSchema structure. The mutexes required for schema ** access are: ** ** (1) The mutex on db ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt. ** ** If pSchema is not NULL, then iDb is computed from pSchema and ** db using sqlite3SchemaToIndex(). */ SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ Btree *p; assert( db!=0 ); if( db->pVfs==0 && db->nDb==0 ) return 1; if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); assert( iDb>=0 && iDbnDb ); if( !sqlite3_mutex_held(db->mutex) ) return 0; if( iDb==1 ) return 1; p = db->aDb[iDb].pBt; assert( p!=0 ); return p->sharable==0 || p->locked==1; } #endif /* NDEBUG */ #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */ /* ** The following are special cases for mutex enter routines for use ** in single threaded applications that use shared cache. Except for ** these two routines, all mutex operations are no-ops in that case and ** are null #defines in btree.h. ** ** If shared cache is disabled, then all btree mutex routines, including ** the ones below, are no-ops and are null #defines in btree.h. */ SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ p->pBt->db = p->db; } SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ int i; for(i=0; inDb; i++){ Btree *p = db->aDb[i].pBt; if( p ){ p->pBt->db = p->db; } } } #endif /* if SQLITE_THREADSAFE */ #ifndef SQLITE_OMIT_INCRBLOB /* ** Enter a mutex on a Btree given a cursor owned by that Btree. ** ** These entry points are used by incremental I/O only. Enter() is required ** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not ** the build is threadsafe. Leave() is only required by threadsafe builds. */ SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){ sqlite3BtreeEnter(pCur->pBtree); } # if SQLITE_THREADSAFE SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){ sqlite3BtreeLeave(pCur->pBtree); } # endif #endif /* ifndef SQLITE_OMIT_INCRBLOB */ #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ /************** End of btmutex.c *********************************************/ /************** Begin file btree.c *******************************************/ /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an external (disk-based) database using BTrees. ** See the header comment on "btreeInt.h" for additional information. ** Including a description of file format and an overview of operation. */ /* #include "btreeInt.h" */ /* ** The header string that appears at the beginning of every ** SQLite database. */ static const char zMagicHeader[] = SQLITE_FILE_HEADER; /* ** Set this global variable to 1 to enable tracing using the TRACE ** macro. */ #if 0 int sqlite3BtreeTrace=1; /* True to enable tracing */ # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} #else # define TRACE(X) #endif /* ** Extract a 2-byte big-endian integer from an array of unsigned bytes. ** But if the value is zero, make it 65536. ** ** This routine is used to extract the "offset to cell content area" value ** from the header of a btree page. If the page size is 65536 and the page ** is empty, the offset should be 65536, but the 2-byte value stores zero. ** This routine makes the necessary adjustment to 65536. */ #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) /* ** Values passed as the 5th argument to allocateBtreePage() */ #define BTALLOC_ANY 0 /* Allocate any page */ #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ /* ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not ** defined, or 0 if it is. For example: ** ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); */ #ifndef SQLITE_OMIT_AUTOVACUUM #define IfNotOmitAV(expr) (expr) #else #define IfNotOmitAV(expr) 0 #endif #ifndef SQLITE_OMIT_SHARED_CACHE /* ** A list of BtShared objects that are eligible for participation ** in shared cache. This variable has file scope during normal builds, ** but the test harness needs to access it so we make it global for ** test builds. ** ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. */ #ifdef SQLITE_TEST SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; #else static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; #endif #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Enable or disable the shared pager and schema features. ** ** This routine has no effect on existing database connections. ** The shared cache setting effects only future calls to ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). */ SQLITE_API int sqlite3_enable_shared_cache(int enable){ sqlite3GlobalConfig.sharedCacheEnabled = enable; return SQLITE_OK; } #endif #ifdef SQLITE_OMIT_SHARED_CACHE /* ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), ** and clearAllSharedCacheTableLocks() ** manipulate entries in the BtShared.pLock linked list used to store ** shared-cache table level locks. If the library is compiled with the ** shared-cache feature disabled, then there is only ever one user ** of each BtShared structure and so this locking is not necessary. ** So define the lock related functions as no-ops. */ #define querySharedCacheTableLock(a,b,c) SQLITE_OK #define setSharedCacheTableLock(a,b,c) SQLITE_OK #define clearAllSharedCacheTableLocks(a) #define downgradeAllSharedCacheTableLocks(a) #define hasSharedCacheTableLock(a,b,c,d) 1 #define hasReadConflicts(a, b) 0 #endif #ifdef SQLITE_DEBUG /* ** Return and reset the seek counter for a Btree object. */ SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ u64 n = pBt->nSeek; pBt->nSeek = 0; return n; } #endif /* ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single ** (MemPage*) as an argument. The (MemPage*) must not be NULL. ** ** If SQLITE_DEBUG is not defined, then this macro is equivalent to ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented ** with the page number and filename associated with the (MemPage*). */ #ifdef SQLITE_DEBUG int corruptPageError(int lineno, MemPage *p){ char *zMsg; sqlite3BeginBenignMalloc(); zMsg = sqlite3_mprintf("database corruption page %u of %s", p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) ); sqlite3EndBenignMalloc(); if( zMsg ){ sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); } sqlite3_free(zMsg); return SQLITE_CORRUPT_BKPT; } # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) #else # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) #endif #ifndef SQLITE_OMIT_SHARED_CACHE #ifdef SQLITE_DEBUG /* **** This function is only used as part of an assert() statement. *** ** ** Check to see if pBtree holds the required locks to read or write to the ** table with root page iRoot. Return 1 if it does and 0 if not. ** ** For example, when writing to a table with root-page iRoot via ** Btree connection pBtree: ** ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); ** ** When writing to an index that resides in a sharable database, the ** caller should have first obtained a lock specifying the root page of ** the corresponding table. This makes things a bit more complicated, ** as this module treats each table as a separate structure. To determine ** the table corresponding to the index being written, this ** function has to search through the database schema. ** ** Instead of a lock on the table/index rooted at page iRoot, the caller may ** hold a write-lock on the schema table (root page 1). This is also ** acceptable. */ static int hasSharedCacheTableLock( Btree *pBtree, /* Handle that must hold lock */ Pgno iRoot, /* Root page of b-tree */ int isIndex, /* True if iRoot is the root of an index b-tree */ int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ ){ Schema *pSchema = (Schema *)pBtree->pBt->pSchema; Pgno iTab = 0; BtLock *pLock; /* If this database is not shareable, or if the client is reading ** and has the read-uncommitted flag set, then no lock is required. ** Return true immediately. */ if( (pBtree->sharable==0) || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) ){ return 1; } /* If the client is reading or writing an index and the schema is ** not loaded, then it is too difficult to actually check to see if ** the correct locks are held. So do not bother - just return true. ** This case does not come up very often anyhow. */ if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ return 1; } /* Figure out the root-page that the lock should be held on. For table ** b-trees, this is just the root page of the b-tree being read or ** written. For index b-trees, it is the root page of the associated ** table. */ if( isIndex ){ HashElem *p; int bSeen = 0; for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ Index *pIdx = (Index *)sqliteHashData(p); if( pIdx->tnum==iRoot ){ if( bSeen ){ /* Two or more indexes share the same root page. There must ** be imposter tables. So just return true. The assert is not ** useful in that case. */ return 1; } iTab = pIdx->pTable->tnum; bSeen = 1; } } }else{ iTab = iRoot; } /* Search for the required lock. Either a write-lock on root-page iTab, a ** write-lock on the schema table, or (if the client is reading) a ** read-lock on iTab will suffice. Return 1 if any of these are found. */ for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ if( pLock->pBtree==pBtree && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) && pLock->eLock>=eLockType ){ return 1; } } /* Failed to find the required lock. */ return 0; } #endif /* SQLITE_DEBUG */ #ifdef SQLITE_DEBUG /* **** This function may be used as part of assert() statements only. **** ** ** Return true if it would be illegal for pBtree to write into the ** table or index rooted at iRoot because other shared connections are ** simultaneously reading that same table or index. ** ** It is illegal for pBtree to write if some other Btree object that ** shares the same BtShared object is currently reading or writing ** the iRoot table. Except, if the other Btree object has the ** read-uncommitted flag set, then it is OK for the other object to ** have a read cursor. ** ** For example, before writing to any part of the table or index ** rooted at page iRoot, one should call: ** ** assert( !hasReadConflicts(pBtree, iRoot) ); */ static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ BtCursor *p; for(p=pBtree->pBt->pCursor; p; p=p->pNext){ if( p->pgnoRoot==iRoot && p->pBtree!=pBtree && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) ){ return 1; } } return 0; } #endif /* #ifdef SQLITE_DEBUG */ /* ** Query to see if Btree handle p may obtain a lock of type eLock ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return ** SQLITE_OK if the lock may be obtained (by calling ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. */ static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pIter; assert( sqlite3BtreeHoldsMutex(p) ); assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); assert( p->db!=0 ); assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); /* If requesting a write-lock, then the Btree must have an open write ** transaction on this file. And, obviously, for this to be so there ** must be an open write transaction on the file itself. */ assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); /* This routine is a no-op if the shared-cache is not enabled */ if( !p->sharable ){ return SQLITE_OK; } /* If some other connection is holding an exclusive lock, the ** requested lock may not be obtained. */ if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); return SQLITE_LOCKED_SHAREDCACHE; } for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ /* The condition (pIter->eLock!=eLock) in the following if(...) ** statement is a simplification of: ** ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) ** ** since we know that if eLock==WRITE_LOCK, then no other connection ** may hold a WRITE_LOCK on any table in this file (since there can ** only be a single writer). */ assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); if( eLock==WRITE_LOCK ){ assert( p==pBt->pWriter ); pBt->btsFlags |= BTS_PENDING; } return SQLITE_LOCKED_SHAREDCACHE; } } return SQLITE_OK; } #endif /* !SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Add a lock on the table with root-page iTable to the shared-btree used ** by Btree handle p. Parameter eLock must be either READ_LOCK or ** WRITE_LOCK. ** ** This function assumes the following: ** ** (a) The specified Btree object p is connected to a sharable ** database (one with the BtShared.sharable flag set), and ** ** (b) No other Btree objects hold a lock that conflicts ** with the requested lock (i.e. querySharedCacheTableLock() has ** already been called and returned SQLITE_OK). ** ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM ** is returned if a malloc attempt fails. */ static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pLock = 0; BtLock *pIter; assert( sqlite3BtreeHoldsMutex(p) ); assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); assert( p->db!=0 ); /* A connection with the read-uncommitted flag set will never try to ** obtain a read-lock using this function. The only read-lock obtained ** by a connection in read-uncommitted mode is on the sqlite_schema ** table, and that lock is obtained in BtreeBeginTrans(). */ assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); /* This function should only be called on a sharable b-tree after it ** has been determined that no other b-tree holds a conflicting lock. */ assert( p->sharable ); assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); /* First search the list for an existing lock on this table. */ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->iTable==iTable && pIter->pBtree==p ){ pLock = pIter; break; } } /* If the above search did not find a BtLock struct associating Btree p ** with table iTable, allocate one and link it into the list. */ if( !pLock ){ pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); if( !pLock ){ return SQLITE_NOMEM_BKPT; } pLock->iTable = iTable; pLock->pBtree = p; pLock->pNext = pBt->pLock; pBt->pLock = pLock; } /* Set the BtLock.eLock variable to the maximum of the current lock ** and the requested lock. This means if a write-lock was already held ** and a read-lock requested, we don't incorrectly downgrade the lock. */ assert( WRITE_LOCK>READ_LOCK ); if( eLock>pLock->eLock ){ pLock->eLock = eLock; } return SQLITE_OK; } #endif /* !SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Release all the table locks (locks obtained via calls to ** the setSharedCacheTableLock() procedure) held by Btree object p. ** ** This function assumes that Btree p has an open read or write ** transaction. If it does not, then the BTS_PENDING flag ** may be incorrectly cleared. */ static void clearAllSharedCacheTableLocks(Btree *p){ BtShared *pBt = p->pBt; BtLock **ppIter = &pBt->pLock; assert( sqlite3BtreeHoldsMutex(p) ); assert( p->sharable || 0==*ppIter ); assert( p->inTrans>0 ); while( *ppIter ){ BtLock *pLock = *ppIter; assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); assert( pLock->pBtree->inTrans>=pLock->eLock ); if( pLock->pBtree==p ){ *ppIter = pLock->pNext; assert( pLock->iTable!=1 || pLock==&p->lock ); if( pLock->iTable!=1 ){ sqlite3_free(pLock); } }else{ ppIter = &pLock->pNext; } } assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); if( pBt->pWriter==p ){ pBt->pWriter = 0; pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); }else if( pBt->nTransaction==2 ){ /* This function is called when Btree p is concluding its ** transaction. If there currently exists a writer, and p is not ** that writer, then the number of locks held by connections other ** than the writer must be about to drop to zero. In this case ** set the BTS_PENDING flag to 0. ** ** If there is not currently a writer, then BTS_PENDING must ** be zero already. So this next line is harmless in that case. */ pBt->btsFlags &= ~BTS_PENDING; } } /* ** This function changes all write-locks held by Btree p into read-locks. */ static void downgradeAllSharedCacheTableLocks(Btree *p){ BtShared *pBt = p->pBt; if( pBt->pWriter==p ){ BtLock *pLock; pBt->pWriter = 0; pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); pLock->eLock = READ_LOCK; } } } #endif /* SQLITE_OMIT_SHARED_CACHE */ static void releasePage(MemPage *pPage); /* Forward reference */ static void releasePageOne(MemPage *pPage); /* Forward reference */ static void releasePageNotNull(MemPage *pPage); /* Forward reference */ /* ***** This routine is used inside of assert() only **** ** ** Verify that the cursor holds the mutex on its BtShared */ #ifdef SQLITE_DEBUG static int cursorHoldsMutex(BtCursor *p){ return sqlite3_mutex_held(p->pBt->mutex); } /* Verify that the cursor and the BtShared agree about what is the current ** database connetion. This is important in shared-cache mode. If the database ** connection pointers get out-of-sync, it is possible for routines like ** btreeInitPage() to reference an stale connection pointer that references a ** a connection that has already closed. This routine is used inside assert() ** statements only and for the purpose of double-checking that the btree code ** does keep the database connection pointers up-to-date. */ static int cursorOwnsBtShared(BtCursor *p){ assert( cursorHoldsMutex(p) ); return (p->pBtree->db==p->pBt->db); } #endif /* ** Invalidate the overflow cache of the cursor passed as the first argument. ** on the shared btree structure pBt. */ #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) /* ** Invalidate the overflow page-list cache for all cursors opened ** on the shared btree structure pBt. */ static void invalidateAllOverflowCache(BtShared *pBt){ BtCursor *p; assert( sqlite3_mutex_held(pBt->mutex) ); for(p=pBt->pCursor; p; p=p->pNext){ invalidateOverflowCache(p); } } #ifndef SQLITE_OMIT_INCRBLOB /* ** This function is called before modifying the contents of a table ** to invalidate any incrblob cursors that are open on the ** row or one of the rows being modified. ** ** If argument isClearTable is true, then the entire contents of the ** table is about to be deleted. In this case invalidate all incrblob ** cursors open on any row within the table with root-page pgnoRoot. ** ** Otherwise, if argument isClearTable is false, then the row with ** rowid iRow is being replaced or deleted. In this case invalidate ** only those incrblob cursors open on that specific row. */ static void invalidateIncrblobCursors( Btree *pBtree, /* The database file to check */ Pgno pgnoRoot, /* The table that might be changing */ i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; assert( pBtree->hasIncrblobCur ); assert( sqlite3BtreeHoldsMutex(pBtree) ); pBtree->hasIncrblobCur = 0; for(p=pBtree->pBt->pCursor; p; p=p->pNext){ if( (p->curFlags & BTCF_Incrblob)!=0 ){ pBtree->hasIncrblobCur = 1; if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ p->eState = CURSOR_INVALID; } } } } #else /* Stub function when INCRBLOB is omitted */ #define invalidateIncrblobCursors(w,x,y,z) #endif /* SQLITE_OMIT_INCRBLOB */ /* ** Set bit pgno of the BtShared.pHasContent bitvec. This is called ** when a page that previously contained data becomes a free-list leaf ** page. ** ** The BtShared.pHasContent bitvec exists to work around an obscure ** bug caused by the interaction of two useful IO optimizations surrounding ** free-list leaf pages: ** ** 1) When all data is deleted from a page and the page becomes ** a free-list leaf page, the page is not written to the database ** (as free-list leaf pages contain no meaningful data). Sometimes ** such a page is not even journalled (as it will not be modified, ** why bother journalling it?). ** ** 2) When a free-list leaf page is reused, its content is not read ** from the database or written to the journal file (why should it ** be, if it is not at all meaningful?). ** ** By themselves, these optimizations work fine and provide a handy ** performance boost to bulk delete or insert operations. However, if ** a page is moved to the free-list and then reused within the same ** transaction, a problem comes up. If the page is not journalled when ** it is moved to the free-list and it is also not journalled when it ** is extracted from the free-list and reused, then the original data ** may be lost. In the event of a rollback, it may not be possible ** to restore the database to its original configuration. ** ** The solution is the BtShared.pHasContent bitvec. Whenever a page is ** moved to become a free-list leaf page, the corresponding bit is ** set in the bitvec. Whenever a leaf page is extracted from the free-list, ** optimization 2 above is omitted if the corresponding bit is already ** set in BtShared.pHasContent. The contents of the bitvec are cleared ** at the end of every transaction. */ static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ int rc = SQLITE_OK; if( !pBt->pHasContent ){ assert( pgno<=pBt->nPage ); pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); if( !pBt->pHasContent ){ rc = SQLITE_NOMEM_BKPT; } } if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ rc = sqlite3BitvecSet(pBt->pHasContent, pgno); } return rc; } /* ** Query the BtShared.pHasContent vector. ** ** This function is called when a free-list leaf page is removed from the ** free-list for reuse. It returns false if it is safe to retrieve the ** page from the pager layer with the 'no-content' flag set. True otherwise. */ static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ Bitvec *p = pBt->pHasContent; return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); } /* ** Clear (destroy) the BtShared.pHasContent bitvec. This should be ** invoked at the conclusion of each write-transaction. */ static void btreeClearHasContent(BtShared *pBt){ sqlite3BitvecDestroy(pBt->pHasContent); pBt->pHasContent = 0; } /* ** Release all of the apPage[] pages for a cursor. */ static void btreeReleaseAllCursorPages(BtCursor *pCur){ int i; if( pCur->iPage>=0 ){ for(i=0; iiPage; i++){ releasePageNotNull(pCur->apPage[i]); } releasePageNotNull(pCur->pPage); pCur->iPage = -1; } } /* ** The cursor passed as the only argument must point to a valid entry ** when this function is called (i.e. have eState==CURSOR_VALID). This ** function saves the current cursor key in variables pCur->nKey and ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error ** code otherwise. ** ** If the cursor is open on an intkey table, then the integer key ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is ** set to point to a malloced buffer pCur->nKey bytes in size containing ** the key. */ static int saveCursorKey(BtCursor *pCur){ int rc = SQLITE_OK; assert( CURSOR_VALID==pCur->eState ); assert( 0==pCur->pKey ); assert( cursorHoldsMutex(pCur) ); if( pCur->curIntKey ){ /* Only the rowid is required for a table btree */ pCur->nKey = sqlite3BtreeIntegerKey(pCur); }else{ /* For an index btree, save the complete key content. It is possible ** that the current key is corrupt. In that case, it is possible that ** the sqlite3VdbeRecordUnpack() function may overread the buffer by ** up to the size of 1 varint plus 1 8-byte value when the cursor ** position is restored. Hence the 17 bytes of padding allocated ** below. */ void *pKey; pCur->nKey = sqlite3BtreePayloadSize(pCur); pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); if( pKey ){ rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); if( rc==SQLITE_OK ){ memset(((u8*)pKey)+pCur->nKey, 0, 9+8); pCur->pKey = pKey; }else{ sqlite3_free(pKey); } }else{ rc = SQLITE_NOMEM_BKPT; } } assert( !pCur->curIntKey || !pCur->pKey ); return rc; } /* ** Save the current cursor position in the variables BtCursor.nKey ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. ** ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) ** prior to calling this routine. */ static int saveCursorPosition(BtCursor *pCur){ int rc; assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); assert( 0==pCur->pKey ); assert( cursorHoldsMutex(pCur) ); if( pCur->curFlags & BTCF_Pinned ){ return SQLITE_CONSTRAINT_PINNED; } if( pCur->eState==CURSOR_SKIPNEXT ){ pCur->eState = CURSOR_VALID; }else{ pCur->skipNext = 0; } rc = saveCursorKey(pCur); if( rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); return rc; } /* Forward reference */ static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); /* ** Save the positions of all cursors (except pExcept) that are open on ** the table with root-page iRoot. "Saving the cursor position" means that ** the location in the btree is remembered in such a way that it can be ** moved back to the same spot after the btree has been modified. This ** routine is called just before cursor pExcept is used to modify the ** table, for example in BtreeDelete() or BtreeInsert(). ** ** If there are two or more cursors on the same btree, then all such ** cursors should have their BTCF_Multiple flag set. The btreeCursor() ** routine enforces that rule. This routine only needs to be called in ** the uncommon case when pExpect has the BTCF_Multiple flag set. ** ** If pExpect!=NULL and if no other cursors are found on the same root-page, ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another ** pointless call to this routine. ** ** Implementation note: This routine merely checks to see if any cursors ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) ** event that cursors are in need to being saved. */ static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ BtCursor *p; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pExcept==0 || pExcept->pBt==pBt ); for(p=pBt->pCursor; p; p=p->pNext){ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; } if( p ) return saveCursorsOnList(p, iRoot, pExcept); if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; return SQLITE_OK; } /* This helper routine to saveAllCursors does the actual work of saving ** the cursors if and when a cursor is found that actually requires saving. ** The common case is that no cursors need to be saved, so this routine is ** broken out from its caller to avoid unnecessary stack pointer movement. */ static int SQLITE_NOINLINE saveCursorsOnList( BtCursor *p, /* The first cursor that needs saving */ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ BtCursor *pExcept /* Do not save this cursor */ ){ do{ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ int rc = saveCursorPosition(p); if( SQLITE_OK!=rc ){ return rc; } }else{ testcase( p->iPage>=0 ); btreeReleaseAllCursorPages(p); } } p = p->pNext; }while( p ); return SQLITE_OK; } /* ** Clear the current cursor position. */ SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); sqlite3_free(pCur->pKey); pCur->pKey = 0; pCur->eState = CURSOR_INVALID; } /* ** In this version of BtreeMoveto, pKey is a packed index record ** such as is generated by the OP_MakeRecord opcode. Unpack the ** record and then call sqlite3BtreeIndexMoveto() to do the work. */ static int btreeMoveto( BtCursor *pCur, /* Cursor open on the btree to be searched */ const void *pKey, /* Packed key if the btree is an index */ i64 nKey, /* Integer key for tables. Size of pKey for indices */ int bias, /* Bias search to the high end */ int *pRes /* Write search results here */ ){ int rc; /* Status code */ UnpackedRecord *pIdxKey; /* Unpacked index key */ if( pKey ){ KeyInfo *pKeyInfo = pCur->pKeyInfo; assert( nKey==(i64)(int)nKey ); pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); } sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); }else{ pIdxKey = 0; rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); } return rc; } /* ** Restore the cursor to the position it was in (or as close to as possible) ** when saveCursorPosition() was called. Note that this call deletes the ** saved position info stored by saveCursorPosition(), so there can be ** at most one effective restoreCursorPosition() call after each ** saveCursorPosition(). */ static int btreeRestoreCursorPosition(BtCursor *pCur){ int rc; int skipNext = 0; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState>=CURSOR_REQUIRESEEK ); if( pCur->eState==CURSOR_FAULT ){ return pCur->skipNext; } pCur->eState = CURSOR_INVALID; if( sqlite3FaultSim(410) ){ rc = SQLITE_IOERR; }else{ rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); } if( rc==SQLITE_OK ){ sqlite3_free(pCur->pKey); pCur->pKey = 0; assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); if( skipNext ) pCur->skipNext = skipNext; if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ pCur->eState = CURSOR_SKIPNEXT; } } return rc; } #define restoreCursorPosition(p) \ (p->eState>=CURSOR_REQUIRESEEK ? \ btreeRestoreCursorPosition(p) : \ SQLITE_OK) /* ** Determine whether or not a cursor has moved from the position where ** it was last placed, or has been invalidated for any other reason. ** Cursors can move when the row they are pointing at is deleted out ** from under them, for example. Cursor might also move if a btree ** is rebalanced. ** ** Calling this routine with a NULL cursor pointer returns false. ** ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor ** back to where it ought to be if this routine returns true. */ SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ assert( EIGHT_BYTE_ALIGNMENT(pCur) || pCur==sqlite3BtreeFakeValidCursor() ); assert( offsetof(BtCursor, eState)==0 ); assert( sizeof(pCur->eState)==1 ); return CURSOR_VALID != *(u8*)pCur; } /* ** Return a pointer to a fake BtCursor object that will always answer ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake ** cursor returned must not be used with any other Btree interface. */ SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void){ static u8 fakeCursor = CURSOR_VALID; assert( offsetof(BtCursor, eState)==0 ); return (BtCursor*)&fakeCursor; } /* ** This routine restores a cursor back to its original position after it ** has been moved by some outside activity (such as a btree rebalance or ** a row having been deleted out from under the cursor). ** ** On success, the *pDifferentRow parameter is false if the cursor is left ** pointing at exactly the same row. *pDifferntRow is the row the cursor ** was pointing to has been deleted, forcing the cursor to point to some ** nearby row. ** ** This routine should only be called for a cursor that just returned ** TRUE from sqlite3BtreeCursorHasMoved(). */ SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ int rc; assert( pCur!=0 ); assert( pCur->eState!=CURSOR_VALID ); rc = restoreCursorPosition(pCur); if( rc ){ *pDifferentRow = 1; return rc; } if( pCur->eState!=CURSOR_VALID ){ *pDifferentRow = 1; }else{ *pDifferentRow = 0; } return SQLITE_OK; } #ifdef SQLITE_ENABLE_CURSOR_HINTS /* ** Provide hints to the cursor. The particular hint given (and the type ** and number of the varargs parameters) is determined by the eHintType ** parameter. See the definitions of the BTREE_HINT_* macros for details. */ SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ /* Used only by system that substitute their own storage engine */ #ifdef SQLITE_DEBUG if( ALWAYS(eHintType==BTREE_HINT_RANGE) ){ va_list ap; Expr *pExpr; Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = sqlite3CursorRangeHintExprCheck; va_start(ap, eHintType); pExpr = va_arg(ap, Expr*); w.u.aMem = va_arg(ap, Mem*); va_end(ap); assert( pExpr!=0 ); assert( w.u.aMem!=0 ); sqlite3WalkExpr(&w, pExpr); } #endif /* SQLITE_DEBUG */ } #endif /* SQLITE_ENABLE_CURSOR_HINTS */ /* ** Provide flag hints to the cursor. */ SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); pCur->hints = x; } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Given a page number of a regular database page, return the page ** number for the pointer-map page that contains the entry for the ** input page number. ** ** Return 0 (not a valid page) for pgno==1 since there is ** no pointer map associated with page 1. The integrity_check logic ** requires that ptrmapPageno(*,1)!=1. */ static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ int nPagesPerMapPage; Pgno iPtrMap, ret; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno<2 ) return 0; nPagesPerMapPage = (pBt->usableSize/5)+1; iPtrMap = (pgno-2)/nPagesPerMapPage; ret = (iPtrMap*nPagesPerMapPage) + 2; if( ret==PENDING_BYTE_PAGE(pBt) ){ ret++; } return ret; } /* ** Write an entry into the pointer map. ** ** This routine updates the pointer map entry for page number 'key' ** so that it maps to type 'eType' and parent page number 'pgno'. ** ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is ** a no-op. If an error occurs, the appropriate error code is written ** into *pRC. */ static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ DbPage *pDbPage; /* The pointer map page */ u8 *pPtrmap; /* The pointer map data */ Pgno iPtrmap; /* The pointer map page number */ int offset; /* Offset in pointer map page */ int rc; /* Return code from subfunctions */ if( *pRC ) return; assert( sqlite3_mutex_held(pBt->mutex) ); /* The super-journal page number must never be used as a pointer map page */ assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); assert( pBt->autoVacuum ); if( key==0 ){ *pRC = SQLITE_CORRUPT_BKPT; return; } iPtrmap = PTRMAP_PAGENO(pBt, key); rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); if( rc!=SQLITE_OK ){ *pRC = rc; return; } if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ /* The first byte of the extra data is the MemPage.isInit byte. ** If that byte is set, it means this page is also being used ** as a btree page. */ *pRC = SQLITE_CORRUPT_BKPT; goto ptrmap_exit; } offset = PTRMAP_PTROFFSET(iPtrmap, key); if( offset<0 ){ *pRC = SQLITE_CORRUPT_BKPT; goto ptrmap_exit; } assert( offset <= (int)pBt->usableSize-5 ); pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ TRACE(("PTRMAP_UPDATE: %u->(%u,%u)\n", key, eType, parent)); *pRC= rc = sqlite3PagerWrite(pDbPage); if( rc==SQLITE_OK ){ pPtrmap[offset] = eType; put4byte(&pPtrmap[offset+1], parent); } } ptrmap_exit: sqlite3PagerUnref(pDbPage); } /* ** Read an entry from the pointer map. ** ** This routine retrieves the pointer map entry for page 'key', writing ** the type and parent page number to *pEType and *pPgno respectively. ** An error code is returned if something goes wrong, otherwise SQLITE_OK. */ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ DbPage *pDbPage; /* The pointer map page */ int iPtrmap; /* Pointer map page index */ u8 *pPtrmap; /* Pointer map page data */ int offset; /* Offset of entry in pointer map */ int rc; assert( sqlite3_mutex_held(pBt->mutex) ); iPtrmap = PTRMAP_PAGENO(pBt, key); rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); if( rc!=0 ){ return rc; } pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); offset = PTRMAP_PTROFFSET(iPtrmap, key); if( offset<0 ){ sqlite3PagerUnref(pDbPage); return SQLITE_CORRUPT_BKPT; } assert( offset <= (int)pBt->usableSize-5 ); assert( pEType!=0 ); *pEType = pPtrmap[offset]; if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); sqlite3PagerUnref(pDbPage); if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); return SQLITE_OK; } #else /* if defined SQLITE_OMIT_AUTOVACUUM */ #define ptrmapPut(w,x,y,z,rc) #define ptrmapGet(w,x,y,z) SQLITE_OK #define ptrmapPutOvflPtr(x, y, z, rc) #endif /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** findCellPastPtr() does the same except it skips past the initial ** 4-byte child pointer found on interior pages, if there is one. ** ** This routine works only for pages that do not contain overflow cells. */ #define findCell(P,I) \ ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) #define findCellPastPtr(P,I) \ ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) /* ** This is common tail processing for btreeParseCellPtr() and ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely ** on a single B-tree page. Make necessary adjustments to the CellInfo ** structure. */ static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ /* If the payload will not fit completely on the local page, we have ** to decide how much to store locally and how much to spill onto ** overflow pages. The strategy is to minimize the amount of unused ** space on overflow pages while keeping the amount of local storage ** in between minLocal and maxLocal. ** ** Warning: changing the way overflow payload is distributed in any ** way will result in an incompatible file format. */ int minLocal; /* Minimum amount of payload held locally */ int maxLocal; /* Maximum amount of payload held locally */ int surplus; /* Overflow payload available for local storage */ minLocal = pPage->minLocal; maxLocal = pPage->maxLocal; surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); testcase( surplus==maxLocal ); testcase( surplus==maxLocal+1 ); if( surplus <= maxLocal ){ pInfo->nLocal = (u16)surplus; }else{ pInfo->nLocal = (u16)minLocal; } pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; } /* ** Given a record with nPayload bytes of payload stored within btree ** page pPage, return the number of bytes of payload stored locally. */ static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ int maxLocal; /* Maximum amount of payload held locally */ maxLocal = pPage->maxLocal; if( nPayload<=maxLocal ){ return nPayload; }else{ int minLocal; /* Minimum amount of payload held locally */ int surplus; /* Overflow payload available for local storage */ minLocal = pPage->minLocal; surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); return ( surplus <= maxLocal ) ? surplus : minLocal; } } /* ** The following routines are implementations of the MemPage.xParseCell() ** method. ** ** Parse a cell content block and fill in the CellInfo structure. ** ** btreeParseCellPtr() => table btree leaf nodes ** btreeParseCellNoPayload() => table btree internal nodes ** btreeParseCellPtrIndex() => index btree nodes ** ** There is also a wrapper function btreeParseCell() that works for ** all MemPage types and that references the cell by index rather than ** by pointer. */ static void btreeParseCellPtrNoPayload( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 ); assert( pPage->childPtrSize==4 ); #ifndef SQLITE_DEBUG UNUSED_PARAMETER(pPage); #endif pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); pInfo->nPayload = 0; pInfo->nLocal = 0; pInfo->pPayload = 0; return; } static void btreeParseCellPtr( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ u8 *pIter; /* For scanning through pCell */ u32 nPayload; /* Number of bytes of cell payload */ u64 iKey; /* Extracted Key value */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 || pPage->leaf==1 ); assert( pPage->intKeyLeaf ); assert( pPage->childPtrSize==0 ); pIter = pCell; /* The next block of code is equivalent to: ** ** pIter += getVarint32(pIter, nPayload); ** ** The code is inlined to avoid a function call. */ nPayload = *pIter; if( nPayload>=0x80 ){ u8 *pEnd = &pIter[8]; nPayload &= 0x7f; do{ nPayload = (nPayload<<7) | (*++pIter & 0x7f); }while( (*pIter)>=0x80 && pIternKey); ** ** The code is inlined and the loop is unrolled for performance. ** This routine is a high-runner. */ iKey = *pIter; if( iKey>=0x80 ){ u8 x; iKey = (iKey<<7) ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x10204000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter); if( x>=0x80 ){ iKey = (iKey<<8) ^ 0x8000 ^ (*++pIter); } } } } } }else{ iKey ^= 0x204000; } }else{ iKey ^= 0x4000; } } pIter++; pInfo->nKey = *(i64*)&iKey; pInfo->nPayload = nPayload; pInfo->pPayload = pIter; testcase( nPayload==pPage->maxLocal ); testcase( nPayload==(u32)pPage->maxLocal+1 ); if( nPayload<=pPage->maxLocal ){ /* This is the (easy) common case where the entire payload fits ** on the local page. No overflow is required. */ pInfo->nSize = nPayload + (u16)(pIter - pCell); if( pInfo->nSize<4 ) pInfo->nSize = 4; pInfo->nLocal = (u16)nPayload; }else{ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); } } static void btreeParseCellPtrIndex( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ u8 *pIter; /* For scanning through pCell */ u32 nPayload; /* Number of bytes of cell payload */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 || pPage->leaf==1 ); assert( pPage->intKeyLeaf==0 ); pIter = pCell + pPage->childPtrSize; nPayload = *pIter; if( nPayload>=0x80 ){ u8 *pEnd = &pIter[8]; nPayload &= 0x7f; do{ nPayload = (nPayload<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pIternKey = nPayload; pInfo->nPayload = nPayload; pInfo->pPayload = pIter; testcase( nPayload==pPage->maxLocal ); testcase( nPayload==(u32)pPage->maxLocal+1 ); if( nPayload<=pPage->maxLocal ){ /* This is the (easy) common case where the entire payload fits ** on the local page. No overflow is required. */ pInfo->nSize = nPayload + (u16)(pIter - pCell); if( pInfo->nSize<4 ) pInfo->nSize = 4; pInfo->nLocal = (u16)nPayload; }else{ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); } } static void btreeParseCell( MemPage *pPage, /* Page containing the cell */ int iCell, /* The cell index. First cell is 0 */ CellInfo *pInfo /* Fill in this structure */ ){ pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); } /* ** The following routines are implementations of the MemPage.xCellSize ** method. ** ** Compute the total number of bytes that a Cell needs in the cell ** data area of the btree-page. The return number includes the cell ** data header and the local payload, but not any overflow page or ** the space used by the cell pointer. ** ** cellSizePtrNoPayload() => table internal nodes ** cellSizePtrTableLeaf() => table leaf nodes ** cellSizePtr() => index internal nodes ** cellSizeIdxLeaf() => index leaf nodes */ static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ u32 nSize; /* Size value to return */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #endif assert( pPage->childPtrSize==4 ); nSize = *pIter; if( nSize>=0x80 ){ pEnd = &pIter[8]; nSize &= 0x7f; do{ nSize = (nSize<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pItermaxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize<=pPage->maxLocal ){ nSize += (u32)(pIter - pCell); assert( nSize>4 ); }else{ int minLocal = pPage->minLocal; nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); testcase( nSize==pPage->maxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize>pPage->maxLocal ){ nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } static u16 cellSizePtrIdxLeaf(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ u32 nSize; /* Size value to return */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #endif assert( pPage->childPtrSize==0 ); nSize = *pIter; if( nSize>=0x80 ){ pEnd = &pIter[8]; nSize &= 0x7f; do{ nSize = (nSize<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pItermaxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize<=pPage->maxLocal ){ nSize += (u32)(pIter - pCell); if( nSize<4 ) nSize = 4; }else{ int minLocal = pPage->minLocal; nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); testcase( nSize==pPage->maxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize>pPage->maxLocal ){ nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #else UNUSED_PARAMETER(pPage); #endif assert( pPage->childPtrSize==4 ); pEnd = pIter + 9; while( (*pIter++)&0x80 && pIterxParseCell(pPage, pCell, &debuginfo); #endif nSize = *pIter; if( nSize>=0x80 ){ pEnd = &pIter[8]; nSize &= 0x7f; do{ nSize = (nSize<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pItermaxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize<=pPage->maxLocal ){ nSize += (u32)(pIter - pCell); if( nSize<4 ) nSize = 4; }else{ int minLocal = pPage->minLocal; nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); testcase( nSize==pPage->maxLocal ); testcase( nSize==(u32)pPage->maxLocal+1 ); if( nSize>pPage->maxLocal ){ nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } #ifdef SQLITE_DEBUG /* This variation on cellSizePtr() is used inside of assert() statements ** only. */ static u16 cellSize(MemPage *pPage, int iCell){ return pPage->xCellSize(pPage, findCell(pPage, iCell)); } #endif #ifndef SQLITE_OMIT_AUTOVACUUM /* ** The cell pCell is currently part of page pSrc but will ultimately be part ** of pPage. (pSrc and pPage are often the same.) If pCell contains a ** pointer to an overflow page, insert an entry into the pointer-map for ** the overflow page that will be valid after pCell has been moved to pPage. */ static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ CellInfo info; if( *pRC ) return; assert( pCell!=0 ); pPage->xParseCell(pPage, pCell, &info); if( info.nLocalaDataEnd, pCell, pCell+info.nLocal) ){ testcase( pSrc!=pPage ); *pRC = SQLITE_CORRUPT_BKPT; return; } ovfl = get4byte(&pCell[info.nSize-4]); ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); } } #endif /* ** Defragment the page given. This routine reorganizes cells within the ** page so that there are no free-blocks on the free-block list. ** ** Parameter nMaxFrag is the maximum amount of fragmented space that may be ** present in the page after this routine returns. ** ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a ** b-tree page so that there are no freeblocks or fragment bytes, all ** unused bytes are contained in the unallocated space region, and all ** cells are packed tightly at the end of the page. */ static int defragmentPage(MemPage *pPage, int nMaxFrag){ int i; /* Loop counter */ int pc; /* Address of the i-th cell */ int hdr; /* Offset to the page header */ int size; /* Size of a cell */ int usableSize; /* Number of usable bytes on a page */ int cellOffset; /* Offset to the cell pointer array */ int cbrk; /* Offset to the cell content area */ int nCell; /* Number of cells on the page */ unsigned char *data; /* The page data */ unsigned char *temp; /* Temp area for cell content */ unsigned char *src; /* Source of content */ int iCellFirst; /* First allowable cell index */ int iCellLast; /* Last possible cell index */ int iCellStart; /* First cell offset in input */ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt!=0 ); assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); data = pPage->aData; hdr = pPage->hdrOffset; cellOffset = pPage->cellOffset; nCell = pPage->nCell; assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); iCellFirst = cellOffset + 2*nCell; usableSize = pPage->pBt->usableSize; /* This block handles pages with two or fewer free blocks and nMaxFrag ** or fewer fragmented bytes. In this case it is faster to move the ** two (or one) blocks of cells using memmove() and add the required ** offsets to each pointer in the cell-pointer array than it is to ** reconstruct the entire page. */ if( (int)data[hdr+7]<=nMaxFrag ){ int iFree = get2byte(&data[hdr+1]); if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); if( iFree ){ int iFree2 = get2byte(&data[iFree]); if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ u8 *pEnd = &data[cellOffset + nCell*2]; u8 *pAddr; int sz2 = 0; int sz = get2byte(&data[iFree+2]); int top = get2byte(&data[hdr+5]); if( top>=iFree ){ return SQLITE_CORRUPT_PAGE(pPage); } if( iFree2 ){ if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); sz2 = get2byte(&data[iFree2+2]); if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); sz += sz2; }else if( iFree+sz>usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } cbrk = top+sz; assert( cbrk+(iFree-top) <= usableSize ); memmove(&data[cbrk], &data[top], iFree-top); for(pAddr=&data[cellOffset]; pAddr0 ){ temp = sqlite3PagerTempSpace(pPage->pBt->pPager); memcpy(temp, data, usableSize); src = temp; for(i=0; iiCellLast ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( pc>=0 && pc<=iCellLast ); size = pPage->xCellSize(pPage, &src[pc]); cbrk -= size; if( cbrkusableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cbrk+size<=usableSize && cbrk>=iCellStart ); testcase( cbrk+size==usableSize ); testcase( pc+size==usableSize ); put2byte(pAddr, cbrk); memcpy(&data[cbrk], &src[pc], size); } } data[hdr+7] = 0; defragment_out: assert( pPage->nFree>=0 ); if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cbrk>=iCellFirst ); put2byte(&data[hdr+5], cbrk); data[hdr+1] = 0; data[hdr+2] = 0; memset(&data[iCellFirst], 0, cbrk-iCellFirst); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); return SQLITE_OK; } /* ** Search the free-list on page pPg for space to store a cell nByte bytes in ** size. If one can be found, return a pointer to the space and remove it ** from the free-list. ** ** If no suitable space can be found on the free-list, return NULL. ** ** This function may detect corruption within pPg. If corruption is ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. ** ** Slots on the free list that are between 1 and 3 bytes larger than nByte ** will be ignored if adding the extra space to the fragmentation count ** causes the fragmentation count to exceed 60. */ static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ const int hdr = pPg->hdrOffset; /* Offset to page header */ u8 * const aData = pPg->aData; /* Page data */ int iAddr = hdr + 1; /* Address of ptr to pc */ u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ int pc = get2byte(pTmp); /* Address of a free slot */ int x; /* Excess size of the slot */ int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ int size; /* Size of the free slot */ assert( pc>0 ); while( pc<=maxPC ){ /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each ** freeblock form a big-endian integer which is the size of the freeblock ** in bytes, including the 4-byte header. */ pTmp = &aData[pc+2]; size = get2byte(pTmp); if( (x = size - nByte)>=0 ){ testcase( x==4 ); testcase( x==3 ); if( x<4 ){ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total ** number of bytes in fragments may not exceed 60. */ if( aData[hdr+7]>57 ) return 0; /* Remove the slot from the free-list. Update the number of ** fragmented bytes within the page. */ memcpy(&aData[iAddr], &aData[pc], 2); aData[hdr+7] += (u8)x; return &aData[pc]; }else if( x+pc > maxPC ){ /* This slot extends off the end of the usable part of the page */ *pRc = SQLITE_CORRUPT_PAGE(pPg); return 0; }else{ /* The slot remains on the free-list. Reduce its size to account ** for the portion used by the new allocation. */ put2byte(&aData[pc+2], x); } return &aData[pc + x]; } iAddr = pc; pTmp = &aData[pc]; pc = get2byte(pTmp); if( pc<=iAddr ){ if( pc ){ /* The next slot in the chain comes before the current slot */ *pRc = SQLITE_CORRUPT_PAGE(pPg); } return 0; } } if( pc>maxPC+nByte-4 ){ /* The free slot chain extends off the end of the page */ *pRc = SQLITE_CORRUPT_PAGE(pPg); } return 0; } /* ** Allocate nByte bytes of space from within the B-Tree page passed ** as the first argument. Write into *pIdx the index into pPage->aData[] ** of the first byte of allocated space. Return either SQLITE_OK or ** an error code (usually SQLITE_CORRUPT). ** ** The caller guarantees that there is sufficient space to make the ** allocation. This routine might need to defragment in order to bring ** all the space together, however. This routine will avoid using ** the first two bytes past the cell pointer area since presumably this ** allocation is being made in order to insert a new cell, so we will ** also end up needing a new cell pointer. */ static SQLITE_INLINE int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ u8 * const data = pPage->aData; /* Local cache of pPage->aData */ int top; /* First byte of cell content area */ int rc = SQLITE_OK; /* Integer return code */ u8 *pTmp; /* Temp ptr into data[] */ int gap; /* First byte of gap between cell pointers and cell content */ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( nByte>=0 ); /* Minimum cell size is 4 */ assert( pPage->nFree>=nByte ); assert( pPage->nOverflow==0 ); assert( nByte < (int)(pPage->pBt->usableSize-8) ); assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); gap = pPage->cellOffset + 2*pPage->nCell; assert( gap<=65536 ); /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size ** and the reserved space is zero (the usual value for reserved space) ** then the cell content offset of an empty page wants to be 65536. ** However, that integer is too large to be stored in a 2-byte unsigned ** integer, so a value of 0 is used in its place. */ pTmp = &data[hdr+5]; top = get2byte(pTmp); if( gap>top ){ if( top==0 && pPage->pBt->usableSize==65536 ){ top = 65536; }else{ return SQLITE_CORRUPT_PAGE(pPage); } }else if( top>(int)pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } /* If there is enough space between gap and top for one more cell pointer, ** and if the freelist is not empty, then search the ** freelist looking for a slot big enough to satisfy the request. */ testcase( gap+2==top ); testcase( gap+1==top ); testcase( gap==top ); if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ u8 *pSpace = pageFindSlot(pPage, nByte, &rc); if( pSpace ){ int g2; assert( pSpace+nByte<=data+pPage->pBt->usableSize ); *pIdx = g2 = (int)(pSpace-data); if( g2<=gap ){ return SQLITE_CORRUPT_PAGE(pPage); }else{ return SQLITE_OK; } }else if( rc ){ return rc; } } /* The request could not be fulfilled using a freelist slot. Check ** to see if defragmentation is necessary. */ testcase( gap+2+nByte==top ); if( gap+2+nByte>top ){ assert( pPage->nCell>0 || CORRUPT_DB ); assert( pPage->nFree>=0 ); rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); assert( gap+2+nByte<=top ); } /* Allocate memory from the gap in between the cell pointer array ** and the cell content area. The btreeComputeFreeSpace() call has already ** validated the freelist. Given that the freelist is valid, there ** is no way that the allocation can extend off the end of the page. ** The assert() below verifies the previous sentence. */ top -= nByte; put2byte(&data[hdr+5], top); assert( top+nByte <= (int)pPage->pBt->usableSize ); *pIdx = top; return SQLITE_OK; } /* ** Return a section of the pPage->aData to the freelist. ** The first byte of the new free block is pPage->aData[iStart] ** and the size of the block is iSize bytes. ** ** Adjacent freeblocks are coalesced. ** ** Even though the freeblock list was checked by btreeComputeFreeSpace(), ** that routine will not detect overlap between cells or freeblocks. Nor ** does it detect cells or freeblocks that encroach into the reserved bytes ** at the end of the page. So do additional corruption checks inside this ** routine and return SQLITE_CORRUPT if any problems are found. */ static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ u16 iPtr; /* Address of ptr to next freeblock */ u16 iFreeBlk; /* Address of the next freeblock */ u8 hdr; /* Page header size. 0 or 100 */ u8 nFrag = 0; /* Reduction in fragmentation */ u16 iOrigSize = iSize; /* Original value of iSize */ u16 x; /* Offset to cell content area */ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ unsigned char *data = pPage->aData; /* Page content */ u8 *pTmp; /* Temporary ptr into data[] */ assert( pPage->pBt!=0 ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( iSize>=4 ); /* Minimum cell size is 4 */ assert( CORRUPT_DB || iStart<=pPage->pBt->usableSize-4 ); /* The list of freeblocks must be in ascending order. Find the ** spot on the list where iStart should be inserted. */ hdr = pPage->hdrOffset; iPtr = hdr + 1; if( data[iPtr+1]==0 && data[iPtr]==0 ){ iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ }else{ while( (iFreeBlk = get2byte(&data[iPtr]))pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ return SQLITE_CORRUPT_PAGE(pPage); } assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); /* At this point: ** iFreeBlk: First freeblock after iStart, or zero if none ** iPtr: The address of a pointer to iFreeBlk ** ** Check to see if iFreeBlk should be coalesced onto the end of iStart. */ if( iFreeBlk && iEnd+3>=iFreeBlk ){ nFrag = iFreeBlk - iEnd; if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); if( iEnd > pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } iSize = iEnd - iStart; iFreeBlk = get2byte(&data[iFreeBlk]); } /* If iPtr is another freeblock (that is, if iPtr is not the freelist ** pointer in the page header) then check to see if iStart should be ** coalesced onto the end of iPtr. */ if( iPtr>hdr+1 ){ int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); if( iPtrEnd+3>=iStart ){ if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); nFrag += iStart - iPtrEnd; iSize = iEnd - iPtr; iStart = iPtr; } } if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); data[hdr+7] -= nFrag; } pTmp = &data[hdr+5]; x = get2byte(pTmp); if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ /* Overwrite deleted information with zeros when the secure_delete ** option is enabled */ memset(&data[iStart], 0, iSize); } if( iStart<=x ){ /* The new freeblock is at the beginning of the cell content area, ** so just extend the cell content area rather than create another ** freelist entry */ if( iStartnFree += iOrigSize; return SQLITE_OK; } /* ** Decode the flags byte (the first byte of the header) for a page ** and initialize fields of the MemPage structure accordingly. ** ** Only the following combinations are supported. Anything different ** indicates a corrupt database files: ** ** PTF_ZERODATA (0x02, 2) ** PTF_LEAFDATA | PTF_INTKEY (0x05, 5) ** PTF_ZERODATA | PTF_LEAF (0x0a, 10) ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13) */ static int decodeFlags(MemPage *pPage, int flagByte){ BtShared *pBt; /* A copy of pPage->pBt */ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pBt = pPage->pBt; pPage->max1bytePayload = pBt->max1bytePayload; if( flagByte>=(PTF_ZERODATA | PTF_LEAF) ){ pPage->childPtrSize = 0; pPage->leaf = 1; if( flagByte==(PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF) ){ pPage->intKeyLeaf = 1; pPage->xCellSize = cellSizePtrTableLeaf; pPage->xParseCell = btreeParseCellPtr; pPage->intKey = 1; pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; }else if( flagByte==(PTF_ZERODATA | PTF_LEAF) ){ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtrIdxLeaf; pPage->xParseCell = btreeParseCellPtrIndex; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else{ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtrIdxLeaf; pPage->xParseCell = btreeParseCellPtrIndex; return SQLITE_CORRUPT_PAGE(pPage); } }else{ pPage->childPtrSize = 4; pPage->leaf = 0; if( flagByte==(PTF_ZERODATA) ){ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtr; pPage->xParseCell = btreeParseCellPtrIndex; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtrNoPayload; pPage->xParseCell = btreeParseCellPtrNoPayload; pPage->intKey = 1; pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; }else{ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->xCellSize = cellSizePtr; pPage->xParseCell = btreeParseCellPtrIndex; return SQLITE_CORRUPT_PAGE(pPage); } } return SQLITE_OK; } /* ** Compute the amount of freespace on the page. In other words, fill ** in the pPage->nFree field. */ static int btreeComputeFreeSpace(MemPage *pPage){ int pc; /* Address of a freeblock within pPage->aData[] */ u8 hdr; /* Offset to beginning of page header */ u8 *data; /* Equal to pPage->aData */ int usableSize; /* Amount of usable space on each page */ int nFree; /* Number of unused bytes on the page */ int top; /* First byte of the cell content area */ int iCellFirst; /* First allowable cell or freeblock offset */ int iCellLast; /* Last possible cell or freeblock offset */ assert( pPage->pBt!=0 ); assert( pPage->pBt->db!=0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); assert( pPage->isInit==1 ); assert( pPage->nFree<0 ); usableSize = pPage->pBt->usableSize; hdr = pPage->hdrOffset; data = pPage->aData; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; iCellLast = usableSize - 4; /* Compute the total free space on the page ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the ** start of the first freeblock on the page, or is zero if there are no ** freeblocks. */ pc = get2byte(&data[hdr+1]); nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ if( pc>0 ){ u32 next, size; if( pciCellLast ){ /* Freeblock off the end of the page */ return SQLITE_CORRUPT_PAGE(pPage); } next = get2byte(&data[pc]); size = get2byte(&data[pc+2]); nFree = nFree + size; if( next<=pc+size+3 ) break; pc = next; } if( next>0 ){ /* Freeblock not in ascending order */ return SQLITE_CORRUPT_PAGE(pPage); } if( pc+size>(unsigned int)usableSize ){ /* Last freeblock extends past page end */ return SQLITE_CORRUPT_PAGE(pPage); } } /* At this point, nFree contains the sum of the offset to the start ** of the cell-content area plus the number of free bytes within ** the cell-content area. If this is greater than the usable-size ** of the page, then the page must be corrupted. This check also ** serves to verify that the offset to the start of the cell-content ** area, according to the page header, lies within the page. */ if( nFree>usableSize || nFreenFree = (u16)(nFree - iCellFirst); return SQLITE_OK; } /* ** Do additional sanity check after btreeInitPage() if ** PRAGMA cell_size_check=ON */ static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ int iCellFirst; /* First allowable cell or freeblock offset */ int iCellLast; /* Last possible cell or freeblock offset */ int i; /* Index into the cell pointer array */ int sz; /* Size of a cell */ int pc; /* Address of a freeblock within pPage->aData[] */ u8 *data; /* Equal to pPage->aData */ int usableSize; /* Maximum usable space on the page */ int cellOffset; /* Start of cell content area */ iCellFirst = pPage->cellOffset + 2*pPage->nCell; usableSize = pPage->pBt->usableSize; iCellLast = usableSize - 4; data = pPage->aData; cellOffset = pPage->cellOffset; if( !pPage->leaf ) iCellLast--; for(i=0; inCell; i++){ pc = get2byteAligned(&data[cellOffset+i*2]); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); if( pciCellLast ){ return SQLITE_CORRUPT_PAGE(pPage); } sz = pPage->xCellSize(pPage, &data[pc]); testcase( pc+sz==usableSize ); if( pc+sz>usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } } return SQLITE_OK; } /* ** Initialize the auxiliary information for a disk block. ** ** Return SQLITE_OK on success. If we see that the page does ** not contain a well-formed database page, then return ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not ** guarantee that the page is well-formed. It only shows that ** we failed to detect any corruption. */ static int btreeInitPage(MemPage *pPage){ u8 *data; /* Equal to pPage->aData */ BtShared *pBt; /* The main btree structure */ assert( pPage->pBt!=0 ); assert( pPage->pBt->db!=0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); assert( pPage->isInit==0 ); pBt = pPage->pBt; data = pPage->aData + pPage->hdrOffset; /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating ** the b-tree page type. */ if( decodeFlags(pPage, data[0]) ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; pPage->aCellIdx = data + pPage->childPtrSize + 8; pPage->aDataEnd = pPage->aData + pBt->pageSize; pPage->aDataOfst = pPage->aData + pPage->childPtrSize; /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[3]); if( pPage->nCell>MX_CELL(pBt) ){ /* To many cells for a single page. The page must be corrupt */ return SQLITE_CORRUPT_PAGE(pPage); } testcase( pPage->nCell==MX_CELL(pBt) ); /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only ** possible for a root page of a table that contains no rows) then the ** offset to the cell content area will equal the page size minus the ** bytes of reserved space. */ assert( pPage->nCell>0 || get2byteNotZero(&data[5])==(int)pBt->usableSize || CORRUPT_DB ); pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ pPage->isInit = 1; if( pBt->db->flags & SQLITE_CellSizeCk ){ return btreeCellSizeCheck(pPage); } return SQLITE_OK; } /* ** Set up a raw page so that it looks like a database page holding ** no entries. */ static void zeroPage(MemPage *pPage, int flags){ unsigned char *data = pPage->aData; BtShared *pBt = pPage->pBt; u8 hdr = pPage->hdrOffset; u16 first; assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage) == data ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->btsFlags & BTS_FAST_SECURE ){ memset(&data[hdr], 0, pBt->usableSize - hdr); } data[hdr] = (char)flags; first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->pageSize]; pPage->aCellIdx = &data[first]; pPage->aDataOfst = &data[pPage->childPtrSize]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; pPage->isInit = 1; } /* ** Convert a DbPage obtained from the pager into a MemPage used by ** the btree layer. */ static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); if( pgno!=pPage->pgno ){ pPage->aData = sqlite3PagerGetData(pDbPage); pPage->pDbPage = pDbPage; pPage->pBt = pBt; pPage->pgno = pgno; pPage->hdrOffset = pgno==1 ? 100 : 0; } assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); return pPage; } /* ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). ** ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care ** about the content of the page at this time. So do not go to the disk ** to fetch the content. Just fill in the content with zeros for now. ** If in the future we call sqlite3PagerWrite() on this page, that ** means we have started to be concerned about content and the disk ** read should occur at that point. */ static int btreeGetPage( BtShared *pBt, /* The btree */ Pgno pgno, /* Number of the page to fetch */ MemPage **ppPage, /* Return the page in this parameter */ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ ){ int rc; DbPage *pDbPage; assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); assert( sqlite3_mutex_held(pBt->mutex) ); rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); if( rc ) return rc; *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); return SQLITE_OK; } /* ** Retrieve a page from the pager cache. If the requested page is not ** already in the pager cache return NULL. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. */ static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ DbPage *pDbPage; assert( sqlite3_mutex_held(pBt->mutex) ); pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); if( pDbPage ){ return btreePageFromDbPage(pDbPage, pgno, pBt); } return 0; } /* ** Return the size of the database file in pages. If there is any kind of ** error, return ((unsigned int)-1). */ static Pgno btreePagecount(BtShared *pBt){ return pBt->nPage; } SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); return btreePagecount(p->pBt); } /* ** Get a page from the pager and initialize it. */ static int getAndInitPage( BtShared *pBt, /* The database file */ Pgno pgno, /* Number of the page to get */ MemPage **ppPage, /* Write the page pointer here */ int bReadOnly /* True for a read-only page */ ){ int rc; DbPage *pDbPage; MemPage *pPage; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ *ppPage = 0; return SQLITE_CORRUPT_BKPT; } rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); if( rc ){ *ppPage = 0; return rc; } pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); if( pPage->isInit==0 ){ btreePageFromDbPage(pDbPage, pgno, pBt); rc = btreeInitPage(pPage); if( rc!=SQLITE_OK ){ releasePage(pPage); *ppPage = 0; return rc; } } assert( pPage->pgno==pgno || CORRUPT_DB ); assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); *ppPage = pPage; return SQLITE_OK; } /* ** Release a MemPage. This should be called once for each prior ** call to btreeGetPage. ** ** Page1 is a special case and must be released using releasePageOne(). */ static void releasePageNotNull(MemPage *pPage){ assert( pPage->aData ); assert( pPage->pBt ); assert( pPage->pDbPage!=0 ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sqlite3PagerUnrefNotNull(pPage->pDbPage); } static void releasePage(MemPage *pPage){ if( pPage ) releasePageNotNull(pPage); } static void releasePageOne(MemPage *pPage){ assert( pPage!=0 ); assert( pPage->aData ); assert( pPage->pBt ); assert( pPage->pDbPage!=0 ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sqlite3PagerUnrefPageOne(pPage->pDbPage); } /* ** Get an unused page. ** ** This works just like btreeGetPage() with the addition: ** ** * If the page is already in use for some other purpose, immediately ** release it and return an SQLITE_CURRUPT error. ** * Make sure the isInit flag is clear */ static int btreeGetUnusedPage( BtShared *pBt, /* The btree */ Pgno pgno, /* Number of the page to fetch */ MemPage **ppPage, /* Return the page in this parameter */ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ ){ int rc = btreeGetPage(pBt, pgno, ppPage, flags); if( rc==SQLITE_OK ){ if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ releasePage(*ppPage); *ppPage = 0; return SQLITE_CORRUPT_BKPT; } (*ppPage)->isInit = 0; }else{ *ppPage = 0; } return rc; } /* ** During a rollback, when the pager reloads information into the cache ** so that the cache is restored to its original state at the start of ** the transaction, for each page restored this routine is called. ** ** This routine needs to reset the extra data section at the end of the ** page to agree with the restored data. */ static void pageReinit(DbPage *pData){ MemPage *pPage; pPage = (MemPage *)sqlite3PagerGetExtra(pData); assert( sqlite3PagerPageRefcount(pData)>0 ); if( pPage->isInit ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->isInit = 0; if( sqlite3PagerPageRefcount(pData)>1 ){ /* pPage might not be a btree page; it might be an overflow page ** or ptrmap page or a free page. In those cases, the following ** call to btreeInitPage() will likely return SQLITE_CORRUPT. ** But no harm is done by this. And it is very important that ** btreeInitPage() be called on every btree page so we make ** the call for every page that comes in for re-initializing. */ btreeInitPage(pPage); } } } /* ** Invoke the busy handler for a btree. */ static int btreeInvokeBusyHandler(void *pArg){ BtShared *pBt = (BtShared*)pArg; assert( pBt->db ); assert( sqlite3_mutex_held(pBt->db->mutex) ); return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); } /* ** Open a database file. ** ** zFilename is the name of the database file. If zFilename is NULL ** then an ephemeral database is created. The ephemeral database might ** be exclusively in memory, or it might use a disk-based memory cache. ** Either way, the ephemeral database will be automatically deleted ** when sqlite3BtreeClose() is called. ** ** If zFilename is ":memory:" then an in-memory database is created ** that is automatically destroyed when it is closed. ** ** The "flags" parameter is a bitmask that might contain bits like ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. ** ** If the database is already opened in the same database connection ** and we are in shared cache mode, then the open will fail with an ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared ** objects in the same database connection since doing so will lead ** to problems with locking. */ SQLITE_PRIVATE int sqlite3BtreeOpen( sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ const char *zFilename, /* Name of the file containing the BTree database */ sqlite3 *db, /* Associated database handle */ Btree **ppBtree, /* Pointer to new Btree object written here */ int flags, /* Options */ int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ ){ BtShared *pBt = 0; /* Shared part of btree structure */ Btree *p; /* Handle to return */ sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ int rc = SQLITE_OK; /* Result code from this function */ u8 nReserve; /* Byte of unused space on each page */ unsigned char zDbHeader[100]; /* Database header content */ /* True if opening an ephemeral, temporary database */ const int isTempDb = zFilename==0 || zFilename[0]==0; /* Set the variable isMemdb to true for an in-memory database, or ** false for a file-based database. */ #ifdef SQLITE_OMIT_MEMORYDB const int isMemdb = 0; #else const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) || (isTempDb && sqlite3TempInMemory(db)) || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; #endif assert( db!=0 ); assert( pVfs!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ assert( (flags & BTREE_SINGLE)==0 || isTempDb ); if( isMemdb ){ flags |= BTREE_MEMORY; } if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; } p = sqlite3MallocZero(sizeof(Btree)); if( !p ){ return SQLITE_NOMEM_BKPT; } p->inTrans = TRANS_NONE; p->db = db; #ifndef SQLITE_OMIT_SHARED_CACHE p->lock.pBtree = p; p->lock.iTable = 1; #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* ** If this Btree is a candidate for shared cache, try to find an ** existing BtShared object that we can share with */ if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ int nFilename = sqlite3Strlen30(zFilename)+1; int nFullPathname = pVfs->mxPathname+1; char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) p->sharable = 1; if( !zFullPathname ){ sqlite3_free(p); return SQLITE_NOMEM_BKPT; } if( isMemdb ){ memcpy(zFullPathname, zFilename, nFilename); }else{ rc = sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); if( rc ){ if( rc==SQLITE_OK_SYMLINK ){ rc = SQLITE_OK; }else{ sqlite3_free(zFullPathname); sqlite3_free(p); return rc; } } } #if SQLITE_THREADSAFE mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); sqlite3_mutex_enter(mutexOpen); mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); sqlite3_mutex_enter(mutexShared); #endif for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ assert( pBt->nRef>0 ); if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) && sqlite3PagerVfs(pBt->pPager)==pVfs ){ int iDb; for(iDb=db->nDb-1; iDb>=0; iDb--){ Btree *pExisting = db->aDb[iDb].pBt; if( pExisting && pExisting->pBt==pBt ){ sqlite3_mutex_leave(mutexShared); sqlite3_mutex_leave(mutexOpen); sqlite3_free(zFullPathname); sqlite3_free(p); return SQLITE_CONSTRAINT; } } p->pBt = pBt; pBt->nRef++; break; } } sqlite3_mutex_leave(mutexShared); sqlite3_free(zFullPathname); } #ifdef SQLITE_DEBUG else{ /* In debug mode, we mark all persistent databases as sharable ** even when they are not. This exercises the locking code and ** gives more opportunity for asserts(sqlite3_mutex_held()) ** statements to find locking problems. */ p->sharable = 1; } #endif } #endif if( pBt==0 ){ /* ** The following asserts make sure that structures used by the btree are ** the right size. This is to guard against size changes that result ** when compiling on a different architecture. */ assert( sizeof(i64)==8 ); assert( sizeof(u64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(Pgno)==4 ); /* Suppress false-positive compiler warning from PVS-Studio */ memset(&zDbHeader[16], 0, 8); pBt = sqlite3MallocZero( sizeof(*pBt) ); if( pBt==0 ){ rc = SQLITE_NOMEM_BKPT; goto btree_open_out; } rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, sizeof(MemPage), flags, vfsFlags, pageReinit); if( rc==SQLITE_OK ){ sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); } if( rc!=SQLITE_OK ){ goto btree_open_out; } pBt->openFlags = (u8)flags; pBt->db = db; sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); p->pBt = pBt; pBt->pCursor = 0; pBt->pPage1 = 0; if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; #if defined(SQLITE_SECURE_DELETE) pBt->btsFlags |= BTS_SECURE_DELETE; #elif defined(SQLITE_FAST_SECURE_DELETE) pBt->btsFlags |= BTS_OVERWRITE; #endif /* EVIDENCE-OF: R-51873-39618 The page size for a database file is ** determined by the 2-byte integer located at an offset of 16 bytes from ** the beginning of the database file. */ pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ pBt->pageSize = 0; #ifndef SQLITE_OMIT_AUTOVACUUM /* If the magic name ":memory:" will create an in-memory database, then ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a ** regular file-name. In this case the auto-vacuum applies as per normal. */ if( zFilename && !isMemdb ){ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); } #endif nReserve = 0; }else{ /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is ** determined by the one-byte unsigned integer found at an offset of 20 ** into the database file header. */ nReserve = zDbHeader[20]; pBt->btsFlags |= BTS_PAGESIZE_FIXED; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); #endif } rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); if( rc ) goto btree_open_out; pBt->usableSize = pBt->pageSize - nReserve; assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* Add the new BtShared object to the linked list sharable BtShareds. */ pBt->nRef = 1; if( p->sharable ){ MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); if( pBt->mutex==0 ){ rc = SQLITE_NOMEM_BKPT; goto btree_open_out; } } sqlite3_mutex_enter(mutexShared); pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; sqlite3_mutex_leave(mutexShared); } #endif } #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* If the new Btree uses a sharable pBtShared, then link the new ** Btree into the list of all sharable Btrees for the same connection. ** The list is kept in ascending order by pBt address. */ if( p->sharable ){ int i; Btree *pSib; for(i=0; inDb; i++){ if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ while( pSib->pPrev ){ pSib = pSib->pPrev; } if( (uptr)p->pBt<(uptr)pSib->pBt ){ p->pNext = pSib; p->pPrev = 0; pSib->pPrev = p; }else{ while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ pSib = pSib->pNext; } p->pNext = pSib->pNext; p->pPrev = pSib; if( p->pNext ){ p->pNext->pPrev = p; } pSib->pNext = p; } break; } } } #endif *ppBtree = p; btree_open_out: if( rc!=SQLITE_OK ){ if( pBt && pBt->pPager ){ sqlite3PagerClose(pBt->pPager, 0); } sqlite3_free(pBt); sqlite3_free(p); *ppBtree = 0; }else{ sqlite3_file *pFile; /* If the B-Tree was successfully opened, set the pager-cache size to the ** default value. Except, when opening on an existing shared pager-cache, ** do not change the pager-cache size. */ if( sqlite3BtreeSchema(p, 0, 0)==0 ){ sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); } pFile = sqlite3PagerFile(pBt->pPager); if( pFile->pMethods ){ sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); } } if( mutexOpen ){ assert( sqlite3_mutex_held(mutexOpen) ); sqlite3_mutex_leave(mutexOpen); } assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); return rc; } /* ** Decrement the BtShared.nRef counter. When it reaches zero, ** remove the BtShared structure from the sharing list. Return ** true if the BtShared.nRef counter reaches zero and return ** false if it is still positive. */ static int removeFromSharingList(BtShared *pBt){ #ifndef SQLITE_OMIT_SHARED_CACHE MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) BtShared *pList; int removed = 0; assert( sqlite3_mutex_notheld(pBt->mutex) ); MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(pMainMtx); pBt->nRef--; if( pBt->nRef<=0 ){ if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; }else{ pList = GLOBAL(BtShared*,sqlite3SharedCacheList); while( ALWAYS(pList) && pList->pNext!=pBt ){ pList=pList->pNext; } if( ALWAYS(pList) ){ pList->pNext = pBt->pNext; } } if( SQLITE_THREADSAFE ){ sqlite3_mutex_free(pBt->mutex); } removed = 1; } sqlite3_mutex_leave(pMainMtx); return removed; #else return 1; #endif } /* ** Make sure pBt->pTmpSpace points to an allocation of ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child ** pointer. */ static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ assert( pBt!=0 ); assert( pBt->pTmpSpace==0 ); /* This routine is called only by btreeCursor() when allocating the ** first write cursor for the BtShared object */ assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); if( pBt->pTmpSpace==0 ){ BtCursor *pCur = pBt->pCursor; pBt->pCursor = pCur->pNext; /* Unlink the cursor */ memset(pCur, 0, sizeof(*pCur)); return SQLITE_NOMEM_BKPT; } /* One of the uses of pBt->pTmpSpace is to format cells before ** inserting them into a leaf page (function fillInCell()). If ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes ** by the various routines that manipulate binary cells. Which ** can mean that fillInCell() only initializes the first 2 or 3 ** bytes of pTmpSpace, but that the first 4 bytes are copied from ** it into a database page. This is not actually a problem, but it ** does cause a valgrind error when the 1 or 2 bytes of uninitialized ** data is passed to system call write(). So to avoid this error, ** zero the first 4 bytes of temp space here. ** ** Also: Provide four bytes of initialized space before the ** beginning of pTmpSpace as an area available to prepend the ** left-child pointer to the beginning of a cell. */ memset(pBt->pTmpSpace, 0, 8); pBt->pTmpSpace += 4; return SQLITE_OK; } /* ** Free the pBt->pTmpSpace allocation */ static void freeTempSpace(BtShared *pBt){ if( pBt->pTmpSpace ){ pBt->pTmpSpace -= 4; sqlite3PageFree(pBt->pTmpSpace); pBt->pTmpSpace = 0; } } /* ** Close an open database and invalidate all cursors. */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){ BtShared *pBt = p->pBt; /* Close all cursors opened via this handle. */ assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); /* Verify that no other cursors have this Btree open */ #ifdef SQLITE_DEBUG { BtCursor *pCur = pBt->pCursor; while( pCur ){ BtCursor *pTmp = pCur; pCur = pCur->pNext; assert( pTmp->pBtree!=p ); } } #endif /* Rollback any active transaction and free the handle structure. ** The call to sqlite3BtreeRollback() drops any table-locks held by ** this handle. */ sqlite3BtreeRollback(p, SQLITE_OK, 0); sqlite3BtreeLeave(p); /* If there are still other outstanding references to the shared-btree ** structure, return now. The remainder of this procedure cleans ** up the shared-btree. */ assert( p->wantToLock==0 && p->locked==0 ); if( !p->sharable || removeFromSharingList(pBt) ){ /* The pBt is no longer on the sharing list, so we can access ** it without having to hold the mutex. ** ** Clean out and delete the BtShared object. */ assert( !pBt->pCursor ); sqlite3PagerClose(pBt->pPager, p->db); if( pBt->xFreeSchema && pBt->pSchema ){ pBt->xFreeSchema(pBt->pSchema); } sqlite3DbFree(0, pBt->pSchema); freeTempSpace(pBt); sqlite3_free(pBt); } #ifndef SQLITE_OMIT_SHARED_CACHE assert( p->wantToLock==0 ); assert( p->locked==0 ); if( p->pPrev ) p->pPrev->pNext = p->pNext; if( p->pNext ) p->pNext->pPrev = p->pPrev; #endif sqlite3_free(p); return SQLITE_OK; } /* ** Change the "soft" limit on the number of pages in the cache. ** Unused and unmodified pages will be recycled when the number of ** pages in the cache exceeds this soft limit. But the size of the ** cache is allowed to grow larger than this limit if it contains ** dirty pages or pages still in active use. */ SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ BtShared *pBt = p->pBt; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); sqlite3PagerSetCachesize(pBt->pPager, mxPage); sqlite3BtreeLeave(p); return SQLITE_OK; } /* ** Change the "spill" limit on the number of pages in the cache. ** If the number of pages exceeds this limit during a write transaction, ** the pager might attempt to "spill" pages to the journal early in ** order to free up memory. ** ** The value returned is the current spill size. If zero is passed ** as an argument, no changes are made to the spill size setting, so ** using mxPage of 0 is a way to query the current spill size. */ SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ BtShared *pBt = p->pBt; int res; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); sqlite3BtreeLeave(p); return res; } #if SQLITE_MAX_MMAP_SIZE>0 /* ** Change the limit on the amount of the database file that may be ** memory mapped. */ SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ BtShared *pBt = p->pBt; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); sqlite3BtreeLeave(p); return SQLITE_OK; } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ /* ** Change the way data is synced to disk in order to increase or decrease ** how well the database resists damage due to OS crashes and power ** failures. Level 1 is the same as asynchronous (no syncs() occur and ** there is a high probability of damage) Level 2 is the default. There ** is a very low but non-zero probability of damage. Level 3 reduces the ** probability of damage to near zero but with a write performance reduction. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags( Btree *p, /* The btree to set the safety level on */ unsigned pgFlags /* Various PAGER_* flags */ ){ BtShared *pBt = p->pBt; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); sqlite3PagerSetFlags(pBt->pPager, pgFlags); sqlite3BtreeLeave(p); return SQLITE_OK; } #endif /* ** Change the default pages size and the number of reserved bytes per page. ** Or, if the page size has already been fixed, return SQLITE_READONLY ** without changing anything. ** ** The page size must be a power of 2 between 512 and 65536. If the page ** size supplied does not meet this constraint then the page size is not ** changed. ** ** Page sizes are constrained to be a power of two so that the region ** of the database file used for locking (beginning at PENDING_BYTE, ** the first byte past the 1GB boundary, 0x40000000) needs to occur ** at the beginning of a page. ** ** If parameter nReserve is less than zero, then the number of reserved ** bytes per page is left unchanged. ** ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size ** and autovacuum mode can no longer be changed. */ SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ int rc = SQLITE_OK; int x; BtShared *pBt = p->pBt; assert( nReserve>=0 && nReserve<=255 ); sqlite3BtreeEnter(p); pBt->nReserveWanted = nReserve; x = pBt->pageSize - pBt->usableSize; if( nReservebtsFlags & BTS_PAGESIZE_FIXED ){ sqlite3BtreeLeave(p); return SQLITE_READONLY; } assert( nReserve>=0 && nReserve<=255 ); if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && ((pageSize-1)&pageSize)==0 ){ assert( (pageSize & 7)==0 ); assert( !pBt->pCursor ); if( nReserve>32 && pageSize==512 ) pageSize = 1024; pBt->pageSize = (u32)pageSize; freeTempSpace(pBt); } rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); pBt->usableSize = pBt->pageSize - (u16)nReserve; if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; sqlite3BtreeLeave(p); return rc; } /* ** Return the currently defined page size */ SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){ return p->pBt->pageSize; } /* ** This function is similar to sqlite3BtreeGetReserve(), except that it ** may only be called if it is guaranteed that the b-tree mutex is already ** held. ** ** This is useful in one special case in the backup API code where it is ** known that the shared b-tree mutex is held, but the mutex on the ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() ** were to be called, it might collide with some other operation on the ** database handle that owns *p, causing undefined behavior. */ SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){ int n; assert( sqlite3_mutex_held(p->pBt->mutex) ); n = p->pBt->pageSize - p->pBt->usableSize; return n; } /* ** Return the number of bytes of space at the end of every page that ** are intentionally left unused. This is the "reserved" space that is ** sometimes used by extensions. ** ** The value returned is the larger of the current reserve size and ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. ** The amount of reserve can only grow - never shrink. */ SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree *p){ int n1, n2; sqlite3BtreeEnter(p); n1 = (int)p->pBt->nReserveWanted; n2 = sqlite3BtreeGetReserveNoMutex(p); sqlite3BtreeLeave(p); return n1>n2 ? n1 : n2; } /* ** Set the maximum page count for a database if mxPage is positive. ** No changes are made if mxPage is 0 or negative. ** Regardless of the value of mxPage, return the maximum page count. */ SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ Pgno n; sqlite3BtreeEnter(p); n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); sqlite3BtreeLeave(p); return n; } /* ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: ** ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set ** newFlag==(-1) No changes ** ** This routine acts as a query if newFlag is less than zero ** ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but ** freelist leaf pages are not written back to the database. Thus in-page ** deleted content is cleared, but freelist deleted content is not. ** ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition ** that freelist leaf pages are written back into the database, increasing ** the amount of disk I/O. */ SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ int b; if( p==0 ) return 0; sqlite3BtreeEnter(p); assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); if( newFlag>=0 ){ p->pBt->btsFlags &= ~BTS_FAST_SECURE; p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; } b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; sqlite3BtreeLeave(p); return b; } /* ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it ** is disabled. The default value for the auto-vacuum property is ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. */ SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ #ifdef SQLITE_OMIT_AUTOVACUUM return SQLITE_READONLY; #else BtShared *pBt = p->pBt; int rc = SQLITE_OK; u8 av = (u8)autoVacuum; sqlite3BtreeEnter(p); if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ rc = SQLITE_READONLY; }else{ pBt->autoVacuum = av ?1:0; pBt->incrVacuum = av==2 ?1:0; } sqlite3BtreeLeave(p); return rc; #endif } /* ** Return the value of the 'auto-vacuum' property. If auto-vacuum is ** enabled 1 is returned. Otherwise 0. */ SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){ #ifdef SQLITE_OMIT_AUTOVACUUM return BTREE_AUTOVACUUM_NONE; #else int rc; sqlite3BtreeEnter(p); rc = ( (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: BTREE_AUTOVACUUM_INCR ); sqlite3BtreeLeave(p); return rc; #endif } /* ** If the user has not set the safety-level for this database connection ** using "PRAGMA synchronous", and if the safety-level is not already ** set to the value passed to this function as the second parameter, ** set it so. */ #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ && !defined(SQLITE_OMIT_WAL) static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ sqlite3 *db; Db *pDb; if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } if( pDb->bSyncSet==0 && pDb->safety_level!=safety_level && pDb!=&db->aDb[1] ){ pDb->safety_level = safety_level; sqlite3PagerSetFlags(pBt->pPager, pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); } } } #else # define setDefaultSyncFlag(pBt,safety_level) #endif /* Forward declaration */ static int newDatabase(BtShared*); /* ** Get a reference to pPage1 of the database file. This will ** also acquire a readlock on that file. ** ** SQLITE_OK is returned on success. If the file is not a ** well-formed database file, then SQLITE_CORRUPT is returned. ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM ** is returned if we run out of memory. */ static int lockBtree(BtShared *pBt){ int rc; /* Result code from subfunctions */ MemPage *pPage1; /* Page 1 of the database file */ u32 nPage; /* Number of pages in the database */ u32 nPageFile = 0; /* Number of pages in the database file */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( pBt->pPage1==0 ); rc = sqlite3PagerSharedLock(pBt->pPager); if( rc!=SQLITE_OK ) return rc; rc = btreeGetPage(pBt, 1, &pPage1, 0); if( rc!=SQLITE_OK ) return rc; /* Do some checking to help insure the file we opened really is ** a valid database file. */ nPage = get4byte(28+(u8*)pPage1->aData); sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ nPage = nPageFile; } if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ nPage = 0; } if( nPage>0 ){ u32 pageSize; u32 usableSize; u8 *page1 = pPage1->aData; rc = SQLITE_NOTADB; /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d ** 61 74 20 33 00. */ if( memcmp(page1, zMagicHeader, 16)!=0 ){ goto page1_init_failed; } #ifdef SQLITE_OMIT_WAL if( page1[18]>1 ){ pBt->btsFlags |= BTS_READ_ONLY; } if( page1[19]>1 ){ goto page1_init_failed; } #else if( page1[18]>2 ){ pBt->btsFlags |= BTS_READ_ONLY; } if( page1[19]>2 ){ goto page1_init_failed; } /* If the read version is set to 2, this database should be accessed ** in WAL mode. If the log is not already open, open it now. Then ** return SQLITE_OK and return without populating BtShared.pPage1. ** The caller detects this and calls this function again. This is ** required as the version of page 1 currently in the page1 buffer ** may not be the latest version - there may be a newer one in the log ** file. */ if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ int isOpen = 0; rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); if( rc!=SQLITE_OK ){ goto page1_init_failed; }else{ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); if( isOpen==0 ){ releasePageOne(pPage1); return SQLITE_OK; } } rc = SQLITE_NOTADB; }else{ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); } #endif /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload ** fractions and the leaf payload fraction values must be 64, 32, and 32. ** ** The original design allowed these amounts to vary, but as of ** version 3.6.0, we require them to be fixed. */ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ goto page1_init_failed; } /* EVIDENCE-OF: R-51873-39618 The page size for a database file is ** determined by the 2-byte integer located at an offset of 16 bytes from ** the beginning of the database file. */ pageSize = (page1[16]<<8) | (page1[17]<<16); /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two ** between 512 and 65536 inclusive. */ if( ((pageSize-1)&pageSize)!=0 || pageSize>SQLITE_MAX_PAGE_SIZE || pageSize<=256 ){ goto page1_init_failed; } assert( (pageSize & 7)==0 ); /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte ** integer at offset 20 is the number of bytes of space at the end of ** each page to reserve for extensions. ** ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is ** determined by the one-byte unsigned integer found at an offset of 20 ** into the database file header. */ usableSize = pageSize - page1[20]; if( (u32)pageSize!=pBt->pageSize ){ /* After reading the first page of the database assuming a page size ** of BtShared.pageSize, we have discovered that the page-size is ** actually pageSize. Unlock the database, leave pBt->pPage1 at ** zero and return SQLITE_OK. The caller will call this function ** again with the correct page-size. */ releasePageOne(pPage1); pBt->usableSize = usableSize; pBt->pageSize = pageSize; pBt->btsFlags |= BTS_PAGESIZE_FIXED; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } if( nPage>nPageFile ){ if( sqlite3WritableSchema(pBt->db)==0 ){ rc = SQLITE_CORRUPT_BKPT; goto page1_init_failed; }else{ nPage = nPageFile; } } /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to ** be less than 480. In other words, if the page size is 512, then the ** reserved space size cannot exceed 32. */ if( usableSize<480 ){ goto page1_init_failed; } pBt->btsFlags |= BTS_PAGESIZE_FIXED; pBt->pageSize = pageSize; pBt->usableSize = usableSize; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); #endif } /* maxLocal is the maximum amount of payload to store locally for ** a cell. Make sure it is small enough so that at least minFanout ** cells can will fit on one page. We assume a 10-byte page header. ** Besides the payload, the cell must store: ** 2-byte pointer to the cell ** 4-byte child pointer ** 9-byte nKey value ** 4-byte nData value ** 4-byte overflow page pointer ** So a cell consists of a 2-byte pointer, a header which is as much as ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow ** page pointer. */ pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); pBt->maxLeaf = (u16)(pBt->usableSize - 35); pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); if( pBt->maxLocal>127 ){ pBt->max1bytePayload = 127; }else{ pBt->max1bytePayload = (u8)pBt->maxLocal; } assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); pBt->pPage1 = pPage1; pBt->nPage = nPage; return SQLITE_OK; page1_init_failed: releasePageOne(pPage1); pBt->pPage1 = 0; return rc; } #ifndef NDEBUG /* ** Return the number of cursors open on pBt. This is for use ** in assert() expressions, so it is only compiled if NDEBUG is not ** defined. ** ** Only write cursors are counted if wrOnly is true. If wrOnly is ** false then all cursors are counted. ** ** For the purposes of this routine, a cursor is any cursor that ** is capable of reading or writing to the database. Cursors that ** have been tripped into the CURSOR_FAULT state are not counted. */ static int countValidCursors(BtShared *pBt, int wrOnly){ BtCursor *pCur; int r = 0; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) && pCur->eState!=CURSOR_FAULT ) r++; } return r; } #endif /* ** If there are no outstanding cursors and we are not in the middle ** of a transaction but there is a read lock on the database, then ** this routine unrefs the first page of the database file which ** has the effect of releasing the read lock. ** ** If there is a transaction in progress, this routine is a no-op. */ static void unlockBtreeIfUnused(BtShared *pBt){ assert( sqlite3_mutex_held(pBt->mutex) ); assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ MemPage *pPage1 = pBt->pPage1; assert( pPage1->aData ); assert( sqlite3PagerRefcount(pBt->pPager)==1 ); pBt->pPage1 = 0; releasePageOne(pPage1); } } /* ** If pBt points to an empty file then convert that empty file ** into a new empty database by initializing the first page of ** the database. */ static int newDatabase(BtShared *pBt){ MemPage *pP1; unsigned char *data; int rc; assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->nPage>0 ){ return SQLITE_OK; } pP1 = pBt->pPage1; assert( pP1!=0 ); data = pP1->aData; rc = sqlite3PagerWrite(pP1->pDbPage); if( rc ) return rc; memcpy(data, zMagicHeader, sizeof(zMagicHeader)); assert( sizeof(zMagicHeader)==16 ); data[16] = (u8)((pBt->pageSize>>8)&0xff); data[17] = (u8)((pBt->pageSize>>16)&0xff); data[18] = 1; data[19] = 1; assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); data[20] = (u8)(pBt->pageSize - pBt->usableSize); data[21] = 64; data[22] = 32; data[23] = 32; memset(&data[24], 0, 100-24); zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); pBt->btsFlags |= BTS_PAGESIZE_FIXED; #ifndef SQLITE_OMIT_AUTOVACUUM assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); put4byte(&data[36 + 4*4], pBt->autoVacuum); put4byte(&data[36 + 7*4], pBt->incrVacuum); #endif pBt->nPage = 1; data[31] = 1; return SQLITE_OK; } /* ** Initialize the first page of the database file (creating a database ** consisting of a single page and no schema objects). Return SQLITE_OK ** if successful, or an SQLite error code otherwise. */ SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p){ int rc; sqlite3BtreeEnter(p); p->pBt->nPage = 0; rc = newDatabase(p->pBt); sqlite3BtreeLeave(p); return rc; } /* ** Attempt to start a new transaction. A write-transaction ** is started if the second argument is nonzero, otherwise a read- ** transaction. If the second argument is 2 or more and exclusive ** transaction is started, meaning that no other process is allowed ** to access the database. A preexisting transaction may not be ** upgraded to exclusive by calling this routine a second time - the ** exclusivity flag only works for a new transaction. ** ** A write-transaction must be started before attempting any ** changes to the database. None of the following routines ** will work unless a transaction is started first: ** ** sqlite3BtreeCreateTable() ** sqlite3BtreeCreateIndex() ** sqlite3BtreeClearTable() ** sqlite3BtreeDropTable() ** sqlite3BtreeInsert() ** sqlite3BtreeDelete() ** sqlite3BtreeUpdateMeta() ** ** If an initial attempt to acquire the lock fails because of lock contention ** and the database was previously unlocked, then invoke the busy handler ** if there is one. But if there was previously a read-lock, do not ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is ** returned when there is already a read-lock in order to avoid a deadlock. ** ** Suppose there are two processes A and B. A has a read lock and B has ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ static SQLITE_NOINLINE int btreeBeginTrans( Btree *p, /* The btree in which to start the transaction */ int wrflag, /* True to start a write transaction */ int *pSchemaVersion /* Put schema version number here, if not NULL */ ){ BtShared *pBt = p->pBt; Pager *pPager = pBt->pPager; int rc = SQLITE_OK; sqlite3BtreeEnter(p); btreeIntegrity(p); /* If the btree is already in a write-transaction, or it ** is already in a read-transaction and a read-transaction ** is requested, this is a no-op. */ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ goto trans_begun; } assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); if( (p->db->flags & SQLITE_ResetDatabase) && sqlite3PagerIsreadonly(pPager)==0 ){ pBt->btsFlags &= ~BTS_READ_ONLY; } /* Write transactions are not possible on a read-only database */ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ rc = SQLITE_READONLY; goto trans_begun; } #ifndef SQLITE_OMIT_SHARED_CACHE { sqlite3 *pBlock = 0; /* If another database handle has already opened a write transaction ** on this shared-btree structure and a second write transaction is ** requested, return SQLITE_LOCKED. */ if( (wrflag && pBt->inTransaction==TRANS_WRITE) || (pBt->btsFlags & BTS_PENDING)!=0 ){ pBlock = pBt->pWriter->db; }else if( wrflag>1 ){ BtLock *pIter; for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->pBtree!=p ){ pBlock = pIter->pBtree->db; break; } } } if( pBlock ){ sqlite3ConnectionBlocked(p->db, pBlock); rc = SQLITE_LOCKED_SHAREDCACHE; goto trans_begun; } } #endif /* Any read-only or read-write transaction implies a read-lock on ** page 1. So if some other shared-cache client already has a write-lock ** on page 1, the transaction cannot be opened. */ rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); if( SQLITE_OK!=rc ) goto trans_begun; pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; do { sqlite3PagerWalDb(pPager, p->db); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* If transitioning from no transaction directly to a write transaction, ** block for the WRITER lock first if possible. */ if( pBt->pPage1==0 && wrflag ){ assert( pBt->inTransaction==TRANS_NONE ); rc = sqlite3PagerWalWriteLock(pPager, 1); if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; } #endif /* Call lockBtree() until either pBt->pPage1 is populated or ** lockBtree() returns something other than SQLITE_OK. lockBtree() ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after ** reading page 1 it discovers that the page-size of the database ** file is not pBt->pageSize. In this case lockBtree() will update ** pBt->pageSize to the page-size of the file on disk. */ while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); if( rc==SQLITE_OK && wrflag ){ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ rc = SQLITE_READONLY; }else{ rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); if( rc==SQLITE_OK ){ rc = newDatabase(pBt); }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ /* if there was no transaction opened when this function was ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error ** code to SQLITE_BUSY. */ rc = SQLITE_BUSY; } } } if( rc!=SQLITE_OK ){ (void)sqlite3PagerWalWriteLock(pPager, 0); unlockBtreeIfUnused(pBt); } }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && btreeInvokeBusyHandler(pBt) ); sqlite3PagerWalDb(pPager, 0); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; #endif if( rc==SQLITE_OK ){ if( p->inTrans==TRANS_NONE ){ pBt->nTransaction++; #ifndef SQLITE_OMIT_SHARED_CACHE if( p->sharable ){ assert( p->lock.pBtree==p && p->lock.iTable==1 ); p->lock.eLock = READ_LOCK; p->lock.pNext = pBt->pLock; pBt->pLock = &p->lock; } #endif } p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); if( p->inTrans>pBt->inTransaction ){ pBt->inTransaction = p->inTrans; } if( wrflag ){ MemPage *pPage1 = pBt->pPage1; #ifndef SQLITE_OMIT_SHARED_CACHE assert( !pBt->pWriter ); pBt->pWriter = p; pBt->btsFlags &= ~BTS_EXCLUSIVE; if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; #endif /* If the db-size header field is incorrect (as it may be if an old ** client has been writing the database file), update it now. Doing ** this sooner rather than later means the database size can safely ** re-read the database size from page 1 if a savepoint or transaction ** rollback occurs within the transaction. */ if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ rc = sqlite3PagerWrite(pPage1->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pPage1->aData[28], pBt->nPage); } } } } trans_begun: if( rc==SQLITE_OK ){ if( pSchemaVersion ){ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); } if( wrflag ){ /* This call makes sure that the pager has the correct number of ** open savepoints. If the second parameter is greater than 0 and ** the sub-journal is not already open, then it will be opened here. */ rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); } } btreeIntegrity(p); sqlite3BtreeLeave(p); return rc; } SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ BtShared *pBt; if( p->sharable || p->inTrans==TRANS_NONE || (p->inTrans==TRANS_READ && wrflag!=0) ){ return btreeBeginTrans(p,wrflag,pSchemaVersion); } pBt = p->pBt; if( pSchemaVersion ){ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); } if( wrflag ){ /* This call makes sure that the pager has the correct number of ** open savepoints. If the second parameter is greater than 0 and ** the sub-journal is not already open, then it will be opened here. */ return sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); }else{ return SQLITE_OK; } } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Set the pointer-map entries for all children of page pPage. Also, if ** pPage contains cells that point to overflow pages, set the pointer ** map entries for the overflow pages as well. */ static int setChildPtrmaps(MemPage *pPage){ int i; /* Counter variable */ int nCell; /* Number of cells in page pPage */ int rc; /* Return code */ BtShared *pBt = pPage->pBt; Pgno pgno = pPage->pgno; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); if( rc!=SQLITE_OK ) return rc; nCell = pPage->nCell; for(i=0; ileaf ){ Pgno childPgno = get4byte(pCell); ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); } } if( !pPage->leaf ){ Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); } return rc; } /* ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so ** that it points to iTo. Parameter eType describes the type of pointer to ** be modified, as follows: ** ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child ** page of pPage. ** ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow ** page pointed to by one of the cells on pPage. ** ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next ** overflow page in the list. */ static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); if( eType==PTRMAP_OVERFLOW2 ){ /* The pointer is always the first 4 bytes of the page in this case. */ if( get4byte(pPage->aData)!=iFrom ){ return SQLITE_CORRUPT_PAGE(pPage); } put4byte(pPage->aData, iTo); }else{ int i; int nCell; int rc; rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); if( rc ) return rc; nCell = pPage->nCell; for(i=0; ixParseCell(pPage, pCell, &info); if( info.nLocal pPage->aData+pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } if( iFrom==get4byte(pCell+info.nSize-4) ){ put4byte(pCell+info.nSize-4, iTo); break; } } }else{ if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } if( get4byte(pCell)==iFrom ){ put4byte(pCell, iTo); break; } } } if( i==nCell ){ if( eType!=PTRMAP_BTREE || get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ return SQLITE_CORRUPT_PAGE(pPage); } put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); } } return SQLITE_OK; } /* ** Move the open database page pDbPage to location iFreePage in the ** database. The pDbPage reference remains valid. ** ** The isCommit flag indicates that there is no need to remember that ** the journal needs to be sync()ed before database page pDbPage->pgno ** can be written to. The caller has already promised not to write to that ** page. */ static int relocatePage( BtShared *pBt, /* Btree */ MemPage *pDbPage, /* Open page to move */ u8 eType, /* Pointer map 'type' entry for pDbPage */ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ Pgno iFreePage, /* The location to move pDbPage to */ int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ ){ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ Pgno iDbPage = pDbPage->pgno; Pager *pPager = pBt->pPager; int rc; assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( pDbPage->pBt==pBt ); if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; /* Move page iDbPage from its current location to page number iFreePage */ TRACE(("AUTOVACUUM: Moving %u to free page %u (ptr page %u type %u)\n", iDbPage, iFreePage, iPtrPage, eType)); rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); if( rc!=SQLITE_OK ){ return rc; } pDbPage->pgno = iFreePage; /* If pDbPage was a btree-page, then it may have child pages and/or cells ** that point to overflow pages. The pointer map entries for all these ** pages need to be changed. ** ** If pDbPage is an overflow page, then the first 4 bytes may store a ** pointer to a subsequent overflow page. If this is the case, then ** the pointer map needs to be updated for the subsequent overflow page. */ if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ rc = setChildPtrmaps(pDbPage); if( rc!=SQLITE_OK ){ return rc; } }else{ Pgno nextOvfl = get4byte(pDbPage->aData); if( nextOvfl!=0 ){ ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); if( rc!=SQLITE_OK ){ return rc; } } } /* Fix the database pointer on page iPtrPage that pointed at iDbPage so ** that it points at iFreePage. Also fix the pointer map entry for ** iPtrPage. */ if( eType!=PTRMAP_ROOTPAGE ){ rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pPtrPage->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pPtrPage); return rc; } rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); releasePage(pPtrPage); if( rc==SQLITE_OK ){ ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); } } return rc; } /* Forward declaration required by incrVacuumStep(). */ static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); /* ** Perform a single step of an incremental-vacuum. If successful, return ** SQLITE_OK. If there is no work to do (and therefore no point in ** calling this function again), return SQLITE_DONE. Or, if an error ** occurs, return some other error code. ** ** More specifically, this function attempts to re-organize the database so ** that the last page of the file currently in use is no longer in use. ** ** Parameter nFin is the number of pages that this database would contain ** were this function called until it returns SQLITE_DONE. ** ** If the bCommit parameter is non-zero, this function assumes that the ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE ** or an error. bCommit is passed true for an auto-vacuum-on-commit ** operation, or false for an incremental vacuum. */ static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ Pgno nFreeList; /* Number of pages still on the free-list */ int rc; assert( sqlite3_mutex_held(pBt->mutex) ); assert( iLastPg>nFin ); if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ u8 eType; Pgno iPtrPage; nFreeList = get4byte(&pBt->pPage1->aData[36]); if( nFreeList==0 ){ return SQLITE_DONE; } rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); if( rc!=SQLITE_OK ){ return rc; } if( eType==PTRMAP_ROOTPAGE ){ return SQLITE_CORRUPT_BKPT; } if( eType==PTRMAP_FREEPAGE ){ if( bCommit==0 ){ /* Remove the page from the files free-list. This is not required ** if bCommit is non-zero. In that case, the free-list will be ** truncated to zero after this function returns, so it doesn't ** matter if it still contains some garbage entries. */ Pgno iFreePg; MemPage *pFreePg; rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); if( rc!=SQLITE_OK ){ return rc; } assert( iFreePg==iLastPg ); releasePage(pFreePg); } } else { Pgno iFreePg; /* Index of free page to move pLastPg to */ MemPage *pLastPg; u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); if( rc!=SQLITE_OK ){ return rc; } /* If bCommit is zero, this loop runs exactly once and page pLastPg ** is swapped with the first free page pulled off the free list. ** ** On the other hand, if bCommit is greater than zero, then keep ** looping until a free-page located within the first nFin pages ** of the file is found. */ if( bCommit==0 ){ eMode = BTALLOC_LE; iNear = nFin; } do { MemPage *pFreePg; Pgno dbSize = btreePagecount(pBt); rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); if( rc!=SQLITE_OK ){ releasePage(pLastPg); return rc; } releasePage(pFreePg); if( iFreePg>dbSize ){ releasePage(pLastPg); return SQLITE_CORRUPT_BKPT; } }while( bCommit && iFreePg>nFin ); assert( iFreePgbDoTruncate = 1; pBt->nPage = iLastPg; } return SQLITE_OK; } /* ** The database opened by the first argument is an auto-vacuum database ** nOrig pages in size containing nFree free pages. Return the expected ** size of the database in pages following an auto-vacuum operation. */ static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ int nEntry; /* Number of entries on one ptrmap page */ Pgno nPtrmap; /* Number of PtrMap pages to be freed */ Pgno nFin; /* Return value */ nEntry = pBt->usableSize/5; nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; nFin = nOrig - nFree - nPtrmap; if( nOrig>PENDING_BYTE_PAGE(pBt) && nFinpBt; sqlite3BtreeEnter(p); assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); if( !pBt->autoVacuum ){ rc = SQLITE_DONE; }else{ Pgno nOrig = btreePagecount(pBt); Pgno nFree = get4byte(&pBt->pPage1->aData[36]); Pgno nFin = finalDbSize(pBt, nOrig, nFree); if( nOrig=nOrig ){ rc = SQLITE_CORRUPT_BKPT; }else if( nFree>0 ){ rc = saveAllCursors(pBt, 0, 0); if( rc==SQLITE_OK ){ invalidateAllOverflowCache(pBt); rc = incrVacuumStep(pBt, nFin, nOrig, 0); } if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); put4byte(&pBt->pPage1->aData[28], pBt->nPage); } }else{ rc = SQLITE_DONE; } } sqlite3BtreeLeave(p); return rc; } /* ** This routine is called prior to sqlite3PagerCommit when a transaction ** is committed for an auto-vacuum database. */ static int autoVacuumCommit(Btree *p){ int rc = SQLITE_OK; Pager *pPager; BtShared *pBt; sqlite3 *db; VVA_ONLY( int nRef ); assert( p!=0 ); pBt = p->pBt; pPager = pBt->pPager; VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) assert( sqlite3_mutex_held(pBt->mutex) ); invalidateAllOverflowCache(pBt); assert(pBt->autoVacuum); if( !pBt->incrVacuum ){ Pgno nFin; /* Number of pages in database after autovacuuming */ Pgno nFree; /* Number of pages on the freelist initially */ Pgno nVac; /* Number of pages to vacuum */ Pgno iFree; /* The next page to be freed */ Pgno nOrig; /* Database size before freeing */ nOrig = btreePagecount(pBt); if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ /* It is not possible to create a database for which the final page ** is either a pointer-map page or the pending-byte page. If one ** is encountered, this indicates corruption. */ return SQLITE_CORRUPT_BKPT; } nFree = get4byte(&pBt->pPage1->aData[36]); db = p->db; if( db->xAutovacPages ){ int iDb; for(iDb=0; ALWAYS(iDbnDb); iDb++){ if( db->aDb[iDb].pBt==p ) break; } nVac = db->xAutovacPages( db->pAutovacPagesArg, db->aDb[iDb].zDbSName, nOrig, nFree, pBt->pageSize ); if( nVac>nFree ){ nVac = nFree; } if( nVac==0 ){ return SQLITE_OK; } }else{ nVac = nFree; } nFin = finalDbSize(pBt, nOrig, nVac); if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; if( nFinnFin && rc==SQLITE_OK; iFree--){ rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); } if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( nVac==nFree ){ put4byte(&pBt->pPage1->aData[32], 0); put4byte(&pBt->pPage1->aData[36], 0); } put4byte(&pBt->pPage1->aData[28], nFin); pBt->bDoTruncate = 1; pBt->nPage = nFin; } if( rc!=SQLITE_OK ){ sqlite3PagerRollback(pPager); } } assert( nRef>=sqlite3PagerRefcount(pPager) ); return rc; } #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ # define setChildPtrmaps(x) SQLITE_OK #endif /* ** This routine does the first phase of a two-phase commit. This routine ** causes a rollback journal to be created (if it does not already exist) ** and populated with enough information so that if a power loss occurs ** the database can be restored to its original state by playing back ** the journal. Then the contents of the journal are flushed out to ** the disk. After the journal is safely on oxide, the changes to the ** database are written into the database file and flushed to oxide. ** At the end of this call, the rollback journal still exists on the ** disk and we are still holding all locks, so the transaction has not ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the ** commit process. ** ** This call is a no-op if no write-transaction is currently active on pBt. ** ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to ** the name of a super-journal file that should be written into the ** individual journal file, or is NULL, indicating no super-journal file ** (single database transaction). ** ** When this is called, the super-journal should already have been ** created, populated with this journal pointer and synced to disk. ** ** Once this is routine has returned, the only thing required to commit ** the write-transaction for this database file is to delete the journal. */ SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ int rc = SQLITE_OK; if( p->inTrans==TRANS_WRITE ){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ rc = autoVacuumCommit(p); if( rc!=SQLITE_OK ){ sqlite3BtreeLeave(p); return rc; } } if( pBt->bDoTruncate ){ sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); } #endif rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); sqlite3BtreeLeave(p); } return rc; } /* ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() ** at the conclusion of a transaction. */ static void btreeEndTransaction(Btree *p){ BtShared *pBt = p->pBt; sqlite3 *db = p->db; assert( sqlite3BtreeHoldsMutex(p) ); #ifndef SQLITE_OMIT_AUTOVACUUM pBt->bDoTruncate = 0; #endif if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ /* If there are other active statements that belong to this database ** handle, downgrade to a read-only transaction. The other statements ** may still be reading from the database. */ downgradeAllSharedCacheTableLocks(p); p->inTrans = TRANS_READ; }else{ /* If the handle had any kind of transaction open, decrement the ** transaction count of the shared btree. If the transaction count ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() ** call below will unlock the pager. */ if( p->inTrans!=TRANS_NONE ){ clearAllSharedCacheTableLocks(p); pBt->nTransaction--; if( 0==pBt->nTransaction ){ pBt->inTransaction = TRANS_NONE; } } /* Set the current transaction state to TRANS_NONE and unlock the ** pager if this call closed the only read or write transaction. */ p->inTrans = TRANS_NONE; unlockBtreeIfUnused(pBt); } btreeIntegrity(p); } /* ** Commit the transaction currently in progress. ** ** This routine implements the second phase of a 2-phase commit. The ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() ** routine did all the work of writing information out to disk and flushing the ** contents so that they are written onto the disk platter. All this ** routine has to do is delete or truncate or zero the header in the ** the rollback journal (which causes the transaction to commit) and ** drop locks. ** ** Normally, if an error occurs while the pager layer is attempting to ** finalize the underlying journal file, this function returns an error and ** the upper layer will attempt a rollback. However, if the second argument ** is non-zero then this b-tree transaction is part of a multi-file ** transaction. In this case, the transaction has already been committed ** (by deleting a super-journal file) and the caller will ignore this ** functions return code. So, even if an error occurs in the pager layer, ** reset the b-tree objects internal state to indicate that the write ** transaction has been closed. This is quite safe, as the pager will have ** transitioned to the error state. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ if( p->inTrans==TRANS_NONE ) return SQLITE_OK; sqlite3BtreeEnter(p); btreeIntegrity(p); /* If the handle has a write-transaction open, commit the shared-btrees ** transaction and set the shared state to TRANS_READ. */ if( p->inTrans==TRANS_WRITE ){ int rc; BtShared *pBt = p->pBt; assert( pBt->inTransaction==TRANS_WRITE ); assert( pBt->nTransaction>0 ); rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); if( rc!=SQLITE_OK && bCleanup==0 ){ sqlite3BtreeLeave(p); return rc; } p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ pBt->inTransaction = TRANS_READ; btreeClearHasContent(pBt); } btreeEndTransaction(p); sqlite3BtreeLeave(p); return SQLITE_OK; } /* ** Do both phases of a commit. */ SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){ int rc; sqlite3BtreeEnter(p); rc = sqlite3BtreeCommitPhaseOne(p, 0); if( rc==SQLITE_OK ){ rc = sqlite3BtreeCommitPhaseTwo(p, 0); } sqlite3BtreeLeave(p); return rc; } /* ** This routine sets the state to CURSOR_FAULT and the error ** code to errCode for every cursor on any BtShared that pBtree ** references. Or if the writeOnly flag is set to 1, then only ** trip write cursors and leave read cursors unchanged. ** ** Every cursor is a candidate to be tripped, including cursors ** that belong to other database connections that happen to be ** sharing the cache with pBtree. ** ** This routine gets called when a rollback occurs. If the writeOnly ** flag is true, then only write-cursors need be tripped - read-only ** cursors save their current positions so that they may continue ** following the rollback. Or, if writeOnly is false, all cursors are ** tripped. In general, writeOnly is false if the transaction being ** rolled back modified the database schema. In this case b-tree root ** pages may be moved or deleted from the database altogether, making ** it unsafe for read cursors to continue. ** ** If the writeOnly flag is true and an error is encountered while ** saving the current position of a read-only cursor, all cursors, ** including all read-cursors are tripped. ** ** SQLITE_OK is returned if successful, or if an error occurs while ** saving a cursor position, an SQLite error code. */ SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ BtCursor *p; int rc = SQLITE_OK; assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); if( pBtree ){ sqlite3BtreeEnter(pBtree); for(p=pBtree->pBt->pCursor; p; p=p->pNext){ if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ rc = saveCursorPosition(p); if( rc!=SQLITE_OK ){ (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); break; } } }else{ sqlite3BtreeClearCursor(p); p->eState = CURSOR_FAULT; p->skipNext = errCode; } btreeReleaseAllCursorPages(p); } sqlite3BtreeLeave(pBtree); } return rc; } /* ** Set the pBt->nPage field correctly, according to the current ** state of the database. Assume pBt->pPage1 is valid. */ static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ int nPage = get4byte(&pPage1->aData[28]); testcase( nPage==0 ); if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); testcase( pBt->nPage!=(u32)nPage ); pBt->nPage = nPage; } /* ** Rollback the transaction in progress. ** ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). ** Only write cursors are tripped if writeOnly is true but all cursors are ** tripped if writeOnly is false. Any attempt to use ** a tripped cursor will result in an error. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ int rc; BtShared *pBt = p->pBt; MemPage *pPage1; assert( writeOnly==1 || writeOnly==0 ); assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); sqlite3BtreeEnter(p); if( tripCode==SQLITE_OK ){ rc = tripCode = saveAllCursors(pBt, 0, 0); if( rc ) writeOnly = 0; }else{ rc = SQLITE_OK; } if( tripCode ){ int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); if( rc2!=SQLITE_OK ) rc = rc2; } btreeIntegrity(p); if( p->inTrans==TRANS_WRITE ){ int rc2; assert( TRANS_WRITE==pBt->inTransaction ); rc2 = sqlite3PagerRollback(pBt->pPager); if( rc2!=SQLITE_OK ){ rc = rc2; } /* The rollback may have destroyed the pPage1->aData value. So ** call btreeGetPage() on page 1 again to make ** sure pPage1->aData is set correctly. */ if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ btreeSetNPage(pBt, pPage1); releasePageOne(pPage1); } assert( countValidCursors(pBt, 1)==0 ); pBt->inTransaction = TRANS_READ; btreeClearHasContent(pBt); } btreeEndTransaction(p); sqlite3BtreeLeave(p); return rc; } /* ** Start a statement subtransaction. The subtransaction can be rolled ** back independently of the main transaction. You must start a transaction ** before starting a subtransaction. The subtransaction is ended automatically ** if the main transaction commits or rolls back. ** ** Statement subtransactions are used around individual SQL statements ** that are contained within a BEGIN...COMMIT block. If a constraint ** error occurs within the statement, the effect of that one statement ** can be rolled back without having to rollback the entire transaction. ** ** A statement sub-transaction is implemented as an anonymous savepoint. The ** value passed as the second parameter is the total number of savepoints, ** including the new anonymous savepoint, open on the B-Tree. i.e. if there ** are no active savepoints and no other statement-transactions open, ** iStatement is 1. This anonymous savepoint can be released or rolled back ** using the sqlite3BtreeSavepoint() function. */ SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ int rc; BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); assert( p->inTrans==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( iStatement>0 ); assert( iStatement>p->db->nSavepoint ); assert( pBt->inTransaction==TRANS_WRITE ); /* At the pager level, a statement transaction is a savepoint with ** an index greater than all savepoints created explicitly using ** SQL statements. It is illegal to open, release or rollback any ** such savepoints while the statement transaction savepoint is active. */ rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); sqlite3BtreeLeave(p); return rc; } /* ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK ** or SAVEPOINT_RELEASE. This function either releases or rolls back the ** savepoint identified by parameter iSavepoint, depending on the value ** of op. ** ** Normally, iSavepoint is greater than or equal to zero. However, if op is ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the ** contents of the entire transaction are rolled back. This is different ** from a normal transaction rollback, as no locks are released and the ** transaction remains open. */ SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ int rc = SQLITE_OK; if( p && p->inTrans==TRANS_WRITE ){ BtShared *pBt = p->pBt; assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); sqlite3BtreeEnter(p); if( op==SAVEPOINT_ROLLBACK ){ rc = saveAllCursors(pBt, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); } if( rc==SQLITE_OK ){ if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ pBt->nPage = 0; } rc = newDatabase(pBt); btreeSetNPage(pBt, pBt->pPage1); /* pBt->nPage might be zero if the database was corrupt when ** the transaction was started. Otherwise, it must be at least 1. */ assert( CORRUPT_DB || pBt->nPage>0 ); } sqlite3BtreeLeave(p); } return rc; } /* ** Create a new cursor for the BTree whose root is on the page ** iTable. If a read-only cursor is requested, it is assumed that ** the caller already has at least a read-only transaction open ** on the database already. If a write-cursor is requested, then ** the caller is assumed to have an open write transaction. ** ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor ** can be used for reading or for writing if other conditions for writing ** are also met. These are the conditions that must be met in order ** for writing to be allowed: ** ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR ** ** 2: Other database connections that share the same pager cache ** but which are not in the READ_UNCOMMITTED state may not have ** cursors open with wrFlag==0 on the same table. Otherwise ** the changes made by this write cursor would be visible to ** the read cursors in the other database connection. ** ** 3: The database must be writable (not on read-only media) ** ** 4: There must be an active transaction. ** ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR ** is set. If FORDELETE is set, that is a hint to the implementation that ** this cursor will only be used to seek to and delete entries of an index ** as part of a larger DELETE statement. The FORDELETE hint is not used by ** this implementation. But in a hypothetical alternative storage engine ** in which index entries are automatically deleted when corresponding table ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE ** operations on this cursor can be no-ops and all READ operations can ** return a null row (2-bytes: 0x01 0x00). ** ** No checking is done to make sure that page iTable really is the ** root page of a b-tree. If it is not, then the cursor acquired ** will not work correctly. ** ** It is assumed that the sqlite3BtreeCursorZero() has been called ** on pCur to initialize the memory space prior to invoking this routine. */ static int btreeCursor( Btree *p, /* The btree */ Pgno iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ BtShared *pBt = p->pBt; /* Shared b-tree handle */ BtCursor *pX; /* Looping over other all cursors */ assert( sqlite3BtreeHoldsMutex(p) ); assert( wrFlag==0 || wrFlag==BTREE_WRCSR || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) ); /* The following assert statements verify that if this is a sharable ** b-tree database, the connection is holding the required table locks, ** and that no other connection has any open cursor that conflicts with ** this lock. The iTable<1 term disables the check for corrupt schemas. */ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) || iTable<1 ); assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); /* Assert that the caller has opened the required transaction. */ assert( p->inTrans>TRANS_NONE ); assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); assert( pBt->pPage1 && pBt->pPage1->aData ); assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); if( iTable<=1 ){ if( iTable<1 ){ return SQLITE_CORRUPT_BKPT; }else if( btreePagecount(pBt)==0 ){ assert( wrFlag==0 ); iTable = 0; } } /* Now that no other errors can occur, finish filling in the BtCursor ** variables and link the cursor into the BtShared list. */ pCur->pgnoRoot = iTable; pCur->iPage = -1; pCur->pKeyInfo = pKeyInfo; pCur->pBtree = p; pCur->pBt = pBt; pCur->curFlags = 0; /* If there are two or more cursors on the same btree, then all such ** cursors *must* have the BTCF_Multiple flag set. */ for(pX=pBt->pCursor; pX; pX=pX->pNext){ if( pX->pgnoRoot==iTable ){ pX->curFlags |= BTCF_Multiple; pCur->curFlags = BTCF_Multiple; } } pCur->eState = CURSOR_INVALID; pCur->pNext = pBt->pCursor; pBt->pCursor = pCur; if( wrFlag ){ pCur->curFlags |= BTCF_WriteFlag; pCur->curPagerFlags = 0; if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); }else{ pCur->curPagerFlags = PAGER_GET_READONLY; } return SQLITE_OK; } static int btreeCursorWithLock( Btree *p, /* The btree */ Pgno iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ int rc; sqlite3BtreeEnter(p); rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); sqlite3BtreeLeave(p); return rc; } SQLITE_PRIVATE int sqlite3BtreeCursor( Btree *p, /* The btree */ Pgno iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ BtCursor *pCur /* Write new cursor here */ ){ if( p->sharable ){ return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); }else{ return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); } } /* ** Return the size of a BtCursor object in bytes. ** ** This interfaces is needed so that users of cursors can preallocate ** sufficient storage to hold a cursor. The BtCursor object is opaque ** to users so they cannot do the sizeof() themselves - they must call ** this routine. */ SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){ return ROUND8(sizeof(BtCursor)); } /* ** Initialize memory that will be converted into a BtCursor object. ** ** The simple approach here would be to memset() the entire object ** to zero. But it turns out that the apPage[] and aiIdx[] arrays ** do not need to be zeroed and they are large, so we can save a lot ** of run-time by skipping the initialization of those elements. */ SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){ memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); } /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ BtShared *pBt = pCur->pBt; sqlite3BtreeEnter(pBtree); assert( pBt->pCursor!=0 ); if( pBt->pCursor==pCur ){ pBt->pCursor = pCur->pNext; }else{ BtCursor *pPrev = pBt->pCursor; do{ if( pPrev->pNext==pCur ){ pPrev->pNext = pCur->pNext; break; } pPrev = pPrev->pNext; }while( ALWAYS(pPrev) ); } btreeReleaseAllCursorPages(pCur); unlockBtreeIfUnused(pBt); sqlite3_free(pCur->aOverflow); sqlite3_free(pCur->pKey); if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ /* Since the BtShared is not sharable, there is no need to ** worry about the missing sqlite3BtreeLeave() call here. */ assert( pBtree->sharable==0 ); sqlite3BtreeClose(pBtree); }else{ sqlite3BtreeLeave(pBtree); } pCur->pBtree = 0; } return SQLITE_OK; } /* ** Make sure the BtCursor* given in the argument has a valid ** BtCursor.info structure. If it is not already valid, call ** btreeParseCell() to fill it in. ** ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to btreeParseCell(). */ #ifndef NDEBUG static int cellInfoEqual(CellInfo *a, CellInfo *b){ if( a->nKey!=b->nKey ) return 0; if( a->pPayload!=b->pPayload ) return 0; if( a->nPayload!=b->nPayload ) return 0; if( a->nLocal!=b->nLocal ) return 0; if( a->nSize!=b->nSize ) return 0; return 1; } static void assertCellInfo(BtCursor *pCur){ CellInfo info; memset(&info, 0, sizeof(info)); btreeParseCell(pCur->pPage, pCur->ix, &info); assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); } #else #define assertCellInfo(x) #endif static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ if( pCur->info.nSize==0 ){ pCur->curFlags |= BTCF_ValidNKey; btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); }else{ assertCellInfo(pCur); } } #ifndef NDEBUG /* The next routine used only within assert() statements */ /* ** Return true if the given BtCursor is valid. A valid cursor is one ** that is currently pointing to a row in a (non-empty) table. ** This is a verification routine is used only within assert() statements. */ SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){ return pCur && pCur->eState==CURSOR_VALID; } #endif /* NDEBUG */ SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ assert( pCur!=0 ); return pCur->eState==CURSOR_VALID; } /* ** Return the value of the integer key or "rowid" for a table btree. ** This routine is only valid for a cursor that is pointing into a ** ordinary table btree. If the cursor points to an index btree or ** is invalid, the result of this routine is undefined. */ SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->curIntKey ); getCellInfo(pCur); return pCur->info.nKey; } /* ** Pin or unpin a cursor. */ SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor *pCur){ assert( (pCur->curFlags & BTCF_Pinned)==0 ); pCur->curFlags |= BTCF_Pinned; } SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor *pCur){ assert( (pCur->curFlags & BTCF_Pinned)!=0 ); pCur->curFlags &= ~BTCF_Pinned; } /* ** Return the offset into the database file for the start of the ** payload to which the cursor is pointing. */ SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); getCellInfo(pCur); return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + (i64)(pCur->info.pPayload - pCur->pPage->aData); } /* ** Return the number of bytes of payload for the entry that pCur is ** currently pointing to. For table btrees, this will be the amount ** of data. For index btrees, this will be the size of the key. ** ** The caller must guarantee that the cursor is pointing to a non-NULL ** valid entry. In other words, the calling procedure must guarantee ** that the cursor has Cursor.eState==CURSOR_VALID. */ SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); getCellInfo(pCur); return pCur->info.nPayload; } /* ** Return an upper bound on the size of any record for the table ** that the cursor is pointing into. ** ** This is an optimization. Everything will still work if this ** routine always returns 2147483647 (which is the largest record ** that SQLite can handle) or more. But returning a smaller value might ** prevent large memory allocations when trying to interpret a ** corrupt database. ** ** The current implementation merely returns the size of the underlying ** database file. */ SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; } /* ** Given the page number of an overflow page in the database (parameter ** ovfl), this function finds the page number of the next page in the ** linked list of overflow pages. If possible, it uses the auto-vacuum ** pointer-map data instead of reading the content of page ovfl to do so. ** ** If an error occurs an SQLite error code is returned. Otherwise: ** ** The page number of the next overflow page in the linked list is ** written to *pPgnoNext. If page ovfl is the last page in its linked ** list, *pPgnoNext is set to zero. ** ** If ppPage is not NULL, and a reference to the MemPage object corresponding ** to page number pOvfl was obtained, then *ppPage is set to point to that ** reference. It is the responsibility of the caller to call releasePage() ** on *ppPage to free the reference. In no reference was obtained (because ** the pointer-map was used to obtain the value for *pPgnoNext), then ** *ppPage is set to zero. */ static int getOverflowPage( BtShared *pBt, /* The database file */ Pgno ovfl, /* Current overflow page number */ MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ Pgno *pPgnoNext /* OUT: Next overflow page number */ ){ Pgno next = 0; MemPage *pPage = 0; int rc = SQLITE_OK; assert( sqlite3_mutex_held(pBt->mutex) ); assert(pPgnoNext); #ifndef SQLITE_OMIT_AUTOVACUUM /* Try to find the next page in the overflow list using the ** autovacuum pointer-map pages. Guess that the next page in ** the overflow list is page number (ovfl+1). If that guess turns ** out to be wrong, fall back to loading the data of page ** number ovfl to determine the next page number. */ if( pBt->autoVacuum ){ Pgno pgno; Pgno iGuess = ovfl+1; u8 eType; while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ iGuess++; } if( iGuess<=btreePagecount(pBt) ){ rc = ptrmapGet(pBt, iGuess, &eType, &pgno); if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ next = iGuess; rc = SQLITE_DONE; } } } #endif assert( next==0 || rc==SQLITE_DONE ); if( rc==SQLITE_OK ){ rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); assert( rc==SQLITE_OK || pPage==0 ); if( rc==SQLITE_OK ){ next = get4byte(pPage->aData); } } *pPgnoNext = next; if( ppPage ){ *ppPage = pPage; }else{ releasePage(pPage); } return (rc==SQLITE_DONE ? SQLITE_OK : rc); } /* ** Copy data from a buffer to a page, or from a page to a buffer. ** ** pPayload is a pointer to data stored on database page pDbPage. ** If argument eOp is false, then nByte bytes of data are copied ** from pPayload to the buffer pointed at by pBuf. If eOp is true, ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes ** of data are copied from the buffer pBuf to pPayload. ** ** SQLITE_OK is returned on success, otherwise an error code. */ static int copyPayload( void *pPayload, /* Pointer to page data */ void *pBuf, /* Pointer to buffer */ int nByte, /* Number of bytes to copy */ int eOp, /* 0 -> copy from page, 1 -> copy to page */ DbPage *pDbPage /* Page containing pPayload */ ){ if( eOp ){ /* Copy data from buffer to page (a write operation) */ int rc = sqlite3PagerWrite(pDbPage); if( rc!=SQLITE_OK ){ return rc; } memcpy(pPayload, pBuf, nByte); }else{ /* Copy data from page to buffer (a read operation) */ memcpy(pBuf, pPayload, nByte); } return SQLITE_OK; } /* ** This function is used to read or overwrite payload information ** for the entry that the pCur cursor is pointing to. The eOp ** argument is interpreted as follows: ** ** 0: The operation is a read. Populate the overflow cache. ** 1: The operation is a write. Populate the overflow cache. ** ** A total of "amt" bytes are read or written beginning at "offset". ** Data is read to or from the buffer pBuf. ** ** The content being read or written might appear on the main page ** or be scattered out on multiple overflow pages. ** ** If the current cursor entry uses one or more overflow pages ** this function may allocate space for and lazily populate ** the overflow page-list cache array (BtCursor.aOverflow). ** Subsequent calls use this cache to make seeking to the supplied offset ** more efficient. ** ** Once an overflow page-list cache has been allocated, it must be ** invalidated if some other cursor writes to the same table, or if ** the cursor is moved to a different row. Additionally, in auto-vacuum ** mode, the following events may invalidate an overflow page-list cache. ** ** * An incremental vacuum, ** * A commit in auto_vacuum="full" mode, ** * Creating a table (may require moving an overflow page). */ static int accessPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 offset, /* Begin reading this far into payload */ u32 amt, /* Read this many bytes */ unsigned char *pBuf, /* Write the bytes into this buffer */ int eOp /* zero to read. non-zero to write. */ ){ unsigned char *aPayload; int rc = SQLITE_OK; int iIdx = 0; MemPage *pPage = pCur->pPage; /* Btree page of current entry */ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ #ifdef SQLITE_DIRECT_OVERFLOW_READ unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ #endif assert( pPage ); assert( eOp==0 || eOp==1 ); assert( pCur->eState==CURSOR_VALID ); if( pCur->ix>=pPage->nCell ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cursorHoldsMutex(pCur) ); getCellInfo(pCur); aPayload = pCur->info.pPayload; assert( offset+amt <= pCur->info.nPayload ); assert( aPayload > pPage->aData ); if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ /* Trying to read or write past the end of the data is an error. The ** conditional above is really: ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ** but is recast into its current form to avoid integer overflow problems */ return SQLITE_CORRUPT_PAGE(pPage); } /* Check if data must be read/written to/from the btree page itself. */ if( offsetinfo.nLocal ){ int a = amt; if( a+offset>pCur->info.nLocal ){ a = pCur->info.nLocal - offset; } rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); offset = 0; pBuf += a; amt -= a; }else{ offset -= pCur->info.nLocal; } if( rc==SQLITE_OK && amt>0 ){ const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ Pgno nextPage; nextPage = get4byte(&aPayload[pCur->info.nLocal]); /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. ** ** The aOverflow[] array is sized at one entry for each overflow page ** in the overflow chain. The page number of the first overflow page is ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array ** means "not yet known" (the cache is lazily populated). */ if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; if( pCur->aOverflow==0 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) ){ Pgno *aNew = (Pgno*)sqlite3Realloc( pCur->aOverflow, nOvfl*2*sizeof(Pgno) ); if( aNew==0 ){ return SQLITE_NOMEM_BKPT; }else{ pCur->aOverflow = aNew; } } memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); pCur->curFlags |= BTCF_ValidOvfl; }else{ /* If the overflow page-list cache has been allocated and the ** entry for the first required overflow page is valid, skip ** directly to it. */ if( pCur->aOverflow[offset/ovflSize] ){ iIdx = (offset/ovflSize); nextPage = pCur->aOverflow[iIdx]; offset = (offset%ovflSize); } } assert( rc==SQLITE_OK && amt>0 ); while( nextPage ){ /* If required, populate the overflow page-list cache. */ if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; assert( pCur->aOverflow[iIdx]==0 || pCur->aOverflow[iIdx]==nextPage || CORRUPT_DB ); pCur->aOverflow[iIdx] = nextPage; if( offset>=ovflSize ){ /* The only reason to read this page is to obtain the page ** number for the next page in the overflow chain. The page ** data is not required. So first try to lookup the overflow ** page-list cache, if any, then fall back to the getOverflowPage() ** function. */ assert( pCur->curFlags & BTCF_ValidOvfl ); assert( pCur->pBtree->db==pBt->db ); if( pCur->aOverflow[iIdx+1] ){ nextPage = pCur->aOverflow[iIdx+1]; }else{ rc = getOverflowPage(pBt, nextPage, 0, &nextPage); } offset -= ovflSize; }else{ /* Need to read this page properly. It contains some of the ** range of data that is being read (eOp==0) or written (eOp!=0). */ int a = amt; if( a + offset > ovflSize ){ a = ovflSize - offset; } #ifdef SQLITE_DIRECT_OVERFLOW_READ /* If all the following are true: ** ** 1) this is a read operation, and ** 2) data is required from the start of this overflow page, and ** 3) there are no dirty pages in the page-cache ** 4) the database is file-backed, and ** 5) the page is not in the WAL file ** 6) at least 4 bytes have already been read into the output buffer ** ** then data can be read directly from the database file into the ** output buffer, bypassing the page-cache altogether. This speeds ** up loading large records that span many overflow pages. */ if( eOp==0 /* (1) */ && offset==0 /* (2) */ && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ && &pBuf[-4]>=pBufStart /* (6) */ ){ sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); u8 aSave[4]; u8 *aWrite = &pBuf[-4]; assert( aWrite>=pBufStart ); /* due to (6) */ memcpy(aSave, aWrite, 4); rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); nextPage = get4byte(aWrite); memcpy(aWrite, aSave, 4); }else #endif { DbPage *pDbPage; rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, (eOp==0 ? PAGER_GET_READONLY : 0) ); if( rc==SQLITE_OK ){ aPayload = sqlite3PagerGetData(pDbPage); nextPage = get4byte(aPayload); rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); sqlite3PagerUnref(pDbPage); offset = 0; } } amt -= a; if( amt==0 ) return rc; pBuf += a; } if( rc ) break; iIdx++; } } if( rc==SQLITE_OK && amt>0 ){ /* Overflow chain ends prematurely */ return SQLITE_CORRUPT_PAGE(pPage); } return rc; } /* ** Read part of the payload for the row at which that cursor pCur is currently ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer ** begins at "offset". ** ** pCur can be pointing to either a table or an index b-tree. ** If pointing to a table btree, then the content section is read. If ** pCur is pointing to an index b-tree then the key section is read. ** ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the ** cursor might be invalid or might need to be restored before being read. ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>=0 && pCur->pPage ); return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); } /* ** This variant of sqlite3BtreePayload() works even if the cursor has not ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() ** interface. */ #ifndef SQLITE_OMIT_INCRBLOB static SQLITE_NOINLINE int accessPayloadChecked( BtCursor *pCur, u32 offset, u32 amt, void *pBuf ){ int rc; if ( pCur->eState==CURSOR_INVALID ){ return SQLITE_ABORT; } assert( cursorOwnsBtShared(pCur) ); rc = btreeRestoreCursorPosition(pCur); return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); } SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ if( pCur->eState==CURSOR_VALID ){ assert( cursorOwnsBtShared(pCur) ); return accessPayload(pCur, offset, amt, pBuf, 0); }else{ return accessPayloadChecked(pCur, offset, amt, pBuf); } } #endif /* SQLITE_OMIT_INCRBLOB */ /* ** Return a pointer to payload information from the entry that the ** pCur cursor is pointing to. The pointer is to the beginning of ** the key if index btrees (pPage->intKey==0) and is the data for ** table btrees (pPage->intKey==1). The number of bytes of available ** key/data is written into *pAmt. If *pAmt==0, then the value ** returned will not be a valid pointer. ** ** This routine is an optimization. It is common for the entire key ** and data to fit on the local page and for there to be no overflow ** pages. When that is so, this routine can be used to access the ** key and data without making a copy. If the key and/or data spills ** onto overflow pages, then accessPayload() must be used to reassemble ** the key/data and copy it into a preallocated buffer. ** ** The pointer returned by this routine looks directly into the cached ** page of the database. The data might change or move the next time ** any btree routine is called. */ static const void *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 *pAmt /* Write the number of available bytes here */ ){ int amt; assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); assert( pCur->eState==CURSOR_VALID ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( cursorOwnsBtShared(pCur) ); assert( pCur->ixpPage->nCell || CORRUPT_DB ); assert( pCur->info.nSize>0 ); assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); assert( pCur->info.pPayloadpPage->aDataEnd ||CORRUPT_DB); amt = pCur->info.nLocal; if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ /* There is too little space on the page for the expected amount ** of local content. Database must be corrupt. */ assert( CORRUPT_DB ); amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); } *pAmt = (u32)amt; return (void*)pCur->info.pPayload; } /* ** For the entry that cursor pCur is point to, return as ** many bytes of the key or data as are available on the local ** b-tree page. Write the number of available bytes into *pAmt. ** ** The pointer returned is ephemeral. The key/data may move ** or be destroyed on the next call to any Btree routine, ** including calls from other threads against the same cache. ** Hence, a mutex on the BtShared should be held prior to calling ** this routine. ** ** These routines is used to get quick access to key and data ** in the common case where no overflow pages are used. */ SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ return fetchPayload(pCur, pAmt); } /* ** Move the cursor down to a new child page. The newPgno argument is the ** page number of the child page to move to. ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPageiPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->aiIdx[pCur->iPage] = pCur->ix; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; rc = getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur->curPagerFlags); assert( pCur->pPage!=0 || rc!=SQLITE_OK ); if( rc==SQLITE_OK && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey) ){ releasePage(pCur->pPage); rc = SQLITE_CORRUPT_PGNO(newPgno); } if( rc ){ pCur->pPage = pCur->apPage[--pCur->iPage]; } return rc; } #ifdef SQLITE_DEBUG /* ** Page pParent is an internal (non-leaf) tree page. This function ** asserts that page number iChild is the left-child if the iIdx'th ** cell in page pParent. Or, if iIdx is equal to the total number of ** cells in pParent, that page number iChild is the right-child of ** the page. */ static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ if( CORRUPT_DB ) return; /* The conditions tested below might not be true ** in a corrupt database */ assert( iIdx<=pParent->nCell ); if( iIdx==pParent->nCell ){ assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); }else{ assert( get4byte(findCell(pParent, iIdx))==iChild ); } } #else # define assertParentIndex(x,y,z) #endif /* ** Move the cursor up to the parent page. ** ** pCur->idx is set to the cell index that contains the pointer ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ MemPage *pLeaf; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>0 ); assert( pCur->pPage ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->pPage->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->ix = pCur->aiIdx[pCur->iPage-1]; pLeaf = pCur->pPage; pCur->pPage = pCur->apPage[--pCur->iPage]; releasePageNotNull(pLeaf); } /* ** Move the cursor to point to the root page of its b-tree structure. ** ** If the table has a virtual root page, then the cursor is moved to point ** to the virtual root page instead of the actual root page. A table has a ** virtual root page when the actual root page contains no cells and a ** single child page. This can only happen with the table rooted at page 1. ** ** If the b-tree structure is empty, the cursor state is set to ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, ** the cursor is set to point to the first cell located on the root ** (or virtual root) page and the cursor state is set to CURSOR_VALID. ** ** If this function returns successfully, it may be assumed that the ** page-header flags indicate that the [virtual] root-page is the expected ** kind of b-tree page (i.e. if when opening the cursor the caller did not ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, ** indicating a table b-tree, or if the caller did specify a KeyInfo ** structure the flags byte is set to 0x02 or 0x0A, indicating an index ** b-tree). */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc = SQLITE_OK; assert( cursorOwnsBtShared(pCur) ); assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); if( pCur->iPage>=0 ){ if( pCur->iPage ){ releasePageNotNull(pCur->pPage); while( --pCur->iPage ){ releasePageNotNull(pCur->apPage[pCur->iPage]); } pRoot = pCur->pPage = pCur->apPage[0]; goto skip_init; } }else if( pCur->pgnoRoot==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_EMPTY; }else{ assert( pCur->iPage==(-1) ); if( pCur->eState>=CURSOR_REQUIRESEEK ){ if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, pCur->curPagerFlags); if( rc!=SQLITE_OK ){ pCur->eState = CURSOR_INVALID; return rc; } pCur->iPage = 0; pCur->curIntKey = pCur->pPage->intKey; } pRoot = pCur->pPage; assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is ** NULL, the caller expects a table b-tree. If this is not the case, ** return an SQLITE_CORRUPT error. ** ** Earlier versions of SQLite assumed that this test could not fail ** if the root page was already loaded when this function was called (i.e. ** if pCur->iPage>=0). But this is not so if the database is corrupted ** in such a way that page pRoot is linked into a second b-tree table ** (or the freelist). */ assert( pRoot->intKey==1 || pRoot->intKey==0 ); if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ return SQLITE_CORRUPT_PAGE(pCur->pPage); } skip_init: pCur->ix = 0; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); if( pRoot->nCell>0 ){ pCur->eState = CURSOR_VALID; }else if( !pRoot->leaf ){ Pgno subpage; if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); pCur->eState = CURSOR_VALID; rc = moveToChild(pCur, subpage); }else{ pCur->eState = CURSOR_INVALID; rc = SQLITE_EMPTY; } return rc; } /* ** Move the cursor down to the left-most leaf entry beneath the ** entry to which it is currently pointing. ** ** The left-most leaf is the one with the smallest key - the first ** in ascending order. */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc = SQLITE_OK; MemPage *pPage; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ assert( pCur->ixnCell ); pgno = get4byte(findCell(pPage, pCur->ix)); rc = moveToChild(pCur, pgno); } return rc; } /* ** Move the cursor down to the right-most leaf entry beneath the ** page to which it is currently pointing. Notice the difference ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() ** finds the left-most entry beneath the *entry* whereas moveToRightmost() ** finds the right-most entry beneath the *page*. ** ** The right-most entry is the one with the largest key - the last ** key in ascending order. */ static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc = SQLITE_OK; MemPage *pPage = 0; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); while( !(pPage = pCur->pPage)->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); pCur->ix = pPage->nCell; rc = moveToChild(pCur, pgno); if( rc ) return rc; } pCur->ix = pPage->nCell-1; assert( pCur->info.nSize==0 ); assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); return SQLITE_OK; } /* Move the cursor to the first entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->pPage->nCell>0 ); *pRes = 0; rc = moveToLeftmost(pCur); }else if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || (pCur->pPage!=0 && pCur->pPage->nCell==0) ); *pRes = 1; rc = SQLITE_OK; } return rc; } /* Move the cursor to the last entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ static SQLITE_NOINLINE int btreeLast(BtCursor *pCur, int *pRes){ int rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_VALID ); *pRes = 0; rc = moveToRightmost(pCur); if( rc==SQLITE_OK ){ pCur->curFlags |= BTCF_AtLast; }else{ pCur->curFlags &= ~BTCF_AtLast; } }else if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = 1; rc = SQLITE_OK; } return rc; } SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* If the cursor already points to the last entry, this is a no-op. */ if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ #ifdef SQLITE_DEBUG /* This block serves to assert() that the cursor really does point ** to the last entry in the b-tree. */ int ii; for(ii=0; iiiPage; ii++){ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); } assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); testcase( pCur->ix!=pCur->pPage->nCell-1 ); /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ assert( pCur->pPage->leaf ); #endif *pRes = 0; return SQLITE_OK; } return btreeLast(pCur, pRes); } /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) ** table near the key intKey. Return a success code. ** ** If an exact match is not found, then the cursor is always ** left pointing at a leaf page which would hold the entry if it ** were present. The cursor might point to an entry that comes ** before or after the key. ** ** An integer is written into *pRes which is the result of ** comparing the key with the entry to which the cursor is ** pointing. The meaning of the integer written into ** *pRes is as follows: ** ** *pRes<0 The cursor is left pointing at an entry that ** is smaller than intKey or if the table is empty ** and the cursor is therefore left point to nothing. ** ** *pRes==0 The cursor is left pointing at an entry that ** exactly matches intKey. ** ** *pRes>0 The cursor is left pointing at an entry that ** is larger than intKey. */ SQLITE_PRIVATE int sqlite3BtreeTableMoveto( BtCursor *pCur, /* The cursor to be moved */ i64 intKey, /* The table key */ int biasRight, /* If true, bias the search to the high end */ int *pRes /* Write search results here */ ){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( pCur->pKeyInfo==0 ); assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( pCur->info.nKeycurFlags & BTCF_AtLast)!=0 ){ *pRes = -1; return SQLITE_OK; } /* If the requested key is one more than the previous key, then ** try to get there using sqlite3BtreeNext() rather than a full ** binary search. This is an optimization only. The correct answer ** is still obtained without this case, only a little more slowly. */ if( pCur->info.nKey+1==intKey ){ *pRes = 0; rc = sqlite3BtreeNext(pCur, 0); if( rc==SQLITE_OK ){ getCellInfo(pCur); if( pCur->info.nKey==intKey ){ return SQLITE_OK; } }else if( rc!=SQLITE_DONE ){ return rc; } } } } #ifdef SQLITE_DEBUG pCur->pBtree->nSeek++; /* Performance measurement during testing */ #endif rc = moveToRoot(pCur); if( rc ){ if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = -1; return SQLITE_OK; } return rc; } assert( pCur->pPage ); assert( pCur->pPage->isInit ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->pPage->nCell > 0 ); assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); assert( pCur->curIntKey ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->pPage; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page ** the cursor would have been INVALID above and this for(;;) loop ** not run. If this is not the root-page, then the moveToChild() routine ** would have already detected db corruption. Similarly, pPage must ** be the right kind (index or table) of b-tree page. Otherwise ** a moveToChild() or moveToRoot() call would have detected corruption. */ assert( pPage->nCell>0 ); assert( pPage->intKey ); lwr = 0; upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ for(;;){ i64 nCellKey; pCell = findCellPastPtr(pPage, idx); if( pPage->intKeyLeaf ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ){ return SQLITE_CORRUPT_PAGE(pPage); } } } getVarint(pCell, (u64*)&nCellKey); if( nCellKeyupr ){ c = -1; break; } }else if( nCellKey>intKey ){ upr = idx-1; if( lwr>upr ){ c = +1; break; } }else{ assert( nCellKey==intKey ); pCur->ix = (u16)idx; if( !pPage->leaf ){ lwr = idx; goto moveto_table_next_layer; }else{ pCur->curFlags |= BTCF_ValidNKey; pCur->info.nKey = nCellKey; pCur->info.nSize = 0; *pRes = 0; return SQLITE_OK; } } assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ } assert( lwr==upr+1 || !pPage->leaf ); assert( pPage->isInit ); if( pPage->leaf ){ assert( pCur->ixpPage->nCell ); pCur->ix = (u16)idx; *pRes = c; rc = SQLITE_OK; goto moveto_table_finish; } moveto_table_next_layer: if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } pCur->ix = (u16)lwr; rc = moveToChild(pCur, chldPg); if( rc ) break; } moveto_table_finish: pCur->info.nSize = 0; assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); return rc; } /* ** Compare the "idx"-th cell on the page the cursor pCur is currently ** pointing to to pIdxKey using xRecordCompare. Return negative or ** zero if the cell is less than or equal pIdxKey. Return positive ** if unknown. ** ** Return value negative: Cell at pCur[idx] less than pIdxKey ** ** Return value is zero: Cell at pCur[idx] equals pIdxKey ** ** Return value positive: Nothing is known about the relationship ** of the cell at pCur[idx] and pIdxKey. ** ** This routine is part of an optimization. It is always safe to return ** a positive value as that will cause the optimization to be skipped. */ static int indexCellCompare( BtCursor *pCur, int idx, UnpackedRecord *pIdxKey, RecordCompare xRecordCompare ){ MemPage *pPage = pCur->pPage; int c; int nCell; /* Size of the pCell cell in bytes */ u8 *pCell = findCellPastPtr(pPage, idx); nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); }else if( !(pCell[1] & 0x80) && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal ){ /* The record-size field is a 2 byte varint and the record ** fits entirely on the main b-tree page. */ testcase( pCell+nCell+2==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); }else{ /* If the record extends into overflow pages, do not attempt ** the optimization. */ c = 99; } return c; } /* ** Return true (non-zero) if pCur is current pointing to the last ** page of a table. */ static int cursorOnLastPage(BtCursor *pCur){ int i; assert( pCur->eState==CURSOR_VALID ); for(i=0; iiPage; i++){ MemPage *pPage = pCur->apPage[i]; if( pCur->aiIdx[i]nCell ) return 0; } return 1; } /* Move the cursor so that it points to an entry in an index table ** near the key pIdxKey. Return a success code. ** ** If an exact match is not found, then the cursor is always ** left pointing at a leaf page which would hold the entry if it ** were present. The cursor might point to an entry that comes ** before or after the key. ** ** An integer is written into *pRes which is the result of ** comparing the key with the entry to which the cursor is ** pointing. The meaning of the integer written into ** *pRes is as follows: ** ** *pRes<0 The cursor is left pointing at an entry that ** is smaller than pIdxKey or if the table is empty ** and the cursor is therefore left point to nothing. ** ** *pRes==0 The cursor is left pointing at an entry that ** exactly matches pIdxKey. ** ** *pRes>0 The cursor is left pointing at an entry that ** is larger than pIdxKey. ** ** The pIdxKey->eqSeen field is set to 1 if there ** exists an entry in the table that exactly matches pIdxKey. */ SQLITE_PRIVATE int sqlite3BtreeIndexMoveto( BtCursor *pCur, /* The cursor to be moved */ UnpackedRecord *pIdxKey, /* Unpacked index key */ int *pRes /* Write search results here */ ){ int rc; RecordCompare xRecordCompare; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( pCur->pKeyInfo!=0 ); #ifdef SQLITE_DEBUG pCur->pBtree->nSeek++; /* Performance measurement during testing */ #endif xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); pIdxKey->errCode = 0; assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); /* Check to see if we can skip a lot of work. Two cases: ** ** (1) If the cursor is already pointing to the very last cell ** in the table and the pIdxKey search key is greater than or ** equal to that last cell, then no movement is required. ** ** (2) If the cursor is on the last page of the table and the first ** cell on that last page is less than or equal to the pIdxKey ** search key, then we can start the search on the current page ** without needing to go back to root. */ if( pCur->eState==CURSOR_VALID && pCur->pPage->leaf && cursorOnLastPage(pCur) ){ int c; if( pCur->ix==pCur->pPage->nCell-1 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 && pIdxKey->errCode==SQLITE_OK ){ *pRes = c; return SQLITE_OK; /* Cursor already pointing at the correct spot */ } if( pCur->iPage>0 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 && pIdxKey->errCode==SQLITE_OK ){ pCur->curFlags &= ~BTCF_ValidOvfl; if( !pCur->pPage->isInit ){ return SQLITE_CORRUPT_BKPT; } goto bypass_moveto_root; /* Start search on the current page */ } pIdxKey->errCode = SQLITE_OK; } rc = moveToRoot(pCur); if( rc ){ if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = -1; return SQLITE_OK; } return rc; } bypass_moveto_root: assert( pCur->pPage ); assert( pCur->pPage->isInit ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->pPage->nCell > 0 ); assert( pCur->curIntKey==0 ); assert( pIdxKey!=0 ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->pPage; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page ** the cursor would have been INVALID above and this for(;;) loop ** not run. If this is not the root-page, then the moveToChild() routine ** would have already detected db corruption. Similarly, pPage must ** be the right kind (index or table) of b-tree page. Otherwise ** a moveToChild() or moveToRoot() call would have detected corruption. */ assert( pPage->nCell>0 ); assert( pPage->intKey==0 ); lwr = 0; upr = pPage->nCell-1; idx = upr>>1; /* idx = (lwr+upr)/2; */ for(;;){ int nCell; /* Size of the pCell cell in bytes */ pCell = findCellPastPtr(pPage, idx); /* The maximum supported page-size is 65536 bytes. This means that ** the maximum number of record bytes stored on an index B-Tree ** page is less than 16384 bytes and may be stored as a 2-byte ** varint. This information is used to attempt to avoid parsing ** the entire cell by checking for the cases where the record is ** stored entirely within the b-tree page by inspecting the first ** 2 bytes of the cell. */ nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); }else if( !(pCell[1] & 0x80) && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal ){ /* The record-size field is a 2 byte varint and the record ** fits entirely on the main b-tree page. */ testcase( pCell+nCell+2==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); }else{ /* The record flows over onto one or more overflow pages. In ** this case the whole cell needs to be parsed, a buffer allocated ** and accessPayload() used to retrieve the record into the ** buffer before VdbeRecordCompare() can be called. ** ** If the record is corrupt, the xRecordCompare routine may read ** up to two varints past the end of the buffer. An extra 18 ** bytes of padding is allocated at the end of the buffer in ** case this happens. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; const int nOverrun = 18; /* Size of the overrun padding */ pPage->xParseCell(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; testcase( nCell<0 ); /* True if key size is 2^32 or more */ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ testcase( nCell==2 ); /* Minimum legal index key size */ if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ rc = SQLITE_CORRUPT_PAGE(pPage); goto moveto_index_finish; } pCellKey = sqlite3Malloc( nCell+nOverrun ); if( pCellKey==0 ){ rc = SQLITE_NOMEM_BKPT; goto moveto_index_finish; } pCur->ix = (u16)idx; rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ pCur->curFlags &= ~BTCF_ValidOvfl; if( rc ){ sqlite3_free(pCellKey); goto moveto_index_finish; } c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); sqlite3_free(pCellKey); } assert( (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) ); if( c<0 ){ lwr = idx+1; }else if( c>0 ){ upr = idx-1; }else{ assert( c==0 ); *pRes = 0; rc = SQLITE_OK; pCur->ix = (u16)idx; if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; goto moveto_index_finish; } if( lwr>upr ) break; assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ } assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); assert( pPage->isInit ); if( pPage->leaf ){ assert( pCur->ixpPage->nCell || CORRUPT_DB ); pCur->ix = (u16)idx; *pRes = c; rc = SQLITE_OK; goto moveto_index_finish; } if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } /* This block is similar to an in-lined version of: ** ** pCur->ix = (u16)lwr; ** rc = moveToChild(pCur, chldPg); ** if( rc ) break; */ pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->aiIdx[pCur->iPage] = (u16)lwr; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; rc = getAndInitPage(pCur->pBt, chldPg, &pCur->pPage, pCur->curPagerFlags); if( rc==SQLITE_OK && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey) ){ releasePage(pCur->pPage); rc = SQLITE_CORRUPT_PGNO(chldPg); } if( rc ){ pCur->pPage = pCur->apPage[--pCur->iPage]; break; } /* ***** End of in-lined moveToChild() call */ } moveto_index_finish: pCur->info.nSize = 0; assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); return rc; } /* ** Return TRUE if the cursor is not pointing at an entry of the table. ** ** TRUE will be returned after a call to sqlite3BtreeNext() moves ** past the last entry in the table or sqlite3BtreePrev() moves past ** the first entry. TRUE is also returned if the table is empty. */ SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries ** have been deleted? This API will need to change to return an error code ** as well as the boolean result value. */ return (CURSOR_VALID!=pCur->eState); } /* ** Return an estimate for the number of rows in the table that pCur is ** pointing to. Return a negative number if no estimate is currently ** available. */ SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ i64 n; u8 i; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* Currently this interface is only called by the OP_IfSmaller ** opcode, and it that case the cursor will always be valid and ** will always point to a leaf node. */ if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; if( NEVER(pCur->pPage->leaf==0) ) return -1; n = pCur->pPage->nCell; for(i=0; iiPage; i++){ n *= pCur->apPage[i]->nCell; } return n; } /* ** Advance the cursor to the next entry in the database. ** Return value: ** ** SQLITE_OK success ** SQLITE_DONE cursor is already pointing at the last element ** otherwise some kind of error occurred ** ** The main entry point is sqlite3BtreeNext(). That routine is optimized ** for the common case of merely incrementing the cell counter BtCursor.aiIdx ** to the next cell on the current page. The (slower) btreeNext() helper ** routine is called when it is necessary to move to a different page or ** to restore the cursor. ** ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the ** cursor corresponds to an SQL index and this routine could have been ** skipped if the SQL index had been a unique index. The F argument ** is a hint to the implement. SQLite btree implementation does not use ** this hint, but COMDB2 does. */ static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ int rc; int idx; MemPage *pPage; assert( cursorOwnsBtShared(pCur) ); if( pCur->eState!=CURSOR_VALID ){ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ return rc; } if( CURSOR_INVALID==pCur->eState ){ return SQLITE_DONE; } if( pCur->eState==CURSOR_SKIPNEXT ){ pCur->eState = CURSOR_VALID; if( pCur->skipNext>0 ) return SQLITE_OK; } } pPage = pCur->pPage; idx = ++pCur->ix; if( sqlite3FaultSim(412) ) pPage->isInit = 0; if( !pPage->isInit ){ return SQLITE_CORRUPT_BKPT; } if( idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); if( rc ) return rc; return moveToLeftmost(pCur); } do{ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_DONE; } moveToParent(pCur); pPage = pCur->pPage; }while( pCur->ix>=pPage->nCell ); if( pPage->intKey ){ return sqlite3BtreeNext(pCur, 0); }else{ return SQLITE_OK; } } if( pPage->leaf ){ return SQLITE_OK; }else{ return moveToLeftmost(pCur); } } SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int flags){ MemPage *pPage; UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ assert( cursorOwnsBtShared(pCur) ); assert( flags==0 || flags==1 ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); pPage = pCur->pPage; if( (++pCur->ix)>=pPage->nCell ){ pCur->ix--; return btreeNext(pCur); } if( pPage->leaf ){ return SQLITE_OK; }else{ return moveToLeftmost(pCur); } } /* ** Step the cursor to the back to the previous entry in the database. ** Return values: ** ** SQLITE_OK success ** SQLITE_DONE the cursor is already on the first element of the table ** otherwise some kind of error occurred ** ** The main entry point is sqlite3BtreePrevious(). That routine is optimized ** for the common case of merely decrementing the cell counter BtCursor.aiIdx ** to the previous cell on the current page. The (slower) btreePrevious() ** helper routine is called when it is necessary to move to a different page ** or to restore the cursor. ** ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then ** the cursor corresponds to an SQL index and this routine could have been ** skipped if the SQL index had been a unique index. The F argument is a ** hint to the implement. The native SQLite btree implementation does not ** use this hint, but COMDB2 does. */ static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ int rc; MemPage *pPage; assert( cursorOwnsBtShared(pCur) ); assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); assert( pCur->info.nSize==0 ); if( pCur->eState!=CURSOR_VALID ){ rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ return rc; } if( CURSOR_INVALID==pCur->eState ){ return SQLITE_DONE; } if( CURSOR_SKIPNEXT==pCur->eState ){ pCur->eState = CURSOR_VALID; if( pCur->skipNext<0 ) return SQLITE_OK; } } pPage = pCur->pPage; if( sqlite3FaultSim(412) ) pPage->isInit = 0; if( !pPage->isInit ){ return SQLITE_CORRUPT_BKPT; } if( !pPage->leaf ){ int idx = pCur->ix; rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); if( rc ) return rc; rc = moveToRightmost(pCur); }else{ while( pCur->ix==0 ){ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_DONE; } moveToParent(pCur); } assert( pCur->info.nSize==0 ); assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); pCur->ix--; pPage = pCur->pPage; if( pPage->intKey && !pPage->leaf ){ rc = sqlite3BtreePrevious(pCur, 0); }else{ rc = SQLITE_OK; } } return rc; } SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int flags){ assert( cursorOwnsBtShared(pCur) ); assert( flags==0 || flags==1 ); UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); pCur->info.nSize = 0; if( pCur->eState!=CURSOR_VALID || pCur->ix==0 || pCur->pPage->leaf==0 ){ return btreePrevious(pCur); } pCur->ix--; return SQLITE_OK; } /* ** Allocate a new page from the database file. ** ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() ** has already been called on the new page.) The new page has also ** been referenced and the calling routine is responsible for calling ** sqlite3PagerUnref() on the new page when it is done. ** ** SQLITE_OK is returned on success. Any other return value indicates ** an error. *ppPage is set to NULL in the event of an error. ** ** If the "nearby" parameter is not 0, then an effort is made to ** locate a page close to the page number "nearby". This can be used in an ** attempt to keep related pages close to each other in the database file, ** which in turn can make database access faster. ** ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists ** anywhere on the free-list, then it is guaranteed to be returned. If ** eMode is BTALLOC_LT then the page returned will be less than or equal ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there ** are no restrictions on which page is returned. */ static int allocateBtreePage( BtShared *pBt, /* The btree */ MemPage **ppPage, /* Store pointer to the allocated page here */ Pgno *pPgno, /* Store the page number here */ Pgno nearby, /* Search for a page near this one */ u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ ){ MemPage *pPage1; int rc; u32 n; /* Number of pages on the freelist */ u32 k; /* Number of leaves on the trunk of the freelist */ MemPage *pTrunk = 0; MemPage *pPrevTrunk = 0; Pgno mxPage; /* Total size of the database file */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); pPage1 = pBt->pPage1; mxPage = btreePagecount(pBt); /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36 ** stores the total number of pages on the freelist. */ n = get4byte(&pPage1->aData[36]); testcase( n==mxPage-1 ); if( n>=mxPage ){ return SQLITE_CORRUPT_BKPT; } if( n>0 ){ /* There are pages on the freelist. Reuse one of those pages. */ Pgno iTrunk; u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ u32 nSearch = 0; /* Count of the number of search attempts */ /* If eMode==BTALLOC_EXACT and a query of the pointer-map ** shows that the page 'nearby' is somewhere on the free-list, then ** the entire-list will be searched for that page. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( eMode==BTALLOC_EXACT ){ if( nearby<=mxPage ){ u8 eType; assert( nearby>0 ); assert( pBt->autoVacuum ); rc = ptrmapGet(pBt, nearby, &eType, 0); if( rc ) return rc; if( eType==PTRMAP_FREEPAGE ){ searchList = 1; } } }else if( eMode==BTALLOC_LE ){ searchList = 1; } #endif /* Decrement the free-list count by 1. Set iTrunk to the index of the ** first free-list trunk page. iPrevTrunk is initially 1. */ rc = sqlite3PagerWrite(pPage1->pDbPage); if( rc ) return rc; put4byte(&pPage1->aData[36], n-1); /* The code within this loop is run only once if the 'searchList' variable ** is not true. Otherwise, it runs once for each trunk-page on the ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) */ do { pPrevTrunk = pTrunk; if( pPrevTrunk ){ /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page ** is the page number of the next freelist trunk page in the list or ** zero if this is the last freelist trunk page. */ iTrunk = get4byte(&pPrevTrunk->aData[0]); }else{ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 ** stores the page number of the first page of the freelist, or zero if ** the freelist is empty. */ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); if( iTrunk>mxPage || nSearch++ > n ){ rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); }else{ rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; } assert( pTrunk!=0 ); assert( pTrunk->aData!=0 ); /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page ** is the number of leaf page pointers to follow. */ k = get4byte(&pTrunk->aData[4]); if( k==0 && !searchList ){ /* The trunk has no leaves and the list is not being searched. ** So extract the trunk page itself and use it as the newly ** allocated page */ assert( pPrevTrunk==0 ); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ){ goto end_allocate_page; } *pPgno = iTrunk; memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); *ppPage = pTrunk; pTrunk = 0; TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1)); }else if( k>(u32)(pBt->usableSize/4 - 2) ){ /* Value of k is out of range. Database corruption */ rc = SQLITE_CORRUPT_PGNO(iTrunk); goto end_allocate_page; #ifndef SQLITE_OMIT_AUTOVACUUM }else if( searchList && (nearby==iTrunk || (iTrunkpDbPage); if( rc ){ goto end_allocate_page; } if( k==0 ){ if( !pPrevTrunk ){ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); }else{ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); if( rc!=SQLITE_OK ){ goto end_allocate_page; } memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); } }else{ /* The trunk page is required by the caller but it contains ** pointers to free-list leaves. The first leaf becomes a trunk ** page in this case. */ MemPage *pNewTrunk; Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); if( iNewTrunk>mxPage ){ rc = SQLITE_CORRUPT_PGNO(iTrunk); goto end_allocate_page; } testcase( iNewTrunk==mxPage ); rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); if( rc!=SQLITE_OK ){ goto end_allocate_page; } rc = sqlite3PagerWrite(pNewTrunk->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pNewTrunk); goto end_allocate_page; } memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); put4byte(&pNewTrunk->aData[4], k-1); memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); releasePage(pNewTrunk); if( !pPrevTrunk ){ assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); put4byte(&pPage1->aData[32], iNewTrunk); }else{ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); if( rc ){ goto end_allocate_page; } put4byte(&pPrevTrunk->aData[0], iNewTrunk); } } pTrunk = 0; TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1)); #endif }else if( k>0 ){ /* Extract a leaf from the trunk */ u32 closest; Pgno iPage; unsigned char *aData = pTrunk->aData; if( nearby>0 ){ u32 i; closest = 0; if( eMode==BTALLOC_LE ){ for(i=0; imxPage || iPage<2 ){ rc = SQLITE_CORRUPT_PGNO(iTrunk); goto end_allocate_page; } testcase( iPage==mxPage ); if( !searchList || (iPage==nearby || (iPagepgno, n-1)); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ) goto end_allocate_page; if( closestpDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); *ppPage = 0; } } searchList = 0; } } releasePage(pPrevTrunk); pPrevTrunk = 0; }while( searchList ); }else{ /* There are no pages on the freelist, so append a new page to the ** database image. ** ** Normally, new pages allocated by this block can be requested from the ** pager layer with the 'no-content' flag set. This prevents the pager ** from trying to read the pages content from disk. However, if the ** current transaction has already run one or more incremental-vacuum ** steps, then the page we are about to allocate may contain content ** that is required in the event of a rollback. In this case, do ** not set the no-content flag. This causes the pager to load and journal ** the current page content before overwriting it. ** ** Note that the pager will not actually attempt to load or journal ** content for any page that really does lie past the end of the database ** file on disk. So the effects of disabling the no-content optimization ** here are confined to those pages that lie between the end of the ** database image and the end of the database file. */ int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc ) return rc; pBt->nPage++; if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ /* If *pPgno refers to a pointer-map page, allocate two new pages ** at the end of the file instead of one. The first allocated page ** becomes a new pointer-map page, the second is used by the caller. */ MemPage *pPg = 0; TRACE(("ALLOCATE: %u from end of file (pointer-map page)\n", pBt->nPage)); assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pPg->pDbPage); releasePage(pPg); } if( rc ) return rc; pBt->nPage++; if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } } #endif put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); *pPgno = pBt->nPage; assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); if( rc ) return rc; rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); *ppPage = 0; } TRACE(("ALLOCATE: %u from end of file\n", *pPgno)); } assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); end_allocate_page: releasePage(pTrunk); releasePage(pPrevTrunk); assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); return rc; } /* ** This function is used to add page iPage to the database file free-list. ** It is assumed that the page is not already a part of the free-list. ** ** The value passed as the second argument to this function is optional. ** If the caller happens to have a pointer to the MemPage object ** corresponding to page iPage handy, it may pass it as the second value. ** Otherwise, it may pass NULL. ** ** If a pointer to a MemPage object is passed as the second argument, ** its reference count is not altered by this function. */ static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ MemPage *pTrunk = 0; /* Free-list trunk page */ Pgno iTrunk = 0; /* Page number of free-list trunk page */ MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ MemPage *pPage; /* Page being freed. May be NULL. */ int rc; /* Return Code */ u32 nFree; /* Initial number of pages on free-list */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( CORRUPT_DB || iPage>1 ); assert( !pMemPage || pMemPage->pgno==iPage ); if( iPage<2 || iPage>pBt->nPage ){ return SQLITE_CORRUPT_BKPT; } if( pMemPage ){ pPage = pMemPage; sqlite3PagerRef(pPage->pDbPage); }else{ pPage = btreePageLookup(pBt, iPage); } /* Increment the free page count on pPage1 */ rc = sqlite3PagerWrite(pPage1->pDbPage); if( rc ) goto freepage_out; nFree = get4byte(&pPage1->aData[36]); put4byte(&pPage1->aData[36], nFree+1); if( pBt->btsFlags & BTS_SECURE_DELETE ){ /* If the secure_delete option is enabled, then ** always fully overwrite deleted information with zeros. */ if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) ){ goto freepage_out; } memset(pPage->aData, 0, pPage->pBt->pageSize); } /* If the database supports auto-vacuum, write an entry in the pointer-map ** to indicate that the page is free. */ if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); if( rc ) goto freepage_out; } /* Now manipulate the actual database free-list structure. There are two ** possibilities. If the free-list is currently empty, or if the first ** trunk page in the free-list is full, then this page will become a ** new free-list trunk page. Otherwise, it will become a leaf of the ** first trunk page in the current free-list. This block tests if it ** is possible to add the page as a new free-list leaf. */ if( nFree!=0 ){ u32 nLeaf; /* Initial number of leaf cells on trunk page */ iTrunk = get4byte(&pPage1->aData[32]); if( iTrunk>btreePagecount(pBt) ){ rc = SQLITE_CORRUPT_BKPT; goto freepage_out; } rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); if( rc!=SQLITE_OK ){ goto freepage_out; } nLeaf = get4byte(&pTrunk->aData[4]); assert( pBt->usableSize>32 ); if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ rc = SQLITE_CORRUPT_BKPT; goto freepage_out; } if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ /* In this case there is room on the trunk page to insert the page ** being freed as a new leaf. ** ** Note that the trunk page is not really full until it contains ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have ** coded. But due to a coding error in versions of SQLite prior to ** 3.6.0, databases with freelist trunk pages holding more than ** usableSize/4 - 8 entries will be reported as corrupt. In order ** to maintain backwards compatibility with older versions of SQLite, ** we will continue to restrict the number of entries to usableSize/4 - 8 ** for now. At some point in the future (once everyone has upgraded ** to 3.6.0 or later) we should consider fixing the conditional above ** to read "usableSize/4-2" instead of "usableSize/4-8". ** ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still ** avoid using the last six entries in the freelist trunk page array in ** order that database files created by newer versions of SQLite can be ** read by older versions of SQLite. */ rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pTrunk->aData[4], nLeaf+1); put4byte(&pTrunk->aData[8+nLeaf*4], iPage); if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ sqlite3PagerDontWrite(pPage->pDbPage); } rc = btreeSetHasContent(pBt, iPage); } TRACE(("FREE-PAGE: %u leaf on trunk page %u\n",pPage->pgno,pTrunk->pgno)); goto freepage_out; } } /* If control flows to this point, then it was not possible to add the ** the page being freed as a leaf page of the first trunk in the free-list. ** Possibly because the free-list is empty, or possibly because the ** first trunk in the free-list is full. Either way, the page being freed ** will become the new first trunk page in the free-list. */ if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ goto freepage_out; } rc = sqlite3PagerWrite(pPage->pDbPage); if( rc!=SQLITE_OK ){ goto freepage_out; } put4byte(pPage->aData, iTrunk); put4byte(&pPage->aData[4], 0); put4byte(&pPage1->aData[32], iPage); TRACE(("FREE-PAGE: %u new trunk page replacing %u\n", pPage->pgno, iTrunk)); freepage_out: if( pPage ){ pPage->isInit = 0; } releasePage(pPage); releasePage(pTrunk); return rc; } static void freePage(MemPage *pPage, int *pRC){ if( (*pRC)==SQLITE_OK ){ *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); } } /* ** Free the overflow pages associated with the given Cell. */ static SQLITE_NOINLINE int clearCellOverflow( MemPage *pPage, /* The page that contains the Cell */ unsigned char *pCell, /* First byte of the Cell */ CellInfo *pInfo /* Size information about the cell */ ){ BtShared *pBt; Pgno ovflPgno; int rc; int nOvfl; u32 ovflPageSize; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pInfo->nLocal!=pInfo->nPayload ); testcase( pCell + pInfo->nSize == pPage->aDataEnd ); testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); if( pCell + pInfo->nSize > pPage->aDataEnd ){ /* Cell extends past end of page */ return SQLITE_CORRUPT_PAGE(pPage); } ovflPgno = get4byte(pCell + pInfo->nSize - 4); pBt = pPage->pBt; assert( pBt->usableSize > 4 ); ovflPageSize = pBt->usableSize - 4; nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; assert( nOvfl>0 || (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)btreePagecount(pBt) ){ /* 0 is not a legal page number and page 1 cannot be an ** overflow page. Therefore if ovflPgno<2 or past the end of the ** file the database must be corrupt. */ return SQLITE_CORRUPT_BKPT; } if( nOvfl ){ rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); if( rc ) return rc; } if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 ){ /* There is no reason any cursor should have an outstanding reference ** to an overflow page belonging to a cell that is being deleted/updated. ** So if there exists more than one reference to this page, then it ** must not really be an overflow page and the database must be corrupt. ** It is helpful to detect this before calling freePage2(), as ** freePage2() may zero the page contents if secure-delete mode is ** enabled. If this 'overflow' page happens to be a page that the ** caller is iterating through or using in some other way, this ** can be problematic. */ rc = SQLITE_CORRUPT_BKPT; }else{ rc = freePage2(pBt, pOvfl, ovflPgno); } if( pOvfl ){ sqlite3PagerUnref(pOvfl->pDbPage); } if( rc ) return rc; ovflPgno = iNext; } return SQLITE_OK; } /* Call xParseCell to compute the size of a cell. If the cell contains ** overflow, then invoke cellClearOverflow to clear out that overflow. ** Store the result code (SQLITE_OK or some error code) in rc. ** ** Implemented as macro to force inlining for performance. */ #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ pPage->xParseCell(pPage, pCell, &sInfo); \ if( sInfo.nLocal!=sInfo.nPayload ){ \ rc = clearCellOverflow(pPage, pCell, &sInfo); \ }else{ \ rc = SQLITE_OK; \ } /* ** Create the byte sequence used to represent a cell on page pPage ** and write that byte sequence into pCell[]. Overflow pages are ** allocated and filled in as necessary. The calling procedure ** is responsible for making sure sufficient space has been allocated ** for pCell[]. ** ** Note that pCell does not necessary need to point to the pPage->aData ** area. pCell might point to some temporary storage. The cell will ** be constructed in this temporary area then copied into pPage->aData ** later. */ static int fillInCell( MemPage *pPage, /* The page that contains the cell */ unsigned char *pCell, /* Complete text of the cell */ const BtreePayload *pX, /* Payload with which to construct the cell */ int *pnSize /* Write cell size here */ ){ int nPayload; const u8 *pSrc; int nSrc, n, rc, mn; int spaceLeft; MemPage *pToRelease; unsigned char *pPrior; unsigned char *pPayload; BtShared *pBt; Pgno pgnoOvfl; int nHeader; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); /* pPage is not necessarily writeable since pCell might be auxiliary ** buffer space that is separate from the pPage buffer area */ assert( pCellaData || pCell>=&pPage->aData[pPage->pBt->pageSize] || sqlite3PagerIswriteable(pPage->pDbPage) ); /* Fill in the header. */ nHeader = pPage->childPtrSize; if( pPage->intKey ){ nPayload = pX->nData + pX->nZero; pSrc = pX->pData; nSrc = pX->nData; assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ nHeader += putVarint32(&pCell[nHeader], nPayload); nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); }else{ assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); nSrc = nPayload = (int)pX->nKey; pSrc = pX->pKey; nHeader += putVarint32(&pCell[nHeader], nPayload); } /* Fill in the payload */ pPayload = &pCell[nHeader]; if( nPayload<=pPage->maxLocal ){ /* This is the common case where everything fits on the btree page ** and no overflow pages are required. */ n = nHeader + nPayload; testcase( n==3 ); testcase( n==4 ); if( n<4 ){ n = 4; pPayload[nPayload] = 0; } *pnSize = n; assert( nSrc<=nPayload ); testcase( nSrcminLocal; n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); testcase( n==pPage->maxLocal ); testcase( n==pPage->maxLocal+1 ); if( n > pPage->maxLocal ) n = mn; spaceLeft = n; *pnSize = n + nHeader + 4; pPrior = &pCell[nHeader+n]; pToRelease = 0; pgnoOvfl = 0; pBt = pPage->pBt; /* At this point variables should be set as follows: ** ** nPayload Total payload size in bytes ** pPayload Begin writing payload here ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, ** that means content must spill into overflow pages. ** *pnSize Size of the local cell (not counting overflow pages) ** pPrior Where to write the pgno of the first overflow page ** ** Use a call to btreeParseCellPtr() to verify that the values above ** were computed correctly. */ #ifdef SQLITE_DEBUG { CellInfo info; pPage->xParseCell(pPage, pCell, &info); assert( nHeader==(int)(info.pPayload - pCell) ); assert( info.nKey==pX->nKey ); assert( *pnSize == info.nSize ); assert( spaceLeft == info.nLocal ); } #endif /* Write the payload into the local Cell and any extra into overflow pages */ while( 1 ){ n = nPayload; if( n>spaceLeft ) n = spaceLeft; /* If pToRelease is not zero than pPayload points into the data area ** of pToRelease. Make sure pToRelease is still writeable. */ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); /* If pPayload is part of the data area of pPage, then make sure pPage ** is still writeable */ assert( pPayloadaData || pPayload>=&pPage->aData[pBt->pageSize] || sqlite3PagerIswriteable(pPage->pDbPage) ); if( nSrc>=n ){ memcpy(pPayload, pSrc, n); }else if( nSrc>0 ){ n = nSrc; memcpy(pPayload, pSrc, n); }else{ memset(pPayload, 0, n); } nPayload -= n; if( nPayload<=0 ) break; pPayload += n; pSrc += n; nSrc -= n; spaceLeft -= n; if( spaceLeft==0 ){ MemPage *pOvfl = 0; #ifndef SQLITE_OMIT_AUTOVACUUM Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ if( pBt->autoVacuum ){ do{ pgnoOvfl++; } while( PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) ); } #endif rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); #ifndef SQLITE_OMIT_AUTOVACUUM /* If the database supports auto-vacuum, and the second or subsequent ** overflow page is being allocated, add an entry to the pointer-map ** for that page now. ** ** If this is the first overflow page, then write a partial entry ** to the pointer-map. If we write nothing to this pointer-map slot, ** then the optimistic overflow chain processing in clearCell() ** may misinterpret the uninitialized values and delete the ** wrong pages from the database. */ if( pBt->autoVacuum && rc==SQLITE_OK ){ u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); if( rc ){ releasePage(pOvfl); } } #endif if( rc ){ releasePage(pToRelease); return rc; } /* If pToRelease is not zero than pPrior points into the data area ** of pToRelease. Make sure pToRelease is still writeable. */ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); /* If pPrior is part of the data area of pPage, then make sure pPage ** is still writeable */ assert( pPrioraData || pPrior>=&pPage->aData[pBt->pageSize] || sqlite3PagerIswriteable(pPage->pDbPage) ); put4byte(pPrior, pgnoOvfl); releasePage(pToRelease); pToRelease = pOvfl; pPrior = pOvfl->aData; put4byte(pPrior, 0); pPayload = &pOvfl->aData[4]; spaceLeft = pBt->usableSize - 4; } } releasePage(pToRelease); return SQLITE_OK; } /* ** Remove the i-th cell from pPage. This routine effects pPage only. ** The cell content is not freed or deallocated. It is assumed that ** the cell content has been copied someplace else. This routine just ** removes the reference to the cell from pPage. ** ** "sz" must be the number of bytes in the cell. */ static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ u32 pc; /* Offset to cell content of cell being deleted */ u8 *data; /* pPage->aData */ u8 *ptr; /* Used to move bytes around within data[] */ int rc; /* The return code */ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ if( *pRC ) return; assert( idx>=0 ); assert( idxnCell ); assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->nFree>=0 ); data = pPage->aData; ptr = &pPage->aCellIdx[2*idx]; assert( pPage->pBt->usableSize > (u32)(ptr-data) ); pc = get2byte(ptr); hdr = pPage->hdrOffset; testcase( pc==(u32)get2byte(&data[hdr+5]) ); testcase( pc+sz==pPage->pBt->usableSize ); if( pc+sz > pPage->pBt->usableSize ){ *pRC = SQLITE_CORRUPT_BKPT; return; } rc = freeSpace(pPage, pc, sz); if( rc ){ *pRC = rc; return; } pPage->nCell--; if( pPage->nCell==0 ){ memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pPage->pBt->usableSize); pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset - pPage->childPtrSize - 8; }else{ memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); put2byte(&data[hdr+3], pPage->nCell); pPage->nFree += 2; } } /* ** Insert a new cell on pPage at cell index "i". pCell points to the ** content of the cell. ** ** If the cell content will fit on the page, then put it there. If it ** will not fit, then make a copy of the cell content into pTemp if ** pTemp is not null. Regardless of pTemp, allocate a new entry ** in pPage->apOvfl[] and make it point to the cell content (either ** in pTemp or the original pCell) and also record its index. ** Allocating a new entry in pPage->aCell[] implies that ** pPage->nOverflow is incremented. ** ** The insertCellFast() routine below works exactly the same as ** insertCell() except that it lacks the pTemp and iChild parameters ** which are assumed zero. Other than that, the two routines are the ** same. ** ** Fixes or enhancements to this routine should be reflected in ** insertCellFast()! */ static int insertCell( MemPage *pPage, /* Page into which we are copying */ int i, /* New cell becomes the i-th cell of the page */ u8 *pCell, /* Content of the new cell */ int sz, /* Bytes of content in pCell */ u8 *pTemp, /* Temp storage space for pCell, if needed */ Pgno iChild /* If non-zero, replace first 4 bytes with this value */ ){ int idx = 0; /* Where to write new cell content in data[] */ int j; /* Loop counter */ u8 *data; /* The content of the whole page */ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( MX_CELL(pPage->pBt)<=10921 ); assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); assert( pPage->nFree>=0 ); assert( iChild>0 ); if( pPage->nOverflow || sz+2>pPage->nFree ){ if( pTemp ){ memcpy(pTemp, pCell, sz); pCell = pTemp; } put4byte(pCell, iChild); j = pPage->nOverflow++; /* Comparison against ArraySize-1 since we hold back one extra slot ** as a contingency. In other words, never need more than 3 overflow ** slots but 4 are allocated, just to be safe. */ assert( j < ArraySize(pPage->apOvfl)-1 ); pPage->apOvfl[j] = pCell; pPage->aiOvfl[j] = (u16)i; /* When multiple overflows occur, they are always sequential and in ** sorted order. This invariants arise because multiple overflows can ** only occur when inserting divider cells into the parent page during ** balancing, and the dividers are adjacent and sorted. */ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ }else{ int rc = sqlite3PagerWrite(pPage->pDbPage); if( NEVER(rc!=SQLITE_OK) ){ return rc; } assert( sqlite3PagerIswriteable(pPage->pDbPage) ); data = pPage->aData; assert( &data[pPage->cellOffset]==pPage->aCellIdx ); rc = allocateSpace(pPage, sz, &idx); if( rc ){ return rc; } /* The allocateSpace() routine guarantees the following properties ** if it returns successfully */ assert( idx >= 0 ); assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nFree -= (u16)(2 + sz); /* In a corrupt database where an entry in the cell index section of ** a btree page has a value of 3 or less, the pCell value might point ** as many as 4 bytes in front of the start of the aData buffer for ** the source page. Make sure this does not cause problems by not ** reading the first 4 bytes */ memcpy(&data[idx+4], pCell+4, sz-4); put4byte(&data[idx], iChild); pIns = pPage->aCellIdx + i*2; memmove(pIns+2, pIns, 2*(pPage->nCell - i)); put2byte(pIns, idx); pPage->nCell++; /* increment the cell count */ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); #ifndef SQLITE_OMIT_AUTOVACUUM if( pPage->pBt->autoVacuum ){ int rc2 = SQLITE_OK; /* The cell may contain a pointer to an overflow page. If so, write ** the entry for the overflow page into the pointer map. */ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2); if( rc2 ) return rc2; } #endif } return SQLITE_OK; } /* ** This variant of insertCell() assumes that the pTemp and iChild ** parameters are both zero. Use this variant in sqlite3BtreeInsert() ** for performance improvement, and also so that this variant is only ** called from that one place, and is thus inlined, and thus runs must ** faster. ** ** Fixes or enhancements to this routine should be reflected into ** the insertCell() routine. */ static int insertCellFast( MemPage *pPage, /* Page into which we are copying */ int i, /* New cell becomes the i-th cell of the page */ u8 *pCell, /* Content of the new cell */ int sz /* Bytes of content in pCell */ ){ int idx = 0; /* Where to write new cell content in data[] */ int j; /* Loop counter */ u8 *data; /* The content of the whole page */ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( MX_CELL(pPage->pBt)<=10921 ); assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); assert( pPage->nFree>=0 ); assert( pPage->nOverflow==0 ); if( sz+2>pPage->nFree ){ j = pPage->nOverflow++; /* Comparison against ArraySize-1 since we hold back one extra slot ** as a contingency. In other words, never need more than 3 overflow ** slots but 4 are allocated, just to be safe. */ assert( j < ArraySize(pPage->apOvfl)-1 ); pPage->apOvfl[j] = pCell; pPage->aiOvfl[j] = (u16)i; /* When multiple overflows occur, they are always sequential and in ** sorted order. This invariants arise because multiple overflows can ** only occur when inserting divider cells into the parent page during ** balancing, and the dividers are adjacent and sorted. */ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ }else{ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc!=SQLITE_OK ){ return rc; } assert( sqlite3PagerIswriteable(pPage->pDbPage) ); data = pPage->aData; assert( &data[pPage->cellOffset]==pPage->aCellIdx ); rc = allocateSpace(pPage, sz, &idx); if( rc ){ return rc; } /* The allocateSpace() routine guarantees the following properties ** if it returns successfully */ assert( idx >= 0 ); assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nFree -= (u16)(2 + sz); memcpy(&data[idx], pCell, sz); pIns = pPage->aCellIdx + i*2; memmove(pIns+2, pIns, 2*(pPage->nCell - i)); put2byte(pIns, idx); pPage->nCell++; /* increment the cell count */ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); #ifndef SQLITE_OMIT_AUTOVACUUM if( pPage->pBt->autoVacuum ){ int rc2 = SQLITE_OK; /* The cell may contain a pointer to an overflow page. If so, write ** the entry for the overflow page into the pointer map. */ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2); if( rc2 ) return rc2; } #endif } return SQLITE_OK; } /* ** The following parameters determine how many adjacent pages get involved ** in a balancing operation. NN is the number of neighbors on either side ** of the page that participate in the balancing operation. NB is the ** total number of pages that participate, including the target page and ** NN neighbors on either side. ** ** The minimum value of NN is 1 (of course). Increasing NN above 1 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance ** in exchange for a larger degradation in INSERT and UPDATE performance. ** The value of NN appears to give the best results overall. ** ** (Later:) The description above makes it seem as if these values are ** tunable - as if you could change them and recompile and it would all work. ** But that is unlikely. NB has been 3 since the inception of SQLite and ** we have never tested any other value. */ #define NN 1 /* Number of neighbors on either side of pPage */ #define NB 3 /* (NN*2+1): Total pages involved in the balance */ /* ** A CellArray object contains a cache of pointers and sizes for a ** consecutive sequence of cells that might be held on multiple pages. ** ** The cells in this array are the divider cell or cells from the pParent ** page plus up to three child pages. There are a total of nCell cells. ** ** pRef is a pointer to one of the pages that contributes cells. This is ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize ** which should be common to all pages that contribute cells to this array. ** ** apCell[] and szCell[] hold, respectively, pointers to the start of each ** cell and the size of each cell. Some of the apCell[] pointers might refer ** to overflow cells. In other words, some apCel[] pointers might not point ** to content area of the pages. ** ** A szCell[] of zero means the size of that cell has not yet been computed. ** ** The cells come from as many as four different pages: ** ** ----------- ** | Parent | ** ----------- ** / | \ ** / | \ ** --------- --------- --------- ** |Child-1| |Child-2| |Child-3| ** --------- --------- --------- ** ** The order of cells is in the array is for an index btree is: ** ** 1. All cells from Child-1 in order ** 2. The first divider cell from Parent ** 3. All cells from Child-2 in order ** 4. The second divider cell from Parent ** 5. All cells from Child-3 in order ** ** For a table-btree (with rowids) the items 2 and 4 are empty because ** content exists only in leaves and there are no divider cells. ** ** For an index btree, the apEnd[] array holds pointer to the end of page ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, ** respectively. The ixNx[] array holds the number of cells contained in ** each of these 5 stages, and all stages to the left. Hence: ** ** ixNx[0] = Number of cells in Child-1. ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells ** ixNx[4] = Total number of cells. ** ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] ** are used and they point to the leaf pages only, and the ixNx value are: ** ** ixNx[0] = Number of cells in Child-1. ** ixNx[1] = Number of cells in Child-1 and Child-2. ** ixNx[2] = Total number of cells. ** ** Sometimes when deleting, a child page can have zero cells. In those ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] ** entries, shift down. The end result is that each ixNx[] entry should ** be larger than the previous */ typedef struct CellArray CellArray; struct CellArray { int nCell; /* Number of cells in apCell[] */ MemPage *pRef; /* Reference page */ u8 **apCell; /* All cells begin balanced */ u16 *szCell; /* Local size of all cells in apCell[] */ u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ }; /* ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been ** computed. */ static void populateCellCache(CellArray *p, int idx, int N){ MemPage *pRef = p->pRef; u16 *szCell = p->szCell; assert( idx>=0 && idx+N<=p->nCell ); while( N>0 ){ assert( p->apCell[idx]!=0 ); if( szCell[idx]==0 ){ szCell[idx] = pRef->xCellSize(pRef, p->apCell[idx]); }else{ assert( CORRUPT_DB || szCell[idx]==pRef->xCellSize(pRef, p->apCell[idx]) ); } idx++; N--; } } /* ** Return the size of the Nth element of the cell array */ static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ assert( N>=0 && NnCell ); assert( p->szCell[N]==0 ); p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); return p->szCell[N]; } static u16 cachedCellSize(CellArray *p, int N){ assert( N>=0 && NnCell ); if( p->szCell[N] ) return p->szCell[N]; return computeCellSize(p, N); } /* ** Array apCell[] contains pointers to nCell b-tree page cells. The ** szCell[] array contains the size in bytes of each cell. This function ** replaces the current contents of page pPg with the contents of the cell ** array. ** ** Some of the cells in apCell[] may currently be stored in pPg. This ** function works around problems caused by this by making a copy of any ** such cells before overwriting the page data. ** ** The MemPage.nFree field is invalidated by this function. It is the ** responsibility of the caller to set it correctly. */ static int rebuildPage( CellArray *pCArray, /* Content to be added to page pPg */ int iFirst, /* First cell in pCArray to use */ int nCell, /* Final number of cells on page */ MemPage *pPg /* The page to be reconstructed */ ){ const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ u8 * const aData = pPg->aData; /* Pointer to data for pPg */ const int usableSize = pPg->pBt->usableSize; u8 * const pEnd = &aData[usableSize]; int i = iFirst; /* Which cell to copy from pCArray*/ u32 j; /* Start of cell content area */ int iEnd = i+nCell; /* Loop terminator */ u8 *pCellptr = pPg->aCellIdx; u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); u8 *pData; int k; /* Current slot in pCArray->apEnd[] */ u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ assert( nCell>0 ); assert( i(u32)usableSize ){ j = 0; } memcpy(&pTmp[j], &aData[j], usableSize - j); for(k=0; ALWAYS(kixNx[k]<=i; k++){} pSrcEnd = pCArray->apEnd[k]; pData = pEnd; while( 1/*exit by break*/ ){ u8 *pCell = pCArray->apCell[i]; u16 sz = pCArray->szCell[i]; assert( sz>0 ); if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; pCell = &pTmp[pCell - aData]; }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd && (uptr)(pCell)<(uptr)pSrcEnd ){ return SQLITE_CORRUPT_BKPT; } pData -= sz; put2byte(pCellptr, (pData - aData)); pCellptr += 2; if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; memmove(pData, pCell, sz); assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); i++; if( i>=iEnd ) break; if( pCArray->ixNx[k]<=i ){ k++; pSrcEnd = pCArray->apEnd[k]; } } /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ pPg->nCell = nCell; pPg->nOverflow = 0; put2byte(&aData[hdr+1], 0); put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); aData[hdr+7] = 0x00; return SQLITE_OK; } /* ** The pCArray objects contains pointers to b-tree cells and the cell sizes. ** This function attempts to add the cells stored in the array to page pPg. ** If it cannot (because the page needs to be defragmented before the cells ** will fit), non-zero is returned. Otherwise, if the cells are added ** successfully, zero is returned. ** ** Argument pCellptr points to the first entry in the cell-pointer array ** (part of page pPg) to populate. After cell apCell[0] is written to the ** page body, a 16-bit offset is written to pCellptr. And so on, for each ** cell in the array. It is the responsibility of the caller to ensure ** that it is safe to overwrite this part of the cell-pointer array. ** ** When this function is called, *ppData points to the start of the ** content area on page pPg. If the size of the content area is extended, ** *ppData is updated to point to the new start of the content area ** before returning. ** ** Finally, argument pBegin points to the byte immediately following the ** end of the space required by this page for the cell-pointer area (for ** all cells - not just those inserted by the current call). If the content ** area must be extended to before this point in order to accommodate all ** cells in apCell[], then the cells do not fit and non-zero is returned. */ static int pageInsertArray( MemPage *pPg, /* Page to add cells to */ u8 *pBegin, /* End of cell-pointer array */ u8 **ppData, /* IN/OUT: Page content-area pointer */ u8 *pCellptr, /* Pointer to cell-pointer area */ int iFirst, /* Index of first cell to add */ int nCell, /* Number of cells to add to pPg */ CellArray *pCArray /* Array of cells */ ){ int i = iFirst; /* Loop counter - cell index to insert */ u8 *aData = pPg->aData; /* Complete page */ u8 *pData = *ppData; /* Content area. A subset of aData[] */ int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ int k; /* Current slot in pCArray->apEnd[] */ u8 *pEnd; /* Maximum extent of cell data */ assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ if( iEnd<=iFirst ) return 0; for(k=0; ALWAYS(kixNx[k]<=i ; k++){} pEnd = pCArray->apEnd[k]; while( 1 /*Exit by break*/ ){ int sz, rc; u8 *pSlot; assert( pCArray->szCell[i]!=0 ); sz = pCArray->szCell[i]; if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ if( (pData - pBegin)apCell[i] will never overlap on a well-formed ** database. But they might for a corrupt database. Hence use memmove() ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ assert( (pSlot+sz)<=pCArray->apCell[i] || pSlot>=(pCArray->apCell[i]+sz) || CORRUPT_DB ); if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd && (uptr)(pCArray->apCell[i])<(uptr)pEnd ){ assert( CORRUPT_DB ); (void)SQLITE_CORRUPT_BKPT; return 1; } memmove(pSlot, pCArray->apCell[i], sz); put2byte(pCellptr, (pSlot - aData)); pCellptr += 2; i++; if( i>=iEnd ) break; if( pCArray->ixNx[k]<=i ){ k++; pEnd = pCArray->apEnd[k]; } } *ppData = pData; return 0; } /* ** The pCArray object contains pointers to b-tree cells and their sizes. ** ** This function adds the space associated with each cell in the array ** that is currently stored within the body of pPg to the pPg free-list. ** The cell-pointers and other fields of the page are not updated. ** ** This function returns the total number of cells added to the free-list. */ static int pageFreeArray( MemPage *pPg, /* Page to edit */ int iFirst, /* First cell to delete */ int nCell, /* Cells to delete */ CellArray *pCArray /* Array of cells */ ){ u8 * const aData = pPg->aData; u8 * const pEnd = &aData[pPg->pBt->usableSize]; u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; int nRet = 0; int i, j; int iEnd = iFirst + nCell; int nFree = 0; int aOfst[10]; int aAfter[10]; for(i=iFirst; iapCell[i]; if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ int sz; int iAfter; int iOfst; /* No need to use cachedCellSize() here. The sizes of all cells that ** are to be freed have already been computing while deciding which ** cells need freeing */ sz = pCArray->szCell[i]; assert( sz>0 ); iOfst = (u16)(pCell - aData); iAfter = iOfst+sz; for(j=0; j=nFree ){ if( nFree>=(int)(sizeof(aOfst)/sizeof(aOfst[0])) ){ for(j=0; jpEnd ) return 0; nFree++; } nRet++; } } for(j=0; jnCell cells starting with ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells ** starting at apCell[iNew]. ** ** This routine makes the necessary adjustments to pPg so that it contains ** the correct cells after being balanced. ** ** The pPg->nFree field is invalid when this function returns. It is the ** responsibility of the caller to set it correctly. */ static int editPage( MemPage *pPg, /* Edit this page */ int iOld, /* Index of first cell currently on page */ int iNew, /* Index of new first cell on page */ int nNew, /* Final number of cells on page */ CellArray *pCArray /* Array of cells and sizes */ ){ u8 * const aData = pPg->aData; const int hdr = pPg->hdrOffset; u8 *pBegin = &pPg->aCellIdx[nNew * 2]; int nCell = pPg->nCell; /* Cells stored on pPg */ u8 *pData; u8 *pCellptr; int i; int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; int iNewEnd = iNew + nNew; #ifdef SQLITE_DEBUG u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); memcpy(pTmp, aData, pPg->pBt->usableSize); #endif /* Remove cells from the start and end of the page */ assert( nCell>=0 ); if( iOldnCell) ) return SQLITE_CORRUPT_BKPT; memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); nCell -= nShift; } if( iNewEnd < iOldEnd ){ int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); assert( nCell>=nTail ); nCell -= nTail; } pData = &aData[get2byte(&aData[hdr+5])]; if( pDatapPg->aDataEnd) ) goto editpage_fail; /* Add cells to the start of the page */ if( iNew=0 ); pCellptr = pPg->aCellIdx; memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iNew, nAdd, pCArray ) ) goto editpage_fail; nCell += nAdd; } /* Add any overflow cells */ for(i=0; inOverflow; i++){ int iCell = (iOld + pPg->aiOvfl[i]) - iNew; if( iCell>=0 && iCellaCellIdx[iCell * 2]; if( nCell>iCell ){ memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); } nCell++; cachedCellSize(pCArray, iCell+iNew); if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iCell+iNew, 1, pCArray ) ) goto editpage_fail; } } /* Append cells to the end of the page */ assert( nCell>=0 ); pCellptr = &pPg->aCellIdx[nCell*2]; if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iNew+nCell, nNew-nCell, pCArray ) ) goto editpage_fail; pPg->nCell = nNew; pPg->nOverflow = 0; put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); #ifdef SQLITE_DEBUG for(i=0; iapCell[i+iNew]; int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ pCell = &pTmp[pCell - aData]; } assert( 0==memcmp(pCell, &aData[iOff], pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); } #endif return SQLITE_OK; editpage_fail: /* Unable to edit this page. Rebuild it from scratch instead. */ if( nNew<1 ) return SQLITE_CORRUPT_BKPT; populateCellCache(pCArray, iNew, nNew); return rebuildPage(pCArray, iNew, nNew, pPg); } #ifndef SQLITE_OMIT_QUICKBALANCE /* ** This version of balance() handles the common special case where ** a new entry is being inserted on the extreme right-end of the ** tree, in other words, when the new entry will become the largest ** entry in the tree. ** ** Instead of trying to balance the 3 right-most leaf pages, just add ** a new page to the right-hand side and put the one new entry in ** that page. This leaves the right side of the tree somewhat ** unbalanced. But odds are that we will be inserting new entries ** at the end soon afterwards so the nearly empty page will quickly ** fill up. On average. ** ** pPage is the leaf page which is the right-most page in the tree. ** pParent is its parent. pPage must have a single overflow entry ** which is also the right-most entry on the page. ** ** The pSpace buffer is used to store a temporary copy of the divider ** cell that will be inserted into pParent. Such a cell consists of a 4 ** byte page number followed by a variable length integer. In other ** words, at most 13 bytes. Hence the pSpace buffer must be at ** least 13 bytes in size. */ static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ BtShared *const pBt = pPage->pBt; /* B-Tree Database */ MemPage *pNew; /* Newly allocated page */ int rc; /* Return Code */ Pgno pgnoNew; /* Page number of pNew */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( pPage->nOverflow==1 ); if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ assert( pPage->nFree>=0 ); assert( pParent->nFree>=0 ); /* Allocate a new page. This page will become the right-sibling of ** pPage. Make the parent page writable, so that the new divider cell ** may be inserted. If both these operations are successful, proceed. */ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); if( rc==SQLITE_OK ){ u8 *pOut = &pSpace[4]; u8 *pCell = pPage->apOvfl[0]; u16 szCell = pPage->xCellSize(pPage, pCell); u8 *pStop; CellArray b; assert( sqlite3PagerIswriteable(pNew->pDbPage) ); assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); b.nCell = 1; b.pRef = pPage; b.apCell = &pCell; b.szCell = &szCell; b.apEnd[0] = pPage->aDataEnd; b.ixNx[0] = 2; rc = rebuildPage(&b, 0, 1, pNew); if( NEVER(rc) ){ releasePage(pNew); return rc; } pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; /* If this is an auto-vacuum database, update the pointer map ** with entries for the new page, and any pointer from the ** cell on the page to an overflow page. If either of these ** operations fails, the return code is set, but the contents ** of the parent page are still manipulated by the code below. ** That is Ok, at this point the parent page is guaranteed to ** be marked as dirty. Returning an error code will cause a ** rollback, undoing any changes made to the parent page. */ if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); if( szCell>pNew->minLocal ){ ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); } } /* Create a divider cell to insert into pParent. The divider cell ** consists of a 4-byte page number (the page number of pPage) and ** a variable length key value (which must be the same value as the ** largest key on pPage). ** ** To find the largest key value on pPage, first find the right-most ** cell on pPage. The first two fields of this cell are the ** record-length (a variable length integer at most 32-bits in size) ** and the key value (a variable length integer, may have any value). ** The first of the while(...) loops below skips over the record-length ** field. The second while(...) loop copies the key value from the ** cell on pPage into the pSpace buffer. */ pCell = findCell(pPage, pPage->nCell-1); pStop = &pCell[9]; while( (*(pCell++)&0x80) && pCellnCell, pSpace, (int)(pOut-pSpace), 0, pPage->pgno); } /* Set the right-child pointer of pParent to point to the new page. */ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); /* Release the reference to the new page. */ releasePage(pNew); } return rc; } #endif /* SQLITE_OMIT_QUICKBALANCE */ #if 0 /* ** This function does not contribute anything to the operation of SQLite. ** it is sometimes activated temporarily while debugging code responsible ** for setting pointer-map entries. */ static int ptrmapCheckPages(MemPage **apPage, int nPage){ int i, j; for(i=0; ipBt; assert( pPage->isInit ); for(j=0; jnCell; j++){ CellInfo info; u8 *z; z = findCell(pPage, j); pPage->xParseCell(pPage, z, &info); if( info.nLocalpgno && e==PTRMAP_OVERFLOW1 ); } if( !pPage->leaf ){ Pgno child = get4byte(z); ptrmapGet(pBt, child, &e, &n); assert( n==pPage->pgno && e==PTRMAP_BTREE ); } } if( !pPage->leaf ){ Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); ptrmapGet(pBt, child, &e, &n); assert( n==pPage->pgno && e==PTRMAP_BTREE ); } } return 1; } #endif /* ** This function is used to copy the contents of the b-tree node stored ** on page pFrom to page pTo. If page pFrom was not a leaf page, then ** the pointer-map entries for each child page are updated so that the ** parent page stored in the pointer map is page pTo. If pFrom contained ** any cells with overflow page pointers, then the corresponding pointer ** map entries are also updated so that the parent page is page pTo. ** ** If pFrom is currently carrying any overflow cells (entries in the ** MemPage.apOvfl[] array), they are not copied to pTo. ** ** Before returning, page pTo is reinitialized using btreeInitPage(). ** ** The performance of this function is not critical. It is only used by ** the balance_shallower() and balance_deeper() procedures, neither of ** which are called often under normal circumstances. */ static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ if( (*pRC)==SQLITE_OK ){ BtShared * const pBt = pFrom->pBt; u8 * const aFrom = pFrom->aData; u8 * const aTo = pTo->aData; int const iFromHdr = pFrom->hdrOffset; int const iToHdr = ((pTo->pgno==1) ? 100 : 0); int rc; int iData; assert( pFrom->isInit ); assert( pFrom->nFree>=iToHdr ); assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); /* Copy the b-tree node content from page pFrom to page pTo. */ iData = get2byte(&aFrom[iFromHdr+5]); memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); /* Reinitialize page pTo so that the contents of the MemPage structure ** match the new data. The initialization of pTo can actually fail under ** fairly obscure circumstances, even though it is a copy of initialized ** page pFrom. */ pTo->isInit = 0; rc = btreeInitPage(pTo); if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); if( rc!=SQLITE_OK ){ *pRC = rc; return; } /* If this is an auto-vacuum database, update the pointer-map entries ** for any b-tree or overflow pages that pTo now contains the pointers to. */ if( ISAUTOVACUUM(pBt) ){ *pRC = setChildPtrmaps(pTo); } } } /* ** This routine redistributes cells on the iParentIdx'th child of pParent ** (hereafter "the page") and up to 2 siblings so that all pages have about the ** same amount of free space. Usually a single sibling on either side of the ** page are used in the balancing, though both siblings might come from one ** side if the page is the first or last child of its parent. If the page ** has fewer than 2 siblings (something which can only happen if the page ** is a root page or a child of a root page) then all available siblings ** participate in the balancing. ** ** The number of siblings of the page might be increased or decreased by ** one or two in an effort to keep pages nearly full but not over full. ** ** Note that when this routine is called, some of the cells on the page ** might not actually be stored in MemPage.aData[]. This can happen ** if the page is overfull. This routine ensures that all cells allocated ** to the page and its siblings fit into MemPage.aData[] before returning. ** ** In the course of balancing the page and its siblings, cells may be ** inserted into or removed from the parent page (pParent). Doing so ** may cause the parent page to become overfull or underfull. If this ** happens, it is the responsibility of the caller to invoke the correct ** balancing routine to fix this problem (see the balance() routine). ** ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. ** ** The third argument to this function, aOvflSpace, is a pointer to a ** buffer big enough to hold one page. If while inserting cells into the parent ** page (pParent) the parent page becomes overfull, this buffer is ** used to store the parent's overflow cells. Because this function inserts ** a maximum of four divider cells into the parent page, and the maximum ** size of a cell stored within an internal node is always less than 1/4 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large ** enough for all overflow cells. ** ** If aOvflSpace is set to a null pointer, this function returns ** SQLITE_NOMEM. */ static int balance_nonroot( MemPage *pParent, /* Parent page of siblings being balanced */ int iParentIdx, /* Index of "the page" in pParent */ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ int isRoot, /* True if pParent is a root-page */ int bBulk /* True if this call is part of a bulk load */ ){ BtShared *pBt; /* The whole database */ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ int nNew = 0; /* Number of pages in apNew[] */ int nOld; /* Number of pages in apOld[] */ int i, j, k; /* Loop counters */ int nxDiv; /* Next divider slot in pParent->aCell[] */ int rc = SQLITE_OK; /* The return code */ u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ int usableSpace; /* Bytes in pPage beyond the header */ int pageFlags; /* Value of pPage->aData[0] */ int iSpace1 = 0; /* First unused byte of aSpace1[] */ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ int szScratch; /* Size of scratch memory requested */ MemPage *apOld[NB]; /* pPage and up to two siblings */ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ u8 *pRight; /* Location in parent of right-sibling pointer */ u8 *apDiv[NB-1]; /* Divider cells in pParent */ int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ int cntOld[NB+2]; /* Old index in b.apCell[] */ int szNew[NB+2]; /* Combined size of cells placed on i-th page */ u8 *aSpace1; /* Space for copies of dividers cells */ Pgno pgno; /* Temp var to store a page number in */ u8 abDone[NB+2]; /* True after i'th new page is populated */ Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ CellArray b; /* Parsed information on cells being balanced */ memset(abDone, 0, sizeof(abDone)); memset(&b, 0, sizeof(b)); pBt = pParent->pBt; assert( sqlite3_mutex_held(pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); /* At this point pParent may have at most one overflow cell. And if ** this overflow cell is present, it must be the cell with ** index iParentIdx. This scenario comes about when this function ** is called (indirectly) from sqlite3BtreeDelete(). */ assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); if( !aOvflSpace ){ return SQLITE_NOMEM_BKPT; } assert( pParent->nFree>=0 ); /* Find the sibling pages to balance. Also locate the cells in pParent ** that divide the siblings. An attempt is made to find NN siblings on ** either side of pPage. More siblings are taken from one side, however, ** if there are fewer than NN siblings on the other side. If pParent ** has NB or fewer children then all children of pParent are taken. ** ** This loop also drops the divider cells from the parent page. This ** way, the remainder of the function does not have to deal with any ** overflow cells in the parent page, since if any existed they will ** have already been removed. */ i = pParent->nOverflow + pParent->nCell; if( i<2 ){ nxDiv = 0; }else{ assert( bBulk==0 || bBulk==1 ); if( iParentIdx==0 ){ nxDiv = 0; }else if( iParentIdx==i ){ nxDiv = i-2+bBulk; }else{ nxDiv = iParentIdx-1; } i = 2-bBulk; } nOld = i+1; if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ if( rc==SQLITE_OK ){ rc = getAndInitPage(pBt, pgno, &apOld[i], 0); } if( rc ){ memset(apOld, 0, (i+1)*sizeof(MemPage*)); goto balance_cleanup; } if( apOld[i]->nFree<0 ){ rc = btreeComputeFreeSpace(apOld[i]); if( rc ){ memset(apOld, 0, (i)*sizeof(MemPage*)); goto balance_cleanup; } } nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); if( (i--)==0 ) break; if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ apDiv[i] = pParent->apOvfl[0]; pgno = get4byte(apDiv[i]); szNew[i] = pParent->xCellSize(pParent, apDiv[i]); pParent->nOverflow = 0; }else{ apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); pgno = get4byte(apDiv[i]); szNew[i] = pParent->xCellSize(pParent, apDiv[i]); /* Drop the cell from the parent page. apDiv[i] still points to ** the cell within the parent, even though it has been dropped. ** This is safe because dropping a cell only overwrites the first ** four bytes of it, and this function does not need the first ** four bytes of the divider cell. So the pointer is safe to use ** later on. ** ** But not if we are in secure-delete mode. In secure-delete mode, ** the dropCell() routine will overwrite the entire cell with zeroes. ** In this case, temporarily copy the cell into the aOvflSpace[] ** buffer. It will be copied out again as soon as the aSpace[] buffer ** is allocated. */ if( pBt->btsFlags & BTS_FAST_SECURE ){ int iOff; /* If the following if() condition is not true, the db is corrupted. ** The call to dropCell() below will detect this. */ iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); if( (iOff+szNew[i])<=(int)pBt->usableSize ){ memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; } } dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); } } /* Make nMaxCells a multiple of 4 in order to preserve 8-byte ** alignment */ nMaxCells = (nMaxCells + 3)&~3; /* ** Allocate space for memory structures */ szScratch = nMaxCells*sizeof(u8*) /* b.apCell */ + nMaxCells*sizeof(u16) /* b.szCell */ + pBt->pageSize; /* aSpace1 */ assert( szScratch<=7*(int)pBt->pageSize ); b.apCell = sqlite3StackAllocRaw(0, szScratch ); if( b.apCell==0 ){ rc = SQLITE_NOMEM_BKPT; goto balance_cleanup; } b.szCell = (u16*)&b.apCell[nMaxCells]; aSpace1 = (u8*)&b.szCell[nMaxCells]; assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); /* ** Load pointers to all cells on sibling pages and the divider cells ** into the local b.apCell[] array. Make copies of the divider cells ** into space obtained from aSpace1[]. The divider cells have already ** been removed from pParent. ** ** If the siblings are on leaf pages, then the child pointers of the ** divider cells are stripped from the cells before they are copied ** into aSpace1[]. In this way, all cells in b.apCell[] are without ** child pointers. If siblings are not leaves, then all cell in ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] ** are alike. ** ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. ** leafData: 1 if pPage holds key+data and pParent holds only keys. */ b.pRef = apOld[0]; leafCorrection = b.pRef->leaf*4; leafData = b.pRef->intKeyLeaf; for(i=0; inCell; u8 *aData = pOld->aData; u16 maskPage = pOld->maskPage; u8 *piCell = aData + pOld->cellOffset; u8 *piEnd; VVA_ONLY( int nCellAtStart = b.nCell; ) /* Verify that all sibling pages are of the same "type" (table-leaf, ** table-interior, index-leaf, or index-interior). */ if( pOld->aData[0]!=apOld[0]->aData[0] ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } /* Load b.apCell[] with pointers to all cells in pOld. If pOld ** contains overflow cells, include them in the b.apCell[] array ** in the correct spot. ** ** Note that when there are multiple overflow cells, it is always the ** case that they are sequential and adjacent. This invariant arises ** because multiple overflows can only occurs when inserting divider ** cells into a parent on a prior balance, and divider cells are always ** adjacent and are inserted in order. There is an assert() tagged ** with "NOTE 1" in the overflow cell insertion loop to prove this ** invariant. ** ** This must be done in advance. Once the balance starts, the cell ** offset section of the btree page will be overwritten and we will no ** long be able to find the cells if a pointer to each cell is not saved ** first. */ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); if( pOld->nOverflow>0 ){ if( NEVER(limitaiOvfl[0]) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } limit = pOld->aiOvfl[0]; for(j=0; jnOverflow; k++){ assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ b.apCell[b.nCell] = pOld->apOvfl[k]; b.nCell++; } } piEnd = aData + pOld->cellOffset + 2*pOld->nCell; while( piCellnCell+pOld->nOverflow) ); cntOld[i] = b.nCell; if( imaxLocal+23 ); assert( iSpace1 <= (int)pBt->pageSize ); memcpy(pTemp, apDiv[i], sz); b.apCell[b.nCell] = pTemp+leafCorrection; assert( leafCorrection==0 || leafCorrection==4 ); b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; if( !pOld->leaf ){ assert( leafCorrection==0 ); assert( pOld->hdrOffset==0 || CORRUPT_DB ); /* The right pointer of the child page pOld becomes the left ** pointer of the divider cell */ memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); }else{ assert( leafCorrection==4 ); while( b.szCell[b.nCell]<4 ){ /* Do not allow any cells smaller than 4 bytes. If a smaller cell ** does exist, pad it with 0x00 bytes. */ assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); aSpace1[iSpace1++] = 0x00; b.szCell[b.nCell]++; } } b.nCell++; } } /* ** Figure out the number of pages needed to hold all b.nCell cells. ** Store this number in "k". Also compute szNew[] which is the total ** size of all cells on the i-th page and cntNew[] which is the index ** in b.apCell[] of the cell that divides page i from page i+1. ** cntNew[k] should equal b.nCell. ** ** Values computed by this block: ** ** k: The total number of sibling pages ** szNew[i]: Spaced used on the i-th sibling page. ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to ** the right of the i-th sibling page. ** usableSpace: Number of bytes of space available on each sibling. ** */ usableSpace = pBt->usableSize - 12 + leafCorrection; for(i=k=0; iaDataEnd; b.ixNx[k] = cntOld[i]; if( k && b.ixNx[k]==b.ixNx[k-1] ){ k--; /* Omit b.ixNx[] entry for child pages with no cells */ } if( !leafData ){ k++; b.apEnd[k] = pParent->aDataEnd; b.ixNx[k] = cntOld[i]+1; } assert( p->nFree>=0 ); szNew[i] = usableSpace - p->nFree; for(j=0; jnOverflow; j++){ szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); } cntNew[i] = cntOld[i]; } k = nOld; for(i=0; iusableSpace ){ if( i+1>=k ){ k = i+2; if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } szNew[k-1] = 0; cntNew[k-1] = b.nCell; } sz = 2 + cachedCellSize(&b, cntNew[i]-1); szNew[i] -= sz; if( !leafData ){ if( cntNew[i]usableSpace ) break; szNew[i] += sz; cntNew[i]++; if( !leafData ){ if( cntNew[i]=b.nCell ){ k = i+1; }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } /* ** The packing computed by the previous block is biased toward the siblings ** on the left side (siblings with smaller keys). The left siblings are ** always nearly full, while the right-most sibling might be nearly empty. ** The next block of code attempts to adjust the packing of siblings to ** get a better balance. ** ** This adjustment is more than an optimization. The packing above might ** be so out of balance as to be illegal. For example, the right-most ** sibling might be completely empty. This adjustment is not optional. */ for(i=k-1; i>0; i--){ int szRight = szNew[i]; /* Size of sibling on the right */ int szLeft = szNew[i-1]; /* Size of sibling on the left */ int r; /* Index of right-most cell in left sibling */ int d; /* Index of first cell to the left of right sibling */ r = cntNew[i-1] - 1; d = r + 1 - leafData; (void)cachedCellSize(&b, d); do{ int szR, szD; assert( d szLeft-(szR+(i==k-1?0:2)))){ break; } szRight += szD + 2; szLeft -= szR + 2; cntNew[i-1] = r; r--; d--; }while( r>=0 ); szNew[i] = szRight; szNew[i-1] = szLeft; if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } /* Sanity check: For a non-corrupt database file one of the following ** must be true: ** (1) We found one or more cells (cntNew[0])>0), or ** (2) pPage is a virtual root page. A virtual root page is when ** the real root page is page 1 and we are the only child of ** that page. */ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); TRACE(("BALANCE: old: %u(nc=%u) %u(nc=%u) %u(nc=%u)\n", apOld[0]->pgno, apOld[0]->nCell, nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 )); /* ** Allocate k new pages. Reuse old pages where possible. */ pageFlags = apOld[0]->aData[0]; for(i=0; ipDbPage); nNew++; if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) && rc==SQLITE_OK ){ rc = SQLITE_CORRUPT_BKPT; } if( rc ) goto balance_cleanup; }else{ assert( i>0 ); rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); if( rc ) goto balance_cleanup; zeroPage(pNew, pageFlags); apNew[i] = pNew; nNew++; cntOld[i] = b.nCell; /* Set the pointer-map entry for the new sibling page. */ if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); if( rc!=SQLITE_OK ){ goto balance_cleanup; } } } } /* ** Reassign page numbers so that the new pages are in ascending order. ** This helps to keep entries in the disk file in order so that a scan ** of the table is closer to a linear scan through the file. That in turn ** helps the operating system to deliver pages from the disk more rapidly. ** ** An O(N*N) sort algorithm is used, but since N is never more than NB+2 ** (5), that is not a performance concern. ** ** When NB==3, this one optimization makes the database about 25% faster ** for large insertions and deletions. */ for(i=0; ipgno; assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE ); assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY ); } for(i=0; ipgno < apNew[iB]->pgno ) iB = j; } /* If apNew[i] has a page number that is bigger than any of the ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent ** entry that has the smallest page number (which we know to be ** entry apNew[iB]). */ if( iB!=i ){ Pgno pgnoA = apNew[i]->pgno; Pgno pgnoB = apNew[iB]->pgno; Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1; u16 fgA = apNew[i]->pDbPage->flags; u16 fgB = apNew[iB]->pDbPage->flags; sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB); sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA); sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB); apNew[i]->pgno = pgnoB; apNew[iB]->pgno = pgnoA; } } TRACE(("BALANCE: new: %u(%u nc=%u) %u(%u nc=%u) %u(%u nc=%u) " "%u(%u nc=%u) %u(%u nc=%u)\n", apNew[0]->pgno, szNew[0], cntNew[0], nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 )); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); assert( nNew>=1 && nNew<=ArraySize(apNew) ); assert( apNew[nNew-1]!=0 ); put4byte(pRight, apNew[nNew-1]->pgno); /* If the sibling pages are not leaves, ensure that the right-child pointer ** of the right-most new sibling page is set to the value that was ** originally in the same field of the right-most old sibling page. */ if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); } /* Make any required updates to pointer map entries associated with ** cells stored on sibling pages following the balance operation. Pointer ** map entries associated with divider cells are set by the insertCell() ** routine. The associated pointer map entries are: ** ** a) if the cell contains a reference to an overflow chain, the ** entry associated with the first page in the overflow chain, and ** ** b) if the sibling pages are not leaves, the child page associated ** with the cell. ** ** If the sibling pages are not leaves, then the pointer map entry ** associated with the right-child of each sibling may also need to be ** updated. This happens below, after the sibling pages have been ** populated, not here. */ if( ISAUTOVACUUM(pBt) ){ MemPage *pOld; MemPage *pNew = pOld = apNew[0]; int cntOldNext = pNew->nCell + pNew->nOverflow; int iNew = 0; int iOld = 0; for(i=0; i=0 && iOldnCell + pOld->nOverflow + !leafData; } if( i==cntNew[iNew] ){ pNew = apNew[++iNew]; if( !leafData ) continue; } /* Cell pCell is destined for new sibling page pNew. Originally, it ** was either part of sibling page iOld (possibly an overflow cell), ** or else the divider cell to the left of sibling page iOld. So, ** if sibling page iOld had the same page number as pNew, and if ** pCell really was a part of sibling page iOld (not a divider or ** overflow cell), we can skip updating the pointer map entries. */ if( iOld>=nNew || pNew->pgno!=aPgno[iOld] || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) ){ if( !leafCorrection ){ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); } if( cachedCellSize(&b,i)>pNew->minLocal ){ ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); } if( rc ) goto balance_cleanup; } } } /* Insert new divider cells into pParent. */ for(i=0; ileaf ){ memcpy(&pNew->aData[8], pCell, 4); }else if( leafData ){ /* If the tree is a leaf-data tree, and the siblings are leaves, ** then there is no divider cell in b.apCell[]. Instead, the divider ** cell consists of the integer key for the right-most cell of ** the sibling-page assembled above only. */ CellInfo info; j--; pNew->xParseCell(pNew, b.apCell[j], &info); pCell = pTemp; sz = 4 + putVarint(&pCell[4], info.nKey); pTemp = 0; }else{ pCell -= 4; /* Obscure case for non-leaf-data trees: If the cell at pCell was ** previously stored on a leaf node, and its reported size was 4 ** bytes, then it may actually be smaller than this ** (see btreeParseCellPtr(), 4 bytes is the minimum size of ** any cell). But it is important to pass the correct size to ** insertCell(), so reparse the cell now. ** ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" ** and WITHOUT ROWID tables with exactly one column which is the ** primary key. */ if( b.szCell[j]==4 ){ assert(leafCorrection==4); sz = pParent->xCellSize(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); assert( iOvflSpace <= (int)pBt->pageSize ); for(k=0; ALWAYS(kpgno); if( rc!=SQLITE_OK ) goto balance_cleanup; assert( sqlite3PagerIswriteable(pParent->pDbPage) ); } /* Now update the actual sibling pages. The order in which they are updated ** is important, as this code needs to avoid disrupting any page from which ** cells may still to be read. In practice, this means: ** ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) ** then it is not safe to update page apNew[iPg] until after ** the left-hand sibling apNew[iPg-1] has been updated. ** ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) ** then it is not safe to update page apNew[iPg] until after ** the right-hand sibling apNew[iPg+1] has been updated. ** ** If neither of the above apply, the page is safe to update. ** ** The iPg value in the following loop starts at nNew-1 goes down ** to 0, then back up to nNew-1 again, thus making two passes over ** the pages. On the initial downward pass, only condition (1) above ** needs to be tested because (2) will always be true from the previous ** step. On the upward pass, both conditions are always true, so the ** upwards pass simply processes pages that were missed on the downward ** pass. */ for(i=1-nNew; i=0 && iPg=1 || i>=0 ); assert( iPg=0 /* On the upwards pass, or... */ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ ){ int iNew; int iOld; int nNewCell; /* Verify condition (1): If cells are moving left, update iPg ** only after iPg-1 has already been updated. */ assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); /* Verify condition (2): If cells are moving right, update iPg ** only after iPg+1 has already been updated. */ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); if( iPg==0 ){ iNew = iOld = 0; nNewCell = cntNew[0]; }else{ iOld = iPgnFree = usableSpace-szNew[iPg]; assert( apNew[iPg]->nOverflow==0 ); assert( apNew[iPg]->nCell==nNewCell ); } } /* All pages have been processed exactly once */ assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); assert( nOld>0 ); assert( nNew>0 ); if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ /* The root page of the b-tree now contains no cells. The only sibling ** page is the right-child of the parent. Copy the contents of the ** child page into the parent, decreasing the overall height of the ** b-tree structure by one. This is described as the "balance-shallower" ** sub-algorithm in some documentation. ** ** If this is an auto-vacuum database, the call to copyNodeContent() ** sets all pointer-map entries corresponding to database image pages ** for which the pointer is stored within the content being copied. ** ** It is critical that the child page be defragmented before being ** copied into the parent, because if the parent is page 1 then it will ** by smaller than the child due to the database header, and so all the ** free space needs to be up front. */ assert( nNew==1 || CORRUPT_DB ); rc = defragmentPage(apNew[0], -1); testcase( rc!=SQLITE_OK ); assert( apNew[0]->nFree == (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset - apNew[0]->nCell*2) || rc!=SQLITE_OK ); copyNodeContent(apNew[0], pParent, &rc); freePage(apNew[0], &rc); }else if( ISAUTOVACUUM(pBt) && !leafCorrection ){ /* Fix the pointer map entries associated with the right-child of each ** sibling page. All other pointer map entries have already been taken ** care of. */ for(i=0; iaData[8]); ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); } } assert( pParent->isInit ); TRACE(("BALANCE: finished: old=%u new=%u cells=%u\n", nOld, nNew, b.nCell)); /* Free any old pages that were not reused as new pages. */ for(i=nNew; iisInit ){ /* The ptrmapCheckPages() contains assert() statements that verify that ** all pointer map pages are set correctly. This is helpful while ** debugging. This is usually disabled because a corrupt database may ** cause an assert() statement to fail. */ ptrmapCheckPages(apNew, nNew); ptrmapCheckPages(&pParent, 1); } #endif /* ** Cleanup before returning. */ balance_cleanup: sqlite3StackFree(0, b.apCell); for(i=0; ipBt; /* The BTree */ assert( pRoot->nOverflow>0 ); assert( sqlite3_mutex_held(pBt->mutex) ); /* Make pRoot, the root page of the b-tree, writable. Allocate a new ** page that will become the new right-child of pPage. Copy the contents ** of the node stored on pRoot into the new child page. */ rc = sqlite3PagerWrite(pRoot->pDbPage); if( rc==SQLITE_OK ){ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); copyNodeContent(pRoot, pChild, &rc); if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); } } if( rc ){ *ppChild = 0; releasePage(pChild); return rc; } assert( sqlite3PagerIswriteable(pChild->pDbPage) ); assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); TRACE(("BALANCE: copy root %u into %u\n", pRoot->pgno, pChild->pgno)); /* Copy the overflow cells from pRoot to pChild */ memcpy(pChild->aiOvfl, pRoot->aiOvfl, pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); memcpy(pChild->apOvfl, pRoot->apOvfl, pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); pChild->nOverflow = pRoot->nOverflow; /* Zero the contents of pRoot. Then install pChild as the right-child. */ zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); *ppChild = pChild; return SQLITE_OK; } /* ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid ** on the same B-tree as pCur. ** ** This can occur if a database is corrupt with two or more SQL tables ** pointing to the same b-tree. If an insert occurs on one SQL table ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL ** table linked to the same b-tree. If the secondary insert causes a ** rebalance, that can change content out from under the cursor on the ** first SQL table, violating invariants on the first insert. */ static int anotherValidCursor(BtCursor *pCur){ BtCursor *pOther; for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ if( pOther!=pCur && pOther->eState==CURSOR_VALID && pOther->pPage==pCur->pPage ){ return SQLITE_CORRUPT_BKPT; } } return SQLITE_OK; } /* ** The page that pCur currently points to has just been modified in ** some way. This function figures out if this modification means the ** tree needs to be balanced, and if so calls the appropriate balancing ** routine. Balancing routines are: ** ** balance_quick() ** balance_deeper() ** balance_nonroot() */ static int balance(BtCursor *pCur){ int rc = SQLITE_OK; u8 aBalanceQuickSpace[13]; u8 *pFree = 0; VVA_ONLY( int balance_quick_called = 0 ); VVA_ONLY( int balance_deeper_called = 0 ); do { int iPage; MemPage *pPage = pCur->pPage; if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ /* No rebalance required as long as: ** (1) There are no overflow cells ** (2) The amount of free space on the page is less than 2/3rds of ** the total usable space on the page. */ break; }else if( (iPage = pCur->iPage)==0 ){ if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ /* The root page of the b-tree is overfull. In this case call the ** balance_deeper() function to create a new child for the root-page ** and copy the current contents of the root-page to it. The ** next iteration of the do-loop will balance the child page. */ assert( balance_deeper_called==0 ); VVA_ONLY( balance_deeper_called++ ); rc = balance_deeper(pPage, &pCur->apPage[1]); if( rc==SQLITE_OK ){ pCur->iPage = 1; pCur->ix = 0; pCur->aiIdx[0] = 0; pCur->apPage[0] = pPage; pCur->pPage = pCur->apPage[1]; assert( pCur->pPage->nOverflow ); } }else{ break; } }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){ /* The page being written is not a root page, and there is currently ** more than one reference to it. This only happens if the page is one ** of its own ancestor pages. Corruption. */ rc = SQLITE_CORRUPT_BKPT; }else{ MemPage * const pParent = pCur->apPage[iPage-1]; int const iIdx = pCur->aiIdx[iPage-1]; rc = sqlite3PagerWrite(pParent->pDbPage); if( rc==SQLITE_OK && pParent->nFree<0 ){ rc = btreeComputeFreeSpace(pParent); } if( rc==SQLITE_OK ){ #ifndef SQLITE_OMIT_QUICKBALANCE if( pPage->intKeyLeaf && pPage->nOverflow==1 && pPage->aiOvfl[0]==pPage->nCell && pParent->pgno!=1 && pParent->nCell==iIdx ){ /* Call balance_quick() to create a new sibling of pPage on which ** to store the overflow cell. balance_quick() inserts a new cell ** into pParent, which may cause pParent overflow. If this ** happens, the next iteration of the do-loop will balance pParent ** use either balance_nonroot() or balance_deeper(). Until this ** happens, the overflow cell is stored in the aBalanceQuickSpace[] ** buffer. ** ** The purpose of the following assert() is to check that only a ** single call to balance_quick() is made for each call to this ** function. If this were not verified, a subtle bug involving reuse ** of the aBalanceQuickSpace[] might sneak in. */ assert( balance_quick_called==0 ); VVA_ONLY( balance_quick_called++ ); rc = balance_quick(pParent, pPage, aBalanceQuickSpace); }else #endif { /* In this case, call balance_nonroot() to redistribute cells ** between pPage and up to 2 of its sibling pages. This involves ** modifying the contents of pParent, which may cause pParent to ** become overfull or underfull. The next iteration of the do-loop ** will balance the parent page to correct this. ** ** If the parent page becomes overfull, the overflow cell or cells ** are stored in the pSpace buffer allocated immediately below. ** A subsequent iteration of the do-loop will deal with this by ** calling balance_nonroot() (balance_deeper() may be called first, ** but it doesn't deal with overflow cells - just moves them to a ** different page). Once this subsequent call to balance_nonroot() ** has completed, it is safe to release the pSpace buffer used by ** the previous call, as the overflow cell data will have been ** copied either into the body of a database page or into the new ** pSpace buffer passed to the latter call to balance_nonroot(). */ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints&BTREE_BULKLOAD); if( pFree ){ /* If pFree is not NULL, it points to the pSpace buffer used ** by a previous call to balance_nonroot(). Its contents are ** now stored either on real database pages or within the ** new pSpace buffer, so it may be safely freed here. */ sqlite3PageFree(pFree); } /* The pSpace buffer will be freed after the next call to ** balance_nonroot(), or just before this function returns, whichever ** comes first. */ pFree = pSpace; } } pPage->nOverflow = 0; /* The next iteration of the do-loop balances the parent page. */ releasePage(pPage); pCur->iPage--; assert( pCur->iPage>=0 ); pCur->pPage = pCur->apPage[pCur->iPage]; } }while( rc==SQLITE_OK ); if( pFree ){ sqlite3PageFree(pFree); } return rc; } /* Overwrite content from pX into pDest. Only do the write if the ** content is different from what is already there. */ static int btreeOverwriteContent( MemPage *pPage, /* MemPage on which writing will occur */ u8 *pDest, /* Pointer to the place to start writing */ const BtreePayload *pX, /* Source of data to write */ int iOffset, /* Offset of first byte to write */ int iAmt /* Number of bytes to be written */ ){ int nData = pX->nData - iOffset; if( nData<=0 ){ /* Overwriting with zeros */ int i; for(i=0; ipDbPage); if( rc ) return rc; memset(pDest + i, 0, iAmt - i); } }else{ if( nDatapData) + iOffset, iAmt)!=0 ){ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ) return rc; /* In a corrupt database, it is possible for the source and destination ** buffers to overlap. This is harmless since the database is already ** corrupt but it does cause valgrind and ASAN warnings. So use ** memmove(). */ memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); } } return SQLITE_OK; } /* ** Overwrite the cell that cursor pCur is pointing to with fresh content ** contained in pX. In this variant, pCur is pointing to an overflow ** cell. */ static SQLITE_NOINLINE int btreeOverwriteOverflowCell( BtCursor *pCur, /* Cursor pointing to cell to overwrite */ const BtreePayload *pX /* Content to write into the cell */ ){ int iOffset; /* Next byte of pX->pData to write */ int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ int rc; /* Return code */ MemPage *pPage = pCur->pPage; /* Page being written */ BtShared *pBt; /* Btree */ Pgno ovflPgno; /* Next overflow page to write */ u32 ovflPageSize; /* Size to write on overflow page */ assert( pCur->info.nLocalinfo.pPayload, pX, 0, pCur->info.nLocal); if( rc ) return rc; /* Now overwrite the overflow pages */ iOffset = pCur->info.nLocal; assert( nTotal>=0 ); assert( iOffset>=0 ); ovflPgno = get4byte(pCur->info.pPayload + iOffset); pBt = pPage->pBt; ovflPageSize = pBt->usableSize - 4; do{ rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); if( rc ) return rc; if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ rc = SQLITE_CORRUPT_BKPT; }else{ if( iOffset+ovflPageSize<(u32)nTotal ){ ovflPgno = get4byte(pPage->aData); }else{ ovflPageSize = nTotal - iOffset; } rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, iOffset, ovflPageSize); } sqlite3PagerUnref(pPage->pDbPage); if( rc ) return rc; iOffset += ovflPageSize; }while( iOffsetnData + pX->nZero; /* Total bytes of to write */ MemPage *pPage = pCur->pPage; /* Page being written */ if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd || pCur->info.pPayload < pPage->aData + pPage->cellOffset ){ return SQLITE_CORRUPT_BKPT; } if( pCur->info.nLocal==nTotal ){ /* The entire cell is local */ return btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 0, pCur->info.nLocal); }else{ /* The cell contains overflow content */ return btreeOverwriteOverflowCell(pCur, pX); } } /* ** Insert a new record into the BTree. The content of the new record ** is described by the pX object. The pCur cursor is used only to ** define what table the record should be inserted into, and is left ** pointing at a random location. ** ** For a table btree (used for rowid tables), only the pX.nKey value of ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields ** hold the content of the row. ** ** For an index btree (used for indexes and WITHOUT ROWID tables), the ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The ** pX.pData,nData,nZero fields must be zero. ** ** If the seekResult parameter is non-zero, then a successful call to ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already ** been performed. In other words, if seekResult!=0 then the cursor ** is currently pointing to a cell that will be adjacent to the cell ** to be inserted. If seekResult<0 then pCur points to a cell that is ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell ** that is larger than (pKey,nKey). ** ** If seekResult==0, that means pCur is pointing at some unknown location. ** In that case, this routine must seek the cursor to the correct insertion ** point for (pKey,nKey) before doing the insertion. For index btrees, ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked ** key values and pX->aMem can be used instead of pX->pKey to avoid having ** to decode the key. */ SQLITE_PRIVATE int sqlite3BtreeInsert( BtCursor *pCur, /* Insert data into the table of this cursor */ const BtreePayload *pX, /* Content of the row to be inserted */ int flags, /* True if this is likely an append */ int seekResult /* Result of prior IndexMoveto() call */ ){ int rc; int loc = seekResult; /* -1: before desired location +1: after */ int szNew = 0; int idx; MemPage *pPage; Btree *p = pCur->pBtree; unsigned char *oldCell; unsigned char *newCell = 0; assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); /* Save the positions of any other cursors open on this table. ** ** In some cases, the call to btreeMoveto() below is a no-op. For ** example, when inserting data into a table with auto-generated integer ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the ** integer key to use. It then calls this function to actually insert the ** data into the intkey B-Tree. In this case btreeMoveto() recognizes ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(p->pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; if( loc && pCur->iPage<0 ){ /* This can only happen if the schema is corrupt such that there is more ** than one table or index with the same root page as used by the cursor. ** Which can only happen if the SQLITE_NoSchemaError flag was set when ** the schema was loaded. This cannot be asserted though, as a user might ** set the flag, load the schema, and then unset the flag. */ return SQLITE_CORRUPT_BKPT; } } /* Ensure that the cursor is not in the CURSOR_FAULT state and that it ** points to a valid cell. */ if( pCur->eState>=CURSOR_REQUIRESEEK ){ testcase( pCur->eState==CURSOR_REQUIRESEEK ); testcase( pCur->eState==CURSOR_FAULT ); rc = moveToRoot(pCur); if( rc && rc!=SQLITE_EMPTY ) return rc; } assert( cursorOwnsBtShared(pCur) ); assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && p->pBt->inTransaction==TRANS_WRITE && (p->pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); /* Assert that the caller has been consistent. If this cursor was opened ** expecting an index b-tree, then the caller should be inserting blob ** keys with no associated data. If the cursor was opened expecting an ** intkey table, the caller should be inserting integer keys with a ** blob of associated data. */ assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); if( pCur->pKeyInfo==0 ){ assert( pX->pKey==0 ); /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ if( p->hasIncrblobCur ){ invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); } /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing ** to a row with the same key as the new entry being inserted. */ #ifdef SQLITE_DEBUG if( flags & BTREE_SAVEPOSITION ){ assert( pCur->curFlags & BTCF_ValidNKey ); assert( pX->nKey==pCur->info.nKey ); assert( loc==0 ); } #endif /* On the other hand, BTREE_SAVEPOSITION==0 does not imply ** that the cursor is not pointing to a row to be overwritten. ** So do a complete check. */ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ /* The cursor is pointing to the entry that is to be ** overwritten */ assert( pX->nData>=0 && pX->nZero>=0 ); if( pCur->info.nSize!=0 && pCur->info.nPayload==(u32)pX->nData+pX->nZero ){ /* New entry is the same size as the old. Do an overwrite */ return btreeOverwriteCell(pCur, pX); } assert( loc==0 ); }else if( loc==0 ){ /* The cursor is *not* pointing to the cell to be overwritten, nor ** to an adjacent cell. Move the cursor so that it is pointing either ** to the cell to be overwritten or an adjacent cell. */ rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, (flags & BTREE_APPEND)!=0, &loc); if( rc ) return rc; } }else{ /* This is an index or a WITHOUT ROWID table */ /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing ** to a row with the same key as the new entry being inserted. */ assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); /* If the cursor is not already pointing either to the cell to be ** overwritten, or if a new cell is being inserted, if the cursor is ** not pointing to an immediately adjacent cell, then move the cursor ** so that it does. */ if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ if( pX->nMem ){ UnpackedRecord r; r.pKeyInfo = pCur->pKeyInfo; r.aMem = pX->aMem; r.nField = pX->nMem; r.default_rc = 0; r.eqSeen = 0; rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); }else{ rc = btreeMoveto(pCur, pX->pKey, pX->nKey, (flags & BTREE_APPEND)!=0, &loc); } if( rc ) return rc; } /* If the cursor is currently pointing to an entry to be overwritten ** and the new content is the same as as the old, then use the ** overwrite optimization. */ if( loc==0 ){ getCellInfo(pCur); if( pCur->info.nKey==pX->nKey ){ BtreePayload x2; x2.pData = pX->pKey; x2.nData = pX->nKey; x2.nZero = 0; return btreeOverwriteCell(pCur, &x2); } } } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) || CORRUPT_DB ); pPage = pCur->pPage; assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); assert( pPage->leaf || !pPage->intKey ); if( pPage->nFree<0 ){ if( NEVER(pCur->eState>CURSOR_INVALID) ){ /* ^^^^^--- due to the moveToRoot() call above */ rc = SQLITE_CORRUPT_BKPT; }else{ rc = btreeComputeFreeSpace(pPage); } if( rc ) return rc; } TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n", pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit || CORRUPT_DB ); newCell = p->pBt->pTmpSpace; assert( newCell!=0 ); assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); if( flags & BTREE_PREFORMAT ){ rc = SQLITE_OK; szNew = p->pBt->nPreformatSize; if( szNew<4 ){ szNew = 4; newCell[3] = 0; } if( ISAUTOVACUUM(p->pBt) && szNew>pPage->maxLocal ){ CellInfo info; pPage->xParseCell(pPage, newCell, &info); if( info.nPayload!=info.nLocal ){ Pgno ovfl = get4byte(&newCell[szNew-4]); ptrmapPut(p->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); if( NEVER(rc) ) goto end_insert; } } }else{ rc = fillInCell(pPage, newCell, pX, &szNew); if( rc ) goto end_insert; } assert( szNew==pPage->xCellSize(pPage, newCell) ); assert( szNew <= MX_CELL_SIZE(p->pBt) ); idx = pCur->ix; pCur->info.nSize = 0; if( loc==0 ){ CellInfo info; assert( idx>=0 ); if( idx>=pPage->nCell ){ return SQLITE_CORRUPT_BKPT; } rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ){ goto end_insert; } oldCell = findCell(pPage, idx); if( !pPage->leaf ){ memcpy(newCell, oldCell, 4); } BTREE_CLEAR_CELL(rc, pPage, oldCell, info); testcase( pCur->curFlags & BTCF_ValidOvfl ); invalidateOverflowCache(pCur); if( info.nSize==szNew && info.nLocal==info.nPayload && (!ISAUTOVACUUM(p->pBt) || szNewminLocal) ){ /* Overwrite the old cell with the new if they are the same size. ** We could also try to do this if the old cell is smaller, then add ** the leftover space to the free list. But experiments show that ** doing that is no faster then skipping this optimization and just ** calling dropCell() and insertCell(). ** ** This optimization cannot be used on an autovacuum database if the ** new entry uses overflow pages, as the insertCell() call below is ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ return SQLITE_CORRUPT_BKPT; } if( oldCell+szNew > pPage->aDataEnd ){ return SQLITE_CORRUPT_BKPT; } memcpy(oldCell, newCell, szNew); return SQLITE_OK; } dropCell(pPage, idx, info.nSize, &rc); if( rc ) goto end_insert; }else if( loc<0 && pPage->nCell>0 ){ assert( pPage->leaf ); idx = ++pCur->ix; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); }else{ assert( pPage->leaf ); } rc = insertCellFast(pPage, idx, newCell, szNew); assert( pPage->nOverflow==0 || rc==SQLITE_OK ); assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); /* If no error has occurred and pPage has an overflow cell, call balance() ** to redistribute the cells within the tree. Since balance() may move ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey ** variables. ** ** Previous versions of SQLite called moveToRoot() to move the cursor ** back to the root page as balance() used to invalidate the contents ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, ** set the cursor state to "invalid". This makes common insert operations ** slightly faster. ** ** There is a subtle but important optimization here too. When inserting ** multiple records into an intkey b-tree using a single cursor (as can ** happen while processing an "INSERT INTO ... SELECT" statement), it ** is advantageous to leave the cursor pointing to the last entry in ** the b-tree if possible. If the cursor is left pointing to the last ** entry in the table, and the next row inserted has an integer key ** larger than the largest existing key, it is possible to insert the ** row without seeking the cursor. This can be a big performance boost. */ if( pPage->nOverflow ){ assert( rc==SQLITE_OK ); pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); rc = balance(pCur); /* Must make sure nOverflow is reset to zero even if the balance() ** fails. Internal data structure corruption will result otherwise. ** Also, set the cursor state to invalid. This stops saveCursorPosition() ** from trying to save the current position of the cursor. */ pCur->pPage->nOverflow = 0; pCur->eState = CURSOR_INVALID; if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); if( pCur->pKeyInfo ){ assert( pCur->pKey==0 ); pCur->pKey = sqlite3Malloc( pX->nKey ); if( pCur->pKey==0 ){ rc = SQLITE_NOMEM; }else{ memcpy(pCur->pKey, pX->pKey, pX->nKey); } } pCur->eState = CURSOR_REQUIRESEEK; pCur->nKey = pX->nKey; } } assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); end_insert: return rc; } /* ** This function is used as part of copying the current row from cursor ** pSrc into cursor pDest. If the cursors are open on intkey tables, then ** parameter iKey is used as the rowid value when the record is copied ** into pDest. Otherwise, the record is copied verbatim. ** ** This function does not actually write the new value to cursor pDest. ** Instead, it creates and populates any required overflow pages and ** writes the data for the new cell into the BtShared.pTmpSpace buffer ** for the destination database. The size of the cell, in bytes, is left ** in BtShared.nPreformatSize. The caller completes the insertion by ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ BtShared *pBt = pDest->pBt; u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ const u8 *aIn; /* Pointer to next input buffer */ u32 nIn; /* Size of input buffer aIn[] */ u32 nRem; /* Bytes of data still to copy */ getCellInfo(pSrc); if( pSrc->info.nPayload<0x80 ){ *(aOut++) = pSrc->info.nPayload; }else{ aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); } if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); nIn = pSrc->info.nLocal; aIn = pSrc->info.pPayload; if( aIn+nIn>pSrc->pPage->aDataEnd ){ return SQLITE_CORRUPT_BKPT; } nRem = pSrc->info.nPayload; if( nIn==nRem && nInpPage->maxLocal ){ memcpy(aOut, aIn, nIn); pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); return SQLITE_OK; }else{ int rc = SQLITE_OK; Pager *pSrcPager = pSrc->pBt->pPager; u8 *pPgnoOut = 0; Pgno ovflIn = 0; DbPage *pPageIn = 0; MemPage *pPageOut = 0; u32 nOut; /* Size of output buffer aOut[] */ nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); if( nOutinfo.nPayload ){ pPgnoOut = &aOut[nOut]; pBt->nPreformatSize += 4; } if( nRem>nIn ){ if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ return SQLITE_CORRUPT_BKPT; } ovflIn = get4byte(&pSrc->info.pPayload[nIn]); } do { nRem -= nOut; do{ assert( nOut>0 ); if( nIn>0 ){ int nCopy = MIN(nOut, nIn); memcpy(aOut, aIn, nCopy); nOut -= nCopy; nIn -= nCopy; aOut += nCopy; aIn += nCopy; } if( nOut>0 ){ sqlite3PagerUnref(pPageIn); pPageIn = 0; rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); if( rc==SQLITE_OK ){ aIn = (const u8*)sqlite3PagerGetData(pPageIn); ovflIn = get4byte(aIn); aIn += 4; nIn = pSrc->pBt->usableSize - 4; } } }while( rc==SQLITE_OK && nOut>0 ); if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ Pgno pgnoNew; MemPage *pNew = 0; rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); put4byte(pPgnoOut, pgnoNew); if( ISAUTOVACUUM(pBt) && pPageOut ){ ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); } releasePage(pPageOut); pPageOut = pNew; if( pPageOut ){ pPgnoOut = pPageOut->aData; put4byte(pPgnoOut, 0); aOut = &pPgnoOut[4]; nOut = MIN(pBt->usableSize - 4, nRem); } } }while( nRem>0 && rc==SQLITE_OK ); releasePage(pPageOut); sqlite3PagerUnref(pPageIn); return rc; } } /* ** Delete the entry that the cursor is pointing to. ** ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then ** the cursor is left pointing at an arbitrary location after the delete. ** But if that bit is set, then the cursor is left in a state such that ** the next call to BtreeNext() or BtreePrev() moves it to the same row ** as it would have been on if the call to BtreeDelete() had been omitted. ** ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes ** associated with a single table entry and its indexes. Only one of those ** deletes is considered the "primary" delete. The primary delete occurs ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, ** but which might be used by alternative storage engines. */ SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ Btree *p = pCur->pBtree; BtShared *pBt = p->pBt; int rc; /* Return code */ MemPage *pPage; /* Page to delete cell from */ unsigned char *pCell; /* Pointer to cell to delete */ int iCellIdx; /* Index of cell to delete */ int iCellDepth; /* Depth of node containing pCell */ CellInfo info; /* Size of the cell being deleted */ u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ assert( cursorOwnsBtShared(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); if( pCur->eState!=CURSOR_VALID ){ if( pCur->eState>=CURSOR_REQUIRESEEK ){ rc = btreeRestoreCursorPosition(pCur); assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); if( rc || pCur->eState!=CURSOR_VALID ) return rc; }else{ return SQLITE_CORRUPT_BKPT; } } assert( pCur->eState==CURSOR_VALID ); iCellDepth = pCur->iPage; iCellIdx = pCur->ix; pPage = pCur->pPage; if( pPage->nCell<=iCellIdx ){ return SQLITE_CORRUPT_BKPT; } pCell = findCell(pPage, iCellIdx); if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ return SQLITE_CORRUPT_BKPT; } if( pCell<&pPage->aCellIdx[pPage->nCell] ){ return SQLITE_CORRUPT_BKPT; } /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must ** be preserved following this delete operation. If the current delete ** will cause a b-tree rebalance, then this is done by saving the cursor ** key and leaving the cursor in CURSOR_REQUIRESEEK state before ** returning. ** ** If the current delete will not cause a rebalance, then the cursor ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately ** before or after the deleted entry. ** ** The bPreserve value records which path is required: ** ** bPreserve==0 Not necessary to save the cursor position ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. */ bPreserve = (flags & BTREE_SAVEPOSITION)!=0; if( bPreserve ){ if( !pPage->leaf || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > (int)(pBt->usableSize*2/3) || pPage->nCell==1 /* See dbfuzz001.test for a test case */ ){ /* A b-tree rebalance will be required after deleting this entry. ** Save the cursor key. */ rc = saveCursorKey(pCur); if( rc ) return rc; }else{ bPreserve = 2; } } /* If the page containing the entry to delete is not a leaf page, move ** the cursor to the largest entry in the tree that is smaller than ** the entry being deleted. This cell will replace the cell being deleted ** from the internal node. The 'previous' entry is used for this instead ** of the 'next' entry, as the previous entry is always a part of the ** sub-tree headed by the child page of the cell being deleted. This makes ** balancing the tree following the delete operation easier. */ if( !pPage->leaf ){ rc = sqlite3BtreePrevious(pCur, 0); assert( rc!=SQLITE_DONE ); if( rc ) return rc; } /* Save the positions of any other cursors open on this table before ** making any modifications. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; } /* If this is a delete operation to remove a row from a table b-tree, ** invalidate any incrblob cursors open on the row being deleted. */ if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); } /* Make the page containing the entry to be deleted writable. Then free any ** overflow pages associated with the entry and finally remove the cell ** itself from within the page. */ rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ) return rc; BTREE_CLEAR_CELL(rc, pPage, pCell, info); dropCell(pPage, iCellIdx, info.nSize, &rc); if( rc ) return rc; /* If the cell deleted was not located on a leaf page, then the cursor ** is currently pointing to the largest entry in the sub-tree headed ** by the child-page of the cell that was just deleted from an internal ** node. The cell from the leaf node needs to be moved to the internal ** node to replace the deleted cell. */ if( !pPage->leaf ){ MemPage *pLeaf = pCur->pPage; int nCell; Pgno n; unsigned char *pTmp; if( pLeaf->nFree<0 ){ rc = btreeComputeFreeSpace(pLeaf); if( rc ) return rc; } if( iCellDepthiPage-1 ){ n = pCur->apPage[iCellDepth+1]->pgno; }else{ n = pCur->pPage->pgno; } pCell = findCell(pLeaf, pLeaf->nCell-1); if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; nCell = pLeaf->xCellSize(pLeaf, pCell); assert( MX_CELL_SIZE(pBt) >= nCell ); pTmp = pBt->pTmpSpace; assert( pTmp!=0 ); rc = sqlite3PagerWrite(pLeaf->pDbPage); if( rc==SQLITE_OK ){ rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n); } dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); if( rc ) return rc; } /* Balance the tree. If the entry deleted was located on a leaf page, ** then the cursor still points to that page. In this case the first ** call to balance() repairs the tree, and the if(...) condition is ** never true. ** ** Otherwise, if the entry deleted was on an internal node page, then ** pCur is pointing to the leaf page from which a cell was removed to ** replace the cell deleted from the internal node. This is slightly ** tricky as the leaf node may be underfull, and the internal node may ** be either under or overfull. In this case run the balancing algorithm ** on the leaf node first. If the balance proceeds far enough up the ** tree that we can be sure that any problem in the internal node has ** been corrected, so be it. Otherwise, after balancing the leaf node, ** walk the cursor up the tree to the internal node and balance it as ** well. */ assert( pCur->pPage->nOverflow==0 ); assert( pCur->pPage->nFree>=0 ); if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ /* Optimization: If the free space is less than 2/3rds of the page, ** then balance() will always be a no-op. No need to invoke it. */ rc = SQLITE_OK; }else{ rc = balance(pCur); } if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ releasePageNotNull(pCur->pPage); pCur->iPage--; while( pCur->iPage>iCellDepth ){ releasePage(pCur->apPage[pCur->iPage--]); } pCur->pPage = pCur->apPage[pCur->iPage]; rc = balance(pCur); } if( rc==SQLITE_OK ){ if( bPreserve>1 ){ assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); assert( pPage==pCur->pPage || CORRUPT_DB ); assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); pCur->eState = CURSOR_SKIPNEXT; if( iCellIdx>=pPage->nCell ){ pCur->skipNext = -1; pCur->ix = pPage->nCell-1; }else{ pCur->skipNext = 1; } }else{ rc = moveToRoot(pCur); if( bPreserve ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; } } return rc; } /* ** Create a new BTree table. Write into *piTable the page ** number for the root page of the new table. ** ** The type of type is determined by the flags parameter. Only the ** following values of flags are currently in use. Other values for ** flags might not work: ** ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys ** BTREE_ZERODATA Used for SQL indices */ static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ BtShared *pBt = p->pBt; MemPage *pRoot; Pgno pgnoRoot; int rc; int ptfFlags; /* Page-type flags for the root page of new table */ assert( sqlite3BtreeHoldsMutex(p) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); #ifdef SQLITE_OMIT_AUTOVACUUM rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); if( rc ){ return rc; } #else if( pBt->autoVacuum ){ Pgno pgnoMove; /* Move a page here to make room for the root-page */ MemPage *pPageMove; /* The page to move to. */ /* Creating a new table may probably require moving an existing database ** to make room for the new tables root page. In case this page turns ** out to be an overflow page, delete all overflow page-map caches ** held by open cursors. */ invalidateAllOverflowCache(pBt); /* Read the value of meta[3] from the database to determine where the ** root page of the new table should go. meta[3] is the largest root-page ** created so far, so the new root-page is (meta[3]+1). */ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); if( pgnoRoot>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } pgnoRoot++; /* The new root-page may not be allocated on a pointer-map page, or the ** PENDING_BYTE page. */ while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ pgnoRoot++; } assert( pgnoRoot>=3 ); /* Allocate a page. The page that currently resides at pgnoRoot will ** be moved to the allocated page (unless the allocated page happens ** to reside at pgnoRoot). */ rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); if( rc!=SQLITE_OK ){ return rc; } if( pgnoMove!=pgnoRoot ){ /* pgnoRoot is the page that will be used for the root-page of ** the new table (assuming an error did not occur). But we were ** allocated pgnoMove. If required (i.e. if it was not allocated ** by extending the file), the current page at position pgnoMove ** is already journaled. */ u8 eType = 0; Pgno iPtrPage = 0; /* Save the positions of any open cursors. This is required in ** case they are holding a reference to an xFetch reference ** corresponding to page pgnoRoot. */ rc = saveAllCursors(pBt, 0, 0); releasePage(pPageMove); if( rc!=SQLITE_OK ){ return rc; } /* Move the page currently at pgnoRoot to pgnoMove. */ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); if( rc!=SQLITE_OK ){ return rc; } rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ rc = SQLITE_CORRUPT_BKPT; } if( rc!=SQLITE_OK ){ releasePage(pRoot); return rc; } assert( eType!=PTRMAP_ROOTPAGE ); assert( eType!=PTRMAP_FREEPAGE ); rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); releasePage(pRoot); /* Obtain the page at pgnoRoot */ if( rc!=SQLITE_OK ){ return rc; } rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pRoot->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pRoot); return rc; } }else{ pRoot = pPageMove; } /* Update the pointer-map and meta-data with the new root-page number. */ ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); if( rc ){ releasePage(pRoot); return rc; } /* When the new root page was allocated, page 1 was made writable in ** order either to increase the database filesize, or to decrement the ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. */ assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); if( NEVER(rc) ){ releasePage(pRoot); return rc; } }else{ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); if( rc ) return rc; } #endif assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); if( createTabFlags & BTREE_INTKEY ){ ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; }else{ ptfFlags = PTF_ZERODATA | PTF_LEAF; } zeroPage(pRoot, ptfFlags); sqlite3PagerUnref(pRoot->pDbPage); assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); *piTable = pgnoRoot; return SQLITE_OK; } SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ int rc; sqlite3BtreeEnter(p); rc = btreeCreateTable(p, piTable, flags); sqlite3BtreeLeave(p); return rc; } /* ** Erase the given database page and all its children. Return ** the page to the freelist. */ static int clearDatabasePage( BtShared *pBt, /* The BTree that contains the table */ Pgno pgno, /* Page number to clear */ int freePageFlag, /* Deallocate page if true */ i64 *pnChange /* Add number of Cells freed to this counter */ ){ MemPage *pPage; int rc; unsigned char *pCell; int i; int hdr; CellInfo info; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, pgno, &pPage, 0); if( rc ) return rc; if( (pBt->openFlags & BTREE_SINGLE)==0 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) ){ rc = SQLITE_CORRUPT_BKPT; goto cleardatabasepage_out; } hdr = pPage->hdrOffset; for(i=0; inCell; i++){ pCell = findCell(pPage, i); if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); if( rc ) goto cleardatabasepage_out; } BTREE_CLEAR_CELL(rc, pPage, pCell, info); if( rc ) goto cleardatabasepage_out; } if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); if( rc ) goto cleardatabasepage_out; if( pPage->intKey ) pnChange = 0; } if( pnChange ){ testcase( !pPage->intKey ); *pnChange += pPage->nCell; } if( freePageFlag ){ freePage(pPage, &rc); }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); } cleardatabasepage_out: releasePage(pPage); return rc; } /* ** Delete all information from a single table in the database. iTable is ** the page number of the root of the table. After this routine returns, ** the root page is empty, but still exists. ** ** This routine will fail with SQLITE_LOCKED if there are any open ** read cursors on the table. Open write cursors are moved to the ** root of the table. ** ** If pnChange is not NULL, then the integer value pointed to by pnChange ** is incremented by the number of entries in the table. */ SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ int rc; BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); assert( p->inTrans==TRANS_WRITE ); rc = saveAllCursors(pBt, (Pgno)iTable, 0); if( SQLITE_OK==rc ){ /* Invalidate all incrblob cursors open on table iTable (assuming iTable ** is the root of a table b-tree - if it is not, the following call is ** a no-op). */ if( p->hasIncrblobCur ){ invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); } rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); } sqlite3BtreeLeave(p); return rc; } /* ** Delete all information from the single table that pCur is open on. ** ** This routine only work for pCur on an ephemeral table. */ SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); } /* ** Erase all information in a table and add the root of the table to ** the freelist. Except, the root of the principle table (the one on ** page 1) is never added to the freelist. ** ** This routine will fail with SQLITE_LOCKED if there are any open ** cursors on the table. ** ** If AUTOVACUUM is enabled and the page at iTable is not the last ** root page in the database file, then the last root page ** in the database file is moved into the slot formerly occupied by ** iTable and that last slot formerly occupied by the last root page ** is added to the freelist instead of iTable. In this say, all ** root pages are kept at the beginning of the database file, which ** is necessary for AUTOVACUUM to work right. *piMoved is set to the ** page number that used to be the last root page in the file before ** the move. If no page gets moved, *piMoved is set to 0. ** The last root page is recorded in meta[3] and the value of ** meta[3] is updated by this procedure. */ static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ int rc; MemPage *pPage = 0; BtShared *pBt = p->pBt; assert( sqlite3BtreeHoldsMutex(p) ); assert( p->inTrans==TRANS_WRITE ); assert( iTable>=2 ); if( iTable>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = sqlite3BtreeClearTable(p, iTable, 0); if( rc ) return rc; rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); if( NEVER(rc) ){ releasePage(pPage); return rc; } *piMoved = 0; #ifdef SQLITE_OMIT_AUTOVACUUM freePage(pPage, &rc); releasePage(pPage); #else if( pBt->autoVacuum ){ Pgno maxRootPgno; sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); if( iTable==maxRootPgno ){ /* If the table being dropped is the table with the largest root-page ** number in the database, put the root page on the free list. */ freePage(pPage, &rc); releasePage(pPage); if( rc!=SQLITE_OK ){ return rc; } }else{ /* The table being dropped does not have the largest root-page ** number in the database. So move the page that does into the ** gap left by the deleted root-page. */ MemPage *pMove; releasePage(pPage); rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); if( rc!=SQLITE_OK ){ return rc; } rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } pMove = 0; rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); freePage(pMove, &rc); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } *piMoved = maxRootPgno; } /* Set the new 'max-root-page' value in the database header. This ** is the old value less one, less one more if that happens to ** be a root-page number, less one again if that is the ** PENDING_BYTE_PAGE. */ maxRootPgno--; while( maxRootPgno==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ maxRootPgno--; } assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); }else{ freePage(pPage, &rc); releasePage(pPage); } #endif return rc; } SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ int rc; sqlite3BtreeEnter(p); rc = btreeDropTable(p, iTable, piMoved); sqlite3BtreeLeave(p); return rc; } /* ** This function may only be called if the b-tree connection already ** has a read or write transaction open on the database. ** ** Read the meta-information out of a database file. Meta[0] ** is the number of free pages currently in the database. Meta[1] ** through meta[15] are available for use by higher layers. Meta[0] ** is read-only, the others are read/write. ** ** The schema layer numbers meta values differently. At the schema ** layer (and the SetCookie and ReadCookie opcodes) the number of ** free pages is not visible. So Cookie[0] is the same as Meta[1]. ** ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead ** of reading the value out of the header, it instead loads the "DataVersion" ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the ** database file. It is a number computed by the pager. But its access ** pattern is the same as header meta values, and so it is convenient to ** read it from this routine. */ SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); assert( p->inTrans>TRANS_NONE ); assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); assert( pBt->pPage1 ); assert( idx>=0 && idx<=15 ); if( idx==BTREE_DATA_VERSION ){ *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; }else{ *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); } /* If auto-vacuum is disabled in this build and this is an auto-vacuum ** database, mark the database as read-only. */ #ifdef SQLITE_OMIT_AUTOVACUUM if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ pBt->btsFlags |= BTS_READ_ONLY; } #endif sqlite3BtreeLeave(p); } /* ** Write meta-information back into the database. Meta[0] is ** read-only and may not be written. */ SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ BtShared *pBt = p->pBt; unsigned char *pP1; int rc; assert( idx>=1 && idx<=15 ); sqlite3BtreeEnter(p); assert( p->inTrans==TRANS_WRITE ); assert( pBt->pPage1!=0 ); pP1 = pBt->pPage1->aData; rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pP1[36 + idx*4], iMeta); #ifndef SQLITE_OMIT_AUTOVACUUM if( idx==BTREE_INCR_VACUUM ){ assert( pBt->autoVacuum || iMeta==0 ); assert( iMeta==0 || iMeta==1 ); pBt->incrVacuum = (u8)iMeta; } #endif } sqlite3BtreeLeave(p); return rc; } /* ** The first argument, pCur, is a cursor opened on some b-tree. Count the ** number of entries in the b-tree and write the result to *pnEntry. ** ** SQLITE_OK is returned if the operation is successfully executed. ** Otherwise, if an error is encountered (i.e. an IO error or database ** corruption) an SQLite error code is returned. */ SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ i64 nEntry = 0; /* Value to return in *pnEntry */ int rc; /* Return code */ rc = moveToRoot(pCur); if( rc==SQLITE_EMPTY ){ *pnEntry = 0; return SQLITE_OK; } /* Unless an error occurs, the following loop runs one iteration for each ** page in the B-Tree structure (not including overflow pages). */ while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ int iIdx; /* Index of child node in parent */ MemPage *pPage; /* Current page of the b-tree */ /* If this is a leaf page or the tree is not an int-key tree, then ** this page contains countable entries. Increment the entry counter ** accordingly. */ pPage = pCur->pPage; if( pPage->leaf || !pPage->intKey ){ nEntry += pPage->nCell; } /* pPage is a leaf node. This loop navigates the cursor so that it ** points to the first interior cell that it points to the parent of ** the next page in the tree that has not yet been visited. The ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell ** of the page, or to the number of cells in the page if the next page ** to visit is the right-child of its parent. ** ** If all pages in the tree have been visited, return SQLITE_OK to the ** caller. */ if( pPage->leaf ){ do { if( pCur->iPage==0 ){ /* All pages of the b-tree have been visited. Return successfully. */ *pnEntry = nEntry; return moveToRoot(pCur); } moveToParent(pCur); }while ( pCur->ix>=pCur->pPage->nCell ); pCur->ix++; pPage = pCur->pPage; } /* Descend to the child node of the cell that the cursor currently ** points at. This is the right-child if (iIdx==pPage->nCell). */ iIdx = pCur->ix; if( iIdx==pPage->nCell ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); }else{ rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); } } /* An error has occurred. Return an error code. */ return rc; } /* ** Return the pager associated with a BTree. This routine is used for ** testing and debugging only. */ SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){ return p->pBt->pPager; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** Record an OOM error during integrity_check */ static void checkOom(IntegrityCk *pCheck){ pCheck->rc = SQLITE_NOMEM; pCheck->mxErr = 0; /* Causes integrity_check processing to stop */ if( pCheck->nErr==0 ) pCheck->nErr++; } /* ** Invoke the progress handler, if appropriate. Also check for an ** interrupt. */ static void checkProgress(IntegrityCk *pCheck){ sqlite3 *db = pCheck->db; if( AtomicLoad(&db->u1.isInterrupted) ){ pCheck->rc = SQLITE_INTERRUPT; pCheck->nErr++; pCheck->mxErr = 0; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ assert( db->nProgressOps>0 ); pCheck->nStep++; if( (pCheck->nStep % db->nProgressOps)==0 && db->xProgress(db->pProgressArg) ){ pCheck->rc = SQLITE_INTERRUPT; pCheck->nErr++; pCheck->mxErr = 0; } } #endif } /* ** Append a message to the error message string. */ static void checkAppendMsg( IntegrityCk *pCheck, const char *zFormat, ... ){ va_list ap; checkProgress(pCheck); if( !pCheck->mxErr ) return; pCheck->mxErr--; pCheck->nErr++; va_start(ap, zFormat); if( pCheck->errMsg.nChar ){ sqlite3_str_append(&pCheck->errMsg, "\n", 1); } if( pCheck->zPfx ){ sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v0, pCheck->v1, pCheck->v2); } sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); va_end(ap); if( pCheck->errMsg.accError==SQLITE_NOMEM ){ checkOom(pCheck); } } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that ** corresponds to page iPg is already set. */ static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ assert( pCheck->aPgRef!=0 ); assert( iPg<=pCheck->nCkPage && sizeof(pCheck->aPgRef[0])==1 ); return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); } /* ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. */ static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ assert( pCheck->aPgRef!=0 ); assert( iPg<=pCheck->nCkPage && sizeof(pCheck->aPgRef[0])==1 ); pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); } /* ** Add 1 to the reference count for page iPage. If this is the second ** reference to the page, add an error message to pCheck->zErrMsg. ** Return 1 if there are 2 or more references to the page and 0 if ** if this is the first reference to the page. ** ** Also check that the page number is in bounds. */ static int checkRef(IntegrityCk *pCheck, Pgno iPage){ if( iPage>pCheck->nCkPage || iPage==0 ){ checkAppendMsg(pCheck, "invalid page number %u", iPage); return 1; } if( getPageReferenced(pCheck, iPage) ){ checkAppendMsg(pCheck, "2nd reference to page %u", iPage); return 1; } setPageReferenced(pCheck, iPage); return 0; } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Check that the entry in the pointer-map for page iChild maps to ** page iParent, pointer type ptrType. If not, append an error message ** to pCheck. */ static void checkPtrmap( IntegrityCk *pCheck, /* Integrity check context */ Pgno iChild, /* Child page number */ u8 eType, /* Expected pointer map type */ Pgno iParent /* Expected pointer map parent page number */ ){ int rc; u8 ePtrmapType; Pgno iPtrmapParent; rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) checkOom(pCheck); checkAppendMsg(pCheck, "Failed to read ptrmap key=%u", iChild); return; } if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ checkAppendMsg(pCheck, "Bad ptr map entry key=%u expected=(%u,%u) got=(%u,%u)", iChild, eType, iParent, ePtrmapType, iPtrmapParent); } } #endif /* ** Check the integrity of the freelist or of an overflow page list. ** Verify that the number of pages on the list is N. */ static void checkList( IntegrityCk *pCheck, /* Integrity checking context */ int isFreeList, /* True for a freelist. False for overflow page list */ Pgno iPage, /* Page number for first page in the list */ u32 N /* Expected number of pages in the list */ ){ int i; u32 expected = N; int nErrAtStart = pCheck->nErr; while( iPage!=0 && pCheck->mxErr ){ DbPage *pOvflPage; unsigned char *pOvflData; if( checkRef(pCheck, iPage) ) break; N--; if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ checkAppendMsg(pCheck, "failed to get page %u", iPage); break; } pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); if( isFreeList ){ u32 n = (u32)get4byte(&pOvflData[4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pCheck->pBt->autoVacuum ){ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); } #endif if( n>pCheck->pBt->usableSize/4-2 ){ checkAppendMsg(pCheck, "freelist leaf count too big on page %u", iPage); N--; }else{ for(i=0; i<(int)n; i++){ Pgno iFreePage = get4byte(&pOvflData[8+i*4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pCheck->pBt->autoVacuum ){ checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); } #endif checkRef(pCheck, iFreePage); } N -= n; } } #ifndef SQLITE_OMIT_AUTOVACUUM else{ /* If this database supports auto-vacuum and iPage is not the last ** page in this overflow list, check that the pointer-map entry for ** the following page matches iPage. */ if( pCheck->pBt->autoVacuum && N>0 ){ i = get4byte(pOvflData); checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); } } #endif iPage = get4byte(pOvflData); sqlite3PagerUnref(pOvflPage); } if( N && nErrAtStart==pCheck->nErr ){ checkAppendMsg(pCheck, "%s is %u but should be %u", isFreeList ? "size" : "overflow list length", expected-N, expected); } } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** An implementation of a min-heap. ** ** aHeap[0] is the number of elements on the heap. aHeap[1] is the ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] ** and aHeap[N*2+1]. ** ** The heap property is this: Every node is less than or equal to both ** of its daughter nodes. A consequence of the heap property is that the ** root node aHeap[1] is always the minimum value currently in the heap. ** ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto ** the heap, preserving the heap property. The btreeHeapPull() routine ** removes the root element from the heap (the minimum value in the heap) ** and then moves other nodes around as necessary to preserve the heap ** property. ** ** This heap is used for cell overlap and coverage testing. Each u32 ** entry represents the span of a cell or freeblock on a btree page. ** The upper 16 bits are the index of the first byte of a range and the ** lower 16 bits are the index of the last byte of that range. */ static void btreeHeapInsert(u32 *aHeap, u32 x){ u32 j, i; assert( aHeap!=0 ); i = ++aHeap[0]; aHeap[i] = x; while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ x = aHeap[j]; aHeap[j] = aHeap[i]; aHeap[i] = x; i = j; } } static int btreeHeapPull(u32 *aHeap, u32 *pOut){ u32 j, i, x; if( (x = aHeap[0])==0 ) return 0; *pOut = aHeap[1]; aHeap[1] = aHeap[x]; aHeap[x] = 0xffffffff; aHeap[0]--; i = 1; while( (j = i*2)<=aHeap[0] ){ if( aHeap[j]>aHeap[j+1] ) j++; if( aHeap[i]zPfx; int saved_v1 = pCheck->v1; int saved_v2 = pCheck->v2; u8 savedIsInit = 0; /* Check that the page exists */ checkProgress(pCheck); if( pCheck->mxErr==0 ) goto end_of_check; pBt = pCheck->pBt; usableSize = pBt->usableSize; if( iPage==0 ) return 0; if( checkRef(pCheck, iPage) ) return 0; pCheck->zPfx = "Tree %u page %u: "; pCheck->v1 = iPage; if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ checkAppendMsg(pCheck, "unable to get the page. error code=%d", rc); if( rc==SQLITE_IOERR_NOMEM ) pCheck->rc = SQLITE_NOMEM; goto end_of_check; } /* Clear MemPage.isInit to make sure the corruption detection code in ** btreeInitPage() is executed. */ savedIsInit = pPage->isInit; pPage->isInit = 0; if( (rc = btreeInitPage(pPage))!=0 ){ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ checkAppendMsg(pCheck, "btreeInitPage() returns error code %d", rc); goto end_of_check; } if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ assert( rc==SQLITE_CORRUPT ); checkAppendMsg(pCheck, "free space corruption", rc); goto end_of_check; } data = pPage->aData; hdr = pPage->hdrOffset; /* Set up for cell analysis */ pCheck->zPfx = "Tree %u page %u cell %u: "; contentOffset = get2byteNotZero(&data[hdr+5]); assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ nCell = get2byte(&data[hdr+3]); assert( pPage->nCell==nCell ); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; assert( pPage->aCellIdx==&data[cellStart] ); pCellIdx = &data[cellStart + 2*(nCell-1)]; if( !pPage->leaf ){ /* Analyze the right-child page of internal pages */ pgno = get4byte(&data[hdr+8]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ pCheck->zPfx = "Tree %u page %u right child: "; checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); } #endif depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); keyCanBeEqual = 0; }else{ /* For leaf pages, the coverage check will occur in the same loop ** as the other cell checks, so initialize the heap. */ heap = pCheck->heap; heap[0] = 0; } /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ CellInfo info; /* Check cell size */ pCheck->v2 = i; assert( pCellIdx==&data[cellStart + i*2] ); pc = get2byteAligned(pCellIdx); pCellIdx -= 2; if( pcusableSize-4 ){ checkAppendMsg(pCheck, "Offset %u out of range %u..%u", pc, contentOffset, usableSize-4); doCoverageCheck = 0; continue; } pCell = &data[pc]; pPage->xParseCell(pPage, pCell, &info); if( pc+info.nSize>usableSize ){ checkAppendMsg(pCheck, "Extends off end of page"); doCoverageCheck = 0; continue; } /* Check for integer primary key out of range */ if( pPage->intKey ){ if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); } maxKey = info.nKey; keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ } /* Check the content overflow list */ if( info.nPayload>info.nLocal ){ u32 nPage; /* Number of pages on the overflow chain */ Pgno pgnoOvfl; /* First page of the overflow chain */ assert( pc + info.nSize - 4 <= usableSize ); nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); pgnoOvfl = get4byte(&pCell[info.nSize - 4]); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); } #endif checkList(pCheck, 0, pgnoOvfl, nPage); } if( !pPage->leaf ){ /* Check sanity of left child page for internal pages */ pgno = get4byte(pCell); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); } #endif d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); keyCanBeEqual = 0; if( d2!=depth ){ checkAppendMsg(pCheck, "Child page depth differs"); depth = d2; } }else{ /* Populate the coverage-checking heap for leaf pages */ btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); } } *piMinKey = maxKey; /* Check for complete coverage of the page */ pCheck->zPfx = 0; if( doCoverageCheck && pCheck->mxErr>0 ){ /* For leaf pages, the min-heap has already been initialized and the ** cells have already been inserted. But for internal pages, that has ** not yet been done, so do it now */ if( !pPage->leaf ){ heap = pCheck->heap; heap[0] = 0; for(i=nCell-1; i>=0; i--){ u32 size; pc = get2byteAligned(&data[cellStart+i*2]); size = pPage->xCellSize(pPage, &data[pc]); btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); } } /* Add the freeblocks to the min-heap ** ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header ** is the offset of the first freeblock, or zero if there are no ** freeblocks on the page. */ i = get2byte(&data[hdr+1]); while( i>0 ){ int size, j; assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ size = get2byte(&data[i+2]); assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a ** big-endian integer which is the offset in the b-tree page of the next ** freeblock in the chain, or zero if the freeblock is the last on the ** chain. */ j = get2byte(&data[i]); /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of ** increasing offset. */ assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ i = j; } /* Analyze the min-heap looking for overlap between cells and/or ** freeblocks, and counting the number of untracked bytes in nFrag. ** ** Each min-heap entry is of the form: (start_address<<16)|end_address. ** There is an implied first entry the covers the page header, the cell ** pointer index, and the gap between the cell pointer index and the start ** of cell content. ** ** The loop below pulls entries from the min-heap in order and compares ** the start_address against the previous end_address. If there is an ** overlap, that means bytes are used multiple times. If there is a gap, ** that gap is added to the fragmentation count. */ nFrag = 0; prev = contentOffset - 1; /* Implied first min-heap entry */ while( btreeHeapPull(heap,&x) ){ if( (prev&0xffff)>=(x>>16) ){ checkAppendMsg(pCheck, "Multiple uses for byte %u of page %u", x>>16, iPage); break; }else{ nFrag += (x>>16) - (prev&0xffff) - 1; prev = x; } } nFrag += usableSize - (prev&0xffff) - 1; /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments ** is stored in the fifth field of the b-tree page header. ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the ** number of fragmented free bytes within the cell content area. */ if( heap[0]==0 && nFrag!=data[hdr+7] ){ checkAppendMsg(pCheck, "Fragmentation of %u bytes reported as %u on page %u", nFrag, data[hdr+7], iPage); } } end_of_check: if( !doCoverageCheck ) pPage->isInit = savedIsInit; releasePage(pPage); pCheck->zPfx = saved_zPfx; pCheck->v1 = saved_v1; pCheck->v2 = saved_v2; return depth+1; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** This routine does a complete check of the given BTree file. aRoot[] is ** an array of pages numbers were each page number is the root page of ** a table. nRoot is the number of entries in aRoot. ** ** A read-only or read-write transaction must be opened before calling ** this function. ** ** Write the number of error seen in *pnErr. Except for some memory ** allocation errors, an error message held in memory obtained from ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is ** returned. If a memory allocation error occurs, NULL is returned. ** ** If the first entry in aRoot[] is 0, that indicates that the list of ** root pages is incomplete. This is a "partial integrity-check". This ** happens when performing an integrity check on a single table. The ** zero is skipped, of course. But in addition, the freelist checks ** and the checks to make sure every page is referenced are also skipped, ** since obviously it is not possible to know which pages are covered by ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist ** checks are still performed. */ SQLITE_PRIVATE int sqlite3BtreeIntegrityCheck( sqlite3 *db, /* Database connection that is running the check */ Btree *p, /* The btree to be checked */ Pgno *aRoot, /* An array of root pages numbers for individual trees */ int nRoot, /* Number of entries in aRoot[] */ int mxErr, /* Stop reporting errors after this many */ int *pnErr, /* OUT: Write number of errors seen to this variable */ char **pzOut /* OUT: Write the error message string here */ ){ Pgno i; IntegrityCk sCheck; BtShared *pBt = p->pBt; u64 savedDbFlags = pBt->db->flags; char zErr[100]; int bPartial = 0; /* True if not checking all btrees */ int bCkFreelist = 1; /* True to scan the freelist */ VVA_ONLY( int nRef ); assert( nRoot>0 ); /* aRoot[0]==0 means this is a partial check */ if( aRoot[0]==0 ){ assert( nRoot>1 ); bPartial = 1; if( aRoot[1]!=1 ) bCkFreelist = 0; } sqlite3BtreeEnter(p); assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); assert( nRef>=0 ); memset(&sCheck, 0, sizeof(sCheck)); sCheck.db = db; sCheck.pBt = pBt; sCheck.pPager = pBt->pPager; sCheck.nCkPage = btreePagecount(sCheck.pBt); sCheck.mxErr = mxErr; sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; if( sCheck.nCkPage==0 ){ goto integrity_ck_cleanup; } sCheck.aPgRef = sqlite3MallocZero((sCheck.nCkPage / 8)+ 1); if( !sCheck.aPgRef ){ checkOom(&sCheck); goto integrity_ck_cleanup; } sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); if( sCheck.heap==0 ){ checkOom(&sCheck); goto integrity_ck_cleanup; } i = PENDING_BYTE_PAGE(pBt); if( i<=sCheck.nCkPage ) setPageReferenced(&sCheck, i); /* Check the integrity of the freelist */ if( bCkFreelist ){ sCheck.zPfx = "Freelist: "; checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36])); sCheck.zPfx = 0; } /* Check all the tables. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( !bPartial ){ if( pBt->autoVacuum ){ Pgno mx = 0; Pgno mxInHdr; for(i=0; (int)ipPage1->aData[52]); if( mx!=mxInHdr ){ checkAppendMsg(&sCheck, "max rootpage (%u) disagrees with header (%u)", mx, mxInHdr ); } }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ checkAppendMsg(&sCheck, "incremental_vacuum enabled with a max rootpage of zero" ); } } #endif testcase( pBt->db->flags & SQLITE_CellSizeCk ); pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; for(i=0; (int)iautoVacuum && aRoot[i]>1 && !bPartial ){ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); } #endif sCheck.v0 = aRoot[i]; checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); } pBt->db->flags = savedDbFlags; /* Make sure every page in the file is referenced */ if( !bPartial ){ for(i=1; i<=sCheck.nCkPage && sCheck.mxErr; i++){ #ifdef SQLITE_OMIT_AUTOVACUUM if( getPageReferenced(&sCheck, i)==0 ){ checkAppendMsg(&sCheck, "Page %u: never used", i); } #else /* If the database supports auto-vacuum, make sure no tables contain ** references to pointer-map pages. */ if( getPageReferenced(&sCheck, i)==0 && (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ checkAppendMsg(&sCheck, "Page %u: never used", i); } if( getPageReferenced(&sCheck, i)!=0 && (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ checkAppendMsg(&sCheck, "Page %u: pointer map referenced", i); } #endif } } /* Clean up and report errors. */ integrity_ck_cleanup: sqlite3PageFree(sCheck.heap); sqlite3_free(sCheck.aPgRef); *pnErr = sCheck.nErr; if( sCheck.nErr==0 ){ sqlite3_str_reset(&sCheck.errMsg); *pzOut = 0; }else{ *pzOut = sqlite3StrAccumFinish(&sCheck.errMsg); } /* Make sure this analysis did not leave any unref() pages. */ assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); sqlite3BtreeLeave(p); return sCheck.rc; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** Return the full pathname of the underlying database file. Return ** an empty string if the database is in-memory or a TEMP database. ** ** The pager filename is invariant as long as the pager is ** open so it is safe to access without the BtShared mutex. */ SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){ assert( p->pBt->pPager!=0 ); return sqlite3PagerFilename(p->pBt->pPager, 1); } /* ** Return the pathname of the journal file for this database. The return ** value of this routine is the same regardless of whether the journal file ** has been created or not. ** ** The pager journal filename is invariant as long as the pager is ** open so it is safe to access without the BtShared mutex. */ SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){ assert( p->pBt->pPager!=0 ); return sqlite3PagerJournalname(p->pBt->pPager); } /* ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE ** to describe the current transaction state of Btree p. */ SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree *p){ assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); return p ? p->inTrans : 0; } #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on the Btree passed as the first argument. ** ** Return SQLITE_LOCKED if this or any other connection has an open ** transaction on the shared-cache the argument Btree is connected to. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. */ SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; if( p ){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( pBt->inTransaction!=TRANS_NONE ){ rc = SQLITE_LOCKED; }else{ rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); } sqlite3BtreeLeave(p); } return rc; } #endif /* ** Return true if there is currently a backup running on Btree p. */ SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){ assert( p ); assert( sqlite3_mutex_held(p->db->mutex) ); return p->nBackup!=0; } /* ** This function returns a pointer to a blob of memory associated with ** a single shared-btree. The memory is used by client code for its own ** purposes (for example, to store a high-level schema associated with ** the shared-btree). The btree layer manages reference counting issues. ** ** The first time this is called on a shared-btree, nBytes bytes of memory ** are allocated, zeroed, and returned to the caller. For each subsequent ** call the nBytes parameter is ignored and a pointer to the same blob ** of memory returned. ** ** If the nBytes parameter is 0 and the blob of memory has not yet been ** allocated, a null pointer is returned. If the blob has already been ** allocated, it is returned as normal. ** ** Just before the shared-btree is closed, the function passed as the ** xFree argument when the memory allocation was made is invoked on the ** blob of allocated memory. The xFree function should not call sqlite3_free() ** on the memory, the btree layer does that. */ SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( !pBt->pSchema && nBytes ){ pBt->pSchema = sqlite3DbMallocZero(0, nBytes); pBt->xFreeSchema = xFree; } sqlite3BtreeLeave(p); return pBt->pSchema; } /* ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared ** btree as the argument handle holds an exclusive lock on the ** sqlite_schema table. Otherwise SQLITE_OK. */ SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){ int rc; assert( sqlite3_mutex_held(p->db->mutex) ); sqlite3BtreeEnter(p); rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); sqlite3BtreeLeave(p); return rc; } #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Obtain a lock on the table whose root page is iTab. The ** lock is a write lock if isWritelock is true or a read lock ** if it is false. */ SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ int rc = SQLITE_OK; assert( p->inTrans!=TRANS_NONE ); if( p->sharable ){ u8 lockType = READ_LOCK + isWriteLock; assert( READ_LOCK+1==WRITE_LOCK ); assert( isWriteLock==0 || isWriteLock==1 ); sqlite3BtreeEnter(p); rc = querySharedCacheTableLock(p, iTab, lockType); if( rc==SQLITE_OK ){ rc = setSharedCacheTableLock(p, iTab, lockType); } sqlite3BtreeLeave(p); } return rc; } #endif #ifndef SQLITE_OMIT_INCRBLOB /* ** Argument pCsr must be a cursor opened for writing on an ** INTKEY table currently pointing at a valid table entry. ** This function modifies the data stored as part of that entry. ** ** Only the data content may only be modified, it is not possible to ** change the length of the data stored. If this function is called with ** parameters that attempt to write past the end of the existing data, ** no modifications are made and SQLITE_CORRUPT is returned. */ SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ int rc; assert( cursorOwnsBtShared(pCsr) ); assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); assert( pCsr->curFlags & BTCF_Incrblob ); rc = restoreCursorPosition(pCsr); if( rc!=SQLITE_OK ){ return rc; } assert( pCsr->eState!=CURSOR_REQUIRESEEK ); if( pCsr->eState!=CURSOR_VALID ){ return SQLITE_ABORT; } /* Save the positions of all other cursors open on this table. This is ** required in case any of them are holding references to an xFetch ** version of the b-tree page modified by the accessPayload call below. ** ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence ** saveAllCursors can only return SQLITE_OK. */ VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); assert( rc==SQLITE_OK ); /* Check some assumptions: ** (a) the cursor is open for writing, ** (b) there is a read/write transaction open, ** (c) the connection holds a write-lock on the table (if required), ** (d) there are no conflicting read-locks, and ** (e) the cursor points at a valid row of an intKey table. */ if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ return SQLITE_READONLY; } assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 && pCsr->pBt->inTransaction==TRANS_WRITE ); assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); assert( pCsr->pPage->intKey ); return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); } /* ** Mark this cursor as an incremental blob cursor. */ SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ pCur->curFlags |= BTCF_Incrblob; pCur->pBtree->hasIncrblobCur = 1; } #endif /* ** Set both the "read version" (single byte at byte offset 18) and ** "write version" (single byte at byte offset 19) fields in the database ** header to iVersion. */ SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ BtShared *pBt = pBtree->pBt; int rc; /* Return code */ assert( iVersion==1 || iVersion==2 ); /* If setting the version fields to 1, do not automatically open the ** WAL connection, even if the version fields are currently set to 2. */ pBt->btsFlags &= ~BTS_NO_WAL; if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); if( rc==SQLITE_OK ){ u8 *aData = pBt->pPage1->aData; if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc==SQLITE_OK ){ aData[18] = (u8)iVersion; aData[19] = (u8)iVersion; } } } } pBt->btsFlags &= ~BTS_NO_WAL; return rc; } /* ** Return true if the cursor has a hint specified. This routine is ** only used from within assert() statements */ SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ return (pCsr->hints & mask)!=0; } /* ** Return true if the given Btree is read-only. */ SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){ return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; } /* ** Return the size of the header added to each page by this module. */ SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } /* ** If no transaction is active and the database is not a temp-db, clear ** the in-memory pager cache. */ SQLITE_PRIVATE void sqlite3BtreeClearCache(Btree *p){ BtShared *pBt = p->pBt; if( pBt->inTransaction==TRANS_NONE ){ sqlite3PagerClearCache(pBt->pPager); } } #if !defined(SQLITE_OMIT_SHARED_CACHE) /* ** Return true if the Btree passed as the only argument is sharable. */ SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){ return p->sharable; } /* ** Return the number of connections to the BtShared object accessed by ** the Btree handle passed as the only argument. For private caches ** this is always 1. For shared caches it may be 1 or greater. */ SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree *p){ testcase( p->sharable ); return p->pBt->nRef; } #endif /************** End of btree.c ***********************************************/ /************** Begin file backup.c ******************************************/ /* ** 2009 January 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_backup_XXX() ** API functions and the related features. */ /* #include "sqliteInt.h" */ /* #include "btreeInt.h" */ /* ** Structure allocated for each backup operation. */ struct sqlite3_backup { sqlite3* pDestDb; /* Destination database handle */ Btree *pDest; /* Destination b-tree file */ u32 iDestSchema; /* Original schema cookie in destination */ int bDestLocked; /* True once a write-transaction is open on pDest */ Pgno iNext; /* Page number of the next source page to copy */ sqlite3* pSrcDb; /* Source database handle */ Btree *pSrc; /* Source b-tree file */ int rc; /* Backup process error code */ /* These two variables are set by every call to backup_step(). They are ** read by calls to backup_remaining() and backup_pagecount(). */ Pgno nRemaining; /* Number of pages left to copy */ Pgno nPagecount; /* Total number of pages to copy */ int isAttached; /* True once backup has been registered with pager */ sqlite3_backup *pNext; /* Next backup associated with source pager */ }; /* ** THREAD SAFETY NOTES: ** ** Once it has been created using backup_init(), a single sqlite3_backup ** structure may be accessed via two groups of thread-safe entry points: ** ** * Via the sqlite3_backup_XXX() API function backup_step() and ** backup_finish(). Both these functions obtain the source database ** handle mutex and the mutex associated with the source BtShared ** structure, in that order. ** ** * Via the BackupUpdate() and BackupRestart() functions, which are ** invoked by the pager layer to report various state changes in ** the page cache associated with the source database. The mutex ** associated with the source database BtShared structure will always ** be held when either of these functions are invoked. ** ** The other sqlite3_backup_XXX() API functions, backup_remaining() and ** backup_pagecount() are not thread-safe functions. If they are called ** while some other thread is calling backup_step() or backup_finish(), ** the values returned may be invalid. There is no way for a call to ** BackupUpdate() or BackupRestart() to interfere with backup_remaining() ** or backup_pagecount(). ** ** Depending on the SQLite configuration, the database handles and/or ** the Btree objects may have their own mutexes that require locking. ** Non-sharable Btrees (in-memory databases for example), do not have ** associated mutexes. */ /* ** Return a pointer corresponding to database zDb (i.e. "main", "temp") ** in connection handle pDb. If such a database cannot be found, return ** a NULL pointer and write an error message to pErrorDb. ** ** If the "temp" database is requested, it may need to be opened by this ** function. If an error occurs while doing so, return 0 and write an ** error message to pErrorDb. */ static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){ int i = sqlite3FindDbName(pDb, zDb); if( i==1 ){ Parse sParse; int rc = 0; sqlite3ParseObjectInit(&sParse,pDb); if( sqlite3OpenTempDatabase(&sParse) ){ sqlite3ErrorWithMsg(pErrorDb, sParse.rc, "%s", sParse.zErrMsg); rc = SQLITE_ERROR; } sqlite3DbFree(pErrorDb, sParse.zErrMsg); sqlite3ParseObjectReset(&sParse); if( rc ){ return 0; } } if( i<0 ){ sqlite3ErrorWithMsg(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb); return 0; } return pDb->aDb[i].pBt; } /* ** Attempt to set the page size of the destination to match the page size ** of the source. */ static int setDestPgsz(sqlite3_backup *p){ int rc; rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),0,0); return rc; } /* ** Check that there is no open read-transaction on the b-tree passed as the ** second argument. If there is not, return SQLITE_OK. Otherwise, if there ** is an open read-transaction, return SQLITE_ERROR and leave an error ** message in database handle db. */ static int checkReadTransaction(sqlite3 *db, Btree *p){ if( sqlite3BtreeTxnState(p)!=SQLITE_TXN_NONE ){ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use"); return SQLITE_ERROR; } return SQLITE_OK; } /* ** Create an sqlite3_backup process to copy the contents of zSrcDb from ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return ** a pointer to the new sqlite3_backup object. ** ** If an error occurs, NULL is returned and an error code and error message ** stored in database handle pDestDb. */ SQLITE_API sqlite3_backup *sqlite3_backup_init( sqlite3* pDestDb, /* Database to write to */ const char *zDestDb, /* Name of database within pDestDb */ sqlite3* pSrcDb, /* Database connection to read from */ const char *zSrcDb /* Name of database within pSrcDb */ ){ sqlite3_backup *p; /* Value to return */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC { extern int sqlcipher_find_db_index(sqlite3*, const char*); extern void sqlcipherCodecGetKey(sqlite3*, int, void**, int*); int srcNKey, destNKey; void *zKey; sqlcipherCodecGetKey(pSrcDb, sqlcipher_find_db_index(pSrcDb, zSrcDb), &zKey, &srcNKey); sqlcipherCodecGetKey(pDestDb, sqlcipher_find_db_index(pDestDb, zDestDb), &zKey, &destNKey); zKey = NULL; /* either both databases must be plaintext, or both must be encrypted */ if((srcNKey == 0 && destNKey > 0) || (srcNKey > 0 && destNKey == 0)) { sqlite3ErrorWithMsg(pDestDb, SQLITE_ERROR, "backup is not supported with encrypted databases"); return NULL; } } #endif /* END SQLCIPHER */ /* Lock the source database handle. The destination database ** handle is not locked in this routine, but it is locked in ** sqlite3_backup_step(). The user is required to ensure that no ** other thread accesses the destination handle for the duration ** of the backup operation. Any attempt to use the destination ** database connection while a backup is in progress may cause ** a malfunction or a deadlock. */ sqlite3_mutex_enter(pSrcDb->mutex); sqlite3_mutex_enter(pDestDb->mutex); if( pSrcDb==pDestDb ){ sqlite3ErrorWithMsg( pDestDb, SQLITE_ERROR, "source and destination must be distinct" ); p = 0; }else { /* Allocate space for a new sqlite3_backup object... ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a ** call to sqlite3_backup_init() and is destroyed by a call to ** sqlite3_backup_finish(). */ p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup)); if( !p ){ sqlite3Error(pDestDb, SQLITE_NOMEM_BKPT); } } /* If the allocation succeeded, populate the new object. */ if( p ){ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); p->pDest = findBtree(pDestDb, pDestDb, zDestDb); p->pDestDb = pDestDb; p->pSrcDb = pSrcDb; p->iNext = 1; p->isAttached = 0; if( 0==p->pSrc || 0==p->pDest || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK ){ /* One (or both) of the named databases did not exist or an OOM ** error was hit. Or there is a transaction open on the destination ** database. The error has already been written into the pDestDb ** handle. All that is left to do here is free the sqlite3_backup ** structure. */ sqlite3_free(p); p = 0; } } if( p ){ p->pSrc->nBackup++; } sqlite3_mutex_leave(pDestDb->mutex); sqlite3_mutex_leave(pSrcDb->mutex); return p; } /* ** Argument rc is an SQLite error code. Return true if this error is ** considered fatal if encountered during a backup operation. All errors ** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED. */ static int isFatalError(int rc){ return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED)); } /* ** Parameter zSrcData points to a buffer containing the data for ** page iSrcPg from the source database. Copy this data into the ** destination database. */ static int backupOnePage( sqlite3_backup *p, /* Backup handle */ Pgno iSrcPg, /* Source database page to backup */ const u8 *zSrcData, /* Source database page data */ int bUpdate /* True for an update, false otherwise */ ){ Pager * const pDestPager = sqlite3BtreePager(p->pDest); const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); const int nCopy = MIN(nSrcPgsz, nDestPgsz); const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC extern void *sqlcipherPagerGetCodec(Pager*); /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is ** guaranteed that the shared-mutex is held by this thread, handle ** p->pSrc may not actually be the owner. */ int nSrcReserve = sqlite3BtreeGetReserveNoMutex(p->pSrc); int nDestReserve = sqlite3BtreeGetRequestedReserve(p->pDest); #endif /* END SQLCIPHER */ int rc = SQLITE_OK; i64 iOff; assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 ); assert( p->bDestLocked ); assert( !isFatalError(p->rc) ); assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ); assert( zSrcData ); assert( nSrcPgsz==nDestPgsz || sqlite3PagerIsMemdb(pDestPager)==0 ); /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* Backup is not possible if the page size of the destination is changing ** and a codec is in use. */ if( nSrcPgsz!=nDestPgsz && sqlcipherPagerGetCodec(pDestPager)!=0 ){ rc = SQLITE_READONLY; } /* Backup is not possible if the number of bytes of reserve space differ ** between source and destination. If there is a difference, try to ** fix the destination to agree with the source. If that is not possible, ** then the backup cannot proceed. */ if( nSrcReserve!=nDestReserve ){ u32 newPgsz = nSrcPgsz; rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve); if( rc==SQLITE_OK && newPgsz!=(u32)nSrcPgsz ) rc = SQLITE_READONLY; } #endif /* END SQLCIPHER */ /* This loop runs once for each destination page spanned by the source ** page. For each iteration, variable iOff is set to the byte offset ** of the destination page. */ for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOffpDest->pBt) ) continue; if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg, 0)) && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg)) ){ const u8 *zIn = &zSrcData[iOff%nSrcPgsz]; u8 *zDestData = sqlite3PagerGetData(pDestPg); u8 *zOut = &zDestData[iOff%nDestPgsz]; /* Copy the data from the source page into the destination page. ** Then clear the Btree layer MemPage.isInit flag. Both this module ** and the pager code use this trick (clearing the first byte ** of the page 'extra' space to invalidate the Btree layers ** cached parse of the page). MemPage.isInit is marked ** "MUST BE FIRST" for this purpose. */ memcpy(zOut, zIn, nCopy); ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0; if( iOff==0 && bUpdate==0 ){ sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc)); } } sqlite3PagerUnref(pDestPg); } return rc; } /* ** If pFile is currently larger than iSize bytes, then truncate it to ** exactly iSize bytes. If pFile is not larger than iSize bytes, then ** this function is a no-op. ** ** Return SQLITE_OK if everything is successful, or an SQLite error ** code if an error occurs. */ static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){ i64 iCurrent; int rc = sqlite3OsFileSize(pFile, &iCurrent); if( rc==SQLITE_OK && iCurrent>iSize ){ rc = sqlite3OsTruncate(pFile, iSize); } return rc; } /* ** Register this backup object with the associated source pager for ** callbacks when pages are changed or the cache invalidated. */ static void attachBackupObject(sqlite3_backup *p){ sqlite3_backup **pp; assert( sqlite3BtreeHoldsMutex(p->pSrc) ); pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); p->pNext = *pp; *pp = p; p->isAttached = 1; } /* ** Copy nPage pages from the source b-tree to the destination. */ SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){ int rc; int destMode; /* Destination journal mode */ int pgszSrc = 0; /* Source page size */ int pgszDest = 0; /* Destination page size */ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } rc = p->rc; if( !isFatalError(rc) ){ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */ int ii; /* Iterator variable */ int nSrcPage = -1; /* Size of source db in pages */ int bCloseTrans = 0; /* True if src db requires unlocking */ /* If the source pager is currently in a write-transaction, return ** SQLITE_BUSY immediately. */ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){ rc = SQLITE_BUSY; }else{ rc = SQLITE_OK; } /* If there is no open read-transaction on the source database, open ** one now. If a transaction is opened here, then it will be closed ** before this function exits. */ if( rc==SQLITE_OK && SQLITE_TXN_NONE==sqlite3BtreeTxnState(p->pSrc) ){ rc = sqlite3BtreeBeginTrans(p->pSrc, 0, 0); bCloseTrans = 1; } /* If the destination database has not yet been locked (i.e. if this ** is the first call to backup_step() for the current backup operation), ** try to set its page size to the same as the source database. This ** is especially important on ZipVFS systems, as in that case it is ** not possible to create a database file that uses one page size by ** writing to it with another. */ if( p->bDestLocked==0 && rc==SQLITE_OK && setDestPgsz(p)==SQLITE_NOMEM ){ rc = SQLITE_NOMEM; } /* Lock the destination database, if it is not locked already. */ if( SQLITE_OK==rc && p->bDestLocked==0 && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2, (int*)&p->iDestSchema)) ){ p->bDestLocked = 1; } /* Do not allow backup if the destination database is in WAL mode ** and the page sizes are different between source and destination */ pgszSrc = sqlite3BtreeGetPageSize(p->pSrc); pgszDest = sqlite3BtreeGetPageSize(p->pDest); destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest)); if( SQLITE_OK==rc && (destMode==PAGER_JOURNALMODE_WAL || sqlite3PagerIsMemdb(pDestPager)) && pgszSrc!=pgszDest ){ rc = SQLITE_READONLY; } /* Now that there is a read-lock on the source database, query the ** source pager for the number of pages in the database. */ nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc); assert( nSrcPage>=0 ); for(ii=0; (nPage<0 || iiiNext<=(Pgno)nSrcPage && !rc; ii++){ const Pgno iSrcPg = p->iNext; /* Source page number */ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ DbPage *pSrcPg; /* Source page object */ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg,PAGER_GET_READONLY); if( rc==SQLITE_OK ){ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0); sqlite3PagerUnref(pSrcPg); } } p->iNext++; } if( rc==SQLITE_OK ){ p->nPagecount = nSrcPage; p->nRemaining = nSrcPage+1-p->iNext; if( p->iNext>(Pgno)nSrcPage ){ rc = SQLITE_DONE; }else if( !p->isAttached ){ attachBackupObject(p); } } /* Update the schema version field in the destination database. This ** is to make sure that the schema-version really does change in ** the case where the source and destination databases have the ** same schema version. */ if( rc==SQLITE_DONE ){ if( nSrcPage==0 ){ rc = sqlite3BtreeNewDb(p->pDest); nSrcPage = 1; } if( rc==SQLITE_OK || rc==SQLITE_DONE ){ rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1); } if( rc==SQLITE_OK ){ if( p->pDestDb ){ sqlite3ResetAllSchemasOfConnection(p->pDestDb); } if( destMode==PAGER_JOURNALMODE_WAL ){ rc = sqlite3BtreeSetVersion(p->pDest, 2); } } if( rc==SQLITE_OK ){ int nDestTruncate; /* Set nDestTruncate to the final number of pages in the destination ** database. The complication here is that the destination page ** size may be different to the source page size. ** ** If the source page size is smaller than the destination page size, ** round up. In this case the call to sqlite3OsTruncate() below will ** fix the size of the file. However it is important to call ** sqlite3PagerTruncateImage() here so that any pages in the ** destination file that lie beyond the nDestTruncate page mark are ** journalled by PagerCommitPhaseOne() before they are destroyed ** by the file truncation. */ assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) ); assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) ); if( pgszSrcpDest->pBt) ){ nDestTruncate--; } }else{ nDestTruncate = nSrcPage * (pgszSrc/pgszDest); } assert( nDestTruncate>0 ); if( pgszSrc= iSize || ( nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1) && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest )); /* This block ensures that all data required to recreate the original ** database has been stored in the journal for pDestPager and the ** journal synced to disk. So at this point we may safely modify ** the database file in any way, knowing that if a power failure ** occurs, the original database will be reconstructed from the ** journal file. */ sqlite3PagerPagecount(pDestPager, &nDstPage); for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){ if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){ DbPage *pPg; rc = sqlite3PagerGet(pDestPager, iPg, &pPg, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pPg); sqlite3PagerUnref(pPg); } } } if( rc==SQLITE_OK ){ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1); } /* Write the extra pages and truncate the database file as required */ iEnd = MIN(PENDING_BYTE + pgszDest, iSize); for( iOff=PENDING_BYTE+pgszSrc; rc==SQLITE_OK && iOffpDest, 0)) ){ rc = SQLITE_DONE; } } } /* If bCloseTrans is true, then this function opened a read transaction ** on the source database. Close the read transaction here. There is ** no need to check the return values of the btree methods here, as ** "committing" a read-only transaction cannot fail. */ if( bCloseTrans ){ TESTONLY( int rc2 ); TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0); assert( rc2==SQLITE_OK ); } if( rc==SQLITE_IOERR_NOMEM ){ rc = SQLITE_NOMEM_BKPT; } p->rc = rc; } if( p->pDestDb ){ sqlite3_mutex_leave(p->pDestDb->mutex); } sqlite3BtreeLeave(p->pSrc); sqlite3_mutex_leave(p->pSrcDb->mutex); return rc; } /* ** Release all resources associated with an sqlite3_backup* handle. */ SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){ sqlite3_backup **pp; /* Ptr to head of pagers backup list */ sqlite3 *pSrcDb; /* Source database connection */ int rc; /* Value to return */ /* Enter the mutexes */ if( p==0 ) return SQLITE_OK; pSrcDb = p->pSrcDb; sqlite3_mutex_enter(pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } /* Detach this backup from the source pager. */ if( p->pDestDb ){ p->pSrc->nBackup--; } if( p->isAttached ){ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc)); assert( pp!=0 ); while( *pp!=p ){ pp = &(*pp)->pNext; assert( pp!=0 ); } *pp = p->pNext; } /* If a transaction is still open on the Btree, roll it back. */ sqlite3BtreeRollback(p->pDest, SQLITE_OK, 0); /* Set the error code of the destination database handle. */ rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc; if( p->pDestDb ){ sqlite3Error(p->pDestDb, rc); /* Exit the mutexes and free the backup context structure. */ sqlite3LeaveMutexAndCloseZombie(p->pDestDb); } sqlite3BtreeLeave(p->pSrc); if( p->pDestDb ){ /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a ** call to sqlite3_backup_init() and is destroyed by a call to ** sqlite3_backup_finish(). */ sqlite3_free(p); } sqlite3LeaveMutexAndCloseZombie(pSrcDb); return rc; } /* ** Return the number of pages still to be backed up as of the most recent ** call to sqlite3_backup_step(). */ SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return p->nRemaining; } /* ** Return the total number of pages in the source database as of the most ** recent call to sqlite3_backup_step(). */ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return p->nPagecount; } /* ** This function is called after the contents of page iPage of the ** source database have been modified. If page iPage has already been ** copied into the destination database, then the data written to the ** destination is now invalidated. The destination copy of iPage needs ** to be updated with the new data before the backup operation is ** complete. ** ** It is assumed that the mutex associated with the BtShared object ** corresponding to the source database is held when this function is ** called. */ static SQLITE_NOINLINE void backupUpdate( sqlite3_backup *p, Pgno iPage, const u8 *aData ){ assert( p!=0 ); do{ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); if( !isFatalError(p->rc) && iPageiNext ){ /* The backup process p has already copied page iPage. But now it ** has been modified by a transaction on the source pager. Copy ** the new data into the backup. */ int rc; assert( p->pDestDb ); sqlite3_mutex_enter(p->pDestDb->mutex); rc = backupOnePage(p, iPage, aData, 1); sqlite3_mutex_leave(p->pDestDb->mutex); assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); if( rc!=SQLITE_OK ){ p->rc = rc; } } }while( (p = p->pNext)!=0 ); } SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){ if( pBackup ) backupUpdate(pBackup, iPage, aData); } /* ** Restart the backup process. This is called when the pager layer ** detects that the database has been modified by an external database ** connection. In this case there is no way of knowing which of the ** pages that have been copied into the destination database are still ** valid and which are not, so the entire process needs to be restarted. ** ** It is assumed that the mutex associated with the BtShared object ** corresponding to the source database is held when this function is ** called. */ SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){ sqlite3_backup *p; /* Iterator variable */ for(p=pBackup; p; p=p->pNext){ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) ); p->iNext = 1; } } #ifndef SQLITE_OMIT_VACUUM /* ** Copy the complete content of pBtFrom into pBtTo. A transaction ** must be active for both files. ** ** The size of file pTo may be reduced by this operation. If anything ** goes wrong, the transaction on pTo is rolled back. If successful, the ** transaction is committed before returning. */ SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ int rc; sqlite3_file *pFd; /* File descriptor for database pTo */ sqlite3_backup b; sqlite3BtreeEnter(pTo); sqlite3BtreeEnter(pFrom); assert( sqlite3BtreeTxnState(pTo)==SQLITE_TXN_WRITE ); pFd = sqlite3PagerFile(sqlite3BtreePager(pTo)); if( pFd->pMethods ){ i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom); rc = sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte); if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; if( rc ) goto copy_finished; } /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set ** to 0. This is used by the implementations of sqlite3_backup_step() ** and sqlite3_backup_finish() to detect that they are being called ** from this function, not directly by the user. */ memset(&b, 0, sizeof(b)); b.pSrcDb = pFrom->db; b.pSrc = pFrom; b.pDest = pTo; b.iNext = 1; /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC sqlite3PagerAlignReserve(sqlite3BtreePager(pTo), sqlite3BtreePager(pFrom)); #endif /* END SQLCIPHER */ /* 0x7FFFFFFF is the hard limit for the number of pages in a database ** file. By passing this as the number of pages to copy to ** sqlite3_backup_step(), we can guarantee that the copy finishes ** within a single call (unless an error occurs). The assert() statement ** checks this assumption - (p->rc) should be set to either SQLITE_DONE ** or an error code. */ sqlite3_backup_step(&b, 0x7FFFFFFF); assert( b.rc!=SQLITE_OK ); rc = sqlite3_backup_finish(&b); if( rc==SQLITE_OK ){ pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED; }else{ sqlite3PagerClearCache(sqlite3BtreePager(b.pDest)); } assert( sqlite3BtreeTxnState(pTo)!=SQLITE_TXN_WRITE ); copy_finished: sqlite3BtreeLeave(pFrom); sqlite3BtreeLeave(pTo); return rc; } #endif /* SQLITE_OMIT_VACUUM */ /************** End of backup.c **********************************************/ /************** Begin file vdbemem.c *****************************************/ /* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* True if X is a power of two. 0 is considered a power of two here. ** In other words, return true if X has at most one bit set. */ #define ISPOWEROF2(X) (((X)&((X)-1))==0) #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem *p){ /* If MEM_Dyn is set then Mem.xDel!=0. ** Mem.xDel might not be initialized if MEM_Dyn is clear. */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we ** ensure that if Mem.szMalloc>0 then it is safe to do ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); if( p->flags & MEM_Null ){ /* Cannot be both MEM_Null and some other type */ assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); /* If MEM_Null is set, then either the value is a pure NULL (the usual ** case) or it is a pointer set using sqlite3_bind_pointer() or ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be ** set. */ if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ /* This is a pointer type. There may be a flag to indicate what to ** do with the pointer. */ assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); /* No other bits set */ assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); }else{ /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ } }else{ /* The MEM_Cleared bit is only allowed on NULLs */ assert( (p->flags & MEM_Cleared)==0 ); } /* The szMalloc field holds the correct memory allocation size */ assert( p->szMalloc==0 || (p->flags==MEM_Undefined && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** ** (1) Memory in Mem.zMalloc and managed by the Mem object ** (2) Memory to be freed using Mem.xDel ** (3) An ephemeral string or blob ** (4) A static string or blob */ if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ assert( ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 ); } return 1; } #endif /* ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal ** into a buffer. */ static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ StrAccum acc; assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); assert( sz>22 ); if( p->flags & MEM_Int ){ #if GCC_VERSION>=7000000 /* Work-around for GCC bug ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ i64 x; assert( (p->flags&MEM_Int)*2==sizeof(x) ); memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); p->n = sqlite3Int64ToText(x, zBuf); #else p->n = sqlite3Int64ToText(p->u.i, zBuf); #endif }else{ sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); sqlite3_str_appendf(&acc, "%!.15g", (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); assert( acc.zText==zBuf && acc.mxAlloc<=0 ); zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ p->n = acc.nChar; } } #ifdef SQLITE_DEBUG /* ** Validity checks on pMem. pMem holds a string. ** ** (1) Check that string value of pMem agrees with its integer or real value. ** (2) Check that the string is correctly zero terminated ** ** A single int or real value always converts to the same strings. But ** many different strings can be converted into the same int or real. ** If a table contains a numeric value and an index is based on the ** corresponding string value, then it is important that the string be ** derived from the numeric value, not the other way around, to ensure ** that the index and table are consistent. See ticket ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for ** an example. ** ** This routine looks at pMem to verify that if it has both a numeric ** representation and a string representation then the string rep has ** been derived from the numeric and not the other way around. It returns ** true if everything is ok and false if there is a problem. ** ** This routine is for use inside of assert() statements only. */ SQLITE_PRIVATE int sqlite3VdbeMemValidStrRep(Mem *p){ Mem tmp; char zBuf[100]; char *z; int i, j, incr; if( (p->flags & MEM_Str)==0 ) return 1; if( p->db && p->db->mallocFailed ) return 1; if( p->flags & MEM_Term ){ /* Insure that the string is properly zero-terminated. Pay particular ** attention to the case where p->n is odd */ if( p->szMalloc>0 && p->z==p->zMalloc ){ assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); } assert( p->z[p->n]==0 ); assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); } if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; memcpy(&tmp, p, sizeof(tmp)); vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp); z = p->z; i = j = 0; incr = 1; if( p->enc!=SQLITE_UTF8 ){ incr = 2; if( p->enc==SQLITE_UTF16BE ) z++; } while( zBuf[j] ){ if( zBuf[j++]!=z[i] ) return 0; i += incr; } return 1; } #endif /* SQLITE_DEBUG */ /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string ** representation is already stored using the requested encoding, then this ** routine is a no-op. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ #ifndef SQLITE_OMIT_UTF16 int rc; #endif assert( pMem!=0 ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE || desiredEnc==SQLITE_UTF16BE ); if( !(pMem->flags&MEM_Str) ){ pMem->enc = desiredEnc; return SQLITE_OK; } if( pMem->enc==desiredEnc ){ return SQLITE_OK; } assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); #ifdef SQLITE_OMIT_UTF16 return SQLITE_ERROR; #else /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, ** then the encoding of the value may not have changed. */ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make sure pMem->z points to a writable allocation of at least n bytes. ** ** If the bPreserve argument is true, then copy of the content of ** pMem->z into the new allocation. pMem must be either a string or ** blob if bPreserve is true. If bPreserve is false, any prior content ** in pMem->z is discarded. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ assert( sqlite3VdbeCheckMemInvariants(pMem) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); testcase( pMem->db==0 ); /* If the bPreserve flag is set to true, then the memory cell must already ** contain a valid string or blob value. */ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); testcase( bPreserve && pMem->z==0 ); assert( pMem->szMalloc==0 || (pMem->flags==MEM_Undefined && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ if( pMem->db ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); }else{ pMem->zMalloc = sqlite3Realloc(pMem->z, n); if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); pMem->z = pMem->zMalloc; } bPreserve = 0; }else{ if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } if( pMem->zMalloc==0 ){ sqlite3VdbeMemSetNull(pMem); pMem->z = 0; pMem->szMalloc = 0; return SQLITE_NOMEM_BKPT; }else{ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); } if( bPreserve && pMem->z ){ assert( pMem->z!=pMem->zMalloc ); memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( (pMem->flags&MEM_Dyn)!=0 ){ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); return SQLITE_OK; } /* ** Change the pMem->zMalloc allocation to be at least szNew bytes. ** If pMem->zMalloc already meets or exceeds the requested size, this ** routine is a no-op. ** ** Any prior string or blob content in the pMem object may be discarded. ** The pMem->xDel destructor is called, if it exists. Though MEM_Str ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, ** and MEM_Null values are preserved. ** ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) ** if unable to complete the resizing. */ SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ assert( CORRUPT_DB || szNew>0 ); assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); if( pMem->szMallocflags & MEM_Dyn)==0 ); pMem->z = pMem->zMalloc; pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); return SQLITE_OK; } /* ** If pMem is already a string, detect if it is a zero-terminated ** string, or make it into one if possible, and mark it as such. ** ** This is an optimization. Correct operation continues even if ** this routine is a no-op. */ SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){ if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){ /* pMem must be a string, and it cannot be an ephemeral or static string */ return; } if( pMem->enc!=SQLITE_UTF8 ) return; if( NEVER(pMem->z==0) ) return; if( pMem->flags & MEM_Dyn ){ if( pMem->xDel==sqlite3_free && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1) ){ pMem->z[pMem->n] = 0; pMem->flags |= MEM_Term; return; } if( pMem->xDel==sqlite3RCStrUnref ){ /* Blindly assume that all RCStr objects are zero-terminated */ pMem->flags |= MEM_Term; return; } }else if( pMem->szMalloc >= pMem->n+1 ){ pMem->z[pMem->n] = 0; pMem->flags |= MEM_Term; return; } } /* ** It is already known that pMem contains an unterminated string. ** Add the zero terminator. ** ** Three bytes of zero are added. In this way, there is guaranteed ** to be a double-zero byte at an even byte boundary in order to ** terminate a UTF16 string, even if the initial size of the buffer ** is an odd number of bytes. */ static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ return SQLITE_NOMEM_BKPT; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->z[pMem->n+2] = 0; pMem->flags |= MEM_Term; return SQLITE_OK; } /* ** Change pMem so that its MEM_Str or MEM_Blob value is stored in ** MEM.zMalloc, where it can be safely written. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ if( ExpandBlob(pMem) ) return SQLITE_NOMEM; if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ int rc = vdbeMemAddTerminator(pMem); if( rc ) return rc; } } pMem->flags &= ~MEM_Ephem; #ifdef SQLITE_DEBUG pMem->pScopyFrom = 0; #endif return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary ** blob stored in dynamically allocated space. */ #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){ int nByte; assert( pMem!=0 ); assert( pMem->flags & MEM_Zero ); assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); testcase( sqlite3_value_nochange(pMem) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); /* Set nByte to the number of bytes required to store the expanded blob. */ nByte = pMem->n + pMem->u.nZero; if( nByte<=0 ){ if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; nByte = 1; } if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ return SQLITE_NOMEM_BKPT; } assert( pMem->z!=0 ); assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); memset(&pMem->z[pMem->n], 0, pMem->u.nZero); pMem->n += pMem->u.nZero; pMem->flags &= ~(MEM_Zero|MEM_Term); return SQLITE_OK; } #endif /* ** Make sure the given Mem is \u0000 terminated. */ SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ return SQLITE_OK; /* Nothing to do */ }else{ return vdbeMemAddTerminator(pMem); } } /* ** Add MEM_Str to the set of representations for the given Mem. This ** routine is only called if pMem is a number of some kind, not a NULL ** or a BLOB. ** ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated ** if bForce is true but are retained if bForce is false. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the latter is an internal programming error. */ SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ const int nByte = 32; assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(pMem->flags&MEM_Zero) ); assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ pMem->enc = 0; return SQLITE_NOMEM_BKPT; } vdbeMemRenderNum(nByte, pMem->z, pMem); assert( pMem->z!=0 ); assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) ); pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str|MEM_Term; if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); sqlite3VdbeChangeEncoding(pMem, enc); return SQLITE_OK; } /* ** Memory cell pMem contains the context of an aggregate function. ** This routine calls the finalize method for that function. The ** result of the aggregate is stored back into pMem. ** ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ sqlite3_context ctx; Mem t; assert( pFunc!=0 ); assert( pMem!=0 ); assert( pMem->db!=0 ); assert( pFunc->xFinalize!=0 ); assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( sqlite3_mutex_held(pMem->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); memset(&t, 0, sizeof(t)); t.flags = MEM_Null; t.db = pMem->db; ctx.pOut = &t; ctx.pMem = pMem; ctx.pFunc = pFunc; ctx.enc = ENC(t.db); pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ assert( (pMem->flags & MEM_Dyn)==0 ); if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); memcpy(pMem, &t, sizeof(t)); return ctx.isError; } /* ** Memory cell pAccum contains the context of an aggregate function. ** This routine calls the xValue method for that function and stores ** the results in memory cell pMem. ** ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK ** otherwise. */ #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ sqlite3_context ctx; assert( pFunc!=0 ); assert( pFunc->xValue!=0 ); assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); assert( pAccum->db!=0 ); assert( sqlite3_mutex_held(pAccum->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); sqlite3VdbeMemSetNull(pOut); ctx.pOut = pOut; ctx.pMem = pAccum; ctx.pFunc = pFunc; ctx.enc = ENC(pAccum->db); pFunc->xValue(&ctx); return ctx.isError; } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** If the memory cell contains a value that must be freed by ** invoking the external callback in Mem.xDel, then this routine ** will free that value. It also sets Mem.flags to MEM_Null. ** ** This is a helper routine for sqlite3VdbeMemSetNull() and ** for sqlite3VdbeMemRelease(). Use those other routines as the ** entry point for releasing Mem resources. */ static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); assert( VdbeMemDynamic(p) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); testcase( p->flags & MEM_Dyn ); } if( p->flags&MEM_Dyn ){ assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); p->xDel((void *)p->z); } p->flags = MEM_Null; } /* ** Release memory held by the Mem p, both external memory cleared ** by p->xDel and memory in p->zMalloc. ** ** This is a helper routine invoked by sqlite3VdbeMemRelease() in ** the unusual case where there really is memory in p that needs ** to be freed. */ static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ if( VdbeMemDynamic(p) ){ vdbeMemClearExternAndSetNull(p); } if( p->szMalloc ){ sqlite3DbFreeNN(p->db, p->zMalloc); p->szMalloc = 0; } p->z = 0; } /* ** Release any memory resources held by the Mem. Both the memory that is ** free by Mem.xDel and the Mem.zMalloc allocation are freed. ** ** Use this routine prior to clean up prior to abandoning a Mem, or to ** reset a Mem back to its minimum memory utilization. ** ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space ** prior to inserting new content into the Mem. */ SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){ assert( sqlite3VdbeCheckMemInvariants(p) ); if( VdbeMemDynamic(p) || p->szMalloc ){ vdbeMemClear(p); } } /* Like sqlite3VdbeMemRelease() but faster for cases where we ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem *p){ assert( !VdbeMemDynamic(p) ); if( p->szMalloc ) vdbeMemClear(p); } /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into an integer and return that. If pMem represents an ** an SQL-NULL value, return 0. ** ** If pMem represents a string value, its encoding might be changed. */ static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){ i64 value = 0; sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); return value; } SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem *pMem){ int flags; assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & (MEM_Int|MEM_IntReal) ){ testcase( flags & MEM_IntReal ); return pMem->u.i; }else if( flags & MEM_Real ){ return sqlite3RealToI64(pMem->u.r); }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ return memIntValue(pMem); }else{ return 0; } } /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ static SQLITE_NOINLINE double memRealValue(Mem *pMem){ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ double val = (double)0; sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); return val; } SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->u.r; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ testcase( pMem->flags & MEM_IntReal ); return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ return memRealValue(pMem); }else{ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ return (double)0; } } /* ** Return 1 if pMem represents true, and return 0 if pMem represents false. ** Return the value ifNull if pMem is NULL. */ SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ testcase( pMem->flags & MEM_IntReal ); if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; if( pMem->flags & MEM_Null ) return ifNull; return sqlite3VdbeRealValue(pMem)!=0.0; } /* ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to ** make it a MEM_Int if we can. */ SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){ assert( pMem!=0 ); assert( pMem->flags & (MEM_Real|MEM_IntReal) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_IntReal ){ MemSetTypeFlag(pMem, MEM_Int); }else{ i64 ix = sqlite3RealToI64(pMem->u.r); /* Only mark the value as an integer if ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** ** The second and third terms in the following conditional enforces ** the second condition under the assumption that addition overflow causes ** values to wrap around. */ if( pMem->u.r==ix && ix>SMALLEST_INT64 && ixu.i = ix; MemSetTypeFlag(pMem, MEM_Int); } } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.i = sqlite3VdbeIntValue(pMem); MemSetTypeFlag(pMem, MEM_Int); return SQLITE_OK; } /* ** Convert pMem so that it is of type MEM_Real. ** Invalidate any prior representations. */ SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.r = sqlite3VdbeRealValue(pMem); MemSetTypeFlag(pMem, MEM_Real); return SQLITE_OK; } /* Compare a floating point value to an integer. Return true if the two ** values are the same within the precision of the floating point value. ** ** This function assumes that i was obtained by assignment from r1. ** ** For some versions of GCC on 32-bit machines, if you do the more obvious ** comparison of "r1==(double)i" you sometimes get an answer of false even ** though the r1 and (double)i values are bit-for-bit the same. */ SQLITE_PRIVATE int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return r1==0.0 || (memcmp(&r1, &r2, sizeof(r1))==0 && i >= -2251799813685248LL && i < 2251799813685248LL); } /* Convert a floating point value to its closest integer. Do so in ** a way that avoids 'outside the range of representable values' warnings ** from UBSAN. */ SQLITE_PRIVATE i64 sqlite3RealToI64(double r){ if( r<-9223372036854774784.0 ) return SMALLEST_INT64; if( r>+9223372036854774784.0 ) return LARGEST_INT64; return (i64)r; } /* ** Convert pMem so that it has type MEM_Real or MEM_Int. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert ** as much of the string as we can and ignore the rest. */ SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){ assert( pMem!=0 ); testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_Real ); testcase( pMem->flags & MEM_IntReal ); testcase( pMem->flags & MEM_Null ); if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ int rc; sqlite3_int64 ix; assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r))) ){ pMem->u.i = ix; MemSetTypeFlag(pMem, MEM_Int); }else{ MemSetTypeFlag(pMem, MEM_Real); } } assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); return SQLITE_OK; } /* ** Cast the datatype of the value in pMem according to the affinity ** "aff". Casting is different from applying affinity in that a cast ** is forced. In other words, the value is converted into the desired ** affinity even if that results in loss of data. This routine is ** used (for example) to implement the SQL "cast()" operator. */ SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ if( pMem->flags & MEM_Null ) return SQLITE_OK; switch( aff ){ case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ if( (pMem->flags & MEM_Blob)==0 ){ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); }else{ pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); } break; } case SQLITE_AFF_NUMERIC: { sqlite3VdbeMemNumerify(pMem); break; } case SQLITE_AFF_INTEGER: { sqlite3VdbeMemIntegerify(pMem); break; } case SQLITE_AFF_REAL: { sqlite3VdbeMemRealify(pMem); break; } default: { int rc; assert( aff==SQLITE_AFF_TEXT ); assert( MEM_Str==(MEM_Blob>>3) ); pMem->flags |= (pMem->flags&MEM_Blob)>>3; sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1; rc = sqlite3VdbeChangeEncoding(pMem, encoding); if( rc ) return rc; sqlite3VdbeMemZeroTerminateIfAble(pMem); } } return SQLITE_OK; } /* ** Initialize bulk memory to be a consistent Mem object. ** ** The minimum amount of initialization feasible is performed. */ SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ assert( (flags & ~MEM_TypeMask)==0 ); pMem->flags = flags; pMem->db = db; pMem->szMalloc = 0; } /* ** Delete any previous value and set the value stored in *pMem to NULL. ** ** This routine calls the Mem.xDel destructor to dispose of values that ** require the destructor. But it preserves the Mem.zMalloc memory allocation. ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this ** routine to invoke the destructor and deallocates Mem.zMalloc. ** ** Use this routine to reset the Mem prior to insert a new value. ** ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. */ SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){ if( VdbeMemDynamic(pMem) ){ vdbeMemClearExternAndSetNull(pMem); }else{ pMem->flags = MEM_Null; } } SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value *p){ sqlite3VdbeMemSetNull((Mem*)p); } /* ** Delete any previous value and set the value to be a BLOB of length ** n containing all zeros. */ #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Blob|MEM_Zero; pMem->n = 0; if( n<0 ) n = 0; pMem->u.nZero = n; pMem->enc = SQLITE_UTF8; pMem->z = 0; } #else SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ int nByte = n>0?n:1; if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ return SQLITE_NOMEM_BKPT; } assert( pMem->z!=0 ); assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); memset(pMem->z, 0, nByte); pMem->n = n>0?n:0; pMem->flags = MEM_Blob; pMem->enc = SQLITE_UTF8; return SQLITE_OK; } #endif /* ** The pMem is known to contain content that needs to be destroyed prior ** to a value change. So invoke the destructor, then set the value to ** a 64-bit integer. */ static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemSetNull(pMem); pMem->u.i = val; pMem->flags = MEM_Int; } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ if( VdbeMemDynamic(pMem) ){ vdbeReleaseAndSetInt64(pMem, val); }else{ pMem->u.i = val; pMem->flags = MEM_Int; } } /* A no-op destructor */ SQLITE_PRIVATE void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } /* ** Set the value stored in *pMem should already be a NULL. ** Also store a pointer to go with it. */ SQLITE_PRIVATE void sqlite3VdbeMemSetPointer( Mem *pMem, void *pPtr, const char *zPType, void (*xDestructor)(void*) ){ assert( pMem->flags==MEM_Null ); vdbeMemClear(pMem); pMem->u.zPType = zPType ? zPType : ""; pMem->z = pPtr; pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; pMem->eSubtype = 'p'; pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; } #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type REAL. */ SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ sqlite3VdbeMemSetNull(pMem); if( !sqlite3IsNaN(val) ){ pMem->u.r = val; pMem->flags = MEM_Real; } } #endif #ifdef SQLITE_DEBUG /* ** Return true if the Mem holds a RowSet object. This routine is intended ** for use inside of assert() statements. */ SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem *pMem){ return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) && pMem->xDel==sqlite3RowSetDelete; } #endif /* ** Delete any previous value and set the value of pMem to be an ** empty boolean index. ** ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation ** error occurs. */ SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem *pMem){ sqlite3 *db = pMem->db; RowSet *p; assert( db!=0 ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); sqlite3VdbeMemRelease(pMem); p = sqlite3RowSetInit(db); if( p==0 ) return SQLITE_NOMEM; pMem->z = (char*)p; pMem->flags = MEM_Blob|MEM_Dyn; pMem->xDel = sqlite3RowSetDelete; return SQLITE_OK; } /* ** Return true if the Mem object contains a TEXT or BLOB that is ** too large - whose size exceeds SQLITE_MAX_LENGTH. */ SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){ assert( p->db!=0 ); if( p->flags & (MEM_Str|MEM_Blob) ){ int n = p->n; if( p->flags & MEM_Zero ){ n += p->u.nZero; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #ifdef SQLITE_DEBUG /* ** This routine prepares a memory cell for modification by breaking ** its link to a shallow copy and by marking any current shallow ** copies of this cell as invalid. ** ** This is used for testing and debugging only - to help ensure that shallow ** copies (created by OP_SCopy) are not misused. */ SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ int i; Mem *pX; for(i=1, pX=pVdbe->aMem+1; inMem; i++, pX++){ if( pX->pScopyFrom==pMem ){ u16 mFlags; if( pVdbe->db->flags & SQLITE_VdbeTrace ){ sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); } /* If pX is marked as a shallow copy of pMem, then try to verify that ** no significant changes have been made to pX since the OP_SCopy. ** A significant change would indicated a missed call to this ** function for pX. Minor changes, such as adding or removing a ** dual type, are allowed, as long as the underlying value is the ** same. */ mFlags = pMem->flags & pX->flags & pX->mScopyFlags; assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); /* pMem is the register that is changing. But also mark pX as ** undefined so that we can quickly detect the shallow-copy error */ pX->flags = MEM_Undefined; pX->pScopyFrom = 0; } } pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ vdbeMemClearExternAndSetNull(pTo); assert( !VdbeMemDynamic(pTo) ); sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); } SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ assert( !sqlite3VdbeMemIsRowSet(pFrom) ); assert( pTo->db==pFrom->db ); if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } memcpy(pTo, pFrom, MEMCELLSIZE); if( (pFrom->flags&MEM_Static)==0 ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( !sqlite3VdbeMemIsRowSet(pFrom) ); if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. */ SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); sqlite3VdbeMemRelease(pTo); memcpy(pTo, pFrom, sizeof(Mem)); pFrom->flags = MEM_Null; pFrom->szMalloc = 0; } /* ** Change the value of a Mem to be a string or a BLOB. ** ** The memory management strategy depends on the value of the xDel ** parameter. If the value passed is SQLITE_TRANSIENT, then the ** string is copied into a (possibly existing) buffer managed by the ** Mem structure. Otherwise, any existing buffer is freed and the ** pointer copied. ** ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH ** size limit) then no memory allocation occurs. If the string can be ** stored without allocating memory, then it is. If a memory allocation ** is required to store the string, then value of pMem is unchanged. In ** either case, SQLITE_TOOBIG is returned. ** ** The "enc" parameter is the text encoding for the string, or zero ** to store a blob. ** ** If n is negative, then the string consists of all bytes up to but ** excluding the first zero character. The n parameter must be ** non-negative for blobs. */ SQLITE_PRIVATE int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ i64 n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ i64 nByte = n; /* New value for pMem->n */ int iLimit; /* Maximum allowed string or blob size */ u16 flags; /* New value for pMem->flags */ assert( pMem!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( enc!=0 || n>=0 ); /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ if( !z ){ sqlite3VdbeMemSetNull(pMem); return SQLITE_OK; } if( pMem->db ){ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; }else{ iLimit = SQLITE_MAX_LENGTH; } if( nByte<0 ){ assert( enc!=0 ); if( enc==SQLITE_UTF8 ){ nByte = strlen(z); }else{ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} } flags= MEM_Str|MEM_Term; }else if( enc==0 ){ flags = MEM_Blob; enc = SQLITE_UTF8; }else{ flags = MEM_Str; } if( nByte>iLimit ){ if( xDel && xDel!=SQLITE_TRANSIENT ){ if( xDel==SQLITE_DYNAMIC ){ sqlite3DbFree(pMem->db, (void*)z); }else{ xDel((void*)z); } } sqlite3VdbeMemSetNull(pMem); return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); } /* The following block sets the new values of Mem.z and Mem.xDel. It ** also sets a flag in local variable "flags" to indicate the memory ** management (one of MEM_Dyn or MEM_Static). */ if( xDel==SQLITE_TRANSIENT ){ i64 nAlloc = nByte; if( flags&MEM_Term ){ nAlloc += (enc==SQLITE_UTF8?1:2); } testcase( nAlloc==0 ); testcase( nAlloc==31 ); testcase( nAlloc==32 ); if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ return SQLITE_NOMEM_BKPT; } memcpy(pMem->z, z, nAlloc); }else{ sqlite3VdbeMemRelease(pMem); pMem->z = (char *)z; if( xDel==SQLITE_DYNAMIC ){ pMem->zMalloc = pMem->z; pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); }else{ pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } } pMem->n = (int)(nByte & 0x7fffffff); pMem->flags = flags; pMem->enc = enc; #ifndef SQLITE_OMIT_UTF16 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM_BKPT; } #endif return SQLITE_OK; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data is payload from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** The result is written into the pMem element. ** ** The pMem object must have been initialized. This routine will use ** pMem->zMalloc to hold the content from the btree, if possible. New ** pMem->zMalloc space will be allocated if necessary. The calling routine ** is responsible for making sure that the pMem object is eventually ** destroyed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ SQLITE_PRIVATE int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ int rc; pMem->flags = MEM_Null; if( sqlite3BtreeMaxRecordSize(pCur)z); if( rc==SQLITE_OK ){ pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ pMem->flags = MEM_Blob; pMem->n = (int)amt; }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ u32 available = 0; /* Number of bytes available on the local btree page */ int rc = SQLITE_OK; /* Return code */ assert( sqlite3BtreeCursorIsValid(pCur) ); assert( !VdbeMemDynamic(pMem) ); /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() ** that both the BtShared and database handle mutexes are held. */ assert( !sqlite3VdbeMemIsRowSet(pMem) ); pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); assert( pMem->z!=0 ); if( amt<=available ){ pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else{ rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); } return rc; } /* ** The pVal argument is known to be a value other than NULL. ** Convert it into a string with encoding enc and return a pointer ** to a zero-terminated version of that string. */ static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ assert( pVal!=0 ); assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( !sqlite3VdbeMemIsRowSet(pVal) ); assert( (pVal->flags & (MEM_Null))==0 ); if( pVal->flags & (MEM_Blob|MEM_Str) ){ if( ExpandBlob(pVal) ) return 0; pVal->flags |= MEM_Str; if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); } if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ }else{ sqlite3VdbeMemStringify(pVal, enc, 0); assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ assert( sqlite3VdbeMemValidStrRep(pVal) ); return pVal->z; }else{ return 0; } } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( !sqlite3VdbeMemIsRowSet(pVal) ); if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ assert( sqlite3VdbeMemValidStrRep(pVal) ); return pVal->z; } if( pVal->flags&MEM_Null ){ return 0; } return valueToText(pVal, enc); } /* Return true if sqlit3_value object pVal is a string or blob value ** that uses the destructor specified in the second argument. ** ** TODO: Maybe someday promote this interface into a published API so ** that third-party extensions can get access to it? */ SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){ if( ALWAYS(pVal!=0) && ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0) && (pVal->flags & MEM_Dyn)!=0 && pVal->xDel==xFree ){ return 1; }else{ return 0; } } /* ** Create a new sqlite3_value object. */ SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ p->flags = MEM_Null; p->db = db; } return p; } /* ** Context object passed by sqlite3Stat4ProbeSetValue() through to ** valueNew(). See comments above valueNew() for details. */ struct ValueNewStat4Ctx { Parse *pParse; Index *pIdx; UnpackedRecord **ppRec; int iVal; }; /* ** Allocate and return a pointer to a new sqlite3_value object. If ** the second argument to this function is NULL, the object is allocated ** by calling sqlite3ValueNew(). ** ** Otherwise, if the second argument is non-zero, then this function is ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not ** already been allocated, allocate the UnpackedRecord structure that ** that function will return to its caller here. Then return a pointer to ** an sqlite3_value within the UnpackedRecord.a[] array. */ static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ #ifdef SQLITE_ENABLE_STAT4 if( p ){ UnpackedRecord *pRec = p->ppRec[0]; if( pRec==0 ){ Index *pIdx = p->pIdx; /* Index being probed */ int nByte; /* Bytes of space to allocate */ int i; /* Counter variable */ int nCol = pIdx->nColumn; /* Number of index columns including rowid */ nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); if( pRec ){ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); if( pRec->pKeyInfo ){ assert( pRec->pKeyInfo->nAllField==nCol ); assert( pRec->pKeyInfo->enc==ENC(db) ); pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); for(i=0; iaMem[i].flags = MEM_Null; pRec->aMem[i].db = db; } }else{ sqlite3DbFreeNN(db, pRec); pRec = 0; } } if( pRec==0 ) return 0; p->ppRec[0] = pRec; } pRec->nField = p->iVal+1; sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]); return &pRec->aMem[p->iVal]; } #else UNUSED_PARAMETER(p); #endif /* defined(SQLITE_ENABLE_STAT4) */ return sqlite3ValueNew(db); } /* ** The expression object indicated by the second argument is guaranteed ** to be a scalar SQL function. If ** ** * all function arguments are SQL literals, ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, ** ** then this routine attempts to invoke the SQL function. Assuming no ** error occurs, output parameter (*ppVal) is set to point to a value ** object containing the result before returning SQLITE_OK. ** ** Affinity aff is applied to the result of the function before returning. ** If the result is a text value, the sqlite3_value object uses encoding ** enc. ** ** If the conditions above are not met, this function returns SQLITE_OK ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to ** NULL and an SQLite error code returned. */ #ifdef SQLITE_ENABLE_STAT4 static int valueFromFunction( sqlite3 *db, /* The database connection */ const Expr *p, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 aff, /* Affinity to use */ sqlite3_value **ppVal, /* Write the new value here */ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ ){ sqlite3_context ctx; /* Context object for function invocation */ sqlite3_value **apVal = 0; /* Function arguments */ int nVal = 0; /* Size of apVal[] array */ FuncDef *pFunc = 0; /* Function definition */ sqlite3_value *pVal = 0; /* New value */ int rc = SQLITE_OK; /* Return code */ ExprList *pList = 0; /* Function arguments */ int i; /* Iterator variable */ assert( pCtx!=0 ); assert( (p->flags & EP_TokenOnly)==0 ); assert( ExprUseXList(p) ); pList = p->x.pList; if( pList ) nVal = pList->nExpr; assert( !ExprHasProperty(p, EP_IntValue) ); pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION if( pFunc==0 ) return SQLITE_OK; #endif assert( pFunc ); if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 || (pFunc->funcFlags & (SQLITE_FUNC_NEEDCOLL|SQLITE_FUNC_RUNONLY))!=0 ){ return SQLITE_OK; } if( pList ){ apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); if( apVal==0 ){ rc = SQLITE_NOMEM_BKPT; goto value_from_function_out; } for(i=0; ia[i].pExpr, enc, aff, &apVal[i]); if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; } } pVal = valueNew(db, pCtx); if( pVal==0 ){ rc = SQLITE_NOMEM_BKPT; goto value_from_function_out; } memset(&ctx, 0, sizeof(ctx)); ctx.pOut = pVal; ctx.pFunc = pFunc; ctx.enc = ENC(db); pFunc->xSFunc(&ctx, nVal, apVal); if( ctx.isError ){ rc = ctx.isError; sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); }else{ sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); assert( rc==SQLITE_OK ); rc = sqlite3VdbeChangeEncoding(pVal, enc); if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){ rc = SQLITE_TOOBIG; pCtx->pParse->nErr++; } } value_from_function_out: if( rc!=SQLITE_OK ){ pVal = 0; pCtx->pParse->rc = rc; } if( apVal ){ for(i=0; iop)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; if( op==TK_REGISTER ) op = pExpr->op2; /* Compressed expressions only appear when parsing the DEFAULT clause ** on a table column definition, and hence only when pCtx==0. This ** check ensures that an EP_TokenOnly expression is never passed down ** into valueFromFunction(). */ assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); if( op==TK_CAST ){ u8 aff; assert( !ExprHasProperty(pExpr, EP_IntValue) ); aff = sqlite3AffinityType(pExpr->u.zToken,0); rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); testcase( rc!=SQLITE_OK ); if( *ppVal ){ #ifdef SQLITE_ENABLE_STAT4 rc = ExpandBlob(*ppVal); #else /* zero-blobs only come from functions, not literal values. And ** functions are only processed under STAT4 */ assert( (ppVal[0][0].flags & MEM_Zero)==0 ); #endif sqlite3VdbeMemCast(*ppVal, aff, enc); sqlite3ValueApplyAffinity(*ppVal, affinity, enc); } return rc; } /* Handle negative integers in a single step. This is needed in the ** case when the value is -9223372036854775808. */ if( op==TK_UMINUS && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ pExpr = pExpr->pLeft; op = pExpr->op; negInt = -1; zNeg = "-"; } if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = valueNew(db, pCtx); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } assert( (pVal->flags & MEM_IntReal)==0 ); if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ testcase( pVal->flags & MEM_Int ); testcase( pVal->flags & MEM_Real ); pVal->flags &= ~MEM_Str; } if( enc!=SQLITE_UTF8 ){ rc = sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) && pVal!=0 ){ sqlite3VdbeMemNumerify(pVal); if( pVal->flags & MEM_Real ){ pVal->u.r = -pVal->u.r; }else if( pVal->u.i==SMALLEST_INT64 ){ #ifndef SQLITE_OMIT_FLOATING_POINT pVal->u.r = -(double)SMALLEST_INT64; #else pVal->u.r = LARGEST_INT64; #endif MemSetTypeFlag(pVal, MEM_Real); }else{ pVal->u.i = -pVal->u.i; } sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_NULL ){ pVal = valueNew(db, pCtx); if( pVal==0 ) goto no_mem; sqlite3VdbeMemSetNull(pVal); } #ifndef SQLITE_OMIT_BLOB_LITERAL else if( op==TK_BLOB ){ int nVal; assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); pVal = valueNew(db, pCtx); if( !pVal ) goto no_mem; zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif #ifdef SQLITE_ENABLE_STAT4 else if( op==TK_FUNCTION && pCtx!=0 ){ rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); } #endif else if( op==TK_TRUEFALSE ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); pVal = valueNew(db, pCtx); if( pVal ){ pVal->flags = MEM_Int; pVal->u.i = pExpr->u.zToken[4]==0; sqlite3ValueApplyAffinity(pVal, affinity, enc); } } *ppVal = pVal; return rc; no_mem: #ifdef SQLITE_ENABLE_STAT4 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) ) #endif sqlite3OomFault(db); sqlite3DbFree(db, zVal); assert( *ppVal==0 ); #ifdef SQLITE_ENABLE_STAT4 if( pCtx==0 ) sqlite3ValueFree(pVal); #else assert( pCtx==0 ); sqlite3ValueFree(pVal); #endif return SQLITE_NOMEM_BKPT; } /* ** Create a new sqlite3_value object, containing the value of pExpr. ** ** This only works for very simple expressions that consist of one constant ** token (i.e. "5", "5.1", "'a string'"). If the expression can ** be converted directly into a value, then the value is allocated and ** a pointer written to *ppVal. The caller is responsible for deallocating ** the value by passing it to sqlite3ValueFree() later on. If the expression ** cannot be converted to a value, then *ppVal is set to NULL. */ SQLITE_PRIVATE int sqlite3ValueFromExpr( sqlite3 *db, /* The database connection */ const Expr *pExpr, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* Write the new value here */ ){ return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; } #ifdef SQLITE_ENABLE_STAT4 /* ** Attempt to extract a value from pExpr and use it to construct *ppVal. ** ** If pAlloc is not NULL, then an UnpackedRecord object is created for ** pAlloc if one does not exist and the new value is added to the ** UnpackedRecord object. ** ** A value is extracted in the following cases: ** ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, ** ** * The expression is a bound variable, and this is a reprepare, or ** ** * The expression is a literal value. ** ** On success, *ppVal is made to point to the extracted value. The caller ** is responsible for ensuring that the value is eventually freed. */ static int stat4ValueFromExpr( Parse *pParse, /* Parse context */ Expr *pExpr, /* The expression to extract a value from */ u8 affinity, /* Affinity to use */ struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ ){ int rc = SQLITE_OK; sqlite3_value *pVal = 0; sqlite3 *db = pParse->db; /* Skip over any TK_COLLATE nodes */ pExpr = sqlite3ExprSkipCollate(pExpr); assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); if( !pExpr ){ pVal = valueNew(db, pAlloc); if( pVal ){ sqlite3VdbeMemSetNull((Mem*)pVal); } }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ Vdbe *v; int iBindVar = pExpr->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); if( (v = pParse->pReprepare)!=0 ){ pVal = valueNew(db, pAlloc); if( pVal ){ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); pVal->db = pParse->db; } } }else{ rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); } assert( pVal==0 || pVal->db==db ); *ppVal = pVal; return rc; } /* ** This function is used to allocate and populate UnpackedRecord ** structures intended to be compared against sample index keys stored ** in the sqlite_stat4 table. ** ** A single call to this function populates zero or more fields of the ** record starting with field iVal (fields are numbered from left to ** right starting with 0). A single field is populated if: ** ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, ** ** * The expression is a bound variable, and this is a reprepare, or ** ** * The sqlite3ValueFromExpr() function is able to extract a value ** from the expression (i.e. the expression is a literal value). ** ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the ** vector components that match either of the two latter criteria listed ** above. ** ** Before any value is appended to the record, the affinity of the ** corresponding column within index pIdx is applied to it. Before ** this function returns, output parameter *pnExtract is set to the ** number of values appended to the record. ** ** When this function is called, *ppRec must either point to an object ** allocated by an earlier call to this function, or must be NULL. If it ** is NULL and a value can be successfully extracted, a new UnpackedRecord ** is allocated (and *ppRec set to point to it) before returning. ** ** Unless an error is encountered, SQLITE_OK is returned. It is not an ** error if a value cannot be extracted from pExpr. If an error does ** occur, an SQLite error code is returned. */ SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue( Parse *pParse, /* Parse context */ Index *pIdx, /* Index being probed */ UnpackedRecord **ppRec, /* IN/OUT: Probe record */ Expr *pExpr, /* The expression to extract a value from */ int nElem, /* Maximum number of values to append */ int iVal, /* Array element to populate */ int *pnExtract /* OUT: Values appended to the record */ ){ int rc = SQLITE_OK; int nExtract = 0; if( pExpr==0 || pExpr->op!=TK_SELECT ){ int i; struct ValueNewStat4Ctx alloc; alloc.pParse = pParse; alloc.pIdx = pIdx; alloc.ppRec = ppRec; for(i=0; idb, pIdx, iVal+i); alloc.iVal = iVal+i; rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); if( !pVal ) break; nExtract++; } } *pnExtract = nExtract; return rc; } /* ** Attempt to extract a value from expression pExpr using the methods ** as described for sqlite3Stat4ProbeSetValue() above. ** ** If successful, set *ppVal to point to a new value object and return ** SQLITE_OK. If no value can be extracted, but no other error occurs ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error ** does occur, return an SQLite error code. The final value of *ppVal ** is undefined in this case. */ SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr( Parse *pParse, /* Parse context */ Expr *pExpr, /* The expression to extract a value from */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ ){ return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); } /* ** Extract the iCol-th column from the nRec-byte record in pRec. Write ** the column value into *ppVal. If *ppVal is initially NULL then a new ** sqlite3_value object is allocated. ** ** If *ppVal is initially NULL then the caller is responsible for ** ensuring that the value written into *ppVal is eventually freed. */ SQLITE_PRIVATE int sqlite3Stat4Column( sqlite3 *db, /* Database handle */ const void *pRec, /* Pointer to buffer containing record */ int nRec, /* Size of buffer pRec in bytes */ int iCol, /* Column to extract */ sqlite3_value **ppVal /* OUT: Extracted value */ ){ u32 t = 0; /* a column type code */ int nHdr; /* Size of the header in the record */ int iHdr; /* Next unread header byte */ int iField; /* Next unread data byte */ int szField = 0; /* Size of the current data field */ int i; /* Column index */ u8 *a = (u8*)pRec; /* Typecast byte array */ Mem *pMem = *ppVal; /* Write result into this Mem object */ assert( iCol>0 ); iHdr = getVarint32(a, nHdr); if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; iField = nHdr; for(i=0; i<=iCol; i++){ iHdr += getVarint32(&a[iHdr], t); testcase( iHdr==nHdr ); testcase( iHdr==nHdr+1 ); if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; szField = sqlite3VdbeSerialTypeLen(t); iField += szField; } testcase( iField==nRec ); testcase( iField==nRec+1 ); if( iField>nRec ) return SQLITE_CORRUPT_BKPT; if( pMem==0 ){ pMem = *ppVal = sqlite3ValueNew(db); if( pMem==0 ) return SQLITE_NOMEM_BKPT; } sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); pMem->enc = ENC(db); return SQLITE_OK; } /* ** Unless it is NULL, the argument must be an UnpackedRecord object returned ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes ** the object. */ SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ if( pRec ){ int i; int nCol = pRec->pKeyInfo->nAllField; Mem *aMem = pRec->aMem; sqlite3 *db = aMem[0].db; for(i=0; ipKeyInfo); sqlite3DbFreeNN(db, pRec); } } #endif /* ifdef SQLITE_ENABLE_STAT4 */ /* ** Change the string value of an sqlite3_value object */ SQLITE_PRIVATE void sqlite3ValueSetStr( sqlite3_value *v, /* Value to be set */ int n, /* Length of string z */ const void *z, /* Text of the new string */ u8 enc, /* Encoding to use */ void (*xDel)(void*) /* Destructor for the string */ ){ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); } /* ** Free an sqlite3_value object */ SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3VdbeMemRelease((Mem *)v); sqlite3DbFreeNN(((Mem*)v)->db, v); } /* ** The sqlite3ValueBytes() routine returns the number of bytes in the ** sqlite3_value object assuming that it uses the encoding "enc". ** The valueBytes() routine is a helper function. */ static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ return valueToText(pVal, enc)!=0 ? pVal->n : 0; } SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ Mem *p = (Mem*)pVal; assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ return p->n; } if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){ return p->n; } if( (p->flags & MEM_Blob)!=0 ){ if( p->flags & MEM_Zero ){ return p->n + p->u.nZero; }else{ return p->n; } } if( p->flags & MEM_Null ) return 0; return valueBytes(pVal, enc); } /************** End of vdbemem.c *********************************************/ /************** Begin file vdbeaux.c *****************************************/ /* ** 2003 September 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used for creating, destroying, and populating ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* Forward references */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); static void vdbeFreeOpArray(sqlite3 *, Op *, int); /* ** Create a new virtual database engine. */ SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse *pParse){ sqlite3 *db = pParse->db; Vdbe *p; p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); if( p==0 ) return 0; memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); p->db = db; if( db->pVdbe ){ db->pVdbe->ppVPrev = &p->pVNext; } p->pVNext = db->pVdbe; p->ppVPrev = &db->pVdbe; db->pVdbe = p; assert( p->eVdbeState==VDBE_INIT_STATE ); p->pParse = pParse; pParse->pVdbe = p; assert( pParse->aLabel==0 ); assert( pParse->nLabel==0 ); assert( p->nOpAlloc==0 ); assert( pParse->szOpAlloc==0 ); sqlite3VdbeAddOp2(p, OP_Init, 0, 1); return p; } /* ** Return the Parse object that owns a Vdbe object. */ SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe *p){ return p->pParse; } /* ** Change the error string stored in Vdbe.zErrMsg */ SQLITE_PRIVATE void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ va_list ap; sqlite3DbFree(p->db, p->zErrMsg); va_start(ap, zFormat); p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); va_end(ap); } /* ** Remember the SQL string for a prepared statement. */ SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ if( p==0 ) return; p->prepFlags = prepFlags; if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ p->expmask = 0; } assert( p->zSql==0 ); p->zSql = sqlite3DbStrNDup(p->db, z, n); } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Add a new element to the Vdbe->pDblStr list. */ SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ if( p ){ int n = sqlite3Strlen30(z); DblquoteStr *pStr = sqlite3DbMallocRawNN(db, sizeof(*pStr)+n+1-sizeof(pStr->z)); if( pStr ){ pStr->pNextStr = p->pDblStr; p->pDblStr = pStr; memcpy(pStr->z, z, n+1); } } } #endif #ifdef SQLITE_ENABLE_NORMALIZE /* ** zId of length nId is a double-quoted identifier. Check to see if ** that identifier is really used as a string literal. */ SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString( Vdbe *pVdbe, /* The prepared statement */ const char *zId /* The double-quoted identifier, already dequoted */ ){ DblquoteStr *pStr; assert( zId!=0 ); if( pVdbe->pDblStr==0 ) return 0; for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ if( strcmp(zId, pStr->z)==0 ) return 1; } return 0; } #endif /* ** Swap byte-code between two VDBE structures. ** ** This happens after pB was previously run and returned ** SQLITE_SCHEMA. The statement was then reprepared in pA. ** This routine transfers the new bytecode in pA over to pB ** so that pB can be run again. The old pB byte code is ** moved back to pA so that it will be cleaned up when pA is ** finalized. */ SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ Vdbe tmp, *pTmp, **ppTmp; char *zTmp; assert( pA->db==pB->db ); tmp = *pA; *pA = *pB; *pB = tmp; pTmp = pA->pVNext; pA->pVNext = pB->pVNext; pB->pVNext = pTmp; ppTmp = pA->ppVPrev; pA->ppVPrev = pB->ppVPrev; pB->ppVPrev = ppTmp; zTmp = pA->zSql; pA->zSql = pB->zSql; pB->zSql = zTmp; #ifdef SQLITE_ENABLE_NORMALIZE zTmp = pA->zNormSql; pA->zNormSql = pB->zNormSql; pB->zNormSql = zTmp; #endif pB->expmask = pA->expmask; pB->prepFlags = pA->prepFlags; memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; } /* ** Resize the Vdbe.aOp array so that it is at least nOp elements larger ** than its current size. nOp is guaranteed to be less than or equal ** to 1024/sizeof(Op). ** ** If an out-of-memory error occurs while resizing the array, return ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain ** unchanged (this is so that any opcodes already allocated can be ** correctly deallocated along with the rest of the Vdbe). */ static int growOpArray(Vdbe *v, int nOp){ VdbeOp *pNew; Parse *p = v->pParse; /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force ** more frequent reallocs and hence provide more opportunities for ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array ** by the minimum* amount required until the size reaches 512. Normal ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current ** size of the op array or add 1KB of space, whichever is smaller. */ #ifdef SQLITE_TEST_REALLOC_STRESS sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc : (sqlite3_int64)v->nOpAlloc+nOp); #else sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc : (sqlite3_int64)(1024/sizeof(Op))); UNUSED_PARAMETER(nOp); #endif /* Ensure that the size of a VDBE does not grow too large */ if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ sqlite3OomFault(p->db); return SQLITE_NOMEM; } assert( nOp<=(int)(1024/sizeof(Op)) ); assert( nNew>=(v->nOpAlloc+nOp) ); pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); if( pNew ){ p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); v->nOpAlloc = p->szOpAlloc/sizeof(Op); v->aOp = pNew; } return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); } #ifdef SQLITE_DEBUG /* This routine is just a convenient place to set a breakpoint that will ** fire after each opcode is inserted and displayed using ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and ** pOp are available to make the breakpoint conditional. ** ** Other useful labels for breakpoints include: ** test_trace_breakpoint(pc,pOp) ** sqlite3CorruptError(lineno) ** sqlite3MisuseError(lineno) ** sqlite3CantopenError(lineno) */ static void test_addop_breakpoint(int pc, Op *pOp){ static u64 n = 0; (void)pc; (void)pOp; n++; if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */ } #endif /* ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the ** unusual case when we need to increase the size of the Vdbe.aOp[] array ** before adding the new opcode. */ static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ assert( p->nOpAlloc<=p->nOp ); if( growOpArray(p, 1) ) return 1; assert( p->nOpAlloc>p->nOp ); return sqlite3VdbeAddOp3(p, op, p1, p2, p3); } static SQLITE_NOINLINE int addOp4IntSlow( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); if( p->db->mallocFailed==0 ){ VdbeOp *pOp = &p->aOp[addr]; pOp->p4type = P4_INT32; pOp->p4.i = p4; } return addr; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2, p3, p4 Operands */ SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ return sqlite3VdbeAddOp3(p, op, p1, p2, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ int i; VdbeOp *pOp; i = p->nOp; assert( p->eVdbeState==VDBE_INIT_STATE ); assert( op>=0 && op<0xff ); if( p->nOpAlloc<=i ){ return growOp3(p, op, p1, p2, p3); } assert( p->aOp!=0 ); p->nOp++; pOp = &p->aOp[i]; assert( pOp!=0 ); pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; /* Replicate this logic in sqlite3VdbeAddOp4Int() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp4Int() */ return i; } SQLITE_PRIVATE int sqlite3VdbeAddOp4Int( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int i; VdbeOp *pOp; i = p->nOp; if( p->nOpAlloc<=i ){ return addOp4IntSlow(p, op, p1, p2, p3, p4); } p->nOp++; pOp = &p->aOp[i]; assert( pOp!=0 ); pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.i = p4; pOp->p4type = P4_INT32; /* Replicate this logic in sqlite3VdbeAddOp3() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp3() */ return i; } /* Generate code for an unconditional jump to instruction iDest */ SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe *p, int iDest){ return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); } /* Generate code to cause the string zStr to be loaded into ** register iDest */ SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); } /* ** Generate code that initializes multiple registers to string or integer ** constants. The registers begin with iDest and increase consecutively. ** One register is initialized for each characgter in zTypes[]. For each ** "s" character in zTypes[], the register is a string if the argument is ** not NULL, or OP_Null if the value is a null pointer. For each "i" character ** in zTypes[], the register is initialized to an integer. ** ** If the input string does not end with "X" then an OP_ResultRow instruction ** is generated for the values inserted. */ SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ va_list ap; int i; char c; va_start(ap, zTypes); for(i=0; (c = zTypes[i])!=0; i++){ if( c=='s' ){ const char *z = va_arg(ap, const char*); sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); }else if( c=='i' ){ sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); }else{ goto skip_op_resultrow; } } sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); skip_op_resultrow: va_end(ap); } /* ** Add an opcode that includes the p4 value as a pointer. */ SQLITE_PRIVATE int sqlite3VdbeAddOp4( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const char *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sqlite3VdbeChangeP4(p, addr, zP4, p4type); return addr; } /* ** Add an OP_Function or OP_PureFunc opcode. ** ** The eCallCtx argument is information (typically taken from Expr.op2) ** that describes the calling context of the function. 0 means a general ** function call. NC_IsCheck means called by a check constraint, ** NC_IdxExpr means called as part of an index expression. NC_PartIdx ** means in the WHERE clause of a partial index. NC_GenCol means called ** while computing a generated column value. 0 is the usual case. */ SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall( Parse *pParse, /* Parsing context */ int p1, /* Constant argument mask */ int p2, /* First argument register */ int p3, /* Register into which results are written */ int nArg, /* Number of argument */ const FuncDef *pFunc, /* The function to be invoked */ int eCallCtx /* Calling context */ ){ Vdbe *v = pParse->pVdbe; int nByte; int addr; sqlite3_context *pCtx; assert( v ); nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); if( pCtx==0 ){ assert( pParse->db->mallocFailed ); freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); return 0; } pCtx->pOut = 0; pCtx->pFunc = (FuncDef*)pFunc; pCtx->pVdbe = 0; pCtx->isError = 0; pCtx->argc = nArg; pCtx->iOp = sqlite3VdbeCurrentAddr(v); addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, p1, p2, p3, (char*)pCtx, P4_FUNCCTX); sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); sqlite3MayAbort(pParse); return addr; } /* ** Add an opcode that includes the p4 value with a P4_INT64 or ** P4_REAL type. */ SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const u8 *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); if( p4copy ) memcpy(p4copy, zP4, 8); return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Return the address of the current EXPLAIN QUERY PLAN baseline. ** 0 means "none". */ SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse *pParse){ VdbeOp *pOp; if( pParse->addrExplain==0 ) return 0; pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); return pOp->p2; } /* ** Set a debugger breakpoint on the following routine in order to ** monitor the EXPLAIN QUERY PLAN code generation. */ #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ (void)z1; (void)z2; } #endif /* ** Add a new OP_Explain opcode. ** ** If the bPush flag is true, then make this opcode the parent for ** subsequent Explains until sqlite3VdbeExplainPop() is called. */ SQLITE_PRIVATE int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ int addr = 0; #if !defined(SQLITE_DEBUG) /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. ** But omit them (for performance) during production builds */ if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) ) #endif { char *zMsg; Vdbe *v; va_list ap; int iThis; va_start(ap, zFmt); zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); va_end(ap); v = pParse->pVdbe; iThis = v->nOp; addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, zMsg, P4_DYNAMIC); sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); if( bPush){ pParse->addrExplain = iThis; } sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0); } return addr; } /* ** Pop the EXPLAIN QUERY PLAN stack one level. */ SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse *pParse){ sqlite3ExplainBreakpoint("POP", 0); pParse->addrExplain = sqlite3VdbeExplainParent(pParse); } #endif /* SQLITE_OMIT_EXPLAIN */ /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees ** as having been used. ** ** The zWhere string must have been obtained from sqlite3_malloc(). ** This routine will take ownership of the allocated memory. */ SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ int j; sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); sqlite3VdbeChangeP5(p, p5); for(j=0; jdb->nDb; j++) sqlite3VdbeUsesBtree(p, j); sqlite3MayAbort(p->pParse); } /* Insert the end of a co-routine */ SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); /* Clear the temporary register cache, thereby ensuring that each ** co-routine has its own independent set of registers, because co-routines ** might expect their registers to be preserved across an OP_Yield, and ** that could cause problems if two or more co-routines are using the same ** temporary register. */ v->pParse->nTempReg = 0; v->pParse->nRangeReg = 0; } /* ** Create a new symbolic label for an instruction that has yet to be ** coded. The symbolic label is really just a negative number. The ** label can be used as the P2 value of an operation. Later, when ** the label is resolved to a specific address, the VDBE will scan ** through its operation list and change all values of P2 which match ** the label into the resolved address. ** ** The VDBE knows that a P2 value is a label because labels are ** always negative and P2 values are suppose to be non-negative. ** Hence, a negative P2 value is a label that has yet to be resolved. ** (Later:) This is only true for opcodes that have the OPFLG_JUMP ** property. ** ** Variable usage notes: ** ** Parse.aLabel[x] Stores the address that the x-th label resolves ** into. For testing (SQLITE_DEBUG), unresolved ** labels stores -1, but that is not required. ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] ** Parse.nLabel The *negative* of the number of labels that have ** been issued. The negative is stored because ** that gives a performance improvement over storing ** the equivalent positive value. */ SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse *pParse){ return --pParse->nLabel; } /* ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqlite3VdbeMakeLabel(). */ static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ int nNewSize = 10 - p->nLabel; p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, nNewSize*sizeof(p->aLabel[0])); if( p->aLabel==0 ){ p->nLabelAlloc = 0; }else{ #ifdef SQLITE_DEBUG int i; for(i=p->nLabelAlloc; iaLabel[i] = -1; #endif if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){ sqlite3ProgressCheck(p); } p->nLabelAlloc = nNewSize; p->aLabel[j] = v->nOp; } } SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *v, int x){ Parse *p = v->pParse; int j = ADDR(x); assert( v->eVdbeState==VDBE_INIT_STATE ); assert( j<-p->nLabel ); assert( j>=0 ); #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ printf("RESOLVE LABEL %d to %d\n", x, v->nOp); } #endif if( p->nLabelAlloc + p->nLabel < 0 ){ resizeResolveLabel(p,v,j); }else{ assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ p->aLabel[j] = v->nOp; } } /* ** Mark the VDBE as one that can only be run one time. */ SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe *p){ sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); } /* ** Mark the VDBE as one that can be run multiple times. */ SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe *p){ int i; for(i=1; ALWAYS(inOp); i++){ if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ p->aOp[1].opcode = OP_Noop; break; } } } #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ /* ** The following type and function are used to iterate through all opcodes ** in a Vdbe main program and each of the sub-programs (triggers) it may ** invoke directly or indirectly. It should be used as follows: ** ** Op *pOp; ** VdbeOpIter sIter; ** ** memset(&sIter, 0, sizeof(sIter)); ** sIter.v = v; // v is of type Vdbe* ** while( (pOp = opIterNext(&sIter)) ){ ** // Do something with pOp ** } ** sqlite3DbFree(v->db, sIter.apSub); ** */ typedef struct VdbeOpIter VdbeOpIter; struct VdbeOpIter { Vdbe *v; /* Vdbe to iterate through the opcodes of */ SubProgram **apSub; /* Array of subprograms */ int nSub; /* Number of entries in apSub */ int iAddr; /* Address of next instruction to return */ int iSub; /* 0 = main program, 1 = first sub-program etc. */ }; static Op *opIterNext(VdbeOpIter *p){ Vdbe *v = p->v; Op *pRet = 0; Op *aOp; int nOp; if( p->iSub<=p->nSub ){ if( p->iSub==0 ){ aOp = v->aOp; nOp = v->nOp; }else{ aOp = p->apSub[p->iSub-1]->aOp; nOp = p->apSub[p->iSub-1]->nOp; } assert( p->iAddriAddr]; p->iAddr++; if( p->iAddr==nOp ){ p->iSub++; p->iAddr = 0; } if( pRet->p4type==P4_SUBPROGRAM ){ int nByte = (p->nSub+1)*sizeof(SubProgram*); int j; for(j=0; jnSub; j++){ if( p->apSub[j]==pRet->p4.pProgram ) break; } if( j==p->nSub ){ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); if( !p->apSub ){ pRet = 0; }else{ p->apSub[p->nSub++] = pRet->p4.pProgram; } } } } return pRet; } /* ** Check if the program stored in the VM associated with pParse may ** throw an ABORT exception (causing the statement, but not entire transaction ** to be rolled back). This condition is true if the main program or any ** sub-programs contains any of the following: ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VCreate ** * OP_VRename ** * OP_FkCounter with P2==0 (immediate foreign key constraint) ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine ** (for CREATE TABLE AS SELECT ...) ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ int hasAbort = 0; int hasFkCounter = 0; int hasCreateTable = 0; int hasCreateIndex = 0; int hasInitCoroutine = 0; Op *pOp; VdbeOpIter sIter; if( v==0 ) return 0; memset(&sIter, 0, sizeof(sIter)); sIter.v = v; while( (pOp = opIterNext(&sIter))!=0 ){ int opcode = pOp->opcode; if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename || opcode==OP_VDestroy || opcode==OP_VCreate || opcode==OP_ParseSchema || opcode==OP_Function || opcode==OP_PureFunc || ((opcode==OP_Halt || opcode==OP_HaltIfNull) && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) ){ hasAbort = 1; break; } if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; if( mayAbort ){ /* hasCreateIndex may also be set for some DELETE statements that use ** OP_Clear. So this routine may end up returning true in the case ** where a "DELETE FROM tbl" has a statement-journal but does not ** require one. This is not so bad - it is an inefficiency, not a bug. */ if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; if( opcode==OP_Clear ) hasCreateIndex = 1; } if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; #ifndef SQLITE_OMIT_FOREIGN_KEY if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ hasFkCounter = 1; } #endif } sqlite3DbFree(v->db, sIter.apSub); /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter || (hasCreateTable && hasInitCoroutine) || hasCreateIndex ); } #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ #ifdef SQLITE_DEBUG /* ** Increment the nWrite counter in the VDBE if the cursor is not an ** ephemeral cursor, or if the cursor argument is NULL. */ SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ if( pC==0 || (pC->eCurType!=CURTYPE_SORTER && pC->eCurType!=CURTYPE_PSEUDO && !pC->isEphemeral) ){ p->nWrite++; } } #endif #ifdef SQLITE_DEBUG /* ** Assert if an Abort at this point in time might result in a corrupt ** database. */ SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe *p){ assert( p->nWrite==0 || p->usesStmtJournal ); } #endif /* ** This routine is called after all opcodes have been inserted. It loops ** through all the opcodes and fixes up some details. ** ** (1) For each jump instruction with a negative P2 value (a label) ** resolve the P2 value to an actual address. ** ** (2) Compute the maximum number of arguments used by any SQL function ** and store that value in *pMaxFuncArgs. ** ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately ** indicate what the prepared statement actually does. ** ** (4) (discontinued) ** ** (5) Reclaim the memory allocated for storing labels. ** ** This routine will only function correctly if the mkopcodeh.tcl generator ** script numbers the opcodes correctly. Changes to this routine must be ** coordinated with changes to mkopcodeh.tcl. */ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ int nMaxArgs = *pMaxFuncArgs; Op *pOp; Parse *pParse = p->pParse; int *aLabel = pParse->aLabel; assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */ p->readOnly = 1; p->bIsReader = 0; pOp = &p->aOp[p->nOp-1]; assert( p->aOp[0].opcode==OP_Init ); while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){ /* Only JUMP opcodes and the short list of special opcodes in the switch ** below need to be considered. The mkopcodeh.tcl generator script groups ** all these opcodes together near the front of the opcode list. Skip ** any opcode that does not need processing by virtual of the fact that ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. */ if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing ** cases from this switch! */ switch( pOp->opcode ){ case OP_Transaction: { if( pOp->p2!=0 ) p->readOnly = 0; /* no break */ deliberate_fall_through } case OP_AutoCommit: case OP_Savepoint: { p->bIsReader = 1; break; } #ifndef SQLITE_OMIT_WAL case OP_Checkpoint: #endif case OP_Vacuum: case OP_JournalMode: { p->readOnly = 0; p->bIsReader = 1; break; } case OP_Init: { assert( pOp->p2>=0 ); goto resolve_p2_values_loop_exit; } #ifndef SQLITE_OMIT_VIRTUALTABLE case OP_VUpdate: { if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; break; } case OP_VFilter: { int n; assert( (pOp - p->aOp) >= 3 ); assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; /* Fall through into the default case */ /* no break */ deliberate_fall_through } #endif default: { if( pOp->p2<0 ){ /* The mkopcodeh.tcl script has so arranged things that the only ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to ** have non-negative values for P2. */ assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); assert( ADDR(pOp->p2)<-pParse->nLabel ); assert( aLabel!=0 ); /* True because of tag-20230419-1 */ pOp->p2 = aLabel[ADDR(pOp->p2)]; } break; } } /* The mkopcodeh.tcl script has so arranged things that the only ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to ** have non-negative values for P2. */ assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); } assert( pOp>p->aOp ); pOp--; } resolve_p2_values_loop_exit: if( aLabel ){ sqlite3DbNNFreeNN(p->db, pParse->aLabel); pParse->aLabel = 0; } pParse->nLabel = 0; *pMaxFuncArgs = nMaxArgs; assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); } #ifdef SQLITE_DEBUG /* ** Check to see if a subroutine contains a jump to a location outside of ** the subroutine. If a jump outside the subroutine is detected, add code ** that will cause the program to halt with an error message. ** ** The subroutine consists of opcodes between iFirst and iLast. Jumps to ** locations within the subroutine are acceptable. iRetReg is a register ** that contains the return address. Jumps to outside the range of iFirst ** through iLast are also acceptable as long as the jump destination is ** an OP_Return to iReturnAddr. ** ** A jump to an unresolved label means that the jump destination will be ** beyond the current address. That is normally a jump to an early ** termination and is consider acceptable. ** ** This routine only runs during debug builds. The purpose is (of course) ** to detect invalid escapes out of a subroutine. The OP_Halt opcode ** is generated rather than an assert() or other error, so that ".eqp full" ** will still work to show the original bytecode, to aid in debugging. */ SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn( Vdbe *v, /* The byte-code program under construction */ int iFirst, /* First opcode of the subroutine */ int iLast, /* Last opcode of the subroutine */ int iRetReg /* Subroutine return address register */ ){ VdbeOp *pOp; Parse *pParse; int i; sqlite3_str *pErr = 0; assert( v!=0 ); pParse = v->pParse; assert( pParse!=0 ); if( pParse->nErr ) return; assert( iLast>=iFirst ); assert( iLastnOp ); pOp = &v->aOp[iFirst]; for(i=iFirst; i<=iLast; i++, pOp++){ if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ int iDest = pOp->p2; /* Jump destination */ if( iDest==0 ) continue; if( pOp->opcode==OP_Gosub ) continue; if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){ /* This is a deliberately taken illegal branch. tag-20230325-2 */ continue; } if( iDest<0 ){ int j = ADDR(iDest); assert( j>=0 ); if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ continue; } iDest = pParse->aLabel[j]; } if( iDestiLast ){ int j = iDest; for(; jnOp; j++){ VdbeOp *pX = &v->aOp[j]; if( pX->opcode==OP_Return ){ if( pX->p1==iRetReg ) break; continue; } if( pX->opcode==OP_Noop ) continue; if( pX->opcode==OP_Explain ) continue; if( pErr==0 ){ pErr = sqlite3_str_new(0); }else{ sqlite3_str_appendchar(pErr, 1, '\n'); } sqlite3_str_appendf(pErr, "Opcode at %d jumps to %d which is outside the " "subroutine at %d..%d", i, iDest, iFirst, iLast); break; } } } } if( pErr ){ char *zErr = sqlite3_str_finish(pErr); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); sqlite3_free(zErr); sqlite3MayAbort(pParse); } } #endif /* SQLITE_DEBUG */ /* ** Return the address of the next instruction to be inserted. */ SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){ assert( p->eVdbeState==VDBE_INIT_STATE ); return p->nOp; } /* ** Verify that at least N opcode slots are available in p without ** having to malloc for more space (except when compiled using ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing ** to verify that certain calls to sqlite3VdbeAddOpList() can never ** fail due to a OOM fault and hence that the return value from ** sqlite3VdbeAddOpList() will always be non-NULL. */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ assert( p->nOp + N <= p->nOpAlloc ); } #endif /* ** Verify that the VM passed as the only argument does not contain ** an OP_ResultRow opcode. Fail an assert() if it does. This is used ** by code in pragma.c to ensure that the implementation of certain ** pragmas comports with the flags specified in the mkpragmatab.tcl ** script. */ #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ int i; for(i=0; inOp; i++){ assert( p->aOp[i].opcode!=OP_ResultRow ); } } #endif /* ** Generate code (a single OP_Abortable opcode) that will ** verify that the VDBE program can safely call Abort in the current ** context. */ #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); } #endif /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned ** array. Also, *pnMaxArg is set to the larger of its current value and ** the number of entries in the Vdbe.apArg[] array required to execute the ** returned program. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ VdbeOp *aOp = p->aOp; assert( aOp && !p->db->mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ assert( DbMaskAllZero(p->btreeMask) ); resolveP2Values(p, pnMaxArg); *pnOp = p->nOp; p->aOp = 0; return aOp; } /* ** Add a whole list of operations to the operation stack. Return a ** pointer to the first operation inserted. ** ** Non-zero P2 arguments to jump instructions are automatically adjusted ** so that the jump target is relative to the first operation inserted. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList( Vdbe *p, /* Add opcodes to the prepared statement */ int nOp, /* Number of opcodes to add */ VdbeOpList const *aOp, /* The opcodes to be added */ int iLineno /* Source-file line number of first opcode */ ){ int i; VdbeOp *pOut, *pFirst; assert( nOp>0 ); assert( p->eVdbeState==VDBE_INIT_STATE ); if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ return 0; } pFirst = pOut = &p->aOp[p->nOp]; for(i=0; iopcode = aOp->opcode; pOut->p1 = aOp->p1; pOut->p2 = aOp->p2; assert( aOp->p2>=0 ); if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ pOut->p2 += p->nOp; } pOut->p3 = aOp->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_VDBE_COVERAGE pOut->iSrcLine = iLineno+i; #else (void)iLineno; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); } #endif } p->nOp += nOp; return pFirst; } #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) /* ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). */ SQLITE_PRIVATE void sqlite3VdbeScanStatus( Vdbe *p, /* VM to add scanstatus() to */ int addrExplain, /* Address of OP_Explain (or 0) */ int addrLoop, /* Address of loop counter */ int addrVisit, /* Address of rows visited counter */ LogEst nEst, /* Estimated number of output rows */ const char *zName /* Name of table or index being scanned */ ){ if( IS_STMT_SCANSTATUS(p->db) ){ sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); ScanStatus *aNew; aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); if( aNew ){ ScanStatus *pNew = &aNew[p->nScan++]; memset(pNew, 0, sizeof(ScanStatus)); pNew->addrExplain = addrExplain; pNew->addrLoop = addrLoop; pNew->addrVisit = addrVisit; pNew->nEst = nEst; pNew->zName = sqlite3DbStrDup(p->db, zName); p->aScan = aNew; } } } /* ** Add the range of instructions from addrStart to addrEnd (inclusive) to ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters ** associated with the OP_Explain instruction at addrExplain. The ** sum of the sqlite3Hwtime() values for each of these instructions ** will be returned for SQLITE_SCANSTAT_NCYCLE requests. */ SQLITE_PRIVATE void sqlite3VdbeScanStatusRange( Vdbe *p, int addrExplain, int addrStart, int addrEnd ){ if( IS_STMT_SCANSTATUS(p->db) ){ ScanStatus *pScan = 0; int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1; for(ii=0; iiaAddrRange); ii+=2){ if( pScan->aAddrRange[ii]==0 ){ pScan->aAddrRange[ii] = addrStart; pScan->aAddrRange[ii+1] = addrEnd; break; } } } } } /* ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW ** counters for the query element associated with the OP_Explain at ** addrExplain. */ SQLITE_PRIVATE void sqlite3VdbeScanStatusCounters( Vdbe *p, int addrExplain, int addrLoop, int addrVisit ){ if( IS_STMT_SCANSTATUS(p->db) ){ ScanStatus *pScan = 0; int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ if( addrLoop>0 ) pScan->addrLoop = addrLoop; if( addrVisit>0 ) pScan->addrVisit = addrVisit; } } } #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */ /* ** Change the value of the opcode, or P1, P2, P3, or P5 operands ** for a specific instruction. */ SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; } SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->p1 = val; } SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ assert( addr>=0 || p->db->mallocFailed ); sqlite3VdbeGetOp(p,addr)->p2 = val; } SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ assert( addr>=0 ); sqlite3VdbeGetOp(p,addr)->p3 = val; } SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ assert( p->nOp>0 || p->db->mallocFailed ); if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; } /* ** If the previous opcode is an OP_Column that delivers results ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that ** opcode. */ SQLITE_PRIVATE void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ VdbeOp *pOp = sqlite3VdbeGetLastOp(p); if( pOp->p3==iDest && pOp->opcode==OP_Column ){ pOp->p5 |= OPFLAG_TYPEOFARG; } } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ sqlite3VdbeChangeP2(p, addr, p->nOp); } /* ** Change the P2 operand of the jump instruction at addr so that ** the jump lands on the next opcode. Or if the jump instruction was ** the previous opcode (and is thus a no-op) then simply back up ** the next instruction counter by one slot so that the jump is ** overwritten by the next inserted opcode. ** ** This routine is an optimization of sqlite3VdbeJumpHere() that ** strives to omit useless byte-code like this: ** ** 7 Once 0 8 0 ** 8 ... */ SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ if( addr==p->nOp-1 ){ assert( p->aOp[addr].opcode==OP_Once || p->aOp[addr].opcode==OP_If || p->aOp[addr].opcode==OP_FkIfZero ); assert( p->aOp[addr].p4type==0 ); #ifdef SQLITE_VDBE_COVERAGE sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ #endif p->nOp--; }else{ sqlite3VdbeChangeP2(p, addr, p->nOp); } } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephemeral, then do nothing. */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ assert( db!=0 ); if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbNNFreeNN(db, pDef); } } /* ** Delete a P4 value if necessary. */ static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); sqlite3DbNNFreeNN(db, p); } static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ assert( db!=0 ); freeEphemeralFunction(db, p->pFunc); sqlite3DbNNFreeNN(db, p); } static void freeP4(sqlite3 *db, int p4type, void *p4){ assert( db ); switch( p4type ){ case P4_FUNCCTX: { freeP4FuncCtx(db, (sqlite3_context*)p4); break; } case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { if( p4 ) sqlite3DbNNFreeNN(db, p4); break; } case P4_KEYINFO: { if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { sqlite3ExprDelete(db, (Expr*)p4); break; } #endif case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ sqlite3ValueFree((sqlite3_value*)p4); }else{ freeP4Mem(db, (Mem*)p4); } break; } case P4_VTAB : { if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); break; } case P4_TABLEREF: { if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4); break; } } } /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ assert( nOp>=0 ); assert( db!=0 ); if( aOp ){ Op *pOp = &aOp[nOp-1]; while(1){ /* Exit via break */ if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS sqlite3DbFree(db, pOp->zComment); #endif if( pOp==aOp ) break; pOp--; } sqlite3DbNNFreeNN(db, aOp); } } /* ** Link the SubProgram object passed as the second argument into the linked ** list at Vdbe.pSubProgram. This list is used to delete all sub-program ** objects when the VM is no longer required. */ SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ p->pNext = pVdbe->pProgram; pVdbe->pProgram = p; } /* ** Return true if the given Vdbe has any SubPrograms. */ SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ return pVdbe->pProgram!=0; } /* ** Change the opcode at addr into OP_Noop */ SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ VdbeOp *pOp; if( p->db->mallocFailed ) return 0; assert( addr>=0 && addrnOp ); pOp = &p->aOp[addr]; freeP4(p->db, pOp->p4type, pOp->p4.p); pOp->p4type = P4_NOTUSED; pOp->p4.z = 0; pOp->opcode = OP_Noop; return 1; } /* ** If the last opcode is "op" and it is not a jump destination, ** then remove it. Return true if and only if an opcode was removed. */ SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ return sqlite3VdbeChangeToNoop(p, p->nOp-1); }else{ return 0; } } #ifdef SQLITE_DEBUG /* ** Generate an OP_ReleaseReg opcode to indicate that a range of ** registers, except any identified by mask, are no longer in use. */ SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters( Parse *pParse, /* Parsing context */ int iFirst, /* Index of first register to be released */ int N, /* Number of registers to release */ u32 mask, /* Mask of registers to NOT release */ int bUndefine /* If true, mark registers as undefined */ ){ if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; assert( pParse->pVdbe ); assert( iFirst>=1 ); assert( iFirst+N-1<=pParse->nMem ); if( N<=31 && mask!=0 ){ while( N>0 && (mask&1)!=0 ){ mask >>= 1; iFirst++; N--; } while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ mask &= ~MASKBIT32(N-1); N--; } } if( N>0 ){ sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); } } #endif /* SQLITE_DEBUG */ /* ** Change the value of the P4 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. ** ** If n>=0 then the P4 operand is dynamic, meaning that a copy of ** the string is made into memory obtained from sqlite3_malloc(). ** A value of n==0 means copy bytes of zP4 up to and including the ** first null byte. If n>0 then copy n+1 bytes of zP4. ** ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points ** to a string or structure that is guaranteed to exist for the lifetime of ** the Vdbe. In these cases we can just copy the pointer. ** ** If addr<0 then change P4 on the most recently inserted instruction. */ static void SQLITE_NOINLINE vdbeChangeP4Full( Vdbe *p, Op *pOp, const char *zP4, int n ){ if( pOp->p4type ){ assert( pOp->p4type > P4_FREE_IF_LE ); pOp->p4type = 0; pOp->p4.p = 0; } if( n<0 ){ sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); }else{ if( n==0 ) n = sqlite3Strlen30(zP4); pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); pOp->p4type = P4_DYNAMIC; } } SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ Op *pOp; sqlite3 *db; assert( p!=0 ); db = p->db; assert( p->eVdbeState==VDBE_INIT_STATE ); assert( p->aOp!=0 || db->mallocFailed ); if( db->mallocFailed ){ if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); return; } assert( p->nOp>0 ); assert( addrnOp ); if( addr<0 ){ addr = p->nOp - 1; } pOp = &p->aOp[addr]; if( n>=0 || pOp->p4type ){ vdbeChangeP4Full(p, pOp, zP4, n); return; } if( n==P4_INT32 ){ /* Note: this cast is safe, because the origin data point was an int ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; }else if( zP4!=0 ){ assert( n<0 ); pOp->p4.p = (void*)zP4; pOp->p4type = (signed char)n; if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); } } /* ** Change the P4 operand of the most recently coded instruction ** to the value defined by the arguments. This is a high-speed ** version of sqlite3VdbeChangeP4(). ** ** The P4 operand must not have been previously defined. And the new ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of ** those cases. */ SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ VdbeOp *pOp; assert( n!=P4_INT32 && n!=P4_VTAB ); assert( n<=0 ); if( p->db->mallocFailed ){ freeP4(p->db, n, pP4); }else{ assert( pP4!=0 || n==P4_DYNAMIC ); assert( p->nOp>0 ); pOp = &p->aOp[p->nOp-1]; assert( pOp->p4type==P4_NOTUSED ); pOp->p4type = n; pOp->p4.p = pP4; } } /* ** Set the P4 on the most recently added opcode to the KeyInfo for the ** index given. */ SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ Vdbe *v = pParse->pVdbe; KeyInfo *pKeyInfo; assert( v!=0 ); assert( pIdx!=0 ); pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** Change the comment on the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ assert( p->nOp>0 || p->aOp==0 ); assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); if( p->nOp ){ assert( p->aOp ); sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); } } SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( p ){ va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ va_list ap; if( p ){ sqlite3VdbeAddOp0(p, OP_Noop); va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ #ifdef SQLITE_VDBE_COVERAGE /* ** Set the value if the iSrcLine field for the previously coded instruction. */ SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; } #endif /* SQLITE_VDBE_COVERAGE */ /* ** Return the opcode for a given address. The address must be non-negative. ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after an OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ /* C89 specifies that the constant "dummy" will be initialized to all ** zeros, which is correct. MSVC generates a warning, nevertheless. */ static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ assert( p->eVdbeState==VDBE_INIT_STATE ); assert( (addr>=0 && addrnOp) || p->db->mallocFailed ); if( p->db->mallocFailed ){ return (VdbeOp*)&dummy; }else{ return &p->aOp[addr]; } } /* Return the most recently added opcode */ SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){ return sqlite3VdbeGetOp(p, p->nOp - 1); } #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) /* ** Return an integer value for one of the parameters to the opcode pOp ** determined by character c. */ static int translateP(char c, const Op *pOp){ if( c=='1' ) return pOp->p1; if( c=='2' ) return pOp->p2; if( c=='3' ) return pOp->p3; if( c=='4' ) return pOp->p4.i; return pOp->p5; } /* ** Compute a string for the "comment" field of a VDBE opcode listing. ** ** The Synopsis: field in comments in the vdbe.c source file gets converted ** to an extra string that is appended to the sqlite3OpcodeName(). In the ** absence of other comments, this synopsis becomes the comment on the opcode. ** Some translation occurs: ** ** "PX" -> "r[X]" ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x */ SQLITE_PRIVATE char *sqlite3VdbeDisplayComment( sqlite3 *db, /* Optional - Oom error reporting only */ const Op *pOp, /* The opcode to be commented */ const char *zP4 /* Previously obtained value for P4 */ ){ const char *zOpName; const char *zSynopsis; int nOpName; int ii; char zAlt[50]; StrAccum x; sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); zOpName = sqlite3OpcodeName(pOp->opcode); nOpName = sqlite3Strlen30(zOpName); if( zOpName[nOpName+1] ){ int seenCom = 0; char c; zSynopsis = zOpName + nOpName + 1; if( strncmp(zSynopsis,"IF ",3)==0 ){ sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); zSynopsis = zAlt; } for(ii=0; (c = zSynopsis[ii])!=0; ii++){ if( c=='P' ){ c = zSynopsis[++ii]; if( c=='4' ){ sqlite3_str_appendall(&x, zP4); }else if( c=='X' ){ if( pOp->zComment && pOp->zComment[0] ){ sqlite3_str_appendall(&x, pOp->zComment); seenCom = 1; break; } }else{ int v1 = translateP(c, pOp); int v2; if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ ii += 3; v2 = translateP(zSynopsis[ii], pOp); if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ ii += 2; v2++; } if( v2<2 ){ sqlite3_str_appendf(&x, "%d", v1); }else{ sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); } }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ sqlite3_context *pCtx = pOp->p4.pCtx; if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ sqlite3_str_appendf(&x, "%d", v1); }else if( pCtx->argc>1 ){ sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); }else if( x.accError==0 ){ assert( x.nChar>2 ); x.nChar -= 2; ii++; } ii += 3; }else{ sqlite3_str_appendf(&x, "%d", v1); if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ ii += 4; } } } }else{ sqlite3_str_appendchar(&x, 1, c); } } if( !seenCom && pOp->zComment ){ sqlite3_str_appendf(&x, "; %s", pOp->zComment); } }else if( pOp->zComment ){ sqlite3_str_appendall(&x, pOp->zComment); } if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ sqlite3OomFault(db); } return sqlite3StrAccumFinish(&x); } #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) /* ** Translate the P4.pExpr value for an OP_CursorHint opcode into text ** that can be displayed in the P4 column of EXPLAIN output. */ static void displayP4Expr(StrAccum *p, Expr *pExpr){ const char *zOp = 0; switch( pExpr->op ){ case TK_STRING: assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); break; case TK_INTEGER: sqlite3_str_appendf(p, "%d", pExpr->u.iValue); break; case TK_NULL: sqlite3_str_appendf(p, "NULL"); break; case TK_REGISTER: { sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); break; } case TK_COLUMN: { if( pExpr->iColumn<0 ){ sqlite3_str_appendf(p, "rowid"); }else{ sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); } break; } case TK_LT: zOp = "LT"; break; case TK_LE: zOp = "LE"; break; case TK_GT: zOp = "GT"; break; case TK_GE: zOp = "GE"; break; case TK_NE: zOp = "NE"; break; case TK_EQ: zOp = "EQ"; break; case TK_IS: zOp = "IS"; break; case TK_ISNOT: zOp = "ISNOT"; break; case TK_AND: zOp = "AND"; break; case TK_OR: zOp = "OR"; break; case TK_PLUS: zOp = "ADD"; break; case TK_STAR: zOp = "MUL"; break; case TK_MINUS: zOp = "SUB"; break; case TK_REM: zOp = "REM"; break; case TK_BITAND: zOp = "BITAND"; break; case TK_BITOR: zOp = "BITOR"; break; case TK_SLASH: zOp = "DIV"; break; case TK_LSHIFT: zOp = "LSHIFT"; break; case TK_RSHIFT: zOp = "RSHIFT"; break; case TK_CONCAT: zOp = "CONCAT"; break; case TK_UMINUS: zOp = "MINUS"; break; case TK_UPLUS: zOp = "PLUS"; break; case TK_BITNOT: zOp = "BITNOT"; break; case TK_NOT: zOp = "NOT"; break; case TK_ISNULL: zOp = "ISNULL"; break; case TK_NOTNULL: zOp = "NOTNULL"; break; default: sqlite3_str_appendf(p, "%s", "expr"); break; } if( zOp ){ sqlite3_str_appendf(p, "%s(", zOp); displayP4Expr(p, pExpr->pLeft); if( pExpr->pRight ){ sqlite3_str_append(p, ",", 1); displayP4Expr(p, pExpr->pRight); } sqlite3_str_append(p, ")", 1); } } #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ #if VDBE_DISPLAY_P4 /* ** Compute a string that describes the P4 parameter for an opcode. ** Use zTemp for any required temporary buffer space. */ SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ char *zP4 = 0; StrAccum x; sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); switch( pOp->p4type ){ case P4_KEYINFO: { int j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->aSortFlags!=0 ); sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); for(j=0; jnKeyField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; const char *zColl = pColl ? pColl->zName : ""; if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; sqlite3_str_appendf(&x, ",%s%s%s", (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", zColl); } sqlite3_str_append(&x, ")", 1); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { displayP4Expr(&x, pOp->p4.pExpr); break; } #endif case P4_COLLSEQ: { static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; CollSeq *pColl = pOp->p4.pColl; assert( pColl->enc<4 ); sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, encnames[pColl->enc]); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_str_appendf(&x, "%d", pOp->p4.i); break; } case P4_REAL: { sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&x, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_str_appendf(&x, "%.16g", pMem->u.r); }else if( pMem->flags & MEM_Null ){ zP4 = "NULL"; }else{ assert( pMem->flags & MEM_Blob ); zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_str_appendf(&x, "vtab:%p", pVtab); break; } #endif case P4_INTARRAY: { u32 i; u32 *ai = pOp->p4.ai; u32 n = ai[0]; /* The first element of an INTARRAY is always the ** count of the number of elements to follow */ for(i=1; i<=n; i++){ sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); } sqlite3_str_append(&x, "]", 1); break; } case P4_SUBPROGRAM: { zP4 = "program"; break; } case P4_TABLE: { zP4 = pOp->p4.pTab->zName; break; } default: { zP4 = pOp->p4.z; } } if( zP4 ) sqlite3_str_appendall(&x, zP4); if( (x.accError & SQLITE_NOMEM)!=0 ){ sqlite3OomFault(db); } return sqlite3StrAccumFinish(&x); } #endif /* VDBE_DISPLAY_P4 */ /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. ** ** The prepared statements need to know in advance the complete set of ** attached databases that will be use. A mask of these databases ** is maintained in p->btreeMask. The p->lockMask value is the subset of ** p->btreeMask of databases that will require a lock. */ SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){ assert( i>=0 && idb->nDb && i<(int)sizeof(yDbMask)*8 ); assert( i<(int)sizeof(p->btreeMask)*8 ); DbMaskSet(p->btreeMask, i); if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ DbMaskSet(p->lockMask, i); } } #if !defined(SQLITE_OMIT_SHARED_CACHE) /* ** If SQLite is compiled to support shared-cache mode and to be threadsafe, ** this routine obtains the mutex associated with each BtShared structure ** that may be accessed by the VM passed as an argument. In doing so it also ** sets the BtShared.db member of each of the BtShared structures, ensuring ** that the correct busy-handler callback is invoked if required. ** ** If SQLite is not threadsafe but does support shared-cache mode, then ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables ** of all of BtShared structures accessible via the database handle ** associated with the VM. ** ** If SQLite is not threadsafe and does not support shared-cache mode, this ** function is a no-op. ** ** The p->btreeMask field is a bitmask of all btrees that the prepared ** statement p will ever use. Let N be the number of bits in p->btreeMask ** corresponding to btrees that use shared cache. Then the runtime of ** this routine is N*N. But as N is rarely more than 1, this should not ** be a problem. */ SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){ int i; sqlite3 *db; Db *aDb; int nDb; if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0; ilockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeEnter(aDb[i].pBt); } } } #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 /* ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). */ static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ int i; sqlite3 *db; Db *aDb; int nDb; db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0; ilockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeLeave(aDb[i].pBt); } } } SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ vdbeLeave(p); } #endif #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) /* ** Print a single opcode. This routine is used for debugging only. */ SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ char *zP4; char *zCom; sqlite3 dummyDb; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; if( pOut==0 ) pOut = stdout; sqlite3BeginBenignMalloc(); dummyDb.mallocFailed = 1; zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); #else zCom = 0; #endif /* NB: The sqlite3OpcodeName() function is implemented by code created ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the ** information from the vdbe.c source text */ fprintf(pOut, zFormat1, pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4 ? zP4 : "", pOp->p5, zCom ? zCom : "" ); fflush(pOut); sqlite3_free(zP4); sqlite3_free(zCom); sqlite3EndBenignMalloc(); } #endif /* ** Initialize an array of N Mem element. ** ** This is a high-runner, so only those fields that really do need to ** be initialized are set. The Mem structure is organized so that ** the fields that get initialized are nearby and hopefully on the same ** cache line. ** ** Mem.flags = flags ** Mem.db = db ** Mem.szMalloc = 0 ** ** All other fields of Mem can safely remain uninitialized for now. They ** will be initialized before use. */ static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ if( N>0 ){ do{ p->flags = flags; p->db = db; p->szMalloc = 0; #ifdef SQLITE_DEBUG p->pScopyFrom = 0; #endif p++; }while( (--N)>0 ); } } /* ** Release auxiliary memory held in an array of N Mem elements. ** ** After this routine returns, all Mem elements in the array will still ** be valid. Those Mem elements that were not holding auxiliary resources ** will be unchanged. Mem elements which had something freed will be ** set to MEM_Undefined. */ static void releaseMemArray(Mem *p, int N){ if( p && N ){ Mem *pEnd = &p[N]; sqlite3 *db = p->db; if( db->pnBytesFreed ){ do{ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); }while( (++p)flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); if( p->flags&(MEM_Agg|MEM_Dyn) ){ testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); sqlite3VdbeMemRelease(p); p->flags = MEM_Undefined; }else if( p->szMalloc ){ sqlite3DbNNFreeNN(db, p->zMalloc); p->szMalloc = 0; p->flags = MEM_Undefined; } #ifdef SQLITE_DEBUG else{ p->flags = MEM_Undefined; } #endif }while( (++p)iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; return 1; } #endif /* ** This is a destructor on a Mem object (which is really an sqlite3_value) ** that deletes the Frame object that is attached to it as a blob. ** ** This routine does not delete the Frame right away. It merely adds the ** frame to a list of frames to be deleted when the Vdbe halts. */ SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void *pArg){ VdbeFrame *pFrame = (VdbeFrame*)pArg; assert( sqlite3VdbeFrameIsValid(pFrame) ); pFrame->pParent = pFrame->v->pDelFrame; pFrame->v->pDelFrame = pFrame; } #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) /* ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN ** QUERY PLAN output. ** ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no ** more opcodes to be displayed. */ SQLITE_PRIVATE int sqlite3VdbeNextOpcode( Vdbe *p, /* The statement being explained */ Mem *pSub, /* Storage for keeping track of subprogram nesting */ int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ int *piAddr, /* OUT: Write index into (*paOp)[] here */ Op **paOp /* OUT: Write the opcode array here */ ){ int nRow; /* Stop when row count reaches this */ int nSub = 0; /* Number of sub-vdbes seen so far */ SubProgram **apSub = 0; /* Array of sub-vdbes */ int i; /* Next instruction address */ int rc = SQLITE_OK; /* Result code */ Op *aOp = 0; /* Opcode array */ int iPc; /* Rowid. Copy of value in *piPc */ /* When the number of output rows reaches nRow, that means the ** listing has finished and sqlite3_step() should return SQLITE_DONE. ** nRow is the sum of the number of rows in the main program, plus ** the sum of the number of rows in all trigger subprograms encountered ** so far. The nRow value will increase as new trigger subprograms are ** encountered, but p->pc will eventually catch up to nRow. */ nRow = p->nOp; if( pSub!=0 ){ if( pSub->flags&MEM_Blob ){ /* pSub is initiallly NULL. It is initialized to a BLOB by ** the P4_SUBPROGRAM processing logic below */ nSub = pSub->n/sizeof(Vdbe*); apSub = (SubProgram **)pSub->z; } for(i=0; inOp; } } iPc = *piPc; while(1){ /* Loop exits via break */ i = iPc++; if( i>=nRow ){ p->rc = SQLITE_OK; rc = SQLITE_DONE; break; } if( inOp ){ /* The rowid is small enough that we are still in the ** main program. */ aOp = p->aOp; }else{ /* We are currently listing subprograms. Figure out which one and ** pick up the appropriate opcode. */ int j; i -= p->nOp; assert( apSub!=0 ); assert( nSub>0 ); for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; assert( inOp || j+1aOp; } /* When an OP_Program opcode is encounter (the only opcode that has ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms ** kept in p->aMem[9].z to hold the new program - assuming this subprogram ** has not already been seen. */ if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ int nByte = (nSub+1)*sizeof(SubProgram*); int j; for(j=0; jrc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); if( p->rc!=SQLITE_OK ){ rc = SQLITE_ERROR; break; } apSub = (SubProgram **)pSub->z; apSub[nSub++] = aOp[i].p4.pProgram; MemSetTypeFlag(pSub, MEM_Blob); pSub->n = nSub*sizeof(SubProgram*); nRow += aOp[i].p4.pProgram->nOp; } } if( eMode==0 ) break; #ifdef SQLITE_ENABLE_BYTECODE_VTAB if( eMode==2 ){ Op *pOp = aOp + i; if( pOp->opcode==OP_OpenRead ) break; if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; if( pOp->opcode==OP_ReopenIdx ) break; }else #endif { assert( eMode==1 ); if( aOp[i].opcode==OP_Explain ) break; if( aOp[i].opcode==OP_Init && iPc>1 ) break; } } *piPc = iPc; *piAddr = i; *paOp = aOp; return rc; } #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are ** allocated by the OP_Program opcode in sqlite3VdbeExec(). */ SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){ int i; Mem *aMem = VdbeFrameMem(p); VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; assert( sqlite3VdbeFrameIsValid(p) ); for(i=0; inChildCsr; i++){ if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); } releaseMemArray(aMem, p->nChildMem); sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); sqlite3DbFree(p->v->db, p); } #ifndef SQLITE_OMIT_EXPLAIN /* ** Give a listing of the program in the virtual machine. ** ** The interface is the same as sqlite3VdbeExec(). But instead of ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers ** are also shown, so that the boundaries between the main program and ** each trigger are clear. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ SQLITE_PRIVATE int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ Mem *pSub = 0; /* Memory cell hold array of subprogs */ sqlite3 *db = p->db; /* The database connection */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ Mem *pMem = &p->aMem[1]; /* First Mem of result set */ int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); Op *aOp; /* Array of opcodes */ Op *pOp; /* Current opcode */ assert( p->explain ); assert( p->eVdbeState==VDBE_RUN_STATE ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ releaseMemArray(pMem, 8); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ sqlite3OomFault(db); return SQLITE_ERROR; } if( bListSubprogs ){ /* The first 8 memory cells are used for the result set. So we will ** commandeer the 9th cell to use as storage for an array of pointers ** to trigger subprograms. The VDBE is guaranteed to have at least 9 ** cells. */ assert( p->nMem>9 ); pSub = &p->aMem[9]; }else{ pSub = 0; } /* Figure out which opcode is next to display */ rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); if( rc==SQLITE_OK ){ pOp = aOp + i; if( AtomicLoad(&db->u1.isInterrupted) ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); }else{ char *zP4 = sqlite3VdbeDisplayP4(db, pOp); if( p->explain==2 ){ sqlite3VdbeMemSetInt64(pMem, pOp->p1); sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==4 ); }else{ sqlite3VdbeMemSetInt64(pMem+0, i); sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), -1, SQLITE_UTF8, SQLITE_STATIC); sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); /* pMem+5 for p4 is done last */ sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS { char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); } #else sqlite3VdbeMemSetNull(pMem+7); #endif sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==8 ); } p->pResultRow = pMem; if( db->mallocFailed ){ p->rc = SQLITE_NOMEM; rc = SQLITE_ERROR; }else{ p->rc = SQLITE_OK; rc = SQLITE_ROW; } } } return rc; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_DEBUG /* ** Print the SQL that was used to generate a VDBE program. */ SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){ const char *z = 0; if( p->zSql ){ z = p->zSql; }else if( p->nOp>=1 ){ const VdbeOp *pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ z = pOp->p4.z; while( sqlite3Isspace(*z) ) z++; } } if( z ) printf("SQL: [%s]\n", z); } #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** Print an IOTRACE message showing SQL content. */ SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( sqlite3IoTrace==0 ) return; if( nOp<1 ) return; pOp = &p->aOp[0]; if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ int i, j; char z[1000]; sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); for(i=0; sqlite3Isspace(z[i]); i++){} for(j=0; z[i]; i++){ if( sqlite3Isspace(z[i]) ){ if( z[i-1]!=' ' ){ z[j++] = ' '; } }else{ z[j++] = z[i]; } } z[j] = 0; sqlite3IoTrace("SQL %s\n", z); } } #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ /* An instance of this object describes bulk memory available for use ** by subcomponents of a prepared statement. Space is allocated out ** of a ReusableSpace object by the allocSpace() routine below. */ struct ReusableSpace { u8 *pSpace; /* Available memory */ sqlite3_int64 nFree; /* Bytes of available memory */ sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ }; /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf ** from the ReusableSpace object. Return a pointer to the allocated ** memory on success. If insufficient memory is available in the ** ReusableSpace object, increase the ReusableSpace.nNeeded ** value by the amount needed and return NULL. ** ** If pBuf is not initially NULL, that means that the memory has already ** been allocated by a prior call to this routine, so just return a copy ** of pBuf and leave ReusableSpace unchanged. ** ** This allocator is employed to repurpose unused slots at the end of the ** opcode array of prepared state for other memory needs of the prepared ** statement. */ static void *allocSpace( struct ReusableSpace *p, /* Bulk memory available for allocation */ void *pBuf, /* Pointer to a prior allocation */ sqlite3_int64 nByte /* Bytes of memory needed. */ ){ assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); if( pBuf==0 ){ nByte = ROUND8P(nByte); if( nByte <= p->nFree ){ p->nFree -= nByte; pBuf = &p->pSpace[p->nFree]; }else{ p->nNeeded += nByte; } } assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); return pBuf; } /* ** Rewind the VDBE back to the beginning in preparation for ** running it. */ SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe *p){ #if defined(SQLITE_DEBUG) int i; #endif assert( p!=0 ); assert( p->eVdbeState==VDBE_INIT_STATE || p->eVdbeState==VDBE_READY_STATE || p->eVdbeState==VDBE_HALT_STATE ); /* There should be at least one opcode. */ assert( p->nOp>0 ); p->eVdbeState = VDBE_READY_STATE; #ifdef SQLITE_DEBUG for(i=0; inMem; i++){ assert( p->aMem[i].db==p->db ); } #endif p->pc = -1; p->rc = SQLITE_OK; p->errorAction = OE_Abort; p->nChange = 0; p->cacheCtr = 1; p->minWriteFileFormat = 255; p->iStatement = 0; p->nFkConstraint = 0; #ifdef VDBE_PROFILE for(i=0; inOp; i++){ p->aOp[i].nExec = 0; p->aOp[i].nCycle = 0; } #endif } /* ** Prepare a virtual machine for execution for the first time after ** creating the virtual machine. This involves things such ** as allocating registers and initializing the program counter. ** After the VDBE has be prepped, it can be executed by one or more ** calls to sqlite3VdbeExec(). ** ** This function may be called exactly once on each virtual machine. ** After this routine is called the VM has been "packaged" and is ready ** to run. After this routine is called, further calls to ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects ** the Vdbe from the Parse object that helped generate it so that the ** the Vdbe becomes an independent entity and the Parse object can be ** destroyed. ** ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back ** to its initial state after it has been run. */ SQLITE_PRIVATE void sqlite3VdbeMakeReady( Vdbe *p, /* The VDBE */ Parse *pParse /* Parsing context */ ){ sqlite3 *db; /* The database connection */ int nVar; /* Number of parameters */ int nMem; /* Number of VM memory registers */ int nCursor; /* Number of cursors required */ int nArg; /* Number of arguments in subprograms */ int n; /* Loop counter */ struct ReusableSpace x; /* Reusable bulk memory */ assert( p!=0 ); assert( p->nOp>0 ); assert( pParse!=0 ); assert( p->eVdbeState==VDBE_INIT_STATE ); assert( pParse==p->pParse ); p->pVList = pParse->pVList; pParse->pVList = 0; db = p->db; assert( db->mallocFailed==0 ); nVar = pParse->nVar; nMem = pParse->nMem; nCursor = pParse->nTab; nArg = pParse->nMaxArg; /* Each cursor uses a memory cell. The first cursor (cursor 0) can ** use aMem[0] which is not otherwise used by the VDBE program. Allocate ** space at the end of aMem[] for cursors 1 and greater. ** See also: allocateCursor(). */ nMem += nCursor; if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ /* Figure out how much reusable memory is available at the end of the ** opcode array. This extra memory will be reallocated for other elements ** of the prepared statement. */ n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ assert( x.nFree>=0 ); assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); resolveP2Values(p, &nArg); p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); if( pParse->explain ){ if( nMem<10 ) nMem = 10; p->explain = pParse->explain; p->nResColumn = 12 - 4*p->explain; } p->expired = 0; /* Memory for registers, parameters, cursor, etc, is allocated in one or two ** passes. On the first pass, we try to reuse unused memory at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second ** pass will fill in the remainder using a fresh memory allocation. ** ** This two-pass approach that reuses as much memory as possible from ** the leftover memory at the end of the opcode array. This can significantly ** reduce the amount of memory held by a prepared statement. */ x.nNeeded = 0; p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); if( x.nNeeded ){ x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); x.nFree = x.nNeeded; if( !db->mallocFailed ){ p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); } } if( db->mallocFailed ){ p->nVar = 0; p->nCursor = 0; p->nMem = 0; }else{ p->nCursor = nCursor; p->nVar = (ynVar)nVar; initMemArray(p->aVar, nVar, db, MEM_Null); p->nMem = nMem; initMemArray(p->aMem, nMem, db, MEM_Undefined); memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); } sqlite3VdbeRewind(p); } /* ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); } static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){ VdbeTxtBlbCache *pCache = pCx->pCache; assert( pCx->colCache ); pCx->colCache = 0; pCx->pCache = 0; if( pCache->pCValue ){ sqlite3RCStrUnref(pCache->pCValue); pCache->pCValue = 0; } sqlite3DbFree(p->db, pCache); sqlite3VdbeFreeCursorNN(p, pCx); } SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ if( pCx->colCache ){ freeCursorWithCache(p, pCx); return; } switch( pCx->eCurType ){ case CURTYPE_SORTER: { sqlite3VdbeSorterClose(p->db, pCx); break; } case CURTYPE_BTREE: { assert( pCx->uc.pCursor!=0 ); sqlite3BtreeCloseCursor(pCx->uc.pCursor); break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case CURTYPE_VTAB: { sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; const sqlite3_module *pModule = pVCur->pVtab->pModule; assert( pVCur->pVtab->nRef>0 ); pVCur->pVtab->nRef--; pModule->xClose(pVCur); break; } #endif } } /* ** Close all cursors in the current frame. */ static void closeCursorsInFrame(Vdbe *p){ int i; for(i=0; inCursor; i++){ VdbeCursor *pC = p->apCsr[i]; if( pC ){ sqlite3VdbeFreeCursorNN(p, pC); p->apCsr[i] = 0; } } } /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; closeCursorsInFrame(v); v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; v->nChange = pFrame->nChange; v->db->nChange = pFrame->nDbChange; sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); v->pAuxData = pFrame->pAuxData; pFrame->pAuxData = 0; return pFrame->pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); p->pFrame = 0; p->nFrame = 0; } assert( p->nFrame==0 ); closeCursorsInFrame(p); releaseMemArray(p->aMem, p->nMem); while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); } /* Delete any auxdata allocations made by the VM */ if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); assert( p->pAuxData==0 ); } /* ** Set the number of result columns that will be returned by this SQL ** statement. This is now set at compile time, rather than during ** execution of the vdbe program so that sqlite3_column_count() can ** be called on an SQL statement before sqlite3_step(). */ SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ int n; sqlite3 *db = p->db; if( p->nResAlloc ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbFree(db, p->aColName); } n = nResColumn*COLNAME_N; p->nResColumn = p->nResAlloc = (u16)nResColumn; p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); if( p->aColName==0 ) return; initMemArray(p->aColName, n, db, MEM_Null); } /* ** Set the name of the idx'th column to be returned by the SQL statement. ** zName must be a pointer to a nul terminated string. ** ** This call must be made after a call to sqlite3VdbeSetNumCols(). ** ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. */ SQLITE_PRIVATE int sqlite3VdbeSetColName( Vdbe *p, /* Vdbe being configured */ int idx, /* Index of column zName applies to */ int var, /* One of the COLNAME_* constants */ const char *zName, /* Pointer to buffer containing name */ void (*xDel)(void*) /* Memory management strategy for zName */ ){ int rc; Mem *pColName; assert( idxnResAlloc ); assert( vardb->mallocFailed ){ assert( !zName || xDel!=SQLITE_DYNAMIC ); return SQLITE_NOMEM_BKPT; } assert( p->aColName!=0 ); pColName = &(p->aColName[idx+var*p->nResAlloc]); rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); return rc; } /* ** A read or write transaction may or may not be active on database handle ** db. If a transaction is active, commit it. If there is a ** write-transaction spanning more than one database file, this routine ** takes care of the super-journal trickery. */ static int vdbeCommit(sqlite3 *db, Vdbe *p){ int i; int nTrans = 0; /* Number of databases with an active write-transaction ** that are candidates for a two-phase commit using a ** super-journal */ int rc = SQLITE_OK; int needXcommit = 0; #ifdef SQLITE_OMIT_VIRTUALTABLE /* With this option, sqlite3VtabSync() is defined to be simply ** SQLITE_OK so p is not used. */ UNUSED_PARAMETER(p); #endif /* Before doing anything else, call the xSync() callback for any ** virtual module tables written in this transaction. This has to ** be done before determining whether a super-journal file is ** required, as an xSync() callback may add an attached database ** to the transaction. */ rc = sqlite3VtabSync(db, p); /* This loop determines (a) if the commit hook should be invoked and ** (b) how many database files have open write transactions, not ** including the temp database. (b) is important because if more than ** one database file has an open write transaction, a super-journal ** file is required for an atomic commit. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ /* Whether or not a database might need a super-journal depends upon ** its journal mode (among other things). This matrix determines which ** journal modes use a super-journal and which do not */ static const u8 aMJNeeded[] = { /* DELETE */ 1, /* PERSIST */ 1, /* OFF */ 0, /* TRUNCATE */ 1, /* MEMORY */ 0, /* WAL */ 0 }; Pager *pPager; /* Pager associated with pBt */ needXcommit = 1; sqlite3BtreeEnter(pBt); pPager = sqlite3BtreePager(pBt); if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] && sqlite3PagerIsMemdb(pPager)==0 ){ assert( i!=1 ); nTrans++; } rc = sqlite3PagerExclusiveLock(pPager); sqlite3BtreeLeave(pBt); } } if( rc!=SQLITE_OK ){ return rc; } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ rc = db->xCommitCallback(db->pCommitArg); if( rc ){ return SQLITE_CONSTRAINT_COMMITHOOK; } } /* The simple case - no more than one database file (not counting the ** TEMP database) has a transaction active. There is no need for the ** super-journal. ** ** If the return value of sqlite3BtreeGetFilename() is a zero length ** string, it means the main database is :memory: or a temp file. In ** that case we do not support atomic multi-file commits, so use the ** simple case then too. */ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, 0); } } /* Do the commit only if all databases successfully complete phase 1. ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an ** IO error while deleting or truncating a journal file. It is unlikely, ** but could happen. In this case abandon processing and return the error. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); } } if( rc==SQLITE_OK ){ sqlite3VtabCommit(db); } } /* The complex case - There is a multi-file write-transaction active. ** This requires a super-journal file to ensure the transaction is ** committed atomically. */ #ifndef SQLITE_OMIT_DISKIO else{ sqlite3_vfs *pVfs = db->pVfs; char *zSuper = 0; /* File-name for the super-journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); sqlite3_file *pSuperJrnl = 0; i64 offset = 0; int res; int retryCount = 0; int nMainFile; /* Select a super-journal file name */ nMainFile = sqlite3Strlen30(zMainFile); zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); if( zSuper==0 ) return SQLITE_NOMEM_BKPT; zSuper += 4; do { u32 iRandom; if( retryCount ){ if( retryCount>100 ){ sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); sqlite3OsDelete(pVfs, zSuper, 0); break; }else if( retryCount==1 ){ sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); } } retryCount++; sqlite3_randomness(sizeof(iRandom), &iRandom); sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", (iRandom>>8)&0xffffff, iRandom&0xff); /* The antipenultimate character of the super-journal name must ** be "9" to avoid name collisions when using 8+3 filenames. */ assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); sqlite3FileSuffix3(zMainFile, zSuper); rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); }while( rc==SQLITE_OK && res ); if( rc==SQLITE_OK ){ /* Open the super-journal. */ rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 ); } if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zSuper-4); return rc; } /* Write the name of each database file in the transaction into the new ** super-journal file. If an error occurs at this point close ** and delete the super-journal file. All the individual journal files ** still have 'null' as the super-journal pointer, so they will roll ** back independently if a failure occurs. */ for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ char const *zFile = sqlite3BtreeGetJournalname(pBt); if( zFile==0 ){ continue; /* Ignore TEMP and :memory: databases */ } assert( zFile[0]!=0 ); rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); offset += sqlite3Strlen30(zFile)+1; if( rc!=SQLITE_OK ){ sqlite3OsCloseFree(pSuperJrnl); sqlite3OsDelete(pVfs, zSuper, 0); sqlite3DbFree(db, zSuper-4); return rc; } } } /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device ** flag is set this is not required. */ if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) ){ sqlite3OsCloseFree(pSuperJrnl); sqlite3OsDelete(pVfs, zSuper, 0); sqlite3DbFree(db, zSuper-4); return rc; } /* Sync all the db files involved in the transaction. The same call ** sets the super-journal pointer in each individual journal. If ** an error occurs here, do not delete the super-journal file. ** ** If the error occurs during the first call to ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the ** super-journal file will be orphaned. But we cannot delete it, ** in case the super-journal file name was written into the journal ** file before the failure occurred. */ for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); } } sqlite3OsCloseFree(pSuperJrnl); assert( rc!=SQLITE_BUSY ); if( rc!=SQLITE_OK ){ sqlite3DbFree(db, zSuper-4); return rc; } /* Delete the super-journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ rc = sqlite3OsDelete(pVfs, zSuper, 1); sqlite3DbFree(db, zSuper-4); zSuper = 0; if( rc ){ return rc; } /* All files and directories have already been synced, so the following ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and ** deleting or truncating journals. If something goes wrong while ** this is happening we don't really care. The integrity of the ** transaction is already guaranteed, but some stray 'cold' journals ** may be lying around. Returning an error code won't help matters. */ disable_simulated_io_errors(); sqlite3BeginBenignMalloc(); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ sqlite3BtreeCommitPhaseTwo(pBt, 1); } } sqlite3EndBenignMalloc(); enable_simulated_io_errors(); sqlite3VtabCommit(db); } #endif return rc; } /* ** This routine checks that the sqlite3.nVdbeActive count variable ** matches the number of vdbe's in the list sqlite3.pVdbe that are ** currently active. An assertion fails if the two counts do not match. ** This is an internal self-check only - it is not an essential processing ** step. ** ** This is a no-op if NDEBUG is defined. */ #ifndef NDEBUG static void checkActiveVdbeCnt(sqlite3 *db){ Vdbe *p; int cnt = 0; int nWrite = 0; int nRead = 0; p = db->pVdbe; while( p ){ if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ cnt++; if( p->readOnly==0 ) nWrite++; if( p->bIsReader ) nRead++; } p = p->pVNext; } assert( cnt==db->nVdbeActive ); assert( nWrite==db->nVdbeWrite ); assert( nRead==db->nVdbeRead ); } #else #define checkActiveVdbeCnt(x) #endif /* ** If the Vdbe passed as the first argument opened a statement-transaction, ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the ** statement transaction is committed. ** ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. ** Otherwise SQLITE_OK. */ static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ sqlite3 *const db = p->db; int rc = SQLITE_OK; int i; const int iSavepoint = p->iStatement-1; assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); assert( db->nStatement>0 ); assert( p->iStatement==(db->nStatement+db->nSavepoint) ); for(i=0; inDb; i++){ int rc2 = SQLITE_OK; Btree *pBt = db->aDb[i].pBt; if( pBt ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc2==SQLITE_OK ){ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); } if( rc==SQLITE_OK ){ rc = rc2; } } } db->nStatement--; p->iStatement = 0; if( rc==SQLITE_OK ){ if( eOp==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); } if( rc==SQLITE_OK ){ rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); } } /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; db->nDeferredImmCons = p->nStmtDefImmCons; } return rc; } SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ if( p->db->nStatement && p->iStatement ){ return vdbeCloseStatement(p, eOp); } return SQLITE_OK; } /* ** This function is called when a transaction opened by the database ** handle associated with the VM passed as an argument is about to be ** committed. If there are outstanding deferred foreign key constraint ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. ** ** If there are outstanding FK violations and this function returns ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY ** and write an error message to it. Then return SQLITE_ERROR. */ #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ sqlite3 *db = p->db; if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) || (!deferred && p->nFkConstraint>0) ){ p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; p->errorAction = OE_Abort; sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; return SQLITE_CONSTRAINT_FOREIGNKEY; } return SQLITE_OK; } #endif /* ** This routine is called the when a VDBE tries to halt. If the VDBE ** has made changes and is in autocommit mode, then commit those ** changes. If a rollback is needed, then do the rollback. ** ** This routine is the only way to move the sqlite3eOpenState of a VM from ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to ** call this on a VM that is in the SQLITE_STATE_HALT state. ** ** Return an error code. If the commit could not complete because of ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it ** means the close did not happen and needs to be repeated. */ SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){ int rc; /* Used to store transient return codes */ sqlite3 *db = p->db; /* This function contains the logic that determines if a statement or ** transaction will be committed or rolled back as a result of the ** execution of this virtual machine. ** ** If any of the following errors occur: ** ** SQLITE_NOMEM ** SQLITE_IOERR ** SQLITE_FULL ** SQLITE_INTERRUPT ** ** Then the internal cache might have been left in an inconsistent ** state. We need to rollback the statement transaction, if there is ** one, or the complete transaction if there is no statement transaction. */ assert( p->eVdbeState==VDBE_RUN_STATE ); if( db->mallocFailed ){ p->rc = SQLITE_NOMEM_BKPT; } closeAllCursors(p); checkActiveVdbeCnt(db); /* No commit or rollback needed if the program never started or if the ** SQL statement does not read or write a database file. */ if( p->bIsReader ){ int mrc; /* Primary error code from p->rc */ int eStatementOp = 0; int isSpecialError; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ sqlite3VdbeEnter(p); /* Check for one of the special errors */ if( p->rc ){ mrc = p->rc & 0xff; isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; }else{ mrc = isSpecialError = 0; } if( isSpecialError ){ /* If the query was read-only and the error code is SQLITE_INTERRUPT, ** no rollback is necessary. Otherwise, at least a savepoint ** transaction must be rolled back to restore the database to a ** consistent state. ** ** Even if the statement is read-only, it is important to perform ** a statement or transaction rollback operation. If the error ** occurred while writing to the journal, sub-journal or database ** file as part of an effort to free up cache space (see function ** pagerStress() in pager.c), the rollback is required to restore ** the pager to a consistent state. */ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. */ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } } /* Check for immediate foreign key violations. */ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ sqlite3VdbeCheckFk(p, 0); } /* If the auto-commit flag is set and this is the only active writer ** VM, then we do either a commit or rollback of the current transaction. ** ** Note: This block also runs if one of the special errors handled ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit && db->nVdbeWrite==(p->readOnly==0) ){ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ rc = sqlite3VdbeCheckFk(p, 1); if( rc!=SQLITE_OK ){ if( NEVER(p->readOnly) ){ sqlite3VdbeLeave(p); return SQLITE_ERROR; } rc = SQLITE_CONSTRAINT_FOREIGNKEY; }else if( db->flags & SQLITE_CorruptRdOnly ){ rc = SQLITE_CORRUPT; db->flags &= ~SQLITE_CorruptRdOnly; }else{ /* The auto-commit flag is true, the vdbe program was successful ** or hit an 'OR FAIL' constraint and there are no deferred foreign ** key constraints to hold up the transaction. This means a commit ** is required. */ rc = vdbeCommit(db, p); } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ sqlite3SystemError(db, rc); p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; }else{ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~(u64)SQLITE_DeferFKs; sqlite3CommitInternalChanges(db); } }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){ p->nChange = 0; }else{ sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; } db->nStatement = 0; }else if( eStatementOp==0 ){ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ eStatementOp = SAVEPOINT_RELEASE; }else if( p->errorAction==OE_Abort ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If eStatementOp is non-zero, then a statement transaction needs to ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to ** do so. If this operation returns an error, and the current statement ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the ** current statement error code. */ if( eStatementOp ){ rc = sqlite3VdbeCloseStatement(p, eStatementOp); if( rc ){ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ p->rc = rc; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If this was an INSERT, UPDATE or DELETE and no statement transaction ** has been rolled back, update the database connection change-counter. */ if( p->changeCntOn ){ if( eStatementOp!=SAVEPOINT_ROLLBACK ){ sqlite3VdbeSetChanges(db, p->nChange); }else{ sqlite3VdbeSetChanges(db, 0); } p->nChange = 0; } /* Release the locks */ sqlite3VdbeLeave(p); } /* We have successfully halted and closed the VM. Record this fact. */ db->nVdbeActive--; if( !p->readOnly ) db->nVdbeWrite--; if( p->bIsReader ) db->nVdbeRead--; assert( db->nVdbeActive>=db->nVdbeRead ); assert( db->nVdbeRead>=db->nVdbeWrite ); assert( db->nVdbeWrite>=0 ); p->eVdbeState = VDBE_HALT_STATE; checkActiveVdbeCnt(db); if( db->mallocFailed ){ p->rc = SQLITE_NOMEM_BKPT; } /* If the auto-commit flag is set to true, then any locks that were held ** by connection db have now been released. Call sqlite3ConnectionUnlocked() ** to invoke any required unlock-notify callbacks. */ if( db->autoCommit ){ sqlite3ConnectionUnlocked(db); } assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); } /* ** Each VDBE holds the result of the most recent sqlite3_step() call ** in p->rc. This routine sets that result back to SQLITE_OK. */ SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){ p->rc = SQLITE_OK; } /* ** Copy the error code and error message belonging to the VDBE passed ** as the first argument to its database handle (so that they will be ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). ** ** This function does not clear the VDBE error code or message, just ** copies them to the database handle. */ SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){ sqlite3 *db = p->db; int rc = p->rc; if( p->zErrMsg ){ db->bBenignMalloc++; sqlite3BeginBenignMalloc(); if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); sqlite3EndBenignMalloc(); db->bBenignMalloc--; }else if( db->pErr ){ sqlite3ValueSetNull(db->pErr); } db->errCode = rc; db->errByteOffset = -1; return rc; } #ifdef SQLITE_ENABLE_SQLLOG /* ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, ** invoke it. */ static void vdbeInvokeSqllog(Vdbe *v){ if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); assert( v->db->init.busy==0 ); if( zExpanded ){ sqlite3GlobalConfig.xSqllog( sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 ); sqlite3DbFree(v->db, zExpanded); } } } #else # define vdbeInvokeSqllog(x) #endif /* ** Clean up a VDBE after execution but do not delete the VDBE just yet. ** Write any error messages into *pzErrMsg. Return the result code. ** ** After this routine is run, the VDBE should be ready to be executed ** again. ** ** To look at it another way, this routine resets the state of the ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to ** VDBE_READY_STATE. */ SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){ #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) int i; #endif sqlite3 *db; db = p->db; /* If the VM did not run to completion or if it encountered an ** error, then it might not have been halted properly. So halt ** it now. */ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); /* If the VDBE has been run even partially, then transfer the error code ** and error message from the VDBE into the main database structure. But ** if the VDBE has just been set to run but has not actually executed any ** instructions yet, leave the main database error information unchanged. */ if( p->pc>=0 ){ vdbeInvokeSqllog(p); if( db->pErr || p->zErrMsg ){ sqlite3VdbeTransferError(p); }else{ db->errCode = p->rc; } } /* Reset register contents and reclaim error message memory. */ #ifdef SQLITE_DEBUG /* Execute assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ if( p->apCsr ) for(i=0; inCursor; i++) assert( p->apCsr[i]==0 ); if( p->aMem ){ for(i=0; inMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); } #endif if( p->zErrMsg ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } p->pResultRow = 0; #ifdef SQLITE_DEBUG p->nWrite = 0; #endif /* Save profiling information from this VDBE run. */ #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ fprintf(out, "---- "); for(i=0; inOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); if( p->zSql ){ char c, pc = 0; fprintf(out, "-- "); for(i=0; (c = p->zSql[i])!=0; i++){ if( pc=='\n' ) fprintf(out, "-- "); putc(c, out); pc = c; } if( pc!='\n' ) fprintf(out, "\n"); } for(i=0; inOp; i++){ char zHdr[100]; i64 cnt = p->aOp[i].nExec; i64 cycles = p->aOp[i].nCycle; sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", cnt, cycles, cnt>0 ? cycles/cnt : 0 ); fprintf(out, "%s", zHdr); sqlite3VdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } } #endif return p->rc & db->errMask; } /* ** Clean up and delete a VDBE after execution. Return an integer which is ** the result code. Write any error message text into *pzErrMsg. */ SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){ int rc = SQLITE_OK; assert( VDBE_RUN_STATE>VDBE_READY_STATE ); assert( VDBE_HALT_STATE>VDBE_READY_STATE ); assert( VDBE_INIT_STATEeVdbeState>=VDBE_READY_STATE ){ rc = sqlite3VdbeReset(p); assert( (rc & p->db->errMask)==rc ); } sqlite3VdbeDelete(p); return rc; } /* ** If parameter iOp is less than zero, then invoke the destructor for ** all auxiliary data pointers currently cached by the VM passed as ** the first argument. ** ** Or, if iOp is greater than or equal to zero, then the destructor is ** only invoked for those auxiliary data pointers created by the user ** function invoked by the OP_Function opcode at instruction iOp of ** VM pVdbe, and only then if: ** ** * the associated function parameter is the 32nd or later (counting ** from left to right), or ** ** * the corresponding bit in argument mask is clear (where the first ** function parameter corresponds to bit 0 etc.). */ SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ while( *pp ){ AuxData *pAux = *pp; if( (iOp<0) || (pAux->iAuxOp==iOp && pAux->iAuxArg>=0 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) ){ testcase( pAux->iAuxArg==31 ); if( pAux->xDeleteAux ){ pAux->xDeleteAux(pAux->pAux); } *pp = pAux->pNextAux; sqlite3DbFree(db, pAux); }else{ pp= &pAux->pNextAux; } } } /* ** Free all memory associated with the Vdbe passed as the second argument, ** except for object itself, which is preserved. ** ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection and frees the object itself. */ static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( db!=0 ); assert( p->db==0 || p->db==db ); if( p->aColName ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbNNFreeNN(db, p->aColName); } for(pSub=p->pProgram; pSub; pSub=pNext){ pNext = pSub->pNext; vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); sqlite3DbFree(db, pSub); } if( p->eVdbeState!=VDBE_INIT_STATE ){ releaseMemArray(p->aVar, p->nVar); if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); } vdbeFreeOpArray(db, p->aOp, p->nOp); if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); #ifdef SQLITE_ENABLE_NORMALIZE sqlite3DbFree(db, p->zNormSql); { DblquoteStr *pThis, *pNxt; for(pThis=p->pDblStr; pThis; pThis=pNxt){ pNxt = pThis->pNextStr; sqlite3DbFree(db, pThis); } } #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS { int i; for(i=0; inScan; i++){ sqlite3DbFree(db, p->aScan[i].zName); } sqlite3DbFree(db, p->aScan); } #endif } /* ** Delete an entire VDBE. */ SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; assert( p!=0 ); db = p->db; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); sqlite3VdbeClearObject(db, p); if( db->pnBytesFreed==0 ){ assert( p->ppVPrev!=0 ); *p->ppVPrev = p->pVNext; if( p->pVNext ){ p->pVNext->ppVPrev = p->ppVPrev; } } sqlite3DbNNFreeNN(db, p); } /* ** The cursor "p" has a pending seek operation that has not yet been ** carried out. Seek the cursor now. If an error occurs, return ** the appropriate error code. */ SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ int res, rc; #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->deferredMoveto ); assert( p->isTable ); assert( p->eCurType==CURTYPE_BTREE ); rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); if( rc ) return rc; if( res!=0 ) return SQLITE_CORRUPT_BKPT; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; return SQLITE_OK; } /* ** Something has moved cursor "p" out of place. Maybe the row it was ** pointed to was deleted out from under it. Or maybe the btree was ** rebalanced. Whatever the cause, try to restore "p" to the place it ** is supposed to be pointing. If the row was deleted out from under the ** cursor, set the cursor to point to a NULL row. */ SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ int isDifferentRow, rc; assert( p->eCurType==CURTYPE_BTREE ); assert( p->uc.pCursor!=0 ); assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); p->cacheStatus = CACHE_STALE; if( isDifferentRow ) p->nullRow = 1; return rc; } /* ** Check to ensure that the cursor is valid. Restore the cursor ** if need be. Return any I/O error from the restore operation. */ SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor *p){ assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ return sqlite3VdbeHandleMovedCursor(p); } return SQLITE_OK; } /* ** The following functions: ** ** sqlite3VdbeSerialType() ** sqlite3VdbeSerialTypeLen() ** sqlite3VdbeSerialLen() ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 ** sqlite3VdbeSerialGet() ** ** encapsulate the code that serializes values for storage in SQLite ** data and index records. Each serialized value consists of a ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned ** integer, stored as a varint. ** ** In an SQLite index record, the serial type is stored directly before ** the blob of data that it corresponds to. In a table record, all serial ** types are stored at the start of the record, and the blobs of data at ** the end. Hence these functions allow the caller to handle the ** serial-type and data blob separately. ** ** The following table describes the various storage classes for data: ** ** serial type bytes of data type ** -------------- --------------- --------------- ** 0 0 NULL ** 1 1 signed integer ** 2 2 signed integer ** 3 3 signed integer ** 4 4 signed integer ** 5 6 signed integer ** 6 8 signed integer ** 7 8 IEEE float ** 8 0 Integer constant 0 ** 9 0 Integer constant 1 ** 10,11 reserved for expansion ** N>=12 and even (N-12)/2 BLOB ** N>=13 and odd (N-13)/2 text ** ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions ** of SQLite will not understand those serial types. */ #if 0 /* Inlined into the OP_MakeRecord opcode */ /* ** Return the serial-type for the value stored in pMem. ** ** This routine might convert a large MEM_IntReal value into MEM_Real. ** ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord ** opcode in the byte-code engine. But by moving this routine in-line, we ** can omit some redundant tests and make that opcode a lot faster. So ** this routine is now only used by the STAT3 logic and STAT3 support has ** ended. The code is kept here for historical reference only. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ int flags = pMem->flags; u32 n; assert( pLen!=0 ); if( flags&MEM_Null ){ *pLen = 0; return 0; } if( flags&(MEM_Int|MEM_IntReal) ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; testcase( flags & MEM_Int ); testcase( flags & MEM_IntReal ); if( i<0 ){ u = ~i; }else{ u = i; } if( u<=127 ){ if( (i&1)==i && file_format>=4 ){ *pLen = 0; return 8+(u32)u; }else{ *pLen = 1; return 1; } } if( u<=32767 ){ *pLen = 2; return 2; } if( u<=8388607 ){ *pLen = 3; return 3; } if( u<=2147483647 ){ *pLen = 4; return 4; } if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } *pLen = 8; if( flags&MEM_IntReal ){ /* If the value is IntReal and is going to take up 8 bytes to store ** as an integer, then we might as well make it an 8-byte floating ** point value */ pMem->u.r = (double)pMem->u.i; pMem->flags &= ~MEM_IntReal; pMem->flags |= MEM_Real; return 7; } return 6; } if( flags&MEM_Real ){ *pLen = 8; return 7; } assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); assert( pMem->n>=0 ); n = (u32)pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } *pLen = n; return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } #endif /* inlined into OP_MakeRecord */ /* ** The sizes for serial types less than 128 */ SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[128] = { /* 0 1 2 3 4 5 6 7 8 9 */ /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 }; /* ** Return the length of the data corresponding to the supplied serial-type. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=128 ){ return (serial_type-12)/2; }else{ assert( serial_type<12 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); return sqlite3SmallTypeSizes[serial_type]; } } SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ assert( serial_type<128 ); return sqlite3SmallTypeSizes[serial_type]; } /* ** If we are on an architecture with mixed-endian floating ** points (ex: ARM7) then swap the lower 4 bytes with the ** upper 4 bytes. Return the result. ** ** For most architectures, this is a no-op. ** ** (later): It is reported to me that the mixed-endian problem ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems ** that early versions of GCC stored the two words of a 64-bit ** float in the wrong order. And that error has been propagated ** ever since. The blame is not necessarily with GCC, though. ** GCC might have just copying the problem from a prior compiler. ** I am also told that newer versions of GCC that follow a different ** ABI get the byte order right. ** ** Developers using SQLite on an ARM7 should compile and run their ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG ** enabled, some asserts below will ensure that the byte order of ** floating point values is correct. ** ** (2007-08-30) Frank van Vugt has studied this problem closely ** and has send his findings to the SQLite developers. Frank ** writes that some Linux kernels offer floating point hardware ** emulation that uses only 32-bit mantissas instead of a full ** 48-bits as required by the IEEE standard. (This is the ** CONFIG_FPE_FASTFPE option.) On such systems, floating point ** byte swapping becomes very complicated. To avoid problems, ** the necessary byte swapping is carried out using a 64-bit integer ** rather than a 64-bit float. Frank assures us that the code here ** works for him. We, the developers, have no way to independently ** verify this, but Frank seems to know what he is talking about ** so we trust him. */ #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in){ union { u64 r; u32 i[2]; } u; u32 t; u.r = in; t = u.i[0]; u.i[0] = u.i[1]; u.i[1] = t; return u.r; } #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ /* Input "x" is a sequence of unsigned characters that represent a ** big-endian integer. Return the equivalent native integer */ #define ONE_BYTE_INT(x) ((i8)(x)[0]) #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. ** ** This function is implemented as two separate routines for performance. ** The few cases that require local variables are broken out into a separate ** routine so that in most cases the overhead of moving the stack pointer ** is avoided. */ static void serialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x = FOUR_BYTE_UINT(buf); u32 y = FOUR_BYTE_UINT(buf+4); x = (x<<32) + y; if( serial_type==6 ){ /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit ** twos-complement integer. */ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); }else{ /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit ** floating point number. */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; static const double r1 = 1.0; u64 t2 = t1; swapMixedEndianFloat(t2); assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); #endif assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->u.r, &x, sizeof(x)); pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; } } static int serialGet7( const unsigned char *buf, /* Buffer to deserialize from */ Mem *pMem /* Memory cell to write value into */ ){ u64 x = FOUR_BYTE_UINT(buf); u32 y = FOUR_BYTE_UINT(buf+4); x = (x<<32) + y; assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->u.r, &x, sizeof(x)); if( IsNaN(x) ){ pMem->flags = MEM_Null; return 1; } pMem->flags = MEM_Real; return 0; } SQLITE_PRIVATE void sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ switch( serial_type ){ case 10: { /* Internal use only: NULL with virtual table ** UPDATE no-change flag set */ pMem->flags = MEM_Null|MEM_Zero; pMem->n = 0; pMem->u.nZero = 0; return; } case 11: /* Reserved for future use */ case 0: { /* Null */ /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ pMem->flags = MEM_Null; return; } case 1: { /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement ** integer. */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 2: { /* 2-byte signed integer */ /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit ** twos-complement integer. */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 3: { /* 3-byte signed integer */ /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit ** twos-complement integer. */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 4: { /* 4-byte signed integer */ /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_INT(buf); #ifdef __HP_cc /* Work around a sign-extension bug in the HP compiler for HP/UX */ if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; #endif pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 5: { /* 6-byte signed integer */ /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ /* These use local variables, so do them in a separate routine ** to avoid having to move the frame pointer in the common case */ serialGet(buf,serial_type,pMem); return; } case 8: /* Integer 0 */ case 9: { /* Integer 1 */ /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ pMem->u.i = serial_type-8; pMem->flags = MEM_Int; return; } default: { /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in ** length. ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and ** (N-13)/2 bytes in length. */ static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; pMem->z = (char *)buf; pMem->n = (serial_type-12)/2; pMem->flags = aFlag[serial_type&1]; return; } } return; } /* ** This routine is used to allocate sufficient space for an UnpackedRecord ** structure large enough to be used with sqlite3VdbeRecordUnpack() if ** the first argument is a pointer to KeyInfo structure pKeyInfo. ** ** The space is either allocated using sqlite3DbMallocRaw() or from within ** the unaligned buffer passed via the second and third arguments (presumably ** stack space). If the former, then *ppFree is set to a pointer that should ** be eventually freed by the caller using sqlite3DbFree(). Or, if the ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL ** before returning. ** ** If an OOM error occurs, NULL is returned. */ SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( KeyInfo *pKeyInfo /* Description of the record */ ){ UnpackedRecord *p; /* Unpacked record to return */ int nByte; /* Number of bytes required for *p */ nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); if( !p ) return 0; p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; assert( pKeyInfo->aSortFlags!=0 ); p->pKeyInfo = pKeyInfo; p->nField = pKeyInfo->nKeyField + 1; return p; } /* ** Given the nKey-byte encoding of a record in pKey[], populate the ** UnpackedRecord structure indicated by the fourth argument with the ** contents of the decoded record. */ SQLITE_PRIVATE void sqlite3VdbeRecordUnpack( KeyInfo *pKeyInfo, /* Information about the record format */ int nKey, /* Size of the binary record */ const void *pKey, /* The binary record */ UnpackedRecord *p /* Populate this structure before returning. */ ){ const unsigned char *aKey = (const unsigned char *)pKey; u32 d; u32 idx; /* Offset in aKey[] to read from */ u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem = p->aMem; p->default_rc = 0; assert( EIGHT_BYTE_ALIGNMENT(pMem) ); idx = getVarint32(aKey, szHdr); d = szHdr; u = 0; while( idxenc = pKeyInfo->enc; pMem->db = pKeyInfo->db; /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ pMem->szMalloc = 0; pMem->z = 0; sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); d += sqlite3VdbeSerialTypeLen(serial_type); pMem++; if( (++u)>=p->nField ) break; } if( d>(u32)nKey && u ){ assert( CORRUPT_DB ); /* In a corrupt record entry, the last pMem might have been set up using ** uninitialized memory. Overwrite its value with NULL, to prevent ** warnings from MSAN. */ sqlite3VdbeMemSetNull(pMem-1); } assert( u<=pKeyInfo->nKeyField + 1 ); p->nField = u; } #ifdef SQLITE_DEBUG /* ** This function compares two index or table record keys in the same way ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), ** this function deserializes and compares values using the ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used ** in assert() statements to ensure that the optimized code in ** sqlite3VdbeRecordCompare() returns results with these two primitives. ** ** Return true if the result of comparison is equivalent to desiredResult. ** Return false if there is a disagreement. */ static int vdbeRecordCompareDebug( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int desiredResult /* Correct answer */ ){ u32 d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; KeyInfo *pKeyInfo; Mem mem1; pKeyInfo = pPKey2->pKeyInfo; if( pKeyInfo->db==0 ) return 1; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ /* Compilers may complain that mem1.u.i is potentially uninitialized. ** We could initialize it, as shown here, to silence those complaints. ** But in fact, mem1.u.i will never actually be used uninitialized, and doing ** the unnecessary initialization has a measurable negative performance ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); if( szHdr1>98307 ) return SQLITE_CORRUPT; d1 = szHdr1; assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); assert( pKeyInfo->aSortFlags!=0 ); assert( pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += getVarint32( aKey1+idx1, serial_type1 ); /* Verify that there is enough key space remaining to avoid ** a buffer overread. The "d1+serial_type1+2" subexpression will ** always be greater than or equal to the amount of required key space. ** Use that approximation to avoid the more expensive call to ** sqlite3VdbeSerialTypeLen() in the common case. */ if( d1+(u64)serial_type1+2>(u64)nKey1 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 ){ if( serial_type1>=1 && serial_type1<=7 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8 && CORRUPT_DB ){ return 1; /* corrupt record not detected by ** sqlite3VdbeRecordCompareWithSkip(). Return true ** to avoid firing the assert() */ } break; } /* Extract the values to be compared. */ sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); d1 += sqlite3VdbeSerialTypeLen(serial_type1); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); if( rc!=0 ){ assert( mem1.szMalloc==0 ); /* See comment below */ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) ){ rc = -rc; } if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ rc = -rc; /* Invert the result for DESC sort order. */ } goto debugCompareEnd; } i++; }while( idx1nField ); /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.szMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ rc = pPKey2->default_rc; debugCompareEnd: if( desiredResult==0 && rc==0 ) return 1; if( desiredResult<0 && rc<0 ) return 1; if( desiredResult>0 && rc>0 ) return 1; if( CORRUPT_DB ) return 1; if( pKeyInfo->db->mallocFailed ) return 1; return 0; } #endif #ifdef SQLITE_DEBUG /* ** Count the number of fields (a.k.a. columns) in the record given by ** pKey,nKey. The verify that this count is less than or equal to the ** limit given by pKeyInfo->nAllField. ** ** If this constraint is not satisfied, it means that the high-speed ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will ** not work correctly. If this assert() ever fires, it probably means ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed ** incorrectly. */ static void vdbeAssertFieldCountWithinLimits( int nKey, const void *pKey, /* The record to verify */ const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ ){ int nField = 0; u32 szHdr; u32 idx; u32 notUsed; const unsigned char *aKey = (const unsigned char*)pKey; if( CORRUPT_DB ) return; idx = getVarint32(aKey, szHdr); assert( nKey>=0 ); assert( szHdr<=(u32)nKey ); while( idxnAllField ); } #else # define vdbeAssertFieldCountWithinLimits(A,B,C) #endif /* ** Both *pMem1 and *pMem2 contain string values. Compare the two values ** using the collation sequence pColl. As usual, return a negative , zero ** or positive value if *pMem1 is less than, equal to or greater than ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". */ static int vdbeCompareMemString( const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl, u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ ){ if( pMem1->enc==pColl->enc ){ /* The strings are already in the correct encoding. Call the ** comparison function directly */ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ int rc; const void *v1, *v2; Mem c1; Mem c2; sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); if( (v1==0 || v2==0) ){ if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; rc = 0; }else{ rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); } sqlite3VdbeMemReleaseMalloc(&c1); sqlite3VdbeMemReleaseMalloc(&c2); return rc; } } /* ** The input pBlob is guaranteed to be a Blob that is not marked ** with MEM_Zero. Return true if it could be a zero-blob. */ static int isAllZero(const char *z, int n){ int i; for(i=0; in; int n2 = pB2->n; /* It is possible to have a Blob value that has some non-zero content ** followed by zero content. But that only comes up for Blobs formed ** by the OP_MakeRecord opcode, and such Blobs never get passed into ** sqlite3MemCompare(). */ assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); if( (pB1->flags|pB2->flags) & MEM_Zero ){ if( pB1->flags & pB2->flags & MEM_Zero ){ return pB1->u.nZero - pB2->u.nZero; }else if( pB1->flags & MEM_Zero ){ if( !isAllZero(pB2->z, pB2->n) ) return -1; return pB1->u.nZero - n2; }else{ if( !isAllZero(pB1->z, pB1->n) ) return +1; return n1 - pB2->u.nZero; } } c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); if( c ) return c; return n1 - n2; } /* The following two functions are used only within testcase() to prove ** test coverage. These functions do no exist for production builds. ** We must use separate SQLITE_NOINLINE functions here, since otherwise ** optimizer code movement causes gcov to become very confused. */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) static int SQLITE_NOINLINE doubleLt(double a, double b){ return ar ); testcase( x==r ); return (xr); }else{ i64 y; double s; if( r<-9223372036854775808.0 ) return +1; if( r>=9223372036854775808.0 ) return -1; y = (i64)r; if( iy ) return +1; s = (double)i; testcase( doubleLt(s,r) ); testcase( doubleLt(r,s) ); testcase( doubleEq(r,s) ); return (sr); } } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating ** sequence pColl and finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ int f1, f2; int combined_flags; f1 = pMem1->flags; f2 = pMem2->flags; combined_flags = f1|f2; assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* At least one of the two values is a number */ if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ testcase( combined_flags & MEM_Int ); testcase( combined_flags & MEM_Real ); testcase( combined_flags & MEM_IntReal ); if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & f2 & MEM_Int ); testcase( f1 & f2 & MEM_IntReal ); if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; } if( (f1 & f2 & MEM_Real)!=0 ){ if( pMem1->u.r < pMem2->u.r ) return -1; if( pMem1->u.r > pMem2->u.r ) return +1; return 0; } if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & MEM_Int ); testcase( f1 & MEM_IntReal ); if( (f2&MEM_Real)!=0 ){ return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; }else{ return -1; } } if( (f1&MEM_Real)!=0 ){ if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f2 & MEM_Int ); testcase( f2 & MEM_IntReal ); return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); }else{ return -1; } } return +1; } /* If one value is a string and the other is a blob, the string is less. ** If both are strings, compare using the collating functions. */ if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); assert( pMem1->enc==SQLITE_UTF8 || pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); /* The collation sequence must be defined at this point, even if ** the user deletes the collation sequence after the vdbe program is ** compiled (this was not always the case). */ assert( !pColl || pColl->xCmp ); if( pColl ){ return vdbeCompareMemString(pMem1, pMem2, pColl, 0); } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ return sqlite3BlobCompare(pMem1, pMem2); } /* ** The first argument passed to this function is a serial-type that ** corresponds to an integer - all values between 1 and 9 inclusive ** except 7. The second points to a buffer containing an integer value ** serialized according to serial_type. This function deserializes ** and returns the value. */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: testcase( aKey[0]&0x80 ); return ONE_BYTE_INT(aKey); case 2: testcase( aKey[0]&0x80 ); return TWO_BYTE_INT(aKey); case 3: testcase( aKey[0]&0x80 ); return THREE_BYTE_INT(aKey); case 4: { testcase( aKey[0]&0x80 ); y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { testcase( aKey[0]&0x80 ); return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); testcase( aKey[0]&0x80 ); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** If argument bSkip is non-zero, it is assumed that the caller has already ** determined that the first fields of the keys are equal. ** ** Key1 and Key2 do not have to contain the same number of fields. If all ** fields that appear in both keys are equal, then pPKey2->default_rc is ** returned. ** ** If database corruption is discovered, set pPKey2->errCode to ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). */ SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2, /* Right key */ int bSkip /* If true, skip the first field */ ){ u32 d1; /* Offset into aKey[] of next data element */ int i; /* Index of next field to compare */ u32 szHdr1; /* Size of record header in bytes */ u32 idx1; /* Offset of first type in header */ int rc = 0; /* Return value */ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ KeyInfo *pKeyInfo; const unsigned char *aKey1 = (const unsigned char *)pKey1; Mem mem1; /* If bSkip is true, then the caller has already determined that the first ** two elements in the keys are equal. Fix the various stack variables so ** that this routine begins comparing at the second field. */ if( bSkip ){ u32 s1 = aKey1[1]; if( s1<0x80 ){ idx1 = 2; }else{ idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); } szHdr1 = aKey1[0]; d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); i = 1; pRhs++; }else{ if( (szHdr1 = aKey1[0])<0x80 ){ idx1 = 1; }else{ idx1 = sqlite3GetVarint32(aKey1, &szHdr1); } d1 = szHdr1; i = 0; } if( d1>(unsigned)nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ } VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); assert( pPKey2->pKeyInfo->aSortFlags!=0 ); assert( pPKey2->pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); while( 1 /*exit-by-break*/ ){ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ testcase( pRhs->flags & MEM_Int ); testcase( pRhs->flags & MEM_IntReal ); serial_type = aKey1[idx1]; testcase( serial_type==12 ); if( serial_type>=10 ){ rc = serial_type==10 ? -1 : +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ serialGet7(&aKey1[d1], &mem1); rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); }else{ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); i64 rhs = pRhs->u.i; if( lhsrhs ){ rc = +1; } } } /* RHS is real */ else if( pRhs->flags & MEM_Real ){ serial_type = aKey1[idx1]; if( serial_type>=10 ){ /* Serial types 12 or greater are strings and blobs (greater than ** numbers). Types 10 and 11 are currently "reserved for future ** use", so it doesn't really matter what the results of comparing ** them to numeric values are. */ rc = serial_type==10 ? -1 : +1; }else if( serial_type==0 ){ rc = -1; }else{ if( serial_type==7 ){ if( serialGet7(&aKey1[d1], &mem1) ){ rc = -1; /* mem1 is a NaN */ }else if( mem1.u.ru.r ){ rc = -1; }else if( mem1.u.r>pRhs->u.r ){ rc = +1; }else{ assert( rc==0 ); } }else{ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32NR(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; testcase( (d1+mem1.n)==(unsigned)nKey1 ); testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); if( (d1+mem1.n) > (unsigned)nKey1 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString( &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode ); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); getVarint32NR(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; testcase( (d1+nStr)==(unsigned)nKey1 ); testcase( (d1+nStr+1)==(unsigned)nKey1 ); if( (d1+nStr) > (unsigned)nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ }else if( pRhs->flags & MEM_Zero ){ if( !isAllZero((const char*)&aKey1[d1],nStr) ){ rc = 1; }else{ rc = nStr - pRhs->u.nZero; } }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } } } /* RHS is null */ else{ serial_type = aKey1[idx1]; if( serial_type==0 || serial_type==10 || (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0) ){ assert( rc==0 ); }else{ rc = 1; } } if( rc!=0 ){ int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; if( sortFlags ){ if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 || ((sortFlags & KEYINFO_ORDER_DESC) !=(serial_type==0 || (pRhs->flags&MEM_Null))) ){ rc = -rc; } } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); assert( mem1.szMalloc==0 ); /* See comment below */ return rc; } i++; if( i==pPKey2->nField ) break; pRhs++; d1 += sqlite3VdbeSerialTypeLen(serial_type); if( d1>(unsigned)nKey1 ) break; idx1 += sqlite3VarintLen(serial_type); if( idx1>=(unsigned)szHdr1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corrupt index */ } } /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.szMalloc==0 ); /* rc==0 here means that one or both of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ assert( CORRUPT_DB || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) || pPKey2->pKeyInfo->db->mallocFailed ); pPKey2->eqSeen = 1; return pPKey2->default_rc; } SQLITE_PRIVATE int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is an integer, and (b) the ** size-of-header varint at the start of (pKey1/nKey1) fits in a single ** byte (i.e. is less than 128). ** ** To avoid concerns about buffer overreads, this routine is only used ** on schemas where the maximum valid header size is 63 bytes or less. */ static int vdbeRecordCompareInt( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; int serial_type = ((const u8*)pKey1)[1]; int res; u32 y; u64 x; i64 v; i64 lhs; vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; testcase( lhs<0 ); break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; testcase( lhs<0 ); break; } case 8: lhs = 0; break; case 9: lhs = 1; break; /* This case could be removed without changing the results of running ** this code. Including it causes gcc to generate a faster switch ** statement (since the range of switch targets now starts at zero and ** is contiguous) but does not cause any duplicate code to be generated ** (as gcc is clever enough to combine the two like cases). Other ** compilers might be similar. */ case 0: case 7: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); default: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); } assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); v = pPKey2->u.i; if( v>lhs ){ res = pPKey2->r1; }else if( vr2; }else if( pPKey2->nField>1 ){ /* The first fields of the two keys are equal. Compare the trailing ** fields. */ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ /* The first fields of the two keys are equal and there are no trailing ** fields. Return pPKey2->default_rc in this case. */ res = pPKey2->default_rc; pPKey2->eqSeen = 1; } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); return res; } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is a string, that (b) the first field ** uses the collation sequence BINARY and (c) that the size-of-header varint ** at the start of (pKey1/nKey1) fits in a single byte. */ static int vdbeRecordCompareString( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ const u8 *aKey1 = (const u8*)pKey1; int serial_type; int res; assert( pPKey2->aMem[0].flags & MEM_Str ); assert( pPKey2->aMem[0].n == pPKey2->n ); assert( pPKey2->aMem[0].z == pPKey2->u.z ); vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); serial_type = (signed char)(aKey1[1]); vrcs_restart: if( serial_type<12 ){ if( serial_type<0 ){ sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); if( serial_type>=12 ) goto vrcs_restart; assert( CORRUPT_DB ); } res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ }else if( !(serial_type & 0x01) ){ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ }else{ int nCmp; int nStr; int szHdr = aKey1[0]; nStr = (serial_type-12) / 2; if( (szHdr + nStr) > nKey1 ){ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; return 0; /* Corruption */ } nCmp = MIN( pPKey2->n, nStr ); res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); if( res>0 ){ res = pPKey2->r2; }else if( res<0 ){ res = pPKey2->r1; }else{ res = nStr - pPKey2->n; if( res==0 ){ if( pPKey2->nField>1 ){ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ res = pPKey2->default_rc; pPKey2->eqSeen = 1; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; } } } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) || CORRUPT_DB || pPKey2->pKeyInfo->db->mallocFailed ); return res; } /* ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function ** suitable for comparing serialized records to the unpacked record passed ** as the only argument. */ SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ /* varintRecordCompareInt() and varintRecordCompareString() both assume ** that the size-of-header varint that occurs at the start of each record ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() ** also assumes that it is safe to overread a buffer by at least the ** maximum possible legal header size plus 8 bytes. Because there is ** guaranteed to be at least 74 (but not 136) bytes of padding following each ** buffer passed to varintRecordCompareInt() this makes it convenient to ** limit the size of the header to 64 bytes in cases where the first field ** is an integer. ** ** The easiest way to enforce this limit is to consider only records with ** 13 fields or less. If the first field is an integer, the maximum legal ** header size is (12*5 + 1 + 1) bytes. */ if( p->pKeyInfo->nAllField<=13 ){ int flags = p->aMem[0].flags; if( p->pKeyInfo->aSortFlags[0] ){ if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ return sqlite3VdbeRecordCompare; } p->r1 = 1; p->r2 = -1; }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ p->u.i = p->aMem[0].u.i; return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ assert( flags & MEM_Str ); p->u.z = p->aMem[0].z; p->n = p->aMem[0].n; return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. ** ** pCur might be pointing to text obtained from a corrupt database file. ** So the content cannot be trusted. Do appropriate checks on the content. */ SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ i64 nCellKey = 0; int rc; u32 szHdr; /* Size of the header */ u32 typeRowid; /* Serial type of the rowid */ u32 lenRowid; /* Size of the rowid */ Mem m, v; /* Get the size of the index entry. Only indices entries of less ** than 2GiB are support - anything large must be database corruption. ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so ** this code can safely assume that nCellKey is 32-bits */ assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ){ return rc; } /* The index entry must begin with a header size */ getVarint32NR((u8*)m.z, szHdr); testcase( szHdr==3 ); testcase( szHdr==(u32)m.n ); testcase( szHdr>0x7fffffff ); assert( m.n>=0 ); if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ goto idx_rowid_corruption; } /* The last field of the index should be an integer - the ROWID. ** Verify that the last entry really is an integer. */ getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); testcase( typeRowid==1 ); testcase( typeRowid==2 ); testcase( typeRowid==3 ); testcase( typeRowid==4 ); testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } lenRowid = sqlite3SmallTypeSizes[typeRowid]; testcase( (u32)m.n==szHdr+lenRowid ); if( unlikely((u32)m.neCurType==CURTYPE_BTREE ); pCur = pC->uc.pCursor; assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ){ return rc; } *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); sqlite3VdbeMemReleaseMalloc(&m); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. */ SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ assert( sqlite3_mutex_held(db->mutex) ); db->nChange = nChange; db->nTotalChange += nChange; } /* ** Set a flag in the vdbe to update the change counter when it is finalised ** or reset. */ SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){ v->changeCntOn = 1; } /* ** Mark every prepared statement associated with a database connection ** as expired. ** ** An expired statement means that recompilation of the statement is ** recommend. Statements expire when things happen that make their ** programs obsolete. Removing user-defined functions or collating ** sequences, or changing an authorization function are the types of ** things that make prepared statements obsolete. ** ** If iCode is 1, then expiration is advisory. The statement should ** be reprepared before being restarted, but if it is already running ** it is allowed to run to completion. ** ** Internally, this function just sets the Vdbe.expired flag on all ** prepared statements. The flag is set to 1 for an immediate expiration ** and set to 2 for an advisory expiration. */ SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ Vdbe *p; for(p = db->pVdbe; p; p=p->pVNext){ p->expired = iCode+1; } } /* ** Return the database associated with the Vdbe. */ SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){ return v->db; } /* ** Return the SQLITE_PREPARE flags for a Vdbe. */ SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe *v){ return v->prepFlags; } /* ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ assert( iVar>0 ); if( v ){ Mem *pMem = &v->aVar[iVar-1]; assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); } return pRet; } } return 0; } /* ** Configure SQL variable iVar so that binding a new value to it signals ** to sqlite3_reoptimize() that re-preparing the statement may result ** in a better query plan. */ SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ assert( iVar>0 ); assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); if( iVar>=32 ){ v->expmask |= 0x80000000; }else{ v->expmask |= ((u32)1 << (iVar-1)); } } /* ** Cause a function to throw an error if it was call from OP_PureFunc ** rather than OP_Function. ** ** OP_PureFunc means that the function must be deterministic, and should ** throw an error if it is given inputs that would make it non-deterministic. ** This routine is invoked by date/time functions that use non-deterministic ** features such as 'now'. */ SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context *pCtx){ const VdbeOp *pOp; #ifdef SQLITE_ENABLE_STAT4 if( pCtx->pVdbe==0 ) return 1; #endif pOp = pCtx->pVdbe->aOp + pCtx->iOp; if( pOp->opcode==OP_PureFunc ){ const char *zContext; char *zMsg; if( pOp->p5 & NC_IsCheck ){ zContext = "a CHECK constraint"; }else if( pOp->p5 & NC_GenCol ){ zContext = "a generated column"; }else{ zContext = "an index"; } zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", pCtx->pFunc->zName, zContext); sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); return 0; } return 1; } #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG) /* ** This Walker callback is used to help verify that calls to ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have ** byte-code register values correctly initialized. */ SQLITE_PRIVATE int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_REGISTER ){ assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 ); } return WRC_Continue; } #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored ** in memory obtained from sqlite3DbMalloc). */ SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ if( pVtab->zErrMsg ){ sqlite3 *db = p->db; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** If the second argument is not NULL, release any allocations associated ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord ** structure itself, using sqlite3DbFree(). ** ** This function is used to free UnpackedRecord structures allocated by ** the vdbeUnpackRecord() function found in vdbeapi.c. */ static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ assert( db!=0 ); if( p ){ int i; for(i=0; iaMem[i]; if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); } sqlite3DbNNFreeNN(db, p); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, ** then cursor passed as the second argument should point to the row about ** to be update or deleted. If the application calls sqlite3_preupdate_old(), ** the required value will be read from the row the cursor points to. */ SQLITE_PRIVATE void sqlite3VdbePreUpdateHook( Vdbe *v, /* Vdbe pre-update hook is invoked by */ VdbeCursor *pCsr, /* Cursor to grab old.* values from */ int op, /* SQLITE_INSERT, UPDATE or DELETE */ const char *zDb, /* Database name */ Table *pTab, /* Modified table */ i64 iKey1, /* Initial key value */ int iReg, /* Register for new.* record */ int iBlobWrite ){ sqlite3 *db = v->db; i64 iKey2; PreUpdate preupdate; const char *zTbl = pTab->zName; static const u8 fakeSortOrder = 0; #ifdef SQLITE_DEBUG int nRealCol; if( pTab->tabFlags & TF_WithoutRowid ){ nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn; }else if( pTab->tabFlags & TF_HasVirtual ){ nRealCol = pTab->nNVCol; }else{ nRealCol = pTab->nCol; } #endif assert( db->pPreUpdate==0 ); memset(&preupdate, 0, sizeof(PreUpdate)); if( HasRowid(pTab)==0 ){ iKey1 = iKey2 = 0; preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); }else{ if( op==SQLITE_UPDATE ){ iKey2 = v->aMem[iReg].u.i; }else{ iKey2 = iKey1; } } assert( pCsr!=0 ); assert( pCsr->eCurType==CURTYPE_BTREE ); assert( pCsr->nField==nRealCol || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1) ); preupdate.v = v; preupdate.pCsr = pCsr; preupdate.op = op; preupdate.iNewReg = iReg; preupdate.keyinfo.db = db; preupdate.keyinfo.enc = ENC(db); preupdate.keyinfo.nKeyField = pTab->nCol; preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; preupdate.iKey1 = iKey1; preupdate.iKey2 = iKey2; preupdate.pTab = pTab; preupdate.iBlobWrite = iBlobWrite; db->pPreUpdate = &preupdate; db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); db->pPreUpdate = 0; sqlite3DbFree(db, preupdate.aRecord); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); if( preupdate.aNew ){ int i; for(i=0; inField; i++){ sqlite3VdbeMemRelease(&preupdate.aNew[i]); } sqlite3DbNNFreeNN(db, preupdate.aNew); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ /************** End of vdbeaux.c *********************************************/ /************** Begin file vdbeapi.c *****************************************/ /* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to implement APIs that are part of the ** VDBE. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* #include "opcodes.h" */ #ifndef SQLITE_OMIT_DEPRECATED /* ** Return TRUE (non-zero) of the statement supplied as an argument needs ** to be recompiled. A statement needs to be recompiled whenever the ** execution environment changes in a way that would alter the program ** that sqlite3_prepare() generates. For example, if new functions or ** collating sequences are registered or if an authorizer function is ** added or changed. */ SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; return p==0 || p->expired; } #endif /* ** Check on a Vdbe to make sure it has not been finalized. Log ** an error and return true if it has been finalized (or is otherwise ** invalid). Return false if it is ok. */ static int vdbeSafety(Vdbe *p){ if( p->db==0 ){ sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); return 1; }else{ return 0; } } static int vdbeSafetyNotNull(Vdbe *p){ if( p==0 ){ sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); return 1; }else{ return vdbeSafety(p); } } #ifndef SQLITE_OMIT_TRACE /* ** Invoke the profile callback. This routine is only called if we already ** know that the profile callback is defined and needs to be invoked. */ static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ sqlite3_int64 iNow; sqlite3_int64 iElapse; assert( p->startTime>0 ); assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); assert( db->init.busy==0 ); assert( p->zSql!=0 ); sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); iElapse = (iNow - p->startTime)*1000000; #ifndef SQLITE_OMIT_DEPRECATED if( db->xProfile ){ db->xProfile(db->pProfileArg, p->zSql, iElapse); } #endif if( db->mTrace & SQLITE_TRACE_PROFILE ){ db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); } p->startTime = 0; } /* ** The checkProfileCallback(DB,P) macro checks to see if a profile callback ** is needed, and it invokes the callback if it is needed. */ # define checkProfileCallback(DB,P) \ if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } #else # define checkProfileCallback(DB,P) /*no-op*/ #endif /* ** The following routine destroys a virtual machine that is created by ** the sqlite3_compile() routine. The integer returned is an SQLITE_ ** success/failure code that describes the result of executing the virtual ** machine. ** ** This routine sets the error code and string returned by ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){ int rc; if( pStmt==0 ){ /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL ** pointer is a harmless no-op. */ rc = SQLITE_OK; }else{ Vdbe *v = (Vdbe*)pStmt; sqlite3 *db = v->db; if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; sqlite3_mutex_enter(db->mutex); checkProfileCallback(db, v); assert( v->eVdbeState>=VDBE_READY_STATE ); rc = sqlite3VdbeReset(v); sqlite3VdbeDelete(v); rc = sqlite3ApiExit(db, rc); sqlite3LeaveMutexAndCloseZombie(db); } return rc; } /* ** Terminate the current execution of an SQL statement and reset it ** back to its starting state so that it can be reused. A success code from ** the prior execution is returned. ** ** This routine sets the error code and string returned by ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). */ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){ int rc; if( pStmt==0 ){ rc = SQLITE_OK; }else{ Vdbe *v = (Vdbe*)pStmt; sqlite3 *db = v->db; sqlite3_mutex_enter(db->mutex); checkProfileCallback(db, v); rc = sqlite3VdbeReset(v); sqlite3VdbeRewind(v); assert( (rc & (db->errMask))==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); } return rc; } /* ** Set all the parameters in the compiled SQL statement to NULL. */ SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ int i; int rc = SQLITE_OK; Vdbe *p = (Vdbe*)pStmt; #if SQLITE_THREADSAFE sqlite3_mutex *mutex; #endif #ifdef SQLITE_ENABLE_API_ARMOR if( pStmt==0 ){ return SQLITE_MISUSE_BKPT; } #endif #if SQLITE_THREADSAFE mutex = p->db->mutex; #endif sqlite3_mutex_enter(mutex); for(i=0; inVar; i++){ sqlite3VdbeMemRelease(&p->aVar[i]); p->aVar[i].flags = MEM_Null; } assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); if( p->expmask ){ p->expired = 1; } sqlite3_mutex_leave(mutex); return rc; } /**************************** sqlite3_value_ ******************************* ** The following routines extract information from a Mem or sqlite3_value ** structure. */ SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ if( ExpandBlob(p)!=SQLITE_OK ){ assert( p->flags==MEM_Null && p->z==0 ); return 0; } p->flags |= MEM_Blob; return p->n ? p->z : 0; }else{ return sqlite3_value_text(pVal); } } SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF8); } SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); } SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){ return sqlite3VdbeRealValue((Mem*)pVal); } SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){ return (int)sqlite3VdbeIntValue((Mem*)pVal); } SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ Mem *pMem = (Mem*)pVal; return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); } SQLITE_API void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ Mem *p = (Mem*)pVal; if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == (MEM_Null|MEM_Term|MEM_Subtype) && zPType!=0 && p->eSubtype=='p' && strcmp(p->u.zPType, zPType)==0 ){ return (void*)p->z; }else{ return 0; } } SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); } SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16BE); } SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16LE); } #endif /* SQLITE_OMIT_UTF16 */ /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating ** point number string BLOB NULL */ SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){ static const u8 aType[] = { SQLITE_BLOB, /* 0x00 (not possible) */ SQLITE_NULL, /* 0x01 NULL */ SQLITE_TEXT, /* 0x02 TEXT */ SQLITE_NULL, /* 0x03 (not possible) */ SQLITE_INTEGER, /* 0x04 INTEGER */ SQLITE_NULL, /* 0x05 (not possible) */ SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ SQLITE_NULL, /* 0x07 (not possible) */ SQLITE_FLOAT, /* 0x08 FLOAT */ SQLITE_NULL, /* 0x09 (not possible) */ SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ SQLITE_NULL, /* 0x0b (not possible) */ SQLITE_INTEGER, /* 0x0c (not possible) */ SQLITE_NULL, /* 0x0d (not possible) */ SQLITE_INTEGER, /* 0x0e (not possible) */ SQLITE_NULL, /* 0x0f (not possible) */ SQLITE_BLOB, /* 0x10 BLOB */ SQLITE_NULL, /* 0x11 (not possible) */ SQLITE_TEXT, /* 0x12 (not possible) */ SQLITE_NULL, /* 0x13 (not possible) */ SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ SQLITE_NULL, /* 0x15 (not possible) */ SQLITE_INTEGER, /* 0x16 (not possible) */ SQLITE_NULL, /* 0x17 (not possible) */ SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ SQLITE_NULL, /* 0x19 (not possible) */ SQLITE_FLOAT, /* 0x1a (not possible) */ SQLITE_NULL, /* 0x1b (not possible) */ SQLITE_INTEGER, /* 0x1c (not possible) */ SQLITE_NULL, /* 0x1d (not possible) */ SQLITE_INTEGER, /* 0x1e (not possible) */ SQLITE_NULL, /* 0x1f (not possible) */ SQLITE_FLOAT, /* 0x20 INTREAL */ SQLITE_NULL, /* 0x21 (not possible) */ SQLITE_FLOAT, /* 0x22 INTREAL + TEXT */ SQLITE_NULL, /* 0x23 (not possible) */ SQLITE_FLOAT, /* 0x24 (not possible) */ SQLITE_NULL, /* 0x25 (not possible) */ SQLITE_FLOAT, /* 0x26 (not possible) */ SQLITE_NULL, /* 0x27 (not possible) */ SQLITE_FLOAT, /* 0x28 (not possible) */ SQLITE_NULL, /* 0x29 (not possible) */ SQLITE_FLOAT, /* 0x2a (not possible) */ SQLITE_NULL, /* 0x2b (not possible) */ SQLITE_FLOAT, /* 0x2c (not possible) */ SQLITE_NULL, /* 0x2d (not possible) */ SQLITE_FLOAT, /* 0x2e (not possible) */ SQLITE_NULL, /* 0x2f (not possible) */ SQLITE_BLOB, /* 0x30 (not possible) */ SQLITE_NULL, /* 0x31 (not possible) */ SQLITE_TEXT, /* 0x32 (not possible) */ SQLITE_NULL, /* 0x33 (not possible) */ SQLITE_FLOAT, /* 0x34 (not possible) */ SQLITE_NULL, /* 0x35 (not possible) */ SQLITE_FLOAT, /* 0x36 (not possible) */ SQLITE_NULL, /* 0x37 (not possible) */ SQLITE_FLOAT, /* 0x38 (not possible) */ SQLITE_NULL, /* 0x39 (not possible) */ SQLITE_FLOAT, /* 0x3a (not possible) */ SQLITE_NULL, /* 0x3b (not possible) */ SQLITE_FLOAT, /* 0x3c (not possible) */ SQLITE_NULL, /* 0x3d (not possible) */ SQLITE_FLOAT, /* 0x3e (not possible) */ SQLITE_NULL, /* 0x3f (not possible) */ }; #ifdef SQLITE_DEBUG { int eType = SQLITE_BLOB; if( pVal->flags & MEM_Null ){ eType = SQLITE_NULL; }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ eType = SQLITE_FLOAT; }else if( pVal->flags & MEM_Int ){ eType = SQLITE_INTEGER; }else if( pVal->flags & MEM_Str ){ eType = SQLITE_TEXT; } assert( eType == aType[pVal->flags&MEM_AffMask] ); } #endif return aType[pVal->flags&MEM_AffMask]; } SQLITE_API int sqlite3_value_encoding(sqlite3_value *pVal){ return pVal->enc; } /* Return true if a parameter to xUpdate represents an unchanged column */ SQLITE_API int sqlite3_value_nochange(sqlite3_value *pVal){ return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); } /* Return true if a parameter value originated from an sqlite3_bind() */ SQLITE_API int sqlite3_value_frombind(sqlite3_value *pVal){ return (pVal->flags&MEM_FromBind)!=0; } /* Make a copy of an sqlite3_value object */ SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ sqlite3_value *pNew; if( pOrig==0 ) return 0; pNew = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return 0; memset(pNew, 0, sizeof(*pNew)); memcpy(pNew, pOrig, MEMCELLSIZE); pNew->flags &= ~MEM_Dyn; pNew->db = 0; if( pNew->flags&(MEM_Str|MEM_Blob) ){ pNew->flags &= ~(MEM_Static|MEM_Dyn); pNew->flags |= MEM_Ephem; if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ sqlite3ValueFree(pNew); pNew = 0; } }else if( pNew->flags & MEM_Null ){ /* Do not duplicate pointer values */ pNew->flags &= ~(MEM_Term|MEM_Subtype); } return pNew; } /* Destroy an sqlite3_value object previously obtained from ** sqlite3_value_dup(). */ SQLITE_API void sqlite3_value_free(sqlite3_value *pOld){ sqlite3ValueFree(pOld); } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. ** ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the ** result as a string or blob. Appropriate errors are set if the string/blob ** is too big or if an OOM occurs. ** ** The invokeValueDestructor(P,X) routine invokes destructor function X() ** on value P if P is not going to be used and need to be destroyed. */ static void setResultStrOrError( sqlite3_context *pCtx, /* Function context */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ Mem *pOut = pCtx->pOut; int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); if( rc ){ if( rc==SQLITE_TOOBIG ){ sqlite3_result_error_toobig(pCtx); }else{ /* The only errors possible from sqlite3VdbeMemSetStr are ** SQLITE_TOOBIG and SQLITE_NOMEM */ assert( rc==SQLITE_NOMEM ); sqlite3_result_error_nomem(pCtx); } return; } sqlite3VdbeChangeEncoding(pOut, pCtx->enc); if( sqlite3VdbeMemTooBig(pOut) ){ sqlite3_result_error_toobig(pCtx); } } static int invokeValueDestructor( const void *p, /* Value to destroy */ void (*xDel)(void*), /* The destructor */ sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if not NULL */ ){ assert( xDel!=SQLITE_DYNAMIC ); if( xDel==0 ){ /* noop */ }else if( xDel==SQLITE_TRANSIENT ){ /* noop */ }else{ xDel((void*)p); } #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx!=0 ){ sqlite3_result_error_toobig(pCtx); } #else assert( pCtx!=0 ); sqlite3_result_error_toobig(pCtx); #endif return SQLITE_TOOBIG; } SQLITE_API void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 || n<0 ){ invokeValueDestructor(z, xDel, pCtx); return; } #endif assert( n>=0 ); assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, 0, xDel); } SQLITE_API void sqlite3_result_blob64( sqlite3_context *pCtx, const void *z, sqlite3_uint64 n, void (*xDel)(void *) ){ assert( xDel!=SQLITE_DYNAMIC ); #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ){ invokeValueDestructor(z, xDel, 0); return; } #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, 0, xDel); } } SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); } SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_ERROR; sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_ERROR; sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); } #endif SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); } SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); } SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); } SQLITE_API void sqlite3_result_pointer( sqlite3_context *pCtx, void *pPtr, const char *zPType, void (*xDestructor)(void*) ){ Mem *pOut; #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ){ invokeValueDestructor(pPtr, xDestructor, 0); return; } #endif pOut = pCtx->pOut; assert( sqlite3_mutex_held(pOut->db->mutex) ); sqlite3VdbeMemRelease(pOut); pOut->flags = MEM_Null; sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); } SQLITE_API void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ Mem *pOut; #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif #if defined(SQLITE_STRICT_SUBTYPE) && SQLITE_STRICT_SUBTYPE+0!=0 if( pCtx->pFunc!=0 && (pCtx->pFunc->funcFlags & SQLITE_RESULT_SUBTYPE)==0 ){ char zErr[200]; sqlite3_snprintf(sizeof(zErr), zErr, "misuse of sqlite3_result_subtype() by %s()", pCtx->pFunc->zName); sqlite3_result_error(pCtx, zErr, -1); return; } #endif /* SQLITE_STRICT_SUBTYPE */ pOut = pCtx->pOut; assert( sqlite3_mutex_held(pOut->db->mutex) ); pOut->eSubtype = eSubtype & 0xff; pOut->flags |= MEM_Subtype; } SQLITE_API void sqlite3_result_text( sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ){ invokeValueDestructor(z, xDel, 0); return; } #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); } SQLITE_API void sqlite3_result_text64( sqlite3_context *pCtx, const char *z, sqlite3_uint64 n, void (*xDel)(void *), unsigned char enc ){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ){ invokeValueDestructor(z, xDel, 0); return; } #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); assert( xDel!=SQLITE_DYNAMIC ); if( enc!=SQLITE_UTF8 ){ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; n &= ~(u64)1; } if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, enc, xDel); sqlite3VdbeMemZeroTerminateIfAble(pCtx->pOut); } } #ifndef SQLITE_OMIT_UTF16 SQLITE_API void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16NATIVE, xDel); } SQLITE_API void sqlite3_result_text16be( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16BE, xDel); } SQLITE_API void sqlite3_result_text16le( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16LE, xDel); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ Mem *pOut; #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; if( pValue==0 ){ sqlite3_result_null(pCtx); return; } #endif pOut = pCtx->pOut; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemCopy(pOut, pValue); sqlite3VdbeChangeEncoding(pOut, pCtx->enc); if( sqlite3VdbeMemTooBig(pOut) ){ sqlite3_result_error_toobig(pCtx); } } SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); } SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ Mem *pOut; #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return SQLITE_MISUSE_BKPT; #endif pOut = pCtx->pOut; assert( sqlite3_mutex_held(pOut->db->mutex) ); if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(pCtx); return SQLITE_TOOBIG; } #ifndef SQLITE_OMIT_INCRBLOB sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); return SQLITE_OK; #else return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); #endif } SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif pCtx->isError = errCode ? errCode : -1; #ifdef SQLITE_DEBUG if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; #endif if( pCtx->pOut->flags & MEM_Null ){ setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, SQLITE_STATIC); } } /* Force an SQLITE_TOOBIG error. */ SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_TOOBIG; sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, SQLITE_UTF8, SQLITE_STATIC); } /* An SQLITE_NOMEM error. */ SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){ #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); pCtx->isError = SQLITE_NOMEM_BKPT; sqlite3OomFault(pCtx->pOut->db); } #ifndef SQLITE_UNTESTABLE /* Force the INT64 value currently stored as the result to be ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL ** test-control. */ SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); if( pCtx->pOut->flags & MEM_Int ){ pCtx->pOut->flags &= ~MEM_Int; pCtx->pOut->flags |= MEM_IntReal; } } #endif /* ** This function is called after a transaction has been committed. It ** invokes callbacks registered with sqlite3_wal_hook() as required. */ static int doWalCallbacks(sqlite3 *db){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_WAL int i; for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ int nEntry; sqlite3BtreeEnter(pBt); nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); sqlite3BtreeLeave(pBt); if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); } } } #endif return rc; } /* ** Execute the statement pStmt, either until a row of data is ready, the ** statement is completely executed or an error occurs. ** ** This routine implements the bulk of the logic behind the sqlite_step() ** API. The only thing omitted is the automatic recompile if a ** schema change has occurred. That detail is handled by the ** outer sqlite3_step() wrapper procedure. */ static int sqlite3Step(Vdbe *p){ sqlite3 *db; int rc; assert(p); db = p->db; if( p->eVdbeState!=VDBE_RUN_STATE ){ restart_step: if( p->eVdbeState==VDBE_READY_STATE ){ if( p->expired ){ p->rc = SQLITE_SCHEMA; rc = SQLITE_ERROR; if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ /* If this statement was prepared using saved SQL and an ** error has occurred, then return the error code in p->rc to the ** caller. Set the error code in the database handle to the same ** value. */ rc = sqlite3VdbeTransferError(p); } goto end_of_step; } /* If there are no other statements currently running, then ** reset the interrupt flag. This prevents a call to sqlite3_interrupt ** from interrupting a statement that has not yet started. */ if( db->nVdbeActive==0 ){ AtomicStore(&db->u1.isInterrupted, 0); } assert( db->nVdbeWrite>0 || db->autoCommit==0 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) ); #ifndef SQLITE_OMIT_TRACE if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 && !db->init.busy && p->zSql ){ sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); }else{ assert( p->startTime==0 ); } #endif db->nVdbeActive++; if( p->readOnly==0 ) db->nVdbeWrite++; if( p->bIsReader ) db->nVdbeRead++; p->pc = 0; p->eVdbeState = VDBE_RUN_STATE; }else if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){ /* We used to require that sqlite3_reset() be called before retrying ** sqlite3_step() after any error or after SQLITE_DONE. But beginning ** with version 3.7.0, we changed this so that sqlite3_reset() would ** be called automatically instead of throwing the SQLITE_MISUSE error. ** This "automatic-reset" change is not technically an incompatibility, ** since any application that receives an SQLITE_MISUSE is broken by ** definition. ** ** Nevertheless, some published applications that were originally written ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE ** returns, and those were broken by the automatic-reset change. As a ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the ** legacy behavior of returning SQLITE_MISUSE for cases where the ** previous sqlite3_step() returned something other than a SQLITE_LOCKED ** or SQLITE_BUSY error. */ #ifdef SQLITE_OMIT_AUTORESET if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ sqlite3_reset((sqlite3_stmt*)p); }else{ return SQLITE_MISUSE_BKPT; } #else sqlite3_reset((sqlite3_stmt*)p); #endif assert( p->eVdbeState==VDBE_READY_STATE ); goto restart_step; } } #ifdef SQLITE_DEBUG p->rcApp = SQLITE_OK; #endif #ifndef SQLITE_OMIT_EXPLAIN if( p->explain ){ rc = sqlite3VdbeList(p); }else #endif /* SQLITE_OMIT_EXPLAIN */ { db->nVdbeExec++; rc = sqlite3VdbeExec(p); db->nVdbeExec--; } if( rc==SQLITE_ROW ){ assert( p->rc==SQLITE_OK ); assert( db->mallocFailed==0 ); db->errCode = SQLITE_ROW; return SQLITE_ROW; }else{ #ifndef SQLITE_OMIT_TRACE /* If the statement completed successfully, invoke the profile callback */ checkProfileCallback(db, p); #endif p->pResultRow = 0; if( rc==SQLITE_DONE && db->autoCommit ){ assert( p->rc==SQLITE_OK ); p->rc = doWalCallbacks(db); if( p->rc!=SQLITE_OK ){ rc = SQLITE_ERROR; } }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ /* If this statement was prepared using saved SQL and an ** error has occurred, then return the error code in p->rc to the ** caller. Set the error code in the database handle to the same value. */ rc = sqlite3VdbeTransferError(p); } } db->errCode = rc; if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ p->rc = SQLITE_NOMEM_BKPT; if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; } end_of_step: /* There are only a limited number of result codes allowed from the ** statements prepared using the legacy sqlite3_prepare() interface */ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE ); return (rc&db->errMask); } /* ** This is the top-level implementation of sqlite3_step(). Call ** sqlite3Step() to do most of the work. If a schema error occurs, ** call sqlite3Reprepare() and try again. */ SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){ int rc = SQLITE_OK; /* Result from sqlite3Step() */ Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ int cnt = 0; /* Counter to prevent infinite loop of reprepares */ sqlite3 *db; /* The database connection */ if( vdbeSafetyNotNull(v) ){ return SQLITE_MISUSE_BKPT; } db = v->db; sqlite3_mutex_enter(db->mutex); while( (rc = sqlite3Step(v))==SQLITE_SCHEMA && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ int savedPc = v->pc; rc = sqlite3Reprepare(v); if( rc!=SQLITE_OK ){ /* This case occurs after failing to recompile an sql statement. ** The error message from the SQL compiler has already been loaded ** into the database handle. This block copies the error message ** from the database handle into the statement and sets the statement ** program counter to 0 to ensure that when the statement is ** finalized or reset the parser error message is available via ** sqlite3_errmsg() and sqlite3_errcode(). */ const char *zErr = (const char *)sqlite3_value_text(db->pErr); sqlite3DbFree(db, v->zErrMsg); if( !db->mallocFailed ){ v->zErrMsg = sqlite3DbStrDup(db, zErr); v->rc = rc = sqlite3ApiExit(db, rc); } else { v->zErrMsg = 0; v->rc = rc = SQLITE_NOMEM_BKPT; } break; } sqlite3_reset(pStmt); if( savedPc>=0 ){ /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has ** already been done once on a prior invocation that failed due to ** SQLITE_SCHEMA. tag-20220401a */ v->minWriteFileFormat = 254; } assert( v->expired==0 ); } sqlite3_mutex_leave(db->mutex); return rc; } /* ** Extract the user data from a sqlite3_context structure and return a ** pointer to it. */ SQLITE_API void *sqlite3_user_data(sqlite3_context *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return 0; #endif assert( p && p->pFunc ); return p->pFunc->pUserData; } /* ** Extract the user data from a sqlite3_context structure and return a ** pointer to it. ** ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface ** returns a copy of the pointer to the database connection (the 1st ** parameter) of the sqlite3_create_function() and ** sqlite3_create_function16() routines that originally registered the ** application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return 0; #else assert( p && p->pOut ); #endif return p->pOut->db; } /* ** If this routine is invoked from within an xColumn method of a virtual ** table, then it returns true if and only if the the call is during an ** UPDATE operation and the value of the column will not be modified ** by the UPDATE. ** ** If this routine is called from any context other than within the ** xColumn method of a virtual table, then the return value is meaningless ** and arbitrary. ** ** Virtual table implements might use this routine to optimize their ** performance by substituting a NULL result, or some other light-weight ** value, as a signal to the xUpdate routine that the column is unchanged. */ SQLITE_API int sqlite3_vtab_nochange(sqlite3_context *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return 0; #else assert( p ); #endif return sqlite3_value_nochange(p->pOut); } /* ** The destructor function for a ValueList object. This needs to be ** a separate function, unknowable to the application, to ensure that ** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not ** preceded by activation of IN processing via sqlite3_vtab_int() do not ** try to access a fake ValueList object inserted by a hostile extension. */ SQLITE_PRIVATE void sqlite3VdbeValueListFree(void *pToDelete){ sqlite3_free(pToDelete); } /* ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and ** sqlite3_vtab_in_next() (if bNext!=0). */ static int valueFromValueList( sqlite3_value *pVal, /* Pointer to the ValueList object */ sqlite3_value **ppOut, /* Store the next value from the list here */ int bNext /* 1 for _next(). 0 for _first() */ ){ int rc; ValueList *pRhs; *ppOut = 0; if( pVal==0 ) return SQLITE_MISUSE_BKPT; if( (pVal->flags & MEM_Dyn)==0 || pVal->xDel!=sqlite3VdbeValueListFree ){ return SQLITE_ERROR; }else{ assert( (pVal->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == (MEM_Null|MEM_Term|MEM_Subtype) ); assert( pVal->eSubtype=='p' ); assert( pVal->u.zPType!=0 && strcmp(pVal->u.zPType,"ValueList")==0 ); pRhs = (ValueList*)pVal->z; } if( bNext ){ rc = sqlite3BtreeNext(pRhs->pCsr, 0); }else{ int dummy = 0; rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; } if( rc==SQLITE_OK ){ u32 sz; /* Size of current row in bytes */ Mem sMem; /* Raw content of current row */ memset(&sMem, 0, sizeof(sMem)); sz = sqlite3BtreePayloadSize(pRhs->pCsr); rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); if( rc==SQLITE_OK ){ u8 *zBuf = (u8*)sMem.z; u32 iSerial; sqlite3_value *pOut = pRhs->pOut; int iOff = 1 + getVarint32(&zBuf[1], iSerial); sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); pOut->enc = ENC(pOut->db); if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ rc = SQLITE_NOMEM; }else{ *ppOut = pOut; } } sqlite3VdbeMemRelease(&sMem); } return rc; } /* ** Set the iterator value pVal to point to the first value in the set. ** Set (*ppOut) to point to this value before returning. */ SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ return valueFromValueList(pVal, ppOut, 0); } /* ** Set the iterator value pVal to point to the next value in the set. ** Set (*ppOut) to point to this value before returning. */ SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ return valueFromValueList(pVal, ppOut, 1); } /* ** Return the current time for a statement. If the current time ** is requested more than once within the same run of a single prepared ** statement, the exact same time is returned for each invocation regardless ** of the amount of time that elapses between invocations. In other words, ** the time returned is always the time of the first call. */ SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ int rc; #ifndef SQLITE_ENABLE_STAT4 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; assert( p->pVdbe!=0 ); #else sqlite3_int64 iTime = 0; sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; #endif if( *piTime==0 ){ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); if( rc ) *piTime = 0; } return *piTime; } /* ** Create a new aggregate context for p and return a pointer to ** its pMem->z element. */ static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ Mem *pMem = p->pMem; assert( (pMem->flags & MEM_Agg)==0 ); if( nByte<=0 ){ sqlite3VdbeMemSetNull(pMem); pMem->z = 0; }else{ sqlite3VdbeMemClearAndResize(pMem, nByte); pMem->flags = MEM_Agg; pMem->u.pDef = p->pFunc; if( pMem->z ){ memset(pMem->z, 0, nByte); } } return (void*)pMem->z; } /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. */ SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ assert( p && p->pFunc && p->pFunc->xFinalize ); assert( sqlite3_mutex_held(p->pOut->db->mutex) ); testcase( nByte<0 ); if( (p->pMem->flags & MEM_Agg)==0 ){ return createAggContext(p, nByte); }else{ return (void*)p->pMem->z; } } /* ** Return the auxiliary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. ** ** The left-most argument is 0. ** ** Undocumented behavior: If iArg is negative then access a cache of ** auxiliary data pointers that is available to all functions within a ** single prepared statement. The iArg values must match. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ AuxData *pAuxData; #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return 0; #endif assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); #if SQLITE_ENABLE_STAT4 if( pCtx->pVdbe==0 ) return 0; #else assert( pCtx->pVdbe!=0 ); #endif for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ return pAuxData->pAux; } } return 0; } /* ** Set the auxiliary data pointer and delete function, for the iArg'th ** argument to the user-function defined by pCtx. Any previous value is ** deleted by calling the delete function specified when it was set. ** ** The left-most argument is 0. ** ** Undocumented behavior: If iArg is negative then make the data available ** to all functions within the current prepared statement using iArg as an ** access code. */ SQLITE_API void sqlite3_set_auxdata( sqlite3_context *pCtx, int iArg, void *pAux, void (*xDelete)(void*) ){ AuxData *pAuxData; Vdbe *pVdbe; #ifdef SQLITE_ENABLE_API_ARMOR if( pCtx==0 ) return; #endif pVdbe= pCtx->pVdbe; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); #ifdef SQLITE_ENABLE_STAT4 if( pVdbe==0 ) goto failed; #else assert( pVdbe!=0 ); #endif for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ break; } } if( pAuxData==0 ){ pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); if( !pAuxData ) goto failed; pAuxData->iAuxOp = pCtx->iOp; pAuxData->iAuxArg = iArg; pAuxData->pNextAux = pVdbe->pAuxData; pVdbe->pAuxData = pAuxData; if( pCtx->isError==0 ) pCtx->isError = -1; }else if( pAuxData->xDeleteAux ){ pAuxData->xDeleteAux(pAuxData->pAux); } pAuxData->pAux = pAux; pAuxData->xDeleteAux = xDelete; return; failed: if( xDelete ){ xDelete(pAux); } } #ifndef SQLITE_OMIT_DEPRECATED /* ** Return the number of times the Step function of an aggregate has been ** called. ** ** This function is deprecated. Do not use it for new code. It is ** provide only to avoid breaking legacy code. New aggregate function ** implementations should keep their own counts within their aggregate ** context. */ SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){ assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); return p->pMem->n; } #endif /* ** Return the number of columns in the result set for the statement pStmt. */ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 ) return 0; return pVm->nResColumn; } /* ** Return the number of values available from the current row of the ** currently executing statement pStmt. */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 || pVm->pResultRow==0 ) return 0; return pVm->nResColumn; } /* ** Return a pointer to static memory containing an SQL NULL value. */ static const Mem *columnNullValue(void){ /* Even though the Mem structure contains an element ** of type i64, on certain architectures (x86) with certain compiler ** switches (-Os), gcc may align this Mem object on a 4-byte boundary ** instead of an 8-byte one. This all works fine, except that when ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s ** that a Mem structure is located on an 8-byte boundary. To prevent ** these assert()s from failing, when building with SQLITE_DEBUG defined ** using gcc, we force nullMem to be 8-byte aligned using the magical ** __attribute__((aligned(8))) macro. */ static const Mem nullMem #if defined(SQLITE_DEBUG) && defined(__GNUC__) __attribute__((aligned(8))) #endif = { /* .u = */ {0}, /* .z = */ (char*)0, /* .n = */ (int)0, /* .flags = */ (u16)MEM_Null, /* .enc = */ (u8)0, /* .eSubtype = */ (u8)0, /* .db = */ (sqlite3*)0, /* .szMalloc = */ (int)0, /* .uTemp = */ (u32)0, /* .zMalloc = */ (char*)0, /* .xDel = */ (void(*)(void*))0, #ifdef SQLITE_DEBUG /* .pScopyFrom = */ (Mem*)0, /* .mScopyFlags= */ 0, #endif }; return &nullMem; } /* ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm; Mem *pOut; pVm = (Vdbe *)pStmt; if( pVm==0 ) return (Mem*)columnNullValue(); assert( pVm->db ); sqlite3_mutex_enter(pVm->db->mutex); if( pVm->pResultRow!=0 && inResColumn && i>=0 ){ pOut = &pVm->pResultRow[i]; }else{ sqlite3Error(pVm->db, SQLITE_RANGE); pOut = (Mem*)columnNullValue(); } return pOut; } /* ** This function is called after invoking an sqlite3_value_XXX function on a ** column value (i.e. a value returned by evaluating an SQL expression in the ** select list of a SELECT statement) that may cause a malloc() failure. If ** malloc() has failed, the threads mallocFailed flag is cleared and the result ** code of statement pStmt set to SQLITE_NOMEM. ** ** Specifically, this is called from within: ** ** sqlite3_column_int() ** sqlite3_column_int64() ** sqlite3_column_text() ** sqlite3_column_text16() ** sqlite3_column_real() ** sqlite3_column_bytes() ** sqlite3_column_bytes16() ** sqlite3_column_blob() */ static void columnMallocFailure(sqlite3_stmt *pStmt) { /* If malloc() failed during an encoding conversion within an ** sqlite3_column_XXX API, then set the return code of the statement to ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR ** and _finalize() will return NOMEM. */ Vdbe *p = (Vdbe *)pStmt; if( p ){ assert( p->db!=0 ); assert( sqlite3_mutex_held(p->db->mutex) ); p->rc = sqlite3ApiExit(p->db, p->rc); sqlite3_mutex_leave(p->db->mutex); } } /**************************** sqlite3_column_ ******************************* ** The following routines are used to access elements of the current row ** in the result set. */ SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ const void *val; val = sqlite3_value_blob( columnMem(pStmt,i) ); /* Even though there is no encoding conversion, value_blob() might ** need to call malloc() to expand the result of a zeroblob() ** expression. */ columnMallocFailure(pStmt); return val; } SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ int val = sqlite3_value_bytes( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ double val = sqlite3_value_double( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ int val = sqlite3_value_int( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ Mem *pOut = columnMem(pStmt, i); if( pOut->flags&MEM_Static ){ pOut->flags &= ~MEM_Static; pOut->flags |= MEM_Ephem; } columnMallocFailure(pStmt); return (sqlite3_value *)pOut; } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return val; } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ int iType = sqlite3_value_type( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return iType; } /* ** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN. */ static const char * const azExplainColNames8[] = { "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */ "id", "parent", "notused", "detail" /* EQP */ }; static const u16 azExplainColNames16data[] = { /* 0 */ 'a', 'd', 'd', 'r', 0, /* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0, /* 12 */ 'p', '1', 0, /* 15 */ 'p', '2', 0, /* 18 */ 'p', '3', 0, /* 21 */ 'p', '4', 0, /* 24 */ 'p', '5', 0, /* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0, /* 35 */ 'i', 'd', 0, /* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0, /* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0, /* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0 }; static const u8 iExplainColNames16[] = { 0, 5, 12, 15, 18, 21, 24, 27, 35, 38, 45, 53 }; /* ** Convert the N-th element of pStmt->pColName[] into a string using ** xFunc() then return that string. If N is out of range, return 0. ** ** There are up to 5 names for each column. useType determines which ** name is returned. Here are the names: ** ** 0 The column name as it should be displayed for output ** 1 The datatype name for the column ** 2 The name of the database that the column derives from ** 3 The name of the table that the column derives from ** 4 The name of the table column that the result column derives from ** ** If the result is not a simple column reference (if it is an expression ** or a constant) then useTypes 2, 3, and 4 return NULL. */ static const void *columnName( sqlite3_stmt *pStmt, /* The statement */ int N, /* Which column to get the name for */ int useUtf16, /* True to return the name as UTF16 */ int useType /* What type of name */ ){ const void *ret; Vdbe *p; int n; sqlite3 *db; #ifdef SQLITE_ENABLE_API_ARMOR if( pStmt==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( N<0 ) return 0; ret = 0; p = (Vdbe *)pStmt; db = p->db; assert( db!=0 ); sqlite3_mutex_enter(db->mutex); if( p->explain ){ if( useType>0 ) goto columnName_end; n = p->explain==1 ? 8 : 4; if( N>=n ) goto columnName_end; if( useUtf16 ){ int i = iExplainColNames16[N + 8*p->explain - 8]; ret = (void*)&azExplainColNames16data[i]; }else{ ret = (void*)azExplainColNames8[N + 8*p->explain - 8]; } goto columnName_end; } n = p->nResColumn; if( NmallocFailed; N += useType*n; #ifndef SQLITE_OMIT_UTF16 if( useUtf16 ){ ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); }else #endif { ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); } /* A malloc may have failed inside of the _text() call. If this ** is the case, clear the mallocFailed flag and return NULL. */ assert( db->mallocFailed==0 || db->mallocFailed==1 ); if( db->mallocFailed > prior_mallocFailed ){ sqlite3OomClear(db); ret = 0; } } columnName_end: sqlite3_mutex_leave(db->mutex); return ret; } /* ** Return the name of the Nth column of the result set returned by SQL ** statement pStmt. */ SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_NAME); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_NAME); } #endif /* ** Constraint: If you have ENABLE_COLUMN_METADATA then you must ** not define OMIT_DECLTYPE. */ #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) # error "Must not define both SQLITE_OMIT_DECLTYPE \ and SQLITE_ENABLE_COLUMN_METADATA" #endif #ifndef SQLITE_OMIT_DECLTYPE /* ** Return the column declaration type (if applicable) of the 'i'th column ** of the result set of SQL statement pStmt. */ SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_DECLTYPE); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_DECLTYPE); } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_DECLTYPE */ #ifdef SQLITE_ENABLE_COLUMN_METADATA /* ** Return the name of the database from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_DATABASE); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_DATABASE); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_TABLE); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_TABLE); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table column from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 0, COLNAME_COLUMN); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, 1, COLNAME_COLUMN); } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_ENABLE_COLUMN_METADATA */ /******************************* sqlite3_bind_ *************************** ** ** Routines used to attach values to wildcards in a compiled SQL statement. */ /* ** Unbind the value bound to variable i in virtual machine p. This is the ** the same as binding a NULL value to the column. If the "i" parameter is ** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK. ** ** A successful evaluation of this routine acquires the mutex on p. ** the mutex is released if any kind of error occurs. ** ** The error code stored in database p->db is overwritten with the return ** value in any case. */ static int vdbeUnbind(Vdbe *p, unsigned int i){ Mem *pVar; if( vdbeSafetyNotNull(p) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(p->db->mutex); if( p->eVdbeState!=VDBE_READY_STATE ){ sqlite3Error(p->db, SQLITE_MISUSE_BKPT); sqlite3_mutex_leave(p->db->mutex); sqlite3_log(SQLITE_MISUSE, "bind on a busy prepared statement: [%s]", p->zSql); return SQLITE_MISUSE_BKPT; } if( i>=(unsigned int)p->nVar ){ sqlite3Error(p->db, SQLITE_RANGE); sqlite3_mutex_leave(p->db->mutex); return SQLITE_RANGE; } pVar = &p->aVar[i]; sqlite3VdbeMemRelease(pVar); pVar->flags = MEM_Null; p->db->errCode = SQLITE_OK; /* If the bit corresponding to this variable in Vdbe.expmask is set, then ** binding a new value to this variable invalidates the current query plan. ** ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host ** parameter in the WHERE clause might influence the choice of query plan ** for a statement, then the statement will be automatically recompiled, ** as if there had been a schema change, on the first sqlite3_step() call ** following any change to the bindings of that parameter. */ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<expired = 1; } return SQLITE_OK; } /* ** Bind a text or BLOB value. */ static int bindText( sqlite3_stmt *pStmt, /* The statement to bind against */ int i, /* Index of the parameter to bind */ const void *zData, /* Pointer to the data to be bound */ i64 nData, /* Number of bytes of data to be bound */ void (*xDel)(void*), /* Destructor for the data */ u8 encoding /* Encoding for the data */ ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ if( zData!=0 ){ pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); if( rc==SQLITE_OK && encoding!=0 ){ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); } if( rc ){ sqlite3Error(p->db, rc); rc = sqlite3ApiExit(p->db, rc); } } sqlite3_mutex_leave(p->db->mutex); }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ xDel((void*)zData); } return rc; } /* ** Bind a blob value to an SQL statement variable. */ SQLITE_API int sqlite3_bind_blob( sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( nData<0 ) return SQLITE_MISUSE_BKPT; #endif return bindText(pStmt, i, zData, nData, xDel, 0); } SQLITE_API int sqlite3_bind_blob64( sqlite3_stmt *pStmt, int i, const void *zData, sqlite3_uint64 nData, void (*xDel)(void*) ){ assert( xDel!=SQLITE_DYNAMIC ); return bindText(pStmt, i, zData, nData, xDel, 0); } SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ return sqlite3_bind_int64(p, i, (i64)iValue); } SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ int rc; Vdbe *p = (Vdbe*)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_pointer( sqlite3_stmt *pStmt, int i, void *pPtr, const char *zPTtype, void (*xDestructor)(void*) ){ int rc; Vdbe *p = (Vdbe*)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); sqlite3_mutex_leave(p->db->mutex); }else if( xDestructor ){ xDestructor(pPtr); } return rc; } SQLITE_API int sqlite3_bind_text( sqlite3_stmt *pStmt, int i, const char *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); } SQLITE_API int sqlite3_bind_text64( sqlite3_stmt *pStmt, int i, const char *zData, sqlite3_uint64 nData, void (*xDel)(void*), unsigned char enc ){ assert( xDel!=SQLITE_DYNAMIC ); if( enc!=SQLITE_UTF8 ){ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; nData &= ~(u16)1; } return bindText(pStmt, i, zData, nData, xDel, enc); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, const void *zData, int n, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, n & ~(u64)1, xDel, SQLITE_UTF16NATIVE); } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ int rc; switch( sqlite3_value_type((sqlite3_value*)pValue) ){ case SQLITE_INTEGER: { rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); break; } case SQLITE_FLOAT: { assert( pValue->flags & (MEM_Real|MEM_IntReal) ); rc = sqlite3_bind_double(pStmt, i, (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i ); break; } case SQLITE_BLOB: { if( pValue->flags & MEM_Zero ){ rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); }else{ rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); } break; } case SQLITE_TEXT: { rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, pValue->enc); break; } default: { rc = sqlite3_bind_null(pStmt, i); break; } } return rc; } SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ #ifndef SQLITE_OMIT_INCRBLOB sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); #else rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); #endif sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ int rc; Vdbe *p = (Vdbe *)pStmt; #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(p->db->mutex); if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ rc = SQLITE_TOOBIG; }else{ assert( (n & 0x7FFFFFFF)==n ); rc = sqlite3_bind_zeroblob(pStmt, i, n); } rc = sqlite3ApiExit(p->db, rc); sqlite3_mutex_leave(p->db->mutex); return rc; } /* ** Return the number of wildcards that can be potentially bound to. ** This routine is added to support DBD::SQLite. */ SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; return p ? p->nVar : 0; } /* ** Return the name of a wildcard parameter. Return NULL if the index ** is out of range or if the wildcard is unnamed. ** ** The result is always UTF-8. */ SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ Vdbe *p = (Vdbe*)pStmt; if( p==0 ) return 0; return sqlite3VListNumToName(p->pVList, i); } /* ** Given a wildcard parameter name, return the index of the variable ** with that name. If there is no variable with the given name, ** return 0. */ SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ if( p==0 || zName==0 ) return 0; return sqlite3VListNameToNum(p->pVList, zName, nName); } SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); } /* ** Transfer all bindings from the first statement over to the second. */ SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ Vdbe *pFrom = (Vdbe*)pFromStmt; Vdbe *pTo = (Vdbe*)pToStmt; int i; assert( pTo->db==pFrom->db ); assert( pTo->nVar==pFrom->nVar ); sqlite3_mutex_enter(pTo->db->mutex); for(i=0; inVar; i++){ sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); } sqlite3_mutex_leave(pTo->db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Deprecated external interface. Internal/core SQLite code ** should call sqlite3TransferBindings. ** ** It is misuse to call this routine with statements from different ** database connections. But as this is a deprecated interface, we ** will not bother to check for that condition. ** ** If the two statements contain a different number of bindings, then ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise ** SQLITE_OK is returned. */ SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ Vdbe *pFrom = (Vdbe*)pFromStmt; Vdbe *pTo = (Vdbe*)pToStmt; if( pFrom->nVar!=pTo->nVar ){ return SQLITE_ERROR; } assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); if( pTo->expmask ){ pTo->expired = 1; } assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); if( pFrom->expmask ){ pFrom->expired = 1; } return sqlite3TransferBindings(pFromStmt, pToStmt); } #endif /* ** Return the sqlite3* database handle to which the prepared statement given ** in the argument belongs. This is the same database handle that was ** the first argument to the sqlite3_prepare() that was used to create ** the statement in the first place. */ SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->db : 0; } /* ** Return true if the prepared statement is guaranteed to not modify the ** database. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; } /* ** Return 1 if the statement is an EXPLAIN and return 2 if the ** statement is an EXPLAIN QUERY PLAN */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->explain : 0; } /* ** Set the explain mode for a statement. */ SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){ Vdbe *v = (Vdbe*)pStmt; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( pStmt==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(v->db->mutex); if( ((int)v->explain)==eMode ){ rc = SQLITE_OK; }else if( eMode<0 || eMode>2 ){ rc = SQLITE_ERROR; }else if( (v->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ rc = SQLITE_ERROR; }else if( v->eVdbeState!=VDBE_READY_STATE ){ rc = SQLITE_BUSY; }else if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){ /* No reprepare necessary */ v->explain = eMode; rc = SQLITE_OK; }else{ v->explain = eMode; rc = sqlite3Reprepare(v); v->haveEqpOps = eMode==2; } if( v->explain ){ v->nResColumn = 12 - 4*v->explain; }else{ v->nResColumn = v->nResAlloc; } sqlite3_mutex_leave(v->db->mutex); return rc; } /* ** Return true if the prepared statement is in need of being reset. */ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ Vdbe *v = (Vdbe*)pStmt; return v!=0 && v->eVdbeState==VDBE_RUN_STATE; } /* ** Return a pointer to the next prepared statement after pStmt associated ** with database connection pDb. If pStmt is NULL, return the first ** prepared statement for the database connection. Return NULL if there ** are no more. */ SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ sqlite3_stmt *pNext; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(pDb) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(pDb->mutex); if( pStmt==0 ){ pNext = (sqlite3_stmt*)pDb->pVdbe; }else{ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext; } sqlite3_mutex_leave(pDb->mutex); return pNext; } /* ** Return the value of a status counter for a prepared statement */ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; u32 v; #ifdef SQLITE_ENABLE_API_ARMOR if( !pStmt || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( op==SQLITE_STMTSTATUS_MEMUSED ){ sqlite3 *db = pVdbe->db; sqlite3_mutex_enter(db->mutex); v = 0; db->pnBytesFreed = (int*)&v; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; sqlite3VdbeDelete(pVdbe); db->pnBytesFreed = 0; db->lookaside.pEnd = db->lookaside.pTrueEnd; sqlite3_mutex_leave(db->mutex); }else{ v = pVdbe->aCounter[op]; if( resetFlag ) pVdbe->aCounter[op] = 0; } return (int)v; } /* ** Return the SQL associated with a prepared statement */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe *)pStmt; return p ? p->zSql : 0; } /* ** Return the SQL associated with a prepared statement with ** bound parameters expanded. Space to hold the returned string is ** obtained from sqlite3_malloc(). The caller is responsible for ** freeing the returned string by passing it to sqlite3_free(). ** ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of ** expanded bound parameters. */ SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ #ifdef SQLITE_OMIT_TRACE return 0; #else char *z = 0; const char *zSql = sqlite3_sql(pStmt); if( zSql ){ Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); z = sqlite3VdbeExpandSql(p, zSql); sqlite3_mutex_leave(p->db->mutex); } return z; #endif } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Return the normalized SQL associated with a prepared statement. */ SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe *)pStmt; if( p==0 ) return 0; if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ sqlite3_mutex_enter(p->db->mutex); p->zNormSql = sqlite3Normalize(p, p->zSql); sqlite3_mutex_leave(p->db->mutex); } return p->zNormSql; } #endif /* SQLITE_ENABLE_NORMALIZE */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Allocate and populate an UnpackedRecord structure based on the serialized ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure ** if successful, or a NULL pointer if an OOM error is encountered. */ static UnpackedRecord *vdbeUnpackRecord( KeyInfo *pKeyInfo, int nKey, const void *pKey ){ UnpackedRecord *pRet; /* Return value */ pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); if( pRet ){ memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); } return pRet; } /* ** This function is called from within a pre-update callback to retrieve ** a field of the row currently being updated or deleted. */ SQLITE_API int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ PreUpdate *p; Mem *pMem; int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( db==0 || ppValue==0 ){ return SQLITE_MISUSE_BKPT; } #endif p = db->pPreUpdate; /* Test that this call is being made from within an SQLITE_DELETE or ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ if( !p || p->op==SQLITE_INSERT ){ rc = SQLITE_MISUSE_BKPT; goto preupdate_old_out; } if( p->pPk ){ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); } if( iIdx>=p->pCsr->nField || iIdx<0 ){ rc = SQLITE_RANGE; goto preupdate_old_out; } /* If the old.* record has not yet been loaded into memory, do so now. */ if( p->pUnpacked==0 ){ u32 nRec; u8 *aRec; assert( p->pCsr->eCurType==CURTYPE_BTREE ); nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); aRec = sqlite3DbMallocRaw(db, nRec); if( !aRec ) goto preupdate_old_out; rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); if( rc==SQLITE_OK ){ p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); if( !p->pUnpacked ) rc = SQLITE_NOMEM; } if( rc!=SQLITE_OK ){ sqlite3DbFree(db, aRec); goto preupdate_old_out; } p->aRecord = aRec; } pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey1); }else if( iIdx>=p->pUnpacked->nField ){ *ppValue = (sqlite3_value *)columnNullValue(); }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ if( pMem->flags & (MEM_Int|MEM_IntReal) ){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_IntReal ); sqlite3VdbeMemRealify(pMem); } } preupdate_old_out: sqlite3Error(db, rc); return sqlite3ApiExit(db, rc); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is called from within a pre-update callback to retrieve ** the number of columns in the row being updated, deleted or inserted. */ SQLITE_API int sqlite3_preupdate_count(sqlite3 *db){ PreUpdate *p; #ifdef SQLITE_ENABLE_API_ARMOR p = db!=0 ? db->pPreUpdate : 0; #else p = db->pPreUpdate; #endif return (p ? p->keyinfo.nKeyField : 0); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is designed to be called from within a pre-update callback ** only. It returns zero if the change that caused the callback was made ** immediately by a user SQL statement. Or, if the change was made by a ** trigger program, it returns the number of trigger programs currently ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a ** top-level trigger etc.). ** ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL ** or SET DEFAULT action is considered a trigger. */ SQLITE_API int sqlite3_preupdate_depth(sqlite3 *db){ PreUpdate *p; #ifdef SQLITE_ENABLE_API_ARMOR p = db!=0 ? db->pPreUpdate : 0; #else p = db->pPreUpdate; #endif return (p ? p->v->nFrame : 0); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is designed to be called from within a pre-update callback ** only. */ SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *db){ PreUpdate *p; #ifdef SQLITE_ENABLE_API_ARMOR p = db!=0 ? db->pPreUpdate : 0; #else p = db->pPreUpdate; #endif return (p ? p->iBlobWrite : -1); } #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** This function is called from within a pre-update callback to retrieve ** a field of the row currently being updated or inserted. */ SQLITE_API int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ PreUpdate *p; int rc = SQLITE_OK; Mem *pMem; #ifdef SQLITE_ENABLE_API_ARMOR if( db==0 || ppValue==0 ){ return SQLITE_MISUSE_BKPT; } #endif p = db->pPreUpdate; if( !p || p->op==SQLITE_DELETE ){ rc = SQLITE_MISUSE_BKPT; goto preupdate_new_out; } if( p->pPk && p->op!=SQLITE_UPDATE ){ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); } if( iIdx>=p->pCsr->nField || iIdx<0 ){ rc = SQLITE_RANGE; goto preupdate_new_out; } if( p->op==SQLITE_INSERT ){ /* For an INSERT, memory cell p->iNewReg contains the serialized record ** that is being inserted. Deserialize it. */ UnpackedRecord *pUnpack = p->pNewUnpacked; if( !pUnpack ){ Mem *pData = &p->v->aMem[p->iNewReg]; rc = ExpandBlob(pData); if( rc!=SQLITE_OK ) goto preupdate_new_out; pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); if( !pUnpack ){ rc = SQLITE_NOMEM; goto preupdate_new_out; } p->pNewUnpacked = pUnpack; } pMem = &pUnpack->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey2); }else if( iIdx>=pUnpack->nField ){ pMem = (sqlite3_value *)columnNullValue(); } }else{ /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required ** value. Make a copy of the cell contents and return a pointer to it. ** It is not safe to return a pointer to the memory cell itself as the ** caller may modify the value text encoding. */ assert( p->op==SQLITE_UPDATE ); if( !p->aNew ){ p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); if( !p->aNew ){ rc = SQLITE_NOMEM; goto preupdate_new_out; } } assert( iIdx>=0 && iIdxpCsr->nField ); pMem = &p->aNew[iIdx]; if( pMem->flags==0 ){ if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey2); }else{ rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); if( rc!=SQLITE_OK ) goto preupdate_new_out; } } } *ppValue = pMem; preupdate_new_out: sqlite3Error(db, rc); return sqlite3ApiExit(db, rc); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Return status data for a single loop within query pStmt. */ SQLITE_API int sqlite3_stmt_scanstatus_v2( sqlite3_stmt *pStmt, /* Prepared statement being queried */ int iScan, /* Index of loop to report on */ int iScanStatusOp, /* Which metric to return */ int flags, void *pOut /* OUT: Write the answer here */ ){ Vdbe *p = (Vdbe*)pStmt; VdbeOp *aOp; int nOp; ScanStatus *pScan = 0; int idx; #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 || pOut==0 || iScanStatusOpSQLITE_SCANSTAT_NCYCLE ){ return 1; } #endif aOp = p->aOp; nOp = p->nOp; if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); aOp = pFrame->aOp; nOp = pFrame->nOp; } if( iScan<0 ){ int ii; if( iScanStatusOp==SQLITE_SCANSTAT_NCYCLE ){ i64 res = 0; for(ii=0; iiaScan[idx]; }else{ /* If the COMPLEX flag is clear, then this function must ignore any ** ScanStatus structures with ScanStatus.addrLoop set to 0. */ for(idx=0; idxnScan; idx++){ pScan = &p->aScan[idx]; if( pScan->zName ){ iScan--; if( iScan<0 ) break; } } } if( idx>=p->nScan ) return 1; switch( iScanStatusOp ){ case SQLITE_SCANSTAT_NLOOP: { if( pScan->addrLoop>0 ){ *(sqlite3_int64*)pOut = aOp[pScan->addrLoop].nExec; }else{ *(sqlite3_int64*)pOut = -1; } break; } case SQLITE_SCANSTAT_NVISIT: { if( pScan->addrVisit>0 ){ *(sqlite3_int64*)pOut = aOp[pScan->addrVisit].nExec; }else{ *(sqlite3_int64*)pOut = -1; } break; } case SQLITE_SCANSTAT_EST: { double r = 1.0; LogEst x = pScan->nEst; while( x<100 ){ x += 10; r *= 0.5; } *(double*)pOut = r*sqlite3LogEstToInt(x); break; } case SQLITE_SCANSTAT_NAME: { *(const char**)pOut = pScan->zName; break; } case SQLITE_SCANSTAT_EXPLAIN: { if( pScan->addrExplain ){ *(const char**)pOut = aOp[ pScan->addrExplain ].p4.z; }else{ *(const char**)pOut = 0; } break; } case SQLITE_SCANSTAT_SELECTID: { if( pScan->addrExplain ){ *(int*)pOut = aOp[ pScan->addrExplain ].p1; }else{ *(int*)pOut = -1; } break; } case SQLITE_SCANSTAT_PARENTID: { if( pScan->addrExplain ){ *(int*)pOut = aOp[ pScan->addrExplain ].p2; }else{ *(int*)pOut = -1; } break; } case SQLITE_SCANSTAT_NCYCLE: { i64 res = 0; if( pScan->aAddrRange[0]==0 ){ res = -1; }else{ int ii; for(ii=0; iiaAddrRange); ii+=2){ int iIns = pScan->aAddrRange[ii]; int iEnd = pScan->aAddrRange[ii+1]; if( iIns==0 ) break; if( iIns>0 ){ while( iIns<=iEnd ){ res += aOp[iIns].nCycle; iIns++; } }else{ int iOp; for(iOp=0; iOpp1!=iEnd ) continue; if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_NCYCLE)==0 ){ continue; } res += aOp[iOp].nCycle; } } } } *(i64*)pOut = res; break; } default: { return 1; } } return 0; } /* ** Return status data for a single loop within query pStmt. */ SQLITE_API int sqlite3_stmt_scanstatus( sqlite3_stmt *pStmt, /* Prepared statement being queried */ int iScan, /* Index of loop to report on */ int iScanStatusOp, /* Which metric to return */ void *pOut /* OUT: Write the answer here */ ){ return sqlite3_stmt_scanstatus_v2(pStmt, iScan, iScanStatusOp, 0, pOut); } /* ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. */ SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; int ii; for(ii=0; p!=0 && iinOp; ii++){ Op *pOp = &p->aOp[ii]; pOp->nExec = 0; pOp->nCycle = 0; } } #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ /************** End of vdbeapi.c *********************************************/ /************** Begin file vdbetrace.c ***************************************/ /* ** 2009 November 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to insert the values of host parameters ** (aka "wildcards") into the SQL text output by sqlite3_trace(). ** ** The Vdbe parse-tree explainer is also found here. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ #ifndef SQLITE_OMIT_TRACE /* ** zSql is a zero-terminated string of UTF-8 SQL text. Return the number of ** bytes in this text up to but excluding the first character in ** a host parameter. If the text contains no host parameters, return ** the total number of bytes in the text. */ static int findNextHostParameter(const char *zSql, int *pnToken){ int tokenType; int nTotal = 0; int n; *pnToken = 0; while( zSql[0] ){ n = sqlite3GetToken((u8*)zSql, &tokenType); assert( n>0 && tokenType!=TK_ILLEGAL ); if( tokenType==TK_VARIABLE ){ *pnToken = n; break; } nTotal += n; zSql += n; } return nTotal; } /* ** This function returns a pointer to a nul-terminated string in memory ** obtained from sqlite3DbMalloc(). If sqlite3.nVdbeExec is 1, then the ** string contains a copy of zRawSql but with host parameters expanded to ** their current bindings. Or, if sqlite3.nVdbeExec is greater than 1, ** then the returned string holds a copy of zRawSql with "-- " prepended ** to each line of text. ** ** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then ** then long strings and blobs are truncated to that many bytes. This ** can be used to prevent unreasonably large trace strings when dealing ** with large (multi-megabyte) strings and blobs. ** ** The calling function is responsible for making sure the memory returned ** is eventually freed. ** ** ALGORITHM: Scan the input string looking for host parameters in any of ** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within ** string literals, quoted identifier names, and comments. For text forms, ** the host parameter index is found by scanning the prepared ** statement for the corresponding OP_Variable opcode. Once the host ** parameter index is known, locate the value in p->aVar[]. Then render ** the value as a literal in place of the host parameter name. */ SQLITE_PRIVATE char *sqlite3VdbeExpandSql( Vdbe *p, /* The prepared statement being evaluated */ const char *zRawSql /* Raw text of the SQL statement */ ){ sqlite3 *db; /* The database connection */ int idx = 0; /* Index of a host parameter */ int nextIndex = 1; /* Index of next ? host parameter */ int n; /* Length of a token prefix */ int nToken; /* Length of the parameter token */ int i; /* Loop counter */ Mem *pVar; /* Value of a host parameter */ StrAccum out; /* Accumulate the output here */ #ifndef SQLITE_OMIT_UTF16 Mem utf8; /* Used to convert UTF16 into UTF8 for display */ #endif db = p->db; sqlite3StrAccumInit(&out, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); if( db->nVdbeExec>1 ){ while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3_str_append(&out, "-- ", 3); assert( (zRawSql - zStart) > 0 ); sqlite3_str_append(&out, zStart, (int)(zRawSql-zStart)); } }else if( p->nVar==0 ){ sqlite3_str_append(&out, zRawSql, sqlite3Strlen30(zRawSql)); }else{ while( zRawSql[0] ){ n = findNextHostParameter(zRawSql, &nToken); assert( n>0 ); sqlite3_str_append(&out, zRawSql, n); zRawSql += n; assert( zRawSql[0] || nToken==0 ); if( nToken==0 ) break; if( zRawSql[0]=='?' ){ if( nToken>1 ){ assert( sqlite3Isdigit(zRawSql[1]) ); sqlite3GetInt32(&zRawSql[1], &idx); }else{ idx = nextIndex; } }else{ assert( zRawSql[0]==':' || zRawSql[0]=='$' || zRawSql[0]=='@' || zRawSql[0]=='#' ); testcase( zRawSql[0]==':' ); testcase( zRawSql[0]=='$' ); testcase( zRawSql[0]=='@' ); testcase( zRawSql[0]=='#' ); idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken); assert( idx>0 ); } zRawSql += nToken; nextIndex = MAX(idx + 1, nextIndex); assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ sqlite3_str_append(&out, "NULL", 4); }else if( pVar->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&out, "%lld", pVar->u.i); }else if( pVar->flags & MEM_Real ){ sqlite3_str_appendf(&out, "%!.15g", pVar->u.r); }else if( pVar->flags & MEM_Str ){ int nOut; /* Number of bytes of the string text to include in output */ #ifndef SQLITE_OMIT_UTF16 u8 enc = ENC(db); if( enc!=SQLITE_UTF8 ){ memset(&utf8, 0, sizeof(utf8)); utf8.db = db; sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC); if( SQLITE_NOMEM==sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8) ){ out.accError = SQLITE_NOMEM; out.nAlloc = 0; } pVar = &utf8; } #endif nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut>SQLITE_TRACE_SIZE_LIMIT ){ nOut = SQLITE_TRACE_SIZE_LIMIT; while( nOutn && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; } } #endif sqlite3_str_appendf(&out, "'%.*q'", nOut, pVar->z); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOutn ){ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut); } #endif #ifndef SQLITE_OMIT_UTF16 if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8); #endif }else if( pVar->flags & MEM_Zero ){ sqlite3_str_appendf(&out, "zeroblob(%d)", pVar->u.nZero); }else{ int nOut; /* Number of bytes of the blob to include in output */ assert( pVar->flags & MEM_Blob ); sqlite3_str_append(&out, "x'", 2); nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT; #endif for(i=0; iz[i]&0xff); } sqlite3_str_append(&out, "'", 1); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOutn ){ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut); } #endif } } } if( out.accError ) sqlite3_str_reset(&out); return sqlite3StrAccumFinish(&out); } #endif /* #ifndef SQLITE_OMIT_TRACE */ /************** End of vdbetrace.c *******************************************/ /************** Begin file vdbe.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** The code in this file implements the function that runs the ** bytecode of a prepared statement. ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing ** like that ever happens. */ #ifdef SQLITE_DEBUG # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) #else # define memAboutToChange(P,M) #endif /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test ** procedures use this information to make sure that indices are ** working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_search_count = 0; #endif /* ** When this global variable is positive, it gets decremented once before ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted ** field of the sqlite3 structure is set in order to simulate an interrupt. ** ** This facility is used for testing purposes only. It does not function ** in an ordinary build. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_interrupt_count = 0; #endif /* ** The next global variable is incremented each type the OP_Sort opcode ** is executed. The test procedures use this information to make sure that ** sorting is occurring or not occurring at appropriate times. This variable ** has no function other than to help verify the correct operation of the ** library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_sort_count = 0; #endif /* ** The next global variable records the size of the largest MEM_Blob ** or MEM_Str that has been used by a VDBE opcode. The test procedures ** use this information to make sure that the zero-blob functionality ** is working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_max_blobsize = 0; static void updateMaxBlobsize(Mem *p){ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ sqlite3_max_blobsize = p->n; } } #endif /* ** This macro evaluates to true if either the update hook or the preupdate ** hook are enabled for database connect DB. */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) #else # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) #endif /* ** The next global variable is incremented each time the OP_Found opcode ** is executed. This is used to test whether or not the foreign key ** operation implemented using OP_FkIsZero is working. This variable ** has no function other than to help verify the correct operation of the ** library. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_found_count = 0; #endif /* ** Test a register to see if it exceeds the current maximum blob size. ** If it does, record the new maximum blob size. */ #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) #else # define UPDATE_MAX_BLOBSIZE(P) #endif #ifdef SQLITE_DEBUG /* This routine provides a convenient place to set a breakpoint during ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after ** each opcode is printed. Variables "pc" (program counter) and pOp are ** available to add conditionals to the breakpoint. GDB example: ** ** break test_trace_breakpoint if pc=22 ** ** Other useful labels for breakpoints include: ** test_addop_breakpoint(pc,pOp) ** sqlite3CorruptError(lineno) ** sqlite3MisuseError(lineno) ** sqlite3CantopenError(lineno) */ static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ static u64 n = 0; (void)pc; (void)pOp; (void)v; n++; if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */ } #endif /* ** Invoke the VDBE coverage callback, if that callback is defined. This ** feature is used for test suite validation only and does not appear an ** production builds. ** ** M is the type of branch. I is the direction taken for this instance of ** the branch. ** ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) ** ** In other words, if M is 2, then I is either 0 (for fall-through) or ** 1 (for when the branch is taken). If M is 3, the I is 0 for an ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 ** if the result of comparison is NULL. For M=3, I=2 the jump may or ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 ** depending on if the operands are less than, equal, or greater than. ** ** iSrcLine is the source code line (from the __LINE__ macro) that ** generated the VDBE instruction combined with flag bits. The source ** code line number is in the lower 24 bits of iSrcLine and the upper ** 8 bytes are flags. The lower three bits of the flags indicate ** values for I that should never occur. For example, if the branch is ** always taken, the flags should be 0x05 since the fall-through and ** alternate branch are never taken. If a branch is never taken then ** flags should be 0x06 since only the fall-through approach is allowed. ** ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only ** interested in equal or not-equal. In other words, I==0 and I==2 ** should be treated as equivalent ** ** Since only a line number is retained, not the filename, this macro ** only works for amalgamation builds. But that is ok, since these macros ** should be no-ops except for special builds used to measure test coverage. */ #if !defined(SQLITE_VDBE_COVERAGE) # define VdbeBranchTaken(I,M) #else # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ u8 mNever; assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ assert( I> 24; assert( (I & mNever)==0 ); if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ /* Invoke the branch coverage callback with three arguments: ** iSrcLine - the line number of the VdbeCoverage() macro, with ** flags removed. ** I - Mask of bits 0x07 indicating which cases are are ** fulfilled by this instance of the jump. 0x01 means ** fall-thru, 0x02 means taken, 0x04 means NULL. Any ** impossible cases (ex: if the comparison is never NULL) ** are filled in automatically so that the coverage ** measurement logic does not flag those impossible cases ** as missed coverage. ** M - Type of jump. Same as M argument above */ I |= mNever; if( M==2 ) I |= 0x04; if( M==4 ){ I |= 0x08; if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ } sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, iSrcLine&0xffffff, I, M); } #endif /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the register ** does not control the string, it might be deleted without the register ** knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the register itself controls. In other words, it ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 \ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) /* ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL ** if we run out of memory. */ static VdbeCursor *allocateCursor( Vdbe *p, /* The virtual machine */ int iCur, /* Index of the new VdbeCursor */ int nField, /* Number of fields in the table or index */ u8 eCurType /* Type of the new cursor */ ){ /* Find the memory cell that will be used to store the blob of memory ** required for this VdbeCursor structure. It is convenient to use a ** vdbe memory cell to manage the memory allocation required for a ** VdbeCursor structure for the following reasons: ** ** * Sometimes cursor numbers are used for a couple of different ** purposes in a vdbe program. The different uses might require ** different sized allocations. Memory cells provide growable ** allocations. ** ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can ** be freed lazily via the sqlite3_release_memory() API. This ** minimizes the number of malloc calls made by the system. ** ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. ** Cursor 2 is at Mem[p->nMem-2]. And so forth. */ Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; int nByte; VdbeCursor *pCx = 0; nByte = ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); assert( iCur>=0 && iCurnCursor ); if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); p->apCsr[iCur] = 0; } /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure ** the pMem used to hold space for the cursor has enough storage available ** in pMem->zMalloc. But for the special case of the aMem[] entries used ** to hold cursors, it is faster to in-line the logic. */ assert( pMem->flags==MEM_Undefined ); assert( (pMem->flags & MEM_Dyn)==0 ); assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); if( pMem->szMallocszMalloc>0 ){ sqlite3DbFreeNN(pMem->db, pMem->zMalloc); } pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); if( pMem->zMalloc==0 ){ pMem->szMalloc = 0; return 0; } pMem->szMalloc = nByte; } p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); pCx->eCurType = eCurType; pCx->nField = nField; pCx->aOffset = &pCx->aType[nField]; if( eCurType==CURTYPE_BTREE ){ pCx->uc.pCursor = (BtCursor*) &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; sqlite3BtreeCursorZero(pCx->uc.pCursor); } return pCx; } /* ** The string in pRec is known to look like an integer and to have a ** floating point value of rValue. Return true and set *piValue to the ** integer value if the string is in range to be an integer. Otherwise, ** return false. */ static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ i64 iValue; iValue = sqlite3RealToI64(rValue); if( sqlite3RealSameAsInt(rValue,iValue) ){ *piValue = iValue; return 1; } return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); } /* ** Try to convert a value into a numeric representation if we can ** do so without loss of information. In other words, if the string ** looks like a number, convert it into a number. If it does not ** look like a number, leave it alone. ** ** If the bTryForInt flag is true, then extra effort is made to give ** an integer representation. Strings that look like floating point ** values but which have no fractional component (example: '48.00') ** will have a MEM_Int representation when bTryForInt is true. ** ** If bTryForInt is false, then if the input string contains a decimal ** point or exponential notation, the result is only MEM_Real, even ** if there is an exact integer representation of the quantity. */ static void applyNumericAffinity(Mem *pRec, int bTryForInt){ double rValue; u8 enc = pRec->enc; int rc; assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); if( rc<=0 ) return; if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ pRec->flags |= MEM_Int; }else{ pRec->u.r = rValue; pRec->flags |= MEM_Real; if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); } /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the ** string representation after computing a numeric equivalent, because the ** string representation might not be the canonical representation for the ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ pRec->flags &= ~MEM_Str; } /* ** Processing is determine by the affinity parameter: ** ** SQLITE_AFF_INTEGER: ** SQLITE_AFF_REAL: ** SQLITE_AFF_NUMERIC: ** Try to convert pRec to an integer representation or a ** floating-point representation if an integer representation ** is not possible. Note that the integer representation is ** always preferred, even if the affinity is REAL, because ** an integer representation is more space efficient on disk. ** ** SQLITE_AFF_FLEXNUM: ** If the value is text, then try to convert it into a number of ** some kind (integer or real) but do not make any other changes. ** ** SQLITE_AFF_TEXT: ** Convert pRec to a text representation. ** ** SQLITE_AFF_BLOB: ** SQLITE_AFF_NONE: ** No-op. pRec is unchanged. */ static void applyAffinity( Mem *pRec, /* The value to apply affinity to */ char affinity, /* The affinity to be applied */ u8 enc /* Use this text encoding */ ){ if( affinity>=SQLITE_AFF_NUMERIC ){ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM ); if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){ if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); }else if( affinity<=SQLITE_AFF_REAL ){ sqlite3VdbeIntegerAffinity(pRec); } } }else if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. It would be harmless to repeat the conversion if ** there is already a string rep, but it is pointless to waste those ** CPU cycles. */ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ testcase( pRec->flags & MEM_Int ); testcase( pRec->flags & MEM_Real ); testcase( pRec->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pRec, enc, 1); } } pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); } } /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without ** loss of information and return the revised type of the argument. */ SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){ int eType = sqlite3_value_type(pVal); if( eType==SQLITE_TEXT ){ Mem *pMem = (Mem*)pVal; applyNumericAffinity(pMem, 0); eType = sqlite3_value_type(pVal); } return eType; } /* ** Exported version of applyAffinity(). This one works on sqlite3_value*, ** not the internal Mem* type. */ SQLITE_PRIVATE void sqlite3ValueApplyAffinity( sqlite3_value *pVal, u8 affinity, u8 enc ){ applyAffinity((Mem *)pVal, affinity, enc); } /* ** pMem currently only holds a string type (or maybe a BLOB that we can ** interpret as a string if we want to). Compute its corresponding ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields ** accordingly. */ static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ int rc; sqlite3_int64 ix; assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); if( ExpandBlob(pMem) ){ pMem->u.i = 0; return MEM_Int; } rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( rc<=0 ){ if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ pMem->u.i = ix; return MEM_Int; }else{ return MEM_Real; } }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ pMem->u.i = ix; return MEM_Int; } return MEM_Real; } /* ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or ** none. ** ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. ** But it does set pMem->u.r and pMem->u.i appropriately. */ static u16 numericType(Mem *pMem){ assert( (pMem->flags & MEM_Null)==0 || pMem->db==0 || pMem->db->mallocFailed ); if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_Real ); testcase( pMem->flags & MEM_IntReal ); return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); } assert( pMem->flags & (MEM_Str|MEM_Blob) ); testcase( pMem->flags & MEM_Str ); testcase( pMem->flags & MEM_Blob ); return computeNumericType(pMem); return 0; } #ifdef SQLITE_DEBUG /* ** Write a nice string representation of the contents of cell pMem ** into buffer zBuf, length nBuf. */ SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ int f = pMem->flags; static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; if( f&MEM_Blob ){ int i; char c; if( f & MEM_Dyn ){ c = 'z'; assert( (f & (MEM_Static|MEM_Ephem))==0 ); }else if( f & MEM_Static ){ c = 't'; assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); }else if( f & MEM_Ephem ){ c = 'e'; assert( (f & (MEM_Static|MEM_Dyn))==0 ); }else{ c = 's'; } sqlite3_str_appendf(pStr, "%cx[", c); for(i=0; i<25 && in; i++){ sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); } sqlite3_str_appendf(pStr, "|"); for(i=0; i<25 && in; i++){ char z = pMem->z[i]; sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); } sqlite3_str_appendf(pStr,"]"); if( f & MEM_Zero ){ sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); } }else if( f & MEM_Str ){ int j; u8 c; if( f & MEM_Dyn ){ c = 'z'; assert( (f & (MEM_Static|MEM_Ephem))==0 ); }else if( f & MEM_Static ){ c = 't'; assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); }else if( f & MEM_Ephem ){ c = 'e'; assert( (f & (MEM_Static|MEM_Dyn))==0 ); }else{ c = 's'; } sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); for(j=0; j<25 && jn; j++){ c = pMem->z[j]; sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); } sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); if( f & MEM_Term ){ sqlite3_str_appendf(pStr, "(0-term)"); } } } #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: */ static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); }else if( (p->flags & (MEM_IntReal))!=0 ){ printf(" ir:%lld", p->u.i); }else if( p->flags & MEM_Int ){ printf(" i:%lld", p->u.i); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( p->flags & MEM_Real ){ printf(" r:%.17g", p->u.r); #endif }else if( sqlite3VdbeMemIsRowSet(p) ){ printf(" (rowset)"); }else{ StrAccum acc; char zBuf[1000]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3VdbeMemPrettyPrint(p, &acc); printf(" %s", sqlite3StrAccumFinish(&acc)); } if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); } static void registerTrace(int iReg, Mem *p){ printf("R[%d] = ", iReg); memTracePrint(p); if( p->pScopyFrom ){ printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); } printf("\n"); sqlite3VdbeCheckMemInvariants(p); } /**/ void sqlite3PrintMem(Mem *pMem){ memTracePrint(pMem); printf("\n"); fflush(stdout); } #endif #ifdef SQLITE_DEBUG /* ** Show the values of all registers in the virtual machine. Used for ** interactive debugging. */ SQLITE_PRIVATE void sqlite3VdbeRegisterDump(Vdbe *v){ int i; for(i=1; inMem; i++) registerTrace(i, v->aMem+i); } #endif /* SQLITE_DEBUG */ #ifdef SQLITE_DEBUG # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) #else # define REGISTER_TRACE(R,M) #endif #ifndef NDEBUG /* ** This function is only called from within an assert() expression. It ** checks that the sqlite3.nTransaction variable is correctly set to ** the number of non-transaction savepoints currently in the ** linked list starting at sqlite3.pSavepoint. ** ** Usage: ** ** assert( checkSavepointCount(db) ); */ static int checkSavepointCount(sqlite3 *db){ int n = 0; Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Return the register of pOp->p2 after first preparing it to be ** overwritten with an integer value. */ static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ sqlite3VdbeMemSetNull(pOut); pOut->flags = MEM_Int; return pOut; } static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ Mem *pOut; assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); pOut = &p->aMem[pOp->p2]; memAboutToChange(p, pOut); if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ return out2PrereleaseWithClear(pOut); }else{ pOut->flags = MEM_Int; return pOut; } } /* ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning ** with pOp->p3. Return the hash. */ static u64 filterHash(const Mem *aMem, const Op *pOp){ int i, mx; u64 h = 0; assert( pOp->p4type==P4_INT32 ); for(i=pOp->p3, mx=i+pOp->p4.i; iflags & (MEM_Int|MEM_IntReal) ){ h += p->u.i; }else if( p->flags & MEM_Real ){ h += sqlite3VdbeIntValue(p); }else if( p->flags & (MEM_Str|MEM_Blob) ){ /* All strings have the same hash and all blobs have the same hash, ** though, at least, those hashes are different from each other and ** from NULL. */ h += 4093 + (p->flags & (MEM_Str|MEM_Blob)); } } return h; } /* ** For OP_Column, factor out the case where content is loaded from ** overflow pages, so that the code to implement this case is separate ** the common case where all content fits on the page. Factoring out ** the code reduces register pressure and helps the common case ** to run faster. */ static SQLITE_NOINLINE int vdbeColumnFromOverflow( VdbeCursor *pC, /* The BTree cursor from which we are reading */ int iCol, /* The column to read */ int t, /* The serial-type code for the column value */ i64 iOffset, /* Offset to the start of the content value */ u32 cacheStatus, /* Current Vdbe.cacheCtr value */ u32 colCacheCtr, /* Current value of the column cache counter */ Mem *pDest /* Store the value into this register. */ ){ int rc; sqlite3 *db = pDest->db; int encoding = pDest->enc; int len = sqlite3VdbeSerialTypeLen(t); assert( pC->eCurType==CURTYPE_BTREE ); if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG; if( len > 4000 && pC->pKeyInfo==0 ){ /* Cache large column values that are on overflow pages using ** an RCStr (reference counted string) so that if they are reloaded, ** that do not have to be copied a second time. The overhead of ** creating and managing the cache is such that this is only ** profitable for larger TEXT and BLOB values. ** ** Only do this on table-btrees so that writes to index-btrees do not ** need to clear the cache. This buys performance in the common case ** in exchange for generality. */ VdbeTxtBlbCache *pCache; char *pBuf; if( pC->colCache==0 ){ pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) ); if( pC->pCache==0 ) return SQLITE_NOMEM; pC->colCache = 1; } pCache = pC->pCache; if( pCache->pCValue==0 || pCache->iCol!=iCol || pCache->cacheStatus!=cacheStatus || pCache->colCacheCtr!=colCacheCtr || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor) ){ if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue); pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 ); if( pBuf==0 ) return SQLITE_NOMEM; rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf); if( rc ) return rc; pBuf[len] = 0; pBuf[len+1] = 0; pBuf[len+2] = 0; pCache->iCol = iCol; pCache->cacheStatus = cacheStatus; pCache->colCacheCtr = colCacheCtr; pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor); }else{ pBuf = pCache->pCValue; } assert( t>=12 ); sqlite3RCStrRef(pBuf); if( t&1 ){ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding, sqlite3RCStrUnref); pDest->flags |= MEM_Term; }else{ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0, sqlite3RCStrUnref); } }else{ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest); if( rc ) return rc; sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); if( (t&1)!=0 && encoding==SQLITE_UTF8 ){ pDest->z[len] = 0; pDest->flags |= MEM_Term; } } pDest->flags &= ~MEM_Ephem; return rc; } /* ** Return the symbolic name for the data type of a pMem */ static const char *vdbeMemTypeName(Mem *pMem){ static const char *azTypes[] = { /* SQLITE_INTEGER */ "INT", /* SQLITE_FLOAT */ "REAL", /* SQLITE_TEXT */ "TEXT", /* SQLITE_BLOB */ "BLOB", /* SQLITE_NULL */ "NULL" }; return azTypes[sqlite3_value_type(pMem)-1]; } /* ** Execute as much of a VDBE program as we can. ** This is the core of sqlite3_step(). */ SQLITE_PRIVATE int sqlite3VdbeExec( Vdbe *p /* The VDBE */ ){ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp = aOp; /* Current operation */ #ifdef SQLITE_DEBUG Op *pOrigOp; /* Value of pOp at the top of the loop */ int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ u8 iCompareIsInit = 0; /* iCompare is initialized */ #endif int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ u8 encoding = ENC(db); /* The database encoding */ int iCompare = 0; /* Result of last comparison */ u64 nVmStep = 0; /* Number of virtual machine steps */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ #endif Mem *aMem = p->aMem; /* Copy of p->aMem */ Mem *pIn1 = 0; /* 1st input operand */ Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ u32 colCacheCtr = 0; /* Column cache counter */ #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) u64 *pnCycle = 0; int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0; #endif /*** INSERT STACK UNION HERE ***/ assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ if( DbMaskNonZero(p->lockMask) ){ sqlite3VdbeEnter(p); } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; assert( 0 < db->nProgressOps ); nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); }else{ nProgressLimit = LARGEST_UINT64; } #endif if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ goto no_mem; } assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); testcase( p->rc!=SQLITE_OK ); p->rc = SQLITE_OK; assert( p->bIsReader || p->readOnly!=0 ); p->iCurrentTime = 0; assert( p->explain==0 ); db->busyHandler.nBusy = 0; if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; sqlite3VdbeIOTraceSql(p); #ifdef SQLITE_DEBUG sqlite3BeginBenignMalloc(); if( p->pc==0 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 ){ int i; int once = 1; sqlite3VdbePrintSql(p); if( p->db->flags & SQLITE_VdbeListing ){ printf("VDBE Program Listing:\n"); for(i=0; inOp; i++){ sqlite3VdbePrintOp(stdout, i, &aOp[i]); } } if( p->db->flags & SQLITE_VdbeEQP ){ for(i=0; inOp; i++){ if( aOp[i].opcode==OP_Explain ){ if( once ) printf("VDBE Query Plan:\n"); printf("%s\n", aOp[i].p4.z); once = 0; } } } if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); } sqlite3EndBenignMalloc(); #endif for(pOp=&aOp[p->pc]; 1; pOp++){ /* Errors are detected by individual opcodes, with an immediate ** jumps to abort_due_to_error. */ assert( rc==SQLITE_OK ); assert( pOp>=aOp && pOp<&aOp[p->nOp]); nVmStep++; #if defined(VDBE_PROFILE) pOp->nExec++; pnCycle = &pOp->nCycle; if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime(); #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( bStmtScanStatus ){ pOp->nExec++; pnCycle = &pOp->nCycle; *pnCycle -= sqlite3Hwtime(); } #endif /* Only allow tracing if SQLITE_DEBUG is defined. */ #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); test_trace_breakpoint((int)(pOp - aOp),pOp,p); } #endif /* Check to see if we need to simulate an interrupt. This only happens ** if we have a special test build. */ #ifdef SQLITE_TEST if( sqlite3_interrupt_count>0 ){ sqlite3_interrupt_count--; if( sqlite3_interrupt_count==0 ){ sqlite3_interrupt(db); } } #endif /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG { u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; if( (opProperty & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (opProperty & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p2]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (opProperty & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); assert( memIsValid(&aMem[pOp->p3]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (opProperty & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); memAboutToChange(p, &aMem[pOp->p2]); } if( (opProperty & OPFLG_OUT3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); memAboutToChange(p, &aMem[pOp->p3]); } } #endif #ifdef SQLITE_DEBUG pOrigOp = pOp; #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But ** that is a lot of wasted space on the left margin. So the code within ** the switch statement will break with convention and be flush-left. Another ** big comment (similar to this one) will mark the point in the code where ** we transition back to normal indentation. ** ** The formatting of each case is important. The makefile for SQLite ** generates two C files "opcodes.h" and "opcodes.c" by scanning this ** file looking for lines that begin with "case OP_". The opcodes.h files ** will be filled with #defines that give unique integer values to each ** opcode and the opcodes.c file is filled with an array of strings where ** each string is the symbolic name for the corresponding opcode. If the ** case statement is followed by a comment of the form "/# same as ... #/" ** that comment is used to determine the particular value of the opcode. ** ** Other keywords in the comment that follows each case are used to ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. ** Keywords include: in1, in2, in3, out2, out3. See ** the mkopcodeh.awk script for additional information. ** ** Documentation about VDBE opcodes is generated by scanning this file ** for lines of that contain "Opcode:". That line and all subsequent ** comment lines are used in the generation of the opcode.html documentation ** file. ** ** SUMMARY: ** ** Formatting is important to scripts that scan this file. ** Do not deviate from the formatting style currently in use. ** *****************************************************************************/ /* Opcode: Goto * P2 * * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. ** ** The P1 parameter is not actually used by this opcode. However, it ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ #ifdef SQLITE_DEBUG /* In debugging mode, when the p5 flags is set on an OP_Goto, that ** means we should really jump back to the preceding OP_ReleaseReg ** instruction. */ if( pOp->p5 ){ assert( pOp->p2 < (int)(pOp - aOp) ); assert( pOp->p2 > 1 ); pOp = &aOp[pOp->p2 - 2]; assert( pOp[1].opcode==OP_ReleaseReg ); goto check_for_interrupt; } #endif jump_to_p2_and_check_for_interrupt: pOp = &aOp[pOp->p2 - 1]; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called ** or if the progress callback needs to be invoked. ** ** This code uses unstructured "goto" statements and does not look clean. ** But that is not due to sloppy coding habits. The code is written this ** way for performance, to avoid having to run the interrupt and progress ** checks on every opcode. This helps sqlite3_step() to run about 1.5% ** faster according to "valgrind --tool=cachegrind" */ check_for_interrupt: if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* Call the progress callback if it is configured and the required number ** of VDBE ops have been executed (either since this invocation of ** sqlite3VdbeExec() or since last time the progress callback was called). ** If the progress callback returns non-zero, exit the virtual machine with ** a return code SQLITE_ABORT. */ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ assert( db->nProgressOps!=0 ); nProgressLimit += db->nProgressOps; if( db->xProgress(db->pProgressArg) ){ nProgressLimit = LARGEST_UINT64; rc = SQLITE_INTERRUPT; goto abort_due_to_error; } } #endif break; } /* Opcode: Gosub P1 P2 * * * ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = (int)(pOp-aOp); REGISTER_TRACE(pOp->p1, pIn1); goto jump_to_p2_and_check_for_interrupt; } /* Opcode: Return P1 P2 P3 * * ** ** Jump to the address stored in register P1. If P1 is a return address ** register, then this accomplishes a return from a subroutine. ** ** If P3 is 1, then the jump is only taken if register P1 holds an integer ** values, otherwise execution falls through to the next opcode, and the ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an ** integer or else an assert() is raised. P3 should be set to 1 when ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 ** otherwise. ** ** The value in register P1 is unchanged by this opcode. ** ** P2 is not used by the byte-code engine. However, if P2 is positive ** and also less than the current address, then the "EXPLAIN" output ** formatter in the CLI will indent all opcodes from the P2 opcode up ** to be not including the current Return. P2 should be the first opcode ** in the subroutine from which this opcode is returning. Thus the P2 ** value is a byte-code indentation hint. See tag-20220407a in ** wherecode.c and shell.c. */ case OP_Return: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Int ){ if( pOp->p3 ){ VdbeBranchTaken(1, 2); } pOp = &aOp[pIn1->u.i]; }else if( ALWAYS(pOp->p3) ){ VdbeBranchTaken(0, 2); } break; } /* Opcode: InitCoroutine P1 P2 P3 * * ** ** Set up register P1 so that it will Yield to the coroutine ** located at address P3. ** ** If P2!=0 then the coroutine implementation immediately follows ** this opcode. So jump over the coroutine implementation to ** address P2. ** ** See also: EndCoroutine */ case OP_InitCoroutine: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( pOp->p2>=0 && pOp->p2nOp ); assert( pOp->p3>=0 && pOp->p3nOp ); pOut = &aMem[pOp->p1]; assert( !VdbeMemDynamic(pOut) ); pOut->u.i = pOp->p3 - 1; pOut->flags = MEM_Int; if( pOp->p2==0 ) break; /* Most jump operations do a goto to this spot in order to update ** the pOp pointer. */ jump_to_p2: assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ assert( pOp->p2nOp ); /* Jumps must be in range */ pOp = &aOp[pOp->p2 - 1]; break; } /* Opcode: EndCoroutine P1 * * * * ** ** The instruction at the address in register P1 is a Yield. ** Jump to the P2 parameter of that Yield. ** After the jump, register P1 becomes undefined. ** ** See also: InitCoroutine */ case OP_EndCoroutine: { /* in1 */ VdbeOp *pCaller; pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); assert( pIn1->u.i>=0 && pIn1->u.inOp ); pCaller = &aOp[pIn1->u.i]; assert( pCaller->opcode==OP_Yield ); assert( pCaller->p2>=0 && pCaller->p2nOp ); pOp = &aOp[pCaller->p2 - 1]; pIn1->flags = MEM_Undefined; break; } /* Opcode: Yield P1 P2 * * * ** ** Swap the program counter with the value in register P1. This ** has the effect of yielding to a coroutine. ** ** If the coroutine that is launched by this instruction ends with ** Yield or Return then continue to the next instruction. But if ** the coroutine launched by this instruction ends with ** EndCoroutine, then jump to P2 rather than continuing with the ** next instruction. ** ** See also: InitCoroutine */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); pIn1->flags = MEM_Int; pcDest = (int)pIn1->u.i; pIn1->u.i = (int)(pOp - aOp); REGISTER_TRACE(pOp->p1, pIn1); pOp = &aOp[pcDest]; break; } /* Opcode: HaltIfNull P1 P2 P3 P4 P5 ** Synopsis: if r[P3]=null halt ** ** Check the value in register P3. If it is NULL then Halt using ** parameter P1, P2, and P4 as if this were a Halt instruction. If the ** value in register P3 is not NULL, then this routine is a no-op. ** The P5 parameter should be 1. */ case OP_HaltIfNull: { /* in3 */ pIn3 = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } #endif if( (pIn3->flags & MEM_Null)==0 ) break; /* Fall through into OP_Halt */ /* no break */ deliberate_fall_through } /* Opcode: Halt P1 P2 * P4 P5 ** ** Exit immediately. All open cursors, etc are closed ** automatically. ** ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). ** For errors, it can be some other value. If P1!=0 then P2 will determine ** whether or not to rollback the current transaction. Do not rollback ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, ** then back out all changes that have occurred during this execution of the ** VDBE, but do not rollback the transaction. ** ** If P4 is not null then it is an error message string. ** ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. ** ** 0: (no change) ** 1: NOT NULL constraint failed: P4 ** 2: UNIQUE constraint failed: P4 ** 3: CHECK constraint failed: P4 ** 4: FOREIGN KEY constraint failed: P4 ** ** If P5 is not zero and P4 is NULL, then everything after the ":" is ** omitted. ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { VdbeFrame *pFrame; int pcx; #ifdef SQLITE_DEBUG if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } #endif /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates ** something is wrong with the code generator. Raise an assertion in order ** to bring this to the attention of fuzzers and other testing tools. */ assert( pOp->p1!=SQLITE_INTERNAL ); if( p->pFrame && pOp->p1==SQLITE_OK ){ /* Halt the sub-program. Return control to the parent frame. */ pFrame = p->pFrame; p->pFrame = pFrame->pParent; p->nFrame--; sqlite3VdbeSetChanges(db, p->nChange); pcx = sqlite3VdbeFrameRestore(pFrame); if( pOp->p2==OE_Ignore ){ /* Instruction pcx is the OP_Program that invoked the sub-program ** currently being halted. If the p2 instruction of this OP_Halt ** instruction is set to OE_Ignore, then the sub-program is throwing ** an IGNORE exception. In this case jump to the address specified ** as the p2 of the calling OP_Program. */ pcx = p->aOp[pcx].p2-1; } aOp = p->aOp; aMem = p->aMem; pOp = &aOp[pcx]; break; } p->rc = pOp->p1; p->errorAction = (u8)pOp->p2; assert( pOp->p5<=4 ); if( p->rc ){ if( pOp->p5 ){ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", "FOREIGN KEY" }; testcase( pOp->p5==1 ); testcase( pOp->p5==2 ); testcase( pOp->p5==3 ); testcase( pOp->p5==4 ); sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); if( pOp->p4.z ){ p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); } }else{ sqlite3VdbeError(p, "%s", pOp->p4.z); } pcx = (int)(pOp - aOp); sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); if( rc==SQLITE_BUSY ){ p->rc = SQLITE_BUSY; }else{ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; } goto vdbe_return; } /* Opcode: Integer P1 P2 * * * ** Synopsis: r[P2]=P1 ** ** The 32-bit integer value P1 is written into register P2. */ case OP_Integer: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = pOp->p1; break; } /* Opcode: Int64 * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit integer value. ** Write that value into register P2. */ case OP_Int64: { /* out2 */ pOut = out2Prerelease(p, pOp); assert( pOp->p4.pI64!=0 ); pOut->u.i = *pOp->p4.pI64; break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: Real * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit floating point value. ** Write that value into register P2. */ case OP_Real: { /* same as TK_FLOAT, out2 */ pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Real; assert( !sqlite3IsNaN(*pOp->p4.pReal) ); pOut->u.r = *pOp->p4.pReal; break; } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into a String opcode before it is executed for the first time. During ** this transformation, the length of string P4 is computed and stored ** as the P1 parameter. */ case OP_String8: { /* same as TK_STRING, out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOp->p1 = sqlite3Strlen30(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); if( rc ) goto too_big; if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); assert( VdbeMemDynamic(pOut)==0 ); pOut->szMalloc = 0; pOut->flags |= MEM_Static; if( pOp->p4type==P4_DYNAMIC ){ sqlite3DbFree(db, pOp->p4.z); } pOp->p4type = P4_DYNAMIC; pOp->p4.z = pOut->z; pOp->p1 = pOut->n; } #endif if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } pOp->opcode = OP_String; assert( rc==SQLITE_OK ); /* Fall through to the next case, OP_String */ /* no break */ deliberate_fall_through } /* Opcode: String P1 P2 P3 P4 P5 ** Synopsis: r[P2]='P4' (len=P1) ** ** The string value P4 of length P1 (bytes) is stored in register P2. ** ** If P3 is not zero and the content of register P3 is equal to P5, then ** the datatype of the register P2 is converted to BLOB. The content is ** the same sequence of bytes, it is merely interpreted as a BLOB instead ** of a string, as if it had been CAST. In other words: ** ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) */ case OP_String: { /* out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = pOp->p4.z; pOut->n = pOp->p1; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( pOp->p3>0 ){ assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pIn3 = &aMem[pOp->p3]; assert( pIn3->flags & MEM_Int ); if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; } #endif break; } /* Opcode: BeginSubrtn * P2 * * * ** Synopsis: r[P2]=NULL ** ** Mark the beginning of a subroutine that can be entered in-line ** or that can be called using OP_Gosub. The subroutine should ** be terminated by an OP_Return instruction that has a P1 operand that ** is the same as the P2 operand to this opcode and that has P3 set to 1. ** If the subroutine is entered in-line, then the OP_Return will simply ** fall through. But if the subroutine is entered using OP_Gosub, then ** the OP_Return will jump back to the first instruction after the OP_Gosub. ** ** This routine works by loading a NULL into the P2 register. When the ** return address register contains a NULL, the OP_Return instruction is ** a no-op that simply falls through to the next instruction (assuming that ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is ** entered in-line, then the OP_Return will cause in-line execution to ** continue. But if the subroutine is entered via OP_Gosub, then the ** OP_Return will cause a return to the address following the OP_Gosub. ** ** This opcode is identical to OP_Null. It has a different name ** only to make the byte code easier to read and verify. */ /* Opcode: Null P1 P2 P3 * * ** Synopsis: r[P2..P3]=NULL ** ** Write a NULL into registers P2. If P3 greater than P2, then also write ** NULL into register P3 and every register in between P2 and P3. If P3 ** is less than P2 (typically P3 is zero) then only register P2 is ** set to NULL. ** ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that ** NULL values will not compare equal even if SQLITE_NULLEQ is set on ** OP_Ne or OP_Eq. */ case OP_BeginSubrtn: case OP_Null: { /* out2 */ int cnt; u16 nullFlag; pOut = out2Prerelease(p, pOp); cnt = pOp->p3-pOp->p2; assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; pOut->n = 0; #ifdef SQLITE_DEBUG pOut->uTemp = 0; #endif while( cnt>0 ){ pOut++; memAboutToChange(p, pOut); sqlite3VdbeMemSetNull(pOut); pOut->flags = nullFlag; pOut->n = 0; cnt--; } break; } /* Opcode: SoftNull P1 * * * * ** Synopsis: r[P1]=NULL ** ** Set register P1 to have the value NULL as seen by the OP_MakeRecord ** instruction, but do not free any string or blob memory associated with ** the register, so that if the value was a string or blob that was ** previously copied using OP_SCopy, the copies will continue to be valid. */ case OP_SoftNull: { assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pOut = &aMem[pOp->p1]; pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; break; } /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. If P4 is a NULL pointer, then construct ** a zero-filled blob that is P1 bytes long in P2. */ case OP_Blob: { /* out2 */ assert( pOp->p1 <= SQLITE_MAX_LENGTH ); pOut = out2Prerelease(p, pOp); if( pOp->p4.z==0 ){ sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; }else{ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); } pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Variable P1 P2 * P4 * ** Synopsis: r[P2]=parameter(P1,P4) ** ** Transfer the values of bound parameter P1 into register P2 ** ** If the parameter is named, then its name appears in P4. ** The P4 value is used by sqlite3_bind_parameter_name(). */ case OP_Variable: { /* out2 */ Mem *pVar; /* Value being transferred */ assert( pOp->p1>0 && pOp->p1<=p->nVar ); assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); pVar = &p->aVar[pOp->p1 - 1]; if( sqlite3VdbeMemTooBig(pVar) ){ goto too_big; } pOut = &aMem[pOp->p2]; if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); memcpy(pOut, pVar, MEMCELLSIZE); pOut->flags &= ~(MEM_Dyn|MEM_Ephem); pOut->flags |= MEM_Static|MEM_FromBind; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Move P1 P2 P3 * * ** Synopsis: r[P2@P3]=r[P1@P3] ** ** Move the P3 values in register P1..P1+P3-1 over into ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are ** left holding a NULL. It is an error for register ranges ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error ** for P3 to be less than 1. */ case OP_Move: { int n; /* Number of registers left to copy */ int p1; /* Register to copy from */ int p2; /* Register to copy to */ n = pOp->p3; p1 = pOp->p1; p2 = pOp->p2; assert( n>0 && p1>0 && p2>0 ); assert( p1+n<=p2 || p2+n<=p1 ); pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); sqlite3VdbeMemMove(pOut, pIn1); #ifdef SQLITE_DEBUG pIn1->pScopyFrom = 0; { int i; for(i=1; inMem; i++){ if( aMem[i].pScopyFrom==pIn1 ){ aMem[i].pScopyFrom = pOut; } } } #endif Deephemeralize(pOut); REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; }while( --n ); break; } /* Opcode: Copy P1 P2 P3 * P5 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] ** ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. ** ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot ** be merged. The 0x0001 bit is used by the query planner and does not ** come into play during query execution. ** ** This instruction makes a deep copy of the value. A duplicate ** is made of any string or blob constant. See also OP_SCopy. */ case OP_Copy: { int n; n = pOp->p3; pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); while( 1 ){ memAboutToChange(p, pOut); sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); Deephemeralize(pOut); if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ pOut->flags &= ~MEM_Subtype; } #ifdef SQLITE_DEBUG pOut->pScopyFrom = 0; #endif REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); if( (n--)==0 ) break; pOut++; pIn1++; } break; } /* Opcode: SCopy P1 P2 * * * ** Synopsis: r[P2]=r[P1] ** ** Make a shallow copy of register P1 into register P2. ** ** This instruction makes a shallow copy of the value. If the value ** is a string or blob, then the copy is only a pointer to the ** original and hence if the original changes so will the copy. ** Worse, if the original is deallocated, the copy becomes invalid. ** Thus the program must guarantee that the original will not change ** during the lifetime of the copy. Use OP_Copy to make a complete ** copy. */ case OP_SCopy: { /* out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); #ifdef SQLITE_DEBUG pOut->pScopyFrom = pIn1; pOut->mScopyFlags = pIn1->flags; #endif break; } /* Opcode: IntCopy P1 P2 * * * ** Synopsis: r[P2]=r[P1] ** ** Transfer the integer value held in register P1 into register P2. ** ** This is an optimized version of SCopy that works only for integer ** values. */ case OP_IntCopy: { /* out2 */ pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Int)!=0 ); pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); break; } /* Opcode: FkCheck * * * * * ** ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved ** foreign key constraint violations. If there are no foreign key ** constraint violations, this is a no-op. ** ** FK constraint violations are also checked when the prepared statement ** exits. This opcode is used to raise foreign key constraint errors prior ** to returning results such as a row change count or the result of a ** RETURNING clause. */ case OP_FkCheck: { if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ goto abort_due_to_error; } break; } /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt ** structure to provide access to the r(P1)..r(P1+P2-1) values as ** the result row. */ case OP_ResultRow: { assert( p->nResColumn==pOp->p2 ); assert( pOp->p1>0 || CORRUPT_DB ); assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); p->cacheCtr = (p->cacheCtr + 2)|1; p->pResultRow = &aMem[pOp->p1]; #ifdef SQLITE_DEBUG { Mem *pMem = p->pResultRow; int i; for(i=0; ip2; i++){ assert( memIsValid(&pMem[i]) ); REGISTER_TRACE(pOp->p1+i, &pMem[i]); /* The registers in the result will not be used again when the ** prepared statement restarts. This is because sqlite3_column() ** APIs might have caused type conversions of made other changes to ** the register values. Therefore, we can go ahead and break any ** OP_SCopy dependencies. */ pMem[i].pScopyFrom = 0; } } #endif if( db->mallocFailed ) goto no_mem; if( db->mTrace & SQLITE_TRACE_ROW ){ db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); } p->pc = (int)(pOp - aOp) + 1; rc = SQLITE_ROW; goto vdbe_return; } /* Opcode: Concat P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]+r[P1] ** ** Add the text in register P1 onto the end of the text in ** register P2 and store the result in register P3. ** If either the P1 or P2 text are NULL then store NULL in P3. ** ** P3 = P2 || P1 ** ** It is illegal for P1 and P3 to be the same register. Sometimes, ** if P3 is the same register as P2, the implementation is able ** to avoid a memcpy(). */ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ i64 nByte; /* Total size of the output string or blob */ u16 flags1; /* Initial flags for P1 */ u16 flags2; /* Initial flags for P2 */ pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; testcase( pOut==pIn2 ); assert( pIn1!=pOut ); flags1 = pIn1->flags; testcase( flags1 & MEM_Null ); testcase( pIn2->flags & MEM_Null ); if( (flags1 | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; flags1 = pIn1->flags & ~MEM_Str; }else if( (flags1 & MEM_Zero)!=0 ){ if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; flags1 = pIn1->flags & ~MEM_Str; } flags2 = pIn2->flags; if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; flags2 = pIn2->flags & ~MEM_Str; }else if( (flags2 & MEM_Zero)!=0 ){ if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; flags2 = pIn2->flags & ~MEM_Str; } nByte = pIn1->n + pIn2->n; if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ goto no_mem; } MemSetTypeFlag(pOut, MEM_Str); if( pOut!=pIn2 ){ memcpy(pOut->z, pIn2->z, pIn2->n); assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); pIn2->flags = flags2; } memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); pIn1->flags = flags1; if( encoding>SQLITE_UTF8 ) nByte &= ~1; pOut->z[nByte]=0; pOut->z[nByte+1] = 0; pOut->flags |= MEM_Term; pOut->n = (int)nByte; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Add P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]+r[P2] ** ** Add the value in register P1 to the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Multiply P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]*r[P2] ** ** ** Multiply the value in register P1 by the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Subtract P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]-r[P1] ** ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]/r[P1] ** ** Divide the value in register P1 by the value in register P2 ** and store the result in register P3 (P3=P2/P1). If the value in ** register P1 is zero, then the result is NULL. If either input is ** NULL, the result is NULL. */ /* Opcode: Remainder P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]%r[P1] ** ** Compute the remainder after integer register P2 is divided by ** register P1 and store the result in register P3. ** If the value in register P1 is zero the result is NULL. ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ u16 type1; /* Numeric type of left operand */ u16 type2; /* Numeric type of right operand */ i64 iA; /* Integer value of left operand */ i64 iB; /* Integer value of right operand */ double rA; /* Real value of left operand */ double rB; /* Real value of right operand */ pIn1 = &aMem[pOp->p1]; type1 = pIn1->flags; pIn2 = &aMem[pOp->p2]; type2 = pIn2->flags; pOut = &aMem[pOp->p3]; if( (type1 & type2 & MEM_Int)!=0 ){ int_math: iA = pIn1->u.i; iB = pIn2->u.i; switch( pOp->opcode ){ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; case OP_Divide: { if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; iB /= iA; break; } default: { if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); }else if( ((type1 | type2) & MEM_Null)!=0 ){ goto arithmetic_result_is_null; }else{ type1 = numericType(pIn1); type2 = numericType(pIn2); if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; fp_math: rA = sqlite3VdbeRealValue(pIn1); rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: rB += rA; break; case OP_Subtract: rB -= rA; break; case OP_Multiply: rB *= rA; break; case OP_Divide: { /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ if( rA==(double)0 ) goto arithmetic_result_is_null; rB /= rA; break; } default: { iA = sqlite3VdbeIntValue(pIn1); iB = sqlite3VdbeIntValue(pIn2); if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; rB = (double)(iB % iA); break; } } #ifdef SQLITE_OMIT_FLOATING_POINT pOut->u.i = rB; MemSetTypeFlag(pOut, MEM_Int); #else if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->u.r = rB; MemSetTypeFlag(pOut, MEM_Real); #endif } break; arithmetic_result_is_null: sqlite3VdbeMemSetNull(pOut); break; } /* Opcode: CollSeq P1 * * P4 ** ** P4 is a pointer to a CollSeq object. If the next call to a user function ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will ** be returned. This is used by the built-in min(), max() and nullif() ** functions. ** ** If P1 is not zero, then it is a register that a subsequent min() or ** max() aggregate will set to 1 if the current row is not the minimum or ** maximum. The P1 register is initialized to 0 by this instruction. ** ** The interface used by the implementation of the aforementioned functions ** to retrieve the collation sequence set by this opcode is not available ** publicly. Only built-in functions have access to this feature. */ case OP_CollSeq: { assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: BitAnd P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]&r[P2] ** ** Take the bit-wise AND of the values in register P1 and P2 and ** store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: BitOr P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]|r[P2] ** ** Take the bit-wise OR of the values in register P1 and P2 and ** store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: ShiftLeft P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]<>r[P1] ** ** Shift the integer value in register P2 to the right by the ** number of bits specified by the integer in register P1. ** Store the result in register P3. ** If either input is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ i64 iA; u64 uA; i64 iB; u8 op; pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; pOut = &aMem[pOp->p3]; if( (pIn1->flags | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } iA = sqlite3VdbeIntValue(pIn2); iB = sqlite3VdbeIntValue(pIn1); op = pOp->opcode; if( op==OP_BitAnd ){ iA &= iB; }else if( op==OP_BitOr ){ iA |= iB; }else if( iB!=0 ){ assert( op==OP_ShiftRight || op==OP_ShiftLeft ); /* If shifting by a negative amount, shift in the other direction */ if( iB<0 ){ assert( OP_ShiftRight==OP_ShiftLeft+1 ); op = 2*OP_ShiftLeft + 1 - op; iB = iB>(-64) ? -iB : 64; } if( iB>=64 ){ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; }else{ memcpy(&uA, &iA, sizeof(uA)); if( op==OP_ShiftLeft ){ uA <<= iB; }else{ uA >>= iB; /* Sign-extend on a right shift of a negative number */ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); } memcpy(&iA, &uA, sizeof(iA)); } } pOut->u.i = iA; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: AddImm P1 P2 * * * ** Synopsis: r[P1]=r[P1]+P2 ** ** Add the constant P2 to the value in register P1. ** The result is always an integer. ** ** To force any register to be an integer, just add 0. */ case OP_AddImm: { /* in1 */ pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); sqlite3VdbeMemIntegerify(pIn1); *(u64*)&pIn1->u.i += (u64)pOp->p2; break; } /* Opcode: MustBeInt P1 P2 * * * ** ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ VdbeBranchTaken(1, 2); if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ goto jump_to_p2; } } } VdbeBranchTaken(0, 2); MemSetTypeFlag(pIn1, MEM_Int); break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: RealAffinity P1 * * * * ** ** If register P1 holds an integer convert it to a real value. ** ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_IntReal ); sqlite3VdbeMemRealify(pIn1); REGISTER_TRACE(pOp->p1, pIn1); } break; } #endif #ifndef SQLITE_OMIT_CAST /* Opcode: Cast P1 P2 * * * ** Synopsis: affinity(r[P1]) ** ** Force the value in register P1 to be the type defined by P2. ** **
      **
    • P2=='A' → BLOB **
    • P2=='B' → TEXT **
    • P2=='C' → NUMERIC **
    • P2=='D' → INTEGER **
    • P2=='E' → REAL **
    ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_Cast: { /* in1 */ assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); testcase( pOp->p2==SQLITE_AFF_TEXT ); testcase( pOp->p2==SQLITE_AFF_BLOB ); testcase( pOp->p2==SQLITE_AFF_NUMERIC ); testcase( pOp->p2==SQLITE_AFF_INTEGER ); testcase( pOp->p2==SQLITE_AFF_REAL ); pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); rc = ExpandBlob(pIn1); if( rc ) goto abort_due_to_error; rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); if( rc ) goto abort_due_to_error; UPDATE_MAX_BLOBSIZE(pIn1); REGISTER_TRACE(pOp->p1, pIn1); break; } #endif /* SQLITE_OMIT_CAST */ /* Opcode: Eq P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]==r[P1] ** ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then ** jump to address P2. ** ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made ** to coerce both inputs according to this affinity before the ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric ** affinity is used. Note that the affinity conversions are stored ** back into the input registers P1 and P3. So this opcode can cause ** persistent changes to registers P1 and P3. ** ** Once any conversions have taken place, and neither value is NULL, ** the values are compared. If both values are blobs then memcmp() is ** used to determine the results of the comparison. If both values ** are text, then the appropriate collating function specified in ** P4 is used to do the comparison. If P4 is not specified then ** memcmp() is used to compare text string. If both values are ** numeric, then a numeric comparison is used. If the two values ** are of different types, then numbers are considered less than ** strings and strings are considered less than blobs. ** ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either ** true or false and is never NULL. If both operands are NULL then the result ** of comparison is true. If either operand is NULL then the result is false. ** If neither operand is NULL the result is the same as it would be if ** the SQLITE_NULLEQ flag were omitted from P5. ** ** This opcode saves the result of comparison for use by the new ** OP_Jump opcode. */ /* Opcode: Ne P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]!=r[P1] ** ** This works just like the Eq opcode except that the jump is taken if ** the operands in registers P1 and P3 are not equal. See the Eq opcode for ** additional information. */ /* Opcode: Lt P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]r[P1] ** ** This works just like the Lt opcode except that the jump is taken if ** the content of register P3 is greater than the content of ** register P1. See the Lt opcode for additional information. */ /* Opcode: Ge P1 P2 P3 P4 P5 ** Synopsis: IF r[P3]>=r[P1] ** ** This works just like the Lt opcode except that the jump is taken if ** the content of register P3 is greater than or equal to the content of ** register P1. See the Lt opcode for additional information. */ case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ case OP_Ne: /* same as TK_NE, jump, in1, in3 */ case OP_Lt: /* same as TK_LT, jump, in1, in3 */ case OP_Le: /* same as TK_LE, jump, in1, in3 */ case OP_Gt: /* same as TK_GT, jump, in1, in3 */ case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ int res, res2; /* Result of the comparison of pIn1 against pIn3 */ char affinity; /* Affinity to use for comparison */ u16 flags1; /* Copy of initial value of pIn1->flags */ u16 flags3; /* Copy of initial value of pIn3->flags */ pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; flags1 = pIn1->flags; flags3 = pIn3->flags; if( (flags1 & flags3 & MEM_Int)!=0 ){ /* Common case of comparison of two integers */ if( pIn3->u.i > pIn1->u.i ){ if( sqlite3aGTb[pOp->opcode] ){ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); goto jump_to_p2; } iCompare = +1; VVA_ONLY( iCompareIsInit = 1; ) }else if( pIn3->u.i < pIn1->u.i ){ if( sqlite3aLTb[pOp->opcode] ){ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); goto jump_to_p2; } iCompare = -1; VVA_ONLY( iCompareIsInit = 1; ) }else{ if( sqlite3aEQb[pOp->opcode] ){ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); goto jump_to_p2; } iCompare = 0; VVA_ONLY( iCompareIsInit = 1; ) } VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); break; } if( (flags1 | flags3)&MEM_Null ){ /* One or both operands are NULL */ if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether ** or not both operands are null. */ assert( (flags1 & MEM_Cleared)==0 ); assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); if( (flags1&flags3&MEM_Null)!=0 && (flags3&MEM_Cleared)==0 ){ res = 0; /* Operands are equal */ }else{ res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ VdbeBranchTaken(2,3); if( pOp->p5 & SQLITE_JUMPIFNULL ){ goto jump_to_p2; } iCompare = 1; /* Operands are not equal */ VVA_ONLY( iCompareIsInit = 1; ) break; } }else{ /* Neither operand is NULL and we couldn't do the special high-speed ** integer comparison case. So do a general-case comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (flags1 | flags3)&MEM_Str ){ if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn1,0); assert( flags3==pIn3->flags || CORRUPT_DB ); flags3 = pIn3->flags; } if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3,0); } } }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){ if( (flags1 & MEM_Str)!=0 ){ pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_Real ); testcase( pIn1->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn1, encoding, 1); testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; } if( (flags3 & MEM_Str)!=0 ){ pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_Real ); testcase( pIn3->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn3, encoding, 1); testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); } } assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); } /* At this point, res is negative, zero, or positive if reg[P1] is ** less than, equal to, or greater than reg[P3], respectively. Compute ** the answer to this operator in res2, depending on what the comparison ** operator actually is. The next block of code depends on the fact ** that the 6 comparison operators are consecutive integers in this ** order: NE, EQ, GT, LE, LT, GE */ assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); if( res<0 ){ res2 = sqlite3aLTb[pOp->opcode]; }else if( res==0 ){ res2 = sqlite3aEQb[pOp->opcode]; }else{ res2 = sqlite3aGTb[pOp->opcode]; } iCompare = res; VVA_ONLY( iCompareIsInit = 1; ) /* Undo any changes made by applyAffinity() to the input registers. */ assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); pIn3->flags = flags3; assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); pIn1->flags = flags1; VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); if( res2 ){ goto jump_to_p2; } break; } /* Opcode: ElseEq * P2 * * * ** ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There ** can be zero or more OP_ReleaseReg opcodes intervening, but no other ** opcodes are allowed to occur between this instruction and the previous ** OP_Lt or OP_Gt. ** ** If the result of an OP_Eq comparison on the same two operands as ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If ** the result of an OP_Eq comparison on the two previous operands ** would have been false or NULL, then fall through. */ case OP_ElseEq: { /* same as TK_ESCAPE, jump */ #ifdef SQLITE_DEBUG /* Verify the preconditions of this opcode - that it follows an OP_Lt or ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ int iAddr; for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); break; } #endif /* SQLITE_DEBUG */ assert( iCompareIsInit ); VdbeBranchTaken(iCompare==0, 2); if( iCompare==0 ) goto jump_to_p2; break; } /* Opcode: Permutation * * * P4 * ** ** Set the permutation used by the OP_Compare operator in the next ** instruction. The permutation is stored in the P4 operand. ** ** The permutation is only valid for the next opcode which must be ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. ** ** The first integer in the P4 integer array is the length of the array ** and does not become part of the permutation. */ case OP_Permutation: { assert( pOp->p4type==P4_INTARRAY ); assert( pOp->p4.ai ); assert( pOp[1].opcode==OP_Compare ); assert( pOp[1].p5 & OPFLAG_PERMUTE ); break; } /* Opcode: Compare P1 P2 P3 P4 P5 ** Synopsis: r[P1@P3] <-> r[P2@P3] ** ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of ** the comparison for use by the next OP_Jump instruct. ** ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is ** determined by the most recent OP_Permutation operator. If the ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential ** order. ** ** P4 is a KeyInfo structure that defines collating sequences and sort ** orders for the comparison. The permutation applies to registers ** only. The KeyInfo elements are used sequentially. ** ** The comparison is a sort comparison, so NULLs compare equal, ** NULLs are less than numbers, numbers are less than strings, ** and strings are less than blobs. ** ** This opcode must be immediately followed by an OP_Jump opcode. */ case OP_Compare: { int n; int i; int p1; int p2; const KeyInfo *pKeyInfo; u32 idx; CollSeq *pColl; /* Collating sequence to use on this term */ int bRev; /* True for DESCENDING sort order */ u32 *aPermute; /* The permutation */ if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ aPermute = 0; }else{ assert( pOp>aOp ); assert( pOp[-1].opcode==OP_Permutation ); assert( pOp[-1].p4type==P4_INTARRAY ); aPermute = pOp[-1].p4.ai + 1; assert( aPermute!=0 ); } n = pOp->p3; pKeyInfo = pOp->p4.pKeyInfo; assert( n>0 ); assert( pKeyInfo!=0 ); p1 = pOp->p1; p2 = pOp->p2; #ifdef SQLITE_DEBUG if( aPermute ){ int k, mx = 0; for(k=0; k(u32)mx ) mx = aPermute[k]; assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); }else{ assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); } #endif /* SQLITE_DEBUG */ for(i=0; inKeyField ); pColl = pKeyInfo->aColl[i]; bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); VVA_ONLY( iCompareIsInit = 1; ) if( iCompare ){ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) ){ iCompare = -iCompare; } if( bRev ) iCompare = -iCompare; break; } } assert( pOp[1].opcode==OP_Jump ); break; } /* Opcode: Jump P1 P2 P3 * * ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than, ** equal to, or greater than the P2 vector, respectively. ** ** This opcode must immediately follow an OP_Compare opcode. */ case OP_Jump: { /* jump */ assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); assert( iCompareIsInit ); if( iCompare<0 ){ VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; }else if( iCompare==0 ){ VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; }else{ VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; } break; } /* Opcode: And P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] && r[P2]) ** ** Take the logical AND of the values in registers P1 and P2 and ** write the result into register P3. ** ** If either P1 or P2 is 0 (false) then the result is 0 even if ** the other input is NULL. A NULL and true or two NULLs give ** a NULL output. */ /* Opcode: Or P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] || r[P2]) ** ** Take the logical OR of the values in register P1 and P2 and ** store the answer in register P3. ** ** If either P1 or P2 is nonzero (true) then the result is 1 (true) ** even if the other input is NULL. A NULL and false or two NULLs ** give a NULL output. */ case OP_And: /* same as TK_AND, in1, in2, out3 */ case OP_Or: { /* same as TK_OR, in1, in2, out3 */ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = or_logic[v1*3+v2]; } pOut = &aMem[pOp->p3]; if( v1==2 ){ MemSetTypeFlag(pOut, MEM_Null); }else{ pOut->u.i = v1; MemSetTypeFlag(pOut, MEM_Int); } break; } /* Opcode: IsTrue P1 P2 P3 P4 * ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 ** ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and ** IS NOT FALSE operators. ** ** Interpret the value in register P1 as a boolean value. Store that ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is ** NULL, then the P3 is stored in register P2. Invert the answer if P4 ** is 1. ** ** The logic is summarized like this: ** **
      **
    • If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE **
    • If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE **
    • If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE **
    • If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE **
    */ case OP_IsTrue: { /* in1, out2 */ assert( pOp->p4type==P4_INT32 ); assert( pOp->p4.i==0 || pOp->p4.i==1 ); assert( pOp->p3==0 || pOp->p3==1 ); sqlite3VdbeMemSetInt64(&aMem[pOp->p2], sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); break; } /* Opcode: Not P1 P2 * * * ** Synopsis: r[P2]= !r[P1] ** ** Interpret the value in register P1 as a boolean value. Store the ** boolean complement in register P2. If the value in register P1 is ** NULL, then a NULL is stored in P2. */ case OP_Not: { /* same as TK_NOT, in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; if( (pIn1->flags & MEM_Null)==0 ){ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); }else{ sqlite3VdbeMemSetNull(pOut); } break; } /* Opcode: BitNot P1 P2 * * * ** Synopsis: r[P2]= ~r[P1] ** ** Interpret the content of register P1 as an integer. Store the ** ones-complement of the P1 value into register P2. If P1 holds ** a NULL then store a NULL in P2. */ case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetNull(pOut); if( (pIn1->flags & MEM_Null)==0 ){ pOut->flags = MEM_Int; pOut->u.i = ~sqlite3VdbeIntValue(pIn1); } break; } /* Opcode: Once P1 P2 * * * ** ** Fall through to the next instruction the first time this opcode is ** encountered on each invocation of the byte-code program. Jump to P2 ** on the second and all subsequent encounters during the same invocation. ** ** Top-level programs determine first invocation by comparing the P1 ** operand against the P1 operand on the OP_Init opcode at the beginning ** of the program. If the P1 values differ, then fall through and make ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are ** the same then take the jump. ** ** For subprograms, there is a bitmask in the VdbeFrame that determines ** whether or not the jump should be taken. The bitmask is necessary ** because the self-altering code trick does not work for recursive ** triggers. */ case OP_Once: { /* jump */ u32 iAddr; /* Address of this instruction */ assert( p->aOp[0].opcode==OP_Init ); if( p->pFrame ){ iAddr = (int)(pOp - p->aOp); if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ VdbeBranchTaken(1, 2); goto jump_to_p2; } p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); }else{ if( p->aOp[0].p1==pOp->p1 ){ VdbeBranchTaken(1, 2); goto jump_to_p2; } } VdbeBranchTaken(0, 2); pOp->p1 = p->aOp[0].p1; break; } /* Opcode: If P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is true. The value ** is considered true if it is numeric and non-zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ case OP_If: { /* jump, in1 */ int c; c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); VdbeBranchTaken(c!=0, 2); if( c ) goto jump_to_p2; break; } /* Opcode: IfNot P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is False. The value ** is considered false if it has a numeric value of zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ case OP_IfNot: { /* jump, in1 */ int c; c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); VdbeBranchTaken(c!=0, 2); if( c ) goto jump_to_p2; break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); if( (pIn1->flags & MEM_Null)!=0 ){ goto jump_to_p2; } break; } /* Opcode: IsType P1 P2 P3 P4 P5 ** Synopsis: if typeof(P1.P3) in P5 goto P2 ** ** Jump to P2 if the type of a column in a btree is one of the types specified ** by the P5 bitmask. ** ** P1 is normally a cursor on a btree for which the row decode cache is ** valid through at least column P3. In other words, there should have been ** a prior OP_Column for column P3 or greater. If the cursor is not valid, ** then this opcode might give spurious results. ** The the btree row has fewer than P3 columns, then use P4 as the ** datatype. ** ** If P1 is -1, then P3 is a register number and the datatype is taken ** from the value in that register. ** ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04. ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10. ** ** WARNING: This opcode does not reliably distinguish between NULL and REAL ** when P1>=0. If the database contains a NaN value, this opcode will think ** that the datatype is REAL when it should be NULL. When P1<0 and the value ** is already stored in register P3, then this opcode does reliably ** distinguish between NULL and REAL. The problem only arises then P1>=0. ** ** Take the jump to address P2 if and only if the datatype of the ** value determined by P1 and P3 corresponds to one of the bits in the ** P5 bitmask. ** */ case OP_IsType: { /* jump */ VdbeCursor *pC; u16 typeMask; u32 serialType; assert( pOp->p1>=(-1) && pOp->p1nCursor ); assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) ); if( pOp->p1>=0 ){ pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pOp->p3>=0 ); if( pOp->p3nHdrParsed ){ serialType = pC->aType[pOp->p3]; if( serialType>=12 ){ if( serialType&1 ){ typeMask = 0x04; /* SQLITE_TEXT */ }else{ typeMask = 0x08; /* SQLITE_BLOB */ } }else{ static const unsigned char aMask[] = { 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2, 0x01, 0x01, 0x10, 0x10 }; testcase( serialType==0 ); testcase( serialType==1 ); testcase( serialType==2 ); testcase( serialType==3 ); testcase( serialType==4 ); testcase( serialType==5 ); testcase( serialType==6 ); testcase( serialType==7 ); testcase( serialType==8 ); testcase( serialType==9 ); testcase( serialType==10 ); testcase( serialType==11 ); typeMask = aMask[serialType]; } }else{ typeMask = 1 << (pOp->p4.i - 1); testcase( typeMask==0x01 ); testcase( typeMask==0x02 ); testcase( typeMask==0x04 ); testcase( typeMask==0x08 ); testcase( typeMask==0x10 ); } }else{ assert( memIsValid(&aMem[pOp->p3]) ); typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1); testcase( typeMask==0x01 ); testcase( typeMask==0x02 ); testcase( typeMask==0x04 ); testcase( typeMask==0x08 ); testcase( typeMask==0x10 ); } VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2); if( typeMask & pOp->p5 ){ goto jump_to_p2; } break; } /* Opcode: ZeroOrNull P1 P2 P3 * * ** Synopsis: r[P2] = 0 OR NULL ** ** If both registers P1 and P3 are NOT NULL, then store a zero in ** register P2. If either registers P1 or P3 are NULL then put ** a NULL in register P2. */ case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ if( (aMem[pOp->p1].flags & MEM_Null)!=0 || (aMem[pOp->p3].flags & MEM_Null)!=0 ){ sqlite3VdbeMemSetNull(aMem + pOp->p2); }else{ sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ goto jump_to_p2; } break; } /* Opcode: IfNullRow P1 P2 P3 * * ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 ** ** Check the cursor P1 to see if it is currently pointing at a NULL row. ** If it is, then set register P3 to NULL and jump immediately to P2. ** If P1 is not on a NULL row, then fall through without making any ** changes. ** ** If P1 is not an open cursor, then this opcode is a no-op. */ case OP_IfNullRow: { /* jump */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; if( pC && pC->nullRow ){ sqlite3VdbeMemSetNull(aMem + pOp->p3); goto jump_to_p2; } break; } #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC /* Opcode: Offset P1 P2 P3 * * ** Synopsis: r[P3] = sqlite_offset(P1) ** ** Store in register r[P3] the byte offset into the database file that is the ** start of the payload for the record at which that cursor P1 is currently ** pointing. ** ** P2 is the column number for the argument to the sqlite_offset() function. ** This opcode does not use P2 itself, but the P2 value is used by the ** code generator. The P1, P2, and P3 operands to this opcode are the ** same as for OP_Column. ** ** This opcode is only available if SQLite is compiled with the ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. */ case OP_Offset: { /* out3 */ VdbeCursor *pC; /* The VDBE cursor */ assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; pOut = &p->aMem[pOp->p3]; if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ sqlite3VdbeMemSetNull(pOut); }else{ if( pC->deferredMoveto ){ rc = sqlite3VdbeFinishMoveto(pC); if( rc ) goto abort_due_to_error; } if( sqlite3BtreeEof(pC->uc.pCursor) ){ sqlite3VdbeMemSetNull(pOut); }else{ sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); } } break; } #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ /* Opcode: Column P1 P2 P3 P4 P5 ** Synopsis: r[P3]=PX cursor P1 column P2 ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Extract the P2-th column ** from this record. If there are less than (P2+1) ** values in the record, extract a NULL. ** ** The value extracted is stored in register P3. ** ** If the record contains fewer than P2 fields, then extract a NULL. Or, ** if the P4 argument is a P4_MEM use the value of the P4 argument as ** the result. ** ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed ** to only be used by the length() function or the equivalent. The content ** of large blobs is not loaded, thus saving CPU cycles. If the ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the ** typeof() function or the IS NULL or IS NOT NULL operators or the ** equivalent. In this case, all content loading can be omitted. */ case OP_Column: { /* ncycle */ u32 p2; /* column number to retrieve */ VdbeCursor *pC; /* The VDBE cursor */ BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ const u8 *zData; /* Part of the record being decoded */ const u8 *zHdr; /* Next unparsed byte of the header */ const u8 *zEndHdr; /* Pointer to first byte after the header */ u64 offset64; /* 64-bit offset */ u32 t; /* A type code from the record header */ Mem *pReg; /* PseudoTable input register */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pC = p->apCsr[pOp->p1]; p2 = (u32)pOp->p2; op_column_restart: assert( pC!=0 ); assert( p2<(u32)pC->nField || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); aOffset = pC->aOffset; assert( aOffset==pC->aType+pC->nField ); assert( pC->eCurType!=CURTYPE_VTAB ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); assert( pC->eCurType!=CURTYPE_SORTER ); if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ if( pC->nullRow ){ if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ /* For the special case of as pseudo-cursor, the seekResult field ** identifies the register that holds the record */ pReg = &aMem[pC->seekResult]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = pReg->n; pC->aRow = (u8*)pReg->z; }else{ pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); sqlite3VdbeMemSetNull(pDest); goto op_column_out; } }else{ pCrsr = pC->uc.pCursor; if( pC->deferredMoveto ){ u32 iMap; assert( !pC->isEphemeral ); if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ pC = pC->pAltCursor; p2 = iMap - 1; goto op_column_restart; } rc = sqlite3VdbeFinishMoveto(pC); if( rc ) goto abort_due_to_error; }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ rc = sqlite3VdbeHandleMovedCursor(pC); if( rc ) goto abort_due_to_error; goto op_column_restart; } assert( pC->eCurType==CURTYPE_BTREE ); assert( pCrsr ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); assert( pC->szRow<=pC->payloadSize ); assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ } pC->cacheStatus = p->cacheCtr; if( (aOffset[0] = pC->aRow[0])<0x80 ){ pC->iHdrOffset = 1; }else{ pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); } pC->nHdrParsed = 0; if( pC->szRowaRow does not have to hold the entire row, but it does at least ** need to cover the header of the record. If pC->aRow does not contain ** the complete header, then set it to zero, forcing the header to be ** dynamically allocated. */ pC->aRow = 0; pC->szRow = 0; /* Make sure a corrupt database has not given us an oversize header. ** Do this now to avoid an oversize memory allocation. ** ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte ** types use so much data space that there can only be 4096 and 32 of ** them, respectively. So the maximum header length results from a ** 3-byte type for each of the maximum of 32768 columns plus three ** extra bytes for the header length itself. 32768*3 + 3 = 98307. */ if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ goto op_column_corrupt; } }else{ /* This is an optimization. By skipping over the first few tests ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a ** measurable performance gain. ** ** This branch is taken even if aOffset[0]==0. Such a record is never ** generated by SQLite, and could be considered corruption, but we ** accept it for historical reasons. When aOffset[0]==0, the code this ** branch jumps to reads past the end of the record, but never more ** than a few bytes. Even if the record occurs at the end of the page ** content area, the "page header" comes after the page content and so ** this overread is harmless. Similar overreads can occur for a corrupt ** database file. */ zData = pC->aRow; assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ testcase( aOffset[0]==0 ); goto op_column_read_header; } }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ rc = sqlite3VdbeHandleMovedCursor(pC); if( rc ) goto abort_due_to_error; goto op_column_restart; } /* Make sure at least the first p2+1 entries of the header have been ** parsed and valid information is in aOffset[] and pC->aType[]. */ if( pC->nHdrParsed<=p2 ){ /* If there is more header available for parsing in the record, try ** to extract additional fields up through the p2+1-th field */ if( pC->iHdrOffsetaRow==0 ){ memset(&sMem, 0, sizeof(sMem)); rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); if( rc!=SQLITE_OK ) goto abort_due_to_error; zData = (u8*)sMem.z; }else{ zData = pC->aRow; } /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ op_column_read_header: i = pC->nHdrParsed; offset64 = aOffset[i]; zHdr = zData + pC->iHdrOffset; zEndHdr = zData + aOffset[0]; testcase( zHdr>=zEndHdr ); do{ if( (pC->aType[i] = t = zHdr[0])<0x80 ){ zHdr++; offset64 += sqlite3VdbeOneByteSerialTypeLen(t); }else{ zHdr += sqlite3GetVarint32(zHdr, &t); pC->aType[i] = t; offset64 += sqlite3VdbeSerialTypeLen(t); } aOffset[++i] = (u32)(offset64 & 0xffffffff); }while( (u32)i<=p2 && zHdr=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) || (offset64 > pC->payloadSize) ){ if( aOffset[0]==0 ){ i = 0; zHdr = zEndHdr; }else{ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); goto op_column_corrupt; } } pC->nHdrParsed = i; pC->iHdrOffset = (u32)(zHdr - zData); if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); }else{ t = 0; } /* If after trying to extract new entries from the header, nHdrParsed is ** still not up to p2, that means that the record has fewer than p2 ** columns. So the result will be either the default value or a NULL. */ if( pC->nHdrParsed<=p2 ){ pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ sqlite3VdbeMemSetNull(pDest); } goto op_column_out; } }else{ t = pC->aType[p2]; } /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are ** all valid. */ assert( p2nHdrParsed ); assert( rc==SQLITE_OK ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); assert( sqlite3VdbeCheckMemInvariants(pDest) ); if( VdbeMemDynamic(pDest) ){ sqlite3VdbeMemSetNull(pDest); } assert( t==pC->aType[p2] ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ zData = pC->aRow + aOffset[p2]; if( t<12 ){ sqlite3VdbeSerialGet(zData, t, pDest); }else{ /* If the column value is a string, we need a persistent value, not ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). */ static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; pDest->n = len = (t-12)/2; pDest->enc = encoding; if( pDest->szMalloc < len+2 ){ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; pDest->flags = MEM_Null; if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; }else{ pDest->z = pDest->zMalloc; } memcpy(pDest->z, zData, len); pDest->z[len] = 0; pDest->z[len+1] = 0; pDest->flags = aFlag[t&1]; } }else{ u8 p5; pDest->enc = encoding; assert( pDest->db==db ); /* This branch happens only when content is on overflow pages */ if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0 && (p5==OPFLAG_TYPEOFARG || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG)) ) ) || sqlite3VdbeSerialTypeLen(t)==0 ){ /* Content is irrelevant for ** 1. the typeof() function, ** 2. the length(X) function if X is a blob, and ** 3. if the content length is zero. ** So we might as well use bogus content rather than reading ** content from disk. ** ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the ** buffer passed to it, debugging function VdbeMemPrettyPrint() may ** read more. Use the global constant sqlite3CtypeMap[] as the array, ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) ** and it begins with a bunch of zeros. */ sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); }else{ rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2], p->cacheCtr, colCacheCtr, pDest); if( rc ){ if( rc==SQLITE_NOMEM ) goto no_mem; if( rc==SQLITE_TOOBIG ) goto too_big; goto abort_due_to_error; } } } op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; op_column_corrupt: if( aOp[0].p3>0 ){ pOp = &aOp[aOp[0].p3-1]; break; }else{ rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } } /* Opcode: TypeCheck P1 P2 P3 P4 * ** Synopsis: typecheck(r[P1@P2]) ** ** Apply affinities to the range of P2 registers beginning with P1. ** Take the affinities from the Table object in P4. If any value ** cannot be coerced into the correct type, then raise an error. ** ** This opcode is similar to OP_Affinity except that this opcode ** forces the register type to the Table column type. This is used ** to implement "strict affinity". ** ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 ** is zero. When P3 is non-zero, no type checking occurs for ** static generated columns. Virtual columns are computed at query time ** and so they are never checked. ** ** Preconditions: ** **
      **
    • P2 should be the number of non-virtual columns in the ** table of P4. **
    • Table P4 should be a STRICT table. **
    ** ** If any precondition is false, an assertion fault occurs. */ case OP_TypeCheck: { Table *pTab; Column *aCol; int i; assert( pOp->p4type==P4_TABLE ); pTab = pOp->p4.pTab; assert( pTab->tabFlags & TF_Strict ); assert( pTab->nNVCol==pOp->p2 ); aCol = pTab->aCol; pIn1 = &aMem[pOp->p1]; for(i=0; inCol; i++){ if( aCol[i].colFlags & COLFLAG_GENERATED ){ if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; if( pOp->p3 ){ pIn1++; continue; } } assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); applyAffinity(pIn1, aCol[i].affinity, encoding); if( (pIn1->flags & MEM_Null)==0 ){ switch( aCol[i].eCType ){ case COLTYPE_BLOB: { if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; break; } case COLTYPE_INTEGER: case COLTYPE_INT: { if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; break; } case COLTYPE_TEXT: { if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; break; } case COLTYPE_REAL: { testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); assert( (pIn1->flags & MEM_IntReal)==0 ); if( pIn1->flags & MEM_Int ){ /* When applying REAL affinity, if the result is still an MEM_Int ** that will fit in 6 bytes, then change the type to MEM_IntReal ** so that we keep the high-resolution integer value but know that ** the type really wants to be REAL. */ testcase( pIn1->u.i==140737488355328LL ); testcase( pIn1->u.i==140737488355327LL ); testcase( pIn1->u.i==-140737488355328LL ); testcase( pIn1->u.i==-140737488355329LL ); if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ pIn1->flags |= MEM_IntReal; pIn1->flags &= ~MEM_Int; }else{ pIn1->u.r = (double)pIn1->u.i; pIn1->flags |= MEM_Real; pIn1->flags &= ~MEM_Int; } }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ goto vdbe_type_error; } break; } default: { /* COLTYPE_ANY. Accept anything. */ break; } } } REGISTER_TRACE((int)(pIn1-aMem), pIn1); pIn1++; } assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); break; vdbe_type_error: sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], pTab->zName, aCol[i].zCnName); rc = SQLITE_CONSTRAINT_DATATYPE; goto abort_due_to_error; } /* Opcode: Affinity P1 P2 * P4 * ** Synopsis: affinity(r[P1@P2]) ** ** Apply affinities to a range of P2 registers starting with P1. ** ** P4 is a string that is P2 characters long. The N-th character of the ** string indicates the column affinity that should be used for the N-th ** memory cell in the range. */ case OP_Affinity: { const char *zAffinity; /* The affinity to be applied */ zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( pOp->p2>0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( 1 /*exit-by-break*/ ){ assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); applyAffinity(pIn1, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ /* When applying REAL affinity, if the result is still an MEM_Int ** that will fit in 6 bytes, then change the type to MEM_IntReal ** so that we keep the high-resolution integer value but know that ** the type really wants to be REAL. */ testcase( pIn1->u.i==140737488355328LL ); testcase( pIn1->u.i==140737488355327LL ); testcase( pIn1->u.i==-140737488355328LL ); testcase( pIn1->u.i==-140737488355329LL ); if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ pIn1->flags |= MEM_IntReal; pIn1->flags &= ~MEM_Int; }else{ pIn1->u.r = (double)pIn1->u.i; pIn1->flags |= MEM_Real; pIn1->flags &= ~(MEM_Int|MEM_Str); } } REGISTER_TRACE((int)(pIn1-aMem), pIn1); zAffinity++; if( zAffinity[0]==0 ) break; pIn1++; } break; } /* Opcode: MakeRecord P1 P2 P3 P4 * ** Synopsis: r[P3]=mkrec(r[P1@P2]) ** ** Convert P2 registers beginning with P1 into the [record format] ** use as a data record in a database table or as a key ** in an index. The OP_Column opcode can decode the record later. ** ** P4 may be a string that is P2 characters long. The N-th character of the ** string indicates the column affinity that should be used for the N-th ** field of the index key. ** ** The mapping from character to affinity is given by the SQLITE_AFF_ ** macros defined in sqliteInt.h. ** ** If P4 is NULL then all index fields have the affinity BLOB. ** ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM ** compile-time option is enabled: ** ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index ** of the right-most table that can be null-trimmed. ** ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to ** accept no-change records with serial_type 10. This value is ** only used inside an assert() and does not affect the end result. */ case OP_MakeRecord: { Mem *pRec; /* The new record */ u64 nData; /* Number of bytes of data space */ int nHdr; /* Number of bytes of header space */ i64 nByte; /* Data space required for this record */ i64 nZero; /* Number of zero bytes at the end of the record */ int nVarint; /* Number of bytes in a varint */ u32 serial_type; /* Type field */ Mem *pData0; /* First field to be combined into the record */ Mem *pLast; /* Last field of the record */ int nField; /* Number of fields in the record */ char *zAffinity; /* The affinity string for the record */ u32 len; /* Length of a field */ u8 *zHdr; /* Where to write next byte of the header */ u8 *zPayload; /* Where to write next byte of the payload */ /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------------ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | ** ------------------------------------------------------------------------ ** ** Data(0) is taken from register P1. Data(1) comes from register P1+1 ** and so forth. ** ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ nData = 0; /* Number of bytes of data space */ nHdr = 0; /* Number of bytes of header space */ nZero = 0; /* Number of zero bytes at the end of the record */ nField = pOp->p1; zAffinity = pOp->p4.z; assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); pData0 = &aMem[nField]; nField = pOp->p2; pLast = &pData0[nField-1]; /* Identify the output register */ assert( pOp->p3p1 || pOp->p3>=pOp->p1+pOp->p2 ); pOut = &aMem[pOp->p3]; memAboutToChange(p, pOut); /* Apply the requested affinity to all inputs */ assert( pData0<=pLast ); if( zAffinity ){ pRec = pData0; do{ applyAffinity(pRec, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ pRec->flags |= MEM_IntReal; pRec->flags &= ~(MEM_Int); } REGISTER_TRACE((int)(pRec-aMem), pRec); zAffinity++; pRec++; assert( zAffinity[0]==0 || pRec<=pLast ); }while( zAffinity[0] ); } #ifdef SQLITE_ENABLE_NULL_TRIM /* NULLs can be safely trimmed from the end of the record, as long as ** as the schema format is 2 or more and none of the omitted columns ** have a non-NULL default value. Also, the record must be left with ** at least one field. If P5>0 then it will be one more than the ** index of the right-most column with a non-NULL default value */ if( pOp->p5 ){ while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ pLast--; nField--; } } #endif /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. After this loop, ** the Mem.uTemp field of each term should hold the serial-type that will ** be used for that term in the generated record: ** ** Mem.uTemp value type ** --------------- --------------- ** 0 NULL ** 1 1-byte signed integer ** 2 2-byte signed integer ** 3 3-byte signed integer ** 4 4-byte signed integer ** 5 6-byte signed integer ** 6 8-byte signed integer ** 7 IEEE float ** 8 Integer constant 0 ** 9 Integer constant 1 ** 10,11 reserved for expansion ** N>=12 and even BLOB ** N>=13 and odd text ** ** The following additional values are computed: ** nHdr Number of bytes needed for the record header ** nData Number of bytes of data space needed for the record ** nZero Zero bytes at the end of the record */ pRec = pLast; do{ assert( memIsValid(pRec) ); if( pRec->flags & MEM_Null ){ if( pRec->flags & MEM_Zero ){ /* Values with MEM_Null and MEM_Zero are created by xColumn virtual ** table methods that never invoke sqlite3_result_xxxxx() while ** computing an unchanging column value in an UPDATE statement. ** Give such values a special internal-use-only serial-type of 10 ** so that they can be passed through to xUpdate and have ** a true sqlite3_value_nochange(). */ #ifndef SQLITE_ENABLE_NULL_TRIM assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); #endif pRec->uTemp = 10; }else{ pRec->uTemp = 0; } nHdr++; }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ i64 i = pRec->u.i; u64 uu; testcase( pRec->flags & MEM_Int ); testcase( pRec->flags & MEM_IntReal ); if( i<0 ){ uu = ~i; }else{ uu = i; } nHdr++; testcase( uu==127 ); testcase( uu==128 ); testcase( uu==32767 ); testcase( uu==32768 ); testcase( uu==8388607 ); testcase( uu==8388608 ); testcase( uu==2147483647 ); testcase( uu==2147483648LL ); testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); if( uu<=127 ){ if( (i&1)==i && p->minWriteFileFormat>=4 ){ pRec->uTemp = 8+(u32)uu; }else{ nData++; pRec->uTemp = 1; } }else if( uu<=32767 ){ nData += 2; pRec->uTemp = 2; }else if( uu<=8388607 ){ nData += 3; pRec->uTemp = 3; }else if( uu<=2147483647 ){ nData += 4; pRec->uTemp = 4; }else if( uu<=140737488355327LL ){ nData += 6; pRec->uTemp = 5; }else{ nData += 8; if( pRec->flags & MEM_IntReal ){ /* If the value is IntReal and is going to take up 8 bytes to store ** as an integer, then we might as well make it an 8-byte floating ** point value */ pRec->u.r = (double)pRec->u.i; pRec->flags &= ~MEM_IntReal; pRec->flags |= MEM_Real; pRec->uTemp = 7; }else{ pRec->uTemp = 6; } } }else if( pRec->flags & MEM_Real ){ nHdr++; nData += 8; pRec->uTemp = 7; }else{ assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); assert( pRec->n>=0 ); len = (u32)pRec->n; serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); if( pRec->flags & MEM_Zero ){ serial_type += pRec->u.nZero*2; if( nData ){ if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; len += pRec->u.nZero; }else{ nZero += pRec->u.nZero; } } nData += len; nHdr += sqlite3VarintLen(serial_type); pRec->uTemp = serial_type; } if( pRec==pData0 ) break; pRec--; }while(1); /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint ** which determines the total number of bytes in the header. The varint ** value is the size of the header in bytes including the size varint ** itself. */ testcase( nHdr==126 ); testcase( nHdr==127 ); if( nHdr<=126 ){ /* The common case */ nHdr += 1; }else{ /* Rare case of a really large header */ nVarint = sqlite3VarintLen(nHdr); nHdr += nVarint; if( nVarintp3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). */ if( nByte+nZero<=pOut->szMalloc ){ /* The output register is already large enough to hold the record. ** No error checks or buffer enlargement is required */ pOut->z = pOut->zMalloc; }else{ /* Need to make sure that the output is not too big and then enlarge ** the output register to hold the full result */ if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ goto no_mem; } } pOut->n = (int)nByte; pOut->flags = MEM_Blob; if( nZero ){ pOut->u.nZero = nZero; pOut->flags |= MEM_Zero; } UPDATE_MAX_BLOBSIZE(pOut); zHdr = (u8 *)pOut->z; zPayload = zHdr + nHdr; /* Write the record */ if( nHdr<0x80 ){ *(zHdr++) = nHdr; }else{ zHdr += sqlite3PutVarint(zHdr,nHdr); } assert( pData0<=pLast ); pRec = pData0; while( 1 /*exit-by-break*/ ){ serial_type = pRec->uTemp; /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more ** additional varints, one per column. ** EVIDENCE-OF: R-64536-51728 The values for each column in the record ** immediately follow the header. */ if( serial_type<=7 ){ *(zHdr++) = serial_type; if( serial_type==0 ){ /* NULL value. No change in zPayload */ }else{ u64 v; if( serial_type==7 ){ assert( sizeof(v)==sizeof(pRec->u.r) ); memcpy(&v, &pRec->u.r, sizeof(v)); swapMixedEndianFloat(v); }else{ v = pRec->u.i; } len = sqlite3SmallTypeSizes[serial_type]; assert( len>=1 && len<=8 && len!=5 && len!=7 ); switch( len ){ default: zPayload[7] = (u8)(v&0xff); v >>= 8; zPayload[6] = (u8)(v&0xff); v >>= 8; case 6: zPayload[5] = (u8)(v&0xff); v >>= 8; zPayload[4] = (u8)(v&0xff); v >>= 8; case 4: zPayload[3] = (u8)(v&0xff); v >>= 8; case 3: zPayload[2] = (u8)(v&0xff); v >>= 8; case 2: zPayload[1] = (u8)(v&0xff); v >>= 8; case 1: zPayload[0] = (u8)(v&0xff); } zPayload += len; } }else if( serial_type<0x80 ){ *(zHdr++) = serial_type; if( serial_type>=14 && pRec->n>0 ){ assert( pRec->z!=0 ); memcpy(zPayload, pRec->z, pRec->n); zPayload += pRec->n; } }else{ zHdr += sqlite3PutVarint(zHdr, serial_type); if( pRec->n ){ assert( pRec->z!=0 ); memcpy(zPayload, pRec->z, pRec->n); zPayload += pRec->n; } } if( pRec==pLast ) break; pRec++; } assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); assert( nByte==(int)(zPayload - (u8*)pOut->z) ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); REGISTER_TRACE(pOp->p3, pOut); break; } /* Opcode: Count P1 P2 P3 * * ** Synopsis: r[P2]=count() ** ** Store the number of entries (an integer value) in the table or index ** opened by cursor P1 in register P2. ** ** If P3==0, then an exact count is obtained, which involves visiting ** every btree page of the table. But if P3 is non-zero, an estimate ** is returned based on the current cursor position. */ case OP_Count: { /* out2 */ i64 nEntry; BtCursor *pCrsr; assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); pCrsr = p->apCsr[pOp->p1]->uc.pCursor; assert( pCrsr ); if( pOp->p3 ){ nEntry = sqlite3BtreeRowCountEst(pCrsr); }else{ nEntry = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3BtreeCount(db, pCrsr, &nEntry); if( rc ) goto abort_due_to_error; } pOut = out2Prerelease(p, pOp); pOut->u.i = nEntry; goto check_for_interrupt; } /* Opcode: Savepoint P1 * * P4 * ** ** Open, release or rollback the savepoint named by parameter P4, depending ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). */ case OP_Savepoint: { int p1; /* Value of P1 operand */ char *zName; /* Name of savepoint */ int nName; Savepoint *pNew; Savepoint *pSavepoint; Savepoint *pTmp; int iSavepoint; int ii; p1 = pOp->p1; zName = pOp->p4.z; /* Assert that the p1 parameter is valid. Also that if there is no open ** transaction, then there cannot be any savepoints. */ assert( db->pSavepoint==0 || db->autoCommit==0 ); assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); assert( db->pSavepoint || db->isTransactionSavepoint==0 ); assert( checkSavepointCount(db) ); assert( p->bIsReader ); if( p1==SAVEPOINT_BEGIN ){ if( db->nVdbeWrite>0 ){ /* A new savepoint cannot be created if there are active write ** statements (i.e. open read/write incremental blob handles). */ sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); rc = SQLITE_BUSY; }else{ nName = sqlite3Strlen30(zName); #ifndef SQLITE_OMIT_VIRTUALTABLE /* This call is Ok even if this savepoint is actually a transaction ** savepoint (and therefore should not prompt xSavepoint()) callbacks. ** If this is a transaction savepoint being opened, it is guaranteed ** that the db->aVTrans[] array is empty. */ assert( db->autoCommit==0 || db->nVTrans==0 ); rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, db->nStatement+db->nSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; #endif /* Create a new savepoint structure. */ pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); if( pNew ){ pNew->zName = (char *)&pNew[1]; memcpy(pNew->zName, zName, nName+1); /* If there is no open transaction, then mark this as a special ** "transaction savepoint". */ if( db->autoCommit ){ db->autoCommit = 0; db->isTransactionSavepoint = 1; }else{ db->nSavepoint++; } /* Link the new savepoint into the database handle's list. */ pNew->pNext = db->pSavepoint; db->pSavepoint = pNew; pNew->nDeferredCons = db->nDeferredCons; pNew->nDeferredImmCons = db->nDeferredImmCons; } } }else{ assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); iSavepoint = 0; /* Find the named savepoint. If there is no such savepoint, then an ** an error is returned to the user. */ for( pSavepoint = db->pSavepoint; pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); pSavepoint = pSavepoint->pNext ){ iSavepoint++; } if( !pSavepoint ){ sqlite3VdbeError(p, "no such savepoint: %s", zName); rc = SQLITE_ERROR; }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ /* It is not possible to release (commit) a savepoint if there are ** active write statements. */ sqlite3VdbeError(p, "cannot release savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ /* Determine whether or not this is a transaction savepoint. If so, ** and this is a RELEASE command, then the current transaction ** is committed. */ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; if( isTransaction && p1==SAVEPOINT_RELEASE ){ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; } db->autoCommit = 1; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } rc = p->rc; if( rc ){ db->autoCommit = 0; }else{ db->isTransactionSavepoint = 0; } }else{ int isSchemaChange; iSavepoint = db->nSavepoint - iSavepoint - 1; if( p1==SAVEPOINT_ROLLBACK ){ isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; for(ii=0; iinDb; ii++){ rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT_ROLLBACK, isSchemaChange==0); if( rc!=SQLITE_OK ) goto abort_due_to_error; } }else{ assert( p1==SAVEPOINT_RELEASE ); isSchemaChange = 0; } for(ii=0; iinDb; ii++){ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( isSchemaChange ){ sqlite3ExpirePreparedStatements(db, 0); sqlite3ResetAllSchemasOfConnection(db); db->mDbFlags |= DBFLAG_SchemaChange; } } if( rc ) goto abort_due_to_error; /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all ** savepoints nested inside of the savepoint being operated on. */ while( db->pSavepoint!=pSavepoint ){ pTmp = db->pSavepoint; db->pSavepoint = pTmp->pNext; sqlite3DbFree(db, pTmp); db->nSavepoint--; } /* If it is a RELEASE, then destroy the savepoint being operated on ** too. If it is a ROLLBACK TO, then set the number of deferred ** constraint violations present in the database to the value stored ** when the savepoint was created. */ if( p1==SAVEPOINT_RELEASE ){ assert( pSavepoint==db->pSavepoint ); db->pSavepoint = pSavepoint->pNext; sqlite3DbFree(db, pSavepoint); if( !isTransaction ){ db->nSavepoint--; } }else{ assert( p1==SAVEPOINT_ROLLBACK ); db->nDeferredCons = pSavepoint->nDeferredCons; db->nDeferredImmCons = pSavepoint->nDeferredImmCons; } if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, p1, iSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; } } } if( rc ) goto abort_due_to_error; if( p->eVdbeState==VDBE_HALT_STATE ){ rc = SQLITE_DONE; goto vdbe_return; } break; } /* Opcode: AutoCommit P1 P2 * * * ** ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll ** back any currently active btree transactions. If there are any active ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if ** there are active writing VMs or active VMs that use shared cache. ** ** This instruction causes the VM to halt. */ case OP_AutoCommit: { int desiredAutoCommit; int iRollback; desiredAutoCommit = pOp->p1; iRollback = pOp->p2; assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); assert( desiredAutoCommit==1 || iRollback==0 ); assert( db->nVdbeActive>0 ); /* At least this one VM is active */ assert( p->bIsReader ); if( desiredAutoCommit!=db->autoCommit ){ if( iRollback ){ assert( desiredAutoCommit==1 ); sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); db->autoCommit = 1; }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ /* If this instruction implements a COMMIT and other VMs are writing ** return an error indicating that the other VMs must complete first. */ sqlite3VdbeError(p, "cannot commit transaction - " "SQL statements in progress"); rc = SQLITE_BUSY; goto abort_due_to_error; }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; }else{ db->autoCommit = (u8)desiredAutoCommit; } if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = (u8)(1-desiredAutoCommit); p->rc = rc = SQLITE_BUSY; goto vdbe_return; } sqlite3CloseSavepoints(db); if( p->rc==SQLITE_OK ){ rc = SQLITE_DONE; }else{ rc = SQLITE_ERROR; } goto vdbe_return; }else{ sqlite3VdbeError(p, (!desiredAutoCommit)?"cannot start a transaction within a transaction":( (iRollback)?"cannot rollback - no transaction is active": "cannot commit - no transaction is active")); rc = SQLITE_ERROR; goto abort_due_to_error; } /*NOTREACHED*/ assert(0); } /* Opcode: Transaction P1 P2 P3 P4 P5 ** ** Begin a transaction on database P1 if a transaction is not already ** active. ** If P2 is non-zero, then a write-transaction is started, or if a ** read-transaction is already active, it is upgraded to a write-transaction. ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more ** then an exclusive transaction is started. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the ** file used for temporary tables. Indices of 2 or more are used for ** attached databases. ** ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is ** true (this flag is set if the Vdbe may modify more than one row and may ** throw an ABORT exception), a statement transaction may also be opened. ** More specifically, a statement transaction is opened iff the database ** connection is currently not in autocommit mode, or if there are other ** active statements. A statement transaction allows the changes made by this ** VDBE to be rolled back after an error without having to roll back the ** entire transaction. If no error is encountered, the statement transaction ** will automatically commit when the VDBE halts. ** ** If P5!=0 then this opcode also checks the schema cookie against P3 ** and the schema generation counter against P4. ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. If the schema ** cookie in P3 differs from the schema cookie in the database header or ** if the schema generation counter in P4 differs from the current ** generation counter, then an SQLITE_SCHEMA error is raised and execution ** halts. The sqlite3_step() wrapper function might then reprepare the ** statement and rerun it from the beginning. */ case OP_Transaction: { Btree *pBt; Db *pDb; int iMeta = 0; assert( p->bIsReader ); assert( p->readOnly==0 || pOp->p2==0 ); assert( pOp->p2>=0 && pOp->p2<=2 ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( rc==SQLITE_OK ); if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ if( db->flags & SQLITE_QueryOnly ){ /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ rc = SQLITE_READONLY; }else{ /* Writes prohibited due to a prior SQLITE_CORRUPT in the current ** transaction */ rc = SQLITE_CORRUPT; } goto abort_due_to_error; } pDb = &db->aDb[pOp->p1]; pBt = pDb->pBt; if( pBt ){ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); testcase( rc==SQLITE_BUSY_SNAPSHOT ); testcase( rc==SQLITE_BUSY_RECOVERY ); if( rc!=SQLITE_OK ){ if( (rc&0xff)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); p->rc = rc; goto vdbe_return; } goto abort_due_to_error; } if( p->usesStmtJournal && pOp->p2 && (db->autoCommit==0 || db->nVdbeRead>1) ){ assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); db->nStatement++; p->iStatement = db->nSavepoint + db->nStatement; } rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); } /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; p->nStmtDefImmCons = db->nDeferredImmCons; } } assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); if( rc==SQLITE_OK && pOp->p5 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) ){ /* ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema ** version is checked to ensure that the schema has not changed since the ** SQL statement was prepared. */ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); /* If the schema-cookie from the database file matches the cookie ** stored with the in-memory representation of the schema, do ** not reload the schema from the database file. ** ** If virtual-tables are in use, this is not just an optimization. ** Often, v-tables store their data in other SQLite tables, which ** are queried from within xNext() and other v-table methods using ** prepared queries. If such a query is out-of-date, we do not want to ** discard the database schema, as the user code implementing the ** v-table would have to be ready for the sqlite3_vtab structure itself ** to be invalidated whenever sqlite3_step() is called from within ** a v-table method. */ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ sqlite3ResetOneSchema(db, pOp->p1); } p->expired = 1; rc = SQLITE_SCHEMA; /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() ** from being modified in sqlite3VdbeHalt(). If this statement is ** reprepared, changeCntOn will be set again. */ p->changeCntOn = 0; } if( rc ) goto abort_due_to_error; break; } /* Opcode: ReadCookie P1 P2 P3 * * ** ** Read cookie number P3 from database P1 and write it into register P2. ** P3==1 is the schema version. P3==2 is the database format. ** P3==3 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { /* out2 */ int iMeta; int iDb; int iCookie; assert( p->bIsReader ); iDb = pOp->p1; iCookie = pOp->p3; assert( pOp->p3=0 && iDbnDb ); assert( db->aDb[iDb].pBt!=0 ); assert( DbMaskTest(p->btreeMask, iDb) ); sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); pOut = out2Prerelease(p, pOp); pOut->u.i = iMeta; break; } /* Opcode: SetCookie P1 P2 P3 * P5 ** ** Write the integer value P3 into cookie number P2 of database P1. ** P2==1 is the schema version. P2==2 is the database format. ** P2==3 is the recommended pager cache ** size, and so forth. P1==0 is the main database file and P1==1 is the ** database file used to store temporary tables. ** ** A transaction must be started before executing this opcode. ** ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement ** has P5 set to 1, so that the internal schema version will be different ** from the database schema version, resulting in a schema reset. */ case OP_SetCookie: { Db *pDb; sqlite3VdbeIncrWriteCounter(p, 0); assert( pOp->p2p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); if( pOp->p2==BTREE_SCHEMA_VERSION ){ /* When the schema cookie changes, record the new cookie internally */ *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; db->mDbFlags |= DBFLAG_SchemaChange; sqlite3FkClearTriggerCache(db, pOp->p1); }else if( pOp->p2==BTREE_FILE_FORMAT ){ /* Record changes in the file format */ pDb->pSchema->file_format = pOp->p3; } if( pOp->p1==1 ){ /* Invalidate all prepared statements whenever the TEMP database ** schema is changed. Ticket #1644 */ sqlite3ExpirePreparedStatements(db, 0); p->expired = 0; } if( rc ) goto abort_due_to_error; break; } /* Opcode: OpenRead P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read-only cursor for the database table whose root page is ** P2 in a database file. The database file is determined by P3. ** P3==0 means the main database, P3==1 means the database used for ** temporary tables, and P3>1 means used the corresponding attached ** database. Give the new cursor an identifier of P1. The P1 ** values need not be contiguous but all P1 values should be small integers. ** It is an error for P1 to be negative. ** ** Allowed P5 bits: **
      **
    • 0x02 OPFLAG_SEEKEQ: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxLT) **
    ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** object, then table being opened must be an [index b-tree] where the ** KeyInfo object defines the content and collating ** sequence of that index b-tree. Otherwise, if P4 is an integer ** value, then the table being opened must be a [table b-tree] with a ** number of columns no less than the value of P4. ** ** See also: OpenWrite, ReopenIdx */ /* Opcode: ReopenIdx P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** The ReopenIdx opcode works like OP_OpenRead except that it first ** checks to see if the cursor on P1 is already open on the same ** b-tree and if it is this opcode becomes a no-op. In other words, ** if the cursor is already open, do not reopen it. ** ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must ** be the same as every other ReopenIdx or OpenRead for the same cursor ** number. ** ** Allowed P5 bits: **
      **
    • 0x02 OPFLAG_SEEKEQ: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxLT) **
    ** ** See also: OP_OpenRead, OP_OpenWrite */ /* Opcode: OpenWrite P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2 (or whose root page is held in register P2 if the ** OPFLAG_P2ISREG bit is set in P5 - see below). ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** object, then table being opened must be an [index b-tree] where the ** KeyInfo object defines the content and collating ** sequence of that index b-tree. Otherwise, if P4 is an integer ** value, then the table being opened must be a [table b-tree] with a ** number of columns no less than the value of P4. ** ** Allowed P5 bits: **
      **
    • 0x02 OPFLAG_SEEKEQ: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxLT) **
    • 0x08 OPFLAG_FORDELETE: This cursor is used only to seek ** and subsequently delete entries in an index btree. This is a ** hint to the storage engine that the storage engine is allowed to ** ignore. The hint is not used by the official SQLite b*tree storage ** engine, but is used by COMDB2. **
    • 0x10 OPFLAG_P2ISREG: Use the content of register P2 ** as the root page, not the value of P2 itself. **
    ** ** This instruction works like OpenRead except that it opens the cursor ** in read/write mode. ** ** See also: OP_OpenRead, OP_ReopenIdx */ case OP_ReopenIdx: { /* ncycle */ int nField; KeyInfo *pKeyInfo; u32 p2; int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); assert( pOp->p4type==P4_KEYINFO ); pCur = p->apCsr[pOp->p1]; if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ assert( pCur->eCurType==CURTYPE_BTREE ); sqlite3BtreeClearCursor(pCur->uc.pCursor); goto open_cursor_set_hints; } /* If the cursor is not currently open or is open on a different ** index, then fall through into OP_OpenRead to force a reopen */ case OP_OpenRead: /* ncycle */ case OP_OpenWrite: assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); assert( p->bIsReader ); assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx || p->readOnly==0 ); if( p->expired==1 ){ rc = SQLITE_ABORT_ROLLBACK; goto abort_due_to_error; } nField = 0; pKeyInfo = 0; p2 = (u32)pOp->p2; iDb = pOp->p3; assert( iDb>=0 && iDbnDb ); assert( DbMaskTest(p->btreeMask, iDb) ); pDb = &db->aDb[iDb]; pX = pDb->pBt; assert( pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = pDb->pSchema->file_format; } }else{ wrFlag = 0; } if( pOp->p5 & OPFLAG_P2ISREG ){ assert( p2>0 ); assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); assert( pOp->opcode==OP_OpenWrite ); pIn2 = &aMem[p2]; assert( memIsValid(pIn2) ); assert( (pIn2->flags & MEM_Int)!=0 ); sqlite3VdbeMemIntegerify(pIn2); p2 = (int)pIn2->u.i; /* The p2 value always comes from a prior OP_CreateBtree opcode and ** that opcode will always set the p2 value to 2 or more or else fail. ** If there were a failure, the prepared statement would have halted ** before reaching this instruction. */ assert( p2>=2 ); } if( pOp->p4type==P4_KEYINFO ){ pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->enc==ENC(db) ); assert( pKeyInfo->db==db ); nField = pKeyInfo->nAllField; }else if( pOp->p4type==P4_INT32 ){ nField = pOp->p4.i; } assert( pOp->p1>=0 ); assert( nField>=0 ); testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); if( pCur==0 ) goto no_mem; pCur->iDb = iDb; pCur->nullRow = 1; pCur->isOrdered = 1; pCur->pgnoRoot = p2; #ifdef SQLITE_DEBUG pCur->wrFlag = wrFlag; #endif rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); pCur->pKeyInfo = pKeyInfo; /* Set the VdbeCursor.isTable variable. Previous versions of ** SQLite used to check if the root-page flags were sane at this point ** and report database corruption if they were not, but this check has ** since moved into the btree layer. */ pCur->isTable = pOp->p4type!=P4_KEYINFO; open_cursor_set_hints: assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); testcase( pOp->p5 & OPFLAG_BULKCSR ); testcase( pOp->p2 & OPFLAG_SEEKEQ ); sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); if( rc ) goto abort_due_to_error; break; } /* Opcode: OpenDup P1 P2 * * * ** ** Open a new cursor P1 that points to the same ephemeral table as ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral ** opcode. Only ephemeral cursors may be duplicated. ** ** Duplicate ephemeral cursors are used for self-joins of materialized views. */ case OP_OpenDup: { /* ncycle */ VdbeCursor *pOrig; /* The original cursor to be duplicated */ VdbeCursor *pCx; /* The new cursor */ pOrig = p->apCsr[pOp->p2]; assert( pOrig ); assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->isEphemeral = 1; pCx->pKeyInfo = pOrig->pKeyInfo; pCx->isTable = pOrig->isTable; pCx->pgnoRoot = pOrig->pgnoRoot; pCx->isOrdered = pOrig->isOrdered; pCx->ub.pBtx = pOrig->ub.pBtx; pCx->noReuse = 1; pOrig->noReuse = 1; rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, pCx->pKeyInfo, pCx->uc.pCursor); /* The sqlite3BtreeCursor() routine can only fail for the first cursor ** opened for a database. Since there is already an open cursor when this ** opcode is run, the sqlite3BtreeCursor() cannot fail */ assert( rc==SQLITE_OK ); break; } /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 ** Synopsis: nColumn=P2 ** ** Open a new cursor P1 to a transient table. ** The cursor is always opened read/write even if ** the main database is read-only. The ephemeral ** table is deleted automatically when the cursor is closed. ** ** If the cursor P1 is already opened on an ephemeral table, the table ** is cleared (all content is erased). ** ** P2 is the number of columns in the ephemeral table. ** The cursor points to a BTree table if P4==0 and to a BTree index ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure ** that defines the format of keys in the index. ** ** The P5 parameter can be a mask of the BTREE_* flags defined ** in btree.h. These flags control aspects of the operation of ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are ** added automatically. ** ** If P3 is positive, then reg[P3] is modified slightly so that it ** can be used as zero-length data for OP_Insert. This is an optimization ** that avoids an extra OP_Blob opcode to initialize that register. */ /* Opcode: OpenAutoindex P1 P2 * P4 * ** Synopsis: nColumn=P2 ** ** This opcode works the same as OP_OpenEphemeral. It has a ** different name to distinguish its use. Tables created using ** by this opcode will be used for automatically created transient ** indices in joins. */ case OP_OpenAutoindex: /* ncycle */ case OP_OpenEphemeral: { /* ncycle */ VdbeCursor *pCx; KeyInfo *pKeyInfo; static const int vfsFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); if( pOp->p3>0 ){ /* Make register reg[P3] into a value that can be used as the data ** form sqlite3BtreeInsert() where the length of the data is zero. */ assert( pOp->p2==0 ); /* Only used when number of columns is zero */ assert( pOp->opcode==OP_OpenEphemeral ); assert( aMem[pOp->p3].flags & MEM_Null ); aMem[pOp->p3].n = 0; aMem[pOp->p3].z = ""; } pCx = p->apCsr[pOp->p1]; if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ /* If the ephemeral table is already open and has no duplicates from ** OP_OpenDup, then erase all existing content so that the table is ** empty again, rather than creating a new table. */ assert( pCx->isEphemeral ); pCx->seqCount = 0; pCx->cacheStatus = CACHE_STALE; rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); }else{ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); if( pCx==0 ) goto no_mem; pCx->isEphemeral = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an BLOB_INTKEY table). */ if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ assert( pOp->p4type==P4_KEYINFO ); rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, BTREE_BLOBKEY | pOp->p5); if( rc==SQLITE_OK ){ assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); assert( pKeyInfo->db==db ); assert( pKeyInfo->enc==ENC(db) ); rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, pKeyInfo, pCx->uc.pCursor); } pCx->isTable = 0; }else{ pCx->pgnoRoot = SCHEMA_ROOT; rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 0, pCx->uc.pCursor); pCx->isTable = 1; } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); if( rc ){ sqlite3BtreeClose(pCx->ub.pBtx); } } } if( rc ) goto abort_due_to_error; pCx->nullRow = 1; break; } /* Opcode: SorterOpen P1 P2 P3 P4 * ** ** This opcode works like OP_OpenEphemeral except that it opens ** a transient index that is specifically designed to sort large ** tables using an external merge-sort algorithm. ** ** If argument P3 is non-zero, then it indicates that the sorter may ** assume that a stable sort considering the first P3 fields of each ** key is sufficient to produce the required results. */ case OP_SorterOpen: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p2>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); if( pCx==0 ) goto no_mem; pCx->pKeyInfo = pOp->p4.pKeyInfo; assert( pCx->pKeyInfo->db==db ); assert( pCx->pKeyInfo->enc==ENC(db) ); rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); if( rc ) goto abort_due_to_error; break; } /* Opcode: SequenceTest P1 P2 * * * ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 ** ** P1 is a sorter cursor. If the sequence counter is currently zero, jump ** to P2. Regardless of whether or not the jump is taken, increment the ** the sequence value. */ case OP_SequenceTest: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); if( (pC->seqCount++)==0 ){ goto jump_to_p2; } break; } /* Opcode: OpenPseudo P1 P2 P3 * * ** Synopsis: P3 columns in r[P2] ** ** Open a new cursor that points to a fake table that contains a single ** row of data. The content of that one row is the content of memory ** register P2. In other words, cursor P1 becomes an alias for the ** MEM_Blob content contained in register P2. ** ** A pseudo-table created by this opcode is used to hold a single ** row output from the sorter so that the row can be decomposed into ** individual columns using the OP_Column opcode. The OP_Column opcode ** is the only cursor opcode that works with a pseudo-table. ** ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { VdbeCursor *pCx; assert( pOp->p1>=0 ); assert( pOp->p3>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->seekResult = pOp->p2; pCx->isTable = 1; /* Give this pseudo-cursor a fake BtCursor pointer so that pCx ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() ** which is a performance optimization */ pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); assert( pOp->p5==0 ); break; } /* Opcode: Close P1 * * * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { /* ncycle */ assert( pOp->p1>=0 && pOp->p1nCursor ); sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); p->apCsr[pOp->p1] = 0; break; } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK /* Opcode: ColumnsUsed P1 * * P4 * ** ** This opcode (which only exists if SQLite was compiled with ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the ** table or index for cursor P1 are used. P4 is a 64-bit integer ** (P4_INT64) in which the first 63 bits are one for each of the ** first 63 columns of the table or index that are actually used ** by the cursor. The high-order bit is set if any column after ** the 64th is used. */ case OP_ColumnsUsed: { VdbeCursor *pC; pC = p->apCsr[pOp->p1]; assert( pC->eCurType==CURTYPE_BTREE ); pC->maskUsed = *(u64*)pOp->p4.pI64; break; } #endif /* Opcode: SeekGE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as the key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than or equal to the key value. If there are no records ** greater than or equal to the key and P2 is not zero, then jump to P2. ** ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this ** opcode will either land on a record that exactly matches the key, or ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, ** this opcode must be followed by an IdxLE opcode with the same arguments. ** The IdxGT opcode will be skipped if this opcode succeeds, but the ** IdxGT opcode will be used on subsequent loop iterations. The ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this ** is an equality search. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. ** ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe */ /* Opcode: SeekGT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than the key value. If there are no records greater than ** the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. ** ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe */ /* Opcode: SeekLT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than the key value. If there are no records less than ** the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. ** ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe */ /* Opcode: SeekLE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as a key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than or equal to the key value. If there are no records ** less than or equal to the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. ** ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this ** opcode will either land on a record that exactly matches the key, or ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, ** this opcode must be followed by an IdxLE opcode with the same arguments. ** The IdxGE opcode will be skipped if this opcode succeeds, but the ** IdxGE opcode will be used on subsequent loop iterations. The ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this ** is an equality search. ** ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt */ case OP_SeekLT: /* jump, in3, group, ncycle */ case OP_SeekLE: /* jump, in3, group, ncycle */ case OP_SeekGE: /* jump, in3, group, ncycle */ case OP_SeekGT: { /* jump, in3, group, ncycle */ int res; /* Comparison result */ int oc; /* Opcode */ VdbeCursor *pC; /* The cursor to seek */ UnpackedRecord r; /* The key to seek for */ int nField; /* Number of columns or fields in the key */ i64 iKey; /* The rowid we are to seek to */ int eqOnly; /* Only interested in == results */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p2!=0 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( OP_SeekLE == OP_SeekLT+1 ); assert( OP_SeekGE == OP_SeekLT+2 ); assert( OP_SeekGT == OP_SeekLT+3 ); assert( pC->isOrdered ); assert( pC->uc.pCursor!=0 ); oc = pOp->opcode; eqOnly = 0; pC->nullRow = 0; #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pC->isTable ){ u16 flags3, newType; /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 || CORRUPT_DB ); /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; flags3 = pIn3->flags; if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ newType = pIn3->flags; /* Record the type after applying numeric affinity */ pIn3->flags = flags3; /* But convert the type back to its original */ /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (newType & (MEM_Int|MEM_IntReal))==0 ){ int c; if( (newType & MEM_Real)==0 ){ if( (newType & MEM_Null) || oc>=OP_SeekGE ){ VdbeBranchTaken(1,2); goto jump_to_p2; }else{ rc = sqlite3BtreeLast(pC->uc.pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; goto seek_not_found; } } c = sqlite3IntFloatCompare(iKey, pIn3->u.r); /* If the approximation iKey is larger than the actual real search ** term, substitute >= for > and < for <=. e.g. if the search term ** is 4.9 and the integer approximation 5: ** ** (x > 4.9) -> (x >= 5) ** (x <= 4.9) -> (x < 5) */ if( c>0 ){ assert( OP_SeekGE==(OP_SeekGT-1) ); assert( OP_SeekLT==(OP_SeekLE-1) ); assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; } /* If the approximation iKey is smaller than the actual real search ** term, substitute <= for < and > for >=. */ else if( c<0 ){ assert( OP_SeekLE==(OP_SeekLT+1) ); assert( OP_SeekGT==(OP_SeekGE+1) ); assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; } } rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); pC->movetoTarget = iKey; /* Used by OP_Delete */ if( rc!=SQLITE_OK ){ goto abort_due_to_error; } }else{ /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, ** with the same key. */ if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ eqOnly = 1; assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); assert( pOp[1].p1==pOp[0].p1 ); assert( pOp[1].p2==pOp[0].p2 ); assert( pOp[1].p3==pOp[0].p3 ); assert( pOp[1].p4.i==pOp[0].p4.i ); } nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( nField>0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)nField; /* The next line of code computes as follows, only faster: ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ ** r.default_rc = -1; ** }else{ ** r.default_rc = +1; ** } */ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); assert( oc!=OP_SeekGT || r.default_rc==-1 ); assert( oc!=OP_SeekLE || r.default_rc==-1 ); assert( oc!=OP_SeekGE || r.default_rc==+1 ); assert( oc!=OP_SeekLT || r.default_rc==+1 ); r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); } } #endif r.eqSeen = 0; rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( eqOnly && r.eqSeen==0 ){ assert( res!=0 ); goto seek_not_found; } } #ifdef SQLITE_TEST sqlite3_search_count++; #endif if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); if( res<0 || (res==0 && oc==OP_SeekGT) ){ res = 0; rc = sqlite3BtreeNext(pC->uc.pCursor, 0); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; res = 1; }else{ goto abort_due_to_error; } } }else{ res = 0; } }else{ assert( oc==OP_SeekLT || oc==OP_SeekLE ); if( res>0 || (res==0 && oc==OP_SeekLT) ){ res = 0; rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; res = 1; }else{ goto abort_due_to_error; } } }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ res = sqlite3BtreeEof(pC->uc.pCursor); } } seek_not_found: assert( pOp->p2>0 ); VdbeBranchTaken(res!=0,2); if( res ){ goto jump_to_p2; }else if( eqOnly ){ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ } break; } /* Opcode: SeekScan P1 P2 * * P5 ** Synopsis: Scan-ahead up to P1 rows ** ** This opcode is a prefix opcode to OP_SeekGE. In other words, this ** opcode must be immediately followed by OP_SeekGE. This constraint is ** checked by assert() statements. ** ** This opcode uses the P1 through P4 operands of the subsequent ** OP_SeekGE. In the text that follows, the operands of the subsequent ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only ** the P1, P2 and P5 operands of this opcode are also used, and are called ** This.P1, This.P2 and This.P5. ** ** This opcode helps to optimize IN operators on a multi-column index ** where the IN operator is on the later terms of the index by avoiding ** unnecessary seeks on the btree, substituting steps to the next row ** of the b-tree instead. A correct answer is obtained if this opcode ** is omitted or is a no-op. ** ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which ** is the desired entry that we want the cursor SeekGE.P1 to be pointing ** to. Call this SeekGE.P3/P4 row the "target". ** ** If the SeekGE.P1 cursor is not currently pointing to a valid row, ** then this opcode is a no-op and control passes through into the OP_SeekGE. ** ** If the SeekGE.P1 cursor is pointing to a valid row, then that row ** might be the target row, or it might be near and slightly before the ** target row, or it might be after the target row. If the cursor is ** currently before the target row, then this opcode attempts to position ** the cursor on or after the target row by invoking sqlite3BtreeStep() ** on the cursor between 1 and This.P1 times. ** ** The This.P5 parameter is a flag that indicates what to do if the ** cursor ends up pointing at a valid row that is past the target ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 ** case occurs when there are no inequality constraints to the right of ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case ** occurs when there are inequality constraints to the right of the IN ** operator. In that case, the This.P2 will point either directly to or ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for ** loop terminate. ** ** Possible outcomes from this opcode:
      ** **
    1. If the cursor is initially not pointed to any valid row, then ** fall through into the subsequent OP_SeekGE opcode. ** **
    2. If the cursor is left pointing to a row that is before the target ** row, even after making as many as This.P1 calls to ** sqlite3BtreeNext(), then also fall through into OP_SeekGE. ** **
    3. If the cursor is left pointing at the target row, either because it ** was at the target row to begin with or because one or more ** sqlite3BtreeNext() calls moved the cursor to the target row, ** then jump to This.P2.., ** **
    4. If the cursor started out before the target row and a call to ** to sqlite3BtreeNext() moved the cursor off the end of the index ** (indicating that the target row definitely does not exist in the ** btree) then jump to SeekGE.P2, ending the loop. ** **
    5. If the cursor ends up on a valid row that is past the target row ** (indicating that the target row does not exist in the btree) then ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0. **
    */ case OP_SeekScan: { /* ncycle */ VdbeCursor *pC; int res; int nStep; UnpackedRecord r; assert( pOp[1].opcode==OP_SeekGE ); /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first ** opcode past the OP_SeekGE itself. */ assert( pOp->p2>=(int)(pOp-aOp)+2 ); #ifdef SQLITE_DEBUG if( pOp->p5==0 ){ /* There are no inequality constraints following the IN constraint. */ assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); }else{ /* There are inequality constraints. */ assert( pOp->p2==(int)(pOp-aOp)+2 ); assert( aOp[pOp->p2-1].opcode==OP_SeekGE ); } #endif assert( pOp->p1>0 ); pC = p->apCsr[pOp[1].p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( !pC->isTable ); if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... cursor not valid - fall through\n"); } #endif break; } nStep = pOp->p1; assert( nStep>=1 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp[1].p4.i; r.default_rc = 0; r.aMem = &aMem[pOp[1].p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i0 && pOp->p5==0 ){ seekscan_search_fail: /* Jump to SeekGE.P2, ending the loop */ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... %d steps and then skip\n", pOp->p1 - nStep); } #endif VdbeBranchTaken(1,3); pOp++; goto jump_to_p2; } if( res>=0 ){ /* Jump to This.P2, bypassing the OP_SeekGE opcode */ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... %d steps and then success\n", pOp->p1 - nStep); } #endif VdbeBranchTaken(2,3); goto jump_to_p2; break; } if( nStep<=0 ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("... fall through after %d steps\n", pOp->p1); } #endif VdbeBranchTaken(0,3); break; } nStep--; pC->cacheStatus = CACHE_STALE; rc = sqlite3BtreeNext(pC->uc.pCursor, 0); if( rc ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; goto seekscan_search_fail; }else{ goto abort_due_to_error; } } } break; } /* Opcode: SeekHit P1 P2 P3 * * ** Synopsis: set P2<=seekHit<=P3 ** ** Increase or decrease the seekHit value for cursor P1, if necessary, ** so that it is no less than P2 and no greater than P3. ** ** The seekHit integer represents the maximum of terms in an index for which ** there is known to be at least one match. If the seekHit value is smaller ** than the total number of equality terms in an index lookup, then the ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned ** early, thus saving work. This is part of the IN-early-out optimization. ** ** P1 must be a valid b-tree cursor. */ case OP_SeekHit: { /* ncycle */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pOp->p3>=pOp->p2 ); if( pC->seekHitp2 ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); } #endif pC->seekHit = pOp->p2; }else if( pC->seekHit>pOp->p3 ){ #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); } #endif pC->seekHit = pOp->p3; } break; } /* Opcode: IfNotOpen P1 P2 * * * ** Synopsis: if( !csr[P1] ) goto P2 ** ** If cursor P1 is not open or if P1 is set to a NULL row using the ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through. */ case OP_IfNotOpen: { /* jump */ VdbeCursor *pCur; assert( pOp->p1>=0 && pOp->p1nCursor ); pCur = p->apCsr[pOp->p1]; VdbeBranchTaken(pCur==0 || pCur->nullRow, 2); if( pCur==0 || pCur->nullRow ){ goto jump_to_p2_and_check_for_interrupt; } break; } /* Opcode: Found P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is a prefix of any entry in P1 then a jump is made to P2 and ** P1 is left pointing at the matching entry. ** ** This operation leaves the cursor in a state where it can be ** advanced in the forward direction. The Next instruction will work, ** but not the Prev instruction. ** ** See also: NotFound, NoConflict, NotExists. SeekGe */ /* Opcode: NotFound P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 ** does contain an entry whose prefix matches the P3/P4 record then control ** falls through to the next instruction and P1 is left pointing at the ** matching entry. ** ** This operation leaves the cursor in a state where it cannot be ** advanced in either direction. In other words, the Next and Prev ** opcodes do not work after this operation. ** ** See also: Found, NotExists, NoConflict, IfNoHope */ /* Opcode: IfNoHope P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** Register P3 is the first of P4 registers that form an unpacked ** record. Cursor P1 is an index btree. P2 is a jump destination. ** In other words, the operands to this opcode are the same as the ** operands to OP_NotFound and OP_IdxGT. ** ** This opcode is an optimization attempt only. If this opcode always ** falls through, the correct answer is still obtained, but extra work ** is performed. ** ** A value of N in the seekHit flag of cursor P1 means that there exists ** a key P3:N that will match some record in the index. We want to know ** if it is possible for a record P3:P4 to match some record in the ** index. If it is not possible, we can skip some work. So if seekHit ** is less than P4, attempt to find out if a match is possible by running ** OP_NotFound. ** ** This opcode is used in IN clause processing for a multi-column key. ** If an IN clause is attached to an element of the key other than the ** left-most element, and if there are no matches on the most recent ** seek over the whole key, then it might be that one of the key element ** to the left is prohibiting a match, and hence there is "no hope" of ** any match regardless of how many IN clause elements are checked. ** In such a case, we abandon the IN clause search early, using this ** opcode. The opcode name comes from the fact that the ** jump is taken if there is "no hope" of achieving a match. ** ** See also: NotFound, SeekHit */ /* Opcode: NoConflict P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** contains any NULL value, jump immediately to P2. If all terms of the ** record are not-NULL then a check is done to determine if any row in the ** P1 index btree has a matching key prefix. If there are no matches, jump ** immediately to P2. If there is a match, fall through and leave the P1 ** cursor pointing to the matching row. ** ** This opcode is similar to OP_NotFound with the exceptions that the ** branch is always taken if any part of the search key input is NULL. ** ** This operation leaves the cursor in a state where it cannot be ** advanced in either direction. In other words, the Next and Prev ** opcodes do not work after this operation. ** ** See also: NotFound, Found, NotExists */ case OP_IfNoHope: { /* jump, in3, ncycle */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ printf("seekHit is %d\n", pC->seekHit); } #endif if( pC->seekHit>=pOp->p4.i ) break; /* Fall through into OP_NotFound */ /* no break */ deliberate_fall_through } case OP_NoConflict: /* jump, in3, ncycle */ case OP_NotFound: /* jump, in3, ncycle */ case OP_Found: { /* jump, in3, ncycle */ int alreadyExists; int ii; VdbeCursor *pC; UnpackedRecord *pIdxKey; UnpackedRecord r; #ifdef SQLITE_TEST if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; #endif assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p4type==P4_INT32 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif r.aMem = &aMem[pOp->p3]; assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable==0 ); r.nField = (u16)pOp->p4.i; if( r.nField>0 ){ /* Key values in an array of registers */ r.pKeyInfo = pC->pKeyInfo; r.default_rc = 0; #ifdef SQLITE_DEBUG for(ii=0; iip3+ii, &r.aMem[ii]); } #endif rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); }else{ /* Composite key generated by OP_MakeRecord */ assert( r.aMem->flags & MEM_Blob ); assert( pOp->opcode!=OP_NoConflict ); rc = ExpandBlob(r.aMem); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); if( rc ) goto no_mem; pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); if( pIdxKey==0 ) goto no_mem; sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); pIdxKey->default_rc = 0; rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); sqlite3DbFreeNN(db, pIdxKey); } if( rc!=SQLITE_OK ){ goto abort_due_to_error; } alreadyExists = (pC->seekResult==0); pC->nullRow = 1-alreadyExists; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pOp->opcode==OP_Found ){ VdbeBranchTaken(alreadyExists!=0,2); if( alreadyExists ) goto jump_to_p2; }else{ if( !alreadyExists ){ VdbeBranchTaken(1,2); goto jump_to_p2; } if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ for(ii=0; iiopcode==OP_IfNoHope ){ pC->seekHit = pOp->p4.i; } } break; } /* Opcode: SeekRowid P1 P2 P3 * * ** Synopsis: intkey=r[P3] ** ** P1 is the index of a cursor open on an SQL table btree (with integer ** keys). If register P3 does not contain an integer or if P1 does not ** contain a record with rowid P3 then jump immediately to P2. ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain ** a record with rowid P3 then ** leave the cursor pointing at that record and fall through to the next ** instruction. ** ** The OP_NotExists opcode performs the same operation, but with OP_NotExists ** the P3 register must be guaranteed to contain an integer value. With this ** opcode, register P3 might not contain an integer. ** ** The OP_NotFound opcode performs the same operation on index btrees ** (with arbitrary multi-value keys). ** ** This opcode leaves the cursor in a state where it cannot be advanced ** in either direction. In other words, the Next and Prev opcodes will ** not work following this opcode. ** ** See also: Found, NotFound, NoConflict, SeekRowid */ /* Opcode: NotExists P1 P2 P3 * * ** Synopsis: intkey=r[P3] ** ** P1 is the index of a cursor open on an SQL table btree (with integer ** keys). P3 is an integer rowid. If P1 does not contain a record with ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then ** leave the cursor pointing at that record and fall through to the next ** instruction. ** ** The OP_SeekRowid opcode performs the same operation but also allows the ** P3 register to contain a non-integer value, in which case the jump is ** always taken. This opcode requires that P3 always contain an integer. ** ** The OP_NotFound opcode performs the same operation on index btrees ** (with arbitrary multi-value keys). ** ** This opcode leaves the cursor in a state where it cannot be advanced ** in either direction. In other words, the Next and Prev opcodes will ** not work following this opcode. ** ** See also: Found, NotFound, NoConflict, SeekRowid */ case OP_SeekRowid: { /* jump, in3, ncycle */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; pIn3 = &aMem[pOp->p3]; testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_IntReal ); testcase( pIn3->flags & MEM_Real ); testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ /* If pIn3->u.i does not contain an integer, compute iKey as the ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted ** into an integer without loss of information. Take care to avoid ** changing the datatype of pIn3, however, as it is used by other ** parts of the prepared statement. */ Mem x = pIn3[0]; applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; iKey = x.u.i; goto notExistsWithKey; } /* Fall through into OP_NotExists */ /* no break */ deliberate_fall_through case OP_NotExists: /* jump, in3, ncycle */ pIn3 = &aMem[pOp->p3]; assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); assert( pOp->p1>=0 && pOp->p1nCursor ); iKey = pIn3->u.i; notExistsWithKey: pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; #endif assert( pC->isTable ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); res = 0; rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); assert( rc==SQLITE_OK || res==0 ); pC->movetoTarget = iKey; /* Used by OP_Delete */ pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); pC->seekResult = res; if( res!=0 ){ assert( rc==SQLITE_OK ); if( pOp->p2==0 ){ rc = SQLITE_CORRUPT_BKPT; }else{ goto jump_to_p2; } } if( rc ) goto abort_due_to_error; break; } /* Opcode: Sequence P1 P2 * * * ** Synopsis: r[P2]=cursor[P1].ctr++ ** ** Find the next available sequence number for cursor P1. ** Write the sequence number into register P2. ** The sequence number on the cursor is incremented after this ** instruction. */ case OP_Sequence: { /* out2 */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( p->apCsr[pOp->p1]!=0 ); assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); pOut = out2Prerelease(p, pOp); pOut->u.i = p->apCsr[pOp->p1]->seqCount++; break; } /* Opcode: NewRowid P1 P2 P3 * * ** Synopsis: r[P2]=rowid ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is written ** written to register P2. ** ** If P3>0 then P3 is a register in the root frame of this VDBE that holds ** the largest previously generated record number. No new record numbers are ** allowed to be less than this value. When this value reaches its maximum, ** an SQLITE_FULL error is generated. The P3 register is updated with the ' ** generated record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2 */ i64 v; /* The new rowid */ VdbeCursor *pC; /* Cursor of table to get the new rowid */ int res; /* Result of an sqlite3BtreeLast() */ int cnt; /* Counter to limit the number of searches */ #ifndef SQLITE_OMIT_AUTOINCREMENT Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ VdbeFrame *pFrame; /* Root frame of VDBE */ #endif v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isTable ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); { /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 100 times. */ assert( pC->isTable ); #ifdef SQLITE_32BIT_ROWID # define MAX_ROWID 0x7fffffff #else /* Some compilers complain about constants of the form 0x7fffffffffffffff. ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !pC->useRandomRowid ){ rc = sqlite3BtreeLast(pC->uc.pCursor, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res ){ v = 1; /* IMP: R-61914-48074 */ }else{ assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); v = sqlite3BtreeIntegerKey(pC->uc.pCursor); if( v>=MAX_ROWID ){ pC->useRandomRowid = 1; }else{ v++; /* IMP: R-29538-34987 */ } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3>0 ); if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=pFrame->nMem ); pMem = &pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); pMem = &aMem[pOp->p3]; memAboutToChange(p, pMem); } assert( memIsValid(pMem) ); REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-17817-00630 */ goto abort_due_to_error; } if( vu.i+1 ){ v = pMem->u.i + 1; } pMem->u.i = v; } #endif if( pC->useRandomRowid ){ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the ** largest possible integer (9223372036854775807) then the database ** engine starts picking positive candidate ROWIDs at random until ** it finds one that is not previously used. */ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is ** an AUTOINCREMENT table. */ cnt = 0; do{ sqlite3_randomness(sizeof(v), &v); v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 0, &res))==SQLITE_OK) && (res==0) && (++cnt<100)); if( rc ) goto abort_due_to_error; if( res==0 ){ rc = SQLITE_FULL; /* IMP: R-38219-53002 */ goto abort_due_to_error; } assert( v>0 ); /* EV: R-40812-03570 */ } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } pOut->u.i = v; break; } /* Opcode: Insert P1 P2 P3 P4 P5 ** Synopsis: intkey=r[P3] data=r[P2] ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value MEM_Blob stored in register ** number P2. The key is stored in register P3. The key must ** be a MEM_Int. ** ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, ** then rowid is stored for subsequent return by the ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). ** ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might ** run faster by avoiding an unnecessary seek on cursor P1. However, ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior ** seeks on the cursor or if the most recent seek used a key equal to P3. ** ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an ** UPDATE operation. Otherwise (if the flag is clear) then this opcode ** is part of an INSERT operation. The difference is only important to ** the update hook. ** ** Parameter P4 may point to a Table structure, or may be NULL. If it is ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked ** following a successful insert. ** ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically ** allocated, then ownership of P2 is transferred to the pseudo-cursor ** and register P2 becomes ephemeral. If the cursor is changed, the ** value of register P2 will then change. Make sure this does not ** cause any problems.) ** ** This instruction only works on tables. The equivalent instruction ** for indices is OP_IdxInsert. */ case OP_Insert: { Mem *pData; /* MEM cell holding data for the record to be inserted */ Mem *pKey; /* MEM cell holding key for the record */ VdbeCursor *pC; /* Cursor to table into which insert is written */ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ const char *zDb; /* database name - used by the update hook */ Table *pTab; /* Table structure - used by update and pre-update hooks */ BtreePayload x; /* Payload to be inserted */ pData = &aMem[pOp->p2]; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( memIsValid(pData) ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->deferredMoveto==0 ); assert( pC->uc.pCursor!=0 ); assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); REGISTER_TRACE(pOp->p2, pData); sqlite3VdbeIncrWriteCounter(p, pC); pKey = &aMem[pOp->p3]; assert( pKey->flags & MEM_Int ); assert( memIsValid(pKey) ); REGISTER_TRACE(pOp->p3, pKey); x.nKey = pKey->u.i; if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ assert( pC->iDb>=0 ); zDb = db->aDb[pC->iDb].zDbSName; pTab = pOp->p4.pTab; assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); }else{ pTab = 0; zDb = 0; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* Invoke the pre-update hook, if any */ if( pTab ){ if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); } if( db->xUpdateCallback==0 || pTab->aCol==0 ){ /* Prevent post-update hook from running in cases when it should not */ pTab = 0; } } if( pOp->p5 & OPFLAG_ISNOOP ) break; #endif assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 ); if( pOp->p5 & OPFLAG_NCHANGE ){ p->nChange++; if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; } assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); x.pData = pData->z; x.nData = pData->n; seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ x.nZero = pData->u.nZero; }else{ x.nZero = 0; } x.pKey = 0; assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), seekResult ); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; colCacheCtr++; /* Invoke the update-hook if required. */ if( rc ) goto abort_due_to_error; if( pTab ){ assert( db->xUpdateCallback!=0 ); assert( pTab->aCol!=0 ); db->xUpdateCallback(db->pUpdateArg, (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, zDb, pTab->zName, x.nKey); } break; } /* Opcode: RowCell P1 P2 P3 * * ** ** P1 and P2 are both open cursors. Both must be opened on the same type ** of table - intkey or index. This opcode is used as part of copying ** the current row from P2 into P1. If the cursors are opened on intkey ** tables, register P3 contains the rowid to use with the new record in ** P1. If they are opened on index tables, P3 is not used. ** ** This opcode must be followed by either an Insert or InsertIdx opcode ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. */ case OP_RowCell: { VdbeCursor *pDest; /* Cursor to write to */ VdbeCursor *pSrc; /* Cursor to read from */ i64 iKey; /* Rowid value to insert with */ assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); assert( pOp[1].p5 & OPFLAG_PREFORMAT ); pDest = p->apCsr[pOp->p1]; pSrc = p->apCsr[pOp->p2]; iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); if( rc!=SQLITE_OK ) goto abort_due_to_error; break; }; /* Opcode: Delete P1 P2 P3 P4 P5 ** ** Delete the record at which the P1 cursor is currently pointing. ** ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then ** the cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. As a result, in this case ** it is ok to delete a record from within a Next loop. If ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be ** left in an undefined state. ** ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this ** delete is one of several associated with deleting a table row and ** all its associated index entries. Exactly one of those deletes is ** the "primary" delete. The others are all on OPFLAG_FORDELETE ** cursors or else are marked with the AUXDELETE flag. ** ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then ** the row change count is incremented (otherwise not). ** ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the ** pre-update-hook for deletes is run, but the btree is otherwise unchanged. ** This happens when the OP_Delete is to be shortly followed by an OP_Insert ** with the same key, causing the btree entry to be overwritten. ** ** P1 must not be pseudo-table. It has to be a real table with ** multiple rows. ** ** If P4 is not NULL then it points to a Table object. In this case either ** the update or pre-update hook, or both, may be invoked. The P1 cursor must ** have been positioned using OP_NotFound prior to invoking this opcode in ** this case. Specifically, if one is configured, the pre-update hook is ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. ** ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address ** of the memory cell that contains the value that the rowid of the row will ** be set to by the update. */ case OP_Delete: { VdbeCursor *pC; const char *zDb; Table *pTab; int opflags; opflags = pOp->p2; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->deferredMoveto==0 ); sqlite3VdbeIncrWriteCounter(p, pC); #ifdef SQLITE_DEBUG if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ /* If p5 is zero, the seek operation that positioned the cursor prior to ** OP_Delete will have also set the pC->movetoTarget field to the rowid of ** the row that is being deleted */ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); assert( CORRUPT_DB || pC->movetoTarget==iKey ); } #endif /* If the update-hook or pre-update-hook will be invoked, set zDb to ** the name of the db to pass as to it. Also set local pTab to a copy ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set ** VdbeCursor.movetoTarget to the current rowid. */ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ assert( pC->iDb>=0 ); assert( pOp->p4.pTab!=0 ); zDb = db->aDb[pC->iDb].zDbSName; pTab = pOp->p4.pTab; if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); } }else{ zDb = 0; pTab = 0; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* Invoke the pre-update-hook if required. */ assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); if( db->xPreUpdateCallback && pTab ){ assert( !(opflags & OPFLAG_ISUPDATE) || HasRowid(pTab)==0 || (aMem[pOp->p3].flags & MEM_Int) ); sqlite3VdbePreUpdateHook(p, pC, (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, zDb, pTab, pC->movetoTarget, pOp->p3, -1 ); } if( opflags & OPFLAG_ISNOOP ) break; #endif /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); #ifdef SQLITE_DEBUG if( p->pFrame==0 ){ if( pC->isEphemeral==0 && (pOp->p5 & OPFLAG_AUXDELETE)==0 && (pC->wrFlag & OPFLAG_FORDELETE)==0 ){ nExtraDelete++; } if( pOp->p2 & OPFLAG_NCHANGE ){ nExtraDelete--; } } #endif rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); pC->cacheStatus = CACHE_STALE; colCacheCtr++; pC->seekResult = 0; if( rc ) goto abort_due_to_error; /* Invoke the update-hook if required. */ if( opflags & OPFLAG_NCHANGE ){ p->nChange++; if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, pC->movetoTarget); assert( pC->iDb>=0 ); } } break; } /* Opcode: ResetCount * * * * * ** ** The value of the change counter is copied to the database handle ** change counter (returned by subsequent calls to sqlite3_changes()). ** Then the VMs internal change counter resets to 0. ** This is used by trigger programs. */ case OP_ResetCount: { sqlite3VdbeSetChanges(db, p->nChange); p->nChange = 0; break; } /* Opcode: SorterCompare P1 P2 P3 P4 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 ** ** P1 is a sorter cursor. This instruction compares a prefix of the ** record blob in register P3 against a prefix of the entry that ** the sorter cursor currently points to. Only the first P4 fields ** of r[P3] and the sorter record are compared. ** ** If either P3 or the sorter contains a NULL in one of their significant ** fields (not counting the P4 fields at the end which are ignored) then ** the comparison is assumed to be equal. ** ** Fall through to next instruction if the two records compare equal to ** each other. Jump to P2 if they are different. */ case OP_SorterCompare: { VdbeCursor *pC; int res; int nKeyCol; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nKeyCol = pOp->p4.i; res = 0; rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); VdbeBranchTaken(res!=0,2); if( rc ) goto abort_due_to_error; if( res ) goto jump_to_p2; break; }; /* Opcode: SorterData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the current sorter data for sorter cursor P1. ** Then clear the column header cache on cursor P3. ** ** This opcode is normally used to move a record out of the sorter and into ** a register that is the source for a pseudo-table cursor created using ** OpenPseudo. That pseudo-table cursor is the one that is identified by ** parameter P3. Clearing the P3 column cache as part of this opcode saves ** us from having to issue a separate NullRow instruction to clear that cache. */ case OP_SorterData: { /* ncycle */ VdbeCursor *pC; pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterRowkey(pC, pOut); assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); assert( pOp->p1>=0 && pOp->p1nCursor ); if( rc ) goto abort_due_to_error; p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; break; } /* Opcode: RowData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the complete row content for the row at ** which cursor P1 is currently pointing. ** There is no interpretation of the data. ** It is just copied onto the P2 register exactly as ** it is found in the database file. ** ** If cursor P1 is an index, then the content is the key of the row. ** If cursor P2 is a table, then the content extracted is the data. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. ** ** If P3!=0 then this opcode is allowed to make an ephemeral pointer ** into the database page. That means that the content of the output ** register will be invalidated as soon as the cursor moves - including ** moves caused by other cursors that "save" the current cursors ** position in order that they can write to the same table. If P3==0 ** then a copy of the data is made into memory. P3!=0 is faster, but ** P3==0 is safer. ** ** If P3!=0 then the content of the P2 register is unsuitable for use ** in OP_Result and any OP_Result will invalidate the P2 register content. ** The P2 register content is invalidated by opcodes like OP_Function or ** by any use of another cursor pointing to the same table. */ case OP_RowData: { VdbeCursor *pC; BtCursor *pCrsr; u32 n; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( isSorter(pC)==0 ); assert( pC->nullRow==0 ); assert( pC->uc.pCursor!=0 ); pCrsr = pC->uc.pCursor; /* The OP_RowData opcodes always follow OP_NotExists or ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions ** that might invalidate the cursor. ** If this where not the case, on of the following assert()s ** would fail. Should this ever change (because of changes in the code ** generator) then the fix would be to insert a call to ** sqlite3VdbeCursorMoveto(). */ assert( pC->deferredMoveto==0 ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); n = sqlite3BtreePayloadSize(pCrsr); if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } testcase( n==0 ); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); if( rc ) goto abort_due_to_error; if( !pOp->p3 ) Deephemeralize(pOut); UPDATE_MAX_BLOBSIZE(pOut); REGISTER_TRACE(pOp->p2, pOut); break; } /* Opcode: Rowid P1 P2 * * * ** Synopsis: r[P2]=PX rowid of P1 ** ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ case OP_Rowid: { /* out2, ncycle */ VdbeCursor *pC; i64 v; sqlite3_vtab *pVtab; const sqlite3_module *pModule; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); if( pC->nullRow ){ pOut->flags = MEM_Null; break; }else if( pC->deferredMoveto ){ v = pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->eCurType==CURTYPE_VTAB ){ assert( pC->uc.pVCur!=0 ); pVtab = pC->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->uc.pVCur, &v); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); rc = sqlite3VdbeCursorRestore(pC); if( rc ) goto abort_due_to_error; if( pC->nullRow ){ pOut->flags = MEM_Null; break; } v = sqlite3BtreeIntegerKey(pC->uc.pCursor); } pOut->u.i = v; break; } /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always ** write a NULL. ** ** If cursor P1 is not previously opened, open it now to a special ** pseudo-cursor that always returns NULL for every column. */ case OP_NullRow: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; if( pC==0 ){ /* If the cursor is not already open, create a special kind of ** pseudo-cursor that always gives null rows. */ pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); if( pC==0 ) goto no_mem; pC->seekResult = 0; pC->isTable = 1; pC->noReuse = 1; pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); } pC->nullRow = 1; pC->cacheStatus = CACHE_STALE; if( pC->eCurType==CURTYPE_BTREE ){ assert( pC->uc.pCursor!=0 ); sqlite3BtreeClearCursor(pC->uc.pCursor); } #ifdef SQLITE_DEBUG if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; #endif break; } /* Opcode: SeekEnd P1 * * * * ** ** Position cursor P1 at the end of the btree for the purpose of ** appending a new entry onto the btree. ** ** It is assumed that the cursor is used only for appending and so ** if the cursor is valid, then the cursor must already be pointing ** at the end of the btree and so no changes are made to ** the cursor. */ /* Opcode: Last P1 P2 * * * ** ** The next use of the Rowid or Column or Prev instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. ** ** This opcode leaves the cursor configured to move in reverse order, ** from the end toward the beginning. In other words, the cursor is ** configured to use Prev, not Next. */ case OP_SeekEnd: /* ncycle */ case OP_Last: { /* jump, ncycle */ VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; res = 0; assert( pCrsr!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif if( pOp->opcode==OP_SeekEnd ){ assert( pOp->p2==0 ); pC->seekResult = -1; if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ break; } } rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( rc ) goto abort_due_to_error; if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; } break; } /* Opcode: IfSmaller P1 P2 P3 * * ** ** Estimate the number of rows in the table P1. Jump to P2 if that ** estimate is less than approximately 2**(0.1*P3). */ case OP_IfSmaller: { /* jump */ VdbeCursor *pC; BtCursor *pCrsr; int res; i64 sz; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->uc.pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); if( rc ) goto abort_due_to_error; if( res==0 ){ sz = sqlite3BtreeRowCountEst(pCrsr); if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)p3 ) res = 1; } VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } /* Opcode: SorterSort P1 P2 * * * ** ** After all records have been inserted into the Sorter object ** identified by P1, invoke this opcode to actually do the sorting. ** Jump to P2 if there are no records to be sorted. ** ** This opcode is an alias for OP_Sort and OP_Rewind that is used ** for Sorter objects. */ /* Opcode: Sort P1 P2 * * * ** ** This opcode does exactly the same thing as OP_Rewind except that ** it increments an undocumented global variable used for testing. ** ** Sorting is accomplished by writing records into a sorting index, ** then rewinding that index and playing it back from beginning to ** end. We use the OP_Sort opcode instead of OP_Rewind to do the ** rewinding so that the global variable will be incremented and ** regression tests can determine whether or not the optimizer is ** correctly optimizing out sorts. */ case OP_SorterSort: /* jump ncycle */ case OP_Sort: { /* jump ncycle */ #ifdef SQLITE_TEST sqlite3_sort_count++; sqlite3_search_count--; #endif p->aCounter[SQLITE_STMTSTATUS_SORT]++; /* Fall through into OP_Rewind */ /* no break */ deliberate_fall_through } /* Opcode: Rewind P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty, jump immediately to P2. ** If the table or index is not empty, fall through to the following ** instruction. ** ** If P2 is zero, that is an assertion that the P1 table is never ** empty and hence the jump will never be taken. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. */ case OP_Rewind: { /* jump, ncycle */ VdbeCursor *pC; BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p5==0 ); assert( pOp->p2>=0 && pOp->p2nOp ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); res = 1; #ifdef SQLITE_DEBUG pC->seekOp = OP_Rewind; #endif if( isSorter(pC) ){ rc = sqlite3VdbeSorterRewind(pC, &res); }else{ assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } if( rc ) goto abort_due_to_error; pC->nullRow = (u8)res; if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; } break; } /* Opcode: Next P1 P2 P3 * P5 ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. ** ** The Next opcode is only valid following an SeekGT, SeekGE, or ** OP_Rewind opcode used to position the cursor. Next is not allowed ** to follow SeekLT, SeekLE, or OP_Last. ** ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have ** been opened prior to this opcode or the program will segfault. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. ** ** See also: Prev */ /* Opcode: Prev P1 P2 P3 * P5 ** ** Back up cursor P1 so that it points to the previous key/data pair in its ** table or index. If there is no previous key/value pairs then fall through ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. ** ** ** The Prev opcode is only valid following an SeekLT, SeekLE, or ** OP_Last opcode used to position the cursor. Prev is not allowed ** to follow SeekGT, SeekGE, or OP_Rewind. ** ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is ** not open then the behavior is undefined. ** ** The P3 value is a hint to the btree implementation. If P3==1, that ** means P1 is an SQL index and that this instruction could have been ** omitted if that index had been unique. P3 is usually 0. P3 is ** always either 0 or 1. ** ** If P5 is positive and the jump is taken, then event counter ** number P5-1 in the prepared statement is incremented. */ /* Opcode: SorterNext P1 P2 * * P5 ** ** This opcode works just like OP_Next except that P1 must be a ** sorter object for which the OP_SorterSort opcode has been ** invoked. This opcode advances the cursor to the next sorted ** record, or jumps to P2 if there are no more sorted records. */ case OP_SorterNext: { /* jump */ VdbeCursor *pC; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterNext(db, pC); goto next_tail; case OP_Prev: /* jump, ncycle */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p5==0 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope || pC->seekOp==OP_NullRow); rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); goto next_tail; case OP_Next: /* jump, ncycle */ assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p5==0 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->deferredMoveto==0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid || pC->seekOp==OP_IfNoHope); rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); next_tail: pC->cacheStatus = CACHE_STALE; VdbeBranchTaken(rc==SQLITE_OK,2); if( rc==SQLITE_OK ){ pC->nullRow = 0; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif goto jump_to_p2_and_check_for_interrupt; } if( rc!=SQLITE_DONE ) goto abort_due_to_error; rc = SQLITE_OK; pC->nullRow = 1; goto check_for_interrupt; } /* Opcode: IdxInsert P1 P2 P3 P4 P5 ** Synopsis: key=r[P2] ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the index P1. Data for the entry is nil. ** ** If P4 is not zero, then it is the number of values in the unpacked ** key of reg(P2). In that case, P3 is the index of the first register ** for the unpacked key. The availability of the unpacked key can sometimes ** be an optimization. ** ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer ** that this insert is likely to be an append. ** ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, ** then the change counter is unchanged. ** ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might ** run faster by avoiding an unnecessary seek on cursor P1. However, ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior ** seeks on the cursor or if the most recent seek used a key equivalent ** to P2. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; BtreePayload x; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; sqlite3VdbeIncrWriteCounter(p, pC); assert( pC!=0 ); assert( !isSorter(pC) ); pIn2 = &aMem[pOp->p2]; assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc ) goto abort_due_to_error; x.nKey = pIn2->n; x.pKey = pIn2->z; x.aMem = aMem + pOp->p3; x.nMem = (u16)pOp->p4.i; rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) ); assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; if( rc) goto abort_due_to_error; break; } /* Opcode: SorterInsert P1 P2 * * * ** Synopsis: key=r[P2] ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the sorter P1. Data for the entry is nil. */ case OP_SorterInsert: { /* in2 */ VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; sqlite3VdbeIncrWriteCounter(p, pC); assert( pC!=0 ); assert( isSorter(pC) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc ) goto abort_due_to_error; rc = sqlite3VdbeSorterWrite(pC, pIn2); if( rc) goto abort_due_to_error; break; } /* Opcode: IdxDelete P1 P2 P3 * P5 ** Synopsis: key=r[P2@P3] ** ** The content of P3 registers starting at register P2 form ** an unpacked index key. This opcode removes that entry from the ** index opened by cursor P1. ** ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error ** if no matching index entry is found. This happens when running ** an UPDATE or DELETE statement and the index entry to be updated ** or deleted is not found. For some uses of IdxDelete ** (example: the EXCEPT operator) it does not matter that no matching ** entry is found. For those cases, P5 is zero. Also, do not raise ** this (self-correcting and non-critical) error if in writable_schema mode. */ case OP_IdxDelete: { VdbeCursor *pC; BtCursor *pCrsr; int res; UnpackedRecord r; assert( pOp->p3>0 ); assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); sqlite3VdbeIncrWriteCounter(p, pC); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.default_rc = 0; r.aMem = &aMem[pOp->p2]; rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); if( rc ) goto abort_due_to_error; if( res==0 ){ rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); if( rc ) goto abort_due_to_error; }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); goto abort_due_to_error; } assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; pC->seekResult = 0; break; } /* Opcode: DeferredSeek P1 * P3 P4 * ** Synopsis: Move P3 to P1.rowid if needed ** ** P1 is an open index cursor and P3 is a cursor on the corresponding ** table. This opcode does a deferred seek of the P3 table cursor ** to the row that corresponds to the current row of P1. ** ** This is a deferred seek. Nothing actually happens until ** the cursor is used to read a record. That way, if no reads ** occur, no unnecessary I/O happens. ** ** P4 may be an array of integers (type P4_INTARRAY) containing ** one entry for each column in the P3 table. If array entry a(i) ** is non-zero, then reading column a(i)-1 from cursor P3 is ** equivalent to performing the deferred seek and then reading column i ** from P1. This information is stored in P3 and used to redirect ** reads against P3 over to P1, thus possibly avoiding the need to ** seek and read cursor P3. */ /* Opcode: IdxRowid P1 P2 * * * ** Synopsis: r[P2]=rowid ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_DeferredSeek: /* ncycle */ case OP_IdxRowid: { /* out2, ncycle */ VdbeCursor *pC; /* The P1 index cursor */ VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ i64 rowid; /* Rowid that P1 current points to */ assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable==0 || IsNullCursor(pC) ); assert( pC->deferredMoveto==0 ); assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); /* The IdxRowid and Seek opcodes are combined because of the commonality ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ rc = sqlite3VdbeCursorRestore(pC); /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed ** since it was last positioned and an error (e.g. OOM or an IO error) ** occurs while trying to reposition it. */ if( rc!=SQLITE_OK ) goto abort_due_to_error; if( !pC->nullRow ){ rowid = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( pOp->opcode==OP_DeferredSeek ){ assert( pOp->p3>=0 && pOp->p3nCursor ); pTabCur = p->apCsr[pOp->p3]; assert( pTabCur!=0 ); assert( pTabCur->eCurType==CURTYPE_BTREE ); assert( pTabCur->uc.pCursor!=0 ); assert( pTabCur->isTable ); pTabCur->nullRow = 0; pTabCur->movetoTarget = rowid; pTabCur->deferredMoveto = 1; pTabCur->cacheStatus = CACHE_STALE; assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); assert( !pTabCur->isEphemeral ); pTabCur->ub.aAltMap = pOp->p4.ai; assert( !pC->isEphemeral ); pTabCur->pAltCursor = pC; }else{ pOut = out2Prerelease(p, pOp); pOut->u.i = rowid; } }else{ assert( pOp->opcode==OP_IdxRowid ); sqlite3VdbeMemSetNull(&aMem[pOp->p2]); } break; } /* Opcode: FinishSeek P1 * * * * ** ** If cursor P1 was previously moved via OP_DeferredSeek, complete that ** seek operation now, without further delay. If the cursor seek has ** already occurred, this instruction is a no-op. */ case OP_FinishSeek: { /* ncycle */ VdbeCursor *pC; /* The P1 index cursor */ assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; if( pC->deferredMoveto ){ rc = sqlite3VdbeFinishMoveto(pC); if( rc ) goto abort_due_to_error; } break; } /* Opcode: IdxGE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than or equal to the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxGT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxLT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than the key value then jump to P2. ** Otherwise fall through to the next instruction. */ /* Opcode: IdxLE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than or equal to the key value then jump ** to P2. Otherwise fall through to the next instruction. */ case OP_IdxLE: /* jump, ncycle */ case OP_IdxGT: /* jump, ncycle */ case OP_IdxLT: /* jump, ncycle */ case OP_IdxGE: { /* jump, ncycle */ VdbeCursor *pC; int res; UnpackedRecord r; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isOrdered ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0); assert( pC->deferredMoveto==0 ); assert( pOp->p4type==P4_INT32 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; if( pOp->opcodeopcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); r.default_rc = -1; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); r.default_rc = 0; } r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; ip3+i, &aMem[pOp->p3+i]); } } #endif /* Inlined version of sqlite3VdbeIdxKeyCompare() */ { i64 nCellKey = 0; BtCursor *pCur; Mem m; assert( pC->eCurType==CURTYPE_BTREE ); pCur = pC->uc.pCursor; assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); if( rc ) goto abort_due_to_error; res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); sqlite3VdbeMemReleaseMalloc(&m); } /* End of inlined sqlite3VdbeIdxKeyCompare() */ assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); if( (pOp->opcode&1)==(OP_IdxLT&1) ){ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); res = -res; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); res++; } VdbeBranchTaken(res>0,2); assert( rc==SQLITE_OK ); if( res>0 ) goto jump_to_p2; break; } /* Opcode: Destroy P1 P2 P3 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P3==0. If ** P3==1 then the table to be destroyed is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If AUTOVACUUM is enabled then it is possible that another root page ** might be moved into the newly deleted root page in order to keep all ** root pages contiguous at the beginning of the database. The former ** value of the root page that moved - its value before the move occurred - ** is stored in register P2. If no page movement was required (because the ** table being dropped was already the last one in the database) then a ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero ** is stored in register P2. ** ** This opcode throws an error if there are any active reader VMs when ** it is invoked. This is done to avoid the difficulty associated with ** updating existing cursors when a root page is moved in an AUTOVACUUM ** database. This error is thrown even if the database is not an AUTOVACUUM ** db in order to avoid introducing an incompatibility between autovacuum ** and non-autovacuum modes. ** ** See also: Clear */ case OP_Destroy: { /* out2 */ int iMoved; int iDb; sqlite3VdbeIncrWriteCounter(p, 0); assert( p->readOnly==0 ); assert( pOp->p1>1 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; if( db->nVdbeRead > db->nVDestroy+1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; goto abort_due_to_error; }else{ iDb = pOp->p3; assert( DbMaskTest(p->btreeMask, iDb) ); iMoved = 0; /* Not needed. Only to silence a warning. */ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); pOut->flags = MEM_Int; pOut->u.i = iMoved; if( rc ) goto abort_due_to_error; #ifndef SQLITE_OMIT_AUTOVACUUM if( iMoved!=0 ){ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); /* All OP_Destroy operations occur on the same btree */ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); resetSchemaOnFault = iDb+1; } #endif } break; } /* Opcode: Clear P1 P2 P3 ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being cleared is in the main database file if P2==0. If ** P2==1 then the table to be cleared is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If the P3 value is non-zero, then the row change count is incremented ** by the number of rows in the table being cleared. If P3 is greater ** than zero, then the value stored in register P3 is also incremented ** by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { i64 nChange; sqlite3VdbeIncrWriteCounter(p, 0); nChange = 0; assert( p->readOnly==0 ); assert( DbMaskTest(p->btreeMask, pOp->p2) ); rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ assert( memIsValid(&aMem[pOp->p3]) ); memAboutToChange(p, &aMem[pOp->p3]); aMem[pOp->p3].u.i += nChange; } } if( rc ) goto abort_due_to_error; break; } /* Opcode: ResetSorter P1 * * * * ** ** Delete all contents from the ephemeral table or sorter ** that is open on cursor P1. ** ** This opcode only works for cursors used for sorting and ** opened with OP_OpenEphemeral or OP_SorterOpen. */ case OP_ResetSorter: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); if( isSorter(pC) ){ sqlite3VdbeSorterReset(db, pC->uc.pSorter); }else{ assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->isEphemeral ); rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); if( rc ) goto abort_due_to_error; } break; } /* Opcode: CreateBtree P1 P2 P3 * * ** Synopsis: r[P2]=root iDb=P1 flags=P3 ** ** Allocate a new b-tree in the main database file if P1==0 or in the ** TEMP database file if P1==1 or in an attached database if ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. ** The root page number of the new b-tree is stored in register P2. */ case OP_CreateBtree: { /* out2 */ Pgno pgno; Db *pDb; sqlite3VdbeIncrWriteCounter(p, 0); pOut = out2Prerelease(p, pOp); pgno = 0; assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); if( rc ) goto abort_due_to_error; pOut->u.i = pgno; break; } /* Opcode: SqlExec * * * P4 * ** ** Run the SQL statement or statements specified in the P4 string. ** Disable Auth and Trace callbacks while those statements are running if ** P1 is true. */ case OP_SqlExec: { char *zErr; #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth; #endif u8 mTrace; sqlite3VdbeIncrWriteCounter(p, 0); db->nSqlExec++; zErr = 0; #ifndef SQLITE_OMIT_AUTHORIZATION xAuth = db->xAuth; #endif mTrace = db->mTrace; if( pOp->p1 ){ #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = 0; #endif db->mTrace = 0; } rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr); db->nSqlExec--; #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif db->mTrace = mTrace; if( zErr || rc ){ sqlite3VdbeError(p, "%s", zErr); sqlite3_free(zErr); if( rc==SQLITE_NOMEM ) goto no_mem; goto abort_due_to_error; } break; } /* Opcode: ParseSchema P1 * * P4 * ** ** Read and parse all entries from the schema table of database P1 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the ** entire schema for P1 is reparsed. ** ** This opcode invokes the parser to create a new virtual machine, ** then runs the new virtual machine. It is thus a re-entrant opcode. */ case OP_ParseSchema: { int iDb; const char *zSchema; char *zSql; InitData initData; /* Any prepared statement that invokes this opcode will hold mutexes ** on every btree. This is a prerequisite for invoking ** sqlite3InitCallback(). */ #ifdef SQLITE_DEBUG for(iDb=0; iDbnDb; iDb++){ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); } #endif iDb = pOp->p1; assert( iDb>=0 && iDbnDb ); assert( DbHasProperty(db, iDb, DB_SchemaLoaded) || db->mallocFailed || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); #ifndef SQLITE_OMIT_ALTERTABLE if( pOp->p4.z==0 ){ sqlite3SchemaClear(db->aDb[iDb].pSchema); db->mDbFlags &= ~DBFLAG_SchemaKnownOk; rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); db->mDbFlags |= DBFLAG_SchemaChange; p->expired = 0; }else #endif { zSchema = LEGACY_SCHEMA_TABLE; initData.db = db; initData.iDb = iDb; initData.pzErrMsg = &p->zErrMsg; initData.mInitFlags = 0; initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); if( zSql==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ assert( db->init.busy==0 ); db->init.busy = 1; initData.rc = SQLITE_OK; initData.nInitRow = 0; assert( !db->mallocFailed ); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); if( rc==SQLITE_OK ) rc = initData.rc; if( rc==SQLITE_OK && initData.nInitRow==0 ){ /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse ** at least one SQL statement. Any less than that indicates that ** the sqlite_schema table is corrupt. */ rc = SQLITE_CORRUPT_BKPT; } sqlite3DbFreeNN(db, zSql); db->init.busy = 0; } } if( rc ){ sqlite3ResetAllSchemasOfConnection(db); if( rc==SQLITE_NOMEM ){ goto no_mem; } goto abort_due_to_error; } break; } #if !defined(SQLITE_OMIT_ANALYZE) /* Opcode: LoadAnalysis P1 * * * * ** ** Read the sqlite_stat1 table for database P1 and load the content ** of that table into the internal index hash table. This will cause ** the analysis to be used when preparing all subsequent queries. */ case OP_LoadAnalysis: { assert( pOp->p1>=0 && pOp->p1nDb ); rc = sqlite3AnalysisLoad(db, pOp->p1); if( rc ) goto abort_due_to_error; break; } #endif /* !defined(SQLITE_OMIT_ANALYZE) */ /* Opcode: DropTable P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropIndex P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the index named P4 in database P1. This is called after an index ** is dropped from disk (using the Destroy opcode) ** in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropIndex: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropTrigger P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the trigger named P4 in database P1. This is called after a trigger ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTrigger: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); break; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Opcode: IntegrityCk P1 P2 P3 P4 P5 ** ** Do an analysis of the currently open database. Store in ** register P1 the text of an error message describing any problems. ** If no problems are found, store a NULL in register P1. ** ** The register P3 contains one less than the maximum number of allowed errors. ** At most reg(P3) errors will be reported. ** In other words, the analysis stops as soon as reg(P1) errors are ** seen. Reg(P1) is updated with the number of errors remaining. ** ** The root page numbers of all tables in the database are integers ** stored in P4_INTARRAY argument. ** ** If P5 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used to implement the integrity_check pragma. */ case OP_IntegrityCk: { int nRoot; /* Number of tables to check. (Number of root pages.) */ Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ assert( p->bIsReader ); nRoot = pOp->p2; aRoot = pOp->p4.ai; assert( nRoot>0 ); assert( aRoot[0]==(Pgno)nRoot ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pnErr = &aMem[pOp->p3]; assert( (pnErr->flags & MEM_Int)!=0 ); assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); pIn1 = &aMem[pOp->p1]; assert( pOp->p5nDb ); assert( DbMaskTest(p->btreeMask, pOp->p5) ); rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, (int)pnErr->u.i+1, &nErr, &z); sqlite3VdbeMemSetNull(pIn1); if( nErr==0 ){ assert( z==0 ); }else if( rc ){ sqlite3_free(z); goto abort_due_to_error; }else{ pnErr->u.i -= nErr-1; sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); } UPDATE_MAX_BLOBSIZE(pIn1); sqlite3VdbeChangeEncoding(pIn1, encoding); goto check_for_interrupt; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* Opcode: RowSetAdd P1 P2 * * * ** Synopsis: rowset(P1)=r[P2] ** ** Insert the integer value held by register P2 into a RowSet object ** held in register P1. ** ** An assertion fails if P2 is not an integer. */ case OP_RowSetAdd: { /* in1, in2 */ pIn1 = &aMem[pOp->p1]; pIn2 = &aMem[pOp->p2]; assert( (pIn2->flags & MEM_Int)!=0 ); if( (pIn1->flags & MEM_Blob)==0 ){ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; } assert( sqlite3VdbeMemIsRowSet(pIn1) ); sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); break; } /* Opcode: RowSetRead P1 P2 P3 * * ** Synopsis: r[P3]=rowset(P1) ** ** Extract the smallest value from the RowSet object in P1 ** and put that value into register P3. ** Or, if RowSet object P1 is initially empty, leave P3 ** unchanged and jump to instruction P2. */ case OP_RowSetRead: { /* jump, in1, out3 */ i64 val; pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); if( (pIn1->flags & MEM_Blob)==0 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); VdbeBranchTaken(1,2); goto jump_to_p2_and_check_for_interrupt; }else{ /* A value was pulled from the index */ VdbeBranchTaken(0,2); sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** ** Register P3 is assumed to hold a 64-bit integer value. If register P1 ** contains a RowSet object and that RowSet object contains ** the value held in P3, jump to register P2. Otherwise, insert the ** integer in P3 into the RowSet and continue on to the ** next opcode. ** ** The RowSet object is optimized for the case where sets of integers ** are inserted in distinct phases, which each set contains no duplicates. ** Each set is identified by a unique P4 value. The first set ** must have P4==0, the final set must have P4==-1, and for all other sets ** must have P4>0. ** ** This allows optimizations: (a) when P4==0 there is no need to test ** the RowSet object for P3, as it is guaranteed not to contain it, ** (b) when P4==-1 there is no need to insert the value, as it will ** never be tested for, and (c) when a value that is part of set X is ** inserted, there is no need to search to see if the same value was ** previously inserted as part of set X (only if it was previously ** inserted as part of some other set). */ case OP_RowSetTest: { /* jump, in1, in3 */ int iSet; int exists; pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; iSet = pOp->p4.i; assert( pIn3->flags&MEM_Int ); /* If there is anything other than a rowset object in memory cell P1, ** delete it now and initialize P1 with an empty rowset */ if( (pIn1->flags & MEM_Blob)==0 ){ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; } assert( sqlite3VdbeMemIsRowSet(pIn1) ); assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); VdbeBranchTaken(exists!=0,2); if( exists ) goto jump_to_p2; } if( iSet>=0 ){ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); } break; } #ifndef SQLITE_OMIT_TRIGGER /* Opcode: Program P1 P2 P3 P4 P5 ** ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). ** ** P1 contains the address of the memory cell that contains the first memory ** cell in an array of values used as arguments to the sub-program. P2 ** contains the address to jump to if the sub-program throws an IGNORE ** exception using the RAISE() function. Register P3 contains the address ** of a memory cell in this (the parent) VM that is used to allocate the ** memory required by the sub-vdbe at runtime. ** ** P4 is a pointer to the VM containing the trigger program. ** ** If P5 is non-zero, then recursive program invocation is enabled. */ case OP_Program: { /* jump */ int nMem; /* Number of memory registers for sub-program */ int nByte; /* Bytes of runtime space required for sub-program */ Mem *pRt; /* Register to allocate runtime space */ Mem *pMem; /* Used to iterate through memory cells */ Mem *pEnd; /* Last memory cell in new array */ VdbeFrame *pFrame; /* New vdbe frame to execute in */ SubProgram *pProgram; /* Sub-program to execute */ void *t; /* Token identifying trigger */ pProgram = pOp->p4.pProgram; pRt = &aMem[pOp->p3]; assert( pProgram->nOp>0 ); /* If the p5 flag is clear, then recursive invocation of triggers is ** disabled for backwards compatibility (p5 is set if this sub-program ** is really a trigger, not a foreign key action, and the flag set ** and cleared by the "PRAGMA recursive_triggers" command is clear). ** ** It is recursive invocation of triggers, at the SQL level, that is ** disabled. In some cases a single trigger may generate more than one ** SubProgram (if the trigger may be executed with more than one different ** ON CONFLICT algorithm). SubProgram structures associated with a ** single trigger all have the same value for the SubProgram.token ** variable. */ if( pOp->p5 ){ t = pProgram->token; for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); if( pFrame ) break; } if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "too many levels of trigger recursion"); goto abort_due_to_error; } /* Register pRt is used to store the memory required to save the state ** of the current program, and the memory required at runtime to execute ** the trigger program. If this trigger has been fired before, then pRt ** is already allocated. Otherwise, it must be initialized. */ if( (pRt->flags&MEM_Blob)==0 ){ /* SubProgram.nMem is set to the number of memory cells used by the ** program stored in SubProgram.aOp. As well as these, one memory ** cell is required for each cursor used by the program. Set local ** variable nMem (and later, VdbeFrame.nChildMem) to this value. */ nMem = pProgram->nMem + pProgram->nCsr; assert( nMem>0 ); if( pProgram->nCsr==0 ) nMem++; nByte = ROUND8(sizeof(VdbeFrame)) + nMem * sizeof(Mem) + pProgram->nCsr * sizeof(VdbeCursor*) + (pProgram->nOp + 7)/8; pFrame = sqlite3DbMallocZero(db, nByte); if( !pFrame ){ goto no_mem; } sqlite3VdbeMemRelease(pRt); pRt->flags = MEM_Blob|MEM_Dyn; pRt->z = (char*)pFrame; pRt->n = nByte; pRt->xDel = sqlite3VdbeFrameMemDel; pFrame->v = p; pFrame->nChildMem = nMem; pFrame->nChildCsr = pProgram->nCsr; pFrame->pc = (int)(pOp - aOp); pFrame->aMem = p->aMem; pFrame->nMem = p->nMem; pFrame->apCsr = p->apCsr; pFrame->nCursor = p->nCursor; pFrame->aOp = p->aOp; pFrame->nOp = p->nOp; pFrame->token = pProgram->token; #ifdef SQLITE_DEBUG pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; #endif pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = (VdbeFrame*)pRt->z; assert( pRt->xDel==sqlite3VdbeFrameMemDel ); assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( (int)(pOp - aOp)==pFrame->pc ); } p->nFrame++; pFrame->pParent = p->pFrame; pFrame->lastRowid = db->lastRowid; pFrame->nChange = p->nChange; pFrame->nDbChange = p->db->nChange; assert( pFrame->pAuxData==0 ); pFrame->pAuxData = p->pAuxData; p->pAuxData = 0; p->nChange = 0; p->pFrame = pFrame; p->aMem = aMem = VdbeFrameMem(pFrame); p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem]; pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; #ifdef SQLITE_DEBUG /* Verify that second and subsequent executions of the same trigger do not ** try to reuse register values from the first use. */ { int i; for(i=0; inMem; i++){ aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ } } #endif pOp = &aOp[-1]; goto check_for_interrupt; } /* Opcode: Param P1 P2 * * * ** ** This opcode is only ever present in sub-programs called via the ** OP_Program instruction. Copy a value currently stored in a memory ** cell of the calling (parent) frame to cell P2 in the current frames ** address space. This is used by trigger programs to access the new.* ** and old.* values. ** ** The address of the cell in the parent frame is determined by adding ** the value of the P1 argument to the value of the P1 argument to the ** calling OP_Program instruction. */ case OP_Param: { /* out2 */ VdbeFrame *pFrame; Mem *pIn; pOut = out2Prerelease(p, pOp); pFrame = p->pFrame; pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_FOREIGN_KEY /* Opcode: FkCounter P1 P2 * * * ** Synopsis: fkctr[P1]+=P2 ** ** Increment a "constraint counter" by P2 (P2 may be negative or positive). ** If P1 is non-zero, the database constraint counter is incremented ** (deferred foreign key constraints). Otherwise, if P1 is zero, the ** statement counter is incremented (immediate foreign key constraints). */ case OP_FkCounter: { if( db->flags & SQLITE_DeferFKs ){ db->nDeferredImmCons += pOp->p2; }else if( pOp->p1 ){ db->nDeferredCons += pOp->p2; }else{ p->nFkConstraint += pOp->p2; } break; } /* Opcode: FkIfZero P1 P2 * * * ** Synopsis: if fkctr[P1]==0 goto P2 ** ** This opcode tests if a foreign key constraint-counter is currently zero. ** If so, jump to instruction P2. Otherwise, fall through to the next ** instruction. ** ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; }else{ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* Opcode: MemMax P1 P2 * * * ** Synopsis: r[P1]=max(r[P1],r[P2]) ** ** P1 is a register in the root frame of this VM (the root frame is ** different from the current frame if this instruction is being executed ** within a sub-program). Set the value of register P1 to the maximum of ** its current value and the value in register P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemMax: { /* in2 */ VdbeFrame *pFrame; if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); pIn1 = &pFrame->aMem[pOp->p1]; }else{ pIn1 = &aMem[pOp->p1]; } assert( memIsValid(pIn1) ); sqlite3VdbeMemIntegerify(pIn1); pIn2 = &aMem[pOp->p2]; sqlite3VdbeMemIntegerify(pIn2); if( pIn1->u.iu.i){ pIn1->u.i = pIn2->u.i; } break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 ** ** Register P1 must contain an integer. ** If the value of register P1 is 1 or greater, subtract P3 from the ** value in P1 and jump to P2. ** ** If the initial value of register P1 is less than 1, then the ** value is unchanged and control passes through to the next instruction. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pIn1->u.i -= pOp->p3; goto jump_to_p2; } break; } /* Opcode: OffsetLimit P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) ** ** This opcode performs a commonly used computation associated with ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] ** holds the offset counter. The opcode computes the combined value ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] ** value computed is the total number of rows that will need to be ** visited in order to complete the query. ** ** If r[P3] is zero or negative, that means there is no OFFSET ** and r[P2] is set to be the value of the LIMIT, r[P1]. ** ** if r[P1] is zero or negative, that means there is no LIMIT ** and r[P2] is set to -1. ** ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. */ case OP_OffsetLimit: { /* in1, out2, in3 */ i64 x; pIn1 = &aMem[pOp->p1]; pIn3 = &aMem[pOp->p3]; pOut = out2Prerelease(p, pOp); assert( pIn1->flags & MEM_Int ); assert( pIn3->flags & MEM_Int ); x = pIn1->u.i; if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ /* If the LIMIT is less than or equal to zero, loop forever. This ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then ** also loop forever. This is undocumented. In fact, one could argue ** that the loop should terminate. But assuming 1 billion iterations ** per second (far exceeding the capabilities of any current hardware) ** it would take nearly 300 years to actually reach the limit. So ** looping forever is a reasonable approximation. */ pOut->u.i = -1; }else{ pOut->u.i = x; } break; } /* Opcode: IfNotZero P1 P2 * * * ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 ** ** Register P1 must contain an integer. If the content of register P1 is ** initially greater than zero, then decrement the value in register P1. ** If it is non-zero (negative or positive) and then also jump to P2. ** If register P1 is initially zero, leave it unchanged and fall through. */ case OP_IfNotZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i ){ if( pIn1->u.i>0 ) pIn1->u.i--; goto jump_to_p2; } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 ** ** Register P1 must hold an integer. Decrement the value in P1 ** and jump to P2 if the new value is exactly zero. */ case OP_DecrJumpZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ) goto jump_to_p2; break; } /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the xStep function for an aggregate. ** The function has P5 arguments. P4 is a pointer to the ** FuncDef structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ /* Opcode: AggInverse * P2 P3 P4 P5 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) ** ** Execute the xInverse function for an aggregate. ** The function has P5 arguments. P4 is a pointer to the ** FuncDef structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ /* Opcode: AggStep1 P1 P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an ** aggregate. The function has P5 arguments. P4 is a pointer to the ** FuncDef structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. ** ** This opcode is initially coded as OP_AggStep0. On first evaluation, ** the FuncDef stored in P4 is converted into an sqlite3_context and ** the opcode is changed. In this way, the initialization of the ** sqlite3_context only happens once, instead of on each call to the ** step function. */ case OP_AggInverse: case OP_AggStep: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); assert( pOp->p3p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); if( pCtx==0 ) goto no_mem; pCtx->pMem = 0; pCtx->pOut = (Mem*)&(pCtx->argv[n]); sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->skipFlag = 0; pCtx->isError = 0; pCtx->enc = encoding; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); pOp->opcode = OP_AggStep1; /* Fall through into OP_AggStep */ /* no break */ deliberate_fall_through } case OP_AggStep1: { int i; sqlite3_context *pCtx; Mem *pMem; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; pMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG if( pOp->p1 ){ /* This is an OP_AggInverse call. Verify that xStep has always ** been called at least once prior to any xInverse call. */ assert( pMem->uTemp==0x1122e0e3 ); }else{ /* This is an OP_AggStep call. Mark it as such. */ pMem->uTemp = 0x1122e0e3; } #endif /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relevant parts of the sqlite3_context object */ if( pCtx->pMem != pMem ){ pCtx->pMem = pMem; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } #ifdef SQLITE_DEBUG for(i=0; iargc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif pMem->n++; assert( pCtx->pOut->flags==MEM_Null ); assert( pCtx->isError==0 ); assert( pCtx->skipFlag==0 ); #ifndef SQLITE_OMIT_WINDOWFUNC if( pOp->p1 ){ (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); }else #endif (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ if( pCtx->isError ){ if( pCtx->isError>0 ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); rc = pCtx->isError; } if( pCtx->skipFlag ){ assert( pOp[-1].opcode==OP_CollSeq ); i = pOp[-1].p1; if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); pCtx->skipFlag = 0; } sqlite3VdbeMemRelease(pCtx->pOut); pCtx->pOut->flags = MEM_Null; pCtx->isError = 0; if( rc ) goto abort_due_to_error; } assert( pCtx->pOut->flags==MEM_Null ); assert( pCtx->skipFlag==0 ); break; } /* Opcode: AggFinal P1 P2 * P4 * ** Synopsis: accum=r[P1] N=P2 ** ** P1 is the memory location that is the accumulator for an aggregate ** or window function. Execute the finalizer function ** for an aggregate and store the result in P1. ** ** P2 is the number of arguments that the step function takes and ** P4 is a pointer to the FuncDef for this function. The P2 ** argument is not used by this opcode. It is only there to disambiguate ** functions that can take varying numbers of arguments. The ** P4 argument is only needed for the case where ** the step function was not previously called. */ /* Opcode: AggValue * P2 P3 P4 * ** Synopsis: r[P3]=value N=P2 ** ** Invoke the xValue() function and store the result in register P3. ** ** P2 is the number of arguments that the step function takes and ** P4 is a pointer to the FuncDef for this function. The P2 ** argument is not used by this opcode. It is only there to disambiguate ** functions that can take varying numbers of arguments. The ** P4 argument is only needed for the case where ** the step function was not previously called. */ case OP_AggValue: case OP_AggFinal: { Mem *pMem; assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); pMem = &aMem[pOp->p1]; assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); #ifndef SQLITE_OMIT_WINDOWFUNC if( pOp->p3 ){ memAboutToChange(p, &aMem[pOp->p3]); rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); pMem = &aMem[pOp->p3]; }else #endif { rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); } if( rc ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); goto abort_due_to_error; } sqlite3VdbeChangeEncoding(pMem, encoding); UPDATE_MAX_BLOBSIZE(pMem); REGISTER_TRACE((int)(pMem-aMem), pMem); break; } #ifndef SQLITE_OMIT_WAL /* Opcode: Checkpoint P1 P2 P3 * * ** ** Checkpoint database P1. This is a no-op if P1 is not currently in ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns ** SQLITE_BUSY or not, respectively. Write the number of pages in the ** WAL after the checkpoint into mem[P3+1] and the number of pages ** in the WAL that have been checkpointed after the checkpoint ** completes into mem[P3+2]. However on an error, mem[P3+1] and ** mem[P3+2] are initialized to -1. */ case OP_Checkpoint: { int i; /* Loop counter */ int aRes[3]; /* Results */ Mem *pMem; /* Write results here */ assert( p->readOnly==0 ); aRes[0] = 0; aRes[1] = aRes[2] = -1; assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE || pOp->p2==SQLITE_CHECKPOINT_FULL || pOp->p2==SQLITE_CHECKPOINT_RESTART || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE ); rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); if( rc ){ if( rc!=SQLITE_BUSY ) goto abort_due_to_error; rc = SQLITE_OK; aRes[0] = 1; } for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); } break; }; #endif #ifndef SQLITE_OMIT_PRAGMA /* Opcode: JournalMode P1 P2 P3 * * ** ** Change the journal mode of database P1 to P3. P3 must be one of the ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback ** modes (delete, truncate, persist, off and memory), this is a simple ** operation. No IO is required. ** ** If changing into or out of WAL mode the procedure is more complicated. ** ** Write a string containing the final journal-mode to register P2. */ case OP_JournalMode: { /* out2 */ Btree *pBt; /* Btree to change journal mode of */ Pager *pPager; /* Pager associated with pBt */ int eNew; /* New journal mode */ int eOld; /* The old journal mode */ #ifndef SQLITE_OMIT_WAL const char *zFilename; /* Name of database file for pPager */ #endif pOut = out2Prerelease(p, pOp); eNew = pOp->p3; assert( eNew==PAGER_JOURNALMODE_DELETE || eNew==PAGER_JOURNALMODE_TRUNCATE || eNew==PAGER_JOURNALMODE_PERSIST || eNew==PAGER_JOURNALMODE_OFF || eNew==PAGER_JOURNALMODE_MEMORY || eNew==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1nDb ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; pPager = sqlite3BtreePager(pBt); eOld = sqlite3PagerGetJournalMode(pPager); if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; assert( sqlite3BtreeHoldsMutex(pBt) ); if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; #ifndef SQLITE_OMIT_WAL zFilename = sqlite3PagerFilename(pPager, 1); /* Do not allow a transition to journal_mode=WAL for a database ** in temporary storage or if the VFS does not support shared memory */ if( eNew==PAGER_JOURNALMODE_WAL && (sqlite3Strlen30(zFilename)==0 /* Temp file */ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ ){ eNew = eOld; } if( (eNew!=eOld) && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) ){ if( !db->autoCommit || db->nVdbeRead>1 ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "cannot change %s wal mode from within a transaction", (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") ); goto abort_due_to_error; }else{ if( eOld==PAGER_JOURNALMODE_WAL ){ /* If leaving WAL mode, close the log file. If successful, the call ** to PagerCloseWal() checkpoints and deletes the write-ahead-log ** file. An EXCLUSIVE lock may still be held on the database file ** after a successful return. */ rc = sqlite3PagerCloseWal(pPager, db); if( rc==SQLITE_OK ){ sqlite3PagerSetJournalMode(pPager, eNew); } }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ /* Cannot transition directly from MEMORY to WAL. Use mode OFF ** as an intermediate */ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); } /* Open a transaction on the database file. Regardless of the journal ** mode, this transaction always uses a rollback journal. */ assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); if( rc==SQLITE_OK ){ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); } } } #endif /* ifndef SQLITE_OMIT_WAL */ if( rc ) eNew = eOld; eNew = sqlite3PagerSetJournalMode(pPager, eNew); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = (char *)sqlite3JournalModename(eNew); pOut->n = sqlite3Strlen30(pOut->z); pOut->enc = SQLITE_UTF8; sqlite3VdbeChangeEncoding(pOut, encoding); if( rc ) goto abort_due_to_error; break; }; #endif /* SQLITE_OMIT_PRAGMA */ #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* Opcode: Vacuum P1 P2 * * * ** ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more ** for an attached database. The "temp" database may not be vacuumed. ** ** If P2 is not zero, then it is a register holding a string which is ** the file into which the result of vacuum should be written. When ** P2 is zero, the vacuum overwrites the original database. */ case OP_Vacuum: { assert( p->readOnly==0 ); rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, pOp->p2 ? &aMem[pOp->p2] : 0); if( rc ) goto abort_due_to_error; break; } #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) /* Opcode: IncrVacuum P1 P2 * * * ** ** Perform a single step of the incremental vacuum procedure on ** the P1 database. If the vacuum has finished, jump to instruction ** P2. Otherwise, fall through to the next instruction. */ case OP_IncrVacuum: { /* jump */ Btree *pBt; assert( pOp->p1>=0 && pOp->p1nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); VdbeBranchTaken(rc==SQLITE_DONE,2); if( rc ){ if( rc!=SQLITE_DONE ) goto abort_due_to_error; rc = SQLITE_OK; goto jump_to_p2; } break; } #endif /* Opcode: Expire P1 P2 * * * ** ** Cause precompiled statements to expire. When an expired statement ** is executed using sqlite3_step() it will either automatically ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) ** or it will fail with SQLITE_SCHEMA. ** ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, ** then only the currently executing statement is expired. ** ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, ** then running SQL statements are allowed to continue to run to completion. ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens ** that might help the statement run faster but which does not affect the ** correctness of operation. */ case OP_Expire: { assert( pOp->p2==0 || pOp->p2==1 ); if( !pOp->p1 ){ sqlite3ExpirePreparedStatements(db, pOp->p2); }else{ p->expired = pOp->p2+1; } break; } /* Opcode: CursorLock P1 * * * * ** ** Lock the btree to which cursor P1 is pointing so that the btree cannot be ** written by an other cursor. */ case OP_CursorLock: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorPin(pC->uc.pCursor); break; } /* Opcode: CursorUnlock P1 * * * * ** ** Unlock the btree to which cursor P1 is pointing so that it can be ** written by other cursors. */ case OP_CursorUnlock: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorUnpin(pC->uc.pCursor); break; } #ifndef SQLITE_OMIT_SHARED_CACHE /* Opcode: TableLock P1 P2 P3 P4 * ** Synopsis: iDb=P1 root=P2 write=P3 ** ** Obtain a lock on a particular table. This instruction is only used when ** the shared-cache feature is enabled. ** ** P1 is the index of the database in sqlite3.aDb[] of the database ** on which the lock is acquired. A readlock is obtained if P3==0 or ** a write lock if P3==1. ** ** P2 contains the root-page of the table to lock. ** ** P4 contains a pointer to the name of the table being locked. This is only ** used to generate an error message if the lock cannot be obtained. */ case OP_TableLock: { u8 isWriteLock = (u8)pOp->p3; if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ int p1 = pOp->p1; assert( p1>=0 && p1nDb ); assert( DbMaskTest(p->btreeMask, p1) ); assert( isWriteLock==0 || isWriteLock==1 ); rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); if( rc ){ if( (rc&0xFF)==SQLITE_LOCKED ){ const char *z = pOp->p4.z; sqlite3VdbeError(p, "database table is locked: %s", z); } goto abort_due_to_error; } } break; } #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VBegin * * * P4 * ** ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the ** xBegin method for that table. ** ** Also, whether or not P4 is set, check that this is not being called from ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { VTable *pVTab; pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVTab); if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 P2 * * * ** ** P2 is a register that holds the name of a virtual table in database ** P1. Call the xCreate method for that table. */ case OP_VCreate: { Mem sMem; /* For storing the record being decoded */ const char *zTab; /* Name of the virtual table */ memset(&sMem, 0, sizeof(sMem)); sMem.db = db; /* Because P2 is always a static string, it is impossible for the ** sqlite3VdbeMemCopy() to fail */ assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); assert( rc==SQLITE_OK ); zTab = (const char*)sqlite3_value_text(&sMem); assert( zTab || db->mallocFailed ); if( zTab ){ rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); } sqlite3VdbeMemRelease(&sMem); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VDestroy P1 * * P4 * ** ** P4 is the name of a virtual table in database P1. Call the xDestroy method ** of that table. */ case OP_VDestroy: { db->nVDestroy++; rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); db->nVDestroy--; assert( p->errorAction==OE_Abort && p->usesStmtJournal ); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { /* ncycle */ VdbeCursor *pCur; sqlite3_vtab_cursor *pVCur; sqlite3_vtab *pVtab; const sqlite3_module *pModule; assert( p->bIsReader ); pCur = 0; pVCur = 0; pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; rc = pModule->xOpen(pVtab, &pVCur); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; /* Initialize sqlite3_vtab_cursor base class */ pVCur->pVtab = pVtab; /* Initialize vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); if( pCur ){ pCur->uc.pVCur = pVCur; pVtab->nRef++; }else{ assert( db->mallocFailed ); pModule->xClose(pVCur); goto no_mem; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCheck P1 P2 P3 P4 * ** ** P4 is a pointer to a Table object that is a virtual table in schema P1 ** that supports the xIntegrity() method. This opcode runs the xIntegrity() ** method for that virtual table, using P3 as the integer argument. If ** an error is reported back, the table name is prepended to the error ** message and that message is stored in P2. If no errors are seen, ** register P2 is set to NULL. */ case OP_VCheck: { /* out2 */ Table *pTab; sqlite3_vtab *pVtab; const sqlite3_module *pModule; char *zErr = 0; pOut = &aMem[pOp->p2]; sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */ assert( pOp->p4type==P4_TABLEREF ); pTab = pOp->p4.pTab; assert( pTab!=0 ); assert( pTab->nTabRef>0 ); assert( IsVirtual(pTab) ); if( pTab->u.vtab.p==0 ) break; pVtab = pTab->u.vtab.p->pVtab; assert( pVtab!=0 ); pModule = pVtab->pModule; assert( pModule!=0 ); assert( pModule->iVersion>=4 ); assert( pModule->xIntegrity!=0 ); sqlite3VtabLock(pTab->u.vtab.p); assert( pOp->p1>=0 && pOp->p1nDb ); rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName, pOp->p3, &zErr); sqlite3VtabUnlock(pTab->u.vtab.p); if( rc ){ sqlite3_free(zErr); goto abort_due_to_error; } if( zErr ){ sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free); } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VInitIn P1 P2 P3 * * ** Synopsis: r[P2]=ValueList(P1,P3) ** ** Set register P2 to be a pointer to a ValueList object for cursor P1 ** with cache register P3 and output register P3+1. This ValueList object ** can be used as the first argument to sqlite3_vtab_in_first() and ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 ** cursor. Register P3 is used to hold the values returned by ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). */ case OP_VInitIn: { /* out2, ncycle */ VdbeCursor *pC; /* The cursor containing the RHS values */ ValueList *pRhs; /* New ValueList object to put in reg[P2] */ pC = p->apCsr[pOp->p1]; pRhs = sqlite3_malloc64( sizeof(*pRhs) ); if( pRhs==0 ) goto no_mem; pRhs->pCsr = pC->uc.pCursor; pRhs->pOut = &aMem[pOp->p3]; pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VFilter P1 P2 P3 P4 * ** Synopsis: iplan=r[P3] zplan='P4' ** ** P1 is a cursor opened using VOpen. P2 is an address to jump to if ** the filtered result set is empty. ** ** P4 is either NULL or a string that was generated by the xBestIndex ** method of the module. The interpretation of the P4 string is left ** to the module implementation. ** ** This opcode invokes the xFilter method on the virtual table specified ** by P1. The integer query plan parameter to xFilter is stored in register ** P3. Register P3+1 stores the argc parameter to be passed to the ** xFilter method. Registers P3+2..P3+1+argc are the argc ** additional parameters which are passed to ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. ** ** A jump is made to P2 if the result set after filtering would be empty. */ case OP_VFilter: { /* jump, ncycle */ int nArg; int iQuery; const sqlite3_module *pModule; Mem *pQuery; Mem *pArgc; sqlite3_vtab_cursor *pVCur; sqlite3_vtab *pVtab; VdbeCursor *pCur; int res; int i; Mem **apArg; pQuery = &aMem[pOp->p3]; pArgc = &pQuery[1]; pCur = p->apCsr[pOp->p1]; assert( memIsValid(pQuery) ); REGISTER_TRACE(pOp->p3, pQuery); assert( pCur!=0 ); assert( pCur->eCurType==CURTYPE_VTAB ); pVCur = pCur->uc.pVCur; pVtab = pVCur->pVtab; pModule = pVtab->pModule; /* Grab the index number and argc parameters */ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); nArg = (int)pArgc->u.i; iQuery = (int)pQuery->u.i; /* Invoke the xFilter method */ apArg = p->apArg; for(i = 0; ixFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; res = pModule->xEof(pVCur); pCur->nullRow = 0; VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VColumn P1 P2 P3 * P5 ** Synopsis: r[P3]=vcolumn(P2) ** ** Store in register P3 the value of the P2-th column of ** the current row of the virtual-table of cursor P1. ** ** If the VColumn opcode is being used to fetch the value of ** an unchanging column during an UPDATE operation, then the P5 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() ** function to return true inside the xColumn method of the virtual ** table implementation. The P5 column might also contain other ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are ** unused by OP_VColumn. */ case OP_VColumn: { /* ncycle */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; Mem *pDest; sqlite3_context sContext; FuncDef nullFunc; VdbeCursor *pCur = p->apCsr[pOp->p1]; assert( pCur!=0 ); assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); if( pCur->nullRow ){ sqlite3VdbeMemSetNull(pDest); break; } assert( pCur->eCurType==CURTYPE_VTAB ); pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); sContext.pOut = pDest; sContext.enc = encoding; nullFunc.pUserData = 0; nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE; sContext.pFunc = &nullFunc; assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); if( pOp->p5 & OPFLAG_NOCHNG ){ sqlite3VdbeMemSetNull(pDest); pDest->flags = MEM_Null|MEM_Zero; pDest->u.nZero = 0; }else{ MemSetTypeFlag(pDest, MEM_Null); } rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); sqlite3VtabImportErrmsg(p, pVtab); if( sContext.isError>0 ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); rc = sContext.isError; } sqlite3VdbeChangeEncoding(pDest, encoding); REGISTER_TRACE(pOp->p3, pDest); UPDATE_MAX_BLOBSIZE(pDest); if( rc ) goto abort_due_to_error; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VNext P1 P2 * * * ** ** Advance virtual table P1 to the next row in its result set and ** jump to instruction P2. Or, if the virtual table has reached ** the end of its result set, then fall through to the next instruction. */ case OP_VNext: { /* jump, ncycle */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; int res; VdbeCursor *pCur; pCur = p->apCsr[pOp->p1]; assert( pCur!=0 ); assert( pCur->eCurType==CURTYPE_VTAB ); if( pCur->nullRow ){ break; } pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xNext ); /* Invoke the xNext() method of the module. There is no way for the ** underlying implementation to return an error if one occurs during ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ rc = pModule->xNext(pCur->uc.pVCur); sqlite3VtabImportErrmsg(p, pVtab); if( rc ) goto abort_due_to_error; res = pModule->xEof(pCur->uc.pVCur); VdbeBranchTaken(!res,2); if( !res ){ /* If there is data, jump to P2 */ goto jump_to_p2_and_check_for_interrupt; } goto check_for_interrupt; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; int isLegacy; isLegacy = (db->flags & SQLITE_LegacyAlter); db->flags |= SQLITE_LegacyAlter; pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); assert( memIsValid(pName) ); assert( p->readOnly==0 ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); testcase( pName->enc==SQLITE_UTF8 ); testcase( pName->enc==SQLITE_UTF16BE ); testcase( pName->enc==SQLITE_UTF16LE ); rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); if( rc ) goto abort_due_to_error; rc = pVtab->pModule->xRename(pVtab, pName->z); if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; sqlite3VtabImportErrmsg(p, pVtab); p->expired = 0; if( rc ) goto abort_due_to_error; break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 P5 ** Synopsis: data=r[P3@P2] ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xUpdate method. P2 values ** are contiguous memory cells starting at P3 to pass to the xUpdate ** invocation. The value in register (P3+P2-1) corresponds to the ** p2th element of the argv array passed to xUpdate. ** ** The xUpdate method will do a DELETE or an INSERT or both. ** The argv[0] element (which corresponds to memory cell P3) ** is the rowid of a row to delete. If argv[0] is NULL then no ** deletion occurs. The argv[1] element is the rowid of the new ** row. This can be NULL to have the virtual table select the new ** rowid for itself. The subsequent elements in the array are ** the values of columns in the new row. ** ** If P2==1 then no insert is performed. argv[0] is the rowid of ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. ** ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to ** apply in the case of a constraint failure on an insert or update. */ case OP_VUpdate: { sqlite3_vtab *pVtab; const sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid = 0; Mem **apArg; Mem *pX; assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); assert( p->readOnly==0 ); if( db->mallocFailed ) goto no_mem; sqlite3VdbeIncrWriteCounter(p, 0); pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; ivtabOnConflict = pOp->p5; rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); db->vtabOnConflict = vtabOnConflict; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); db->lastRowid = rowid; } if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ if( pOp->p5==OE_Ignore ){ rc = SQLITE_OK; }else{ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); } }else{ p->nChange++; } if( rc ) goto abort_due_to_error; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * ** ** Write the current number of pages in database P1 to memory cell P2. */ case OP_Pagecount: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: MaxPgcnt P1 P2 P3 * * ** ** Try to set the maximum page count for database P1 to the value in P3. ** Do not let the maximum page count fall below the current page count and ** do not change the maximum page count value if P3==0. ** ** Store the maximum page count after the change in register P2. */ case OP_MaxPgcnt: { /* out2 */ unsigned int newMax; Btree *pBt; pOut = out2Prerelease(p, pOp); pBt = db->aDb[pOp->p1].pBt; newMax = 0; if( pOp->p3 ){ newMax = sqlite3BtreeLastPage(pBt); if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; } pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); break; } #endif /* Opcode: Function P1 P2 P3 P4 * ** Synopsis: r[P3]=func(r[P2@NP]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with arguments taken ** from register P2 and successors. The number of arguments is in ** the sqlite3_context object that P4 points to. ** The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** See also: AggStep, AggFinal, PureFunc */ /* Opcode: PureFunc P1 P2 P3 P4 * ** Synopsis: r[P3]=func(r[P2@NP]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with arguments taken ** from register P2 and successors. The number of arguments is in ** the sqlite3_context object that P4 points to. ** The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** This opcode works exactly like OP_Function. The only difference is in ** its name. This opcode is used in places where the function must be ** purely non-deterministic. Some built-in date/time functions can be ** either deterministic of non-deterministic, depending on their arguments. ** When those function are used in a non-deterministic way, they will check ** to see if they were called using OP_PureFunc instead of OP_Function, and ** if they were, they throw an error. ** ** See also: AggStep, AggFinal, Function */ case OP_PureFunc: /* group */ case OP_Function: { /* group */ int i; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relevant parts of the sqlite3_context object */ pOut = &aMem[pOp->p3]; if( pCtx->pOut != pOut ){ pCtx->pVdbe = p; pCtx->pOut = pOut; pCtx->enc = encoding; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } assert( pCtx->pVdbe==p ); memAboutToChange(p, pOut); #ifdef SQLITE_DEBUG for(i=0; iargc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif MemSetTypeFlag(pOut, MEM_Null); assert( pCtx->isError==0 ); (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ /* If the function returned an error, throw an exception */ if( pCtx->isError ){ if( pCtx->isError>0 ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); rc = pCtx->isError; } sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); pCtx->isError = 0; if( rc ) goto abort_due_to_error; } assert( (pOut->flags&MEM_Str)==0 || pOut->enc==encoding || db->mallocFailed ); assert( !sqlite3VdbeMemTooBig(pOut) ); REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: ClrSubtype P1 * * * * ** Synopsis: r[P1].subtype = 0 ** ** Clear the subtype from register P1. */ case OP_ClrSubtype: { /* in1 */ pIn1 = &aMem[pOp->p1]; pIn1->flags &= ~MEM_Subtype; break; } /* Opcode: GetSubtype P1 P2 * * * ** Synopsis: r[P2] = r[P1].subtype ** ** Extract the subtype value from register P1 and write that subtype ** into register P2. If P1 has no subtype, then P1 gets a NULL. */ case OP_GetSubtype: { /* in1 out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; if( pIn1->flags & MEM_Subtype ){ sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype); }else{ sqlite3VdbeMemSetNull(pOut); } break; } /* Opcode: SetSubtype P1 P2 * * * ** Synopsis: r[P2].subtype = r[P1] ** ** Set the subtype value of register P2 to the integer from register P1. ** If P1 is NULL, clear the subtype from p2. */ case OP_SetSubtype: { /* in1 out2 */ pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; if( pIn1->flags & MEM_Null ){ pOut->flags &= ~MEM_Subtype; }else{ assert( pIn1->flags & MEM_Int ); pOut->flags |= MEM_Subtype; pOut->eSubtype = (u8)(pIn1->u.i & 0xff); } break; } /* Opcode: FilterAdd P1 * P3 P4 * ** Synopsis: filter(P1) += key(P3@P4) ** ** Compute a hash on the P4 registers starting with r[P3] and ** add that hash to the bloom filter contained in r[P1]. */ case OP_FilterAdd: { u64 h; assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( pIn1->flags & MEM_Blob ); assert( pIn1->n>0 ); h = filterHash(aMem, pOp); #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ int ii; for(ii=pOp->p3; iip3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif h %= (pIn1->n*8); pIn1->z[h/8] |= 1<<(h&7); break; } /* Opcode: Filter P1 P2 P3 P4 * ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 ** ** Compute a hash on the key contained in the P4 registers starting ** with r[P3]. Check to see if that hash is found in the ** bloom filter hosted by register P1. If it is not present then ** maybe jump to P2. Otherwise fall through. ** ** False negatives are harmless. It is always safe to fall through, ** even if the value is in the bloom filter. A false negative causes ** more CPU cycles to be used, but it should still yield the correct ** answer. However, an incorrect answer may well arise from a ** false positive - if the jump is taken when it should fall through. */ case OP_Filter: { /* jump */ u64 h; assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( (pIn1->flags & MEM_Blob)!=0 ); assert( pIn1->n >= 1 ); h = filterHash(aMem, pOp); #ifdef SQLITE_DEBUG if( db->flags&SQLITE_VdbeTrace ){ int ii; for(ii=pOp->p3; iip3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif h %= (pIn1->n*8); if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ VdbeBranchTaken(1, 2); p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; goto jump_to_p2; }else{ p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; VdbeBranchTaken(0, 2); } break; } /* Opcode: Trace P1 P2 * P4 * ** ** Write P4 on the statement trace output if statement tracing is ** enabled. ** ** Operand P1 must be 0x7fffffff and P2 must positive. */ /* Opcode: Init P1 P2 P3 P4 * ** Synopsis: Start at P2 ** ** Programs contain a single instance of this opcode as the very first ** opcode. ** ** If tracing is enabled (by the sqlite3_trace()) interface, then ** the UTF-8 string contained in P4 is emitted on the trace callback. ** Or if P4 is blank, use the string returned by sqlite3_sql(). ** ** If P2 is not zero, jump to instruction P2. ** ** Increment the value of P1 so that OP_Once opcodes will jump the ** first time they are evaluated for this run. ** ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT ** error is encountered. */ case OP_Trace: case OP_Init: { /* jump */ int i; #ifndef SQLITE_OMIT_TRACE char *zTrace; #endif /* If the P4 argument is not NULL, then it must be an SQL comment string. ** The "--" string is broken up to prevent false-positives with srcck1.c. ** ** This assert() provides evidence for: ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that ** would have been returned by the legacy sqlite3_trace() interface by ** using the X argument when X begins with "--" and invoking ** sqlite3_expanded_sql(P) otherwise. */ assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); /* OP_Init is always instruction 0 */ assert( pOp==p->aOp || pOp->opcode==OP_Trace ); #ifndef SQLITE_OMIT_TRACE if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 && p->minWriteFileFormat!=254 /* tag-20220401a */ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ #ifndef SQLITE_OMIT_DEPRECATED if( db->mTrace & SQLITE_TRACE_LEGACY ){ char *z = sqlite3VdbeExpandSql(p, zTrace); db->trace.xLegacy(db->pTraceArg, z); sqlite3_free(z); }else #endif if( db->nVdbeExec>1 ){ char *z = sqlite3MPrintf(db, "-- %s", zTrace); (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); sqlite3DbFree(db, z); }else{ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); } } #ifdef SQLITE_USE_FCNTL_TRACE zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); if( zTrace ){ int j; for(j=0; jnDb; j++){ if( DbMaskTest(p->btreeMask, j)==0 ) continue; sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); } } #endif /* SQLITE_USE_FCNTL_TRACE */ #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); } #endif /* SQLITE_DEBUG */ #endif /* SQLITE_OMIT_TRACE */ assert( pOp->p2>0 ); if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ if( pOp->opcode==OP_Trace ) break; for(i=1; inOp; i++){ if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; } pOp->p1 = 0; } pOp->p1++; p->aCounter[SQLITE_STMTSTATUS_RUN]++; goto jump_to_p2; } #ifdef SQLITE_ENABLE_CURSOR_HINTS /* Opcode: CursorHint P1 * * P4 * ** ** Provide a hint to cursor P1 that it only needs to return rows that ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer ** to values currently held in registers. TK_COLUMN terms in the P4 ** expression refer to columns in the b-tree to which cursor P1 is pointing. */ case OP_CursorHint: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1nCursor ); assert( pOp->p4type==P4_EXPR ); pC = p->apCsr[pOp->p1]; if( pC ){ assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, pOp->p4.pExpr, aMem); } break; } #endif /* SQLITE_ENABLE_CURSOR_HINTS */ #ifdef SQLITE_DEBUG /* Opcode: Abortable * * * * * ** ** Verify that an Abort can happen. Assert if an Abort at this point ** might cause database corruption. This opcode only appears in debugging ** builds. ** ** An Abort is safe if either there have been no writes, or if there is ** an active statement journal. */ case OP_Abortable: { sqlite3VdbeAssertAbortable(p); break; } #endif #ifdef SQLITE_DEBUG /* Opcode: ReleaseReg P1 P2 P3 * P5 ** Synopsis: release r[P1@P2] mask P3 ** ** Release registers from service. Any content that was in the ** the registers is unreliable after this opcode completes. ** ** The registers released will be the P2 registers starting at P1, ** except if bit ii of P3 set, then do not release register P1+ii. ** In other words, P3 is a mask of registers to preserve. ** ** Releasing a register clears the Mem.pScopyFrom pointer. That means ** that if the content of the released register was set using OP_SCopy, ** a change to the value of the source register for the OP_SCopy will no longer ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). ** ** If P5 is set, then all released registers have their type set ** to MEM_Undefined so that any subsequent attempt to read the released ** register (before it is reinitialized) will generate an assertion fault. ** ** P5 ought to be set on every call to this opcode. ** However, there are places in the code generator will release registers ** before their are used, under the (valid) assumption that the registers ** will not be reallocated for some other purpose before they are used and ** hence are safe to release. ** ** This opcode is only available in testing and debugging builds. It is ** not generated for release builds. The purpose of this opcode is to help ** validate the generated bytecode. This opcode does not actually contribute ** to computing an answer. */ case OP_ReleaseReg: { Mem *pMem; int i; u32 constMask; assert( pOp->p1>0 ); assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); pMem = &aMem[pOp->p1]; constMask = pOp->p3; for(i=0; ip2; i++, pMem++){ if( i>=32 || (constMask & MASKBIT32(i))==0 ){ pMem->pScopyFrom = 0; if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); } } break; } #endif /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ /* ** The magic Explain opcode are only inserted when explain==2 (which ** is to say when the EXPLAIN QUERY PLAN syntax is used.) ** This opcode records information from the optimizer. It is the ** the same as a no-op. This opcodesnever appears in a real VM program. */ default: { /* This is really OP_Noop, OP_Explain */ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are ** restored. *****************************************************************************/ } #if defined(VDBE_PROFILE) *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); pnCycle = 0; #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( pnCycle ){ *pnCycle += sqlite3Hwtime(); pnCycle = 0; } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; if( rc!=0 ) printf("rc=%d\n",rc); if( opProperty & (OPFLG_OUT2) ){ registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); } if( opProperty & OPFLG_OUT3 ){ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); } if( opProperty==0xff ){ /* Never happens. This code exists to avoid a harmless linkage ** warning about sqlite3VdbeRegisterDump() being defined but not ** used. */ sqlite3VdbeRegisterDump(p); } } #endif /* SQLITE_DEBUG */ #endif /* NDEBUG */ } /* The end of the for(;;) loop the loops through opcodes */ /* If we reach this point, it means that execution is finished with ** an error of some kind. */ abort_due_to_error: if( db->mallocFailed ){ rc = SQLITE_NOMEM_BKPT; }else if( rc==SQLITE_IOERR_CORRUPTFS ){ rc = SQLITE_CORRUPT_BKPT; } assert( rc ); #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ const char *zTrace = p->zSql; if( zTrace==0 ){ if( aOp[0].opcode==OP_Trace ){ zTrace = aOp[0].p4.z; } if( zTrace==0 ) zTrace = "???"; } printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); } #endif if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); } p->rc = rc; sqlite3SystemError(db, rc); testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(rc, "statement aborts at %d: [%s] %s", (int)(pOp - aOp), p->zSql, p->zErrMsg); if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ db->flags |= SQLITE_CorruptRdOnly; } rc = SQLITE_ERROR; if( resetSchemaOnFault>0 ){ sqlite3ResetOneSchema(db, resetSchemaOnFault-1); } /* This is the only way out of this procedure. We have to ** release the mutexes on btrees that were acquired at the ** top. */ vdbe_return: #if defined(VDBE_PROFILE) if( pnCycle ){ *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); pnCycle = 0; } #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( pnCycle ){ *pnCycle += sqlite3Hwtime(); pnCycle = 0; } #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ nProgressLimit += db->nProgressOps; if( db->xProgress(db->pProgressArg) ){ nProgressLimit = LARGEST_UINT64; rc = SQLITE_INTERRUPT; goto abort_due_to_error; } } #endif p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; if( DbMaskNonZero(p->lockMask) ){ sqlite3VdbeLeave(p); } assert( rc!=SQLITE_OK || nExtraDelete==0 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 ); return rc; /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH ** is encountered. */ too_big: sqlite3VdbeError(p, "string or blob too big"); rc = SQLITE_TOOBIG; goto abort_due_to_error; /* Jump to here if a malloc() fails. */ no_mem: sqlite3OomFault(db); sqlite3VdbeError(p, "out of memory"); rc = SQLITE_NOMEM_BKPT; goto abort_due_to_error; /* Jump to here if the sqlite3_interrupt() API sets the interrupt ** flag. */ abort_due_to_interrupt: assert( AtomicLoad(&db->u1.isInterrupted) ); rc = SQLITE_INTERRUPT; goto abort_due_to_error; } /************** End of vdbe.c ************************************************/ /************** Begin file vdbeblob.c ****************************************/ /* ** 2007 May 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement incremental BLOB I/O. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ #ifndef SQLITE_OMIT_INCRBLOB /* ** Valid sqlite3_blob* handles point to Incrblob structures. */ typedef struct Incrblob Incrblob; struct Incrblob { int nByte; /* Size of open blob, in bytes */ int iOffset; /* Byte offset of blob in cursor data */ u16 iCol; /* Table column this handle is open on */ BtCursor *pCsr; /* Cursor pointing at blob row */ sqlite3_stmt *pStmt; /* Statement holding cursor open */ sqlite3 *db; /* The associated database */ char *zDb; /* Database name */ Table *pTab; /* Table object */ }; /* ** This function is used by both blob_open() and blob_reopen(). It seeks ** the b-tree cursor associated with blob handle p to point to row iRow. ** If successful, SQLITE_OK is returned and subsequent calls to ** sqlite3_blob_read() or sqlite3_blob_write() access the specified row. ** ** If an error occurs, or if the specified row does not exist or does not ** contain a value of type TEXT or BLOB in the column nominated when the ** blob handle was opened, then an error code is returned and *pzErr may ** be set to point to a buffer containing an error message. It is the ** responsibility of the caller to free the error message buffer using ** sqlite3DbFree(). ** ** If an error does occur, then the b-tree cursor is closed. All subsequent ** calls to sqlite3_blob_read(), blob_write() or blob_reopen() will ** immediately return SQLITE_ABORT. */ static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){ int rc; /* Error code */ char *zErr = 0; /* Error message */ Vdbe *v = (Vdbe *)p->pStmt; /* Set the value of register r[1] in the SQL statement to integer iRow. ** This is done directly as a performance optimization */ sqlite3VdbeMemSetInt64(&v->aMem[1], iRow); /* If the statement has been run before (and is paused at the OP_ResultRow) ** then back it up to the point where it does the OP_NotExists. This could ** have been down with an extra OP_Goto, but simply setting the program ** counter is faster. */ if( v->pc>4 ){ v->pc = 4; assert( v->aOp[v->pc].opcode==OP_NotExists ); rc = sqlite3VdbeExec(v); }else{ rc = sqlite3_step(p->pStmt); } if( rc==SQLITE_ROW ){ VdbeCursor *pC = v->apCsr[0]; u32 type; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); type = pC->nHdrParsed>p->iCol ? pC->aType[p->iCol] : 0; testcase( pC->nHdrParsed==p->iCol ); testcase( pC->nHdrParsed==p->iCol+1 ); if( type<12 ){ zErr = sqlite3MPrintf(p->db, "cannot open value of type %s", type==0?"null": type==7?"real": "integer" ); rc = SQLITE_ERROR; sqlite3_finalize(p->pStmt); p->pStmt = 0; }else{ p->iOffset = pC->aType[p->iCol + pC->nField]; p->nByte = sqlite3VdbeSerialTypeLen(type); p->pCsr = pC->uc.pCursor; sqlite3BtreeIncrblobCursor(p->pCsr); } } if( rc==SQLITE_ROW ){ rc = SQLITE_OK; }else if( p->pStmt ){ rc = sqlite3_finalize(p->pStmt); p->pStmt = 0; if( rc==SQLITE_OK ){ zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow); rc = SQLITE_ERROR; }else{ zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db)); } } assert( rc!=SQLITE_OK || zErr==0 ); assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE ); *pzErr = zErr; return rc; } /* ** Open a blob handle. */ SQLITE_API int sqlite3_blob_open( sqlite3* db, /* The database connection */ const char *zDb, /* The attached database containing the blob */ const char *zTable, /* The table containing the blob */ const char *zColumn, /* The column containing the blob */ sqlite_int64 iRow, /* The row containing the glob */ int wrFlag, /* True -> read/write access, false -> read-only */ sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */ ){ int nAttempt = 0; int iCol; /* Index of zColumn in row-record */ int rc = SQLITE_OK; char *zErr = 0; Table *pTab; Incrblob *pBlob = 0; Parse sParse; #ifdef SQLITE_ENABLE_API_ARMOR if( ppBlob==0 ){ return SQLITE_MISUSE_BKPT; } #endif *ppBlob = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zTable==0 || zColumn==0 ){ return SQLITE_MISUSE_BKPT; } #endif wrFlag = !!wrFlag; /* wrFlag = (wrFlag ? 1 : 0); */ sqlite3_mutex_enter(db->mutex); pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob)); while(1){ sqlite3ParseObjectInit(&sParse,db); if( !pBlob ) goto blob_open_out; sqlite3DbFree(db, zErr); zErr = 0; sqlite3BtreeEnterAll(db); pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb); if( pTab && IsVirtual(pTab) ){ pTab = 0; sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable); } if( pTab && !HasRowid(pTab) ){ pTab = 0; sqlite3ErrorMsg(&sParse, "cannot open table without rowid: %s", zTable); } #ifndef SQLITE_OMIT_VIEW if( pTab && IsView(pTab) ){ pTab = 0; sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable); } #endif if( !pTab ){ if( sParse.zErrMsg ){ sqlite3DbFree(db, zErr); zErr = sParse.zErrMsg; sParse.zErrMsg = 0; } rc = SQLITE_ERROR; sqlite3BtreeLeaveAll(db); goto blob_open_out; } pBlob->pTab = pTab; pBlob->zDb = db->aDb[sqlite3SchemaToIndex(db, pTab->pSchema)].zDbSName; /* Now search pTab for the exact column. */ for(iCol=0; iColnCol; iCol++) { if( sqlite3StrICmp(pTab->aCol[iCol].zCnName, zColumn)==0 ){ break; } } if( iCol==pTab->nCol ){ sqlite3DbFree(db, zErr); zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn); rc = SQLITE_ERROR; sqlite3BtreeLeaveAll(db); goto blob_open_out; } /* If the value is being opened for writing, check that the ** column is not indexed, and that it is not part of a foreign key. */ if( wrFlag ){ const char *zFault = 0; Index *pIdx; #ifndef SQLITE_OMIT_FOREIGN_KEY if( db->flags&SQLITE_ForeignKeys ){ /* Check that the column is not part of an FK child key definition. It ** is not necessary to check if it is part of a parent key, as parent ** key columns must be indexed. The check below will pick up this ** case. */ FKey *pFKey; assert( IsOrdinaryTable(pTab) ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ int j; for(j=0; jnCol; j++){ if( pFKey->aCol[j].iFrom==iCol ){ zFault = "foreign key"; } } } } #endif for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int j; for(j=0; jnKeyCol; j++){ /* FIXME: Be smarter about indexes that use expressions */ if( pIdx->aiColumn[j]==iCol || pIdx->aiColumn[j]==XN_EXPR ){ zFault = "indexed"; } } } if( zFault ){ sqlite3DbFree(db, zErr); zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault); rc = SQLITE_ERROR; sqlite3BtreeLeaveAll(db); goto blob_open_out; } } pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(&sParse); assert( pBlob->pStmt || db->mallocFailed ); if( pBlob->pStmt ){ /* This VDBE program seeks a btree cursor to the identified ** db/table/row entry. The reason for using a vdbe program instead ** of writing code to use the b-tree layer directly is that the ** vdbe program will take advantage of the various transaction, ** locking and error handling infrastructure built into the vdbe. ** ** After seeking the cursor, the vdbe executes an OP_ResultRow. ** Code external to the Vdbe then "borrows" the b-tree cursor and ** uses it to implement the blob_read(), blob_write() and ** blob_bytes() functions. ** ** The sqlite3_blob_close() function finalizes the vdbe program, ** which closes the b-tree cursor and (possibly) commits the ** transaction. */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList openBlob[] = { {OP_TableLock, 0, 0, 0}, /* 0: Acquire a read or write lock */ {OP_OpenRead, 0, 0, 0}, /* 1: Open a cursor */ /* blobSeekToRow() will initialize r[1] to the desired rowid */ {OP_NotExists, 0, 5, 1}, /* 2: Seek the cursor to rowid=r[1] */ {OP_Column, 0, 0, 1}, /* 3 */ {OP_ResultRow, 1, 0, 0}, /* 4 */ {OP_Halt, 0, 0, 0}, /* 5 */ }; Vdbe *v = (Vdbe *)pBlob->pStmt; int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); VdbeOp *aOp; sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, wrFlag, pTab->pSchema->schema_cookie, pTab->pSchema->iGeneration); sqlite3VdbeChangeP5(v, 1); assert( sqlite3VdbeCurrentAddr(v)==2 || db->mallocFailed ); aOp = sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn); /* Make sure a mutex is held on the table to be accessed */ sqlite3VdbeUsesBtree(v, iDb); if( db->mallocFailed==0 ){ assert( aOp!=0 ); /* Configure the OP_TableLock instruction */ #ifdef SQLITE_OMIT_SHARED_CACHE aOp[0].opcode = OP_Noop; #else aOp[0].p1 = iDb; aOp[0].p2 = pTab->tnum; aOp[0].p3 = wrFlag; sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT); } if( db->mallocFailed==0 ){ #endif /* Remove either the OP_OpenWrite or OpenRead. Set the P2 ** parameter of the other to pTab->tnum. */ if( wrFlag ) aOp[1].opcode = OP_OpenWrite; aOp[1].p2 = pTab->tnum; aOp[1].p3 = iDb; /* Configure the number of columns. Configure the cursor to ** think that the table has one more column than it really ** does. An OP_Column to retrieve this imaginary column will ** always return an SQL NULL. This is useful because it means ** we can invoke OP_Column to fill in the vdbe cursors type ** and offset cache without causing any IO. */ aOp[1].p4type = P4_INT32; aOp[1].p4.i = pTab->nCol+1; aOp[3].p2 = pTab->nCol; sParse.nVar = 0; sParse.nMem = 1; sParse.nTab = 1; sqlite3VdbeMakeReady(v, &sParse); } } pBlob->iCol = iCol; pBlob->db = db; sqlite3BtreeLeaveAll(db); if( db->mallocFailed ){ goto blob_open_out; } rc = blobSeekToRow(pBlob, iRow, &zErr); if( (++nAttempt)>=SQLITE_MAX_SCHEMA_RETRY || rc!=SQLITE_SCHEMA ) break; sqlite3ParseObjectReset(&sParse); } blob_open_out: if( rc==SQLITE_OK && db->mallocFailed==0 ){ *ppBlob = (sqlite3_blob *)pBlob; }else{ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); sqlite3DbFree(db, pBlob); } sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr); sqlite3DbFree(db, zErr); sqlite3ParseObjectReset(&sParse); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Close a blob handle that was previously created using ** sqlite3_blob_open(). */ SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; int rc; sqlite3 *db; if( p ){ sqlite3_stmt *pStmt = p->pStmt; db = p->db; sqlite3_mutex_enter(db->mutex); sqlite3DbFree(db, p); sqlite3_mutex_leave(db->mutex); rc = sqlite3_finalize(pStmt); }else{ rc = SQLITE_OK; } return rc; } /* ** Perform a read or write operation on a blob */ static int blobReadWrite( sqlite3_blob *pBlob, void *z, int n, int iOffset, int (*xCall)(BtCursor*, u32, u32, void*) ){ int rc; Incrblob *p = (Incrblob *)pBlob; Vdbe *v; sqlite3 *db; if( p==0 ) return SQLITE_MISUSE_BKPT; db = p->db; sqlite3_mutex_enter(db->mutex); v = (Vdbe*)p->pStmt; if( n<0 || iOffset<0 || ((sqlite3_int64)iOffset+n)>p->nByte ){ /* Request is out of range. Return a transient error. */ rc = SQLITE_ERROR; }else if( v==0 ){ /* If there is no statement handle, then the blob-handle has ** already been invalidated. Return SQLITE_ABORT in this case. */ rc = SQLITE_ABORT; }else{ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is ** returned, clean-up the statement handle. */ assert( db == v->db ); sqlite3BtreeEnterCursor(p->pCsr); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( xCall==sqlite3BtreePutData && db->xPreUpdateCallback ){ /* If a pre-update hook is registered and this is a write cursor, ** invoke it here. ** ** TODO: The preupdate-hook is passed SQLITE_DELETE, even though this ** operation should really be an SQLITE_UPDATE. This is probably ** incorrect, but is convenient because at this point the new.* values ** are not easily obtainable. And for the sessions module, an ** SQLITE_UPDATE where the PK columns do not change is handled in the ** same way as an SQLITE_DELETE (the SQLITE_DELETE code is actually ** slightly more efficient). Since you cannot write to a PK column ** using the incremental-blob API, this works. For the sessions module ** anyhow. */ sqlite3_int64 iKey; iKey = sqlite3BtreeIntegerKey(p->pCsr); assert( v->apCsr[0]!=0 ); assert( v->apCsr[0]->eCurType==CURTYPE_BTREE ); sqlite3VdbePreUpdateHook( v, v->apCsr[0], SQLITE_DELETE, p->zDb, p->pTab, iKey, -1, p->iCol ); } #endif rc = xCall(p->pCsr, iOffset+p->iOffset, n, z); sqlite3BtreeLeaveCursor(p->pCsr); if( rc==SQLITE_ABORT ){ sqlite3VdbeFinalize(v); p->pStmt = 0; }else{ v->rc = rc; } } sqlite3Error(db, rc); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Read data from a blob handle. */ SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){ return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreePayloadChecked); } /* ** Write data to a blob handle. */ SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){ return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData); } /* ** Query a blob handle for the size of the data. ** ** The Incrblob.nByte field is fixed for the lifetime of the Incrblob ** so no mutex is required for access. */ SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; return (p && p->pStmt) ? p->nByte : 0; } /* ** Move an existing blob handle to point to a different row of the same ** database table. ** ** If an error occurs, or if the specified row does not exist or does not ** contain a blob or text value, then an error code is returned and the ** database handle error code and message set. If this happens, then all ** subsequent calls to sqlite3_blob_xxx() functions (except blob_close()) ** immediately return SQLITE_ABORT. */ SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){ int rc; Incrblob *p = (Incrblob *)pBlob; sqlite3 *db; if( p==0 ) return SQLITE_MISUSE_BKPT; db = p->db; sqlite3_mutex_enter(db->mutex); if( p->pStmt==0 ){ /* If there is no statement handle, then the blob-handle has ** already been invalidated. Return SQLITE_ABORT in this case. */ rc = SQLITE_ABORT; }else{ char *zErr; ((Vdbe*)p->pStmt)->rc = SQLITE_OK; rc = blobSeekToRow(p, iRow, &zErr); if( rc!=SQLITE_OK ){ sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr); sqlite3DbFree(db, zErr); } assert( rc!=SQLITE_SCHEMA ); } rc = sqlite3ApiExit(db, rc); assert( rc==SQLITE_OK || p->pStmt==0 ); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* #ifndef SQLITE_OMIT_INCRBLOB */ /************** End of vdbeblob.c ********************************************/ /************** Begin file vdbesort.c ****************************************/ /* ** 2011-07-09 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code for the VdbeSorter object, used in concert with ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements ** or by SELECT statements with ORDER BY clauses that cannot be satisfied ** using indexes and without LIMIT clauses. ** ** The VdbeSorter object implements a multi-threaded external merge sort ** algorithm that is efficient even if the number of elements being sorted ** exceeds the available memory. ** ** Here is the (internal, non-API) interface between this module and the ** rest of the SQLite system: ** ** sqlite3VdbeSorterInit() Create a new VdbeSorter object. ** ** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter ** object. The row is a binary blob in the ** OP_MakeRecord format that contains both ** the ORDER BY key columns and result columns ** in the case of a SELECT w/ ORDER BY, or ** the complete record for an index entry ** in the case of a CREATE INDEX. ** ** sqlite3VdbeSorterRewind() Sort all content previously added. ** Position the read cursor on the ** first sorted element. ** ** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted ** element. ** ** sqlite3VdbeSorterRowkey() Return the complete binary blob for the ** row currently under the read cursor. ** ** sqlite3VdbeSorterCompare() Compare the binary blob for the row ** currently under the read cursor against ** another binary blob X and report if ** X is strictly less than the read cursor. ** Used to enforce uniqueness in a ** CREATE UNIQUE INDEX statement. ** ** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim ** all resources. ** ** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This ** is like Close() followed by Init() only ** much faster. ** ** The interfaces above must be called in a particular order. Write() can ** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e. ** ** Init() ** for each record: Write() ** Rewind() ** Rowkey()/Compare() ** Next() ** Close() ** ** Algorithm: ** ** Records passed to the sorter via calls to Write() are initially held ** unsorted in main memory. Assuming the amount of memory used never exceeds ** a threshold, when Rewind() is called the set of records is sorted using ** an in-memory merge sort. In this case, no temporary files are required ** and subsequent calls to Rowkey(), Next() and Compare() read records ** directly from main memory. ** ** If the amount of space used to store records in main memory exceeds the ** threshold, then the set of records currently in memory are sorted and ** written to a temporary file in "Packed Memory Array" (PMA) format. ** A PMA created at this point is known as a "level-0 PMA". Higher levels ** of PMAs may be created by merging existing PMAs together - for example ** merging two or more level-0 PMAs together creates a level-1 PMA. ** ** The threshold for the amount of main memory to use before flushing ** records to a PMA is roughly the same as the limit configured for the ** page-cache of the main database. Specifically, the threshold is set to ** the value returned by "PRAGMA main.page_size" multiplied by ** that returned by "PRAGMA main.cache_size", in bytes. ** ** If the sorter is running in single-threaded mode, then all PMAs generated ** are appended to a single temporary file. Or, if the sorter is running in ** multi-threaded mode then up to (N+1) temporary files may be opened, where ** N is the configured number of worker threads. In this case, instead of ** sorting the records and writing the PMA to a temporary file itself, the ** calling thread usually launches a worker thread to do so. Except, if ** there are already N worker threads running, the main thread does the work ** itself. ** ** The sorter is running in multi-threaded mode if (a) the library was built ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater ** than zero, and (b) worker threads have been enabled at runtime by calling ** "PRAGMA threads=N" with some value of N greater than 0. ** ** When Rewind() is called, any data remaining in memory is flushed to a ** final PMA. So at this point the data is stored in some number of sorted ** PMAs within temporary files on disk. ** ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the ** sorter is running in single-threaded mode, then these PMAs are merged ** incrementally as keys are retrieved from the sorter by the VDBE. The ** MergeEngine object, described in further detail below, performs this ** merge. ** ** Or, if running in multi-threaded mode, then a background thread is ** launched to merge the existing PMAs. Once the background thread has ** merged T bytes of data into a single sorted PMA, the main thread ** begins reading keys from that PMA while the background thread proceeds ** with merging the next T bytes of data. And so on. ** ** Parameter T is set to half the value of the memory threshold used ** by Write() above to determine when to create a new PMA. ** ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when ** Rewind() is called, then a hierarchy of incremental-merges is used. ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on ** disk are merged together. Then T bytes of data from the second set, and ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT ** PMAs at a time. This done is to improve locality. ** ** If running in multi-threaded mode and there are more than ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more ** than one background thread may be created. Specifically, there may be ** one background thread for each temporary file on disk, and one background ** thread to merge the output of each of the others to a single PMA for ** the main thread to read from. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ /* ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various ** messages to stderr that may be helpful in understanding the performance ** characteristics of the sorter in multi-threaded mode. */ #if 0 # define SQLITE_DEBUG_SORTER_THREADS 1 #endif /* ** Hard-coded maximum amount of data to accumulate in memory before flushing ** to a level 0 PMA. The purpose of this limit is to prevent various integer ** overflows. 512MiB. */ #define SQLITE_MAX_PMASZ (1<<29) /* ** Private objects used by the sorter */ typedef struct MergeEngine MergeEngine; /* Merge PMAs together */ typedef struct PmaReader PmaReader; /* Incrementally read one PMA */ typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */ typedef struct SorterRecord SorterRecord; /* A record being sorted */ typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */ typedef struct SorterFile SorterFile; /* Temporary file object wrapper */ typedef struct SorterList SorterList; /* In-memory list of records */ typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */ /* ** A container for a temp file handle and the current amount of data ** stored in the file. */ struct SorterFile { sqlite3_file *pFd; /* File handle */ i64 iEof; /* Bytes of data stored in pFd */ }; /* ** An in-memory list of objects to be sorted. ** ** If aMemory==0 then each object is allocated separately and the objects ** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects ** are stored in the aMemory[] bulk memory, one right after the other, and ** are connected using SorterRecord.u.iNext. */ struct SorterList { SorterRecord *pList; /* Linked list of records */ u8 *aMemory; /* If non-NULL, bulk memory to hold pList */ i64 szPMA; /* Size of pList as PMA in bytes */ }; /* ** The MergeEngine object is used to combine two or more smaller PMAs into ** one big PMA using a merge operation. Separate PMAs all need to be ** combined into one big PMA in order to be able to step through the sorted ** records in order. ** ** The aReadr[] array contains a PmaReader object for each of the PMAs being ** merged. An aReadr[] object either points to a valid key or else is at EOF. ** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.) ** For the purposes of the paragraphs below, we assume that the array is ** actually N elements in size, where N is the smallest power of 2 greater ** to or equal to the number of PMAs being merged. The extra aReadr[] elements ** are treated as if they are empty (always at EOF). ** ** The aTree[] array is also N elements in size. The value of N is stored in ** the MergeEngine.nTree variable. ** ** The final (N/2) elements of aTree[] contain the results of comparing ** pairs of PMA keys together. Element i contains the result of ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the ** aTree element is set to the index of it. ** ** For the purposes of this comparison, EOF is considered greater than any ** other key value. If the keys are equal (only possible with two EOF ** values), it doesn't matter which index is stored. ** ** The (N/4) elements of aTree[] that precede the final (N/2) described ** above contains the index of the smallest of each block of 4 PmaReaders ** And so on. So that aTree[1] contains the index of the PmaReader that ** currently points to the smallest key value. aTree[0] is unused. ** ** Example: ** ** aReadr[0] -> Banana ** aReadr[1] -> Feijoa ** aReadr[2] -> Elderberry ** aReadr[3] -> Currant ** aReadr[4] -> Grapefruit ** aReadr[5] -> Apple ** aReadr[6] -> Durian ** aReadr[7] -> EOF ** ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } ** ** The current element is "Apple" (the value of the key indicated by ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will ** be advanced to the next key in its segment. Say the next key is ** "Eggplant": ** ** aReadr[5] -> Eggplant ** ** The contents of aTree[] are updated first by comparing the new PmaReader ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Bananafile2. And instead of using a ** background thread to prepare data for the PmaReader, with a single ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with ** keys from pMerger by the calling thread whenever the PmaReader runs out ** of data. */ struct IncrMerger { SortSubtask *pTask; /* Task that owns this merger */ MergeEngine *pMerger; /* Merge engine thread reads data from */ i64 iStartOff; /* Offset to start writing file at */ int mxSz; /* Maximum bytes of data to store */ int bEof; /* Set to true when merge is finished */ int bUseThread; /* True to use a bg thread for this object */ SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */ }; /* ** An instance of this object is used for writing a PMA. ** ** The PMA is written one record at a time. Each record is of an arbitrary ** size. But I/O is more efficient if it occurs in page-sized blocks where ** each block is aligned on a page boundary. This object caches writes to ** the PMA so that aligned, page-size blocks are written. */ struct PmaWriter { int eFWErr; /* Non-zero if in an error state */ u8 *aBuffer; /* Pointer to write buffer */ int nBuffer; /* Size of write buffer in bytes */ int iBufStart; /* First byte of buffer to write */ int iBufEnd; /* Last byte of buffer to write */ i64 iWriteOff; /* Offset of start of buffer in file */ sqlite3_file *pFd; /* File handle to write to */ }; /* ** This object is the header on a single record while that record is being ** held in memory and prior to being written out as part of a PMA. ** ** How the linked list is connected depends on how memory is being managed ** by this module. If using a separate allocation for each in-memory record ** (VdbeSorter.list.aMemory==0), then the list is always connected using the ** SorterRecord.u.pNext pointers. ** ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0), ** then while records are being accumulated the list is linked using the ** SorterRecord.u.iNext offset. This is because the aMemory[] array may ** be sqlite3Realloc()ed while records are being accumulated. Once the VM ** has finished passing records to the sorter, or when the in-memory buffer ** is full, the list is sorted. As part of the sorting process, it is ** converted to use the SorterRecord.u.pNext pointers. See function ** vdbeSorterSort() for details. */ struct SorterRecord { int nVal; /* Size of the record in bytes */ union { SorterRecord *pNext; /* Pointer to next record in list */ int iNext; /* Offset within aMemory of next record */ } u; /* The data for the record immediately follows this header */ }; /* Return a pointer to the buffer containing the record data for SorterRecord ** object p. Should be used as if: ** ** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; } */ #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1)) /* Maximum number of PMAs that a single MergeEngine can merge */ #define SORTER_MAX_MERGE_COUNT 16 static int vdbeIncrSwap(IncrMerger*); static void vdbeIncrFree(IncrMerger *); /* ** Free all memory belonging to the PmaReader object passed as the ** argument. All structure fields are set to zero before returning. */ static void vdbePmaReaderClear(PmaReader *pReadr){ sqlite3_free(pReadr->aAlloc); sqlite3_free(pReadr->aBuffer); if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); vdbeIncrFree(pReadr->pIncr); memset(pReadr, 0, sizeof(PmaReader)); } /* ** Read the next nByte bytes of data from the PMA p. ** If successful, set *ppOut to point to a buffer containing the data ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite ** error code. ** ** The buffer returned in *ppOut is only valid until the ** next call to this function. */ static int vdbePmaReadBlob( PmaReader *p, /* PmaReader from which to take the blob */ int nByte, /* Bytes of data to read */ u8 **ppOut /* OUT: Pointer to buffer containing data */ ){ int iBuf; /* Offset within buffer to read from */ int nAvail; /* Bytes of data available in buffer */ if( p->aMap ){ *ppOut = &p->aMap[p->iReadOff]; p->iReadOff += nByte; return SQLITE_OK; } assert( p->aBuffer ); /* If there is no more data to be read from the buffer, read the next ** p->nBuffer bytes of data from the file into it. Or, if there are less ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */ iBuf = p->iReadOff % p->nBuffer; if( iBuf==0 ){ int nRead; /* Bytes to read from disk */ int rc; /* sqlite3OsRead() return code */ /* Determine how many bytes of data to read. */ if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){ nRead = p->nBuffer; }else{ nRead = (int)(p->iEof - p->iReadOff); } assert( nRead>0 ); /* Readr data from the file. Return early if an error occurs. */ rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff); assert( rc!=SQLITE_IOERR_SHORT_READ ); if( rc!=SQLITE_OK ) return rc; } nAvail = p->nBuffer - iBuf; if( nByte<=nAvail ){ /* The requested data is available in the in-memory buffer. In this ** case there is no need to make a copy of the data, just return a ** pointer into the buffer to the caller. */ *ppOut = &p->aBuffer[iBuf]; p->iReadOff += nByte; }else{ /* The requested data is not all available in the in-memory buffer. ** In this case, allocate space at p->aAlloc[] to copy the requested ** range into. Then return a copy of pointer p->aAlloc to the caller. */ int nRem; /* Bytes remaining to copy */ /* Extend the p->aAlloc[] allocation if required. */ if( p->nAllocnAlloc); while( nByte>nNew ) nNew = nNew*2; aNew = sqlite3Realloc(p->aAlloc, nNew); if( !aNew ) return SQLITE_NOMEM_BKPT; p->nAlloc = nNew; p->aAlloc = aNew; } /* Copy as much data as is available in the buffer into the start of ** p->aAlloc[]. */ memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail); p->iReadOff += nAvail; nRem = nByte - nAvail; /* The following loop copies up to p->nBuffer bytes per iteration into ** the p->aAlloc[] buffer. */ while( nRem>0 ){ int rc; /* vdbePmaReadBlob() return code */ int nCopy; /* Number of bytes to copy */ u8 *aNext; /* Pointer to buffer to copy data from */ nCopy = nRem; if( nRem>p->nBuffer ) nCopy = p->nBuffer; rc = vdbePmaReadBlob(p, nCopy, &aNext); if( rc!=SQLITE_OK ) return rc; assert( aNext!=p->aAlloc ); memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy); nRem -= nCopy; } *ppOut = p->aAlloc; } return SQLITE_OK; } /* ** Read a varint from the stream of data accessed by p. Set *pnOut to ** the value read. */ static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){ int iBuf; if( p->aMap ){ p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut); }else{ iBuf = p->iReadOff % p->nBuffer; if( iBuf && (p->nBuffer-iBuf)>=9 ){ p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut); }else{ u8 aVarint[16], *a; int i = 0, rc; do{ rc = vdbePmaReadBlob(p, 1, &a); if( rc ) return rc; aVarint[(i++)&0xf] = a[0]; }while( (a[0]&0x80)!=0 ); sqlite3GetVarint(aVarint, pnOut); } } return SQLITE_OK; } /* ** Attempt to memory map file pFile. If successful, set *pp to point to the ** new mapping and return SQLITE_OK. If the mapping is not attempted ** (because the file is too large or the VFS layer is configured not to use ** mmap), return SQLITE_OK and set *pp to NULL. ** ** Or, if an error occurs, return an SQLite error code. The final value of ** *pp is undefined in this case. */ static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){ int rc = SQLITE_OK; if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){ sqlite3_file *pFd = pFile->pFd; if( pFd->pMethods->iVersion>=3 ){ rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp); testcase( rc!=SQLITE_OK ); } } return rc; } /* ** Attach PmaReader pReadr to file pFile (if it is not already attached to ** that file) and seek it to offset iOff within the file. Return SQLITE_OK ** if successful, or an SQLite error code if an error occurs. */ static int vdbePmaReaderSeek( SortSubtask *pTask, /* Task context */ PmaReader *pReadr, /* Reader whose cursor is to be moved */ SorterFile *pFile, /* Sorter file to read from */ i64 iOff /* Offset in pFile */ ){ int rc = SQLITE_OK; assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 ); if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ; if( pReadr->aMap ){ sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap); pReadr->aMap = 0; } pReadr->iReadOff = iOff; pReadr->iEof = pFile->iEof; pReadr->pFd = pFile->pFd; rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap); if( rc==SQLITE_OK && pReadr->aMap==0 ){ int pgsz = pTask->pSorter->pgsz; int iBuf = pReadr->iReadOff % pgsz; if( pReadr->aBuffer==0 ){ pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz); if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT; pReadr->nBuffer = pgsz; } if( rc==SQLITE_OK && iBuf ){ int nRead = pgsz - iBuf; if( (pReadr->iReadOff + nRead) > pReadr->iEof ){ nRead = (int)(pReadr->iEof - pReadr->iReadOff); } rc = sqlite3OsRead( pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff ); testcase( rc!=SQLITE_OK ); } } return rc; } /* ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if ** no error occurs, or an SQLite error code if one does. */ static int vdbePmaReaderNext(PmaReader *pReadr){ int rc = SQLITE_OK; /* Return Code */ u64 nRec = 0; /* Size of record in bytes */ if( pReadr->iReadOff>=pReadr->iEof ){ IncrMerger *pIncr = pReadr->pIncr; int bEof = 1; if( pIncr ){ rc = vdbeIncrSwap(pIncr); if( rc==SQLITE_OK && pIncr->bEof==0 ){ rc = vdbePmaReaderSeek( pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff ); bEof = 0; } } if( bEof ){ /* This is an EOF condition */ vdbePmaReaderClear(pReadr); testcase( rc!=SQLITE_OK ); return rc; } } if( rc==SQLITE_OK ){ rc = vdbePmaReadVarint(pReadr, &nRec); } if( rc==SQLITE_OK ){ pReadr->nKey = (int)nRec; rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey); testcase( rc!=SQLITE_OK ); } return rc; } /* ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile ** starting at offset iStart and ending at offset iEof-1. This function ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the ** PMA is empty). ** ** If the pnByte parameter is NULL, then it is assumed that the file ** contains a single PMA, and that that PMA omits the initial length varint. */ static int vdbePmaReaderInit( SortSubtask *pTask, /* Task context */ SorterFile *pFile, /* Sorter file to read from */ i64 iStart, /* Start offset in pFile */ PmaReader *pReadr, /* PmaReader to populate */ i64 *pnByte /* IN/OUT: Increment this value by PMA size */ ){ int rc; assert( pFile->iEof>iStart ); assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 ); assert( pReadr->aBuffer==0 ); assert( pReadr->aMap==0 ); rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart); if( rc==SQLITE_OK ){ u64 nByte = 0; /* Size of PMA in bytes */ rc = vdbePmaReadVarint(pReadr, &nByte); pReadr->iEof = pReadr->iReadOff + nByte; *pnByte += nByte; } if( rc==SQLITE_OK ){ rc = vdbePmaReaderNext(pReadr); } return rc; } /* ** A version of vdbeSorterCompare() that assumes that it has already been ** determined that the first field of key1 is equal to the first field of ** key2. */ static int vdbeSorterCompareTail( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ UnpackedRecord *r2 = pTask->pUnpacked; if( *pbKey2Cached==0 ){ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); *pbKey2Cached = 1; } return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1); } /* ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences ** used by the comparison. Return the result of the comparison. ** ** If IN/OUT parameter *pbKey2Cached is true when this function is called, ** it is assumed that (pTask->pUnpacked) contains the unpacked version ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked ** version of key2 and *pbKey2Cached set to true before returning. ** ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set ** to SQLITE_NOMEM. */ static int vdbeSorterCompare( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ UnpackedRecord *r2 = pTask->pUnpacked; if( !*pbKey2Cached ){ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); *pbKey2Cached = 1; } return sqlite3VdbeRecordCompare(nKey1, pKey1, r2); } /* ** A specially optimized version of vdbeSorterCompare() that assumes that ** the first field of each key is a TEXT value and that the collation ** sequence to compare them with is BINARY. */ static int vdbeSorterCompareText( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ const u8 * const p1 = (const u8 * const)pKey1; const u8 * const p2 = (const u8 * const)pKey2; const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ int n1; int n2; int res; getVarint32NR(&p1[1], n1); getVarint32NR(&p2[1], n2); res = memcmp(v1, v2, (MIN(n1, n2) - 13)/2); if( res==0 ){ res = n1 - n2; } if( res==0 ){ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ res = vdbeSorterCompareTail( pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 ); } }else{ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ res = res * -1; } } return res; } /* ** A specially optimized version of vdbeSorterCompare() that assumes that ** the first field of each key is an INTEGER value. */ static int vdbeSorterCompareInt( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ const u8 * const p1 = (const u8 * const)pKey1; const u8 * const p2 = (const u8 * const)pKey2; const int s1 = p1[1]; /* Left hand serial type */ const int s2 = p2[1]; /* Right hand serial type */ const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ int res; /* Return value */ assert( (s1>0 && s1<7) || s1==8 || s1==9 ); assert( (s2>0 && s2<7) || s2==8 || s2==9 ); if( s1==s2 ){ /* The two values have the same sign. Compare using memcmp(). */ static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 }; const u8 n = aLen[s1]; int i; res = 0; for(i=0; i7 && s2>7 ){ res = s1 - s2; }else{ if( s2>7 ){ res = +1; }else if( s1>7 ){ res = -1; }else{ res = s1 - s2; } assert( res!=0 ); if( res>0 ){ if( *v1 & 0x80 ) res = -1; }else{ if( *v2 & 0x80 ) res = +1; } } if( res==0 ){ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){ res = vdbeSorterCompareTail( pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 ); } }else if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) ); res = res * -1; } return res; } /* ** Initialize the temporary index cursor just opened as a sorter cursor. ** ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField) ** to determine the number of fields that should be compared from the ** records being sorted. However, if the value passed as argument nField ** is non-zero and the sorter is able to guarantee a stable sort, nField ** is used instead. This is used when sorting records for a CREATE INDEX ** statement. In this case, keys are always delivered to the sorter in ** order of the primary key, which happens to be make up the final part ** of the records being sorted. So if the sort is stable, there is never ** any reason to compare PK fields and they can be ignored for a small ** performance boost. ** ** The sorter can guarantee a stable sort when running in single-threaded ** mode, but not in multi-threaded mode. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_PRIVATE int sqlite3VdbeSorterInit( sqlite3 *db, /* Database connection (for malloc()) */ int nField, /* Number of key fields in each record */ VdbeCursor *pCsr /* Cursor that holds the new sorter */ ){ int pgsz; /* Page size of main database */ int i; /* Used to iterate through aTask[] */ VdbeSorter *pSorter; /* The new sorter */ KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */ int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */ int sz; /* Size of pSorter in bytes */ int rc = SQLITE_OK; #if SQLITE_MAX_WORKER_THREADS==0 # define nWorker 0 #else int nWorker; #endif /* Initialize the upper limit on the number of worker threads */ #if SQLITE_MAX_WORKER_THREADS>0 if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){ nWorker = 0; }else{ nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS]; } #endif /* Do not allow the total number of threads (main thread + all workers) ** to exceed the maximum merge count */ #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT if( nWorker>=SORTER_MAX_MERGE_COUNT ){ nWorker = SORTER_MAX_MERGE_COUNT-1; } #endif assert( pCsr->pKeyInfo ); assert( !pCsr->isEphemeral ); assert( pCsr->eCurType==CURTYPE_SORTER ); szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*); sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask); pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo); pCsr->uc.pSorter = pSorter; if( pSorter==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ Btree *pBt = db->aDb[0].pBt; pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); pKeyInfo->db = 0; if( nField && nWorker==0 ){ pKeyInfo->nKeyField = nField; } sqlite3BtreeEnter(pBt); pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(pBt); sqlite3BtreeLeave(pBt); pSorter->nTask = nWorker + 1; pSorter->iPrev = (u8)(nWorker - 1); pSorter->bUseThreads = (pSorter->nTask>1); pSorter->db = db; for(i=0; inTask; i++){ SortSubtask *pTask = &pSorter->aTask[i]; pTask->pSorter = pSorter; } if( !sqlite3TempInMemory(db) ){ i64 mxCache; /* Cache size in bytes*/ u32 szPma = sqlite3GlobalConfig.szPma; pSorter->mnPmaSize = szPma * pgsz; mxCache = db->aDb[0].pSchema->cache_size; if( mxCache<0 ){ /* A negative cache-size value C indicates that the cache is abs(C) ** KiB in size. */ mxCache = mxCache * -1024; }else{ mxCache = mxCache * pgsz; } mxCache = MIN(mxCache, SQLITE_MAX_PMASZ); pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache); /* Avoid large memory allocations if the application has requested ** SQLITE_CONFIG_SMALL_MALLOC. */ if( sqlite3GlobalConfig.bSmallMalloc==0 ){ assert( pSorter->iMemory==0 ); pSorter->nMemory = pgsz; pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT; } } if( pKeyInfo->nAllField<13 && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl) && (pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL)==0 ){ pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT; } } return rc; } #undef nWorker /* Defined at the top of this function */ /* ** Free the list of sorted records starting at pRecord. */ static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){ SorterRecord *p; SorterRecord *pNext; for(p=pRecord; p; p=pNext){ pNext = p->u.pNext; sqlite3DbFree(db, p); } } /* ** Free all resources owned by the object indicated by argument pTask. All ** fields of *pTask are zeroed before returning. */ static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ sqlite3DbFree(db, pTask->pUnpacked); #if SQLITE_MAX_WORKER_THREADS>0 /* pTask->list.aMemory can only be non-zero if it was handed memory ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */ if( pTask->list.aMemory ){ sqlite3_free(pTask->list.aMemory); }else #endif { assert( pTask->list.aMemory==0 ); vdbeSorterRecordFree(0, pTask->list.pList); } if( pTask->file.pFd ){ sqlite3OsCloseFree(pTask->file.pFd); } if( pTask->file2.pFd ){ sqlite3OsCloseFree(pTask->file2.pFd); } memset(pTask, 0, sizeof(SortSubtask)); } #ifdef SQLITE_DEBUG_SORTER_THREADS static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){ i64 t; int iTask = (pTask - pTask->pSorter->aTask); sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent); } static void vdbeSorterRewindDebug(const char *zEvent){ i64 t = 0; sqlite3_vfs *pVfs = sqlite3_vfs_find(0); if( ALWAYS(pVfs) ) sqlite3OsCurrentTimeInt64(pVfs, &t); fprintf(stderr, "%lld:X %s\n", t, zEvent); } static void vdbeSorterPopulateDebug( SortSubtask *pTask, const char *zEvent ){ i64 t; int iTask = (pTask - pTask->pSorter->aTask); sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent); } static void vdbeSorterBlockDebug( SortSubtask *pTask, int bBlocked, const char *zEvent ){ if( bBlocked ){ i64 t; sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); fprintf(stderr, "%lld:main %s\n", t, zEvent); } } #else # define vdbeSorterWorkDebug(x,y) # define vdbeSorterRewindDebug(y) # define vdbeSorterPopulateDebug(x,y) # define vdbeSorterBlockDebug(x,y,z) #endif #if SQLITE_MAX_WORKER_THREADS>0 /* ** Join thread pTask->thread. */ static int vdbeSorterJoinThread(SortSubtask *pTask){ int rc = SQLITE_OK; if( pTask->pThread ){ #ifdef SQLITE_DEBUG_SORTER_THREADS int bDone = pTask->bDone; #endif void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR); vdbeSorterBlockDebug(pTask, !bDone, "enter"); (void)sqlite3ThreadJoin(pTask->pThread, &pRet); vdbeSorterBlockDebug(pTask, !bDone, "exit"); rc = SQLITE_PTR_TO_INT(pRet); assert( pTask->bDone==1 ); pTask->bDone = 0; pTask->pThread = 0; } return rc; } /* ** Launch a background thread to run xTask(pIn). */ static int vdbeSorterCreateThread( SortSubtask *pTask, /* Thread will use this task object */ void *(*xTask)(void*), /* Routine to run in a separate thread */ void *pIn /* Argument passed into xTask() */ ){ assert( pTask->pThread==0 && pTask->bDone==0 ); return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn); } /* ** Join all outstanding threads launched by SorterWrite() to create ** level-0 PMAs. */ static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){ int rc = rcin; int i; /* This function is always called by the main user thread. ** ** If this function is being called after SorterRewind() has been called, ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread ** is currently attempt to join one of the other threads. To avoid a race ** condition where this thread also attempts to join the same object, join ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */ for(i=pSorter->nTask-1; i>=0; i--){ SortSubtask *pTask = &pSorter->aTask[i]; int rc2 = vdbeSorterJoinThread(pTask); if( rc==SQLITE_OK ) rc = rc2; } return rc; } #else # define vdbeSorterJoinAll(x,rcin) (rcin) # define vdbeSorterJoinThread(pTask) SQLITE_OK #endif /* ** Allocate a new MergeEngine object capable of handling up to ** nReader PmaReader inputs. ** ** nReader is automatically rounded up to the next power of two. ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up. */ static MergeEngine *vdbeMergeEngineNew(int nReader){ int N = 2; /* Smallest power of two >= nReader */ int nByte; /* Total bytes of space to allocate */ MergeEngine *pNew; /* Pointer to allocated object to return */ assert( nReader<=SORTER_MAX_MERGE_COUNT ); while( NnTree = N; pNew->pTask = 0; pNew->aReadr = (PmaReader*)&pNew[1]; pNew->aTree = (int*)&pNew->aReadr[N]; } return pNew; } /* ** Free the MergeEngine object passed as the only argument. */ static void vdbeMergeEngineFree(MergeEngine *pMerger){ int i; if( pMerger ){ for(i=0; inTree; i++){ vdbePmaReaderClear(&pMerger->aReadr[i]); } } sqlite3_free(pMerger); } /* ** Free all resources associated with the IncrMerger object indicated by ** the first argument. */ static void vdbeIncrFree(IncrMerger *pIncr){ if( pIncr ){ #if SQLITE_MAX_WORKER_THREADS>0 if( pIncr->bUseThread ){ vdbeSorterJoinThread(pIncr->pTask); if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd); if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd); } #endif vdbeMergeEngineFree(pIncr->pMerger); sqlite3_free(pIncr); } } /* ** Reset a sorting cursor back to its original empty state. */ SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){ int i; (void)vdbeSorterJoinAll(pSorter, SQLITE_OK); assert( pSorter->bUseThreads || pSorter->pReader==0 ); #if SQLITE_MAX_WORKER_THREADS>0 if( pSorter->pReader ){ vdbePmaReaderClear(pSorter->pReader); sqlite3DbFree(db, pSorter->pReader); pSorter->pReader = 0; } #endif vdbeMergeEngineFree(pSorter->pMerger); pSorter->pMerger = 0; for(i=0; inTask; i++){ SortSubtask *pTask = &pSorter->aTask[i]; vdbeSortSubtaskCleanup(db, pTask); pTask->pSorter = pSorter; } if( pSorter->list.aMemory==0 ){ vdbeSorterRecordFree(0, pSorter->list.pList); } pSorter->list.pList = 0; pSorter->list.szPMA = 0; pSorter->bUsePMA = 0; pSorter->iMemory = 0; pSorter->mxKeysize = 0; sqlite3DbFree(db, pSorter->pUnpacked); pSorter->pUnpacked = 0; } /* ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. */ SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ VdbeSorter *pSorter; assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; if( pSorter ){ sqlite3VdbeSorterReset(db, pSorter); sqlite3_free(pSorter->list.aMemory); sqlite3DbFree(db, pSorter); pCsr->uc.pSorter = 0; } } #if SQLITE_MAX_MMAP_SIZE>0 /* ** The first argument is a file-handle open on a temporary file. The file ** is guaranteed to be nByte bytes or smaller in size. This function ** attempts to extend the file to nByte bytes in size and to ensure that ** the VFS has memory mapped it. ** ** Whether or not the file does end up memory mapped of course depends on ** the specific VFS implementation. */ static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){ if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){ void *p = 0; int chunksize = 4*1024; sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize); sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte); sqlite3OsFetch(pFd, 0, (int)nByte, &p); if( p ) sqlite3OsUnfetch(pFd, 0, p); } } #else # define vdbeSorterExtendFile(x,y,z) #endif /* ** Allocate space for a file-handle and open a temporary file. If successful, ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK. ** Otherwise, set *ppFd to 0 and return an SQLite error code. */ static int vdbeSorterOpenTempFile( sqlite3 *db, /* Database handle doing sort */ i64 nExtend, /* Attempt to extend file to this size */ sqlite3_file **ppFd ){ int rc; if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS; rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc ); if( rc==SQLITE_OK ){ i64 max = SQLITE_MAX_MMAP_SIZE; sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max); if( nExtend>0 ){ vdbeSorterExtendFile(db, *ppFd, nExtend); } } return rc; } /* ** If it has not already been allocated, allocate the UnpackedRecord ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or ** if no allocation was required), or SQLITE_NOMEM otherwise. */ static int vdbeSortAllocUnpacked(SortSubtask *pTask){ if( pTask->pUnpacked==0 ){ pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo); if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT; pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nKeyField; pTask->pUnpacked->errCode = 0; } return SQLITE_OK; } /* ** Merge the two sorted lists p1 and p2 into a single list. */ static SorterRecord *vdbeSorterMerge( SortSubtask *pTask, /* Calling thread context */ SorterRecord *p1, /* First list to merge */ SorterRecord *p2 /* Second list to merge */ ){ SorterRecord *pFinal = 0; SorterRecord **pp = &pFinal; int bCached = 0; assert( p1!=0 && p2!=0 ); for(;;){ int res; res = pTask->xCompare( pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal ); if( res<=0 ){ *pp = p1; pp = &p1->u.pNext; p1 = p1->u.pNext; if( p1==0 ){ *pp = p2; break; } }else{ *pp = p2; pp = &p2->u.pNext; p2 = p2->u.pNext; bCached = 0; if( p2==0 ){ *pp = p1; break; } } } return pFinal; } /* ** Return the SorterCompare function to compare values collected by the ** sorter object passed as the only argument. */ static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){ if( p->typeMask==SORTER_TYPE_INTEGER ){ return vdbeSorterCompareInt; }else if( p->typeMask==SORTER_TYPE_TEXT ){ return vdbeSorterCompareText; } return vdbeSorterCompare; } /* ** Sort the linked list of records headed at pTask->pList. Return ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if ** an error occurs. */ static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){ int i; SorterRecord *p; int rc; SorterRecord *aSlot[64]; rc = vdbeSortAllocUnpacked(pTask); if( rc!=SQLITE_OK ) return rc; p = pList->pList; pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter); memset(aSlot, 0, sizeof(aSlot)); while( p ){ SorterRecord *pNext; if( pList->aMemory ){ if( (u8*)p==pList->aMemory ){ pNext = 0; }else{ assert( p->u.iNextaMemory) ); pNext = (SorterRecord*)&pList->aMemory[p->u.iNext]; } }else{ pNext = p->u.pNext; } p->u.pNext = 0; for(i=0; aSlot[i]; i++){ p = vdbeSorterMerge(pTask, p, aSlot[i]); aSlot[i] = 0; } aSlot[i] = p; p = pNext; } p = 0; for(i=0; ipList = p; assert( pTask->pUnpacked->errCode==SQLITE_OK || pTask->pUnpacked->errCode==SQLITE_NOMEM ); return pTask->pUnpacked->errCode; } /* ** Initialize a PMA-writer object. */ static void vdbePmaWriterInit( sqlite3_file *pFd, /* File handle to write to */ PmaWriter *p, /* Object to populate */ int nBuf, /* Buffer size */ i64 iStart /* Offset of pFd to begin writing at */ ){ memset(p, 0, sizeof(PmaWriter)); p->aBuffer = (u8*)sqlite3Malloc(nBuf); if( !p->aBuffer ){ p->eFWErr = SQLITE_NOMEM_BKPT; }else{ p->iBufEnd = p->iBufStart = (iStart % nBuf); p->iWriteOff = iStart - p->iBufStart; p->nBuffer = nBuf; p->pFd = pFd; } } /* ** Write nData bytes of data to the PMA. Return SQLITE_OK ** if successful, or an SQLite error code if an error occurs. */ static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){ int nRem = nData; while( nRem>0 && p->eFWErr==0 ){ int nCopy = nRem; if( nCopy>(p->nBuffer - p->iBufEnd) ){ nCopy = p->nBuffer - p->iBufEnd; } memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy); p->iBufEnd += nCopy; if( p->iBufEnd==p->nBuffer ){ p->eFWErr = sqlite3OsWrite(p->pFd, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); p->iBufStart = p->iBufEnd = 0; p->iWriteOff += p->nBuffer; } assert( p->iBufEndnBuffer ); nRem -= nCopy; } } /* ** Flush any buffered data to disk and clean up the PMA-writer object. ** The results of using the PMA-writer after this call are undefined. ** Return SQLITE_OK if flushing the buffered data succeeds or is not ** required. Otherwise, return an SQLite error code. ** ** Before returning, set *piEof to the offset immediately following the ** last byte written to the file. */ static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){ int rc; if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){ p->eFWErr = sqlite3OsWrite(p->pFd, &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, p->iWriteOff + p->iBufStart ); } *piEof = (p->iWriteOff + p->iBufEnd); sqlite3_free(p->aBuffer); rc = p->eFWErr; memset(p, 0, sizeof(PmaWriter)); return rc; } /* ** Write value iVal encoded as a varint to the PMA. Return ** SQLITE_OK if successful, or an SQLite error code if an error occurs. */ static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){ int nByte; u8 aByte[10]; nByte = sqlite3PutVarint(aByte, iVal); vdbePmaWriteBlob(p, aByte, nByte); } /* ** Write the current contents of in-memory linked-list pList to a level-0 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if ** successful, or an SQLite error code otherwise. ** ** The format of a PMA is: ** ** * A varint. This varint contains the total number of bytes of content ** in the PMA (not including the varint itself). ** ** * One or more records packed end-to-end in order of ascending keys. ** Each record consists of a varint followed by a blob of data (the ** key). The varint is the number of bytes in the blob of data. */ static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){ sqlite3 *db = pTask->pSorter->db; int rc = SQLITE_OK; /* Return code */ PmaWriter writer; /* Object used to write to the file */ #ifdef SQLITE_DEBUG /* Set iSz to the expected size of file pTask->file after writing the PMA. ** This is used by an assert() statement at the end of this function. */ i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof; #endif vdbeSorterWorkDebug(pTask, "enter"); memset(&writer, 0, sizeof(PmaWriter)); assert( pList->szPMA>0 ); /* If the first temporary PMA file has not been opened, open it now. */ if( pTask->file.pFd==0 ){ rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd); assert( rc!=SQLITE_OK || pTask->file.pFd ); assert( pTask->file.iEof==0 ); assert( pTask->nPMA==0 ); } /* Try to get the file to memory map */ if( rc==SQLITE_OK ){ vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9); } /* Sort the list */ if( rc==SQLITE_OK ){ rc = vdbeSorterSort(pTask, pList); } if( rc==SQLITE_OK ){ SorterRecord *p; SorterRecord *pNext = 0; vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz, pTask->file.iEof); pTask->nPMA++; vdbePmaWriteVarint(&writer, pList->szPMA); for(p=pList->pList; p; p=pNext){ pNext = p->u.pNext; vdbePmaWriteVarint(&writer, p->nVal); vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal); if( pList->aMemory==0 ) sqlite3_free(p); } pList->pList = p; rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof); } vdbeSorterWorkDebug(pTask, "exit"); assert( rc!=SQLITE_OK || pList->pList==0 ); assert( rc!=SQLITE_OK || pTask->file.iEof==iSz ); return rc; } /* ** Advance the MergeEngine to its next entry. ** Set *pbEof to true there is no next entry because ** the MergeEngine has reached the end of all its inputs. ** ** Return SQLITE_OK if successful or an error code if an error occurs. */ static int vdbeMergeEngineStep( MergeEngine *pMerger, /* The merge engine to advance to the next row */ int *pbEof /* Set TRUE at EOF. Set false for more content */ ){ int rc; int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */ SortSubtask *pTask = pMerger->pTask; /* Advance the current PmaReader */ rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); /* Update contents of aTree[] */ if( rc==SQLITE_OK ){ int i; /* Index of aTree[] to recalculate */ PmaReader *pReadr1; /* First PmaReader to compare */ PmaReader *pReadr2; /* Second PmaReader to compare */ int bCached = 0; /* Find the first two PmaReaders to compare. The one that was just ** advanced (iPrev) and the one next to it in the array. */ pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)]; pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)]; for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){ /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */ int iRes; if( pReadr1->pFd==0 ){ iRes = +1; }else if( pReadr2->pFd==0 ){ iRes = -1; }else{ iRes = pTask->xCompare(pTask, &bCached, pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey ); } /* If pReadr1 contained the smaller value, set aTree[i] to its index. ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this ** case there is no cache of pReadr2 in pTask->pUnpacked, so set ** pKey2 to point to the record belonging to pReadr2. ** ** Alternatively, if pReadr2 contains the smaller of the two values, ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare() ** was actually called above, then pTask->pUnpacked now contains ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent ** vdbeSorterCompare() from decoding pReadr2 again. ** ** If the two values were equal, then the value from the oldest ** PMA should be considered smaller. The VdbeSorter.aReadr[] array ** is sorted from oldest to newest, so pReadr1 contains older values ** than pReadr2 iff (pReadr1aTree[i] = (int)(pReadr1 - pMerger->aReadr); pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; bCached = 0; }else{ if( pReadr1->pFd ) bCached = 0; pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr); pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; } } *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0); } return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc); } #if SQLITE_MAX_WORKER_THREADS>0 /* ** The main routine for background threads that write level-0 PMAs. */ static void *vdbeSorterFlushThread(void *pCtx){ SortSubtask *pTask = (SortSubtask*)pCtx; int rc; /* Return code */ assert( pTask->bDone==0 ); rc = vdbeSorterListToPMA(pTask, &pTask->list); pTask->bDone = 1; return SQLITE_INT_TO_PTR(rc); } #endif /* SQLITE_MAX_WORKER_THREADS>0 */ /* ** Flush the current contents of VdbeSorter.list to a new PMA, possibly ** using a background thread. */ static int vdbeSorterFlushPMA(VdbeSorter *pSorter){ #if SQLITE_MAX_WORKER_THREADS==0 pSorter->bUsePMA = 1; return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list); #else int rc = SQLITE_OK; int i; SortSubtask *pTask = 0; /* Thread context used to create new PMA */ int nWorker = (pSorter->nTask-1); /* Set the flag to indicate that at least one PMA has been written. ** Or will be, anyhow. */ pSorter->bUsePMA = 1; /* Select a sub-task to sort and flush the current list of in-memory ** records to disk. If the sorter is running in multi-threaded mode, ** round-robin between the first (pSorter->nTask-1) tasks. Except, if ** the background thread from a sub-tasks previous turn is still running, ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, ** fall back to using the final sub-task. The first (pSorter->nTask-1) ** sub-tasks are preferred as they use background threads - the final ** sub-task uses the main thread. */ for(i=0; iiPrev + i + 1) % nWorker; pTask = &pSorter->aTask[iTest]; if( pTask->bDone ){ rc = vdbeSorterJoinThread(pTask); } if( rc!=SQLITE_OK || pTask->pThread==0 ) break; } if( rc==SQLITE_OK ){ if( i==nWorker ){ /* Use the foreground thread for this operation */ rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list); }else{ /* Launch a background thread for this operation */ u8 *aMem; void *pCtx; assert( pTask!=0 ); assert( pTask->pThread==0 && pTask->bDone==0 ); assert( pTask->list.pList==0 ); assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 ); aMem = pTask->list.aMemory; pCtx = (void*)pTask; pSorter->iPrev = (u8)(pTask - pSorter->aTask); pTask->list = pSorter->list; pSorter->list.pList = 0; pSorter->list.szPMA = 0; if( aMem ){ pSorter->list.aMemory = aMem; pSorter->nMemory = sqlite3MallocSize(aMem); }else if( pSorter->list.aMemory ){ pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory); if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT; } rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx); } } return rc; #endif /* SQLITE_MAX_WORKER_THREADS!=0 */ } /* ** Add a record to the sorter. */ SQLITE_PRIVATE int sqlite3VdbeSorterWrite( const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal /* Memory cell containing record */ ){ VdbeSorter *pSorter; int rc = SQLITE_OK; /* Return Code */ SorterRecord *pNew; /* New list element */ int bFlush; /* True to flush contents of memory to PMA */ i64 nReq; /* Bytes of memory required */ i64 nPMA; /* Bytes of PMA space required */ int t; /* serial type of first record field */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; getVarint32NR((const u8*)&pVal->z[1], t); if( t>0 && t<10 && t!=7 ){ pSorter->typeMask &= SORTER_TYPE_INTEGER; }else if( t>10 && (t & 0x01) ){ pSorter->typeMask &= SORTER_TYPE_TEXT; }else{ pSorter->typeMask = 0; } assert( pSorter ); /* Figure out whether or not the current contents of memory should be ** flushed to a PMA before continuing. If so, do so. ** ** If using the single large allocation mode (pSorter->aMemory!=0), then ** flush the contents of memory to a new PMA if (a) at least one value is ** already in memory and (b) the new value will not fit in memory. ** ** Or, if using separate allocations for each record, flush the contents ** of memory to a PMA if either of the following are true: ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * cache-size), or ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. */ nReq = pVal->n + sizeof(SorterRecord); nPMA = pVal->n + sqlite3VarintLen(pVal->n); if( pSorter->mxPmaSize ){ if( pSorter->list.aMemory ){ bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize; }else{ bFlush = ( (pSorter->list.szPMA > pSorter->mxPmaSize) || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull()) ); } if( bFlush ){ rc = vdbeSorterFlushPMA(pSorter); pSorter->list.szPMA = 0; pSorter->iMemory = 0; assert( rc!=SQLITE_OK || pSorter->list.pList==0 ); } } pSorter->list.szPMA += nPMA; if( nPMA>pSorter->mxKeysize ){ pSorter->mxKeysize = nPMA; } if( pSorter->list.aMemory ){ int nMin = pSorter->iMemory + nReq; if( nMin>pSorter->nMemory ){ u8 *aNew; sqlite3_int64 nNew = 2 * (sqlite3_int64)pSorter->nMemory; int iListOff = -1; if( pSorter->list.pList ){ iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory; } while( nNew < nMin ) nNew = nNew*2; if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize; if( nNew < nMin ) nNew = nMin; aNew = sqlite3Realloc(pSorter->list.aMemory, nNew); if( !aNew ) return SQLITE_NOMEM_BKPT; if( iListOff>=0 ){ pSorter->list.pList = (SorterRecord*)&aNew[iListOff]; } pSorter->list.aMemory = aNew; pSorter->nMemory = nNew; } pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory]; pSorter->iMemory += ROUND8(nReq); if( pSorter->list.pList ){ pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory); } }else{ pNew = (SorterRecord *)sqlite3Malloc(nReq); if( pNew==0 ){ return SQLITE_NOMEM_BKPT; } pNew->u.pNext = pSorter->list.pList; } memcpy(SRVAL(pNew), pVal->z, pVal->n); pNew->nVal = pVal->n; pSorter->list.pList = pNew; return rc; } /* ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format ** of the data stored in aFile[1] is the same as that used by regular PMAs, ** except that the number-of-bytes varint is omitted from the start. */ static int vdbeIncrPopulate(IncrMerger *pIncr){ int rc = SQLITE_OK; int rc2; i64 iStart = pIncr->iStartOff; SorterFile *pOut = &pIncr->aFile[1]; SortSubtask *pTask = pIncr->pTask; MergeEngine *pMerger = pIncr->pMerger; PmaWriter writer; assert( pIncr->bEof==0 ); vdbeSorterPopulateDebug(pTask, "enter"); vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart); while( rc==SQLITE_OK ){ int dummy; PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ]; int nKey = pReader->nKey; i64 iEof = writer.iWriteOff + writer.iBufEnd; /* Check if the output file is full or if the input has been exhausted. ** In either case exit the loop. */ if( pReader->pFd==0 ) break; if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break; /* Write the next key to the output. */ vdbePmaWriteVarint(&writer, nKey); vdbePmaWriteBlob(&writer, pReader->aKey, nKey); assert( pIncr->pMerger->pTask==pTask ); rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy); } rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof); if( rc==SQLITE_OK ) rc = rc2; vdbeSorterPopulateDebug(pTask, "exit"); return rc; } #if SQLITE_MAX_WORKER_THREADS>0 /* ** The main routine for background threads that populate aFile[1] of ** multi-threaded IncrMerger objects. */ static void *vdbeIncrPopulateThread(void *pCtx){ IncrMerger *pIncr = (IncrMerger*)pCtx; void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) ); pIncr->pTask->bDone = 1; return pRet; } /* ** Launch a background thread to populate aFile[1] of pIncr. */ static int vdbeIncrBgPopulate(IncrMerger *pIncr){ void *p = (void*)pIncr; assert( pIncr->bUseThread ); return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p); } #endif /* ** This function is called when the PmaReader corresponding to pIncr has ** finished reading the contents of aFile[0]. Its purpose is to "refill" ** aFile[0] such that the PmaReader should start rereading it from the ** beginning. ** ** For single-threaded objects, this is accomplished by literally reading ** keys from pIncr->pMerger and repopulating aFile[0]. ** ** For multi-threaded objects, all that is required is to wait until the ** background thread is finished (if it is not already) and then swap ** aFile[0] and aFile[1] in place. If the contents of pMerger have not ** been exhausted, this function also launches a new background thread ** to populate the new aFile[1]. ** ** SQLITE_OK is returned on success, or an SQLite error code otherwise. */ static int vdbeIncrSwap(IncrMerger *pIncr){ int rc = SQLITE_OK; #if SQLITE_MAX_WORKER_THREADS>0 if( pIncr->bUseThread ){ rc = vdbeSorterJoinThread(pIncr->pTask); if( rc==SQLITE_OK ){ SorterFile f0 = pIncr->aFile[0]; pIncr->aFile[0] = pIncr->aFile[1]; pIncr->aFile[1] = f0; } if( rc==SQLITE_OK ){ if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ pIncr->bEof = 1; }else{ rc = vdbeIncrBgPopulate(pIncr); } } }else #endif { rc = vdbeIncrPopulate(pIncr); pIncr->aFile[0] = pIncr->aFile[1]; if( pIncr->aFile[0].iEof==pIncr->iStartOff ){ pIncr->bEof = 1; } } return rc; } /* ** Allocate and return a new IncrMerger object to read data from pMerger. ** ** If an OOM condition is encountered, return NULL. In this case free the ** pMerger argument before returning. */ static int vdbeIncrMergerNew( SortSubtask *pTask, /* The thread that will be using the new IncrMerger */ MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */ IncrMerger **ppOut /* Write the new IncrMerger here */ ){ int rc = SQLITE_OK; IncrMerger *pIncr = *ppOut = (IncrMerger*) (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr))); if( pIncr ){ pIncr->pMerger = pMerger; pIncr->pTask = pTask; pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2); pTask->file2.iEof += pIncr->mxSz; }else{ vdbeMergeEngineFree(pMerger); rc = SQLITE_NOMEM_BKPT; } assert( *ppOut!=0 || rc!=SQLITE_OK ); return rc; } #if SQLITE_MAX_WORKER_THREADS>0 /* ** Set the "use-threads" flag on object pIncr. */ static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){ pIncr->bUseThread = 1; pIncr->pTask->file2.iEof -= pIncr->mxSz; } #endif /* SQLITE_MAX_WORKER_THREADS>0 */ /* ** Recompute pMerger->aTree[iOut] by comparing the next keys on the ** two PmaReaders that feed that entry. Neither of the PmaReaders ** are advanced. This routine merely does the comparison. */ static void vdbeMergeEngineCompare( MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */ int iOut /* Store the result in pMerger->aTree[iOut] */ ){ int i1; int i2; int iRes; PmaReader *p1; PmaReader *p2; assert( iOutnTree && iOut>0 ); if( iOut>=(pMerger->nTree/2) ){ i1 = (iOut - pMerger->nTree/2) * 2; i2 = i1 + 1; }else{ i1 = pMerger->aTree[iOut*2]; i2 = pMerger->aTree[iOut*2+1]; } p1 = &pMerger->aReadr[i1]; p2 = &pMerger->aReadr[i2]; if( p1->pFd==0 ){ iRes = i2; }else if( p2->pFd==0 ){ iRes = i1; }else{ SortSubtask *pTask = pMerger->pTask; int bCached = 0; int res; assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */ res = pTask->xCompare( pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey ); if( res<=0 ){ iRes = i1; }else{ iRes = i2; } } pMerger->aTree[iOut] = iRes; } /* ** Allowed values for the eMode parameter to vdbeMergeEngineInit() ** and vdbePmaReaderIncrMergeInit(). ** ** Only INCRINIT_NORMAL is valid in single-threaded builds (when ** SQLITE_MAX_WORKER_THREADS==0). The other values are only used ** when there exists one or more separate worker threads. */ #define INCRINIT_NORMAL 0 #define INCRINIT_TASK 1 #define INCRINIT_ROOT 2 /* ** Forward reference required as the vdbeIncrMergeInit() and ** vdbePmaReaderIncrInit() routines are called mutually recursively when ** building a merge tree. */ static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode); /* ** Initialize the MergeEngine object passed as the second argument. Once this ** function returns, the first key of merged data may be read from the ** MergeEngine object in the usual fashion. ** ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge ** objects attached to the PmaReader objects that the merger reads from have ** already been populated, but that they have not yet populated aFile[0] and ** set the PmaReader objects up to read from it. In this case all that is ** required is to call vdbePmaReaderNext() on each PmaReader to point it at ** its first key. ** ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data ** to pMerger. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int vdbeMergeEngineInit( SortSubtask *pTask, /* Thread that will run pMerger */ MergeEngine *pMerger, /* MergeEngine to initialize */ int eMode /* One of the INCRINIT_XXX constants */ ){ int rc = SQLITE_OK; /* Return code */ int i; /* For looping over PmaReader objects */ int nTree; /* Number of subtrees to merge */ /* Failure to allocate the merge would have been detected prior to ** invoking this routine */ assert( pMerger!=0 ); /* eMode is always INCRINIT_NORMAL in single-threaded mode */ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); /* Verify that the MergeEngine is assigned to a single thread */ assert( pMerger->pTask==0 ); pMerger->pTask = pTask; nTree = pMerger->nTree; for(i=0; i0 && eMode==INCRINIT_ROOT ){ /* PmaReaders should be normally initialized in order, as if they are ** reading from the same temp file this makes for more linear file IO. ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is ** in use it will block the vdbePmaReaderNext() call while it uses ** the main thread to fill its buffer. So calling PmaReaderNext() ** on this PmaReader before any of the multi-threaded PmaReaders takes ** better advantage of multi-processor hardware. */ rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]); }else{ rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL); } if( rc!=SQLITE_OK ) return rc; } for(i=pMerger->nTree-1; i>0; i--){ vdbeMergeEngineCompare(pMerger, i); } return pTask->pUnpacked->errCode; } /* ** The PmaReader passed as the first argument is guaranteed to be an ** incremental-reader (pReadr->pIncr!=0). This function serves to open ** and/or initialize the temp file related fields of the IncrMerge ** object at (pReadr->pIncr). ** ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders ** in the sub-tree headed by pReadr are also initialized. Data is then ** loaded into the buffers belonging to pReadr and it is set to point to ** the first key in its range. ** ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed ** to be a multi-threaded PmaReader and this function is being called in a ** background thread. In this case all PmaReaders in the sub-tree are ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to ** pReadr is populated. However, pReadr itself is not set up to point ** to its first key. A call to vdbePmaReaderNext() is still required to do ** that. ** ** The reason this function does not call vdbePmaReaderNext() immediately ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has ** to block on thread (pTask->thread) before accessing aFile[1]. But, since ** this entire function is being run by thread (pTask->thread), that will ** lead to the current background thread attempting to join itself. ** ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all ** child-trees have already been initialized using IncrInit(INCRINIT_TASK). ** In this case vdbePmaReaderNext() is called on all child PmaReaders and ** the current PmaReader set to point to the first key in its range. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){ int rc = SQLITE_OK; IncrMerger *pIncr = pReadr->pIncr; SortSubtask *pTask = pIncr->pTask; sqlite3 *db = pTask->pSorter->db; /* eMode is always INCRINIT_NORMAL in single-threaded mode */ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); /* Set up the required files for pIncr. A multi-threaded IncrMerge object ** requires two temp files to itself, whereas a single-threaded object ** only requires a region of pTask->file2. */ if( rc==SQLITE_OK ){ int mxSz = pIncr->mxSz; #if SQLITE_MAX_WORKER_THREADS>0 if( pIncr->bUseThread ){ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd); if( rc==SQLITE_OK ){ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd); } }else #endif /*if( !pIncr->bUseThread )*/{ if( pTask->file2.pFd==0 ){ assert( pTask->file2.iEof>0 ); rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd); pTask->file2.iEof = 0; } if( rc==SQLITE_OK ){ pIncr->aFile[1].pFd = pTask->file2.pFd; pIncr->iStartOff = pTask->file2.iEof; pTask->file2.iEof += mxSz; } } } #if SQLITE_MAX_WORKER_THREADS>0 if( rc==SQLITE_OK && pIncr->bUseThread ){ /* Use the current thread to populate aFile[1], even though this ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object, ** then this function is already running in background thread ** pIncr->pTask->thread. ** ** If this is the INCRINIT_ROOT object, then it is running in the ** main VDBE thread. But that is Ok, as that thread cannot return ** control to the VDBE or proceed with anything useful until the ** first results are ready from this merger object anyway. */ assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK ); rc = vdbeIncrPopulate(pIncr); } #endif if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){ rc = vdbePmaReaderNext(pReadr); } return rc; } #if SQLITE_MAX_WORKER_THREADS>0 /* ** The main routine for vdbePmaReaderIncrMergeInit() operations run in ** background threads. */ static void *vdbePmaReaderBgIncrInit(void *pCtx){ PmaReader *pReader = (PmaReader*)pCtx; void *pRet = SQLITE_INT_TO_PTR( vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK) ); pReader->pIncr->pTask->bDone = 1; return pRet; } #endif /* ** If the PmaReader passed as the first argument is not an incremental-reader ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to ** this routine to initialize the incremental merge. ** ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1), ** then a background thread is launched to call vdbePmaReaderIncrMergeInit(). ** Or, if the IncrMerger is single threaded, the same function is called ** using the current thread. */ static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){ IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */ int rc = SQLITE_OK; /* Return code */ if( pIncr ){ #if SQLITE_MAX_WORKER_THREADS>0 assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK ); if( pIncr->bUseThread ){ void *pCtx = (void*)pReadr; rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx); }else #endif { rc = vdbePmaReaderIncrMergeInit(pReadr, eMode); } } return rc; } /* ** Allocate a new MergeEngine object to merge the contents of nPMA level-0 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut ** to NULL and return an SQLite error code. ** ** When this function is called, *piOffset is set to the offset of the ** first PMA to read from pTask->file. Assuming no error occurs, it is ** set to the offset immediately following the last byte of the last ** PMA before returning. If an error does occur, then the final value of ** *piOffset is undefined. */ static int vdbeMergeEngineLevel0( SortSubtask *pTask, /* Sorter task to read from */ int nPMA, /* Number of PMAs to read */ i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */ MergeEngine **ppOut /* OUT: New merge-engine */ ){ MergeEngine *pNew; /* Merge engine to return */ i64 iOff = *piOffset; int i; int rc = SQLITE_OK; *ppOut = pNew = vdbeMergeEngineNew(nPMA); if( pNew==0 ) rc = SQLITE_NOMEM_BKPT; for(i=0; iaReadr[i]; rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy); iOff = pReadr->iEof; } if( rc!=SQLITE_OK ){ vdbeMergeEngineFree(pNew); *ppOut = 0; } *piOffset = iOff; return rc; } /* ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes. ** ** i.e. ** ** nPMA<=16 -> TreeDepth() == 0 ** nPMA<=256 -> TreeDepth() == 1 ** nPMA<=65536 -> TreeDepth() == 2 */ static int vdbeSorterTreeDepth(int nPMA){ int nDepth = 0; i64 nDiv = SORTER_MAX_MERGE_COUNT; while( nDiv < (i64)nPMA ){ nDiv = nDiv * SORTER_MAX_MERGE_COUNT; nDepth++; } return nDepth; } /* ** pRoot is the root of an incremental merge-tree with depth nDepth (according ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the ** tree, counting from zero. This function adds pLeaf to the tree. ** ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error ** code is returned and pLeaf is freed. */ static int vdbeSorterAddToTree( SortSubtask *pTask, /* Task context */ int nDepth, /* Depth of tree according to TreeDepth() */ int iSeq, /* Sequence number of leaf within tree */ MergeEngine *pRoot, /* Root of tree */ MergeEngine *pLeaf /* Leaf to add to tree */ ){ int rc = SQLITE_OK; int nDiv = 1; int i; MergeEngine *p = pRoot; IncrMerger *pIncr; rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr); for(i=1; iaReadr[iIter]; if( pReadr->pIncr==0 ){ MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); if( pNew==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr); } } if( rc==SQLITE_OK ){ p = pReadr->pIncr->pMerger; nDiv = nDiv / SORTER_MAX_MERGE_COUNT; } } if( rc==SQLITE_OK ){ p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr; }else{ vdbeIncrFree(pIncr); } return rc; } /* ** This function is called as part of a SorterRewind() operation on a sorter ** that has already written two or more level-0 PMAs to one or more temp ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that ** can be used to incrementally merge all PMAs on disk. ** ** If successful, SQLITE_OK is returned and *ppOut set to point to the ** MergeEngine object at the root of the tree before returning. Or, if an ** error occurs, an SQLite error code is returned and the final value ** of *ppOut is undefined. */ static int vdbeSorterMergeTreeBuild( VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */ MergeEngine **ppOut /* Write the MergeEngine here */ ){ MergeEngine *pMain = 0; int rc = SQLITE_OK; int iTask; #if SQLITE_MAX_WORKER_THREADS>0 /* If the sorter uses more than one task, then create the top-level ** MergeEngine here. This MergeEngine will read data from exactly ** one PmaReader per sub-task. */ assert( pSorter->bUseThreads || pSorter->nTask==1 ); if( pSorter->nTask>1 ){ pMain = vdbeMergeEngineNew(pSorter->nTask); if( pMain==0 ) rc = SQLITE_NOMEM_BKPT; } #endif for(iTask=0; rc==SQLITE_OK && iTasknTask; iTask++){ SortSubtask *pTask = &pSorter->aTask[iTask]; assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 ); if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){ MergeEngine *pRoot = 0; /* Root node of tree for this task */ int nDepth = vdbeSorterTreeDepth(pTask->nPMA); i64 iReadOff = 0; if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){ rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot); }else{ int i; int iSeq = 0; pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT); if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT; for(i=0; inPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){ MergeEngine *pMerger = 0; /* New level-0 PMA merger */ int nReader; /* Number of level-0 PMAs to merge */ nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT); rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger); if( rc==SQLITE_OK ){ rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger); } } } if( rc==SQLITE_OK ){ #if SQLITE_MAX_WORKER_THREADS>0 if( pMain!=0 ){ rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr); }else #endif { assert( pMain==0 ); pMain = pRoot; } }else{ vdbeMergeEngineFree(pRoot); } } } if( rc!=SQLITE_OK ){ vdbeMergeEngineFree(pMain); pMain = 0; } *ppOut = pMain; return rc; } /* ** This function is called as part of an sqlite3VdbeSorterRewind() operation ** on a sorter that has written two or more PMAs to temporary files. It sets ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader ** (for multi-threaded sorters) so that it can be used to iterate through ** all records stored in the sorter. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ int rc; /* Return code */ SortSubtask *pTask0 = &pSorter->aTask[0]; MergeEngine *pMain = 0; #if SQLITE_MAX_WORKER_THREADS sqlite3 *db = pTask0->pSorter->db; int i; SorterCompare xCompare = vdbeSorterGetCompare(pSorter); for(i=0; inTask; i++){ pSorter->aTask[i].xCompare = xCompare; } #endif rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); if( rc==SQLITE_OK ){ #if SQLITE_MAX_WORKER_THREADS assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); if( pSorter->bUseThreads ){ int iTask; PmaReader *pReadr = 0; SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1]; rc = vdbeSortAllocUnpacked(pLast); if( rc==SQLITE_OK ){ pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader)); pSorter->pReader = pReadr; if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT; } if( rc==SQLITE_OK ){ rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr); if( rc==SQLITE_OK ){ vdbeIncrMergerSetThreads(pReadr->pIncr); for(iTask=0; iTask<(pSorter->nTask-1); iTask++){ IncrMerger *pIncr; if( (pIncr = pMain->aReadr[iTask].pIncr) ){ vdbeIncrMergerSetThreads(pIncr); assert( pIncr->pTask!=pLast ); } } for(iTask=0; rc==SQLITE_OK && iTasknTask; iTask++){ /* Check that: ** ** a) The incremental merge object is configured to use the ** right task, and ** b) If it is using task (nTask-1), it is configured to run ** in single-threaded mode. This is important, as the ** root merge (INCRINIT_ROOT) will be using the same task ** object. */ PmaReader *p = &pMain->aReadr[iTask]; assert( p->pIncr==0 || ( (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */ && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */ )); rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK); } } pMain = 0; } if( rc==SQLITE_OK ){ rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT); } }else #endif { rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL); pSorter->pMerger = pMain; pMain = 0; } } if( rc!=SQLITE_OK ){ vdbeMergeEngineFree(pMain); } return rc; } /* ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite, ** this function is called to prepare for iterating through the records ** in sorted order. */ SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){ VdbeSorter *pSorter; int rc = SQLITE_OK; /* Return code */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; assert( pSorter ); /* If no data has been written to disk, then do not do so now. Instead, ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly ** from the in-memory list. */ if( pSorter->bUsePMA==0 ){ if( pSorter->list.pList ){ *pbEof = 0; rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list); }else{ *pbEof = 1; } return rc; } /* Write the current in-memory list to a PMA. When the VdbeSorterWrite() ** function flushes the contents of memory to disk, it immediately always ** creates a new list consisting of a single key immediately afterwards. ** So the list is never empty at this point. */ assert( pSorter->list.pList ); rc = vdbeSorterFlushPMA(pSorter); /* Join all threads */ rc = vdbeSorterJoinAll(pSorter, rc); vdbeSorterRewindDebug("rewind"); /* Assuming no errors have occurred, set up a merger structure to ** incrementally read and merge all remaining PMAs. */ assert( pSorter->pReader==0 ); if( rc==SQLITE_OK ){ rc = vdbeSorterSetupMerge(pSorter); *pbEof = 0; } vdbeSorterRewindDebug("rewinddone"); return rc; } /* ** Advance to the next element in the sorter. Return value: ** ** SQLITE_OK success ** SQLITE_DONE end of data ** otherwise some kind of error. */ SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr){ VdbeSorter *pSorter; int rc; /* Return code */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) ); if( pSorter->bUsePMA ){ assert( pSorter->pReader==0 || pSorter->pMerger==0 ); assert( pSorter->bUseThreads==0 || pSorter->pReader ); assert( pSorter->bUseThreads==1 || pSorter->pMerger ); #if SQLITE_MAX_WORKER_THREADS>0 if( pSorter->bUseThreads ){ rc = vdbePmaReaderNext(pSorter->pReader); if( rc==SQLITE_OK && pSorter->pReader->pFd==0 ) rc = SQLITE_DONE; }else #endif /*if( !pSorter->bUseThreads )*/ { int res = 0; assert( pSorter->pMerger!=0 ); assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) ); rc = vdbeMergeEngineStep(pSorter->pMerger, &res); if( rc==SQLITE_OK && res ) rc = SQLITE_DONE; } }else{ SorterRecord *pFree = pSorter->list.pList; pSorter->list.pList = pFree->u.pNext; pFree->u.pNext = 0; if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree); rc = pSorter->list.pList ? SQLITE_OK : SQLITE_DONE; } return rc; } /* ** Return a pointer to a buffer owned by the sorter that contains the ** current key. */ static void *vdbeSorterRowkey( const VdbeSorter *pSorter, /* Sorter object */ int *pnKey /* OUT: Size of current key in bytes */ ){ void *pKey; if( pSorter->bUsePMA ){ PmaReader *pReader; #if SQLITE_MAX_WORKER_THREADS>0 if( pSorter->bUseThreads ){ pReader = pSorter->pReader; }else #endif /*if( !pSorter->bUseThreads )*/{ pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]]; } *pnKey = pReader->nKey; pKey = pReader->aKey; }else{ *pnKey = pSorter->list.pList->nVal; pKey = SRVAL(pSorter->list.pList); } return pKey; } /* ** Copy the current sorter key into the memory cell pOut. */ SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){ VdbeSorter *pSorter; void *pKey; int nKey; /* Sorter key to copy into pOut */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; pKey = vdbeSorterRowkey(pSorter, &nKey); if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){ return SQLITE_NOMEM_BKPT; } pOut->n = nKey; MemSetTypeFlag(pOut, MEM_Blob); memcpy(pOut->z, pKey, nKey); return SQLITE_OK; } /* ** Compare the key in memory cell pVal with the key that the sorter cursor ** passed as the first argument currently points to. For the purposes of ** the comparison, ignore the rowid field at the end of each record. ** ** If the sorter cursor key contains any NULL values, consider it to be ** less than pVal. Even if pVal also contains NULL values. ** ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM). ** Otherwise, set *pRes to a negative, zero or positive value if the ** key in pVal is smaller than, equal to or larger than the current sorter ** key. ** ** This routine forms the core of the OP_SorterCompare opcode, which in ** turn is used to verify uniqueness when constructing a UNIQUE INDEX. */ SQLITE_PRIVATE int sqlite3VdbeSorterCompare( const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal, /* Value to compare to current sorter key */ int nKeyCol, /* Compare this many columns */ int *pRes /* OUT: Result of comparison */ ){ VdbeSorter *pSorter; UnpackedRecord *r2; KeyInfo *pKeyInfo; int i; void *pKey; int nKey; /* Sorter key to compare pVal with */ assert( pCsr->eCurType==CURTYPE_SORTER ); pSorter = pCsr->uc.pSorter; r2 = pSorter->pUnpacked; pKeyInfo = pCsr->pKeyInfo; if( r2==0 ){ r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); if( r2==0 ) return SQLITE_NOMEM_BKPT; r2->nField = nKeyCol; } assert( r2->nField==nKeyCol ); pKey = vdbeSorterRowkey(pSorter, &nKey); sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2); for(i=0; iaMem[i].flags & MEM_Null ){ *pRes = -1; return SQLITE_OK; } } *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2); return SQLITE_OK; } /************** End of vdbesort.c ********************************************/ /************** Begin file vdbevtab.c ****************************************/ /* ** 2020-03-23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements virtual-tables for examining the bytecode content ** of a prepared statement. */ /* #include "sqliteInt.h" */ #if defined(SQLITE_ENABLE_BYTECODE_VTAB) && !defined(SQLITE_OMIT_VIRTUALTABLE) /* #include "vdbeInt.h" */ /* An instance of the bytecode() table-valued function. */ typedef struct bytecodevtab bytecodevtab; struct bytecodevtab { sqlite3_vtab base; /* Base class - must be first */ sqlite3 *db; /* Database connection */ int bTablesUsed; /* 2 for tables_used(). 0 for bytecode(). */ }; /* A cursor for scanning through the bytecode */ typedef struct bytecodevtab_cursor bytecodevtab_cursor; struct bytecodevtab_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ sqlite3_stmt *pStmt; /* The statement whose bytecode is displayed */ int iRowid; /* The rowid of the output table */ int iAddr; /* Address */ int needFinalize; /* Cursors owns pStmt and must finalize it */ int showSubprograms; /* Provide a listing of subprograms */ Op *aOp; /* Operand array */ char *zP4; /* Rendered P4 value */ const char *zType; /* tables_used.type */ const char *zSchema; /* tables_used.schema */ const char *zName; /* tables_used.name */ Mem sub; /* Subprograms */ }; /* ** Create a new bytecode() table-valued function. */ static int bytecodevtabConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ bytecodevtab *pNew; int rc; int isTabUsed = pAux!=0; const char *azSchema[2] = { /* bytecode() schema */ "CREATE TABLE x(" "addr INT," "opcode TEXT," "p1 INT," "p2 INT," "p3 INT," "p4 TEXT," "p5 INT," "comment TEXT," "subprog TEXT," "nexec INT," "ncycle INT," "stmt HIDDEN" ");", /* Tables_used() schema */ "CREATE TABLE x(" "type TEXT," "schema TEXT," "name TEXT," "wr INT," "subprog TEXT," "stmt HIDDEN" ");" }; (void)argc; (void)argv; (void)pzErr; rc = sqlite3_declare_vtab(db, azSchema[isTabUsed]); if( rc==SQLITE_OK ){ pNew = sqlite3_malloc( sizeof(*pNew) ); *ppVtab = (sqlite3_vtab*)pNew; if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); pNew->db = db; pNew->bTablesUsed = isTabUsed*2; } return rc; } /* ** This method is the destructor for bytecodevtab objects. */ static int bytecodevtabDisconnect(sqlite3_vtab *pVtab){ bytecodevtab *p = (bytecodevtab*)pVtab; sqlite3_free(p); return SQLITE_OK; } /* ** Constructor for a new bytecodevtab_cursor object. */ static int bytecodevtabOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ bytecodevtab *pVTab = (bytecodevtab*)p; bytecodevtab_cursor *pCur; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); sqlite3VdbeMemInit(&pCur->sub, pVTab->db, 1); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Clear all internal content from a bytecodevtab cursor. */ static void bytecodevtabCursorClear(bytecodevtab_cursor *pCur){ sqlite3_free(pCur->zP4); pCur->zP4 = 0; sqlite3VdbeMemRelease(&pCur->sub); sqlite3VdbeMemSetNull(&pCur->sub); if( pCur->needFinalize ){ sqlite3_finalize(pCur->pStmt); } pCur->pStmt = 0; pCur->needFinalize = 0; pCur->zType = 0; pCur->zSchema = 0; pCur->zName = 0; } /* ** Destructor for a bytecodevtab_cursor. */ static int bytecodevtabClose(sqlite3_vtab_cursor *cur){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; bytecodevtabCursorClear(pCur); sqlite3_free(pCur); return SQLITE_OK; } /* ** Advance a bytecodevtab_cursor to its next row of output. */ static int bytecodevtabNext(sqlite3_vtab_cursor *cur){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; bytecodevtab *pTab = (bytecodevtab*)cur->pVtab; int rc; if( pCur->zP4 ){ sqlite3_free(pCur->zP4); pCur->zP4 = 0; } if( pCur->zName ){ pCur->zName = 0; pCur->zType = 0; pCur->zSchema = 0; } rc = sqlite3VdbeNextOpcode( (Vdbe*)pCur->pStmt, pCur->showSubprograms ? &pCur->sub : 0, pTab->bTablesUsed, &pCur->iRowid, &pCur->iAddr, &pCur->aOp); if( rc!=SQLITE_OK ){ sqlite3VdbeMemSetNull(&pCur->sub); pCur->aOp = 0; } return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int bytecodevtabEof(sqlite3_vtab_cursor *cur){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; return pCur->aOp==0; } /* ** Return values of columns for the row at which the bytecodevtab_cursor ** is currently pointing. */ static int bytecodevtabColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; bytecodevtab *pVTab = (bytecodevtab*)cur->pVtab; Op *pOp = pCur->aOp + pCur->iAddr; if( pVTab->bTablesUsed ){ if( i==4 ){ i = 8; }else{ if( i<=2 && pCur->zType==0 ){ Schema *pSchema; HashElem *k; int iDb = pOp->p3; Pgno iRoot = (Pgno)pOp->p2; sqlite3 *db = pVTab->db; pSchema = db->aDb[iDb].pSchema; pCur->zSchema = db->aDb[iDb].zDbSName; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); if( !IsVirtual(pTab) && pTab->tnum==iRoot ){ pCur->zName = pTab->zName; pCur->zType = "table"; break; } } if( pCur->zName==0 ){ for(k=sqliteHashFirst(&pSchema->idxHash); k; k=sqliteHashNext(k)){ Index *pIdx = (Index*)sqliteHashData(k); if( pIdx->tnum==iRoot ){ pCur->zName = pIdx->zName; pCur->zType = "index"; } } } } i += 20; } } switch( i ){ case 0: /* addr */ sqlite3_result_int(ctx, pCur->iAddr); break; case 1: /* opcode */ sqlite3_result_text(ctx, (char*)sqlite3OpcodeName(pOp->opcode), -1, SQLITE_STATIC); break; case 2: /* p1 */ sqlite3_result_int(ctx, pOp->p1); break; case 3: /* p2 */ sqlite3_result_int(ctx, pOp->p2); break; case 4: /* p3 */ sqlite3_result_int(ctx, pOp->p3); break; case 5: /* p4 */ case 7: /* comment */ if( pCur->zP4==0 ){ pCur->zP4 = sqlite3VdbeDisplayP4(pVTab->db, pOp); } if( i==5 ){ sqlite3_result_text(ctx, pCur->zP4, -1, SQLITE_STATIC); }else{ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zCom = sqlite3VdbeDisplayComment(pVTab->db, pOp, pCur->zP4); sqlite3_result_text(ctx, zCom, -1, sqlite3_free); #endif } break; case 6: /* p5 */ sqlite3_result_int(ctx, pOp->p5); break; case 8: { /* subprog */ Op *aOp = pCur->aOp; assert( aOp[0].opcode==OP_Init ); assert( aOp[0].p4.z==0 || strncmp(aOp[0].p4.z,"-" "- ",3)==0 ); if( pCur->iRowid==pCur->iAddr+1 ){ break; /* Result is NULL for the main program */ }else if( aOp[0].p4.z!=0 ){ sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC); }else{ sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC); } break; } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS case 9: /* nexec */ sqlite3_result_int(ctx, pOp->nExec); break; case 10: /* ncycle */ sqlite3_result_int(ctx, pOp->nCycle); break; #else case 9: /* nexec */ case 10: /* ncycle */ sqlite3_result_int(ctx, 0); break; #endif case 20: /* tables_used.type */ sqlite3_result_text(ctx, pCur->zType, -1, SQLITE_STATIC); break; case 21: /* tables_used.schema */ sqlite3_result_text(ctx, pCur->zSchema, -1, SQLITE_STATIC); break; case 22: /* tables_used.name */ sqlite3_result_text(ctx, pCur->zName, -1, SQLITE_STATIC); break; case 23: /* tables_used.wr */ sqlite3_result_int(ctx, pOp->opcode==OP_OpenWrite); break; } return SQLITE_OK; } /* ** Return the rowid for the current row. In this implementation, the ** rowid is the same as the output value. */ static int bytecodevtabRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** Initialize a cursor. ** ** idxNum==0 means show all subprograms ** idxNum==1 means show only the main bytecode and omit subprograms. */ static int bytecodevtabFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ bytecodevtab_cursor *pCur = (bytecodevtab_cursor *)pVtabCursor; bytecodevtab *pVTab = (bytecodevtab *)pVtabCursor->pVtab; int rc = SQLITE_OK; (void)idxStr; bytecodevtabCursorClear(pCur); pCur->iRowid = 0; pCur->iAddr = 0; pCur->showSubprograms = idxNum==0; assert( argc==1 ); if( sqlite3_value_type(argv[0])==SQLITE_TEXT ){ const char *zSql = (const char*)sqlite3_value_text(argv[0]); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(pVTab->db, zSql, -1, &pCur->pStmt, 0); pCur->needFinalize = 1; } }else{ pCur->pStmt = (sqlite3_stmt*)sqlite3_value_pointer(argv[0],"stmt-pointer"); } if( pCur->pStmt==0 ){ pVTab->base.zErrMsg = sqlite3_mprintf( "argument to %s() is not a valid SQL statement", pVTab->bTablesUsed ? "tables_used" : "bytecode" ); rc = SQLITE_ERROR; }else{ bytecodevtabNext(pVtabCursor); } return rc; } /* ** We must have a single stmt=? constraint that will be passed through ** into the xFilter method. If there is no valid stmt=? constraint, ** then return an SQLITE_CONSTRAINT error. */ static int bytecodevtabBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; int rc = SQLITE_CONSTRAINT; struct sqlite3_index_constraint *p; bytecodevtab *pVTab = (bytecodevtab*)tab; int iBaseCol = pVTab->bTablesUsed ? 4 : 10; pIdxInfo->estimatedCost = (double)100; pIdxInfo->estimatedRows = 100; pIdxInfo->idxNum = 0; for(i=0, p=pIdxInfo->aConstraint; inConstraint; i++, p++){ if( p->usable==0 ) continue; if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==iBaseCol+1 ){ rc = SQLITE_OK; pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->aConstraintUsage[i].argvIndex = 1; } if( p->op==SQLITE_INDEX_CONSTRAINT_ISNULL && p->iColumn==iBaseCol ){ pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->idxNum = 1; } } return rc; } /* ** This following structure defines all the methods for the ** virtual table. */ static sqlite3_module bytecodevtabModule = { /* iVersion */ 0, /* xCreate */ 0, /* xConnect */ bytecodevtabConnect, /* xBestIndex */ bytecodevtabBestIndex, /* xDisconnect */ bytecodevtabDisconnect, /* xDestroy */ 0, /* xOpen */ bytecodevtabOpen, /* xClose */ bytecodevtabClose, /* xFilter */ bytecodevtabFilter, /* xNext */ bytecodevtabNext, /* xEof */ bytecodevtabEof, /* xColumn */ bytecodevtabColumn, /* xRowid */ bytecodevtabRowid, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0, /* xIntegrity */ 0 }; SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){ int rc; rc = sqlite3_create_module(db, "bytecode", &bytecodevtabModule, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_module(db, "tables_used", &bytecodevtabModule, &db); } return rc; } #elif defined(SQLITE_ENABLE_BYTECODE_VTAB) SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){ return SQLITE_OK; } #endif /* SQLITE_ENABLE_BYTECODE_VTAB */ /************** End of vdbevtab.c ********************************************/ /************** Begin file memjournal.c **************************************/ /* ** 2008 October 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to implement an in-memory rollback journal. ** The in-memory rollback journal is used to journal transactions for ** ":memory:" databases and when the journal_mode=MEMORY pragma is used. ** ** Update: The in-memory journal is also used to temporarily cache ** smaller journals that are not critical for power-loss recovery. ** For example, statement journals that are not too big will be held ** entirely in memory, thus reducing the number of file I/O calls, and ** more importantly, reducing temporary file creation events. If these ** journals become too large for memory, they are spilled to disk. But ** in the common case, they are usually small and no file I/O needs to ** occur. */ /* #include "sqliteInt.h" */ /* Forward references to internal structures */ typedef struct MemJournal MemJournal; typedef struct FilePoint FilePoint; typedef struct FileChunk FileChunk; /* ** The rollback journal is composed of a linked list of these structures. ** ** The zChunk array is always at least 8 bytes in size - usually much more. ** Its actual size is stored in the MemJournal.nChunkSize variable. */ struct FileChunk { FileChunk *pNext; /* Next chunk in the journal */ u8 zChunk[8]; /* Content of this chunk */ }; /* ** By default, allocate this many bytes of memory for each FileChunk object. */ #define MEMJOURNAL_DFLT_FILECHUNKSIZE 1024 /* ** For chunk size nChunkSize, return the number of bytes that should ** be allocated for each FileChunk structure. */ #define fileChunkSize(nChunkSize) (sizeof(FileChunk) + ((nChunkSize)-8)) /* ** An instance of this object serves as a cursor into the rollback journal. ** The cursor can be either for reading or writing. */ struct FilePoint { sqlite3_int64 iOffset; /* Offset from the beginning of the file */ FileChunk *pChunk; /* Specific chunk into which cursor points */ }; /* ** This structure is a subclass of sqlite3_file. Each open memory-journal ** is an instance of this class. */ struct MemJournal { const sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */ int nChunkSize; /* In-memory chunk-size */ int nSpill; /* Bytes of data before flushing */ FileChunk *pFirst; /* Head of in-memory chunk-list */ FilePoint endpoint; /* Pointer to the end of the file */ FilePoint readpoint; /* Pointer to the end of the last xRead() */ int flags; /* xOpen flags */ sqlite3_vfs *pVfs; /* The "real" underlying VFS */ const char *zJournal; /* Name of the journal file */ }; /* ** Read data from the in-memory journal file. This is the implementation ** of the sqlite3_vfs.xRead method. */ static int memjrnlRead( sqlite3_file *pJfd, /* The journal file from which to read */ void *zBuf, /* Put the results here */ int iAmt, /* Number of bytes to read */ sqlite_int64 iOfst /* Begin reading at this offset */ ){ MemJournal *p = (MemJournal *)pJfd; u8 *zOut = zBuf; int nRead = iAmt; int iChunkOffset; FileChunk *pChunk; if( (iAmt+iOfst)>p->endpoint.iOffset ){ return SQLITE_IOERR_SHORT_READ; } assert( p->readpoint.iOffset==0 || p->readpoint.pChunk!=0 ); if( p->readpoint.iOffset!=iOfst || iOfst==0 ){ sqlite3_int64 iOff = 0; for(pChunk=p->pFirst; ALWAYS(pChunk) && (iOff+p->nChunkSize)<=iOfst; pChunk=pChunk->pNext ){ iOff += p->nChunkSize; } }else{ pChunk = p->readpoint.pChunk; assert( pChunk!=0 ); } iChunkOffset = (int)(iOfst%p->nChunkSize); do { int iSpace = p->nChunkSize - iChunkOffset; int nCopy = MIN(nRead, (p->nChunkSize - iChunkOffset)); memcpy(zOut, (u8*)pChunk->zChunk + iChunkOffset, nCopy); zOut += nCopy; nRead -= iSpace; iChunkOffset = 0; } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 ); p->readpoint.iOffset = pChunk ? iOfst+iAmt : 0; p->readpoint.pChunk = pChunk; return SQLITE_OK; } /* ** Free the list of FileChunk structures headed at MemJournal.pFirst. */ static void memjrnlFreeChunks(FileChunk *pFirst){ FileChunk *pIter; FileChunk *pNext; for(pIter=pFirst; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_free(pIter); } } /* ** Flush the contents of memory to a real file on disk. */ static int memjrnlCreateFile(MemJournal *p){ int rc; sqlite3_file *pReal = (sqlite3_file*)p; MemJournal copy = *p; memset(p, 0, sizeof(MemJournal)); rc = sqlite3OsOpen(copy.pVfs, copy.zJournal, pReal, copy.flags, 0); if( rc==SQLITE_OK ){ int nChunk = copy.nChunkSize; i64 iOff = 0; FileChunk *pIter; for(pIter=copy.pFirst; pIter; pIter=pIter->pNext){ if( iOff + nChunk > copy.endpoint.iOffset ){ nChunk = copy.endpoint.iOffset - iOff; } rc = sqlite3OsWrite(pReal, (u8*)pIter->zChunk, nChunk, iOff); if( rc ) break; iOff += nChunk; } if( rc==SQLITE_OK ){ /* No error has occurred. Free the in-memory buffers. */ memjrnlFreeChunks(copy.pFirst); } } if( rc!=SQLITE_OK ){ /* If an error occurred while creating or writing to the file, restore ** the original before returning. This way, SQLite uses the in-memory ** journal data to roll back changes made to the internal page-cache ** before this function was called. */ sqlite3OsClose(pReal); *p = copy; } return rc; } /* Forward reference */ static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size); /* ** Write data to the file. */ static int memjrnlWrite( sqlite3_file *pJfd, /* The journal file into which to write */ const void *zBuf, /* Take data to be written from here */ int iAmt, /* Number of bytes to write */ sqlite_int64 iOfst /* Begin writing at this offset into the file */ ){ MemJournal *p = (MemJournal *)pJfd; int nWrite = iAmt; u8 *zWrite = (u8 *)zBuf; /* If the file should be created now, create it and write the new data ** into the file on disk. */ if( p->nSpill>0 && (iAmt+iOfst)>p->nSpill ){ int rc = memjrnlCreateFile(p); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pJfd, zBuf, iAmt, iOfst); } return rc; } /* If the contents of this write should be stored in memory */ else{ /* An in-memory journal file should only ever be appended to. Random ** access writes are not required. The only exception to this is when ** the in-memory journal is being used by a connection using the ** atomic-write optimization. In this case the first 28 bytes of the ** journal file may be written as part of committing the transaction. */ assert( iOfst<=p->endpoint.iOffset ); if( iOfst>0 && iOfst!=p->endpoint.iOffset ){ memjrnlTruncate(pJfd, iOfst); } if( iOfst==0 && p->pFirst ){ assert( p->nChunkSize>iAmt ); memcpy((u8*)p->pFirst->zChunk, zBuf, iAmt); }else{ while( nWrite>0 ){ FileChunk *pChunk = p->endpoint.pChunk; int iChunkOffset = (int)(p->endpoint.iOffset%p->nChunkSize); int iSpace = MIN(nWrite, p->nChunkSize - iChunkOffset); assert( pChunk!=0 || iChunkOffset==0 ); if( iChunkOffset==0 ){ /* New chunk is required to extend the file. */ FileChunk *pNew = sqlite3_malloc(fileChunkSize(p->nChunkSize)); if( !pNew ){ return SQLITE_IOERR_NOMEM_BKPT; } pNew->pNext = 0; if( pChunk ){ assert( p->pFirst ); pChunk->pNext = pNew; }else{ assert( !p->pFirst ); p->pFirst = pNew; } pChunk = p->endpoint.pChunk = pNew; } assert( pChunk!=0 ); memcpy((u8*)pChunk->zChunk + iChunkOffset, zWrite, iSpace); zWrite += iSpace; nWrite -= iSpace; p->endpoint.iOffset += iSpace; } } } return SQLITE_OK; } /* ** Truncate the in-memory file. */ static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ MemJournal *p = (MemJournal *)pJfd; assert( p->endpoint.pChunk==0 || p->endpoint.pChunk->pNext==0 ); if( sizeendpoint.iOffset ){ FileChunk *pIter = 0; if( size==0 ){ memjrnlFreeChunks(p->pFirst); p->pFirst = 0; }else{ i64 iOff = p->nChunkSize; for(pIter=p->pFirst; ALWAYS(pIter) && iOffpNext){ iOff += p->nChunkSize; } if( ALWAYS(pIter) ){ memjrnlFreeChunks(pIter->pNext); pIter->pNext = 0; } } p->endpoint.pChunk = pIter; p->endpoint.iOffset = size; p->readpoint.pChunk = 0; p->readpoint.iOffset = 0; } return SQLITE_OK; } /* ** Close the file. */ static int memjrnlClose(sqlite3_file *pJfd){ MemJournal *p = (MemJournal *)pJfd; memjrnlFreeChunks(p->pFirst); return SQLITE_OK; } /* ** Sync the file. ** ** If the real file has been created, call its xSync method. Otherwise, ** syncing an in-memory journal is a no-op. */ static int memjrnlSync(sqlite3_file *pJfd, int flags){ UNUSED_PARAMETER2(pJfd, flags); return SQLITE_OK; } /* ** Query the size of the file in bytes. */ static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ MemJournal *p = (MemJournal *)pJfd; *pSize = (sqlite_int64) p->endpoint.iOffset; return SQLITE_OK; } /* ** Table of methods for MemJournal sqlite3_file object. */ static const struct sqlite3_io_methods MemJournalMethods = { 1, /* iVersion */ memjrnlClose, /* xClose */ memjrnlRead, /* xRead */ memjrnlWrite, /* xWrite */ memjrnlTruncate, /* xTruncate */ memjrnlSync, /* xSync */ memjrnlFileSize, /* xFileSize */ 0, /* xLock */ 0, /* xUnlock */ 0, /* xCheckReservedLock */ 0, /* xFileControl */ 0, /* xSectorSize */ 0, /* xDeviceCharacteristics */ 0, /* xShmMap */ 0, /* xShmLock */ 0, /* xShmBarrier */ 0, /* xShmUnmap */ 0, /* xFetch */ 0 /* xUnfetch */ }; /* ** Open a journal file. ** ** The behaviour of the journal file depends on the value of parameter ** nSpill. If nSpill is 0, then the journal file is always create and ** accessed using the underlying VFS. If nSpill is less than zero, then ** all content is always stored in main-memory. Finally, if nSpill is a ** positive value, then the journal file is initially created in-memory ** but may be flushed to disk later on. In this case the journal file is ** flushed to disk either when it grows larger than nSpill bytes in size, ** or when sqlite3JournalCreate() is called. */ SQLITE_PRIVATE int sqlite3JournalOpen( sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ const char *zName, /* Name of the journal file */ sqlite3_file *pJfd, /* Preallocated, blank file handle */ int flags, /* Opening flags */ int nSpill /* Bytes buffered before opening the file */ ){ MemJournal *p = (MemJournal*)pJfd; assert( zName || nSpill<0 || (flags & SQLITE_OPEN_EXCLUSIVE) ); /* Zero the file-handle object. If nSpill was passed zero, initialize ** it using the sqlite3OsOpen() function of the underlying VFS. In this ** case none of the code in this module is executed as a result of calls ** made on the journal file-handle. */ memset(p, 0, sizeof(MemJournal)); if( nSpill==0 ){ return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0); } if( nSpill>0 ){ p->nChunkSize = nSpill; }else{ p->nChunkSize = 8 + MEMJOURNAL_DFLT_FILECHUNKSIZE - sizeof(FileChunk); assert( MEMJOURNAL_DFLT_FILECHUNKSIZE==fileChunkSize(p->nChunkSize) ); } pJfd->pMethods = (const sqlite3_io_methods*)&MemJournalMethods; p->nSpill = nSpill; p->flags = flags; p->zJournal = zName; p->pVfs = pVfs; return SQLITE_OK; } /* ** Open an in-memory journal file. */ SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){ sqlite3JournalOpen(0, 0, pJfd, 0, -1); } #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) /* ** If the argument p points to a MemJournal structure that is not an ** in-memory-only journal file (i.e. is one that was opened with a +ve ** nSpill parameter or as SQLITE_OPEN_MAIN_JOURNAL), and the underlying ** file has not yet been created, create it now. */ SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *pJfd){ int rc = SQLITE_OK; MemJournal *p = (MemJournal*)pJfd; if( pJfd->pMethods==&MemJournalMethods && ( #ifdef SQLITE_ENABLE_ATOMIC_WRITE p->nSpill>0 #else /* While this appears to not be possible without ATOMIC_WRITE, the ** paths are complex, so it seems prudent to leave the test in as ** a NEVER(), in case our analysis is subtly flawed. */ NEVER(p->nSpill>0) #endif #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE || (p->flags & SQLITE_OPEN_MAIN_JOURNAL) #endif )){ rc = memjrnlCreateFile(p); } return rc; } #endif /* ** The file-handle passed as the only argument is open on a journal file. ** Return true if this "journal file" is currently stored in heap memory, ** or false otherwise. */ SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p){ return p->pMethods==&MemJournalMethods; } /* ** Return the number of bytes required to store a JournalFile that uses vfs ** pVfs to create the underlying on-disk files. */ SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){ return MAX(pVfs->szOsFile, (int)sizeof(MemJournal)); } /************** End of memjournal.c ******************************************/ /************** Begin file crypto.c ******************************************/ /* ** SQLCipher ** http://sqlcipher.net ** ** Copyright (c) 2008 - 2013, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* #include */ /************** Include sqlcipher.h in the middle of crypto.c ****************/ /************** Begin file sqlcipher.h ***************************************/ /* ** SQLCipher ** sqlcipher.h developed by Stephen Lombardo (Zetetic LLC) ** sjlombardo at zetetic dot net ** http://zetetic.net ** ** Copyright (c) 2008, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC #ifndef SQLCIPHER_H #define SQLCIPHER_H /* #include "sqlite3.h" */ #define SQLCIPHER_HMAC_SHA1 0 #define SQLCIPHER_HMAC_SHA1_LABEL "HMAC_SHA1" #define SQLCIPHER_HMAC_SHA256 1 #define SQLCIPHER_HMAC_SHA256_LABEL "HMAC_SHA256" #define SQLCIPHER_HMAC_SHA512 2 #define SQLCIPHER_HMAC_SHA512_LABEL "HMAC_SHA512" #define SQLCIPHER_PBKDF2_HMAC_SHA1 0 #define SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL "PBKDF2_HMAC_SHA1" #define SQLCIPHER_PBKDF2_HMAC_SHA256 1 #define SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL "PBKDF2_HMAC_SHA256" #define SQLCIPHER_PBKDF2_HMAC_SHA512 2 #define SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL "PBKDF2_HMAC_SHA512" typedef struct { int (*activate)(void *ctx); int (*deactivate)(void *ctx); const char* (*get_provider_name)(void *ctx); int (*add_random)(void *ctx, void *buffer, int length); int (*random)(void *ctx, void *buffer, int length); int (*hmac)(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out); int (*kdf)(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key); int (*cipher)(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out); const char* (*get_cipher)(void *ctx); int (*get_key_sz)(void *ctx); int (*get_iv_sz)(void *ctx); int (*get_block_sz)(void *ctx); int (*get_hmac_sz)(void *ctx, int algorithm); int (*ctx_init)(void **ctx); int (*ctx_free)(void **ctx); int (*fips_status)(void *ctx); const char* (*get_provider_version)(void *ctx); } sqlcipher_provider; /* utility functions */ void* sqlcipher_malloc(sqlite_uint64); void sqlcipher_mlock(void *, sqlite_uint64); void sqlcipher_munlock(void *, sqlite_uint64); void* sqlcipher_memset(void *, unsigned char, sqlite_uint64); int sqlcipher_ismemset(const void *, unsigned char, sqlite_uint64); int sqlcipher_memcmp(const void *, const void *, int); void sqlcipher_free(void *, sqlite_uint64); char* sqlcipher_version(); /* provider interfaces */ int sqlcipher_register_provider(sqlcipher_provider *); sqlcipher_provider* sqlcipher_get_provider(void); #define SQLCIPHER_MUTEX_PROVIDER 0 #define SQLCIPHER_MUTEX_PROVIDER_ACTIVATE 1 #define SQLCIPHER_MUTEX_PROVIDER_RAND 2 #define SQLCIPHER_MUTEX_RESERVED1 3 #define SQLCIPHER_MUTEX_RESERVED2 4 #define SQLCIPHER_MUTEX_RESERVED3 5 #define SQLCIPHER_MUTEX_COUNT 6 sqlite3_mutex* sqlcipher_mutex(int); #endif #endif /* END SQLCIPHER */ /************** End of sqlcipher.h *******************************************/ /************** Continuing where we left off in crypto.c *********************/ /************** Include crypto.h in the middle of crypto.c *******************/ /************** Begin file crypto.h ******************************************/ /* ** SQLCipher ** crypto.h developed by Stephen Lombardo (Zetetic LLC) ** sjlombardo at zetetic dot net ** http://zetetic.net ** ** Copyright (c) 2008, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC #ifndef CRYPTO_H #define CRYPTO_H /* #include "sqliteInt.h" */ /* #include "btreeInt.h" */ /* #include "pager.h" */ /* #include "vdbeInt.h" */ #if !defined(SQLCIPHER_OMIT_LOG_DEVICE) #if defined(__ANDROID__) #include #elif defined(__APPLE__) /* #include */ #include #endif #endif /* #include */ #if defined(_WIN32) || defined(SQLITE_OS_WINRT) /* #include ** amalgamator: dontcache ** */ #else /* #include ** amalgamator: dontcache ** */ #endif #ifndef OMIT_MEMLOCK #if defined(__unix__) || defined(__APPLE__) || defined(_AIX) /* #include ** amalgamator: dontcache ** */ /* #include ** amalgamator: dontcache ** */ #include /* amalgamator: dontcache */ /* #include ** amalgamator: dontcache ** */ #endif #endif /* #include "sqlcipher.h" */ /* extensions defined in pager.c */ void *sqlcipherPagerGetCodec(Pager*); void sqlcipherPagerSetCodec(Pager*, void *(*)(void*,void*,Pgno,int), void (*)(void*,int,int), void (*)(void*), void *); SQLITE_API int sqlite3pager_is_sj_pgno(Pager*, Pgno); SQLITE_API void sqlite3pager_error(Pager*, int); SQLITE_API void sqlite3pager_reset(Pager *pPager); /* end extensions defined in pager.c */ #if !defined (SQLCIPHER_CRYPTO_CC) \ && !defined (SQLCIPHER_CRYPTO_LIBTOMCRYPT) \ && !defined (SQLCIPHER_CRYPTO_NSS) \ && !defined (SQLCIPHER_CRYPTO_OPENSSL) #define SQLCIPHER_CRYPTO_OPENSSL #endif #define FILE_HEADER_SZ 16 #define CIPHER_XSTR(s) CIPHER_STR(s) #define CIPHER_STR(s) #s #ifndef CIPHER_VERSION_NUMBER #define CIPHER_VERSION_NUMBER 4.5.7 #endif #ifndef CIPHER_VERSION_BUILD #define CIPHER_VERSION_BUILD community #endif #define CIPHER_DECRYPT 0 #define CIPHER_ENCRYPT 1 #define CIPHER_READ_CTX 0 #define CIPHER_WRITE_CTX 1 #define CIPHER_READWRITE_CTX 2 #ifndef PBKDF2_ITER #define PBKDF2_ITER 256000 #endif #define SQLCIPHER_FLAG_GET(FLAG,BIT) ((FLAG & BIT) != 0) #define SQLCIPHER_FLAG_SET(FLAG,BIT) FLAG |= BIT #define SQLCIPHER_FLAG_UNSET(FLAG,BIT) FLAG &= ~BIT /* possible flags for codec_ctx->flags */ #define CIPHER_FLAG_HMAC (1 << 0) #define CIPHER_FLAG_LE_PGNO (1 << 1) #define CIPHER_FLAG_BE_PGNO (1 << 2) #define CIPHER_FLAG_KEY_USED (1 << 3) #define CIPHER_FLAG_HAS_KDF_SALT (1 << 4) #ifndef DEFAULT_CIPHER_FLAGS #define DEFAULT_CIPHER_FLAGS CIPHER_FLAG_HMAC | CIPHER_FLAG_LE_PGNO #endif /* by default, sqlcipher will use a reduced number of iterations to generate the HMAC key / or transform a raw cipher key */ #ifndef FAST_PBKDF2_ITER #define FAST_PBKDF2_ITER 2 #endif /* this if a fixed random array that will be xor'd with the database salt to ensure that the salt passed to the HMAC key derivation function is not the same as that used to derive the encryption key. This can be overridden at compile time but it will make the resulting binary incompatible with the default builds when using HMAC. A future version of SQLcipher will likely allow this to be defined at runtime via pragma */ #ifndef HMAC_SALT_MASK #define HMAC_SALT_MASK 0x3a #endif #ifndef CIPHER_MAX_IV_SZ #define CIPHER_MAX_IV_SZ 16 #endif #ifndef CIPHER_MAX_KEY_SZ #define CIPHER_MAX_KEY_SZ 64 #endif /* ** Simple shared routines for converting hex char strings to binary data */ static int cipher_hex2int(char c) { return (c>='0' && c<='9') ? (c)-'0' : (c>='A' && c<='F') ? (c)-'A'+10 : (c>='a' && c<='f') ? (c)-'a'+10 : 0; } static void cipher_hex2bin(const unsigned char *hex, int sz, unsigned char *out){ int i; for(i = 0; i < sz; i += 2){ out[i/2] = (cipher_hex2int(hex[i])<<4) | cipher_hex2int(hex[i+1]); } } static void cipher_bin2hex(const unsigned char* in, int sz, char *out) { int i; for(i=0; i < sz; i++) { sqlite3_snprintf(3, out + (i*2), "%02x ", in[i]); } } static int cipher_isHex(const unsigned char *hex, int sz){ int i; for(i = 0; i < sz; i++) { unsigned char c = hex[i]; if ((c < '0' || c > '9') && (c < 'A' || c > 'F') && (c < 'a' || c > 'f')) { return 0; } } return 1; } /* possible flags for simulating specific test conditions */ #ifdef SQLCIPHER_TEST #define TEST_FAIL_ENCRYPT 0x01 #define TEST_FAIL_DECRYPT 0x02 #define TEST_FAIL_MIGRATE 0x04 unsigned int sqlcipher_get_test_flags(void); void sqlcipher_set_test_flags(unsigned int); int sqlcipher_get_test_rand(void); void sqlcipher_set_test_rand(int); int sqlcipher_get_test_fail(void); #endif /* extensions defined in crypto_impl.c */ /* the default implementation of SQLCipher uses a cipher_ctx to keep track of read / write state separately. The following struct and associated functions are defined here */ typedef struct { int derive_key; int pass_sz; unsigned char *key; unsigned char *hmac_key; unsigned char *pass; char *keyspec; } cipher_ctx; typedef struct { int store_pass; int kdf_iter; int fast_kdf_iter; int kdf_salt_sz; int key_sz; int iv_sz; int block_sz; int page_sz; int keyspec_sz; int reserve_sz; int hmac_sz; int plaintext_header_sz; int hmac_algorithm; int kdf_algorithm; unsigned int flags; unsigned char *kdf_salt; unsigned char *hmac_kdf_salt; unsigned char *buffer; Btree *pBt; cipher_ctx *read_ctx; cipher_ctx *write_ctx; sqlcipher_provider *provider; void *provider_ctx; } codec_ctx ; /* crypto.c functions */ int sqlcipher_codec_pragma(sqlite3*, int, Parse*, const char *, const char*); int sqlcipherCodecAttach(sqlite3*, int, const void *, int); void sqlcipherCodecGetKey(sqlite3*, int, void**, int*); void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **); /* crypto_impl.c functions */ void sqlcipher_init_memmethods(void); /* activation and initialization */ void sqlcipher_activate(void); void sqlcipher_deactivate(void); int sqlcipher_codec_ctx_init(codec_ctx **, Db *, Pager *, const void *, int); void sqlcipher_codec_ctx_free(codec_ctx **); int sqlcipher_codec_key_derive(codec_ctx *); int sqlcipher_codec_key_copy(codec_ctx *, int); /* page cipher implementation */ int sqlcipher_page_cipher(codec_ctx *, int, Pgno, int, int, unsigned char *, unsigned char *); /* context setters & getters */ void sqlcipher_codec_ctx_set_error(codec_ctx *, int); void sqlcipher_codec_get_pass(codec_ctx *, void **, int *); int sqlcipher_codec_ctx_set_pass(codec_ctx *, const void *, int, int); void sqlcipher_codec_get_keyspec(codec_ctx *, void **zKey, int *nKey); int sqlcipher_codec_ctx_set_pagesize(codec_ctx *, int); int sqlcipher_codec_ctx_get_pagesize(codec_ctx *); int sqlcipher_codec_ctx_get_reservesize(codec_ctx *); void sqlcipher_set_default_pagesize(int page_size); int sqlcipher_get_default_pagesize(void); void sqlcipher_set_default_kdf_iter(int iter); int sqlcipher_get_default_kdf_iter(void); int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *, int); int sqlcipher_codec_ctx_get_kdf_iter(codec_ctx *ctx); int sqlcipher_codec_ctx_set_kdf_salt(codec_ctx *ctx, unsigned char *salt, int sz); int sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx, void **salt); int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *, int); int sqlcipher_codec_ctx_get_fast_kdf_iter(codec_ctx *); const char* sqlcipher_codec_ctx_get_cipher(codec_ctx *ctx); void* sqlcipher_codec_ctx_get_data(codec_ctx *); void sqlcipher_set_default_use_hmac(int use); int sqlcipher_get_default_use_hmac(void); void sqlcipher_set_hmac_salt_mask(unsigned char mask); unsigned char sqlcipher_get_hmac_salt_mask(void); int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use); int sqlcipher_codec_ctx_get_use_hmac(codec_ctx *ctx); const char* sqlcipher_codec_get_cipher_provider(codec_ctx *ctx); int sqlcipher_codec_ctx_migrate(codec_ctx *ctx); int sqlcipher_codec_add_random(codec_ctx *ctx, const char *data, int random_sz); int sqlcipher_cipher_profile(sqlite3 *db, const char *destination); int sqlcipher_codec_get_store_pass(codec_ctx *ctx); void sqlcipher_codec_get_pass(codec_ctx *ctx, void **zKey, int *nKey); void sqlcipher_codec_set_store_pass(codec_ctx *ctx, int value); int sqlcipher_codec_fips_status(codec_ctx *ctx); const char* sqlcipher_codec_get_provider_version(codec_ctx *ctx); int sqlcipher_set_default_plaintext_header_size(int size); int sqlcipher_get_default_plaintext_header_size(void); int sqlcipher_codec_ctx_set_plaintext_header_size(codec_ctx *ctx, int size); int sqlcipher_codec_ctx_get_plaintext_header_size(codec_ctx *ctx); int sqlcipher_set_default_hmac_algorithm(int algorithm); int sqlcipher_get_default_hmac_algorithm(void); int sqlcipher_codec_ctx_set_hmac_algorithm(codec_ctx *ctx, int algorithm); int sqlcipher_codec_ctx_get_hmac_algorithm(codec_ctx *ctx); int sqlcipher_set_default_kdf_algorithm(int algorithm); int sqlcipher_get_default_kdf_algorithm(void); int sqlcipher_codec_ctx_set_kdf_algorithm(codec_ctx *ctx, int algorithm); int sqlcipher_codec_ctx_get_kdf_algorithm(codec_ctx *ctx); void sqlcipher_set_mem_security(int); int sqlcipher_get_mem_security(void); int sqlcipher_find_db_index(sqlite3 *db, const char *zDb); int sqlcipher_codec_ctx_integrity_check(codec_ctx *, Parse *, char *); int sqlcipher_set_log(const char *destination); void sqlcipher_set_log_level(unsigned int level); #define SQLCIPHER_LOG_NONE 0x00 #define SQLCIPHER_LOG_ERROR 0x01 #define SQLCIPHER_LOG_WARN 0x02 #define SQLCIPHER_LOG_INFO 0x04 #define SQLCIPHER_LOG_DEBUG 0x08 #define SQLCIPHER_LOG_TRACE 0x10 #define SQLCIPHER_LOG_ALL 0xffffffff #ifdef SQLCIPHER_OMIT_LOG #define sqlcipher_log(tag, message, ...) #else void sqlcipher_log(unsigned int tag, const char *message, ...); #endif void sqlcipher_vdbe_return_string(Parse*, const char*, const char*, int); #ifdef CODEC_DEBUG_PAGEDATA #define CODEC_HEXDUMP(DESC,BUFFER,LEN) \ { \ int __pctr; \ printf(DESC); \ for(__pctr=0; __pctr < LEN; __pctr++) { \ if(__pctr % 16 == 0) printf("\n%05x: ",__pctr); \ printf("%02x ",((unsigned char*) BUFFER)[__pctr]); \ } \ printf("\n"); \ fflush(stdout); \ } #else #define CODEC_HEXDUMP(DESC,BUFFER,LEN) #endif #endif #endif /* END SQLCIPHER */ /************** End of crypto.h **********************************************/ /************** Continuing where we left off in crypto.c *********************/ #ifdef SQLCIPHER_EXT #include "sqlcipher_ext.h" #endif void sqlcipher_vdbe_return_string(Parse *pParse, const char *zLabel, const char *value, int value_type){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, value, value_type); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } static int codec_set_btree_to_codec_pagesize(sqlite3 *db, Db *pDb, codec_ctx *ctx) { int rc, page_sz, reserve_sz; page_sz = sqlcipher_codec_ctx_get_pagesize(ctx); reserve_sz = sqlcipher_codec_ctx_get_reservesize(ctx); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_set_btree_to_codec_pagesize: sqlite3BtreeSetPageSize() size=%d reserve=%d", page_sz, reserve_sz); sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: entering database mutex %p", db->mutex); sqlite3_mutex_enter(db->mutex); sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: entered database mutex %p", db->mutex); db->nextPagesize = page_sz; /* before forcing the page size we need to unset the BTS_PAGESIZE_FIXED flag, else sqliteBtreeSetPageSize will block the change */ pDb->pBt->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED; rc = sqlite3BtreeSetPageSize(pDb->pBt, page_sz, reserve_sz, 0); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_set_btree_to_codec_pagesize: sqlite3BtreeSetPageSize returned %d", rc); sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: leaving database mutex %p", db->mutex); sqlite3_mutex_leave(db->mutex); sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: left database mutex %p", db->mutex); return rc; } static int codec_set_pass_key(sqlite3* db, int nDb, const void *zKey, int nKey, int for_ctx) { struct Db *pDb = &db->aDb[nDb]; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_set_pass_key: db=%p nDb=%d for_ctx=%d", db, nDb, for_ctx); if(pDb->pBt) { codec_ctx *ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager); if(ctx) { return sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, for_ctx); } else { sqlcipher_log(SQLCIPHER_LOG_ERROR, "codec_set_pass_key: error ocurred fetching codec from pager on db %d", nDb); return SQLITE_ERROR; } } sqlcipher_log(SQLCIPHER_LOG_ERROR, "codec_set_pass_key: no btree present on db %d", nDb); return SQLITE_ERROR; } int sqlcipher_codec_pragma(sqlite3* db, int iDb, Parse *pParse, const char *zLeft, const char *zRight) { struct Db *pDb = &db->aDb[iDb]; codec_ctx *ctx = NULL; int rc; if(pDb->pBt) { ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager); } if(sqlite3_stricmp(zLeft, "key") !=0 && sqlite3_stricmp(zLeft, "rekey") != 0) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_pragma: db=%p iDb=%d pParse=%p zLeft=%s zRight=%s ctx=%p", db, iDb, pParse, zLeft, zRight, ctx); } #ifdef SQLCIPHER_EXT if(sqlcipher_ext_pragma(db, iDb, pParse, zLeft, zRight)) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_pragma: PRAGMA handled by sqlcipher_ext_pragma"); } else #endif #ifdef SQLCIPHER_TEST if( sqlite3_stricmp(zLeft,"cipher_test_on")==0 ){ if( zRight ) { unsigned int flags = sqlcipher_get_test_flags(); if(sqlite3_stricmp(zRight, "fail_encrypt")==0) { SQLCIPHER_FLAG_SET(flags,TEST_FAIL_ENCRYPT); } else if(sqlite3_stricmp(zRight, "fail_decrypt")==0) { SQLCIPHER_FLAG_SET(flags,TEST_FAIL_DECRYPT); } else if(sqlite3_stricmp(zRight, "fail_migrate")==0) { SQLCIPHER_FLAG_SET(flags,TEST_FAIL_MIGRATE); } sqlcipher_set_test_flags(flags); } } else if( sqlite3_stricmp(zLeft,"cipher_test_off")==0 ){ if( zRight ) { unsigned int flags = sqlcipher_get_test_flags(); if(sqlite3_stricmp(zRight, "fail_encrypt")==0) { SQLCIPHER_FLAG_UNSET(flags,TEST_FAIL_ENCRYPT); } else if(sqlite3_stricmp(zRight, "fail_decrypt")==0) { SQLCIPHER_FLAG_UNSET(flags,TEST_FAIL_DECRYPT); } else if(sqlite3_stricmp(zRight, "fail_migrate")==0) { SQLCIPHER_FLAG_UNSET(flags,TEST_FAIL_MIGRATE); } sqlcipher_set_test_flags(flags); } } else if( sqlite3_stricmp(zLeft,"cipher_test")==0 ){ char *flags = sqlite3_mprintf("%u", sqlcipher_get_test_flags()); sqlcipher_vdbe_return_string(pParse, "cipher_test", flags, P4_DYNAMIC); }else if( sqlite3_stricmp(zLeft,"cipher_test_rand")==0 ){ if( zRight ) { int rand = atoi(zRight); sqlcipher_set_test_rand(rand); } else { char *rand = sqlite3_mprintf("%d", sqlcipher_get_test_rand()); sqlcipher_vdbe_return_string(pParse, "cipher_test_rand", rand, P4_DYNAMIC); } } else #endif if( sqlite3_stricmp(zLeft, "cipher_fips_status")== 0 && !zRight ){ if(ctx) { char *fips_mode_status = sqlite3_mprintf("%d", sqlcipher_codec_fips_status(ctx)); sqlcipher_vdbe_return_string(pParse, "cipher_fips_status", fips_mode_status, P4_DYNAMIC); } } else if( sqlite3_stricmp(zLeft, "cipher_store_pass")==0 && zRight ) { if(ctx) { char *deprecation = "PRAGMA cipher_store_pass is deprecated, please remove from use"; sqlcipher_codec_set_store_pass(ctx, sqlite3GetBoolean(zRight, 1)); sqlcipher_vdbe_return_string(pParse, "cipher_store_pass", deprecation, P4_TRANSIENT); sqlite3_log(SQLITE_WARNING, deprecation); } } else if( sqlite3_stricmp(zLeft, "cipher_store_pass")==0 && !zRight ) { if(ctx){ char *store_pass_value = sqlite3_mprintf("%d", sqlcipher_codec_get_store_pass(ctx)); sqlcipher_vdbe_return_string(pParse, "cipher_store_pass", store_pass_value, P4_DYNAMIC); } } if( sqlite3_stricmp(zLeft, "cipher_profile")== 0 && zRight ){ char *profile_status = sqlite3_mprintf("%d", sqlcipher_cipher_profile(db, zRight)); sqlcipher_vdbe_return_string(pParse, "cipher_profile", profile_status, P4_DYNAMIC); } else if( sqlite3_stricmp(zLeft, "cipher_add_random")==0 && zRight ){ if(ctx) { char *add_random_status = sqlite3_mprintf("%d", sqlcipher_codec_add_random(ctx, zRight, sqlite3Strlen30(zRight))); sqlcipher_vdbe_return_string(pParse, "cipher_add_random", add_random_status, P4_DYNAMIC); } } else if( sqlite3_stricmp(zLeft, "cipher_migrate")==0 && !zRight ){ if(ctx){ int status = sqlcipher_codec_ctx_migrate(ctx); char *migrate_status = sqlite3_mprintf("%d", status); sqlcipher_vdbe_return_string(pParse, "cipher_migrate", migrate_status, P4_DYNAMIC); if(status != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_pragma: error occurred during cipher_migrate: %d", status); sqlcipher_codec_ctx_set_error(ctx, status); } } } else if( sqlite3_stricmp(zLeft, "cipher_provider")==0 && !zRight ){ if(ctx) { sqlcipher_vdbe_return_string(pParse, "cipher_provider", sqlcipher_codec_get_cipher_provider(ctx), P4_TRANSIENT); } } else if( sqlite3_stricmp(zLeft, "cipher_provider_version")==0 && !zRight){ if(ctx) { sqlcipher_vdbe_return_string(pParse, "cipher_provider_version", sqlcipher_codec_get_provider_version(ctx), P4_TRANSIENT); } } else if( sqlite3_stricmp(zLeft, "cipher_version")==0 && !zRight ){ sqlcipher_vdbe_return_string(pParse, "cipher_version", sqlcipher_version(), P4_DYNAMIC); }else if( sqlite3_stricmp(zLeft, "cipher")==0 ){ if(ctx) { if( zRight ) { const char* message = "PRAGMA cipher is no longer supported."; sqlcipher_vdbe_return_string(pParse, "cipher", message, P4_TRANSIENT); sqlite3_log(SQLITE_WARNING, message); }else { sqlcipher_vdbe_return_string(pParse, "cipher", sqlcipher_codec_ctx_get_cipher(ctx), P4_TRANSIENT); } } }else if( sqlite3_stricmp(zLeft, "rekey_cipher")==0 && zRight ){ const char* message = "PRAGMA rekey_cipher is no longer supported."; sqlcipher_vdbe_return_string(pParse, "rekey_cipher", message, P4_TRANSIENT); sqlite3_log(SQLITE_WARNING, message); }else if( sqlite3_stricmp(zLeft,"cipher_default_kdf_iter")==0 ){ if( zRight ) { sqlcipher_set_default_kdf_iter(atoi(zRight)); /* change default KDF iterations */ } else { char *kdf_iter = sqlite3_mprintf("%d", sqlcipher_get_default_kdf_iter()); sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_iter", kdf_iter, P4_DYNAMIC); } }else if( sqlite3_stricmp(zLeft, "kdf_iter")==0 ){ if(ctx) { if( zRight ) { sqlcipher_codec_ctx_set_kdf_iter(ctx, atoi(zRight)); /* change of RW PBKDF2 iteration */ } else { char *kdf_iter = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_kdf_iter(ctx)); sqlcipher_vdbe_return_string(pParse, "kdf_iter", kdf_iter, P4_DYNAMIC); } } }else if( sqlite3_stricmp(zLeft, "fast_kdf_iter")==0){ if(ctx) { if( zRight ) { char *deprecation = "PRAGMA fast_kdf_iter is deprecated, please remove from use"; sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, atoi(zRight)); /* change of RW PBKDF2 iteration */ sqlcipher_vdbe_return_string(pParse, "fast_kdf_iter", deprecation, P4_TRANSIENT); sqlite3_log(SQLITE_WARNING, deprecation); } else { char *fast_kdf_iter = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_fast_kdf_iter(ctx)); sqlcipher_vdbe_return_string(pParse, "fast_kdf_iter", fast_kdf_iter, P4_DYNAMIC); } } }else if( sqlite3_stricmp(zLeft, "rekey_kdf_iter")==0 && zRight ){ const char* message = "PRAGMA rekey_kdf_iter is no longer supported."; sqlcipher_vdbe_return_string(pParse, "rekey_kdf_iter", message, P4_TRANSIENT); sqlite3_log(SQLITE_WARNING, message); }else if( sqlite3_stricmp(zLeft,"page_size")==0 || sqlite3_stricmp(zLeft,"cipher_page_size")==0 ){ /* PRAGMA cipher_page_size will alter the size of the database pages while ensuring that the required reserve space is allocated at the end of each page. This will also override the standard SQLite PRAGMA page_size behavior if a codec context is attached to the database handle. If PRAGMA page_size is invoked but a codec context is not attached (i.e. dealing with a standard unencrypted database) then return early and allow the standard PRAGMA page_size logic to apply. */ if(ctx) { if( zRight ) { int size = atoi(zRight); rc = sqlcipher_codec_ctx_set_pagesize(ctx, size); if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc); rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx); if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc); } else { char * page_size = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_pagesize(ctx)); sqlcipher_vdbe_return_string(pParse, "cipher_page_size", page_size, P4_DYNAMIC); } } else { return 0; /* return early so that the PragTyp_PAGE_SIZE case logic in pragma.c will take effect */ } }else if( sqlite3_stricmp(zLeft,"cipher_default_page_size")==0 ){ if( zRight ) { sqlcipher_set_default_pagesize(atoi(zRight)); } else { char *default_page_size = sqlite3_mprintf("%d", sqlcipher_get_default_pagesize()); sqlcipher_vdbe_return_string(pParse, "cipher_default_page_size", default_page_size, P4_DYNAMIC); } }else if( sqlite3_stricmp(zLeft,"cipher_default_use_hmac")==0 ){ if( zRight ) { sqlcipher_set_default_use_hmac(sqlite3GetBoolean(zRight,1)); } else { char *default_use_hmac = sqlite3_mprintf("%d", sqlcipher_get_default_use_hmac()); sqlcipher_vdbe_return_string(pParse, "cipher_default_use_hmac", default_use_hmac, P4_DYNAMIC); } }else if( sqlite3_stricmp(zLeft,"cipher_use_hmac")==0 ){ if(ctx) { if( zRight ) { rc = sqlcipher_codec_ctx_set_use_hmac(ctx, sqlite3GetBoolean(zRight,1)); if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc); /* since the use of hmac has changed, the page size may also change */ rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx); if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc); } else { char *hmac_flag = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_use_hmac(ctx)); sqlcipher_vdbe_return_string(pParse, "cipher_use_hmac", hmac_flag, P4_DYNAMIC); } } }else if( sqlite3_stricmp(zLeft,"cipher_hmac_pgno")==0 ){ if(ctx) { if(zRight) { char *deprecation = "PRAGMA cipher_hmac_pgno is deprecated, please remove from use"; /* clear both pgno endian flags */ if(sqlite3_stricmp(zRight, "le") == 0) { SQLCIPHER_FLAG_UNSET(ctx->flags, CIPHER_FLAG_BE_PGNO); SQLCIPHER_FLAG_SET(ctx->flags, CIPHER_FLAG_LE_PGNO); } else if(sqlite3_stricmp(zRight, "be") == 0) { SQLCIPHER_FLAG_UNSET(ctx->flags, CIPHER_FLAG_LE_PGNO); SQLCIPHER_FLAG_SET(ctx->flags, CIPHER_FLAG_BE_PGNO); } else if(sqlite3_stricmp(zRight, "native") == 0) { SQLCIPHER_FLAG_UNSET(ctx->flags, CIPHER_FLAG_LE_PGNO); SQLCIPHER_FLAG_UNSET(ctx->flags, CIPHER_FLAG_BE_PGNO); } sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", deprecation, P4_TRANSIENT); sqlite3_log(SQLITE_WARNING, deprecation); } else { if(SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_LE_PGNO)) { sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", "le", P4_TRANSIENT); } else if(SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_BE_PGNO)) { sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", "be", P4_TRANSIENT); } else { sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", "native", P4_TRANSIENT); } } } }else if( sqlite3_stricmp(zLeft,"cipher_hmac_salt_mask")==0 ){ if(ctx) { if(zRight) { char *deprecation = "PRAGMA cipher_hmac_salt_mask is deprecated, please remove from use"; if (sqlite3StrNICmp(zRight ,"x'", 2) == 0 && sqlite3Strlen30(zRight) == 5) { unsigned char mask = 0; const unsigned char *hex = (const unsigned char *)zRight+2; cipher_hex2bin(hex,2,&mask); sqlcipher_set_hmac_salt_mask(mask); } sqlcipher_vdbe_return_string(pParse, "cipher_hmac_salt_mask", deprecation, P4_TRANSIENT); sqlite3_log(SQLITE_WARNING, deprecation); } else { char *hmac_salt_mask = sqlite3_mprintf("%02x", sqlcipher_get_hmac_salt_mask()); sqlcipher_vdbe_return_string(pParse, "cipher_hmac_salt_mask", hmac_salt_mask, P4_DYNAMIC); } } }else if( sqlite3_stricmp(zLeft,"cipher_plaintext_header_size")==0 ){ if(ctx) { if( zRight ) { int size = atoi(zRight); /* deliberately ignore result code, if size is invalid it will be set to -1 and trip the error later in the codec */ sqlcipher_codec_ctx_set_plaintext_header_size(ctx, size); } else { char *size = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_plaintext_header_size(ctx)); sqlcipher_vdbe_return_string(pParse, "cipher_plaintext_header_size", size, P4_DYNAMIC); } } }else if( sqlite3_stricmp(zLeft,"cipher_default_plaintext_header_size")==0 ){ if( zRight ) { sqlcipher_set_default_plaintext_header_size(atoi(zRight)); } else { char *size = sqlite3_mprintf("%d", sqlcipher_get_default_plaintext_header_size()); sqlcipher_vdbe_return_string(pParse, "cipher_default_plaintext_header_size", size, P4_DYNAMIC); } }else if( sqlite3_stricmp(zLeft,"cipher_salt")==0 ){ if(ctx) { if(zRight) { if (sqlite3StrNICmp(zRight ,"x'", 2) == 0 && sqlite3Strlen30(zRight) == (FILE_HEADER_SZ*2)+3) { unsigned char *salt = (unsigned char*) sqlite3_malloc(FILE_HEADER_SZ); const unsigned char *hex = (const unsigned char *)zRight+2; cipher_hex2bin(hex,FILE_HEADER_SZ*2,salt); sqlcipher_codec_ctx_set_kdf_salt(ctx, salt, FILE_HEADER_SZ); sqlite3_free(salt); } } else { void *salt; char *hexsalt = (char*) sqlite3_malloc((FILE_HEADER_SZ*2)+1); if((rc = sqlcipher_codec_ctx_get_kdf_salt(ctx, &salt)) == SQLITE_OK) { cipher_bin2hex(salt, FILE_HEADER_SZ, hexsalt); sqlcipher_vdbe_return_string(pParse, "cipher_salt", hexsalt, P4_DYNAMIC); } else { sqlite3_free(hexsalt); sqlcipher_codec_ctx_set_error(ctx, rc); } } } }else if( sqlite3_stricmp(zLeft,"cipher_hmac_algorithm")==0 ){ if(ctx) { if(zRight) { rc = SQLITE_ERROR; if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA1_LABEL) == 0) { rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1); } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA256_LABEL) == 0) { rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA256); } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA512_LABEL) == 0) { rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA512); } if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); } else { int algorithm = sqlcipher_codec_ctx_get_hmac_algorithm(ctx); if(algorithm == SQLCIPHER_HMAC_SHA1) { sqlcipher_vdbe_return_string(pParse, "cipher_hmac_algorithm", SQLCIPHER_HMAC_SHA1_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_HMAC_SHA256) { sqlcipher_vdbe_return_string(pParse, "cipher_hmac_algorithm", SQLCIPHER_HMAC_SHA256_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_HMAC_SHA512) { sqlcipher_vdbe_return_string(pParse, "cipher_hmac_algorithm", SQLCIPHER_HMAC_SHA512_LABEL, P4_TRANSIENT); } } } }else if( sqlite3_stricmp(zLeft,"cipher_default_hmac_algorithm")==0 ){ if(zRight) { rc = SQLITE_ERROR; if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA1_LABEL) == 0) { rc = sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1); } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA256_LABEL) == 0) { rc = sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA256); } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA512_LABEL) == 0) { rc = sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA512); } } else { int algorithm = sqlcipher_get_default_hmac_algorithm(); if(algorithm == SQLCIPHER_HMAC_SHA1) { sqlcipher_vdbe_return_string(pParse, "cipher_default_hmac_algorithm", SQLCIPHER_HMAC_SHA1_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_HMAC_SHA256) { sqlcipher_vdbe_return_string(pParse, "cipher_default_hmac_algorithm", SQLCIPHER_HMAC_SHA256_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_HMAC_SHA512) { sqlcipher_vdbe_return_string(pParse, "cipher_default_hmac_algorithm", SQLCIPHER_HMAC_SHA512_LABEL, P4_TRANSIENT); } } }else if( sqlite3_stricmp(zLeft,"cipher_kdf_algorithm")==0 ){ if(ctx) { if(zRight) { rc = SQLITE_ERROR; if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL) == 0) { rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1); } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL) == 0) { rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA256); } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL) == 0) { rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA512); } if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); } else { int algorithm = sqlcipher_codec_ctx_get_kdf_algorithm(ctx); if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) { sqlcipher_vdbe_return_string(pParse, "cipher_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) { sqlcipher_vdbe_return_string(pParse, "cipher_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) { sqlcipher_vdbe_return_string(pParse, "cipher_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL, P4_TRANSIENT); } } } }else if( sqlite3_stricmp(zLeft,"cipher_default_kdf_algorithm")==0 ){ if(zRight) { rc = SQLITE_ERROR; if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL) == 0) { rc = sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1); } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL) == 0) { rc = sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA256); } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL) == 0) { rc = sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA512); } } else { int algorithm = sqlcipher_get_default_kdf_algorithm(); if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) { sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) { sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL, P4_TRANSIENT); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) { sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL, P4_TRANSIENT); } } }else if( sqlite3_stricmp(zLeft,"cipher_compatibility")==0 ){ if(ctx) { if(zRight) { int version = atoi(zRight); switch(version) { case 1: rc = sqlcipher_codec_ctx_set_pagesize(ctx, 1024); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 4000); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 0); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); break; case 2: rc = sqlcipher_codec_ctx_set_pagesize(ctx, 1024); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 4000); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); break; case 3: rc = sqlcipher_codec_ctx_set_pagesize(ctx, 1024); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 64000); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); break; default: rc = sqlcipher_codec_ctx_set_pagesize(ctx, 4096); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA512); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA512); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 256000); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 1); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); break; } rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx); if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); } } }else if( sqlite3_stricmp(zLeft,"cipher_default_compatibility")==0 ){ if(zRight) { int version = atoi(zRight); switch(version) { case 1: sqlcipher_set_default_pagesize(1024); sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1); sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1); sqlcipher_set_default_kdf_iter(4000); sqlcipher_set_default_use_hmac(0); break; case 2: sqlcipher_set_default_pagesize(1024); sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1); sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1); sqlcipher_set_default_kdf_iter(4000); sqlcipher_set_default_use_hmac(1); break; case 3: sqlcipher_set_default_pagesize(1024); sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1); sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1); sqlcipher_set_default_kdf_iter(64000); sqlcipher_set_default_use_hmac(1); break; default: sqlcipher_set_default_pagesize(4096); sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA512); sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA512); sqlcipher_set_default_kdf_iter(256000); sqlcipher_set_default_use_hmac(1); break; } } }else if( sqlite3_stricmp(zLeft,"cipher_memory_security")==0 ){ if( zRight ) { sqlcipher_set_mem_security(sqlite3GetBoolean(zRight,1)); } else { char *on = sqlite3_mprintf("%d", sqlcipher_get_mem_security()); sqlcipher_vdbe_return_string(pParse, "cipher_memory_security", on, P4_DYNAMIC); } }else if( sqlite3_stricmp(zLeft,"cipher_settings")==0 ){ if(ctx) { int algorithm; char *pragma; pragma = sqlite3_mprintf("PRAGMA kdf_iter = %d;", sqlcipher_codec_ctx_get_kdf_iter(ctx)); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); pragma = sqlite3_mprintf("PRAGMA cipher_page_size = %d;", sqlcipher_codec_ctx_get_pagesize(ctx)); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); pragma = sqlite3_mprintf("PRAGMA cipher_use_hmac = %d;", sqlcipher_codec_ctx_get_use_hmac(ctx)); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); pragma = sqlite3_mprintf("PRAGMA cipher_plaintext_header_size = %d;", sqlcipher_codec_ctx_get_plaintext_header_size(ctx)); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); algorithm = sqlcipher_codec_ctx_get_hmac_algorithm(ctx); pragma = NULL; if(algorithm == SQLCIPHER_HMAC_SHA1) { pragma = sqlite3_mprintf("PRAGMA cipher_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA1_LABEL); } else if(algorithm == SQLCIPHER_HMAC_SHA256) { pragma = sqlite3_mprintf("PRAGMA cipher_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA256_LABEL); } else if(algorithm == SQLCIPHER_HMAC_SHA512) { pragma = sqlite3_mprintf("PRAGMA cipher_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA512_LABEL); } sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); algorithm = sqlcipher_codec_ctx_get_kdf_algorithm(ctx); pragma = NULL; if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) { pragma = sqlite3_mprintf("PRAGMA cipher_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) { pragma = sqlite3_mprintf("PRAGMA cipher_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) { pragma = sqlite3_mprintf("PRAGMA cipher_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL); } sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); } }else if( sqlite3_stricmp(zLeft,"cipher_default_settings")==0 ){ int algorithm; char *pragma; pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_iter = %d;", sqlcipher_get_default_kdf_iter()); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); pragma = sqlite3_mprintf("PRAGMA cipher_default_page_size = %d;", sqlcipher_get_default_pagesize()); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); pragma = sqlite3_mprintf("PRAGMA cipher_default_use_hmac = %d;", sqlcipher_get_default_use_hmac()); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); pragma = sqlite3_mprintf("PRAGMA cipher_default_plaintext_header_size = %d;", sqlcipher_get_default_plaintext_header_size()); sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); algorithm = sqlcipher_get_default_hmac_algorithm(); pragma = NULL; if(algorithm == SQLCIPHER_HMAC_SHA1) { pragma = sqlite3_mprintf("PRAGMA cipher_default_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA1_LABEL); } else if(algorithm == SQLCIPHER_HMAC_SHA256) { pragma = sqlite3_mprintf("PRAGMA cipher_default_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA256_LABEL); } else if(algorithm == SQLCIPHER_HMAC_SHA512) { pragma = sqlite3_mprintf("PRAGMA cipher_default_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA512_LABEL); } sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); algorithm = sqlcipher_get_default_kdf_algorithm(); pragma = NULL; if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) { pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) { pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL); } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) { pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL); } sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC); }else if( sqlite3_stricmp(zLeft,"cipher_integrity_check")==0 ){ if(ctx) { sqlcipher_codec_ctx_integrity_check(ctx, pParse, "cipher_integrity_check"); } } else if( sqlite3_stricmp(zLeft, "cipher_log_level")==0 && zRight){ unsigned int level = SQLCIPHER_LOG_NONE; if(sqlite3_stricmp(zRight, "ERROR")==0) level = SQLCIPHER_LOG_ERROR; else if(sqlite3_stricmp(zRight, "WARN" )==0) level = SQLCIPHER_LOG_WARN; else if(sqlite3_stricmp(zRight, "INFO" )==0) level = SQLCIPHER_LOG_INFO; else if(sqlite3_stricmp(zRight, "DEBUG")==0) level = SQLCIPHER_LOG_DEBUG; else if(sqlite3_stricmp(zRight, "TRACE")==0) level = SQLCIPHER_LOG_TRACE; sqlcipher_set_log_level(level); sqlcipher_vdbe_return_string(pParse, "cipher_log_level", sqlite3_mprintf("%u", level), P4_DYNAMIC); } else if( sqlite3_stricmp(zLeft, "cipher_log")== 0 && zRight ){ char *status = sqlite3_mprintf("%d", sqlcipher_set_log(zRight)); sqlcipher_vdbe_return_string(pParse, "cipher_log", status, P4_DYNAMIC); }else { return 0; } return 1; } /* these constants are used internally within SQLite's pager.c to differentiate between operations on the main database or journal pages. This is important in the context of a rekey operations, where the journal must be written using the original key material (to allow a transactional rollback), while the new database pages are being written with the new key material*/ #define CODEC_READ_OP 3 #define CODEC_WRITE_OP 6 #define CODEC_JOURNAL_OP 7 /* * sqlite3Codec can be called in multiple modes. * encrypt mode - expected to return a pointer to the * encrypted data without altering pData. * decrypt mode - expected to return a pointer to pData, with * the data decrypted in the input buffer */ static void* sqlite3Codec(void *iCtx, void *data, Pgno pgno, int mode) { codec_ctx *ctx = (codec_ctx *) iCtx; int offset = 0, rc = 0; int page_sz = sqlcipher_codec_ctx_get_pagesize(ctx); unsigned char *pData = (unsigned char *) data; void *buffer = sqlcipher_codec_ctx_get_data(ctx); int plaintext_header_sz = sqlcipher_codec_ctx_get_plaintext_header_size(ctx); int cctx = CIPHER_READ_CTX; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3Codec: pgno=%d, mode=%d, page_sz=%d", pgno, mode, page_sz); #ifdef SQLCIPHER_EXT if(sqlcipher_license_check(ctx) != SQLITE_OK) return NULL; #endif /* call to derive keys if not present yet */ if((rc = sqlcipher_codec_key_derive(ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error occurred during key derivation: %d", rc); sqlcipher_codec_ctx_set_error(ctx, rc); return NULL; } /* if the plaintext_header_size is negative that means an invalid size was set via PRAGMA. We can't set the error state on the pager at that point because the pager may not be open yet. However, this is a fatal error state, so abort the codec */ if(plaintext_header_sz < 0) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error invalid plaintext_header_sz: %d", plaintext_header_sz); sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); return NULL; } if(pgno == 1) /* adjust starting pointers in data page for header offset on first page*/ offset = plaintext_header_sz ? plaintext_header_sz : FILE_HEADER_SZ; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3Codec: switch mode=%d offset=%d", mode, offset); switch(mode) { case CODEC_READ_OP: /* decrypt */ if(pgno == 1) /* copy initial part of file header or SQLite magic to buffer */ memcpy(buffer, plaintext_header_sz ? pData : (void *) SQLITE_FILE_HEADER, offset); rc = sqlcipher_page_cipher(ctx, cctx, pgno, CIPHER_DECRYPT, page_sz - offset, pData + offset, (unsigned char*)buffer + offset); #ifdef SQLCIPHER_TEST if((sqlcipher_get_test_flags() & TEST_FAIL_DECRYPT) > 0 && sqlcipher_get_test_fail()) { rc = SQLITE_ERROR; sqlcipher_log(SQLCIPHER_LOG_ERROR, "simulating decryption failure for pgno=%d, mode=%d, page_sz=%d\n", pgno, mode, page_sz); } #endif if(rc != SQLITE_OK) { /* failure to decrypt a page is considered a permanent error and will render the pager unusable in order to prevent inconsistent data being loaded into page cache */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error decrypting page %d data: %d", pgno, rc); sqlcipher_memset((unsigned char*) buffer+offset, 0, page_sz-offset); sqlcipher_codec_ctx_set_error(ctx, rc); } else { SQLCIPHER_FLAG_SET(ctx->flags, CIPHER_FLAG_KEY_USED); } memcpy(pData, buffer, page_sz); /* copy buffer data back to pData and return */ return pData; break; case CODEC_WRITE_OP: /* encrypt database page, operate on write context and fall through to case 7, so the write context is used*/ cctx = CIPHER_WRITE_CTX; case CODEC_JOURNAL_OP: /* encrypt journal page, operate on read context use to get the original page data from the database */ if(pgno == 1) { /* copy initial part of file header or salt to buffer */ void *kdf_salt = NULL; /* retrieve the kdf salt */ if((rc = sqlcipher_codec_ctx_get_kdf_salt(ctx, &kdf_salt)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error retrieving salt: %d", rc); sqlcipher_codec_ctx_set_error(ctx, rc); return NULL; } memcpy(buffer, plaintext_header_sz ? pData : kdf_salt, offset); } rc = sqlcipher_page_cipher(ctx, cctx, pgno, CIPHER_ENCRYPT, page_sz - offset, pData + offset, (unsigned char*)buffer + offset); #ifdef SQLCIPHER_TEST if((sqlcipher_get_test_flags() & TEST_FAIL_ENCRYPT) > 0 && sqlcipher_get_test_fail()) { rc = SQLITE_ERROR; sqlcipher_log(SQLCIPHER_LOG_ERROR, "simulating encryption failure for pgno=%d, mode=%d, page_sz=%d\n", pgno, mode, page_sz); } #endif if(rc != SQLITE_OK) { /* failure to encrypt a page is considered a permanent error and will render the pager unusable in order to prevent corrupted pages from being written to the main databased when using WAL */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error encrypting page %d data: %d", pgno, rc); sqlcipher_memset((unsigned char*)buffer+offset, 0, page_sz-offset); sqlcipher_codec_ctx_set_error(ctx, rc); return NULL; } SQLCIPHER_FLAG_SET(ctx->flags, CIPHER_FLAG_KEY_USED); return buffer; /* return persistent buffer data, pData remains intact */ break; default: sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error unsupported codec mode %d", mode); sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); /* unsupported mode, set error */ return pData; break; } } static void sqlite3FreeCodecArg(void *pCodecArg) { codec_ctx *ctx = (codec_ctx *) pCodecArg; if(pCodecArg == NULL) return; sqlcipher_codec_ctx_free(&ctx); /* wipe and free allocated memory for the context */ sqlcipher_deactivate(); /* cleanup related structures, OpenSSL etc, when codec is detatched */ } int sqlcipherCodecAttach(sqlite3* db, int nDb, const void *zKey, int nKey) { struct Db *pDb = &db->aDb[nDb]; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: db=%p, nDb=%d", db, nDb); if(nKey && zKey && pDb->pBt) { int rc; Pager *pPager = pDb->pBt->pBt->pPager; sqlite3_file *fd; codec_ctx *ctx; ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager); if(ctx != NULL && SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_KEY_USED)) { /* there is already a codec attached to this database, so we should not proceed */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipherCodecAttach: no codec attached to db, exiting"); return SQLITE_OK; } /* check if the sqlite3_file is open, and if not force handle to NULL */ if((fd = sqlite3PagerFile(pPager))->pMethods == 0) fd = NULL; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlcipher_activate()"); sqlcipher_activate(); /* perform internal initialization for sqlcipher */ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: entering database mutex %p", db->mutex); sqlite3_mutex_enter(db->mutex); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: entered database mutex %p", db->mutex); #ifdef SQLCIPHER_EXT if((rc = sqlite3_set_authorizer(db, sqlcipher_license_authorizer, db)) != SQLITE_OK) { sqlite3_mutex_leave(db->mutex); return rc; } #endif /* point the internal codec argument against the contet to be prepared */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlcipher_codec_ctx_init()"); rc = sqlcipher_codec_ctx_init(&ctx, pDb, pDb->pBt->pBt->pPager, zKey, nKey); if(rc != SQLITE_OK) { /* initialization failed, do not attach potentially corrupted context */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipherCodecAttach: context initialization failed forcing error state with rc=%d", rc); /* force an error at the pager level, such that even the upstream caller ignores the return code the pager will be in an error state and will process no further operations */ sqlite3pager_error(pPager, rc); pDb->pBt->pBt->db->errCode = rc; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: leaving database mutex %p (early return on rc=%d)", db->mutex, rc); sqlite3_mutex_leave(db->mutex); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: left database mutex %p (early return on rc=%d)", db->mutex, rc); return rc; } sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlcipherPagerSetCodec()"); sqlcipherPagerSetCodec(sqlite3BtreePager(pDb->pBt), sqlite3Codec, NULL, sqlite3FreeCodecArg, (void *) ctx); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling codec_set_btree_to_codec_pagesize()"); codec_set_btree_to_codec_pagesize(db, pDb, ctx); /* force secure delete. This has the benefit of wiping internal data when deleted and also ensures that all pages are written to disk (i.e. not skipped by sqlite3PagerDontWrite optimizations) */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlite3BtreeSecureDelete()"); sqlite3BtreeSecureDelete(pDb->pBt, 1); /* if fd is null, then this is an in-memory database and we dont' want to overwrite the AutoVacuum settings if not null, then set to the default */ if(fd != NULL) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlite3BtreeSetAutoVacuum()"); sqlite3BtreeSetAutoVacuum(pDb->pBt, SQLITE_DEFAULT_AUTOVACUUM); } sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: leaving database mutex %p", db->mutex); sqlite3_mutex_leave(db->mutex); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: left database mutex %p", db->mutex); } return SQLITE_OK; } int sqlcipher_find_db_index(sqlite3 *db, const char *zDb) { int db_index; if(zDb == NULL){ return 0; } for(db_index = 0; db_index < db->nDb; db_index++) { struct Db *pDb = &db->aDb[db_index]; if(strcmp(pDb->zDbSName, zDb) == 0) { return db_index; } } return 0; } SQLITE_API void sqlite3_activate_see(const char* in) { /* do nothing, security enhancements are always active */ } SQLITE_API int sqlite3_key(sqlite3 *db, const void *pKey, int nKey) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_key: db=%p", db); return sqlite3_key_v2(db, "main", pKey, nKey); } SQLITE_API int sqlite3_key_v2(sqlite3 *db, const char *zDb, const void *pKey, int nKey) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_key_v2: db=%p zDb=%s", db, zDb); /* attach key if db and pKey are not null and nKey is > 0 */ if(db && pKey && nKey) { int db_index = sqlcipher_find_db_index(db, zDb); return sqlcipherCodecAttach(db, db_index, pKey, nKey); } sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_key_v2: no key provided"); return SQLITE_ERROR; } SQLITE_API int sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey: db=%p", db); return sqlite3_rekey_v2(db, "main", pKey, nKey); } /* sqlite3_rekey_v2 ** Given a database, this will reencrypt the database using a new key. ** There is only one possible modes of operation - to encrypt a database ** that is already encrpyted. If the database is not already encrypted ** this should do nothing ** The proposed logic for this function follows: ** 1. Determine if the database is already encryptped ** 2. If there is NOT already a key present do nothing ** 3. If there is a key present, re-encrypt the database with the new key */ SQLITE_API int sqlite3_rekey_v2(sqlite3 *db, const char *zDb, const void *pKey, int nKey) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: db=%p zDb=%s", db, zDb); if(db && pKey && nKey) { int db_index = sqlcipher_find_db_index(db, zDb); struct Db *pDb = &db->aDb[db_index]; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: database zDb=%p db_index:%d", zDb, db_index); if(pDb->pBt) { codec_ctx *ctx; int rc, page_count; Pgno pgno; PgHdr *page; Pager *pPager = pDb->pBt->pBt->pPager; ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager); if(ctx == NULL) { /* there was no codec attached to this database, so this should do nothing! */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: no codec attached to db, exiting"); return SQLITE_MISUSE; } sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: entering database mutex %p", db->mutex); sqlite3_mutex_enter(db->mutex); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: entered database mutex %p", db->mutex); codec_set_pass_key(db, db_index, pKey, nKey, CIPHER_WRITE_CTX); /* do stuff here to rewrite the database ** 1. Create a transaction on the database ** 2. Iterate through each page, reading it and then writing it. ** 3. If that goes ok then commit and put ctx->rekey into ctx->key ** note: don't deallocate rekey since it may be used in a subsequent iteration */ rc = sqlite3BtreeBeginTrans(pDb->pBt, 1, 0); /* begin write transaction */ sqlite3PagerPagecount(pPager, &page_count); for(pgno = 1; rc == SQLITE_OK && pgno <= (unsigned int)page_count; pgno++) { /* pgno's start at 1 see pager.c:pagerAcquire */ if(!sqlite3pager_is_sj_pgno(pPager, pgno)) { /* skip this page (see pager.c:pagerAcquire for reasoning) */ rc = sqlite3PagerGet(pPager, pgno, &page, 0); if(rc == SQLITE_OK) { /* write page see pager_incr_changecounter for example */ rc = sqlite3PagerWrite(page); if(rc == SQLITE_OK) { sqlite3PagerUnref(page); } else { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: error %d occurred writing page %d", rc, pgno); } } else { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: error %d occurred getting page %d", rc, pgno); } } } /* if commit was successful commit and copy the rekey data to current key, else rollback to release locks */ if(rc == SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: committing"); rc = sqlite3BtreeCommit(pDb->pBt); sqlcipher_codec_key_copy(ctx, CIPHER_WRITE_CTX); } else { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: rollback"); sqlite3BtreeRollback(pDb->pBt, SQLITE_ABORT_ROLLBACK, 0); } sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: leaving database mutex %p", db->mutex); sqlite3_mutex_leave(db->mutex); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: left database mutex %p", db->mutex); } return SQLITE_OK; } sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: no key provided"); return SQLITE_ERROR; } void sqlcipherCodecGetKey(sqlite3* db, int nDb, void **zKey, int *nKey) { struct Db *pDb = &db->aDb[nDb]; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecGetKey:db=%p, nDb=%d", db, nDb); if( pDb->pBt ) { codec_ctx *ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager); if(ctx) { /* pass back the keyspec from the codec, unless PRAGMA cipher_store_pass is set or keyspec has not yet been derived, in which case pass back the password key material */ sqlcipher_codec_get_keyspec(ctx, zKey, nKey); if(sqlcipher_codec_get_store_pass(ctx) == 1 || *zKey == NULL) { sqlcipher_codec_get_pass(ctx, zKey, nKey); } } else { *zKey = NULL; *nKey = 0; } } } /* * Implementation of an "export" function that allows a caller * to duplicate the main database to an attached database. This is intended * as a conveneince for users who need to: * * 1. migrate from an non-encrypted database to an encrypted database * 2. move from an encrypted database to a non-encrypted database * 3. convert beween the various flavors of encrypted databases. * * This implementation is based heavily on the procedure and code used * in vacuum.c, but is exposed as a function that allows export to any * named attached database. */ /* ** Finalize a prepared statement. If there was an error, store the ** text of the error message in *pzErrMsg. Return the result code. ** ** Based on vacuumFinalize from vacuum.c */ static int sqlcipher_finalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){ int rc; rc = sqlite3VdbeFinalize((Vdbe*)pStmt); if( rc ){ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); } return rc; } /* ** Execute zSql on database db. Return an error code. ** ** Based on execSql from vacuum.c */ static int sqlcipher_execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ sqlite3_stmt *pStmt; VVA_ONLY( int rc; ) if( !zSql ){ return SQLITE_NOMEM; } if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); return sqlite3_errcode(db); } VVA_ONLY( rc = ) sqlite3_step(pStmt); assert( rc!=SQLITE_ROW ); return sqlcipher_finalize(db, pStmt, pzErrMsg); } /* ** Execute zSql on database db. The statement returns exactly ** one column. Execute this as SQL on the same database. ** ** Based on execExecSql from vacuum.c */ static int sqlcipher_execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ sqlite3_stmt *pStmt; int rc; rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; while( SQLITE_ROW==sqlite3_step(pStmt) ){ rc = sqlcipher_execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0)); if( rc!=SQLITE_OK ){ sqlcipher_finalize(db, pStmt, pzErrMsg); return rc; } } return sqlcipher_finalize(db, pStmt, pzErrMsg); } /* * copy database and schema from the main database to an attached database * * Based on sqlite3RunVacuum from vacuum.c */ void sqlcipher_exportFunc(sqlite3_context *context, int argc, sqlite3_value **argv) { sqlite3 *db = sqlite3_context_db_handle(context); const char* targetDb, *sourceDb; int targetDb_idx = 0; u64 saved_flags = db->flags; /* Saved value of the db->flags */ u32 saved_mDbFlags = db->mDbFlags; /* Saved value of the db->mDbFlags */ int saved_nChange = db->nChange; /* Saved value of db->nChange */ int saved_nTotalChange = db->nTotalChange; /* Saved value of db->nTotalChange */ u8 saved_mTrace = db->mTrace; /* Saved value of db->mTrace */ int rc = SQLITE_OK; /* Return code from service routines */ char *zSql = NULL; /* SQL statements */ char *pzErrMsg = NULL; if(argc != 1 && argc != 2) { rc = SQLITE_ERROR; pzErrMsg = sqlite3_mprintf("invalid number of arguments (%d) passed to sqlcipher_export", argc); goto end_of_export; } if(sqlite3_value_type(argv[0]) == SQLITE_NULL) { rc = SQLITE_ERROR; pzErrMsg = sqlite3_mprintf("target database can't be NULL"); goto end_of_export; } targetDb = (const char*) sqlite3_value_text(argv[0]); sourceDb = "main"; if(argc == 2) { if(sqlite3_value_type(argv[1]) == SQLITE_NULL) { rc = SQLITE_ERROR; pzErrMsg = sqlite3_mprintf("target database can't be NULL"); goto end_of_export; } sourceDb = (char *) sqlite3_value_text(argv[1]); } /* if the name of the target is not main, but the index returned is zero there is a mismatch and we should not proceed */ targetDb_idx = sqlcipher_find_db_index(db, targetDb); if(targetDb_idx == 0 && targetDb != NULL && sqlite3_stricmp("main", targetDb) != 0) { rc = SQLITE_ERROR; pzErrMsg = sqlite3_mprintf("unknown database %s", targetDb); goto end_of_export; } db->init.iDb = targetDb_idx; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; db->flags &= ~(u64)(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_Defensive | SQLITE_CountRows); db->mTrace = 0; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ zSql = sqlite3_mprintf( "SELECT sql " " FROM %s.sqlite_schema WHERE type='table' AND name!='sqlite_sequence'" " AND rootpage>0" , sourceDb); rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); if( rc!=SQLITE_OK ) goto end_of_export; sqlite3_free(zSql); zSql = sqlite3_mprintf( "SELECT sql " " FROM %s.sqlite_schema WHERE sql LIKE 'CREATE INDEX %%' " , sourceDb); rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); if( rc!=SQLITE_OK ) goto end_of_export; sqlite3_free(zSql); zSql = sqlite3_mprintf( "SELECT sql " " FROM %s.sqlite_schema WHERE sql LIKE 'CREATE UNIQUE INDEX %%'" , sourceDb); rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); if( rc!=SQLITE_OK ) goto end_of_export; sqlite3_free(zSql); /* Loop through the tables in the main database. For each, do ** an "INSERT INTO rekey_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ zSql = sqlite3_mprintf( "SELECT 'INSERT INTO %s.' || quote(name) " "|| ' SELECT * FROM %s.' || quote(name) || ';'" "FROM %s.sqlite_schema " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND rootpage>0" , targetDb, sourceDb, sourceDb); rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); if( rc!=SQLITE_OK ) goto end_of_export; sqlite3_free(zSql); /* Copy over the contents of the sequence table */ zSql = sqlite3_mprintf( "SELECT 'INSERT INTO %s.' || quote(name) " "|| ' SELECT * FROM %s.' || quote(name) || ';' " "FROM %s.sqlite_schema WHERE name=='sqlite_sequence';" , targetDb, sourceDb, targetDb); rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql); if( rc!=SQLITE_OK ) goto end_of_export; sqlite3_free(zSql); /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ zSql = sqlite3_mprintf( "INSERT INTO %s.sqlite_schema " " SELECT type, name, tbl_name, rootpage, sql" " FROM %s.sqlite_schema" " WHERE type='view' OR type='trigger'" " OR (type='table' AND rootpage=0)" , targetDb, sourceDb); rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execSql(db, &pzErrMsg, zSql); if( rc!=SQLITE_OK ) goto end_of_export; sqlite3_free(zSql); zSql = NULL; end_of_export: db->init.iDb = 0; db->flags = saved_flags; db->mDbFlags = saved_mDbFlags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->mTrace = saved_mTrace; if(zSql) sqlite3_free(zSql); if(rc) { if(pzErrMsg != NULL) { sqlite3_result_error(context, pzErrMsg, -1); sqlite3DbFree(db, pzErrMsg); } else { sqlite3_result_error(context, sqlite3ErrStr(rc), -1); } } } #endif /* END SQLCIPHER */ /************** End of crypto.c **********************************************/ /************** Begin file crypto_impl.c *************************************/ /* ** SQLCipher ** http://sqlcipher.net ** ** Copyright (c) 2008 - 2013, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* #include "sqlcipher.h" */ /* #include "crypto.h" */ #ifdef SQLCIPHER_TEST static volatile unsigned int cipher_test_flags = 0; unsigned int sqlcipher_get_test_flags() { return cipher_test_flags; } void sqlcipher_set_test_flags(unsigned int flags) { cipher_test_flags = flags; } static volatile int cipher_test_rand = 0; int sqlcipher_get_test_rand() { return cipher_test_rand; } void sqlcipher_set_test_rand(int rand) { cipher_test_rand = rand; } int sqlcipher_get_test_fail() { int x; /* if cipher_test_rand is not set to a non-zero value always fail (return true) */ if (cipher_test_rand == 0) return 1; sqlite3_randomness(sizeof(x), &x); return ((x % cipher_test_rand) == 0); } #endif /* Generate code to return a string value */ static volatile unsigned int default_flags = DEFAULT_CIPHER_FLAGS; static volatile unsigned char hmac_salt_mask = HMAC_SALT_MASK; static volatile int default_kdf_iter = PBKDF2_ITER; static volatile int default_page_size = 4096; static volatile int default_plaintext_header_sz = 0; static volatile int default_hmac_algorithm = SQLCIPHER_HMAC_SHA512; static volatile int default_kdf_algorithm = SQLCIPHER_PBKDF2_HMAC_SHA512; static volatile int sqlcipher_mem_security_on = 0; static volatile int sqlcipher_mem_executed = 0; static volatile int sqlcipher_mem_initialized = 0; static volatile unsigned int sqlcipher_activate_count = 0; static volatile sqlite3_mem_methods default_mem_methods; static sqlcipher_provider *default_provider = NULL; static sqlite3_mutex* sqlcipher_static_mutex[SQLCIPHER_MUTEX_COUNT]; static FILE* sqlcipher_log_file = NULL; static volatile int sqlcipher_log_device = 0; static volatile unsigned int sqlcipher_log_level = SQLCIPHER_LOG_NONE; sqlite3_mutex* sqlcipher_mutex(int mutex) { if(mutex < 0 || mutex >= SQLCIPHER_MUTEX_COUNT) return NULL; return sqlcipher_static_mutex[mutex]; } static int sqlcipher_mem_init(void *pAppData) { return default_mem_methods.xInit(pAppData); } static void sqlcipher_mem_shutdown(void *pAppData) { default_mem_methods.xShutdown(pAppData); } static void *sqlcipher_mem_malloc(int n) { void *ptr = default_mem_methods.xMalloc(n); if(!sqlcipher_mem_executed) sqlcipher_mem_executed = 1; if(sqlcipher_mem_security_on) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_malloc: calling sqlcipher_mlock(%p,%d)", ptr, n); sqlcipher_mlock(ptr, n); } return ptr; } static int sqlcipher_mem_size(void *p) { return default_mem_methods.xSize(p); } static void sqlcipher_mem_free(void *p) { int sz; if(!sqlcipher_mem_executed) sqlcipher_mem_executed = 1; if(sqlcipher_mem_security_on) { sz = sqlcipher_mem_size(p); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_free: calling sqlcipher_memset(%p,0,%d) and sqlcipher_munlock(%p, %d)", p, sz, p, sz); sqlcipher_memset(p, 0, sz); sqlcipher_munlock(p, sz); } default_mem_methods.xFree(p); } static void *sqlcipher_mem_realloc(void *p, int n) { void *new = NULL; int orig_sz = 0; if(sqlcipher_mem_security_on) { orig_sz = sqlcipher_mem_size(p); if (n==0) { sqlcipher_mem_free(p); return NULL; } else if (!p) { return sqlcipher_mem_malloc(n); } else if(n <= orig_sz) { return p; } else { new = sqlcipher_mem_malloc(n); if(new) { memcpy(new, p, orig_sz); sqlcipher_mem_free(p); } return new; } } else { return default_mem_methods.xRealloc(p, n); } } static int sqlcipher_mem_roundup(int n) { return default_mem_methods.xRoundup(n); } static sqlite3_mem_methods sqlcipher_mem_methods = { sqlcipher_mem_malloc, sqlcipher_mem_free, sqlcipher_mem_realloc, sqlcipher_mem_size, sqlcipher_mem_roundup, sqlcipher_mem_init, sqlcipher_mem_shutdown, 0 }; void sqlcipher_init_memmethods() { if(sqlcipher_mem_initialized) return; if(sqlite3_config(SQLITE_CONFIG_GETMALLOC, &default_mem_methods) != SQLITE_OK || sqlite3_config(SQLITE_CONFIG_MALLOC, &sqlcipher_mem_methods) != SQLITE_OK) { sqlcipher_mem_security_on = sqlcipher_mem_executed = sqlcipher_mem_initialized = 0; } else { sqlcipher_mem_initialized = 1; } } int sqlcipher_register_provider(sqlcipher_provider *p) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: entering SQLCIPHER_MUTEX_PROVIDER"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: entered SQLCIPHER_MUTEX_PROVIDER"); if(default_provider != NULL && default_provider != p) { /* only free the current registerd provider if it has been initialized and it isn't a pointer to the same provider passed to the function (i.e. protect against a caller calling register twice for the same provider) */ sqlcipher_free(default_provider, sizeof(sqlcipher_provider)); } default_provider = p; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: leaving SQLCIPHER_MUTEX_PROVIDER"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: left SQLCIPHER_MUTEX_PROVIDER"); return SQLITE_OK; } /* return a pointer to the currently registered provider. This will allow an application to fetch the current registered provider and make minor changes to it */ sqlcipher_provider* sqlcipher_get_provider() { return default_provider; } void sqlcipher_activate() { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: entering static master mutex"); sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: entered static master mutex"); /* allocate new mutexes */ if(sqlcipher_activate_count == 0) { int i; for(i = 0; i < SQLCIPHER_MUTEX_COUNT; i++) { sqlcipher_static_mutex[i] = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); } } /* check to see if there is a provider registered at this point if there no provider registered at this point, register the default provider */ if(sqlcipher_get_provider() == NULL) { sqlcipher_provider *p = sqlcipher_malloc(sizeof(sqlcipher_provider)); #if defined (SQLCIPHER_CRYPTO_CC) extern int sqlcipher_cc_setup(sqlcipher_provider *p); sqlcipher_cc_setup(p); #elif defined (SQLCIPHER_CRYPTO_LIBTOMCRYPT) extern int sqlcipher_ltc_setup(sqlcipher_provider *p); sqlcipher_ltc_setup(p); #elif defined (SQLCIPHER_CRYPTO_NSS) extern int sqlcipher_nss_setup(sqlcipher_provider *p); sqlcipher_nss_setup(p); #elif defined (SQLCIPHER_CRYPTO_OPENSSL) extern int sqlcipher_openssl_setup(sqlcipher_provider *p); sqlcipher_openssl_setup(p); #else #error "NO DEFAULT SQLCIPHER CRYPTO PROVIDER DEFINED" #endif sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_activate: calling sqlcipher_register_provider(%p)", p); #ifdef SQLCIPHER_EXT sqlcipher_ext_provider_setup(p); #endif sqlcipher_register_provider(p); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_activate: called sqlcipher_register_provider(%p)",p); } sqlcipher_activate_count++; /* increment activation count */ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: leaving static master mutex"); sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: left static master mutex"); } void sqlcipher_deactivate() { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entering static master mutex"); sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entered static master mutex"); sqlcipher_activate_count--; /* if no connections are using sqlcipher, cleanup globals */ if(sqlcipher_activate_count < 1) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entering SQLCIPHER_MUTEX_PROVIDER"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entered SQLCIPHER_MUTEX_PROVIDER"); if(default_provider != NULL) { sqlcipher_free(default_provider, sizeof(sqlcipher_provider)); default_provider = NULL; } sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: leaving SQLCIPHER_MUTEX_PROVIDER"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: left SQLCIPHER_MUTEX_PROVIDER"); #ifdef SQLCIPHER_EXT sqlcipher_ext_provider_destroy(); #endif /* last connection closed, free mutexes */ if(sqlcipher_activate_count == 0) { int i; for(i = 0; i < SQLCIPHER_MUTEX_COUNT; i++) { sqlite3_mutex_free(sqlcipher_static_mutex[i]); } } sqlcipher_activate_count = 0; /* reset activation count */ } sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: leaving static master mutex"); sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: left static master mutex"); } /* constant time memset using volitile to avoid having the memset optimized out by the compiler. Note: As suggested by Joachim Schipper (joachim.schipper@fox-it.com) */ void* sqlcipher_memset(void *v, unsigned char value, sqlite_uint64 len) { volatile sqlite_uint64 i = 0; volatile unsigned char *a = v; if (v == NULL) return v; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_memset: setting %p[0-%llu]=%d)", a, len, value); for(i = 0; i < len; i++) { a[i] = value; } return v; } /* constant time memory check tests every position of a memory segement matches a single value (i.e. the memory is all zeros) returns 0 if match, 1 of no match */ int sqlcipher_ismemset(const void *v, unsigned char value, sqlite_uint64 len) { const volatile unsigned char *a = v; volatile sqlite_uint64 i = 0, result = 0; for(i = 0; i < len; i++) { result |= a[i] ^ value; } return (result != 0); } /* constant time memory comparison routine. returns 0 if match, 1 if no match */ int sqlcipher_memcmp(const void *v0, const void *v1, int len) { const volatile unsigned char *a0 = v0, *a1 = v1; volatile int i = 0, result = 0; for(i = 0; i < len; i++) { result |= a0[i] ^ a1[i]; } return (result != 0); } void sqlcipher_mlock(void *ptr, sqlite_uint64 sz) { #ifndef OMIT_MEMLOCK #if defined(__unix__) || defined(__APPLE__) int rc; unsigned long pagesize = sysconf(_SC_PAGESIZE); unsigned long offset = (unsigned long) ptr % pagesize; if(ptr == NULL || sz == 0) return; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_lock: calling mlock(%p,%lu); _SC_PAGESIZE=%lu", ptr - offset, sz + offset, pagesize); rc = mlock(ptr - offset, sz + offset); if(rc!=0) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_lock: mlock(%p,%lu) returned %d errno=%d", ptr - offset, sz + offset, rc, errno); } #elif defined(_WIN32) #if !(defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP || WINAPI_FAMILY == WINAPI_FAMILY_APP)) int rc; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_lock: calling VirtualLock(%p,%d)", ptr, sz); rc = VirtualLock(ptr, sz); if(rc==0) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_lock: VirtualLock(%p,%d) returned %d LastError=%d", ptr, sz, rc, GetLastError()); } #endif #endif #endif } void sqlcipher_munlock(void *ptr, sqlite_uint64 sz) { #ifndef OMIT_MEMLOCK #if defined(__unix__) || defined(__APPLE__) int rc; unsigned long pagesize = sysconf(_SC_PAGESIZE); unsigned long offset = (unsigned long) ptr % pagesize; if(ptr == NULL || sz == 0) return; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_unlock: calling munlock(%p,%lu)", ptr - offset, sz + offset); rc = munlock(ptr - offset, sz + offset); if(rc!=0) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_unlock: munlock(%p,%lu) returned %d errno=%d", ptr - offset, sz + offset, rc, errno); } #elif defined(_WIN32) #if !(defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP || WINAPI_FAMILY == WINAPI_FAMILY_APP)) int rc; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_lock: calling VirtualUnlock(%p,%d)", ptr, sz); rc = VirtualUnlock(ptr, sz); if(!rc) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_unlock: VirtualUnlock(%p,%d) returned %d LastError=%d", ptr, sz, rc, GetLastError()); } #endif #endif #endif } /** * Free and wipe memory. Uses SQLites internal sqlite3_free so that memory * can be countend and memory leak detection works in the test suite. * If ptr is not null memory will be freed. * If sz is greater than zero, the memory will be overwritten with zero before it is freed * If sz is > 0, and not compiled with OMIT_MEMLOCK, system will attempt to unlock the * memory segment so it can be paged */ void sqlcipher_free(void *ptr, sqlite_uint64 sz) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_free: calling sqlcipher_memset(%p,0,%llu)", ptr, sz); sqlcipher_memset(ptr, 0, sz); sqlcipher_munlock(ptr, sz); sqlite3_free(ptr); } /** * allocate memory. Uses sqlite's internall malloc wrapper so memory can be * reference counted and leak detection works. Unless compiled with OMIT_MEMLOCK * attempts to lock the memory pages so sensitive information won't be swapped */ void* sqlcipher_malloc(sqlite_uint64 sz) { void *ptr; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_malloc: calling sqlite3Malloc(%llu)", sz); ptr = sqlite3Malloc(sz); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_malloc: calling sqlcipher_memset(%p,0,%llu)", ptr, sz); sqlcipher_memset(ptr, 0, sz); sqlcipher_mlock(ptr, sz); return ptr; } char* sqlcipher_version() { #ifdef CIPHER_VERSION_QUALIFIER char *version = sqlite3_mprintf("%s %s %s", CIPHER_XSTR(CIPHER_VERSION_NUMBER), CIPHER_XSTR(CIPHER_VERSION_QUALIFIER), CIPHER_XSTR(CIPHER_VERSION_BUILD)); #else char *version = sqlite3_mprintf("%s %s", CIPHER_XSTR(CIPHER_VERSION_NUMBER), CIPHER_XSTR(CIPHER_VERSION_BUILD)); #endif return version; } /** * Initialize new cipher_ctx struct. This function will allocate memory * for the cipher context and for the key * * returns SQLITE_OK if initialization was successful * returns SQLITE_NOMEM if an error occured allocating memory */ static int sqlcipher_cipher_ctx_init(codec_ctx *ctx, cipher_ctx **iCtx) { cipher_ctx *c_ctx; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_init: allocating context"); *iCtx = (cipher_ctx *) sqlcipher_malloc(sizeof(cipher_ctx)); c_ctx = *iCtx; if(c_ctx == NULL) return SQLITE_NOMEM; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_init: allocating key"); c_ctx->key = (unsigned char *) sqlcipher_malloc(ctx->key_sz); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_init: allocating hmac_key"); c_ctx->hmac_key = (unsigned char *) sqlcipher_malloc(ctx->key_sz); if(c_ctx->key == NULL) return SQLITE_NOMEM; if(c_ctx->hmac_key == NULL) return SQLITE_NOMEM; return SQLITE_OK; } /** * Free and wipe memory associated with a cipher_ctx */ static void sqlcipher_cipher_ctx_free(codec_ctx* ctx, cipher_ctx **iCtx) { cipher_ctx *c_ctx = *iCtx; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_free: iCtx=%p", iCtx); sqlcipher_free(c_ctx->key, ctx->key_sz); sqlcipher_free(c_ctx->hmac_key, ctx->key_sz); sqlcipher_free(c_ctx->pass, c_ctx->pass_sz); sqlcipher_free(c_ctx->keyspec, ctx->keyspec_sz); sqlcipher_free(c_ctx, sizeof(cipher_ctx)); } static int sqlcipher_codec_ctx_reserve_setup(codec_ctx *ctx) { int base_reserve = ctx->iv_sz; /* base reserve size will be IV only */ int reserve = base_reserve; ctx->hmac_sz = ctx->provider->get_hmac_sz(ctx->provider_ctx, ctx->hmac_algorithm); if(sqlcipher_codec_ctx_get_use_hmac(ctx)) reserve += ctx->hmac_sz; /* if reserve will include hmac, update that size */ /* calculate the amount of reserve needed in even increments of the cipher block size */ if(ctx->block_sz > 0) { reserve = ((reserve % ctx->block_sz) == 0) ? reserve : ((reserve / ctx->block_sz) + 1) * ctx->block_sz; } sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_reserve_setup: base_reserve=%d block_sz=%d md_size=%d reserve=%d", base_reserve, ctx->block_sz, ctx->hmac_sz, reserve); ctx->reserve_sz = reserve; return SQLITE_OK; } /** * Compare one cipher_ctx to another. * * returns 0 if all the parameters (except the derived key data) are the same * returns 1 otherwise */ static int sqlcipher_cipher_ctx_cmp(cipher_ctx *c1, cipher_ctx *c2) { int are_equal = ( c1->pass_sz == c2->pass_sz && ( c1->pass == c2->pass || !sqlcipher_memcmp((const unsigned char*)c1->pass, (const unsigned char*)c2->pass, c1->pass_sz) )); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_cmp: c1=%p c2=%p sqlcipher_memcmp(c1->pass, c2_pass)=%d are_equal=%d", c1, c2, (c1->pass == NULL || c2->pass == NULL) ? -1 : sqlcipher_memcmp( (const unsigned char*)c1->pass, (const unsigned char*)c2->pass, c1->pass_sz ), are_equal ); return !are_equal; /* return 0 if they are the same, 1 otherwise */ } /** * Copy one cipher_ctx to another. For instance, assuming that read_ctx is a * fully initialized context, you could copy it to write_ctx and all yet data * and pass information across * * returns SQLITE_OK if initialization was successful * returns SQLITE_NOMEM if an error occured allocating memory */ static int sqlcipher_cipher_ctx_copy(codec_ctx *ctx, cipher_ctx *target, cipher_ctx *source) { void *key = target->key; void *hmac_key = target->hmac_key; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_copy: target=%p, source=%p", target, source); sqlcipher_free(target->pass, target->pass_sz); sqlcipher_free(target->keyspec, ctx->keyspec_sz); memcpy(target, source, sizeof(cipher_ctx)); target->key = key; /* restore pointer to previously allocated key data */ memcpy(target->key, source->key, ctx->key_sz); target->hmac_key = hmac_key; /* restore pointer to previously allocated hmac key data */ memcpy(target->hmac_key, source->hmac_key, ctx->key_sz); if(source->pass && source->pass_sz) { target->pass = sqlcipher_malloc(source->pass_sz); if(target->pass == NULL) return SQLITE_NOMEM; memcpy(target->pass, source->pass, source->pass_sz); } if(source->keyspec) { target->keyspec = sqlcipher_malloc(ctx->keyspec_sz); if(target->keyspec == NULL) return SQLITE_NOMEM; memcpy(target->keyspec, source->keyspec, ctx->keyspec_sz); } return SQLITE_OK; } /** * Set the keyspec for the cipher_ctx * * returns SQLITE_OK if assignment was successfull * returns SQLITE_NOMEM if an error occured allocating memory */ static int sqlcipher_cipher_ctx_set_keyspec(codec_ctx *ctx, cipher_ctx *c_ctx, const unsigned char *key) { /* free, zero existing pointers and size */ sqlcipher_free(c_ctx->keyspec, ctx->keyspec_sz); c_ctx->keyspec = NULL; c_ctx->keyspec = sqlcipher_malloc(ctx->keyspec_sz); if(c_ctx->keyspec == NULL) return SQLITE_NOMEM; c_ctx->keyspec[0] = 'x'; c_ctx->keyspec[1] = '\''; cipher_bin2hex(key, ctx->key_sz, c_ctx->keyspec + 2); cipher_bin2hex(ctx->kdf_salt, ctx->kdf_salt_sz, c_ctx->keyspec + (ctx->key_sz * 2) + 2); c_ctx->keyspec[ctx->keyspec_sz - 1] = '\''; return SQLITE_OK; } int sqlcipher_codec_get_store_pass(codec_ctx *ctx) { return ctx->store_pass; } void sqlcipher_codec_set_store_pass(codec_ctx *ctx, int value) { ctx->store_pass = value; } void sqlcipher_codec_get_pass(codec_ctx *ctx, void **zKey, int *nKey) { *zKey = ctx->read_ctx->pass; *nKey = ctx->read_ctx->pass_sz; } static void sqlcipher_set_derive_key(codec_ctx *ctx, int derive) { if(ctx->read_ctx != NULL) ctx->read_ctx->derive_key = derive; if(ctx->write_ctx != NULL) ctx->write_ctx->derive_key = derive; } /** * Set the passphrase for the cipher_ctx * * returns SQLITE_OK if assignment was successfull * returns SQLITE_NOMEM if an error occured allocating memory */ static int sqlcipher_cipher_ctx_set_pass(cipher_ctx *ctx, const void *zKey, int nKey) { /* free, zero existing pointers and size */ sqlcipher_free(ctx->pass, ctx->pass_sz); ctx->pass = NULL; ctx->pass_sz = 0; if(zKey && nKey) { /* if new password is provided, copy it */ ctx->pass_sz = nKey; ctx->pass = sqlcipher_malloc(nKey); if(ctx->pass == NULL) return SQLITE_NOMEM; memcpy(ctx->pass, zKey, nKey); } return SQLITE_OK; } int sqlcipher_codec_ctx_set_pass(codec_ctx *ctx, const void *zKey, int nKey, int for_ctx) { cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx; int rc; if((rc = sqlcipher_cipher_ctx_set_pass(c_ctx, zKey, nKey)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_pass: error %d from sqlcipher_cipher_ctx_set_pass", rc); return rc; } c_ctx->derive_key = 1; if(for_ctx == 2) { if((rc = sqlcipher_cipher_ctx_copy(ctx, for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_pass: error %d from sqlcipher_cipher_ctx_copy", rc); return rc; } } return SQLITE_OK; } const char* sqlcipher_codec_ctx_get_cipher(codec_ctx *ctx) { return ctx->provider->get_cipher(ctx->provider_ctx); } /* set the global default KDF iteration */ void sqlcipher_set_default_kdf_iter(int iter) { default_kdf_iter = iter; } int sqlcipher_get_default_kdf_iter() { return default_kdf_iter; } int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *ctx, int kdf_iter) { ctx->kdf_iter = kdf_iter; sqlcipher_set_derive_key(ctx, 1); return SQLITE_OK; } int sqlcipher_codec_ctx_get_kdf_iter(codec_ctx *ctx) { return ctx->kdf_iter; } int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *ctx, int fast_kdf_iter) { ctx->fast_kdf_iter = fast_kdf_iter; sqlcipher_set_derive_key(ctx, 1); return SQLITE_OK; } int sqlcipher_codec_ctx_get_fast_kdf_iter(codec_ctx *ctx) { return ctx->fast_kdf_iter; } /* set the global default flag for HMAC */ void sqlcipher_set_default_use_hmac(int use) { if(use) SQLCIPHER_FLAG_SET(default_flags, CIPHER_FLAG_HMAC); else SQLCIPHER_FLAG_UNSET(default_flags,CIPHER_FLAG_HMAC); } int sqlcipher_get_default_use_hmac() { return SQLCIPHER_FLAG_GET(default_flags, CIPHER_FLAG_HMAC); } void sqlcipher_set_hmac_salt_mask(unsigned char mask) { hmac_salt_mask = mask; } unsigned char sqlcipher_get_hmac_salt_mask() { return hmac_salt_mask; } /* set the codec flag for whether this individual database should be using hmac */ int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use) { if(use) { SQLCIPHER_FLAG_SET(ctx->flags, CIPHER_FLAG_HMAC); } else { SQLCIPHER_FLAG_UNSET(ctx->flags, CIPHER_FLAG_HMAC); } return sqlcipher_codec_ctx_reserve_setup(ctx); } int sqlcipher_codec_ctx_get_use_hmac(codec_ctx *ctx) { return SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_HMAC); } /* the length of plaintext header size must be: * 1. greater than or equal to zero * 2. a multiple of the cipher block size * 3. less than the usable size of the first database page */ int sqlcipher_set_default_plaintext_header_size(int size) { default_plaintext_header_sz = size; return SQLITE_OK; } int sqlcipher_codec_ctx_set_plaintext_header_size(codec_ctx *ctx, int size) { if(size >= 0 && ctx->block_sz > 0 && (size % ctx->block_sz) == 0 && size < (ctx->page_sz - ctx->reserve_sz)) { ctx->plaintext_header_sz = size; return SQLITE_OK; } ctx->plaintext_header_sz = -1; sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_plaintext_header_size: attempt to set invalid plantext_header_size %d", size); return SQLITE_ERROR; } int sqlcipher_get_default_plaintext_header_size() { return default_plaintext_header_sz; } int sqlcipher_codec_ctx_get_plaintext_header_size(codec_ctx *ctx) { return ctx->plaintext_header_sz; } /* manipulate HMAC algorithm */ int sqlcipher_set_default_hmac_algorithm(int algorithm) { default_hmac_algorithm = algorithm; return SQLITE_OK; } int sqlcipher_codec_ctx_set_hmac_algorithm(codec_ctx *ctx, int algorithm) { ctx->hmac_algorithm = algorithm; return sqlcipher_codec_ctx_reserve_setup(ctx); } int sqlcipher_get_default_hmac_algorithm() { return default_hmac_algorithm; } int sqlcipher_codec_ctx_get_hmac_algorithm(codec_ctx *ctx) { return ctx->hmac_algorithm; } /* manipulate KDF algorithm */ int sqlcipher_set_default_kdf_algorithm(int algorithm) { default_kdf_algorithm = algorithm; return SQLITE_OK; } int sqlcipher_codec_ctx_set_kdf_algorithm(codec_ctx *ctx, int algorithm) { ctx->kdf_algorithm = algorithm; return SQLITE_OK; } int sqlcipher_get_default_kdf_algorithm() { return default_kdf_algorithm; } int sqlcipher_codec_ctx_get_kdf_algorithm(codec_ctx *ctx) { return ctx->kdf_algorithm; } void sqlcipher_codec_ctx_set_error(codec_ctx *ctx, int error) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_error: ctx=%p, error=%d", ctx, error); sqlite3pager_error(ctx->pBt->pBt->pPager, error); ctx->pBt->pBt->db->errCode = error; } int sqlcipher_codec_ctx_get_reservesize(codec_ctx *ctx) { return ctx->reserve_sz; } void* sqlcipher_codec_ctx_get_data(codec_ctx *ctx) { return ctx->buffer; } static int sqlcipher_codec_ctx_init_kdf_salt(codec_ctx *ctx) { sqlite3_file *fd = sqlite3PagerFile(ctx->pBt->pBt->pPager); if(SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_HAS_KDF_SALT)) { return SQLITE_OK; /* don't reload salt when not needed */ } /* read salt from header, if present, otherwise generate a new random salt */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init_kdf_salt: obtaining salt"); if(fd == NULL || fd->pMethods == 0 || sqlite3OsRead(fd, ctx->kdf_salt, ctx->kdf_salt_sz, 0) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init_kdf_salt: unable to read salt from file header, generating random"); if(ctx->provider->random(ctx->provider_ctx, ctx->kdf_salt, ctx->kdf_salt_sz) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init_kdf_salt: error retrieving random bytes from provider"); return SQLITE_ERROR; } } SQLCIPHER_FLAG_SET(ctx->flags, CIPHER_FLAG_HAS_KDF_SALT); return SQLITE_OK; } int sqlcipher_codec_ctx_set_kdf_salt(codec_ctx *ctx, unsigned char *salt, int size) { if(size >= ctx->kdf_salt_sz) { memcpy(ctx->kdf_salt, salt, ctx->kdf_salt_sz); SQLCIPHER_FLAG_SET(ctx->flags, CIPHER_FLAG_HAS_KDF_SALT); return SQLITE_OK; } sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_kdf_salt: attempt to set salt of incorrect size %d", size); return SQLITE_ERROR; } int sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx, void** salt) { int rc = SQLITE_OK; if(!SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_HAS_KDF_SALT)) { if((rc = sqlcipher_codec_ctx_init_kdf_salt(ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_get_kdf_salt: error %d from sqlcipher_codec_ctx_init_kdf_salt", rc); } } *salt = ctx->kdf_salt; return rc; } void sqlcipher_codec_get_keyspec(codec_ctx *ctx, void **zKey, int *nKey) { *zKey = ctx->read_ctx->keyspec; *nKey = ctx->keyspec_sz; } int sqlcipher_codec_ctx_set_pagesize(codec_ctx *ctx, int size) { if(!((size != 0) && ((size & (size - 1)) == 0)) || size < 512 || size > 65536) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_page_size not a power of 2 and between 512 and 65536 inclusive"); return SQLITE_ERROR; } /* attempt to free the existing page buffer */ sqlcipher_free(ctx->buffer,ctx->page_sz); ctx->page_sz = size; /* pre-allocate a page buffer of PageSize bytes. This will be used as a persistent buffer for encryption and decryption operations to avoid overhead of multiple memory allocations*/ ctx->buffer = sqlcipher_malloc(size); if(ctx->buffer == NULL) return SQLITE_NOMEM; return SQLITE_OK; } int sqlcipher_codec_ctx_get_pagesize(codec_ctx *ctx) { return ctx->page_sz; } void sqlcipher_set_default_pagesize(int page_size) { default_page_size = page_size; } int sqlcipher_get_default_pagesize() { return default_page_size; } void sqlcipher_set_mem_security(int on) { /* memory security can only be enabled, not disabled */ if(on) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_set_mem_security: on"); sqlcipher_mem_security_on = on; } } int sqlcipher_get_mem_security() { /* only report that memory security is enabled if pragma cipher_memory_security is ON and SQLCipher's allocator/deallocator was run at least one timecurrently used */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_get_mem_security: sqlcipher_mem_security_on = %d, sqlcipher_mem_executed = %d", sqlcipher_mem_security_on, sqlcipher_mem_executed); return sqlcipher_mem_security_on && sqlcipher_mem_executed; } int sqlcipher_codec_ctx_init(codec_ctx **iCtx, Db *pDb, Pager *pPager, const void *zKey, int nKey) { int rc; codec_ctx *ctx; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating context"); *iCtx = sqlcipher_malloc(sizeof(codec_ctx)); ctx = *iCtx; if(ctx == NULL) return SQLITE_NOMEM; ctx->pBt = pDb->pBt; /* assign pointer to database btree structure */ /* allocate space for salt data. Then read the first 16 bytes directly off the database file. This is the salt for the key derivation function. If we get a short read allocate a new random salt value */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating kdf_salt"); ctx->kdf_salt_sz = FILE_HEADER_SZ; ctx->kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz); if(ctx->kdf_salt == NULL) return SQLITE_NOMEM; /* allocate space for separate hmac salt data. We want the HMAC derivation salt to be different than the encryption key derivation salt */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating hmac_kdf_salt"); ctx->hmac_kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz); if(ctx->hmac_kdf_salt == NULL) return SQLITE_NOMEM; /* setup default flags */ ctx->flags = default_flags; /* setup the crypto provider */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating provider"); ctx->provider = (sqlcipher_provider *) sqlcipher_malloc(sizeof(sqlcipher_provider)); if(ctx->provider == NULL) return SQLITE_NOMEM; /* make a copy of the provider to be used for the duration of the context */ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: entering SQLCIPHER_MUTEX_PROVIDER"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: entered SQLCIPHER_MUTEX_PROVIDER"); memcpy(ctx->provider, default_provider, sizeof(sqlcipher_provider)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: leaving SQLCIPHER_MUTEX_PROVIDER"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: left SQLCIPHER_MUTEX_PROVIDER"); if((rc = ctx->provider->ctx_init(&ctx->provider_ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d returned from ctx_init", rc); return rc; } ctx->key_sz = ctx->provider->get_key_sz(ctx->provider_ctx); ctx->iv_sz = ctx->provider->get_iv_sz(ctx->provider_ctx); ctx->block_sz = ctx->provider->get_block_sz(ctx->provider_ctx); /* establic the size for a hex-formated key specification, containing the raw encryption key and the salt used to generate it format. will be x'hexkey...hexsalt' so oversize by 3 bytes */ ctx->keyspec_sz = ((ctx->key_sz + ctx->kdf_salt_sz) * 2) + 3; /* Always overwrite page size and set to the default because the first page of the database in encrypted and thus sqlite can't effectively determine the pagesize. this causes an issue in cases where bytes 16 & 17 of the page header are a power of 2 as reported by John Lehman */ if((rc = sqlcipher_codec_ctx_set_pagesize(ctx, default_page_size)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d returned from sqlcipher_codec_ctx_set_pagesize with %d", rc, default_page_size); return rc; } /* establish settings for the KDF iterations and fast (HMAC) KDF iterations */ if((rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, default_kdf_iter)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting default_kdf_iter %d", rc, default_kdf_iter); return rc; } if((rc = sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, FAST_PBKDF2_ITER)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting fast_kdf_iter to %d", rc, FAST_PBKDF2_ITER); return rc; } /* set the default HMAC and KDF algorithms which will determine the reserve size */ if((rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, default_hmac_algorithm)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting sqlcipher_codec_ctx_set_hmac_algorithm with %d", rc, default_hmac_algorithm); return rc; } /* Note that use_hmac is a special case that requires recalculation of page size so we call set_use_hmac to perform setup */ if((rc = sqlcipher_codec_ctx_set_use_hmac(ctx, SQLCIPHER_FLAG_GET(default_flags, CIPHER_FLAG_HMAC))) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting use_hmac %d", rc, SQLCIPHER_FLAG_GET(default_flags, CIPHER_FLAG_HMAC)); return rc; } if((rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, default_kdf_algorithm)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting sqlcipher_codec_ctx_set_kdf_algorithm with %d", rc, default_kdf_algorithm); return rc; } /* setup the default plaintext header size */ if((rc = sqlcipher_codec_ctx_set_plaintext_header_size(ctx, default_plaintext_header_sz)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting sqlcipher_codec_ctx_set_plaintext_header_size with %d", rc, default_plaintext_header_sz); return rc; } /* initialize the read and write sub-contexts. this must happen after key_sz is established */ if((rc = sqlcipher_cipher_ctx_init(ctx, &ctx->read_ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d initializing read_ctx", rc); return rc; } if((rc = sqlcipher_cipher_ctx_init(ctx, &ctx->write_ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d initializing write_ctx", rc); return rc; } /* set the key material on one of the sub cipher contexts and sync them up */ if((rc = sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, 0)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting pass key", rc); return rc; } if((rc = sqlcipher_cipher_ctx_copy(ctx, ctx->write_ctx, ctx->read_ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d copying write_ctx to read_ctx", rc); return rc; } return SQLITE_OK; } /** * Free and wipe memory associated with a cipher_ctx, including the allocated * read_ctx and write_ctx. */ void sqlcipher_codec_ctx_free(codec_ctx **iCtx) { codec_ctx *ctx = *iCtx; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_ctx_free: iCtx=%p", iCtx); sqlcipher_free(ctx->kdf_salt, ctx->kdf_salt_sz); sqlcipher_free(ctx->hmac_kdf_salt, ctx->kdf_salt_sz); sqlcipher_free(ctx->buffer, ctx->page_sz); ctx->provider->ctx_free(&ctx->provider_ctx); sqlcipher_free(ctx->provider, sizeof(sqlcipher_provider)); sqlcipher_cipher_ctx_free(ctx, &ctx->read_ctx); sqlcipher_cipher_ctx_free(ctx, &ctx->write_ctx); sqlcipher_free(ctx, sizeof(codec_ctx)); } /** convert a 32bit unsigned integer to little endian byte ordering */ static void sqlcipher_put4byte_le(unsigned char *p, u32 v) { p[0] = (u8)v; p[1] = (u8)(v>>8); p[2] = (u8)(v>>16); p[3] = (u8)(v>>24); } static int sqlcipher_page_hmac(codec_ctx *ctx, cipher_ctx *c_ctx, Pgno pgno, unsigned char *in, int in_sz, unsigned char *out) { unsigned char pgno_raw[sizeof(pgno)]; /* we may convert page number to consistent representation before calculating MAC for compatibility across big-endian and little-endian platforms. Note: The public release of sqlcipher 2.0.0 to 2.0.6 had a bug where the bytes of pgno were used directly in the MAC. SQLCipher convert's to little endian by default to preserve backwards compatibility on the most popular platforms, but can optionally be configured to use either big endian or native byte ordering via pragma. */ if(SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_LE_PGNO)) { /* compute hmac using little endian pgno*/ sqlcipher_put4byte_le(pgno_raw, pgno); } else if(SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_BE_PGNO)) { /* compute hmac using big endian pgno */ sqlite3Put4byte(pgno_raw, pgno); /* sqlite3Put4byte converts 32bit uint to big endian */ } else { /* use native byte ordering */ memcpy(pgno_raw, &pgno, sizeof(pgno)); } /* include the encrypted page data, initialization vector, and page number in HMAC. This will prevent both tampering with the ciphertext, manipulation of the IV, or resequencing otherwise valid pages out of order in a database */ return ctx->provider->hmac( ctx->provider_ctx, ctx->hmac_algorithm, c_ctx->hmac_key, ctx->key_sz, in, in_sz, (unsigned char*) &pgno_raw, sizeof(pgno), out); } /* * ctx - codec context * pgno - page number in database * size - size in bytes of input and output buffers * mode - 1 to encrypt, 0 to decrypt * in - pointer to input bytes * out - pouter to output bytes */ int sqlcipher_page_cipher(codec_ctx *ctx, int for_ctx, Pgno pgno, int mode, int page_sz, unsigned char *in, unsigned char *out) { cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx; unsigned char *iv_in, *iv_out, *hmac_in, *hmac_out, *out_start; int size; /* calculate some required positions into various buffers */ size = page_sz - ctx->reserve_sz; /* adjust size to useable size and memset reserve at end of page */ iv_out = out + size; iv_in = in + size; /* hmac will be written immediately after the initialization vector. the remainder of the page reserve will contain random bytes. note, these pointers are only valid when using hmac */ hmac_in = in + size + ctx->iv_sz; hmac_out = out + size + ctx->iv_sz; out_start = out; /* note the original position of the output buffer pointer, as out will be rewritten during encryption */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_page_cipher: pgno=%d, mode=%d, size=%d", pgno, mode, size); CODEC_HEXDUMP("sqlcipher_page_cipher: input page data", in, page_sz); /* the key size should never be zero. If it is, error out. */ if(ctx->key_sz == 0) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: error possible context corruption, key_sz is zero for pgno=%d", pgno); goto error; } if(mode == CIPHER_ENCRYPT) { /* start at front of the reserve block, write random data to the end */ if(ctx->provider->random(ctx->provider_ctx, iv_out, ctx->reserve_sz) != SQLITE_OK) goto error; } else { /* CIPHER_DECRYPT */ memcpy(iv_out, iv_in, ctx->iv_sz); /* copy the iv from the input to output buffer */ } if(SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_HMAC) && (mode == CIPHER_DECRYPT)) { if(sqlcipher_page_hmac(ctx, c_ctx, pgno, in, size + ctx->iv_sz, hmac_out) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: hmac operation on decrypt failed for pgno=%d", pgno); goto error; } sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_page_cipher: comparing hmac on in=%p out=%p hmac_sz=%d", hmac_in, hmac_out, ctx->hmac_sz); if(sqlcipher_memcmp(hmac_in, hmac_out, ctx->hmac_sz) != 0) { /* the hmac check failed */ if(sqlite3BtreeGetAutoVacuum(ctx->pBt) != BTREE_AUTOVACUUM_NONE && sqlcipher_ismemset(in, 0, page_sz) == 0) { /* first check if the entire contents of the page is zeros. If so, this page resulted from a short read (i.e. sqlite attempted to pull a page after the end of the file. these short read failures must be ignored for autovaccum mode to work so wipe the output buffer and return SQLITE_OK to skip the decryption step. */ sqlcipher_log(SQLCIPHER_LOG_WARN, "sqlcipher_page_cipher: zeroed page (short read) for pgno %d, encryption but returning SQLITE_OK", pgno); sqlcipher_memset(out, 0, page_sz); return SQLITE_OK; } else { /* if the page memory is not all zeros, it means the there was data and a hmac on the page. since the check failed, the page was either tampered with or corrupted. wipe the output buffer, and return SQLITE_ERROR to the caller */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: hmac check failed for pgno=%d returning SQLITE_ERROR", pgno); goto error; } } } if(ctx->provider->cipher(ctx->provider_ctx, mode, c_ctx->key, ctx->key_sz, iv_out, in, size, out) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: cipher operation mode=%d failed for pgno=%d returning SQLITE_ERROR", mode, pgno); goto error; }; if(SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_HMAC) && (mode == CIPHER_ENCRYPT)) { if(sqlcipher_page_hmac(ctx, c_ctx, pgno, out_start, size + ctx->iv_sz, hmac_out) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: hmac operation on encrypt failed for pgno=%d", pgno); goto error; }; } CODEC_HEXDUMP("sqlcipher_page_cipher: output page data", out_start, page_sz); return SQLITE_OK; error: sqlcipher_memset(out, 0, page_sz); return SQLITE_ERROR; } /** * Derive an encryption key for a cipher contex key based on the raw password. * * If the raw key data is formated as x'hex' and there are exactly enough hex chars to fill * the key (i.e 64 hex chars for a 256 bit key) then the key data will be used directly. * Else, if the raw key data is formated as x'hex' and there are exactly enough hex chars to fill * the key and the salt (i.e 92 hex chars for a 256 bit key and 16 byte salt) then it will be unpacked * as the key followed by the salt. * * Otherwise, a key data will be derived using PBKDF2 * * returns SQLITE_OK if initialization was successful * returns SQLITE_ERROR if the key could't be derived (for instance if pass is NULL or pass_sz is 0) */ static int sqlcipher_cipher_ctx_key_derive(codec_ctx *ctx, cipher_ctx *c_ctx) { int rc; sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_key_derive: ctx->kdf_salt_sz=%d ctx->kdf_iter=%d ctx->fast_kdf_iter=%d ctx->key_sz=%d", ctx->kdf_salt_sz, ctx->kdf_iter, ctx->fast_kdf_iter, ctx->key_sz); if(c_ctx->pass && c_ctx->pass_sz) { /* if key material is present on the context for derivation */ /* if necessary, initialize the salt from the header or random source */ if(!SQLCIPHER_FLAG_GET(ctx->flags, CIPHER_FLAG_HAS_KDF_SALT)) { if((rc = sqlcipher_codec_ctx_init_kdf_salt(ctx)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_cipher_ctx_key_derive: error %d from sqlcipher_codec_ctx_init_kdf_salt", rc); return rc; } } if (c_ctx->pass_sz == ((ctx->key_sz * 2) + 3) && sqlite3StrNICmp((const char *)c_ctx->pass ,"x'", 2) == 0 && cipher_isHex(c_ctx->pass + 2, ctx->key_sz * 2)) { int n = c_ctx->pass_sz - 3; /* adjust for leading x' and tailing ' */ const unsigned char *z = c_ctx->pass + 2; /* adjust lead offset of x' */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: using raw key from hex"); cipher_hex2bin(z, n, c_ctx->key); } else if (c_ctx->pass_sz == (((ctx->key_sz + ctx->kdf_salt_sz) * 2) + 3) && sqlite3StrNICmp((const char *)c_ctx->pass ,"x'", 2) == 0 && cipher_isHex(c_ctx->pass + 2, (ctx->key_sz + ctx->kdf_salt_sz) * 2)) { const unsigned char *z = c_ctx->pass + 2; /* adjust lead offset of x' */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: using raw key from hex"); cipher_hex2bin(z, (ctx->key_sz * 2), c_ctx->key); cipher_hex2bin(z + (ctx->key_sz * 2), (ctx->kdf_salt_sz * 2), ctx->kdf_salt); } else { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: deriving key using full PBKDF2 with %d iterations", ctx->kdf_iter); if(ctx->provider->kdf(ctx->provider_ctx, ctx->kdf_algorithm, c_ctx->pass, c_ctx->pass_sz, ctx->kdf_salt, ctx->kdf_salt_sz, ctx->kdf_iter, ctx->key_sz, c_ctx->key) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_ctx_key_derive: error occurred from provider kdf generating encryption key"); return SQLITE_ERROR; } } /* set the context "keyspec" containing the hex-formatted key and salt to be used when attaching databases */ if((rc = sqlcipher_cipher_ctx_set_keyspec(ctx, c_ctx, c_ctx->key)) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_cipher_ctx_key_derive: error %d from sqlcipher_cipher_ctx_set_keyspec", rc); return rc; } /* if this context is setup to use hmac checks, generate a seperate and different key for HMAC. In this case, we use the output of the previous KDF as the input to this KDF run. This ensures a distinct but predictable HMAC key. */ if(ctx->flags & CIPHER_FLAG_HMAC) { int i; /* start by copying the kdf key into the hmac salt slot then XOR it with the fixed hmac salt defined at compile time this ensures that the salt passed in to derive the hmac key, while easy to derive and publically known, is not the same as the salt used to generate the encryption key */ memcpy(ctx->hmac_kdf_salt, ctx->kdf_salt, ctx->kdf_salt_sz); for(i = 0; i < ctx->kdf_salt_sz; i++) { ctx->hmac_kdf_salt[i] ^= hmac_salt_mask; } sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: deriving hmac key from encryption key using PBKDF2 with %d iterations", ctx->fast_kdf_iter); if(ctx->provider->kdf(ctx->provider_ctx, ctx->kdf_algorithm, c_ctx->key, ctx->key_sz, ctx->hmac_kdf_salt, ctx->kdf_salt_sz, ctx->fast_kdf_iter, ctx->key_sz, c_ctx->hmac_key) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_ctx_key_derive: error occurred from provider kdf generating HMAC key"); return SQLITE_ERROR; } } c_ctx->derive_key = 0; return SQLITE_OK; } sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_ctx_key_derive: key material is not present on the context for key derivation"); return SQLITE_ERROR; } int sqlcipher_codec_key_derive(codec_ctx *ctx) { /* derive key on first use if necessary */ if(ctx->read_ctx->derive_key) { if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->read_ctx) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_key_derive: error occurred deriving read_ctx key"); return SQLITE_ERROR; } } if(ctx->write_ctx->derive_key) { if(sqlcipher_cipher_ctx_cmp(ctx->write_ctx, ctx->read_ctx) == 0) { /* the relevant parameters are the same, just copy read key */ if(sqlcipher_cipher_ctx_copy(ctx, ctx->write_ctx, ctx->read_ctx) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_key_derive: error occurred copying read_ctx to write_ctx"); return SQLITE_ERROR; } } else { if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->write_ctx) != SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_key_derive: error occurred deriving write_ctx key"); return SQLITE_ERROR; } } } /* TODO: wipe and free passphrase after key derivation */ if(ctx->store_pass != 1) { sqlcipher_cipher_ctx_set_pass(ctx->read_ctx, NULL, 0); sqlcipher_cipher_ctx_set_pass(ctx->write_ctx, NULL, 0); } return SQLITE_OK; } int sqlcipher_codec_key_copy(codec_ctx *ctx, int source) { if(source == CIPHER_READ_CTX) { return sqlcipher_cipher_ctx_copy(ctx, ctx->write_ctx, ctx->read_ctx); } else { return sqlcipher_cipher_ctx_copy(ctx, ctx->read_ctx, ctx->write_ctx); } } const char* sqlcipher_codec_get_cipher_provider(codec_ctx *ctx) { return ctx->provider->get_provider_name(ctx->provider_ctx); } static int sqlcipher_check_connection(const char *filename, char *key, int key_sz, char *sql, int *user_version, char** journal_mode) { int rc; sqlite3 *db = NULL; sqlite3_stmt *statement = NULL; char *query_journal_mode = "PRAGMA journal_mode;"; char *query_user_version = "PRAGMA user_version;"; rc = sqlite3_open(filename, &db); if(rc != SQLITE_OK) goto cleanup; rc = sqlite3_key(db, key, key_sz); if(rc != SQLITE_OK) goto cleanup; rc = sqlite3_exec(db, sql, NULL, NULL, NULL); if(rc != SQLITE_OK) goto cleanup; /* start by querying the user version. this will fail if the key is incorrect */ rc = sqlite3_prepare(db, query_user_version, -1, &statement, NULL); if(rc != SQLITE_OK) goto cleanup; rc = sqlite3_step(statement); if(rc == SQLITE_ROW) { *user_version = sqlite3_column_int(statement, 0); } else { goto cleanup; } sqlite3_finalize(statement); rc = sqlite3_prepare(db, query_journal_mode, -1, &statement, NULL); if(rc != SQLITE_OK) goto cleanup; rc = sqlite3_step(statement); if(rc == SQLITE_ROW) { *journal_mode = sqlite3_mprintf("%s", sqlite3_column_text(statement, 0)); } else { goto cleanup; } rc = SQLITE_OK; /* cleanup will finalize open statement */ cleanup: if(statement) sqlite3_finalize(statement); if(db) sqlite3_close(db); return rc; } int sqlcipher_codec_ctx_integrity_check(codec_ctx *ctx, Parse *pParse, char *column) { Pgno page = 1; int rc = 0; char *result; unsigned char *hmac_out = NULL; sqlite3_file *fd = sqlite3PagerFile(ctx->pBt->pBt->pPager); i64 file_sz; Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, column, SQLITE_STATIC); if(fd == NULL || fd->pMethods == 0) { sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, "database file is undefined", P4_TRANSIENT); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); goto cleanup; } if(!(ctx->flags & CIPHER_FLAG_HMAC)) { sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, "HMAC is not enabled, unable to integrity check", P4_TRANSIENT); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); goto cleanup; } if((rc = sqlcipher_codec_key_derive(ctx)) != SQLITE_OK) { sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, "unable to derive keys", P4_TRANSIENT); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); goto cleanup; } sqlite3OsFileSize(fd, &file_sz); hmac_out = sqlcipher_malloc(ctx->hmac_sz); for(page = 1; page <= file_sz / ctx->page_sz; page++) { i64 offset = (page - 1) * ctx->page_sz; int payload_sz = ctx->page_sz - ctx->reserve_sz + ctx->iv_sz; int read_sz = ctx->page_sz; /* skip integrity check on PAGER_SJ_PGNO since it will have no valid content */ if(sqlite3pager_is_sj_pgno(ctx->pBt->pBt->pPager, page)) continue; if(page==1) { int page1_offset = ctx->plaintext_header_sz ? ctx->plaintext_header_sz : FILE_HEADER_SZ; read_sz = read_sz - page1_offset; payload_sz = payload_sz - page1_offset; offset += page1_offset; } sqlcipher_memset(ctx->buffer, 0, ctx->page_sz); sqlcipher_memset(hmac_out, 0, ctx->hmac_sz); if(sqlite3OsRead(fd, ctx->buffer, read_sz, offset) != SQLITE_OK) { result = sqlite3_mprintf("error reading %d bytes from file page %d at offset %d", read_sz, page, offset); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } else if(sqlcipher_page_hmac(ctx, ctx->read_ctx, page, ctx->buffer, payload_sz, hmac_out) != SQLITE_OK) { result = sqlite3_mprintf("HMAC operation failed for page %d", page); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } else if(sqlcipher_memcmp(ctx->buffer + payload_sz, hmac_out, ctx->hmac_sz) != 0) { result = sqlite3_mprintf("HMAC verification failed for page %d", page); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } } if(file_sz % ctx->page_sz != 0) { result = sqlite3_mprintf("page %d has an invalid size of %lld bytes (expected %d bytes)", page, file_sz - ((file_sz / ctx->page_sz) * ctx->page_sz), ctx->page_sz); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } cleanup: if(hmac_out != NULL) sqlcipher_free(hmac_out, ctx->hmac_sz); return SQLITE_OK; } int sqlcipher_codec_ctx_migrate(codec_ctx *ctx) { int i, pass_sz, keyspec_sz, nRes, user_version, rc, oflags; Db *pDb = 0; sqlite3 *db = ctx->pBt->db; const char *db_filename = sqlite3_db_filename(db, "main"); char *set_user_version = NULL, *pass = NULL, *attach_command = NULL, *migrated_db_filename = NULL, *keyspec = NULL, *temp = NULL, *journal_mode = NULL, *set_journal_mode = NULL, *pragma_compat = NULL; Btree *pDest = NULL, *pSrc = NULL; sqlite3_file *srcfile, *destfile; #if defined(_WIN32) || defined(SQLITE_OS_WINRT) LPWSTR w_db_filename = NULL, w_migrated_db_filename = NULL; int w_db_filename_sz = 0, w_migrated_db_filename_sz = 0; #endif pass_sz = keyspec_sz = rc = user_version = 0; if(!db_filename || sqlite3Strlen30(db_filename) < 1) goto cleanup; /* exit immediately if this is an in memory database */ /* pull the provided password / key material off the current codec context */ pass_sz = ctx->read_ctx->pass_sz; pass = sqlcipher_malloc(pass_sz+1); memset(pass, 0, pass_sz+1); memcpy(pass, ctx->read_ctx->pass, pass_sz); /* Version 4 - current, no upgrade required, so exit immediately */ rc = sqlcipher_check_connection(db_filename, pass, pass_sz, "", &user_version, &journal_mode); if(rc == SQLITE_OK){ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "No upgrade required - exiting"); goto cleanup; } for(i = 3; i > 0; i--) { pragma_compat = sqlite3_mprintf("PRAGMA cipher_compatibility = %d;", i); rc = sqlcipher_check_connection(db_filename, pass, pass_sz, pragma_compat, &user_version, &journal_mode); if(rc == SQLITE_OK) { sqlcipher_log(SQLCIPHER_LOG_DEBUG, "Version %d format found", i); goto migrate; } if(pragma_compat) sqlcipher_free(pragma_compat, sqlite3Strlen30(pragma_compat)); pragma_compat = NULL; } /* if we exit the loop normally we failed to determine the version, this is an error */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "Upgrade format not determined"); goto handle_error; migrate: temp = sqlite3_mprintf("%s-migrated", db_filename); /* overallocate migrated_db_filename, because sqlite3OsOpen will read past the null terminator * to determine whether the filename was URI formatted */ migrated_db_filename = sqlcipher_malloc(sqlite3Strlen30(temp)+2); memcpy(migrated_db_filename, temp, sqlite3Strlen30(temp)); sqlcipher_free(temp, sqlite3Strlen30(temp)); attach_command = sqlite3_mprintf("ATTACH DATABASE '%s' as migrate;", migrated_db_filename, pass); set_user_version = sqlite3_mprintf("PRAGMA migrate.user_version = %d;", user_version); rc = sqlite3_exec(db, pragma_compat, NULL, NULL, NULL); if(rc != SQLITE_OK){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "set compatibility mode failed, error code %d", rc); goto handle_error; } /* force journal mode to DELETE, we will set it back later if different */ rc = sqlite3_exec(db, "PRAGMA journal_mode = delete;", NULL, NULL, NULL); if(rc != SQLITE_OK){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "force journal mode DELETE failed, error code %d", rc); goto handle_error; } rc = sqlite3_exec(db, attach_command, NULL, NULL, NULL); if(rc != SQLITE_OK){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "attach failed, error code %d", rc); goto handle_error; } rc = sqlite3_key_v2(db, "migrate", pass, pass_sz); if(rc != SQLITE_OK){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "keying attached database failed, error code %d", rc); goto handle_error; } rc = sqlite3_exec(db, "SELECT sqlcipher_export('migrate');", NULL, NULL, NULL); if(rc != SQLITE_OK){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_export failed, error code %d", rc); goto handle_error; } #ifdef SQLCIPHER_TEST if((sqlcipher_get_test_flags() & TEST_FAIL_MIGRATE) > 0) { rc = SQLITE_ERROR; sqlcipher_log(SQLCIPHER_LOG_ERROR, "simulated migrate failure, error code %d", rc); goto handle_error; } #endif rc = sqlite3_exec(db, set_user_version, NULL, NULL, NULL); if(rc != SQLITE_OK){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "set user version failed, error code %d", rc); goto handle_error; } if( !db->autoCommit ){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cannot migrate from within a transaction"); goto handle_error; } if( db->nVdbeActive>1 ){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cannot migrate - SQL statements in progress"); goto handle_error; } pDest = db->aDb[0].pBt; pDb = &(db->aDb[db->nDb-1]); pSrc = pDb->pBt; nRes = sqlite3BtreeGetRequestedReserve(pSrc); /* unset the BTS_PAGESIZE_FIXED flag to avoid SQLITE_READONLY */ pDest->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED; rc = sqlite3BtreeSetPageSize(pDest, default_page_size, nRes, 0); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "set btree page size to %d res %d rc %d", default_page_size, nRes, rc); if( rc!=SQLITE_OK ) goto handle_error; sqlcipherCodecGetKey(db, db->nDb - 1, (void**)&keyspec, &keyspec_sz); SQLCIPHER_FLAG_UNSET(ctx->flags, CIPHER_FLAG_KEY_USED); sqlcipherCodecAttach(db, 0, keyspec, keyspec_sz); srcfile = sqlite3PagerFile(pSrc->pBt->pPager); destfile = sqlite3PagerFile(pDest->pBt->pPager); sqlite3OsClose(srcfile); sqlite3OsClose(destfile); #if defined(_WIN32) || defined(SQLITE_OS_WINRT) sqlcipher_log(SQLCIPHER_LOG_DEBUG, "performing windows MoveFileExA"); w_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) db_filename, -1, NULL, 0); w_db_filename = sqlcipher_malloc(w_db_filename_sz * sizeof(wchar_t)); w_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) db_filename, -1, (const LPWSTR) w_db_filename, w_db_filename_sz); w_migrated_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) migrated_db_filename, -1, NULL, 0); w_migrated_db_filename = sqlcipher_malloc(w_migrated_db_filename_sz * sizeof(wchar_t)); w_migrated_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) migrated_db_filename, -1, (const LPWSTR) w_migrated_db_filename, w_migrated_db_filename_sz); if(!MoveFileExW(w_migrated_db_filename, w_db_filename, MOVEFILE_REPLACE_EXISTING)) { rc = SQLITE_ERROR; sqlcipher_log(SQLCIPHER_LOG_ERROR, "error occurred while renaming %d", rc); goto handle_error; } #else sqlcipher_log(SQLCIPHER_LOG_DEBUG, "performing POSIX rename"); if ((rc = rename(migrated_db_filename, db_filename)) != 0) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "error occurred while renaming %d", rc); goto handle_error; } #endif sqlcipher_log(SQLCIPHER_LOG_DEBUG, "renamed migration database %s to main database %s: %d", migrated_db_filename, db_filename, rc); rc = sqlite3OsOpen(db->pVfs, migrated_db_filename, srcfile, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_DB, &oflags); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reopened migration database: %d", rc); if( rc!=SQLITE_OK ) goto handle_error; rc = sqlite3OsOpen(db->pVfs, db_filename, destfile, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_DB, &oflags); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reopened main database: %d", rc); if( rc!=SQLITE_OK ) goto handle_error; sqlite3pager_reset(pDest->pBt->pPager); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reset pager"); rc = sqlite3_exec(db, "DETACH DATABASE migrate;", NULL, NULL, NULL); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "DETACH DATABASE called %d", rc); if(rc != SQLITE_OK) goto cleanup; sqlite3ResetAllSchemasOfConnection(db); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reset all schemas"); set_journal_mode = sqlite3_mprintf("PRAGMA journal_mode = %s;", journal_mode); rc = sqlite3_exec(db, set_journal_mode, NULL, NULL, NULL); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "%s: %d", set_journal_mode, rc); if( rc!=SQLITE_OK ) goto handle_error; goto cleanup; handle_error: sqlcipher_log(SQLCIPHER_LOG_ERROR, "An error occurred attempting to migrate the database - last error %d", rc); cleanup: if(migrated_db_filename) { int del_rc = sqlite3OsDelete(db->pVfs, migrated_db_filename, 0); sqlcipher_log(SQLCIPHER_LOG_DEBUG, "deleted migration database: %d", del_rc); } if(pass) sqlcipher_free(pass, pass_sz); if(attach_command) sqlcipher_free(attach_command, sqlite3Strlen30(attach_command)); if(migrated_db_filename) sqlcipher_free(migrated_db_filename, sqlite3Strlen30(migrated_db_filename)); if(set_user_version) sqlcipher_free(set_user_version, sqlite3Strlen30(set_user_version)); if(set_journal_mode) sqlcipher_free(set_journal_mode, sqlite3Strlen30(set_journal_mode)); if(journal_mode) sqlcipher_free(journal_mode, sqlite3Strlen30(journal_mode)); if(pragma_compat) sqlcipher_free(pragma_compat, sqlite3Strlen30(pragma_compat)); #if defined(_WIN32) || defined(SQLITE_OS_WINRT) if(w_db_filename) sqlcipher_free(w_db_filename, w_db_filename_sz); if(w_migrated_db_filename) sqlcipher_free(w_migrated_db_filename, w_migrated_db_filename_sz); #endif return rc; } int sqlcipher_codec_add_random(codec_ctx *ctx, const char *zRight, int random_sz){ const char *suffix = &zRight[random_sz-1]; int n = random_sz - 3; /* adjust for leading x' and tailing ' */ if (n > 0 && sqlite3StrNICmp((const char *)zRight ,"x'", 2) == 0 && sqlite3StrNICmp(suffix, "'", 1) == 0 && n % 2 == 0) { int rc = 0; int buffer_sz = n / 2; unsigned char *random; const unsigned char *z = (const unsigned char *)zRight + 2; /* adjust lead offset of x' */ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_add_random: using raw random blob from hex"); random = sqlcipher_malloc(buffer_sz); memset(random, 0, buffer_sz); cipher_hex2bin(z, n, random); rc = ctx->provider->add_random(ctx->provider_ctx, random, buffer_sz); sqlcipher_free(random, buffer_sz); return rc; } sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_add_random: attemt to add random with invalid format"); return SQLITE_ERROR; } #if !defined(SQLITE_OMIT_TRACE) #define SQLCIPHER_PROFILE_FMT "Elapsed time:%.3f ms - %s\n" #define SQLCIPHER_PROFILE_FMT_OSLOG "Elapsed time:%{public}.3f ms - %{public}s\n" static int sqlcipher_profile_callback(unsigned int trace, void *file, void *stmt, void *run_time){ FILE *f = (FILE*) file; double elapsed = (*((sqlite3_uint64*)run_time))/1000000.0; if(f == NULL) { #if !defined(SQLCIPHER_OMIT_LOG_DEVICE) #if defined(__ANDROID__) __android_log_print(ANDROID_LOG_DEBUG, "sqlcipher", SQLCIPHER_PROFILE_FMT, elapsed, sqlite3_sql((sqlite3_stmt*)stmt)); #elif defined(__APPLE__) os_log(OS_LOG_DEFAULT, SQLCIPHER_PROFILE_FMT_OSLOG, elapsed, sqlite3_sql((sqlite3_stmt*)stmt)); #endif #endif } else { fprintf(f, SQLCIPHER_PROFILE_FMT, elapsed, sqlite3_sql((sqlite3_stmt*)stmt)); } return SQLITE_OK; } #endif int sqlcipher_cipher_profile(sqlite3 *db, const char *destination){ #if defined(SQLITE_OMIT_TRACE) return SQLITE_ERROR; #else FILE *f = NULL; if(sqlite3_stricmp(destination, "off") == 0){ sqlite3_trace_v2(db, 0, NULL, NULL); /* disable tracing */ } else { if(sqlite3_stricmp(destination, "stdout") == 0){ f = stdout; }else if(sqlite3_stricmp(destination, "stderr") == 0){ f = stderr; }else if(sqlite3_stricmp(destination, "logcat") == 0 || sqlite3_stricmp(destination, "device") == 0){ f = NULL; /* file pointer will be NULL indicating the device target (i.e. logcat or oslog). We will accept logcat for backwards compatibility */ }else{ #if !defined(SQLCIPHER_PROFILE_USE_FOPEN) && (defined(_WIN32) && (__STDC_VERSION__ > 199901L) || defined(SQLITE_OS_WINRT)) if(fopen_s(&f, destination, "a") != 0) return SQLITE_ERROR; #else if((f = fopen(destination, "a")) == 0) return SQLITE_ERROR; #endif } sqlite3_trace_v2(db, SQLITE_TRACE_PROFILE, sqlcipher_profile_callback, f); } return SQLITE_OK; #endif } int sqlcipher_codec_fips_status(codec_ctx *ctx) { return ctx->provider->fips_status(ctx->provider_ctx); } const char* sqlcipher_codec_get_provider_version(codec_ctx *ctx) { return ctx->provider->get_provider_version(ctx->provider_ctx); } #ifndef SQLCIPHER_OMIT_LOG /* constants from https://github.com/Alexpux/mingw-w64/blob/master/mingw-w64-crt/misc/gettimeofday.c */ #define FILETIME_1970 116444736000000000ull /* seconds between 1/1/1601 and 1/1/1970 */ #define HECTONANOSEC_PER_SEC 10000000ull void sqlcipher_log(unsigned int level, const char *message, ...) { va_list params; va_start(params, message); char *formatted = NULL; #ifdef CODEC_DEBUG #if defined(SQLCIPHER_OMIT_LOG_DEVICE) vfprintf(stderr, message, params); fprintf(stderr, "\n"); goto end; #else #if defined(__ANDROID__) __android_log_vprint(ANDROID_LOG_DEBUG, "sqlcipher", message, params); goto end; #elif defined(__APPLE__) formatted = sqlite3_vmprintf(message, params); os_log(OS_LOG_DEFAULT, "%s", formatted); sqlite3_free(formatted); goto end; #else vfprintf(stderr, message, params); fprintf(stderr, "\n"); goto end; #endif #endif #endif if(level > sqlcipher_log_level || (sqlcipher_log_device == 0 && sqlcipher_log_file == NULL)) { /* no log target or tag not in included filters */ goto end; } #if !defined(SQLCIPHER_OMIT_LOG_DEVICE) if(sqlcipher_log_device) { #if defined(__ANDROID__) __android_log_vprint(ANDROID_LOG_DEBUG, "sqlcipher", message, params); goto end; #elif defined(__APPLE__) formatted = sqlite3_vmprintf(message, params); os_log(OS_LOG_DEFAULT, "%{public}s", formatted); sqlite3_free(formatted); goto end; #endif } #endif if(sqlcipher_log_file != NULL){ char buffer[24]; struct tm tt; int ms; time_t sec; #ifdef _WIN32 SYSTEMTIME st; FILETIME ft; GetSystemTime(&st); SystemTimeToFileTime(&st, &ft); sec = (time_t) ((*((sqlite_int64*)&ft) - FILETIME_1970) / HECTONANOSEC_PER_SEC); ms = st.wMilliseconds; localtime_s(&tt, &sec); #else struct timeval tv; gettimeofday(&tv, NULL); sec = tv.tv_sec; ms = tv.tv_usec/1000.0; localtime_r(&sec, &tt); #endif if(strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", &tt)) { fprintf((FILE*)sqlcipher_log_file, "%s.%03d: ", buffer, ms); vfprintf((FILE*)sqlcipher_log_file, message, params); fprintf((FILE*)sqlcipher_log_file, "\n"); goto end; } } end: va_end(params); } #endif void sqlcipher_set_log_level(unsigned int level) { sqlcipher_log_level = level; } int sqlcipher_set_log(const char *destination){ #ifdef SQLCIPHER_OMIT_LOG return SQLITE_ERROR; #else /* close open trace file if it is not stdout or stderr, then reset trace settings */ if(sqlcipher_log_file != NULL && sqlcipher_log_file != stdout && sqlcipher_log_file != stderr) { fclose((FILE*)sqlcipher_log_file); } sqlcipher_log_file = NULL; sqlcipher_log_device = 0; if(sqlite3_stricmp(destination, "logcat") == 0 || sqlite3_stricmp(destination, "device") == 0){ /* use the appropriate device log. accept logcat for backwards compatibility */ sqlcipher_log_device = 1; } else if(sqlite3_stricmp(destination, "stdout") == 0){ sqlcipher_log_file = stdout; }else if(sqlite3_stricmp(destination, "stderr") == 0){ sqlcipher_log_file = stderr; }else if(sqlite3_stricmp(destination, "off") != 0){ #if !defined(SQLCIPHER_PROFILE_USE_FOPEN) && (defined(_WIN32) && (__STDC_VERSION__ > 199901L) || defined(SQLITE_OS_WINRT)) if(fopen_s(&sqlcipher_log_file, destination, "a") != 0) return SQLITE_ERROR; #else if((sqlcipher_log_file = fopen(destination, "a")) == 0) return SQLITE_ERROR; #endif } sqlcipher_log(SQLCIPHER_LOG_INFO, "sqlcipher_set_log: set log to %s", destination); return SQLITE_OK; #endif } #endif /* END SQLCIPHER */ /************** End of crypto_impl.c *****************************************/ /************** Begin file crypto_libtomcrypt.c ******************************/ /* ** SQLCipher ** http://sqlcipher.net ** ** Copyright (c) 2008 - 2013, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC #ifdef SQLCIPHER_CRYPTO_LIBTOMCRYPT /* #include "sqliteInt.h" */ /* #include "sqlcipher.h" */ #include #define FORTUNA_MAX_SZ 32 static prng_state prng; static volatile unsigned int ltc_init = 0; static volatile unsigned int ltc_ref_count = 0; #define LTC_CIPHER "rijndael" static int sqlcipher_ltc_add_random(void *ctx, void *buffer, int length) { int rc = 0; int data_to_read = length; int block_sz = data_to_read < FORTUNA_MAX_SZ ? data_to_read : FORTUNA_MAX_SZ; const unsigned char * data = (const unsigned char *)buffer; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND"); while(data_to_read > 0){ rc = fortuna_add_entropy(data, block_sz, &prng); rc = rc != CRYPT_OK ? SQLITE_ERROR : SQLITE_OK; if(rc != SQLITE_OK){ break; } data_to_read -= block_sz; data += block_sz; block_sz = data_to_read < FORTUNA_MAX_SZ ? data_to_read : FORTUNA_MAX_SZ; } fortuna_ready(&prng); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: left SQLCIPHER_MUTEX_PROVIDER_RAND"); return rc; } static int sqlcipher_ltc_activate(void *ctx) { unsigned char random_buffer[FORTUNA_MAX_SZ]; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlcipher_memset(random_buffer, 0, FORTUNA_MAX_SZ); if(ltc_init == 0) { if(register_prng(&fortuna_desc) < 0) return SQLITE_ERROR; if(register_cipher(&rijndael_desc) < 0) return SQLITE_ERROR; if(register_hash(&sha512_desc) < 0) return SQLITE_ERROR; if(register_hash(&sha256_desc) < 0) return SQLITE_ERROR; if(register_hash(&sha1_desc) < 0) return SQLITE_ERROR; if(fortuna_start(&prng) != CRYPT_OK) { return SQLITE_ERROR; } ltc_init = 1; } ltc_ref_count++; #ifndef SQLCIPHER_TEST sqlite3_randomness(FORTUNA_MAX_SZ, random_buffer); #endif if(sqlcipher_ltc_add_random(ctx, random_buffer, FORTUNA_MAX_SZ) != SQLITE_OK) { return SQLITE_ERROR; } sqlcipher_memset(random_buffer, 0, FORTUNA_MAX_SZ); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); return SQLITE_OK; } static int sqlcipher_ltc_deactivate(void *ctx) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); ltc_ref_count--; if(ltc_ref_count == 0){ fortuna_done(&prng); sqlcipher_memset((void *)&prng, 0, sizeof(prng)); } sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); return SQLITE_OK; } static const char* sqlcipher_ltc_get_provider_name(void *ctx) { return "libtomcrypt"; } static const char* sqlcipher_ltc_get_provider_version(void *ctx) { return SCRYPT; } static int sqlcipher_ltc_random(void *ctx, void *buffer, int length) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND"); fortuna_read(buffer, length, &prng); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: left SQLCIPHER_MUTEX_PROVIDER_RAND"); return SQLITE_OK; } static int sqlcipher_ltc_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) { int rc, hash_idx; hmac_state hmac; unsigned long outlen; switch(algorithm) { case SQLCIPHER_HMAC_SHA1: hash_idx = find_hash("sha1"); break; case SQLCIPHER_HMAC_SHA256: hash_idx = find_hash("sha256"); break; case SQLCIPHER_HMAC_SHA512: hash_idx = find_hash("sha512"); break; default: return SQLITE_ERROR; } if(hash_idx < 0) return SQLITE_ERROR; outlen = hash_descriptor[hash_idx].hashsize; if(in == NULL) return SQLITE_ERROR; if((rc = hmac_init(&hmac, hash_idx, hmac_key, key_sz)) != CRYPT_OK) return SQLITE_ERROR; if((rc = hmac_process(&hmac, in, in_sz)) != CRYPT_OK) return SQLITE_ERROR; if(in2 != NULL && (rc = hmac_process(&hmac, in2, in2_sz)) != CRYPT_OK) return SQLITE_ERROR; if((rc = hmac_done(&hmac, out, &outlen)) != CRYPT_OK) return SQLITE_ERROR; return SQLITE_OK; } static int sqlcipher_ltc_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) { int rc, hash_idx; unsigned long outlen = key_sz; switch(algorithm) { case SQLCIPHER_HMAC_SHA1: hash_idx = find_hash("sha1"); break; case SQLCIPHER_HMAC_SHA256: hash_idx = find_hash("sha256"); break; case SQLCIPHER_HMAC_SHA512: hash_idx = find_hash("sha512"); break; default: return SQLITE_ERROR; } if(hash_idx < 0) return SQLITE_ERROR; if((rc = pkcs_5_alg2(pass, pass_sz, salt, salt_sz, workfactor, hash_idx, key, &outlen)) != CRYPT_OK) { return SQLITE_ERROR; } return SQLITE_OK; } static const char* sqlcipher_ltc_get_cipher(void *ctx) { return "aes-256-cbc"; } static int sqlcipher_ltc_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) { int rc, cipher_idx; symmetric_CBC cbc; if((cipher_idx = find_cipher(LTC_CIPHER)) == -1) return SQLITE_ERROR; if((rc = cbc_start(cipher_idx, iv, key, key_sz, 0, &cbc)) != CRYPT_OK) return SQLITE_ERROR; rc = mode == 1 ? cbc_encrypt(in, out, in_sz, &cbc) : cbc_decrypt(in, out, in_sz, &cbc); if(rc != CRYPT_OK) return SQLITE_ERROR; cbc_done(&cbc); return SQLITE_OK; } static int sqlcipher_ltc_get_key_sz(void *ctx) { int cipher_idx = find_cipher(LTC_CIPHER); return cipher_descriptor[cipher_idx].max_key_length; } static int sqlcipher_ltc_get_iv_sz(void *ctx) { int cipher_idx = find_cipher(LTC_CIPHER); return cipher_descriptor[cipher_idx].block_length; } static int sqlcipher_ltc_get_block_sz(void *ctx) { int cipher_idx = find_cipher(LTC_CIPHER); return cipher_descriptor[cipher_idx].block_length; } static int sqlcipher_ltc_get_hmac_sz(void *ctx, int algorithm) { int hash_idx; switch(algorithm) { case SQLCIPHER_HMAC_SHA1: hash_idx = find_hash("sha1"); break; case SQLCIPHER_HMAC_SHA256: hash_idx = find_hash("sha256"); break; case SQLCIPHER_HMAC_SHA512: hash_idx = find_hash("sha512"); break; default: return 0; } if(hash_idx < 0) return 0; return hash_descriptor[hash_idx].hashsize; } static int sqlcipher_ltc_ctx_init(void **ctx) { sqlcipher_ltc_activate(NULL); return SQLITE_OK; } static int sqlcipher_ltc_ctx_free(void **ctx) { sqlcipher_ltc_deactivate(&ctx); return SQLITE_OK; } static int sqlcipher_ltc_fips_status(void *ctx) { return 0; } int sqlcipher_ltc_setup(sqlcipher_provider *p) { p->activate = sqlcipher_ltc_activate; p->deactivate = sqlcipher_ltc_deactivate; p->get_provider_name = sqlcipher_ltc_get_provider_name; p->random = sqlcipher_ltc_random; p->hmac = sqlcipher_ltc_hmac; p->kdf = sqlcipher_ltc_kdf; p->cipher = sqlcipher_ltc_cipher; p->get_cipher = sqlcipher_ltc_get_cipher; p->get_key_sz = sqlcipher_ltc_get_key_sz; p->get_iv_sz = sqlcipher_ltc_get_iv_sz; p->get_block_sz = sqlcipher_ltc_get_block_sz; p->get_hmac_sz = sqlcipher_ltc_get_hmac_sz; p->ctx_init = sqlcipher_ltc_ctx_init; p->ctx_free = sqlcipher_ltc_ctx_free; p->add_random = sqlcipher_ltc_add_random; p->fips_status = sqlcipher_ltc_fips_status; p->get_provider_version = sqlcipher_ltc_get_provider_version; return SQLITE_OK; } #endif #endif /* END SQLCIPHER */ /************** End of crypto_libtomcrypt.c **********************************/ /************** Begin file crypto_nss.c **************************************/ /* ** SQLCipher ** http://sqlcipher.net ** ** Copyright (c) 2008 - 2013, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC #ifdef SQLCIPHER_CRYPTO_NSS /* #include "crypto.h" */ /* #include "sqlcipher.h" */ #include #include #include static NSSInitContext* nss_init_context = NULL; static unsigned int nss_init_count = 0; int sqlcipher_nss_setup(sqlcipher_provider *p); static int sqlcipher_nss_activate(void *ctx) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); if (nss_init_context == NULL) { nss_init_context = NSS_InitContext("", "", "", "", NULL, NSS_INIT_READONLY | NSS_INIT_NOCERTDB | NSS_INIT_NOMODDB | NSS_INIT_FORCEOPEN | NSS_INIT_OPTIMIZESPACE | NSS_INIT_NOROOTINIT); } nss_init_count++; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); return SQLITE_OK; } static int sqlcipher_nss_deactivate(void *ctx) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); nss_init_count--; if (nss_init_count == 0 && nss_init_context != NULL) { NSS_ShutdownContext(nss_init_context); nss_init_context = NULL; } sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); return SQLITE_OK; } static int sqlcipher_nss_add_random(void *ctx, void *buffer, int length) { return SQLITE_OK; } /* generate a defined number of random bytes */ static int sqlcipher_nss_random (void *ctx, void *buffer, int length) { // PK11_GenerateRandom should be thread-safe. return (PK11_GenerateRandom((unsigned char *)buffer, length) == SECSuccess) ? SQLITE_OK : SQLITE_ERROR; } static const char* sqlcipher_nss_get_provider_name(void *ctx) { return "nss"; } static const char* sqlcipher_nss_get_provider_version(void *ctx) { return NSS_GetVersion(); } static const char* sqlcipher_nss_get_cipher(void *ctx) { return "aes-256-cbc"; } static int sqlcipher_nss_get_key_sz(void *ctx) { return AES_256_KEY_LENGTH; } static int sqlcipher_nss_get_iv_sz(void *ctx) { return AES_BLOCK_SIZE; } static int sqlcipher_nss_get_block_sz(void *ctx) { return AES_BLOCK_SIZE; } static int sqlcipher_nss_get_hmac_sz(void *ctx, int algorithm) { switch(algorithm) { case SQLCIPHER_HMAC_SHA1: return SHA1_LENGTH; break; case SQLCIPHER_HMAC_SHA256: return SHA256_LENGTH; break; case SQLCIPHER_HMAC_SHA512: return SHA512_LENGTH; break; default: return 0; } } static int sqlcipher_nss_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) { int rc = SQLITE_OK; unsigned int length; unsigned int outLen; PK11Context* context = NULL; PK11SlotInfo * slot = NULL; PK11SymKey* symKey = NULL; if(in == NULL) goto error; CK_MECHANISM_TYPE mech; switch(algorithm) { case SQLCIPHER_HMAC_SHA1: mech = CKM_SHA_1_HMAC; break; case SQLCIPHER_HMAC_SHA256: mech = CKM_SHA256_HMAC; break; case SQLCIPHER_HMAC_SHA512: mech = CKM_SHA512_HMAC; break; default: goto error; } length = sqlcipher_nss_get_hmac_sz(ctx, algorithm); slot = PK11_GetInternalSlot(); if (slot == NULL) goto error; SECItem keyItem; keyItem.data = hmac_key; keyItem.len = key_sz; symKey = PK11_ImportSymKey(slot, mech, PK11_OriginUnwrap, CKA_SIGN, &keyItem, NULL); if (symKey == NULL) goto error; SECItem noParams; noParams.data = 0; noParams.len = 0; context = PK11_CreateContextBySymKey(mech, CKA_SIGN, symKey, &noParams); if (context == NULL) goto error; if (PK11_DigestBegin(context) != SECSuccess) goto error; if (PK11_DigestOp(context, in, in_sz) != SECSuccess) goto error; if (in2 != NULL) { if (PK11_DigestOp(context, in2, in2_sz) != SECSuccess) goto error; } if (PK11_DigestFinal(context, out, &outLen, length) != SECSuccess) goto error; goto cleanup; error: rc = SQLITE_ERROR; cleanup: if (context) PK11_DestroyContext(context, PR_TRUE); if (symKey) PK11_FreeSymKey(symKey); if (slot) PK11_FreeSlot(slot); return rc; } static int sqlcipher_nss_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) { int rc = SQLITE_OK; PK11SlotInfo * slot = NULL; SECAlgorithmID * algid = NULL; PK11SymKey* symKey = NULL; SECOidTag oidtag; switch(algorithm) { case SQLCIPHER_HMAC_SHA1: oidtag = SEC_OID_HMAC_SHA1; break; case SQLCIPHER_HMAC_SHA256: oidtag = SEC_OID_HMAC_SHA256; break; case SQLCIPHER_HMAC_SHA512: oidtag = SEC_OID_HMAC_SHA512; break; default: goto error; } SECItem secSalt; secSalt.data = salt; secSalt.len = salt_sz; // Always pass SEC_OID_HMAC_SHA1 (i.e. PBMAC1) as this parameter // is unused for key generation. It is currently only used // for PBKDF2 authentication or key (un)wrapping when specifying an // encryption algorithm (PBES2). algid = PK11_CreatePBEV2AlgorithmID(SEC_OID_PKCS5_PBKDF2, SEC_OID_HMAC_SHA1, oidtag, key_sz, workfactor, &secSalt); if (algid == NULL) goto error; slot = PK11_GetInternalSlot(); if (slot == NULL) goto error; SECItem pwItem; pwItem.data = (unsigned char *) pass; // PK11_PBEKeyGen doesn't modify the key. pwItem.len = pass_sz; symKey = PK11_PBEKeyGen(slot, algid, &pwItem, PR_FALSE, NULL); if (symKey == NULL) goto error; if (PK11_ExtractKeyValue(symKey) != SECSuccess) goto error; // No need to free keyData as it is a buffer managed by symKey. SECItem* keyData = PK11_GetKeyData(symKey); if (keyData == NULL) goto error; memcpy(key, keyData->data, key_sz); goto cleanup; error: rc = SQLITE_ERROR; cleanup: if (slot) PK11_FreeSlot(slot); if (algid) SECOID_DestroyAlgorithmID(algid, PR_TRUE); if (symKey) PK11_FreeSymKey(symKey); return rc; } static int sqlcipher_nss_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) { int rc = SQLITE_OK; PK11SlotInfo * slot = NULL; PK11SymKey* symKey = NULL; unsigned int outLen; SECItem params; params.data = iv; params.len = sqlcipher_nss_get_iv_sz(ctx); slot = PK11_GetInternalSlot(); if (slot == NULL) goto error; SECItem keyItem; keyItem.data = key; keyItem.len = key_sz; symKey = PK11_ImportSymKey(slot, CKM_AES_CBC, PK11_OriginUnwrap, CKA_ENCRYPT, &keyItem, NULL); if (symKey == NULL) goto error; SECStatus rv; if (mode == CIPHER_ENCRYPT) { rv = PK11_Encrypt(symKey, CKM_AES_CBC, ¶ms, out, &outLen, in_sz + 16, in, in_sz); } else { rv = PK11_Decrypt(symKey, CKM_AES_CBC, ¶ms, out, &outLen, in_sz + 16, in, in_sz); } if (rv != SECSuccess) goto error; goto cleanup; error: rc = SQLITE_ERROR; cleanup: if (slot) PK11_FreeSlot(slot); if (symKey) PK11_FreeSymKey(symKey); return rc; } static int sqlcipher_nss_ctx_init(void **ctx) { sqlcipher_nss_activate(NULL); return SQLITE_OK; } static int sqlcipher_nss_ctx_free(void **ctx) { sqlcipher_nss_deactivate(NULL); return SQLITE_OK; } static int sqlcipher_nss_fips_status(void *ctx) { return 0; } int sqlcipher_nss_setup(sqlcipher_provider *p) { p->activate = sqlcipher_nss_activate; p->deactivate = sqlcipher_nss_deactivate; p->random = sqlcipher_nss_random; p->get_provider_name = sqlcipher_nss_get_provider_name; p->hmac = sqlcipher_nss_hmac; p->kdf = sqlcipher_nss_kdf; p->cipher = sqlcipher_nss_cipher; p->get_cipher = sqlcipher_nss_get_cipher; p->get_key_sz = sqlcipher_nss_get_key_sz; p->get_iv_sz = sqlcipher_nss_get_iv_sz; p->get_block_sz = sqlcipher_nss_get_block_sz; p->get_hmac_sz = sqlcipher_nss_get_hmac_sz; p->ctx_init = sqlcipher_nss_ctx_init; p->ctx_free = sqlcipher_nss_ctx_free; p->add_random = sqlcipher_nss_add_random; p->fips_status = sqlcipher_nss_fips_status; p->get_provider_version = sqlcipher_nss_get_provider_version; return SQLITE_OK; } #endif #endif /* END SQLCIPHER */ /************** End of crypto_nss.c ******************************************/ /************** Begin file crypto_openssl.c **********************************/ /* ** SQLCipher ** http://sqlcipher.net ** ** Copyright (c) 2008 - 2013, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC #ifdef SQLCIPHER_CRYPTO_OPENSSL /* #include "sqliteInt.h" */ /* #include "crypto.h" */ /* #include "sqlcipher.h" */ #include /* amalgamator: dontcache */ #include /* amalgamator: dontcache */ #include /* amalgamator: dontcache */ #include /* amalgamator: dontcache */ #include /* amalgamator: dontcache */ #include /* amalgamator: dontcache */ static unsigned int openssl_init_count = 0; static void sqlcipher_openssl_log_errors() { unsigned long err = 0; while((err = ERR_get_error()) != 0) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_log_errors: ERR_get_error() returned %lx: %s", err, ERR_error_string(err, NULL)); } } #if (defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < 0x10100000L) || (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x20700000L) static HMAC_CTX *HMAC_CTX_new(void) { HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); if (ctx != NULL) { HMAC_CTX_init(ctx); } return ctx; } /* Per 1.1.0 (https://wiki.openssl.org/index.php/1.1_API_Changes) HMAC_CTX_free should call HMAC_CTX_cleanup, then EVP_MD_CTX_Cleanup. HMAC_CTX_cleanup internally calls EVP_MD_CTX_cleanup so these calls are not needed. */ static void HMAC_CTX_free(HMAC_CTX *ctx) { if (ctx != NULL) { HMAC_CTX_cleanup(ctx); OPENSSL_free(ctx); } } #endif static int sqlcipher_openssl_add_random(void *ctx, void *buffer, int length) { #ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND"); #endif RAND_add(buffer, length, 0); #ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: left SQLCIPHER_MUTEX_PROVIDER_RAND"); #endif return SQLITE_OK; } #define OPENSSL_CIPHER EVP_aes_256_cbc() /* activate and initialize sqlcipher. Most importantly, this will automatically intialize OpenSSL's EVP system if it hasn't already be externally. Note that this function may be called multiple times as new codecs are intiialized. Thus it performs some basic counting to ensure that only the last and final sqlcipher_openssl_deactivate() will free the EVP structures. */ static int sqlcipher_openssl_activate(void *ctx) { /* initialize openssl and increment the internal init counter but only if it hasn't been initalized outside of SQLCipher by this program e.g. on startup */ int rc = 0; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); #if (defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < 0x10100000L) ERR_load_crypto_strings(); #endif #ifdef SQLCIPHER_FIPS if(!FIPS_mode()){ if(!(rc = FIPS_mode_set(1))){ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_activate: FIPS_mode_set() returned %d", rc); sqlcipher_openssl_log_errors(); } } #endif openssl_init_count++; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); return SQLITE_OK; } /* deactivate SQLCipher, most imporantly decremeting the activation count and freeing the EVP structures on the final deactivation to ensure that OpenSSL memory is cleaned up */ static int sqlcipher_openssl_deactivate(void *ctx) { sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); openssl_init_count--; sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE"); return SQLITE_OK; } static const char* sqlcipher_openssl_get_provider_name(void *ctx) { return "openssl"; } static const char* sqlcipher_openssl_get_provider_version(void *ctx) { #if (defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < 0x10100000L) return OPENSSL_VERSION_TEXT; #else return OpenSSL_version(OPENSSL_VERSION); #endif } /* generate a defined number of random bytes */ static int sqlcipher_openssl_random (void *ctx, void *buffer, int length) { int rc = 0; /* concurrent calls to RAND_bytes can cause a crash under some openssl versions when a naive application doesn't use CRYPTO_set_locking_callback and CRYPTO_THREADID_set_callback to ensure openssl thread safety. This is simple workaround to prevent this common crash but a more proper solution is that applications setup platform-appropriate thread saftey in openssl externally */ #ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND"); #endif rc = RAND_bytes((unsigned char *)buffer, length); #ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND"); sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND)); sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: left SQLCIPHER_MUTEX_PROVIDER_RAND"); #endif if(!rc) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_random: RAND_bytes() returned %d", rc); sqlcipher_openssl_log_errors(); return SQLITE_ERROR; } return SQLITE_OK; } static int sqlcipher_openssl_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) { int rc = 0; #if (defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < 0x30000000L) unsigned int outlen; HMAC_CTX* hctx = NULL; if(in == NULL) goto error; hctx = HMAC_CTX_new(); if(hctx == NULL) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_CTX_new() failed"); sqlcipher_openssl_log_errors(); goto error; } switch(algorithm) { case SQLCIPHER_HMAC_SHA1: if(!(rc = HMAC_Init_ex(hctx, hmac_key, key_sz, EVP_sha1(), NULL))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Init_ex() with key size %d and EVP_sha1() returned %d", key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; case SQLCIPHER_HMAC_SHA256: if(!(rc = HMAC_Init_ex(hctx, hmac_key, key_sz, EVP_sha256(), NULL))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Init_ex() with key size %d and EVP_sha256() returned %d", key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; case SQLCIPHER_HMAC_SHA512: if(!(rc = HMAC_Init_ex(hctx, hmac_key, key_sz, EVP_sha512(), NULL))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Init_ex() with key size %d and EVP_sha512() returned %d", key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; default: sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: invalid algorithm %d", algorithm); goto error; } if(!(rc = HMAC_Update(hctx, in, in_sz))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Update() on 1st input buffer of %d bytes using algorithm %d returned %d", in_sz, algorithm, rc); sqlcipher_openssl_log_errors(); goto error; } if(in2 != NULL) { if(!(rc = HMAC_Update(hctx, in2, in2_sz))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Update() on 2nd input buffer of %d bytes using algorithm %d returned %d", in2_sz, algorithm, rc); sqlcipher_openssl_log_errors(); goto error; } } if(!(rc = HMAC_Final(hctx, out, &outlen))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Final() using algorithm %d returned %d", algorithm, rc); sqlcipher_openssl_log_errors(); goto error; } rc = SQLITE_OK; goto cleanup; error: rc = SQLITE_ERROR; cleanup: if(hctx) HMAC_CTX_free(hctx); #else size_t outlen; EVP_MAC *mac = NULL; EVP_MAC_CTX *hctx = NULL; OSSL_PARAM sha1[] = { { "digest", OSSL_PARAM_UTF8_STRING, "sha1", 4, 0 }, OSSL_PARAM_END }; OSSL_PARAM sha256[] = { { "digest", OSSL_PARAM_UTF8_STRING, "sha256", 6, 0 }, OSSL_PARAM_END }; OSSL_PARAM sha512[] = { { "digest", OSSL_PARAM_UTF8_STRING, "sha512", 6, 0 }, OSSL_PARAM_END }; if(in == NULL) goto error; mac = EVP_MAC_fetch(NULL, "HMAC", NULL); if(mac == NULL) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_fetch for HMAC failed"); sqlcipher_openssl_log_errors(); goto error; } hctx = EVP_MAC_CTX_new(mac); if(hctx == NULL) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_CTX_new() failed"); sqlcipher_openssl_log_errors(); goto error; } switch(algorithm) { case SQLCIPHER_HMAC_SHA1: if(!(rc = EVP_MAC_init(hctx, hmac_key, key_sz, sha1))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_init() with key size %d and sha1 returned %d", key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; case SQLCIPHER_HMAC_SHA256: if(!(rc = EVP_MAC_init(hctx, hmac_key, key_sz, sha256))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_init() with key size %d and sha256 returned %d", key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; case SQLCIPHER_HMAC_SHA512: if(!(rc = EVP_MAC_init(hctx, hmac_key, key_sz, sha512))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_init() with key size %d and sha512 returned %d", key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; default: sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: invalid algorithm %d", algorithm); goto error; } if(!(rc = EVP_MAC_update(hctx, in, in_sz))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_update() on 1st input buffer of %d bytes using algorithm %d returned %d", in_sz, algorithm, rc); sqlcipher_openssl_log_errors(); goto error; } if(in2 != NULL) { if(!(rc = EVP_MAC_update(hctx, in2, in2_sz))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_update() on 2nd input buffer of %d bytes using algorithm %d returned %d", in_sz, algorithm, rc); sqlcipher_openssl_log_errors(); goto error; } } if(!(rc = EVP_MAC_final(hctx, NULL, &outlen, 0))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: 1st EVP_MAC_final() for output length calculation using algorithm %d returned %d", algorithm, rc); sqlcipher_openssl_log_errors(); goto error; } if(!(rc = EVP_MAC_final(hctx, out, &outlen, outlen))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: 2nd EVP_MAC_final() using algorithm %d returned %d", algorithm, rc); sqlcipher_openssl_log_errors(); goto error; } rc = SQLITE_OK; goto cleanup; error: rc = SQLITE_ERROR; cleanup: if(hctx) EVP_MAC_CTX_free(hctx); if(mac) EVP_MAC_free(mac); #endif return rc; } static int sqlcipher_openssl_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) { int rc = 0; switch(algorithm) { case SQLCIPHER_HMAC_SHA1: if(!(rc = PKCS5_PBKDF2_HMAC((const char *)pass, pass_sz, salt, salt_sz, workfactor, EVP_sha1(), key_sz, key))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_kdf: PKCS5_PBKDF2_HMAC() for EVP_sha1() workfactor %d and key size %d returned %d", workfactor, key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; case SQLCIPHER_HMAC_SHA256: if(!(rc = PKCS5_PBKDF2_HMAC((const char *)pass, pass_sz, salt, salt_sz, workfactor, EVP_sha256(), key_sz, key))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_kdf: PKCS5_PBKDF2_HMAC() for EVP_sha256() workfactor %d and key size %d returned %d", workfactor, key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; case SQLCIPHER_HMAC_SHA512: if(!(rc = PKCS5_PBKDF2_HMAC((const char *)pass, pass_sz, salt, salt_sz, workfactor, EVP_sha512(), key_sz, key))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_kdf: PKCS5_PBKDF2_HMAC() for EVP_sha512() workfactor %d and key size %d returned %d", workfactor, key_sz, rc); sqlcipher_openssl_log_errors(); goto error; } break; default: return SQLITE_ERROR; } rc = SQLITE_OK; goto cleanup; error: rc = SQLITE_ERROR; cleanup: return rc; } static int sqlcipher_openssl_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) { int tmp_csz, csz, rc = 0; EVP_CIPHER_CTX* ectx = EVP_CIPHER_CTX_new(); if(ectx == NULL) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CIPHER_CTX_new failed"); sqlcipher_openssl_log_errors(); goto error; } if(!(rc = EVP_CipherInit_ex(ectx, OPENSSL_CIPHER, NULL, NULL, NULL, mode))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherInit_ex for mode %d returned %d", mode, rc); sqlcipher_openssl_log_errors(); goto error; } if(!(rc = EVP_CIPHER_CTX_set_padding(ectx, 0))) { /* no padding */ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CIPHER_CTX_set_padding 0 returned %d", rc); sqlcipher_openssl_log_errors(); goto error; } if(!(rc = EVP_CipherInit_ex(ectx, NULL, NULL, key, iv, mode))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherInit_ex for mode %d returned %d", mode, rc); sqlcipher_openssl_log_errors(); goto error; } if(!(rc = EVP_CipherUpdate(ectx, out, &tmp_csz, in, in_sz))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherUpdate returned %d", rc); sqlcipher_openssl_log_errors(); goto error; } csz = tmp_csz; out += tmp_csz; if(!(rc = EVP_CipherFinal_ex(ectx, out, &tmp_csz))) { sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherFinal_ex returned %d", rc); sqlcipher_openssl_log_errors(); goto error; } csz += tmp_csz; assert(in_sz == csz); rc = SQLITE_OK; goto cleanup; error: rc = SQLITE_ERROR; cleanup: if(ectx) EVP_CIPHER_CTX_free(ectx); return rc; } static const char* sqlcipher_openssl_get_cipher(void *ctx) { return OBJ_nid2sn(EVP_CIPHER_nid(OPENSSL_CIPHER)); } static int sqlcipher_openssl_get_key_sz(void *ctx) { return EVP_CIPHER_key_length(OPENSSL_CIPHER); } static int sqlcipher_openssl_get_iv_sz(void *ctx) { return EVP_CIPHER_iv_length(OPENSSL_CIPHER); } static int sqlcipher_openssl_get_block_sz(void *ctx) { return EVP_CIPHER_block_size(OPENSSL_CIPHER); } static int sqlcipher_openssl_get_hmac_sz(void *ctx, int algorithm) { switch(algorithm) { case SQLCIPHER_HMAC_SHA1: return EVP_MD_size(EVP_sha1()); break; case SQLCIPHER_HMAC_SHA256: return EVP_MD_size(EVP_sha256()); break; case SQLCIPHER_HMAC_SHA512: return EVP_MD_size(EVP_sha512()); break; default: return 0; } } static int sqlcipher_openssl_ctx_init(void **ctx) { return sqlcipher_openssl_activate(*ctx); } static int sqlcipher_openssl_ctx_free(void **ctx) { return sqlcipher_openssl_deactivate(NULL); } static int sqlcipher_openssl_fips_status(void *ctx) { #ifdef SQLCIPHER_FIPS return FIPS_mode(); #else return 0; #endif } int sqlcipher_openssl_setup(sqlcipher_provider *p) { p->activate = sqlcipher_openssl_activate; p->deactivate = sqlcipher_openssl_deactivate; p->get_provider_name = sqlcipher_openssl_get_provider_name; p->random = sqlcipher_openssl_random; p->hmac = sqlcipher_openssl_hmac; p->kdf = sqlcipher_openssl_kdf; p->cipher = sqlcipher_openssl_cipher; p->get_cipher = sqlcipher_openssl_get_cipher; p->get_key_sz = sqlcipher_openssl_get_key_sz; p->get_iv_sz = sqlcipher_openssl_get_iv_sz; p->get_block_sz = sqlcipher_openssl_get_block_sz; p->get_hmac_sz = sqlcipher_openssl_get_hmac_sz; p->ctx_init = sqlcipher_openssl_ctx_init; p->ctx_free = sqlcipher_openssl_ctx_free; p->add_random = sqlcipher_openssl_add_random; p->fips_status = sqlcipher_openssl_fips_status; p->get_provider_version = sqlcipher_openssl_get_provider_version; return SQLITE_OK; } #endif #endif /* END SQLCIPHER */ /************** End of crypto_openssl.c **************************************/ /************** Begin file crypto_cc.c ***************************************/ /* ** SQLCipher ** http://sqlcipher.net ** ** Copyright (c) 2008 - 2013, ZETETIC LLC ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of the ZETETIC LLC nor the ** names of its contributors may be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY ** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ** */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC #ifdef SQLCIPHER_CRYPTO_CC /* #include "crypto.h" */ /* #include "sqlcipher.h" */ #include #include #include int sqlcipher_cc_setup(sqlcipher_provider *p); static int sqlcipher_cc_add_random(void *ctx, void *buffer, int length) { return SQLITE_OK; } /* generate a defined number of random bytes */ static int sqlcipher_cc_random (void *ctx, void *buffer, int length) { return (SecRandomCopyBytes(kSecRandomDefault, length, (uint8_t *)buffer) == kCCSuccess) ? SQLITE_OK : SQLITE_ERROR; } static const char* sqlcipher_cc_get_provider_name(void *ctx) { return "commoncrypto"; } static const char* sqlcipher_cc_get_provider_version(void *ctx) { #if TARGET_OS_MAC CFTypeRef version; CFBundleRef bundle = CFBundleGetBundleWithIdentifier(CFSTR("com.apple.security")); if(bundle == NULL) { return "unknown"; } version = CFBundleGetValueForInfoDictionaryKey(bundle, CFSTR("CFBundleShortVersionString")); return CFStringGetCStringPtr(version, kCFStringEncodingUTF8); #else return "unknown"; #endif } static int sqlcipher_cc_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) { CCHmacContext hmac_context; if(in == NULL) return SQLITE_ERROR; switch(algorithm) { case SQLCIPHER_HMAC_SHA1: CCHmacInit(&hmac_context, kCCHmacAlgSHA1, hmac_key, key_sz); break; case SQLCIPHER_HMAC_SHA256: CCHmacInit(&hmac_context, kCCHmacAlgSHA256, hmac_key, key_sz); break; case SQLCIPHER_HMAC_SHA512: CCHmacInit(&hmac_context, kCCHmacAlgSHA512, hmac_key, key_sz); break; default: return SQLITE_ERROR; } CCHmacUpdate(&hmac_context, in, in_sz); if(in2 != NULL) CCHmacUpdate(&hmac_context, in2, in2_sz); CCHmacFinal(&hmac_context, out); return SQLITE_OK; } static int sqlcipher_cc_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) { switch(algorithm) { case SQLCIPHER_HMAC_SHA1: if(CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pass, pass_sz, salt, salt_sz, kCCPRFHmacAlgSHA1, workfactor, key, key_sz) != kCCSuccess) return SQLITE_ERROR; break; case SQLCIPHER_HMAC_SHA256: if(CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pass, pass_sz, salt, salt_sz, kCCPRFHmacAlgSHA256, workfactor, key, key_sz) != kCCSuccess) return SQLITE_ERROR; break; case SQLCIPHER_HMAC_SHA512: if(CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pass, pass_sz, salt, salt_sz, kCCPRFHmacAlgSHA512, workfactor, key, key_sz) != kCCSuccess) return SQLITE_ERROR; break; default: return SQLITE_ERROR; } return SQLITE_OK; } static int sqlcipher_cc_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) { CCCryptorRef cryptor; size_t tmp_csz, csz; CCOperation op = mode == CIPHER_ENCRYPT ? kCCEncrypt : kCCDecrypt; if(CCCryptorCreate(op, kCCAlgorithmAES128, 0, key, kCCKeySizeAES256, iv, &cryptor) != kCCSuccess) return SQLITE_ERROR; if(CCCryptorUpdate(cryptor, in, in_sz, out, in_sz, &tmp_csz) != kCCSuccess) return SQLITE_ERROR; csz = tmp_csz; out += tmp_csz; if(CCCryptorFinal(cryptor, out, in_sz - csz, &tmp_csz) != kCCSuccess) return SQLITE_ERROR; csz += tmp_csz; if(CCCryptorRelease(cryptor) != kCCSuccess) return SQLITE_ERROR; assert(in_sz == csz); return SQLITE_OK; } static const char* sqlcipher_cc_get_cipher(void *ctx) { return "aes-256-cbc"; } static int sqlcipher_cc_get_key_sz(void *ctx) { return kCCKeySizeAES256; } static int sqlcipher_cc_get_iv_sz(void *ctx) { return kCCBlockSizeAES128; } static int sqlcipher_cc_get_block_sz(void *ctx) { return kCCBlockSizeAES128; } static int sqlcipher_cc_get_hmac_sz(void *ctx, int algorithm) { switch(algorithm) { case SQLCIPHER_HMAC_SHA1: return CC_SHA1_DIGEST_LENGTH; break; case SQLCIPHER_HMAC_SHA256: return CC_SHA256_DIGEST_LENGTH; break; case SQLCIPHER_HMAC_SHA512: return CC_SHA512_DIGEST_LENGTH; break; default: return 0; } } static int sqlcipher_cc_ctx_init(void **ctx) { return SQLITE_OK; } static int sqlcipher_cc_ctx_free(void **ctx) { return SQLITE_OK; } static int sqlcipher_cc_fips_status(void *ctx) { return 0; } int sqlcipher_cc_setup(sqlcipher_provider *p) { p->random = sqlcipher_cc_random; p->get_provider_name = sqlcipher_cc_get_provider_name; p->hmac = sqlcipher_cc_hmac; p->kdf = sqlcipher_cc_kdf; p->cipher = sqlcipher_cc_cipher; p->get_cipher = sqlcipher_cc_get_cipher; p->get_key_sz = sqlcipher_cc_get_key_sz; p->get_iv_sz = sqlcipher_cc_get_iv_sz; p->get_block_sz = sqlcipher_cc_get_block_sz; p->get_hmac_sz = sqlcipher_cc_get_hmac_sz; p->ctx_init = sqlcipher_cc_ctx_init; p->ctx_free = sqlcipher_cc_ctx_free; p->add_random = sqlcipher_cc_add_random; p->fips_status = sqlcipher_cc_fips_status; p->get_provider_version = sqlcipher_cc_get_provider_version; return SQLITE_OK; } #endif #endif /* END SQLCIPHER */ /************** End of crypto_cc.c *******************************************/ /************** Begin file walker.c ******************************************/ /* ** 2008 August 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for walking the parser tree for ** an SQL statement. */ /* #include "sqliteInt.h" */ /* #include */ /* #include */ #if !defined(SQLITE_OMIT_WINDOWFUNC) /* ** Walk all expressions linked into the list of Window objects passed ** as the second argument. */ static int walkWindowList(Walker *pWalker, Window *pList, int bOneOnly){ Window *pWin; for(pWin=pList; pWin; pWin=pWin->pNextWin){ int rc; rc = sqlite3WalkExprList(pWalker, pWin->pOrderBy); if( rc ) return WRC_Abort; rc = sqlite3WalkExprList(pWalker, pWin->pPartition); if( rc ) return WRC_Abort; rc = sqlite3WalkExpr(pWalker, pWin->pFilter); if( rc ) return WRC_Abort; rc = sqlite3WalkExpr(pWalker, pWin->pStart); if( rc ) return WRC_Abort; rc = sqlite3WalkExpr(pWalker, pWin->pEnd); if( rc ) return WRC_Abort; if( bOneOnly ) break; } return WRC_Continue; } #endif /* ** Walk an expression tree. Invoke the callback once for each node ** of the expression, while descending. (In other words, the callback ** is invoked before visiting children.) ** ** The return value from the callback should be one of the WRC_* ** constants to specify how to proceed with the walk. ** ** WRC_Continue Continue descending down the tree. ** ** WRC_Prune Do not descend into child nodes, but allow ** the walk to continue with sibling nodes. ** ** WRC_Abort Do no more callbacks. Unwind the stack and ** return from the top-level walk call. ** ** The return value from this routine is WRC_Abort to abandon the tree walk ** and WRC_Continue to continue. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3WalkExprNN(Walker *pWalker, Expr *pExpr){ int rc; testcase( ExprHasProperty(pExpr, EP_TokenOnly) ); testcase( ExprHasProperty(pExpr, EP_Reduced) ); while(1){ rc = pWalker->xExprCallback(pWalker, pExpr); if( rc ) return rc & WRC_Abort; if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){ assert( pExpr->x.pList==0 || pExpr->pRight==0 ); if( pExpr->pLeft && sqlite3WalkExprNN(pWalker, pExpr->pLeft) ){ return WRC_Abort; } if( pExpr->pRight ){ assert( !ExprHasProperty(pExpr, EP_WinFunc) ); pExpr = pExpr->pRight; continue; }else if( ExprUseXSelect(pExpr) ){ assert( !ExprHasProperty(pExpr, EP_WinFunc) ); if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort; }else{ if( pExpr->x.pList ){ if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort; } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ if( walkWindowList(pWalker, pExpr->y.pWin, 1) ) return WRC_Abort; } #endif } } break; } return WRC_Continue; } SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){ return pExpr ? sqlite3WalkExprNN(pWalker,pExpr) : WRC_Continue; } /* ** Call sqlite3WalkExpr() for every expression in list p or until ** an abort request is seen. */ SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){ int i; struct ExprList_item *pItem; if( p ){ for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort; } } return WRC_Continue; } /* ** This is a no-op callback for Walker->xSelectCallback2. If this ** callback is set, then the Select->pWinDefn list is traversed. */ SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker *pWalker, Select *p){ UNUSED_PARAMETER(pWalker); UNUSED_PARAMETER(p); /* No-op */ } /* ** Walk all expressions associated with SELECT statement p. Do ** not invoke the SELECT callback on p, but do (of course) invoke ** any expr callbacks and SELECT callbacks that come from subqueries. ** Return WRC_Abort or WRC_Continue. */ SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){ if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort; if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort; if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort; if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort; if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort; if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort; #if !defined(SQLITE_OMIT_WINDOWFUNC) if( p->pWinDefn ){ Parse *pParse; if( pWalker->xSelectCallback2==sqlite3WalkWinDefnDummyCallback || ((pParse = pWalker->pParse)!=0 && IN_RENAME_OBJECT) #ifndef SQLITE_OMIT_CTE || pWalker->xSelectCallback2==sqlite3SelectPopWith #endif ){ /* The following may return WRC_Abort if there are unresolvable ** symbols (e.g. a table that does not exist) in a window definition. */ int rc = walkWindowList(pWalker, p->pWinDefn, 0); return rc; } } #endif return WRC_Continue; } /* ** Walk the parse trees associated with all subqueries in the ** FROM clause of SELECT statement p. Do not invoke the select ** callback on p, but do invoke it on each FROM clause subquery ** and on any subqueries further down in the tree. Return ** WRC_Abort or WRC_Continue; */ SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){ SrcList *pSrc; int i; SrcItem *pItem; pSrc = p->pSrc; if( ALWAYS(pSrc) ){ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ if( pItem->pSelect && sqlite3WalkSelect(pWalker, pItem->pSelect) ){ return WRC_Abort; } if( pItem->fg.isTabFunc && sqlite3WalkExprList(pWalker, pItem->u1.pFuncArg) ){ return WRC_Abort; } } } return WRC_Continue; } /* ** Call sqlite3WalkExpr() for every expression in Select statement p. ** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and ** on the compound select chain, p->pPrior. ** ** If it is not NULL, the xSelectCallback() callback is invoked before ** the walk of the expressions and FROM clause. The xSelectCallback2() ** method is invoked following the walk of the expressions and FROM clause, ** but only if both xSelectCallback and xSelectCallback2 are both non-NULL ** and if the expressions and FROM clause both return WRC_Continue; ** ** Return WRC_Continue under normal conditions. Return WRC_Abort if ** there is an abort request. ** ** If the Walker does not have an xSelectCallback() then this routine ** is a no-op returning WRC_Continue. */ SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){ int rc; if( p==0 ) return WRC_Continue; if( pWalker->xSelectCallback==0 ) return WRC_Continue; do{ rc = pWalker->xSelectCallback(pWalker, p); if( rc ) return rc & WRC_Abort; if( sqlite3WalkSelectExpr(pWalker, p) || sqlite3WalkSelectFrom(pWalker, p) ){ return WRC_Abort; } if( pWalker->xSelectCallback2 ){ pWalker->xSelectCallback2(pWalker, p); } p = p->pPrior; }while( p!=0 ); return WRC_Continue; } /* Increase the walkerDepth when entering a subquery, and ** decrease when leaving the subquery. */ SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker *pWalker, Select *pSelect){ UNUSED_PARAMETER(pSelect); pWalker->walkerDepth++; return WRC_Continue; } SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker *pWalker, Select *pSelect){ UNUSED_PARAMETER(pSelect); pWalker->walkerDepth--; } /* ** No-op routine for the parse-tree walker. ** ** When this routine is the Walker.xExprCallback then expression trees ** are walked without any actions being taken at each node. Presumably, ** when this routine is used for Walker.xExprCallback then ** Walker.xSelectCallback is set to do something useful for every ** subquery in the parser tree. */ SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return WRC_Continue; } /* ** No-op routine for the parse-tree walker for SELECT statements. ** subquery in the parser tree. */ SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); return WRC_Continue; } /************** End of walker.c **********************************************/ /************** Begin file resolve.c *****************************************/ /* ** 2008 August 18 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains routines used for walking the parser tree and ** resolve all identifiers by associating them with a particular ** table and column. */ /* #include "sqliteInt.h" */ /* ** Magic table number to mean the EXCLUDED table in an UPSERT statement. */ #define EXCLUDED_TABLE_NUMBER 2 /* ** Walk the expression tree pExpr and increase the aggregate function ** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node. ** This needs to occur when copying a TK_AGG_FUNCTION node from an ** outer query into an inner subquery. ** ** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..) ** is a helper function - a callback for the tree walker. ** ** See also the sqlite3WindowExtraAggFuncDepth() routine in window.c */ static int incrAggDepth(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.n; return WRC_Continue; } static void incrAggFunctionDepth(Expr *pExpr, int N){ if( N>0 ){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = incrAggDepth; w.u.n = N; sqlite3WalkExpr(&w, pExpr); } } /* ** Turn the pExpr expression into an alias for the iCol-th column of the ** result set in pEList. ** ** If the reference is followed by a COLLATE operator, then make sure ** the COLLATE operator is preserved. For example: ** ** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase; ** ** Should be transformed into: ** ** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase; ** ** The nSubquery parameter specifies how many levels of subquery the ** alias is removed from the original expression. The usual value is ** zero but it might be more if the alias is contained within a subquery ** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION ** structures must be increased by the nSubquery amount. */ static void resolveAlias( Parse *pParse, /* Parsing context */ ExprList *pEList, /* A result set */ int iCol, /* A column in the result set. 0..pEList->nExpr-1 */ Expr *pExpr, /* Transform this into an alias to the result set */ int nSubquery /* Number of subqueries that the label is moving */ ){ Expr *pOrig; /* The iCol-th column of the result set */ Expr *pDup; /* Copy of pOrig */ sqlite3 *db; /* The database connection */ assert( iCol>=0 && iColnExpr ); pOrig = pEList->a[iCol].pExpr; assert( pOrig!=0 ); assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); if( pExpr->pAggInfo ) return; db = pParse->db; pDup = sqlite3ExprDup(db, pOrig, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); pDup = 0; }else{ Expr temp; incrAggFunctionDepth(pDup, nSubquery); if( pExpr->op==TK_COLLATE ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); } memcpy(&temp, pDup, sizeof(Expr)); memcpy(pDup, pExpr, sizeof(Expr)); memcpy(pExpr, &temp, sizeof(Expr)); if( ExprHasProperty(pExpr, EP_WinFunc) ){ if( ALWAYS(pExpr->y.pWin!=0) ){ pExpr->y.pWin->pOwner = pExpr; } } sqlite3ExprDeferredDelete(pParse, pDup); } } /* ** Subqueries store the original database, table and column names for their ** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN", ** and mark the expression-list item by setting ExprList.a[].fg.eEName ** to ENAME_TAB. ** ** Check to see if the zSpan/eEName of the expression-list item passed to this ** routine matches the zDb, zTab, and zCol. If any of zDb, zTab, and zCol are ** NULL then those fields will match anything. Return true if there is a match, ** or false otherwise. ** ** SF_NestedFrom subqueries also store an entry for the implicit rowid (or ** _rowid_, or oid) column by setting ExprList.a[].fg.eEName to ENAME_ROWID, ** and setting zSpan to "DATABASE.TABLE.". This type of pItem ** argument matches if zCol is a rowid alias. If it is not NULL, (*pbRowid) ** is set to 1 if there is this kind of match. */ SQLITE_PRIVATE int sqlite3MatchEName( const struct ExprList_item *pItem, const char *zCol, const char *zTab, const char *zDb, int *pbRowid ){ int n; const char *zSpan; int eEName = pItem->fg.eEName; if( eEName!=ENAME_TAB && (eEName!=ENAME_ROWID || NEVER(pbRowid==0)) ){ return 0; } assert( pbRowid==0 || *pbRowid==0 ); zSpan = pItem->zEName; for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){ return 0; } zSpan += n+1; for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){ return 0; } zSpan += n+1; if( zCol ){ if( eEName==ENAME_TAB && sqlite3StrICmp(zSpan, zCol)!=0 ) return 0; if( eEName==ENAME_ROWID && sqlite3IsRowid(zCol)==0 ) return 0; } if( eEName==ENAME_ROWID ) *pbRowid = 1; return 1; } /* ** Return TRUE if the double-quoted string mis-feature should be supported. */ static int areDoubleQuotedStringsEnabled(sqlite3 *db, NameContext *pTopNC){ if( db->init.busy ) return 1; /* Always support for legacy schemas */ if( pTopNC->ncFlags & NC_IsDDL ){ /* Currently parsing a DDL statement */ if( sqlite3WritableSchema(db) && (db->flags & SQLITE_DqsDML)!=0 ){ return 1; } return (db->flags & SQLITE_DqsDDL)!=0; }else{ /* Currently parsing a DML statement */ return (db->flags & SQLITE_DqsDML)!=0; } } /* ** The argument is guaranteed to be a non-NULL Expr node of type TK_COLUMN. ** return the appropriate colUsed mask. */ SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr *pExpr){ int n; Table *pExTab; n = pExpr->iColumn; assert( ExprUseYTab(pExpr) ); pExTab = pExpr->y.pTab; assert( pExTab!=0 ); assert( n < pExTab->nCol ); if( (pExTab->tabFlags & TF_HasGenerated)!=0 && (pExTab->aCol[n].colFlags & COLFLAG_GENERATED)!=0 ){ testcase( pExTab->nCol==BMS-1 ); testcase( pExTab->nCol==BMS ); return pExTab->nCol>=BMS ? ALLBITS : MASKBIT(pExTab->nCol)-1; }else{ testcase( n==BMS-1 ); testcase( n==BMS ); if( n>=BMS ) n = BMS-1; return ((Bitmask)1)<db, TK_COLUMN, 0, 0); if( pNew ){ pNew->iTable = pMatch->iCursor; pNew->iColumn = iColumn; pNew->y.pTab = pMatch->pTab; assert( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 ); ExprSetProperty(pNew, EP_CanBeNull); *ppList = sqlite3ExprListAppend(pParse, *ppList, pNew); } } /* ** Return TRUE (non-zero) if zTab is a valid name for the schema table pTab. */ static SQLITE_NOINLINE int isValidSchemaTableName( const char *zTab, /* Name as it appears in the SQL */ Table *pTab, /* The schema table we are trying to match */ Schema *pSchema /* non-NULL if a database qualifier is present */ ){ const char *zLegacy; assert( pTab!=0 ); assert( pTab->tnum==1 ); if( sqlite3StrNICmp(zTab, "sqlite_", 7)!=0 ) return 0; zLegacy = pTab->zName; if( strcmp(zLegacy+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ if( sqlite3StrICmp(zTab+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ return 1; } if( pSchema==0 ) return 0; if( sqlite3StrICmp(zTab+7, &LEGACY_SCHEMA_TABLE[7])==0 ) return 1; if( sqlite3StrICmp(zTab+7, &PREFERRED_SCHEMA_TABLE[7])==0 ) return 1; }else{ if( sqlite3StrICmp(zTab+7, &PREFERRED_SCHEMA_TABLE[7])==0 ) return 1; } return 0; } /* ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up ** that name in the set of source tables in pSrcList and make the pExpr ** expression node refer back to that source column. The following changes ** are made to pExpr: ** ** pExpr->iDb Set the index in db->aDb[] of the database X ** (even if X is implied). ** pExpr->iTable Set to the cursor number for the table obtained ** from pSrcList. ** pExpr->y.pTab Points to the Table structure of X.Y (even if ** X and/or Y are implied.) ** pExpr->iColumn Set to the column number within the table. ** pExpr->op Set to TK_COLUMN. ** pExpr->pLeft Any expression this points to is deleted ** pExpr->pRight Any expression this points to is deleted. ** ** The zDb variable is the name of the database (the "X"). This value may be ** NULL meaning that name is of the form Y.Z or Z. Any available database ** can be used. The zTable variable is the name of the table (the "Y"). This ** value can be NULL if zDb is also NULL. If zTable is NULL it ** means that the form of the name is Z and that columns from any table ** can be used. ** ** If the name cannot be resolved unambiguously, leave an error message ** in pParse and return WRC_Abort. Return WRC_Prune on success. */ static int lookupName( Parse *pParse, /* The parsing context */ const char *zDb, /* Name of the database containing table, or NULL */ const char *zTab, /* Name of table containing column, or NULL */ const char *zCol, /* Name of the column. */ NameContext *pNC, /* The name context used to resolve the name */ Expr *pExpr /* Make this EXPR node point to the selected column */ ){ int i, j; /* Loop counters */ int cnt = 0; /* Number of matching column names */ int cntTab = 0; /* Number of potential "rowid" matches */ int nSubquery = 0; /* How many levels of subquery */ sqlite3 *db = pParse->db; /* The database connection */ SrcItem *pItem; /* Use for looping over pSrcList items */ SrcItem *pMatch = 0; /* The matching pSrcList item */ NameContext *pTopNC = pNC; /* First namecontext in the list */ Schema *pSchema = 0; /* Schema of the expression */ int eNewExprOp = TK_COLUMN; /* New value for pExpr->op on success */ Table *pTab = 0; /* Table holding the row */ Column *pCol; /* A column of pTab */ ExprList *pFJMatch = 0; /* Matches for FULL JOIN .. USING */ assert( pNC ); /* the name context cannot be NULL. */ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ assert( zDb==0 || zTab!=0 ); assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); /* Initialize the node to no-match */ pExpr->iTable = -1; ExprSetVVAProperty(pExpr, EP_NoReduce); /* Translate the schema name in zDb into a pointer to the corresponding ** schema. If not found, pSchema will remain NULL and nothing will match ** resulting in an appropriate error message toward the end of this routine */ if( zDb ){ testcase( pNC->ncFlags & NC_PartIdx ); testcase( pNC->ncFlags & NC_IsCheck ); if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){ /* Silently ignore database qualifiers inside CHECK constraints and ** partial indices. Do not raise errors because that might break ** legacy and because it does not hurt anything to just ignore the ** database name. */ zDb = 0; }else{ for(i=0; inDb; i++){ assert( db->aDb[i].zDbSName ); if( sqlite3StrICmp(db->aDb[i].zDbSName,zDb)==0 ){ pSchema = db->aDb[i].pSchema; break; } } if( i==db->nDb && sqlite3StrICmp("main", zDb)==0 ){ /* This branch is taken when the main database has been renamed ** using SQLITE_DBCONFIG_MAINDBNAME. */ pSchema = db->aDb[0].pSchema; zDb = db->aDb[0].zDbSName; } } } /* Start at the inner-most context and move outward until a match is found */ assert( pNC && cnt==0 ); do{ ExprList *pEList; SrcList *pSrcList = pNC->pSrcList; if( pSrcList ){ for(i=0, pItem=pSrcList->a; inSrc; i++, pItem++){ u8 hCol; pTab = pItem->pTab; assert( pTab!=0 && pTab->zName!=0 ); assert( pTab->nCol>0 || pParse->nErr ); assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); if( pItem->fg.isNestedFrom ){ /* In this case, pItem is a subquery that has been formed from a ** parenthesized subset of the FROM clause terms. Example: ** .... FROM t1 LEFT JOIN (t2 RIGHT JOIN t3 USING(x)) USING(y) ... ** \_________________________/ ** This pItem -------------^ */ int hit = 0; assert( pItem->pSelect!=0 ); pEList = pItem->pSelect->pEList; assert( pEList!=0 ); assert( pEList->nExpr==pTab->nCol ); for(j=0; jnExpr; j++){ int bRowid = 0; /* True if possible rowid match */ if( !sqlite3MatchEName(&pEList->a[j], zCol, zTab, zDb, &bRowid) ){ continue; } if( bRowid==0 ){ if( cnt>0 ){ if( pItem->fg.isUsing==0 || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0 ){ /* Two or more tables have the same column name which is ** not joined by USING. This is an error. Signal as much ** by clearing pFJMatch and letting cnt go above 1. */ sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else if( (pItem->fg.jointype & JT_RIGHT)==0 ){ /* An INNER or LEFT JOIN. Use the left-most table */ continue; }else if( (pItem->fg.jointype & JT_LEFT)==0 ){ /* A RIGHT JOIN. Use the right-most table */ cnt = 0; sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else{ /* For a FULL JOIN, we must construct a coalesce() func */ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn); } } cnt++; hit = 1; }else if( cnt>0 ){ /* This is a potential rowid match, but there has already been ** a real match found. So this can be ignored. */ continue; } cntTab++; pMatch = pItem; pExpr->iColumn = j; pEList->a[j].fg.bUsed = 1; /* rowid cannot be part of a USING clause - assert() this. */ assert( bRowid==0 || pEList->a[j].fg.bUsingTerm==0 ); if( pEList->a[j].fg.bUsingTerm ) break; } if( hit || zTab==0 ) continue; } assert( zDb==0 || zTab!=0 ); if( zTab ){ if( zDb ){ if( pTab->pSchema!=pSchema ) continue; if( pSchema==0 && strcmp(zDb,"*")!=0 ) continue; } if( pItem->zAlias!=0 ){ if( sqlite3StrICmp(zTab, pItem->zAlias)!=0 ){ continue; } }else if( sqlite3StrICmp(zTab, pTab->zName)!=0 ){ if( pTab->tnum!=1 ) continue; if( !isValidSchemaTableName(zTab, pTab, pSchema) ) continue; } assert( ExprUseYTab(pExpr) ); if( IN_RENAME_OBJECT && pItem->zAlias ){ sqlite3RenameTokenRemap(pParse, 0, (void*)&pExpr->y.pTab); } } hCol = sqlite3StrIHash(zCol); for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){ if( pCol->hName==hCol && sqlite3StrICmp(pCol->zCnName, zCol)==0 ){ if( cnt>0 ){ if( pItem->fg.isUsing==0 || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0 ){ /* Two or more tables have the same column name which is ** not joined by USING. This is an error. Signal as much ** by clearing pFJMatch and letting cnt go above 1. */ sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else if( (pItem->fg.jointype & JT_RIGHT)==0 ){ /* An INNER or LEFT JOIN. Use the left-most table */ continue; }else if( (pItem->fg.jointype & JT_LEFT)==0 ){ /* A RIGHT JOIN. Use the right-most table */ cnt = 0; sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; }else{ /* For a FULL JOIN, we must construct a coalesce() func */ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn); } } cnt++; pMatch = pItem; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; if( pItem->fg.isNestedFrom ){ sqlite3SrcItemColumnUsed(pItem, j); } break; } } if( 0==cnt && VisibleRowid(pTab) ){ /* pTab is a potential ROWID match. Keep track of it and match ** the ROWID later if that seems appropriate. (Search for "cntTab" ** to find related code.) Only allow a ROWID match if there is ** a single ROWID match candidate. */ #ifdef SQLITE_ALLOW_ROWID_IN_VIEW /* In SQLITE_ALLOW_ROWID_IN_VIEW mode, allow a ROWID match ** if there is a single VIEW candidate or if there is a single ** non-VIEW candidate plus multiple VIEW candidates. In other ** words non-VIEW candidate terms take precedence over VIEWs. */ if( cntTab==0 || (cntTab==1 && ALWAYS(pMatch!=0) && ALWAYS(pMatch->pTab!=0) && (pMatch->pTab->tabFlags & TF_Ephemeral)!=0 && (pTab->tabFlags & TF_Ephemeral)==0) ){ cntTab = 1; pMatch = pItem; }else{ cntTab++; } #else /* The (much more common) non-SQLITE_ALLOW_ROWID_IN_VIEW case is ** simpler since we require exactly one candidate, which will ** always be a non-VIEW */ cntTab++; pMatch = pItem; #endif } } if( pMatch ){ pExpr->iTable = pMatch->iCursor; assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pMatch->pTab; if( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 ){ ExprSetProperty(pExpr, EP_CanBeNull); } pSchema = pExpr->y.pTab->pSchema; } } /* if( pSrcList ) */ #if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference. Or ** maybe it is an excluded.* from an upsert. Or maybe it is ** a reference in the RETURNING clause to a table being modified. */ if( cnt==0 && zDb==0 ){ pTab = 0; #ifndef SQLITE_OMIT_TRIGGER if( pParse->pTriggerTab!=0 ){ int op = pParse->eTriggerOp; assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( pParse->bReturning ){ if( (pNC->ncFlags & NC_UBaseReg)!=0 && ALWAYS(zTab==0 || sqlite3StrICmp(zTab,pParse->pTriggerTab->zName)==0) ){ pExpr->iTable = op!=TK_DELETE; pTab = pParse->pTriggerTab; } }else if( op!=TK_DELETE && zTab && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && zTab && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; } } #endif /* SQLITE_OMIT_TRIGGER */ #ifndef SQLITE_OMIT_UPSERT if( (pNC->ncFlags & NC_UUpsert)!=0 && zTab!=0 ){ Upsert *pUpsert = pNC->uNC.pUpsert; if( pUpsert && sqlite3StrICmp("excluded",zTab)==0 ){ pTab = pUpsert->pUpsertSrc->a[0].pTab; pExpr->iTable = EXCLUDED_TABLE_NUMBER; } } #endif /* SQLITE_OMIT_UPSERT */ if( pTab ){ int iCol; u8 hCol = sqlite3StrIHash(zCol); pSchema = pTab->pSchema; cntTab++; for(iCol=0, pCol=pTab->aCol; iColnCol; iCol++, pCol++){ if( pCol->hName==hCol && sqlite3StrICmp(pCol->zCnName, zCol)==0 ){ if( iCol==pTab->iPKey ){ iCol = -1; } break; } } if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){ /* IMP: R-51414-32910 */ iCol = -1; } if( iColnCol ){ cnt++; pMatch = 0; #ifndef SQLITE_OMIT_UPSERT if( pExpr->iTable==EXCLUDED_TABLE_NUMBER ){ testcase( iCol==(-1) ); assert( ExprUseYTab(pExpr) ); if( IN_RENAME_OBJECT ){ pExpr->iColumn = iCol; pExpr->y.pTab = pTab; eNewExprOp = TK_COLUMN; }else{ pExpr->iTable = pNC->uNC.pUpsert->regData + sqlite3TableColumnToStorage(pTab, iCol); eNewExprOp = TK_REGISTER; } }else #endif /* SQLITE_OMIT_UPSERT */ { assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pTab; if( pParse->bReturning ){ eNewExprOp = TK_REGISTER; pExpr->op2 = TK_COLUMN; pExpr->iColumn = iCol; pExpr->iTable = pNC->uNC.iBaseReg + (pTab->nCol+1)*pExpr->iTable + sqlite3TableColumnToStorage(pTab, iCol) + 1; }else{ pExpr->iColumn = (i16)iCol; eNewExprOp = TK_TRIGGER; #ifndef SQLITE_OMIT_TRIGGER if( iCol<0 ){ pExpr->affExpr = SQLITE_AFF_INTEGER; }else if( pExpr->iTable==0 ){ testcase( iCol==31 ); testcase( iCol==32 ); pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<=1 && pMatch && (pNC->ncFlags & (NC_IdxExpr|NC_GenCol))==0 && sqlite3IsRowid(zCol) && ALWAYS(VisibleRowid(pMatch->pTab) || pMatch->fg.isNestedFrom) ){ cnt = cntTab; if( pMatch->fg.isNestedFrom==0 ) pExpr->iColumn = -1; pExpr->affExpr = SQLITE_AFF_INTEGER; } /* ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z ** might refer to an result-set alias. This happens, for example, when ** we are resolving names in the WHERE clause of the following command: ** ** SELECT a+b AS x FROM table WHERE x<10; ** ** In cases like this, replace pExpr with a copy of the expression that ** forms the result set entry ("a+b" in the example) and return immediately. ** Note that the expression in the result set should have already been ** resolved by the time the WHERE clause is resolved. ** ** The ability to use an output result-set column in the WHERE, GROUP BY, ** or HAVING clauses, or as part of a larger expression in the ORDER BY ** clause is not standard SQL. This is a (goofy) SQLite extension, that ** is supported for backwards compatibility only. Hence, we issue a warning ** on sqlite3_log() whenever the capability is used. */ if( cnt==0 && (pNC->ncFlags & NC_UEList)!=0 && zTab==0 ){ pEList = pNC->uNC.pEList; assert( pEList!=0 ); for(j=0; jnExpr; j++){ char *zAs = pEList->a[j].zEName; if( pEList->a[j].fg.eEName==ENAME_NAME && sqlite3_stricmp(zAs, zCol)==0 ){ Expr *pOrig; assert( pExpr->pLeft==0 && pExpr->pRight==0 ); assert( ExprUseXList(pExpr)==0 || pExpr->x.pList==0 ); assert( ExprUseXSelect(pExpr)==0 || pExpr->x.pSelect==0 ); pOrig = pEList->a[j].pExpr; if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){ sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); return WRC_Abort; } if( ExprHasProperty(pOrig, EP_Win) && ((pNC->ncFlags&NC_AllowWin)==0 || pNC!=pTopNC ) ){ sqlite3ErrorMsg(pParse, "misuse of aliased window function %s",zAs); return WRC_Abort; } if( sqlite3ExprVectorSize(pOrig)!=1 ){ sqlite3ErrorMsg(pParse, "row value misused"); return WRC_Abort; } resolveAlias(pParse, pEList, j, pExpr, nSubquery); cnt = 1; pMatch = 0; assert( zTab==0 && zDb==0 ); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, 0, (void*)pExpr); } goto lookupname_end; } } } /* Advance to the next name context. The loop will exit when either ** we have a match (cnt>0) or when we run out of name contexts. */ if( cnt ) break; pNC = pNC->pNext; nSubquery++; }while( pNC ); /* ** If X and Y are NULL (in other words if only the column name Z is ** supplied) and the value of Z is enclosed in double-quotes, then ** Z is a string literal if it doesn't match any column names. In that ** case, we need to return right away and not make any changes to ** pExpr. ** ** Because no reference was made to outer contexts, the pNC->nRef ** fields are not changed in any context. */ if( cnt==0 && zTab==0 ){ assert( pExpr->op==TK_ID ); if( ExprHasProperty(pExpr,EP_DblQuoted) && areDoubleQuotedStringsEnabled(db, pTopNC) ){ /* If a double-quoted identifier does not match any known column name, ** then treat it as a string. ** ** This hack was added in the early days of SQLite in a misguided attempt ** to be compatible with MySQL 3.x, which used double-quotes for strings. ** I now sorely regret putting in this hack. The effect of this hack is ** that misspelled identifier names are silently converted into strings ** rather than causing an error, to the frustration of countless ** programmers. To all those frustrated programmers, my apologies. ** ** Someday, I hope to get rid of this hack. Unfortunately there is ** a huge amount of legacy SQL that uses it. So for now, we just ** issue a warning. */ sqlite3_log(SQLITE_WARNING, "double-quoted string literal: \"%w\"", zCol); #ifdef SQLITE_ENABLE_NORMALIZE sqlite3VdbeAddDblquoteStr(db, pParse->pVdbe, zCol); #endif pExpr->op = TK_STRING; memset(&pExpr->y, 0, sizeof(pExpr->y)); return WRC_Prune; } if( sqlite3ExprIdToTrueFalse(pExpr) ){ return WRC_Prune; } } /* ** cnt==0 means there was not match. ** cnt>1 means there were two or more matches. ** ** cnt==0 is always an error. cnt>1 is often an error, but might ** be multiple matches for a NATURAL LEFT JOIN or a LEFT JOIN USING. */ assert( pFJMatch==0 || cnt>0 ); assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) ); if( cnt!=1 ){ const char *zErr; if( pFJMatch ){ if( pFJMatch->nExpr==cnt-1 ){ if( ExprHasProperty(pExpr,EP_Leaf) ){ ExprClearProperty(pExpr,EP_Leaf); }else{ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; } extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn); pExpr->op = TK_FUNCTION; pExpr->u.zToken = "coalesce"; pExpr->x.pList = pFJMatch; cnt = 1; goto lookupname_end; }else{ sqlite3ExprListDelete(db, pFJMatch); pFJMatch = 0; } } zErr = cnt==0 ? "no such column" : "ambiguous column name"; if( zDb ){ sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); }else if( zTab ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); } sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); pParse->checkSchema = 1; pTopNC->nNcErr++; eNewExprOp = TK_NULL; } assert( pFJMatch==0 ); /* Remove all substructure from pExpr */ if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){ sqlite3ExprDelete(db, pExpr->pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(db, pExpr->pRight); pExpr->pRight = 0; ExprSetProperty(pExpr, EP_Leaf); } /* If a column from a table in pSrcList is referenced, then record ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes ** bit 0 to be set. Column 1 sets bit 1. And so forth. Bit 63 is ** set if the 63rd or any subsequent column is used. ** ** The colUsed mask is an optimization used to help determine if an ** index is a covering index. The correct answer is still obtained ** if the mask contains extra set bits. However, it is important to ** avoid setting bits beyond the maximum column number of the table. ** (See ticket [b92e5e8ec2cdbaa1]). ** ** If a generated column is referenced, set bits for every column ** of the table. */ if( pExpr->iColumn>=0 && cnt==1 && pMatch!=0 ){ pMatch->colUsed |= sqlite3ExprColUsed(pExpr); } pExpr->op = eNewExprOp; lookupname_end: if( cnt==1 ){ assert( pNC!=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION if( pParse->db->xAuth && (pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER) ){ sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); } #endif /* Increment the nRef value on all name contexts from TopNC up to ** the point where the name matched. */ for(;;){ assert( pTopNC!=0 ); pTopNC->nRef++; if( pTopNC==pNC ) break; pTopNC = pTopNC->pNext; } return WRC_Prune; } else { return WRC_Abort; } } /* ** Allocate and return a pointer to an expression to load the column iCol ** from datasource iSrc in SrcList pSrc. */ SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); if( p ){ SrcItem *pItem = &pSrc->a[iSrc]; Table *pTab; assert( ExprUseYTab(p) ); pTab = p->y.pTab = pItem->pTab; p->iTable = pItem->iCursor; if( p->y.pTab->iPKey==iCol ){ p->iColumn = -1; }else{ p->iColumn = (ynVar)iCol; if( (pTab->tabFlags & TF_HasGenerated)!=0 && (pTab->aCol[iCol].colFlags & COLFLAG_GENERATED)!=0 ){ testcase( pTab->nCol==63 ); testcase( pTab->nCol==64 ); pItem->colUsed = pTab->nCol>=64 ? ALLBITS : MASKBIT(pTab->nCol)-1; }else{ testcase( iCol==BMS ); testcase( iCol==BMS-1 ); pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } } } return p; } /* ** Report an error that an expression is not valid for some set of ** pNC->ncFlags values determined by validMask. ** ** static void notValid( ** Parse *pParse, // Leave error message here ** NameContext *pNC, // The name context ** const char *zMsg, // Type of error ** int validMask, // Set of contexts for which prohibited ** Expr *pExpr // Invalidate this expression on error ** ){...} ** ** As an optimization, since the conditional is almost always false ** (because errors are rare), the conditional is moved outside of the ** function call using a macro. */ static void notValidImpl( Parse *pParse, /* Leave error message here */ NameContext *pNC, /* The name context */ const char *zMsg, /* Type of error */ Expr *pExpr, /* Invalidate this expression on error */ Expr *pError /* Associate error with this expression */ ){ const char *zIn = "partial index WHERE clauses"; if( pNC->ncFlags & NC_IdxExpr ) zIn = "index expressions"; #ifndef SQLITE_OMIT_CHECK else if( pNC->ncFlags & NC_IsCheck ) zIn = "CHECK constraints"; #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS else if( pNC->ncFlags & NC_GenCol ) zIn = "generated columns"; #endif sqlite3ErrorMsg(pParse, "%s prohibited in %s", zMsg, zIn); if( pExpr ) pExpr->op = TK_NULL; sqlite3RecordErrorOffsetOfExpr(pParse->db, pError); } #define sqlite3ResolveNotValid(P,N,M,X,E,R) \ assert( ((X)&~(NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol))==0 ); \ if( ((N)->ncFlags & (X))!=0 ) notValidImpl(P,N,M,E,R); /* ** Expression p should encode a floating point value between 1.0 and 0.0. ** Return 1024 times this value. Or return -1 if p is not a floating point ** value between 1.0 and 0.0. */ static int exprProbability(Expr *p){ double r = -1.0; if( p->op!=TK_FLOAT ) return -1; assert( !ExprHasProperty(p, EP_IntValue) ); sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8); assert( r>=0.0 ); if( r>1.0 ) return -1; return (int)(r*134217728.0); } /* ** This routine is callback for sqlite3WalkExpr(). ** ** Resolve symbolic names into TK_COLUMN operators for the current ** node in the expression tree. Return 0 to continue the search down ** the tree or 2 to abort the tree walk. ** ** This routine also does error checking and name resolution for ** function names. The operator for aggregate functions is changed ** to TK_AGG_FUNCTION. */ static int resolveExprStep(Walker *pWalker, Expr *pExpr){ NameContext *pNC; Parse *pParse; pNC = pWalker->u.pNC; assert( pNC!=0 ); pParse = pNC->pParse; assert( pParse==pWalker->pParse ); #ifndef NDEBUG if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ SrcList *pSrcList = pNC->pSrcList; int i; for(i=0; ipSrcList->nSrc; i++){ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab); } } #endif switch( pExpr->op ){ /* The special operator TK_ROW means use the rowid for the first ** column in the FROM clause. This is used by the LIMIT and ORDER BY ** clause processing on UPDATE and DELETE statements, and by ** UPDATE ... FROM statement processing. */ case TK_ROW: { SrcList *pSrcList = pNC->pSrcList; SrcItem *pItem; assert( pSrcList && pSrcList->nSrc>=1 ); pItem = pSrcList->a; pExpr->op = TK_COLUMN; assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pItem->pTab; pExpr->iTable = pItem->iCursor; pExpr->iColumn--; pExpr->affExpr = SQLITE_AFF_INTEGER; break; } /* An optimization: Attempt to convert ** ** "expr IS NOT NULL" --> "TRUE" ** "expr IS NULL" --> "FALSE" ** ** if we can prove that "expr" is never NULL. Call this the ** "NOT NULL strength reduction optimization". ** ** If this optimization occurs, also restore the NameContext ref-counts ** to the state they where in before the "column" LHS expression was ** resolved. This prevents "column" from being counted as having been ** referenced, which might prevent a SELECT from being erroneously ** marked as correlated. ** ** 2024-03-28: Beware of aggregates. A bare column of aggregated table ** can still evaluate to NULL even though it is marked as NOT NULL. ** Example: ** ** CREATE TABLE t1(a INT NOT NULL); ** SELECT a, a IS NULL, a IS NOT NULL, count(*) FROM t1; ** ** The "a IS NULL" and "a IS NOT NULL" expressions cannot be optimized ** here because at the time this case is hit, we do not yet know whether ** or not t1 is being aggregated. We have to assume the worst and omit ** the optimization. The only time it is safe to apply this optimization ** is within the WHERE clause. */ case TK_NOTNULL: case TK_ISNULL: { int anRef[8]; NameContext *p; int i; for(i=0, p=pNC; p && ipNext, i++){ anRef[i] = p->nRef; } sqlite3WalkExpr(pWalker, pExpr->pLeft); if( IN_RENAME_OBJECT ) return WRC_Prune; if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ /* The expression can be NULL. So the optimization does not apply */ return WRC_Prune; } for(i=0, p=pNC; p; p=p->pNext, i++){ if( (p->ncFlags & NC_Where)==0 ){ return WRC_Prune; /* Not in a WHERE clause. Unsafe to optimize. */ } } testcase( ExprHasProperty(pExpr, EP_OuterON) ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x80000 ){ sqlite3DebugPrintf( "NOT NULL strength reduction converts the following to %d:\n", pExpr->op==TK_NOTNULL ); sqlite3ShowExpr(pExpr); } #endif /* TREETRACE_ENABLED */ pExpr->u.iValue = (pExpr->op==TK_NOTNULL); pExpr->flags |= EP_IntValue; pExpr->op = TK_INTEGER; for(i=0, p=pNC; p && ipNext, i++){ p->nRef = anRef[i]; } sqlite3ExprDelete(pParse->db, pExpr->pLeft); pExpr->pLeft = 0; return WRC_Prune; } /* A column name: ID ** Or table name and column name: ID.ID ** Or a database, table and column: ID.ID.ID ** ** The TK_ID and TK_OUT cases are combined so that there will only ** be one call to lookupName(). Then the compiler will in-line ** lookupName() for a size reduction and performance increase. */ case TK_ID: case TK_DOT: { const char *zColumn; const char *zTable; const char *zDb; Expr *pRight; if( pExpr->op==TK_ID ){ zDb = 0; zTable = 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zColumn = pExpr->u.zToken; }else{ Expr *pLeft = pExpr->pLeft; testcase( pNC->ncFlags & NC_IdxExpr ); testcase( pNC->ncFlags & NC_GenCol ); sqlite3ResolveNotValid(pParse, pNC, "the \".\" operator", NC_IdxExpr|NC_GenCol, 0, pExpr); pRight = pExpr->pRight; if( pRight->op==TK_ID ){ zDb = 0; }else{ assert( pRight->op==TK_DOT ); assert( !ExprHasProperty(pRight, EP_IntValue) ); zDb = pLeft->u.zToken; pLeft = pRight->pLeft; pRight = pRight->pRight; } assert( ExprUseUToken(pLeft) && ExprUseUToken(pRight) ); zTable = pLeft->u.zToken; zColumn = pRight->u.zToken; assert( ExprUseYTab(pExpr) ); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight); sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft); } } return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); } /* Resolve function names */ case TK_FUNCTION: { ExprList *pList = pExpr->x.pList; /* The argument list */ int n = pList ? pList->nExpr : 0; /* Number of arguments */ int no_such_func = 0; /* True if no such function exists */ int wrong_num_args = 0; /* True if wrong number of arguments */ int is_agg = 0; /* True if is an aggregate function */ const char *zId; /* The function name. */ FuncDef *pDef; /* Information about the function */ u8 enc = ENC(pParse->db); /* The database encoding */ int savedAllowFlags = (pNC->ncFlags & (NC_AllowAgg | NC_AllowWin)); #ifndef SQLITE_OMIT_WINDOWFUNC Window *pWin = (IsWindowFunc(pExpr) ? pExpr->y.pWin : 0); #endif assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) ); assert( pExpr->pLeft==0 || pExpr->pLeft->op==TK_ORDER ); zId = pExpr->u.zToken; pDef = sqlite3FindFunction(pParse->db, zId, n, enc, 0); if( pDef==0 ){ pDef = sqlite3FindFunction(pParse->db, zId, -2, enc, 0); if( pDef==0 ){ no_such_func = 1; }else{ wrong_num_args = 1; } }else{ is_agg = pDef->xFinalize!=0; if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ ExprSetProperty(pExpr, EP_Unlikely); if( n==2 ){ pExpr->iTable = exprProbability(pList->a[1].pExpr); if( pExpr->iTable<0 ){ sqlite3ErrorMsg(pParse, "second argument to %#T() must be a " "constant between 0.0 and 1.0", pExpr); pNC->nNcErr++; } }else{ /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is ** equivalent to likelihood(X, 0.0625). ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is ** short-hand for likelihood(X,0.0625). ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand ** for likelihood(X,0.9375). ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent ** to likelihood(X,0.9375). */ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0,pDef->zName,0); if( auth!=SQLITE_OK ){ if( auth==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized to use function: %#T", pExpr); pNC->nNcErr++; } pExpr->op = TK_NULL; return WRC_Prune; } } #endif if( pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG) ){ /* For the purposes of the EP_ConstFunc flag, date and time ** functions and other functions that change slowly are considered ** constant because they are constant for the duration of one query. ** This allows them to be factored out of inner loops. */ ExprSetProperty(pExpr,EP_ConstFunc); } if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){ /* Clearly non-deterministic functions like random(), but also ** date/time functions that use 'now', and other functions like ** sqlite_version() that might change over time cannot be used ** in an index or generated column. Curiously, they can be used ** in a CHECK constraint. SQLServer, MySQL, and PostgreSQL all ** all this. */ sqlite3ResolveNotValid(pParse, pNC, "non-deterministic functions", NC_IdxExpr|NC_PartIdx|NC_GenCol, 0, pExpr); }else{ assert( (NC_SelfRef & 0xff)==NC_SelfRef ); /* Must fit in 8 bits */ pExpr->op2 = pNC->ncFlags & NC_SelfRef; if( pNC->ncFlags & NC_FromDDL ) ExprSetProperty(pExpr, EP_FromDDL); } if( (pDef->funcFlags & SQLITE_FUNC_INTERNAL)!=0 && pParse->nested==0 && (pParse->db->mDbFlags & DBFLAG_InternalFunc)==0 ){ /* Internal-use-only functions are disallowed unless the ** SQL is being compiled using sqlite3NestedParse() or ** the SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test-control has be ** used to activate internal functions for testing purposes */ no_such_func = 1; pDef = 0; }else if( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 && !IN_RENAME_OBJECT ){ sqlite3ExprFunctionUsable(pParse, pExpr, pDef); } } if( 0==IN_RENAME_OBJECT ){ #ifndef SQLITE_OMIT_WINDOWFUNC assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX) || (pDef->xValue==0 && pDef->xInverse==0) || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize) ); if( pDef && pDef->xValue==0 && pWin ){ sqlite3ErrorMsg(pParse, "%#T() may not be used as a window function", pExpr ); pNC->nNcErr++; }else if( (is_agg && (pNC->ncFlags & NC_AllowAgg)==0) || (is_agg && (pDef->funcFlags&SQLITE_FUNC_WINDOW) && !pWin) || (is_agg && pWin && (pNC->ncFlags & NC_AllowWin)==0) ){ const char *zType; if( (pDef->funcFlags & SQLITE_FUNC_WINDOW) || pWin ){ zType = "window"; }else{ zType = "aggregate"; } sqlite3ErrorMsg(pParse, "misuse of %s function %#T()",zType,pExpr); pNC->nNcErr++; is_agg = 0; } #else if( (is_agg && (pNC->ncFlags & NC_AllowAgg)==0) ){ sqlite3ErrorMsg(pParse,"misuse of aggregate function %#T()",pExpr); pNC->nNcErr++; is_agg = 0; } #endif else if( no_such_func && pParse->db->init.busy==0 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION && pParse->explain==0 #endif ){ sqlite3ErrorMsg(pParse, "no such function: %#T", pExpr); pNC->nNcErr++; }else if( wrong_num_args ){ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %#T()", pExpr); pNC->nNcErr++; } #ifndef SQLITE_OMIT_WINDOWFUNC else if( is_agg==0 && ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3ErrorMsg(pParse, "FILTER may not be used with non-aggregate %#T()", pExpr ); pNC->nNcErr++; } #endif else if( is_agg==0 && pExpr->pLeft ){ sqlite3ExprOrderByAggregateError(pParse, pExpr); pNC->nNcErr++; } if( is_agg ){ /* Window functions may not be arguments of aggregate functions. ** Or arguments of other window functions. But aggregate functions ** may be arguments for window functions. */ #ifndef SQLITE_OMIT_WINDOWFUNC pNC->ncFlags &= ~(NC_AllowWin | (!pWin ? NC_AllowAgg : 0)); #else pNC->ncFlags &= ~NC_AllowAgg; #endif } } #ifndef SQLITE_OMIT_WINDOWFUNC else if( ExprHasProperty(pExpr, EP_WinFunc) ){ is_agg = 1; } #endif sqlite3WalkExprList(pWalker, pList); if( is_agg ){ if( pExpr->pLeft ){ assert( pExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pExpr->pLeft) ); sqlite3WalkExprList(pWalker, pExpr->pLeft->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC if( pWin ){ Select *pSel = pNC->pWinSelect; assert( pWin==0 || (ExprUseYWin(pExpr) && pWin==pExpr->y.pWin) ); if( IN_RENAME_OBJECT==0 ){ sqlite3WindowUpdate(pParse, pSel ? pSel->pWinDefn : 0, pWin, pDef); if( pParse->db->mallocFailed ) break; } sqlite3WalkExprList(pWalker, pWin->pPartition); sqlite3WalkExprList(pWalker, pWin->pOrderBy); sqlite3WalkExpr(pWalker, pWin->pFilter); sqlite3WindowLink(pSel, pWin); pNC->ncFlags |= NC_HasWin; }else #endif /* SQLITE_OMIT_WINDOWFUNC */ { NameContext *pNC2; /* For looping up thru outer contexts */ pExpr->op = TK_AGG_FUNCTION; pExpr->op2 = 0; #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3WalkExpr(pWalker, pExpr->y.pWin->pFilter); } #endif pNC2 = pNC; while( pNC2 && sqlite3ReferencesSrcList(pParse, pExpr, pNC2->pSrcList)==0 ){ pExpr->op2 += (1 + pNC2->nNestedSelect); pNC2 = pNC2->pNext; } assert( pDef!=0 || IN_RENAME_OBJECT ); if( pNC2 && pDef ){ pExpr->op2 += pNC2->nNestedSelect; assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg ); assert( SQLITE_FUNC_ANYORDER==NC_OrderAgg ); testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 ); testcase( (pDef->funcFlags & SQLITE_FUNC_ANYORDER)!=0 ); pNC2->ncFlags |= NC_HasAgg | ((pDef->funcFlags^SQLITE_FUNC_ANYORDER) & (SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER)); } } pNC->ncFlags |= savedAllowFlags; } /* FIX ME: Compute pExpr->affinity based on the expected return ** type of the function */ return WRC_Prune; } #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); #endif case TK_IN: { testcase( pExpr->op==TK_IN ); if( ExprUseXSelect(pExpr) ){ int nRef = pNC->nRef; testcase( pNC->ncFlags & NC_IsCheck ); testcase( pNC->ncFlags & NC_PartIdx ); testcase( pNC->ncFlags & NC_IdxExpr ); testcase( pNC->ncFlags & NC_GenCol ); if( pNC->ncFlags & NC_SelfRef ){ notValidImpl(pParse, pNC, "subqueries", pExpr, pExpr); }else{ sqlite3WalkSelect(pWalker, pExpr->x.pSelect); } assert( pNC->nRef>=nRef ); if( nRef!=pNC->nRef ){ ExprSetProperty(pExpr, EP_VarSelect); } pNC->ncFlags |= NC_Subquery; } break; } case TK_VARIABLE: { testcase( pNC->ncFlags & NC_IsCheck ); testcase( pNC->ncFlags & NC_PartIdx ); testcase( pNC->ncFlags & NC_IdxExpr ); testcase( pNC->ncFlags & NC_GenCol ); sqlite3ResolveNotValid(pParse, pNC, "parameters", NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol, pExpr, pExpr); break; } case TK_IS: case TK_ISNOT: { Expr *pRight = sqlite3ExprSkipCollateAndLikely(pExpr->pRight); assert( !ExprHasProperty(pExpr, EP_Reduced) ); /* Handle special cases of "x IS TRUE", "x IS FALSE", "x IS NOT TRUE", ** and "x IS NOT FALSE". */ if( ALWAYS(pRight) && (pRight->op==TK_ID || pRight->op==TK_TRUEFALSE) ){ int rc = resolveExprStep(pWalker, pRight); if( rc==WRC_Abort ) return WRC_Abort; if( pRight->op==TK_TRUEFALSE ){ pExpr->op2 = pExpr->op; pExpr->op = TK_TRUTH; return WRC_Continue; } } /* no break */ deliberate_fall_through } case TK_BETWEEN: case TK_EQ: case TK_NE: case TK_LT: case TK_LE: case TK_GT: case TK_GE: { int nLeft, nRight; if( pParse->db->mallocFailed ) break; assert( pExpr->pLeft!=0 ); nLeft = sqlite3ExprVectorSize(pExpr->pLeft); if( pExpr->op==TK_BETWEEN ){ assert( ExprUseXList(pExpr) ); nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[0].pExpr); if( nRight==nLeft ){ nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[1].pExpr); } }else{ assert( pExpr->pRight!=0 ); nRight = sqlite3ExprVectorSize(pExpr->pRight); } if( nLeft!=nRight ){ testcase( pExpr->op==TK_EQ ); testcase( pExpr->op==TK_NE ); testcase( pExpr->op==TK_LT ); testcase( pExpr->op==TK_LE ); testcase( pExpr->op==TK_GT ); testcase( pExpr->op==TK_GE ); testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); testcase( pExpr->op==TK_BETWEEN ); sqlite3ErrorMsg(pParse, "row value misused"); sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); } break; } } assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); return pParse->nErr ? WRC_Abort : WRC_Continue; } /* ** pEList is a list of expressions which are really the result set of the ** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause. ** This routine checks to see if pE is a simple identifier which corresponds ** to the AS-name of one of the terms of the expression list. If it is, ** this routine return an integer between 1 and N where N is the number of ** elements in pEList, corresponding to the matching entry. If there is ** no match, or if pE is not a simple identifier, then this routine ** return 0. ** ** pEList has been resolved. pE has not. */ static int resolveAsName( Parse *pParse, /* Parsing context for error messages */ ExprList *pEList, /* List of expressions to scan */ Expr *pE /* Expression we are trying to match */ ){ int i; /* Loop counter */ UNUSED_PARAMETER(pParse); if( pE->op==TK_ID ){ const char *zCol; assert( !ExprHasProperty(pE, EP_IntValue) ); zCol = pE->u.zToken; for(i=0; inExpr; i++){ if( pEList->a[i].fg.eEName==ENAME_NAME && sqlite3_stricmp(pEList->a[i].zEName, zCol)==0 ){ return i+1; } } } return 0; } /* ** pE is a pointer to an expression which is a single term in the ** ORDER BY of a compound SELECT. The expression has not been ** name resolved. ** ** At the point this routine is called, we already know that the ** ORDER BY term is not an integer index into the result set. That ** case is handled by the calling routine. ** ** Attempt to match pE against result set columns in the left-most ** SELECT statement. Return the index i of the matching column, ** as an indication to the caller that it should sort by the i-th column. ** The left-most column is 1. In other words, the value returned is the ** same integer value that would be used in the SQL statement to indicate ** the column. ** ** If there is no match, return 0. Return -1 if an error occurs. */ static int resolveOrderByTermToExprList( Parse *pParse, /* Parsing context for error messages */ Select *pSelect, /* The SELECT statement with the ORDER BY clause */ Expr *pE /* The specific ORDER BY term */ ){ int i; /* Loop counter */ ExprList *pEList; /* The columns of the result set */ NameContext nc; /* Name context for resolving pE */ sqlite3 *db; /* Database connection */ int rc; /* Return code from subprocedures */ u8 savedSuppErr; /* Saved value of db->suppressErr */ assert( sqlite3ExprIsInteger(pE, &i)==0 ); pEList = pSelect->pEList; /* Resolve all names in the ORDER BY term expression */ memset(&nc, 0, sizeof(nc)); nc.pParse = pParse; nc.pSrcList = pSelect->pSrc; nc.uNC.pEList = pEList; nc.ncFlags = NC_AllowAgg|NC_UEList|NC_NoSelect; nc.nNcErr = 0; db = pParse->db; savedSuppErr = db->suppressErr; db->suppressErr = 1; rc = sqlite3ResolveExprNames(&nc, pE); db->suppressErr = savedSuppErr; if( rc ) return 0; /* Try to match the ORDER BY expression against an expression ** in the result set. Return an 1-based index of the matching ** result-set entry. */ for(i=0; inExpr; i++){ if( sqlite3ExprCompare(0, pEList->a[i].pExpr, pE, -1)<2 ){ return i+1; } } /* If no match, return 0. */ return 0; } /* ** Generate an ORDER BY or GROUP BY term out-of-range error. */ static void resolveOutOfRangeError( Parse *pParse, /* The error context into which to write the error */ const char *zType, /* "ORDER" or "GROUP" */ int i, /* The index (1-based) of the term out of range */ int mx, /* Largest permissible value of i */ Expr *pError /* Associate the error with the expression */ ){ sqlite3ErrorMsg(pParse, "%r %s BY term out of range - should be " "between 1 and %d", i, zType, mx); sqlite3RecordErrorOffsetOfExpr(pParse->db, pError); } /* ** Analyze the ORDER BY clause in a compound SELECT statement. Modify ** each term of the ORDER BY clause is a constant integer between 1 ** and N where N is the number of columns in the compound SELECT. ** ** ORDER BY terms that are already an integer between 1 and N are ** unmodified. ORDER BY terms that are integers outside the range of ** 1 through N generate an error. ORDER BY terms that are expressions ** are matched against result set expressions of compound SELECT ** beginning with the left-most SELECT and working toward the right. ** At the first match, the ORDER BY expression is transformed into ** the integer column number. ** ** Return the number of errors seen. */ static int resolveCompoundOrderBy( Parse *pParse, /* Parsing context. Leave error messages here */ Select *pSelect /* The SELECT statement containing the ORDER BY */ ){ int i; ExprList *pOrderBy; ExprList *pEList; sqlite3 *db; int moreToDo = 1; pOrderBy = pSelect->pOrderBy; if( pOrderBy==0 ) return 0; db = pParse->db; if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); return 1; } for(i=0; inExpr; i++){ pOrderBy->a[i].fg.done = 0; } pSelect->pNext = 0; while( pSelect->pPrior ){ pSelect->pPrior->pNext = pSelect; pSelect = pSelect->pPrior; } while( pSelect && moreToDo ){ struct ExprList_item *pItem; moreToDo = 0; pEList = pSelect->pEList; assert( pEList!=0 ); for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ int iCol = -1; Expr *pE, *pDup; if( pItem->fg.done ) continue; pE = sqlite3ExprSkipCollateAndLikely(pItem->pExpr); if( NEVER(pE==0) ) continue; if( sqlite3ExprIsInteger(pE, &iCol) ){ if( iCol<=0 || iCol>pEList->nExpr ){ resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr, pE); return 1; } }else{ iCol = resolveAsName(pParse, pEList, pE); if( iCol==0 ){ /* Now test if expression pE matches one of the values returned ** by pSelect. In the usual case this is done by duplicating the ** expression, resolving any symbols in it, and then comparing ** it against each expression returned by the SELECT statement. ** Once the comparisons are finished, the duplicate expression ** is deleted. ** ** If this is running as part of an ALTER TABLE operation and ** the symbols resolve successfully, also resolve the symbols in the ** actual expression. This allows the code in alter.c to modify ** column references within the ORDER BY expression as required. */ pDup = sqlite3ExprDup(db, pE, 0); if( !db->mallocFailed ){ assert(pDup); iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup); if( IN_RENAME_OBJECT && iCol>0 ){ resolveOrderByTermToExprList(pParse, pSelect, pE); } } sqlite3ExprDelete(db, pDup); } } if( iCol>0 ){ /* Convert the ORDER BY term into an integer column number iCol, ** taking care to preserve the COLLATE clause if it exists. */ if( !IN_RENAME_OBJECT ){ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return 1; pNew->flags |= EP_IntValue; pNew->u.iValue = iCol; if( pItem->pExpr==pE ){ pItem->pExpr = pNew; }else{ Expr *pParent = pItem->pExpr; assert( pParent->op==TK_COLLATE ); while( pParent->pLeft->op==TK_COLLATE ) pParent = pParent->pLeft; assert( pParent->pLeft==pE ); pParent->pLeft = pNew; } sqlite3ExprDelete(db, pE); pItem->u.x.iOrderByCol = (u16)iCol; } pItem->fg.done = 1; }else{ moreToDo = 1; } } pSelect = pSelect->pNext; } for(i=0; inExpr; i++){ if( pOrderBy->a[i].fg.done==0 ){ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " "column in the result set", i+1); return 1; } } return 0; } /* ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of ** the SELECT statement pSelect. If any term is reference to a ** result set expression (as determined by the ExprList.a.u.x.iOrderByCol ** field) then convert that term into a copy of the corresponding result set ** column. ** ** If any errors are detected, add an error message to pParse and ** return non-zero. Return zero if no errors are seen. */ SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy( Parse *pParse, /* Parsing context. Leave error messages here */ Select *pSelect, /* The SELECT statement containing the clause */ ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ const char *zType /* "ORDER" or "GROUP" */ ){ int i; sqlite3 *db = pParse->db; ExprList *pEList; struct ExprList_item *pItem; if( pOrderBy==0 || pParse->db->mallocFailed || IN_RENAME_OBJECT ) return 0; if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); return 1; } pEList = pSelect->pEList; assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ if( pItem->u.x.iOrderByCol ){ if( pItem->u.x.iOrderByCol>pEList->nExpr ){ resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr, 0); return 1; } resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr,0); } } return 0; } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Walker callback for windowRemoveExprFromSelect(). */ static int resolveRemoveWindowsCb(Walker *pWalker, Expr *pExpr){ UNUSED_PARAMETER(pWalker); if( ExprHasProperty(pExpr, EP_WinFunc) ){ Window *pWin = pExpr->y.pWin; sqlite3WindowUnlinkFromSelect(pWin); } return WRC_Continue; } /* ** Remove any Window objects owned by the expression pExpr from the ** Select.pWin list of Select object pSelect. */ static void windowRemoveExprFromSelect(Select *pSelect, Expr *pExpr){ if( pSelect->pWin ){ Walker sWalker; memset(&sWalker, 0, sizeof(Walker)); sWalker.xExprCallback = resolveRemoveWindowsCb; sWalker.u.pSelect = pSelect; sqlite3WalkExpr(&sWalker, pExpr); } } #else # define windowRemoveExprFromSelect(a, b) #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. ** The Name context of the SELECT statement is pNC. zType is either ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. ** ** This routine resolves each term of the clause into an expression. ** If the order-by term is an integer I between 1 and N (where N is the ** number of columns in the result set of the SELECT) then the expression ** in the resolution is a copy of the I-th result-set expression. If ** the order-by term is an identifier that corresponds to the AS-name of ** a result-set expression, then the term resolves to a copy of the ** result-set expression. Otherwise, the expression is resolved in ** the usual way - using sqlite3ResolveExprNames(). ** ** This routine returns the number of errors. If errors occur, then ** an appropriate error message might be left in pParse. (OOM errors ** excepted.) */ static int resolveOrderGroupBy( NameContext *pNC, /* The name context of the SELECT statement */ Select *pSelect, /* The SELECT statement holding pOrderBy */ ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */ const char *zType /* Either "ORDER" or "GROUP", as appropriate */ ){ int i, j; /* Loop counters */ int iCol; /* Column number */ struct ExprList_item *pItem; /* A term of the ORDER BY clause */ Parse *pParse; /* Parsing context */ int nResult; /* Number of terms in the result set */ assert( pOrderBy!=0 ); nResult = pSelect->pEList->nExpr; pParse = pNC->pParse; for(i=0, pItem=pOrderBy->a; inExpr; i++, pItem++){ Expr *pE = pItem->pExpr; Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pE); if( NEVER(pE2==0) ) continue; if( zType[0]!='G' ){ iCol = resolveAsName(pParse, pSelect->pEList, pE2); if( iCol>0 ){ /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ pItem->u.x.iOrderByCol = (u16)iCol; continue; } } if( sqlite3ExprIsInteger(pE2, &iCol) ){ /* The ORDER BY term is an integer constant. Again, set the column ** number so that sqlite3ResolveOrderGroupBy() will convert the ** order-by term to a copy of the result-set expression */ if( iCol<1 || iCol>0xffff ){ resolveOutOfRangeError(pParse, zType, i+1, nResult, pE2); return 1; } pItem->u.x.iOrderByCol = (u16)iCol; continue; } /* Otherwise, treat the ORDER BY term as an ordinary expression */ pItem->u.x.iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; jpEList->nExpr; j++){ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ /* Since this expression is being changed into a reference ** to an identical expression in the result set, remove all Window ** objects belonging to the expression from the Select.pWin list. */ windowRemoveExprFromSelect(pSelect, pE); pItem->u.x.iOrderByCol = j+1; } } } return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); } /* ** Resolve names in the SELECT statement p and all of its descendants. */ static int resolveSelectStep(Walker *pWalker, Select *p){ NameContext *pOuterNC; /* Context that contains this SELECT */ NameContext sNC; /* Name context of this SELECT */ int isCompound; /* True if p is a compound select */ int nCompound; /* Number of compound terms processed so far */ Parse *pParse; /* Parsing context */ int i; /* Loop counter */ ExprList *pGroupBy; /* The GROUP BY clause */ Select *pLeftmost; /* Left-most of SELECT of a compound */ sqlite3 *db; /* Database connection */ assert( p!=0 ); if( p->selFlags & SF_Resolved ){ return WRC_Prune; } pOuterNC = pWalker->u.pNC; pParse = pWalker->pParse; db = pParse->db; /* Normally sqlite3SelectExpand() will be called first and will have ** already expanded this SELECT. However, if this is a subquery within ** an expression, sqlite3ResolveExprNames() will be called without a ** prior call to sqlite3SelectExpand(). When that happens, let ** sqlite3SelectPrep() do all of the processing for this SELECT. ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and ** this routine in the correct order. */ if( (p->selFlags & SF_Expanded)==0 ){ sqlite3SelectPrep(pParse, p, pOuterNC); return pParse->nErr ? WRC_Abort : WRC_Prune; } isCompound = p->pPrior!=0; nCompound = 0; pLeftmost = p; while( p ){ assert( (p->selFlags & SF_Expanded)!=0 ); assert( (p->selFlags & SF_Resolved)==0 ); p->selFlags |= SF_Resolved; /* Resolve the expressions in the LIMIT and OFFSET clauses. These ** are not allowed to refer to any names, so pass an empty NameContext. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pWinSelect = p; if( sqlite3ResolveExprNames(&sNC, p->pLimit) ){ return WRC_Abort; } /* If the SF_Converted flags is set, then this Select object was ** was created by the convertCompoundSelectToSubquery() function. ** In this case the ORDER BY clause (p->pOrderBy) should be resolved ** as if it were part of the sub-query, not the parent. This block ** moves the pOrderBy down to the sub-query. It will be moved back ** after the names have been resolved. */ if( p->selFlags & SF_Converted ){ Select *pSub = p->pSrc->a[0].pSelect; assert( p->pSrc->nSrc==1 && p->pOrderBy ); assert( pSub->pPrior && pSub->pOrderBy==0 ); pSub->pOrderBy = p->pOrderBy; p->pOrderBy = 0; } /* Recursively resolve names in all subqueries in the FROM clause */ if( pOuterNC ) pOuterNC->nNestedSelect++; for(i=0; ipSrc->nSrc; i++){ SrcItem *pItem = &p->pSrc->a[i]; if( pItem->pSelect && (pItem->pSelect->selFlags & SF_Resolved)==0 ){ int nRef = pOuterNC ? pOuterNC->nRef : 0; const char *zSavedContext = pParse->zAuthContext; if( pItem->zName ) pParse->zAuthContext = pItem->zName; sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); pParse->zAuthContext = zSavedContext; if( pParse->nErr ) return WRC_Abort; assert( db->mallocFailed==0 ); /* If the number of references to the outer context changed when ** expressions in the sub-select were resolved, the sub-select ** is correlated. It is not required to check the refcount on any ** but the innermost outer context object, as lookupName() increments ** the refcount on all contexts between the current one and the ** context containing the column when it resolves a name. */ if( pOuterNC ){ assert( pItem->fg.isCorrelated==0 && pOuterNC->nRef>=nRef ); pItem->fg.isCorrelated = (pOuterNC->nRef>nRef); } } } if( pOuterNC && ALWAYS(pOuterNC->nNestedSelect>0) ){ pOuterNC->nNestedSelect--; } /* Set up the local name-context to pass to sqlite3ResolveExprNames() to ** resolve the result-set expression list. */ sNC.ncFlags = NC_AllowAgg|NC_AllowWin; sNC.pSrcList = p->pSrc; sNC.pNext = pOuterNC; /* Resolve names in the result set. */ if( sqlite3ResolveExprListNames(&sNC, p->pEList) ) return WRC_Abort; sNC.ncFlags &= ~NC_AllowWin; /* If there are no aggregate functions in the result-set, and no GROUP BY ** expression, do not allow aggregates in any of the other expressions. */ assert( (p->selFlags & SF_Aggregate)==0 ); pGroupBy = p->pGroupBy; if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){ assert( NC_MinMaxAgg==SF_MinMaxAgg ); assert( NC_OrderAgg==SF_OrderByReqd ); p->selFlags |= SF_Aggregate | (sNC.ncFlags&(NC_MinMaxAgg|NC_OrderAgg)); }else{ sNC.ncFlags &= ~NC_AllowAgg; } /* Add the output column list to the name-context before parsing the ** other expressions in the SELECT statement. This is so that ** expressions in the WHERE clause (etc.) can refer to expressions by ** aliases in the result set. ** ** Minor point: If this is the case, then the expression will be ** re-evaluated for each reference to it. */ assert( (sNC.ncFlags & (NC_UAggInfo|NC_UUpsert|NC_UBaseReg))==0 ); sNC.uNC.pEList = p->pEList; sNC.ncFlags |= NC_UEList; if( p->pHaving ){ if( (p->selFlags & SF_Aggregate)==0 ){ sqlite3ErrorMsg(pParse, "HAVING clause on a non-aggregate query"); return WRC_Abort; } if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort; } sNC.ncFlags |= NC_Where; if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; sNC.ncFlags &= ~NC_Where; /* Resolve names in table-valued-function arguments */ for(i=0; ipSrc->nSrc; i++){ SrcItem *pItem = &p->pSrc->a[i]; if( pItem->fg.isTabFunc && sqlite3ResolveExprListNames(&sNC, pItem->u1.pFuncArg) ){ return WRC_Abort; } } #ifndef SQLITE_OMIT_WINDOWFUNC if( IN_RENAME_OBJECT ){ Window *pWin; for(pWin=p->pWinDefn; pWin; pWin=pWin->pNextWin){ if( sqlite3ResolveExprListNames(&sNC, pWin->pOrderBy) || sqlite3ResolveExprListNames(&sNC, pWin->pPartition) ){ return WRC_Abort; } } } #endif /* The ORDER BY and GROUP BY clauses may not refer to terms in ** outer queries */ sNC.pNext = 0; sNC.ncFlags |= NC_AllowAgg|NC_AllowWin; /* If this is a converted compound query, move the ORDER BY clause from ** the sub-query back to the parent query. At this point each term ** within the ORDER BY clause has been transformed to an integer value. ** These integers will be replaced by copies of the corresponding result ** set expressions by the call to resolveOrderGroupBy() below. */ if( p->selFlags & SF_Converted ){ Select *pSub = p->pSrc->a[0].pSelect; p->pOrderBy = pSub->pOrderBy; pSub->pOrderBy = 0; } /* Process the ORDER BY clause for singleton SELECT statements. ** The ORDER BY clause for compounds SELECT statements is handled ** below, after all of the result-sets for all of the elements of ** the compound have been resolved. ** ** If there is an ORDER BY clause on a term of a compound-select other ** than the right-most term, then that is a syntax error. But the error ** is not detected until much later, and so we need to go ahead and ** resolve those symbols on the incorrect ORDER BY for consistency. */ if( p->pOrderBy!=0 && isCompound<=nCompound /* Defer right-most ORDER BY of a compound */ && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){ return WRC_Abort; } if( db->mallocFailed ){ return WRC_Abort; } sNC.ncFlags &= ~NC_AllowWin; /* Resolve the GROUP BY clause. At the same time, make sure ** the GROUP BY clause does not contain aggregate functions. */ if( pGroupBy ){ struct ExprList_item *pItem; if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){ return WRC_Abort; } for(i=0, pItem=pGroupBy->a; inExpr; i++, pItem++){ if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " "the GROUP BY clause"); return WRC_Abort; } } } /* If this is part of a compound SELECT, check that it has the right ** number of expressions in the select list. */ if( p->pNext && p->pEList->nExpr!=p->pNext->pEList->nExpr ){ sqlite3SelectWrongNumTermsError(pParse, p->pNext); return WRC_Abort; } /* Advance to the next term of the compound */ p = p->pPrior; nCompound++; } /* Resolve the ORDER BY on a compound SELECT after all terms of ** the compound have been resolved. */ if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){ return WRC_Abort; } return WRC_Prune; } /* ** This routine walks an expression tree and resolves references to ** table columns and result-set columns. At the same time, do error ** checking on function usage and set a flag if any aggregate functions ** are seen. ** ** To resolve table columns references we look for nodes (or subtrees) of the ** form X.Y.Z or Y.Z or just Z where ** ** X: The name of a database. Ex: "main" or "temp" or ** the symbolic name assigned to an ATTACH-ed database. ** ** Y: The name of a table in a FROM clause. Or in a trigger ** one of the special names "old" or "new". ** ** Z: The name of a column in table Y. ** ** The node at the root of the subtree is modified as follows: ** ** Expr.op Changed to TK_COLUMN ** Expr.pTab Points to the Table object for X.Y ** Expr.iColumn The column index in X.Y. -1 for the rowid. ** Expr.iTable The VDBE cursor number for X.Y ** ** ** To resolve result-set references, look for expression nodes of the ** form Z (with no X and Y prefix) where the Z matches the right-hand ** size of an AS clause in the result-set of a SELECT. The Z expression ** is replaced by a copy of the left-hand side of the result-set expression. ** Table-name and function resolution occurs on the substituted expression ** tree. For example, in: ** ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x; ** ** The "x" term of the order by is replaced by "a+b" to render: ** ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b; ** ** Function calls are checked to make sure that the function is ** defined and that the correct number of arguments are specified. ** If the function is an aggregate function, then the NC_HasAgg flag is ** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION. ** If an expression contains aggregate functions then the EP_Agg ** property on the expression is set. ** ** An error message is left in pParse if anything is amiss. The number ** if errors is returned. */ SQLITE_PRIVATE int sqlite3ResolveExprNames( NameContext *pNC, /* Namespace to resolve expressions in. */ Expr *pExpr /* The expression to be analyzed. */ ){ int savedHasAgg; Walker w; if( pExpr==0 ) return SQLITE_OK; savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); w.pParse = pNC->pParse; w.xExprCallback = resolveExprStep; w.xSelectCallback = (pNC->ncFlags & NC_NoSelect) ? 0 : resolveSelectStep; w.xSelectCallback2 = 0; w.u.pNC = pNC; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return SQLITE_ERROR; } #endif assert( pExpr!=0 ); sqlite3WalkExprNN(&w, pExpr); #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight -= pExpr->nHeight; #endif assert( EP_Agg==NC_HasAgg ); assert( EP_Win==NC_HasWin ); testcase( pNC->ncFlags & NC_HasAgg ); testcase( pNC->ncFlags & NC_HasWin ); ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) ); pNC->ncFlags |= savedHasAgg; return pNC->nNcErr>0 || w.pParse->nErr>0; } /* ** Resolve all names for all expression in an expression list. This is ** just like sqlite3ResolveExprNames() except that it works for an expression ** list rather than a single expression. */ SQLITE_PRIVATE int sqlite3ResolveExprListNames( NameContext *pNC, /* Namespace to resolve expressions in. */ ExprList *pList /* The expression list to be analyzed. */ ){ int i; int savedHasAgg = 0; Walker w; if( pList==0 ) return WRC_Continue; w.pParse = pNC->pParse; w.xExprCallback = resolveExprStep; w.xSelectCallback = resolveSelectStep; w.xSelectCallback2 = 0; w.u.pNC = pNC; savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; if( pExpr==0 ) continue; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return WRC_Abort; } #endif sqlite3WalkExprNN(&w, pExpr); #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight -= pExpr->nHeight; #endif assert( EP_Agg==NC_HasAgg ); assert( EP_Win==NC_HasWin ); testcase( pNC->ncFlags & NC_HasAgg ); testcase( pNC->ncFlags & NC_HasWin ); if( pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg) ){ ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) ); savedHasAgg |= pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg); } if( w.pParse->nErr>0 ) return WRC_Abort; } pNC->ncFlags |= savedHasAgg; return WRC_Continue; } /* ** Resolve all names in all expressions of a SELECT and in all ** descendants of the SELECT, including compounds off of p->pPrior, ** subqueries in expressions, and subqueries used as FROM clause ** terms. ** ** See sqlite3ResolveExprNames() for a description of the kinds of ** transformations that occur. ** ** All SELECT statements should have been expanded using ** sqlite3SelectExpand() prior to invoking this routine. */ SQLITE_PRIVATE void sqlite3ResolveSelectNames( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ NameContext *pOuterNC /* Name context for parent SELECT statement */ ){ Walker w; assert( p!=0 ); w.xExprCallback = resolveExprStep; w.xSelectCallback = resolveSelectStep; w.xSelectCallback2 = 0; w.pParse = pParse; w.u.pNC = pOuterNC; sqlite3WalkSelect(&w, p); } /* ** Resolve names in expressions that can only reference a single table ** or which cannot reference any tables at all. Examples: ** ** "type" flag ** ------------ ** (1) CHECK constraints NC_IsCheck ** (2) WHERE clauses on partial indices NC_PartIdx ** (3) Expressions in indexes on expressions NC_IdxExpr ** (4) Expression arguments to VACUUM INTO. 0 ** (5) GENERATED ALWAYS as expressions NC_GenCol ** ** In all cases except (4), the Expr.iTable value for Expr.op==TK_COLUMN ** nodes of the expression is set to -1 and the Expr.iColumn value is ** set to the column number. In case (4), TK_COLUMN nodes cause an error. ** ** Any errors cause an error message to be set in pParse. */ SQLITE_PRIVATE int sqlite3ResolveSelfReference( Parse *pParse, /* Parsing context */ Table *pTab, /* The table being referenced, or NULL */ int type, /* NC_IsCheck, NC_PartIdx, NC_IdxExpr, NC_GenCol, or 0 */ Expr *pExpr, /* Expression to resolve. May be NULL. */ ExprList *pList /* Expression list to resolve. May be NULL. */ ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ NameContext sNC; /* Name context for pParse->pNewTable */ int rc; assert( type==0 || pTab!=0 ); assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr || type==NC_GenCol || pTab==0 ); memset(&sNC, 0, sizeof(sNC)); memset(&sSrc, 0, sizeof(sSrc)); if( pTab ){ sSrc.nSrc = 1; sSrc.a[0].zName = pTab->zName; sSrc.a[0].pTab = pTab; sSrc.a[0].iCursor = -1; if( pTab->pSchema!=pParse->db->aDb[1].pSchema ){ /* Cause EP_FromDDL to be set on TK_FUNCTION nodes of non-TEMP ** schema elements */ type |= NC_FromDDL; } } sNC.pParse = pParse; sNC.pSrcList = &sSrc; sNC.ncFlags = type | NC_IsDDL; if( (rc = sqlite3ResolveExprNames(&sNC, pExpr))!=SQLITE_OK ) return rc; if( pList ) rc = sqlite3ResolveExprListNames(&sNC, pList); return rc; } /************** End of resolve.c *********************************************/ /************** Begin file expr.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. */ /* #include "sqliteInt.h" */ /* Forward declarations */ static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); /* ** Return the affinity character for a single column of a table. */ SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; return pTab->aCol[iCol].affinity; } /* ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the ** affinity of that column is returned. Otherwise, 0x00 is returned, ** indicating no affinity for the expression. ** ** i.e. the WHERE clause expressions in the following statements all ** have an affinity: ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr){ int op; op = pExpr->op; while( 1 /* exit-by-break */ ){ if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){ assert( ExprUseYTab(pExpr) ); assert( pExpr->y.pTab!=0 ); return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); } if( op==TK_SELECT ){ assert( ExprUseXSelect(pExpr) ); assert( pExpr->x.pSelect!=0 ); assert( pExpr->x.pSelect->pEList!=0 ); assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); } #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); return sqlite3AffinityType(pExpr->u.zToken, 0); } #endif if( op==TK_SELECT_COLUMN ){ assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); assert( pExpr->iColumn < pExpr->iTable ); assert( pExpr->iColumn >= 0 ); assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); return sqlite3ExprAffinity( pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr ); } if( op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); } if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); pExpr = pExpr->pLeft; op = pExpr->op; continue; } if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break; } return pExpr->affExpr; } /* ** Make a guess at all the possible datatypes of the result that could ** be returned by an expression. Return a bitmask indicating the answer: ** ** 0x01 Numeric ** 0x02 Text ** 0x04 Blob ** ** If the expression must return NULL, then 0x00 is returned. */ SQLITE_PRIVATE int sqlite3ExprDataType(const Expr *pExpr){ while( pExpr ){ switch( pExpr->op ){ case TK_COLLATE: case TK_IF_NULL_ROW: case TK_UPLUS: { pExpr = pExpr->pLeft; break; } case TK_NULL: { pExpr = 0; break; } case TK_STRING: { return 0x02; } case TK_BLOB: { return 0x04; } case TK_CONCAT: { return 0x06; } case TK_VARIABLE: case TK_AGG_FUNCTION: case TK_FUNCTION: { return 0x07; } case TK_COLUMN: case TK_AGG_COLUMN: case TK_SELECT: case TK_CAST: case TK_SELECT_COLUMN: case TK_VECTOR: { int aff = sqlite3ExprAffinity(pExpr); if( aff>=SQLITE_AFF_NUMERIC ) return 0x05; if( aff==SQLITE_AFF_TEXT ) return 0x06; return 0x07; } case TK_CASE: { int res = 0; int ii; ExprList *pList = pExpr->x.pList; assert( ExprUseXList(pExpr) && pList!=0 ); assert( pList->nExpr > 0); for(ii=1; iinExpr; ii+=2){ res |= sqlite3ExprDataType(pList->a[ii].pExpr); } if( pList->nExpr % 2 ){ res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr); } return res; } default: { return 0x01; } } /* End of switch(op) */ } /* End of while(pExpr) */ return 0x00; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to a new Expr node that ** implements the COLLATE operator. ** ** If a memory allocation error occurs, that fact is recorded in pParse->db ** and the pExpr parameter is returned unchanged. */ SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken( const Parse *pParse, /* Parsing context */ Expr *pExpr, /* Add the "COLLATE" clause to this expression */ const Token *pCollName, /* Name of collating sequence */ int dequote /* True to dequote pCollName */ ){ if( pCollName->n>0 ){ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); if( pNew ){ pNew->pLeft = pExpr; pNew->flags |= EP_Collate|EP_Skip; pExpr = pNew; } } return pExpr; } SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString( const Parse *pParse, /* Parsing context */ Expr *pExpr, /* Add the "COLLATE" clause to this expression */ const char *zC /* The collating sequence name */ ){ Token s; assert( zC!=0 ); sqlite3TokenInit(&s, (char*)zC); return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); } /* ** Skip over any TK_COLLATE operators. */ SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){ while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ assert( pExpr->op==TK_COLLATE ); pExpr = pExpr->pLeft; } return pExpr; } /* ** Skip over any TK_COLLATE operators and/or any unlikely() ** or likelihood() or likely() functions at the root of an ** expression. */ SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ if( ExprHasProperty(pExpr, EP_Unlikely) ){ assert( ExprUseXList(pExpr) ); assert( pExpr->x.pList->nExpr>0 ); assert( pExpr->op==TK_FUNCTION ); pExpr = pExpr->x.pList->a[0].pExpr; }else if( pExpr->op==TK_COLLATE ){ pExpr = pExpr->pLeft; }else{ break; } } return pExpr; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return NULL. ** ** See also: sqlite3ExprNNCollSeq() ** ** The sqlite3ExprNNCollSeq() works the same exact that it returns the ** default collation if pExpr has no defined collation. ** ** The collating sequence might be determined by a COLLATE operator ** or by the presence of a column with a defined collating sequence. ** COLLATE operators take first precedence. Left operands take ** precedence over right operands. */ SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ sqlite3 *db = pParse->db; CollSeq *pColl = 0; const Expr *p = pExpr; while( p ){ int op = p->op; if( op==TK_REGISTER ) op = p->op2; if( (op==TK_AGG_COLUMN && p->y.pTab!=0) || op==TK_COLUMN || op==TK_TRIGGER ){ int j; assert( ExprUseYTab(p) ); assert( p->y.pTab!=0 ); if( (j = p->iColumn)>=0 ){ const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); } break; } if( op==TK_CAST || op==TK_UPLUS ){ p = p->pLeft; continue; } if( op==TK_VECTOR ){ assert( ExprUseXList(p) ); p = p->x.pList->a[0].pExpr; continue; } if( op==TK_COLLATE ){ assert( !ExprHasProperty(p, EP_IntValue) ); pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); break; } if( p->flags & EP_Collate ){ if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ p = p->pLeft; }else{ Expr *pNext = p->pRight; /* The Expr.x union is never used at the same time as Expr.pRight */ assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 ); if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){ int i; for(i=0; ix.pList->nExpr; i++){ if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ pNext = p->x.pList->a[i].pExpr; break; } } } p = pNext; } }else{ break; } } if( sqlite3CheckCollSeq(pParse, pColl) ){ pColl = 0; } return pColl; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return a pointer to the ** default collation sequence. ** ** See also: sqlite3ExprCollSeq() ** ** The sqlite3ExprCollSeq() routine works the same except that it ** returns NULL if there is no defined collation. */ SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); if( p==0 ) p = pParse->db->pDfltColl; assert( p!=0 ); return p; } /* ** Return TRUE if the two expressions have equivalent collating sequences. */ SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; } /* ** pExpr is an operand of a comparison operator. aff2 is the ** type affinity of the other operand. This routine returns the ** type affinity that should be used for the comparison operator. */ SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ char aff1 = sqlite3ExprAffinity(pExpr); if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ /* Both sides of the comparison are columns. If one has numeric ** affinity, use that. Otherwise use no affinity. */ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ return SQLITE_AFF_NUMERIC; }else{ return SQLITE_AFF_BLOB; } }else{ /* One side is a column, the other is not. Use the columns affinity. */ assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; } } /* ** pExpr is a comparison operator. Return the type affinity that should ** be applied to both operands prior to doing the comparison. */ static char comparisonAffinity(const Expr *pExpr){ char aff; assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); assert( pExpr->pLeft ); aff = sqlite3ExprAffinity(pExpr->pLeft); if( pExpr->pRight ){ aff = sqlite3CompareAffinity(pExpr->pRight, aff); }else if( ExprUseXSelect(pExpr) ){ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); }else if( aff==0 ){ aff = SQLITE_AFF_BLOB; } return aff; } /* ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. ** idx_affinity is the affinity of an indexed column. Return true ** if the index with affinity idx_affinity may be used to implement ** the comparison in pExpr. */ SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ char aff = comparisonAffinity(pExpr); if( affflags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pLeft); }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ pColl = sqlite3ExprCollSeq(pParse, pRight); }else{ pColl = sqlite3ExprCollSeq(pParse, pLeft); if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } /* Expression p is a comparison operator. Return a collation sequence ** appropriate for the comparison operator. ** ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). ** However, if the OP_Commuted flag is set, then the order of the operands ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the ** correct collating sequence is found. */ SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ if( ExprHasProperty(p, EP_Commuted) ){ return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); }else{ return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); } } /* ** Generate code for a comparison operator. */ static int codeCompare( Parse *pParse, /* The parsing (and code generating) context */ Expr *pLeft, /* The left operand */ Expr *pRight, /* The right operand */ int opcode, /* The comparison opcode */ int in1, int in2, /* Register holding operands */ int dest, /* Jump here if true. */ int jumpIfNull, /* If true, jump if either operand is NULL */ int isCommuted /* The comparison has been commuted */ ){ int p5; int addr; CollSeq *p4; if( pParse->nErr ) return 0; if( isCommuted ){ p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); }else{ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); } p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, (void*)p4, P4_COLLSEQ); sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); return addr; } /* ** Return true if expression pExpr is a vector, or false otherwise. ** ** A vector is defined as any expression that results in two or more ** columns of result. Every TK_VECTOR node is an vector because the ** parser will not generate a TK_VECTOR with fewer than two entries. ** But a TK_SELECT might be either a vector or a scalar. It is only ** considered a vector if it has two or more result columns. */ SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr){ return sqlite3ExprVectorSize(pExpr)>1; } /* ** If the expression passed as the only argument is of type TK_VECTOR ** return the number of expressions in the vector. Or, if the expression ** is a sub-select, return the number of columns in the sub-select. For ** any other type of expression, return 1. */ SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr){ u8 op = pExpr->op; if( op==TK_REGISTER ) op = pExpr->op2; if( op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); return pExpr->x.pList->nExpr; }else if( op==TK_SELECT ){ assert( ExprUseXSelect(pExpr) ); return pExpr->x.pSelect->pEList->nExpr; }else{ return 1; } } /* ** Return a pointer to a subexpression of pVector that is the i-th ** column of the vector (numbered starting with 0). The caller must ** ensure that i is within range. ** ** If pVector is really a scalar (and "scalar" here includes subqueries ** that return a single column!) then return pVector unmodified. ** ** pVector retains ownership of the returned subexpression. ** ** If the vector is a (SELECT ...) then the expression returned is ** just the expression for the i-th term of the result set, and may ** not be ready for evaluation because the table cursor has not yet ** been positioned. */ SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ assert( iop==TK_ERROR ); if( sqlite3ExprIsVector(pVector) ){ assert( pVector->op2==0 || pVector->op==TK_REGISTER ); if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ assert( ExprUseXSelect(pVector) ); return pVector->x.pSelect->pEList->a[i].pExpr; }else{ assert( ExprUseXList(pVector) ); return pVector->x.pList->a[i].pExpr; } } return pVector; } /* ** Compute and return a new Expr object which when passed to ** sqlite3ExprCode() will generate all necessary code to compute ** the iField-th column of the vector expression pVector. ** ** It is ok for pVector to be a scalar (as long as iField==0). ** In that case, this routine works like sqlite3ExprDup(). ** ** The caller owns the returned Expr object and is responsible for ** ensuring that the returned value eventually gets freed. ** ** The caller retains ownership of pVector. If pVector is a TK_SELECT, ** then the returned object will reference pVector and so pVector must remain ** valid for the life of the returned object. If pVector is a TK_VECTOR ** or a scalar expression, then it can be deleted as soon as this routine ** returns. ** ** A trick to cause a TK_SELECT pVector to be deleted together with ** the returned Expr object is to attach the pVector to the pRight field ** of the returned TK_SELECT_COLUMN Expr object. */ SQLITE_PRIVATE Expr *sqlite3ExprForVectorField( Parse *pParse, /* Parsing context */ Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ int iField, /* Which column of the vector to return */ int nField /* Total number of columns in the vector */ ){ Expr *pRet; if( pVector->op==TK_SELECT ){ assert( ExprUseXSelect(pVector) ); /* The TK_SELECT_COLUMN Expr node: ** ** pLeft: pVector containing TK_SELECT. Not deleted. ** pRight: not used. But recursively deleted. ** iColumn: Index of a column in pVector ** iTable: 0 or the number of columns on the LHS of an assignment ** pLeft->iTable: First in an array of register holding result, or 0 ** if the result is not yet computed. ** ** sqlite3ExprDelete() specifically skips the recursive delete of ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector ** can be attached to pRight to cause this node to take ownership of ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes ** with the same pLeft pointer to the pVector, but only one of them ** will own the pVector. */ pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); if( pRet ){ ExprSetProperty(pRet, EP_FullSize); pRet->iTable = nField; pRet->iColumn = iField; pRet->pLeft = pVector; } }else{ if( pVector->op==TK_VECTOR ){ Expr **ppVector; assert( ExprUseXList(pVector) ); ppVector = &pVector->x.pList->a[iField].pExpr; pVector = *ppVector; if( IN_RENAME_OBJECT ){ /* This must be a vector UPDATE inside a trigger */ *ppVector = 0; return pVector; } } pRet = sqlite3ExprDup(pParse->db, pVector, 0); } return pRet; } /* ** If expression pExpr is of type TK_SELECT, generate code to evaluate ** it. Return the register in which the result is stored (or, if the ** sub-select returns more than one column, the first in an array ** of registers in which the result is stored). ** ** If pExpr is not a TK_SELECT expression, return 0. */ static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ int reg = 0; #ifndef SQLITE_OMIT_SUBQUERY if( pExpr->op==TK_SELECT ){ reg = sqlite3CodeSubselect(pParse, pExpr); } #endif return reg; } /* ** Argument pVector points to a vector expression - either a TK_VECTOR ** or TK_SELECT that returns more than one column. This function returns ** the register number of a register that contains the value of ** element iField of the vector. ** ** If pVector is a TK_SELECT expression, then code for it must have ** already been generated using the exprCodeSubselect() routine. In this ** case parameter regSelect should be the first in an array of registers ** containing the results of the sub-select. ** ** If pVector is of type TK_VECTOR, then code for the requested field ** is generated. In this case (*pRegFree) may be set to the number of ** a temporary register to be freed by the caller before returning. ** ** Before returning, output parameter (*ppExpr) is set to point to the ** Expr object corresponding to element iElem of the vector. */ static int exprVectorRegister( Parse *pParse, /* Parse context */ Expr *pVector, /* Vector to extract element from */ int iField, /* Field to extract from pVector */ int regSelect, /* First in array of registers */ Expr **ppExpr, /* OUT: Expression element */ int *pRegFree /* OUT: Temp register to free */ ){ u8 op = pVector->op; assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); if( op==TK_REGISTER ){ *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); return pVector->iTable+iField; } if( op==TK_SELECT ){ assert( ExprUseXSelect(pVector) ); *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; return regSelect+iField; } if( op==TK_VECTOR ){ assert( ExprUseXList(pVector) ); *ppExpr = pVector->x.pList->a[iField].pExpr; return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); } return 0; } /* ** Expression pExpr is a comparison between two vector values. Compute ** the result of the comparison (1, 0, or NULL) and write that ** result into register dest. ** ** The caller must satisfy the following preconditions: ** ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ ** otherwise: op==pExpr->op and p5==0 */ static void codeVectorCompare( Parse *pParse, /* Code generator context */ Expr *pExpr, /* The comparison operation */ int dest, /* Write results into this register */ u8 op, /* Comparison operator */ u8 p5 /* SQLITE_NULLEQ or zero */ ){ Vdbe *v = pParse->pVdbe; Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pRight; int nLeft = sqlite3ExprVectorSize(pLeft); int i; int regLeft = 0; int regRight = 0; u8 opx = op; int addrCmp = 0; int addrDone = sqlite3VdbeMakeLabel(pParse); int isCommuted = ExprHasProperty(pExpr,EP_Commuted); assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); if( pParse->nErr ) return; if( nLeft!=sqlite3ExprVectorSize(pRight) ){ sqlite3ErrorMsg(pParse, "row value misused"); return; } assert( pExpr->op==TK_EQ || pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT || pExpr->op==TK_LT || pExpr->op==TK_GT || pExpr->op==TK_LE || pExpr->op==TK_GE ); assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) || (pExpr->op==TK_ISNOT && op==TK_NE) ); assert( p5==0 || pExpr->op!=op ); assert( p5==SQLITE_NULLEQ || pExpr->op==op ); if( op==TK_LE ) opx = TK_LT; if( op==TK_GE ) opx = TK_GT; if( op==TK_NE ) opx = TK_EQ; regLeft = exprCodeSubselect(pParse, pLeft); regRight = exprCodeSubselect(pParse, pRight); sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); for(i=0; 1 /*Loop exits by "break"*/; i++){ int regFree1 = 0, regFree2 = 0; Expr *pL = 0, *pR = 0; int r1, r2; assert( i>=0 && i0 /* ** Check that argument nHeight is less than or equal to the maximum ** expression depth allowed. If it is not, leave an error message in ** pParse. */ SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ int rc = SQLITE_OK; int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; if( nHeight>mxHeight ){ sqlite3ErrorMsg(pParse, "Expression tree is too large (maximum depth %d)", mxHeight ); rc = SQLITE_ERROR; } return rc; } /* The following three functions, heightOfExpr(), heightOfExprList() ** and heightOfSelect(), are used to determine the maximum height ** of any expression tree referenced by the structure passed as the ** first argument. ** ** If this maximum height is greater than the current value pointed ** to by pnHeight, the second parameter, then set *pnHeight to that ** value. */ static void heightOfExpr(const Expr *p, int *pnHeight){ if( p ){ if( p->nHeight>*pnHeight ){ *pnHeight = p->nHeight; } } } static void heightOfExprList(const ExprList *p, int *pnHeight){ if( p ){ int i; for(i=0; inExpr; i++){ heightOfExpr(p->a[i].pExpr, pnHeight); } } } static void heightOfSelect(const Select *pSelect, int *pnHeight){ const Select *p; for(p=pSelect; p; p=p->pPrior){ heightOfExpr(p->pWhere, pnHeight); heightOfExpr(p->pHaving, pnHeight); heightOfExpr(p->pLimit, pnHeight); heightOfExprList(p->pEList, pnHeight); heightOfExprList(p->pGroupBy, pnHeight); heightOfExprList(p->pOrderBy, pnHeight); } } /* ** Set the Expr.nHeight variable in the structure passed as an ** argument. An expression with no children, Expr.pList or ** Expr.pSelect member has a height of 1. Any other expression ** has a height equal to the maximum height of any other ** referenced Expr plus one. ** ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, ** if appropriate. */ static void exprSetHeight(Expr *p){ int nHeight = p->pLeft ? p->pLeft->nHeight : 0; if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ nHeight = p->pRight->nHeight; } if( ExprUseXSelect(p) ){ heightOfSelect(p->x.pSelect, &nHeight); }else if( p->x.pList ){ heightOfExprList(p->x.pList, &nHeight); p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); } p->nHeight = nHeight + 1; } /* ** Set the Expr.nHeight variable using the exprSetHeight() function. If ** the height is greater than the maximum allowed expression depth, ** leave an error in pParse. ** ** Also propagate all EP_Propagate flags from the Expr.x.pList into ** Expr.flags. */ SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ if( pParse->nErr ) return; exprSetHeight(p); sqlite3ExprCheckHeight(pParse, p->nHeight); } /* ** Return the maximum height of any expression tree referenced ** by the select statement passed as an argument. */ SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *p){ int nHeight = 0; heightOfSelect(p, &nHeight); return nHeight; } #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ /* ** Propagate all EP_Propagate flags from the Expr.x.pList into ** Expr.flags. */ SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ if( pParse->nErr ) return; if( p && ExprUseXList(p) && p->x.pList ){ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); } } #define exprSetHeight(y) #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ /* ** Set the error offset for an Expr node, if possible. */ SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){ if( pExpr==0 ) return; if( NEVER(ExprUseWJoin(pExpr)) ) return; pExpr->w.iOfst = iOfst; } /* ** This routine is the core allocator for Expr nodes. ** ** Construct a new expression node and return a pointer to it. Memory ** for this node and for the pToken argument is a single allocation ** obtained from sqlite3DbMalloc(). The calling function ** is responsible for making sure the node eventually gets freed. ** ** If dequote is true, then the token (if it exists) is dequoted. ** If dequote is false, no dequoting is performed. The deQuote ** parameter is ignored if pToken is NULL or if the token does not ** appear to be quoted. If the quotes were of the form "..." (double-quotes) ** then the EP_DblQuoted flag is set on the expression node. ** ** Special case: If op==TK_INTEGER and pToken points to a string that ** can be translated into a 32-bit integer, then the token is not ** stored in u.zToken. Instead, the integer values is written ** into u.iValue and the EP_IntValue flag is set. No extra storage ** is allocated to hold the integer text and the dequote flag is ignored. */ SQLITE_PRIVATE Expr *sqlite3ExprAlloc( sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ int op, /* Expression opcode */ const Token *pToken, /* Token argument. Might be NULL */ int dequote /* True to dequote */ ){ Expr *pNew; int nExtra = 0; int iValue = 0; assert( db!=0 ); if( pToken ){ if( op!=TK_INTEGER || pToken->z==0 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ nExtra = pToken->n+1; assert( iValue>=0 ); } } pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); if( pNew ){ memset(pNew, 0, sizeof(Expr)); pNew->op = (u8)op; pNew->iAgg = -1; if( pToken ){ if( nExtra==0 ){ pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); pNew->u.iValue = iValue; }else{ pNew->u.zToken = (char*)&pNew[1]; assert( pToken->z!=0 || pToken->n==0 ); if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); pNew->u.zToken[pToken->n] = 0; if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ sqlite3DequoteExpr(pNew); } } } #if SQLITE_MAX_EXPR_DEPTH>0 pNew->nHeight = 1; #endif } return pNew; } /* ** Allocate a new expression node from a zero-terminated token that has ** already been dequoted. */ SQLITE_PRIVATE Expr *sqlite3Expr( sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ int op, /* Expression opcode */ const char *zToken /* Token argument. Might be NULL */ ){ Token x; x.z = zToken; x.n = sqlite3Strlen30(zToken); return sqlite3ExprAlloc(db, op, &x, 0); } /* ** Attach subtrees pLeft and pRight to the Expr node pRoot. ** ** If pRoot==NULL that means that a memory allocation error has occurred. ** In that case, delete the subtrees pLeft and pRight. */ SQLITE_PRIVATE void sqlite3ExprAttachSubtrees( sqlite3 *db, Expr *pRoot, Expr *pLeft, Expr *pRight ){ if( pRoot==0 ){ assert( db->mallocFailed ); sqlite3ExprDelete(db, pLeft); sqlite3ExprDelete(db, pRight); }else{ assert( ExprUseXList(pRoot) ); assert( pRoot->x.pSelect==0 ); if( pRight ){ pRoot->pRight = pRight; pRoot->flags |= EP_Propagate & pRight->flags; #if SQLITE_MAX_EXPR_DEPTH>0 pRoot->nHeight = pRight->nHeight+1; }else{ pRoot->nHeight = 1; #endif } if( pLeft ){ pRoot->pLeft = pLeft; pRoot->flags |= EP_Propagate & pLeft->flags; #if SQLITE_MAX_EXPR_DEPTH>0 if( pLeft->nHeight>=pRoot->nHeight ){ pRoot->nHeight = pLeft->nHeight+1; } #endif } } } /* ** Allocate an Expr node which joins as many as two subtrees. ** ** One or both of the subtrees can be NULL. Return a pointer to the new ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, ** free the subtrees and return NULL. */ SQLITE_PRIVATE Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight /* Right operand */ ){ Expr *p; p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); if( p ){ memset(p, 0, sizeof(Expr)); p->op = op & 0xff; p->iAgg = -1; sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); sqlite3ExprCheckHeight(pParse, p->nHeight); }else{ sqlite3ExprDelete(pParse->db, pLeft); sqlite3ExprDelete(pParse->db, pRight); } return p; } /* ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due ** do a memory allocation failure) then delete the pSelect object. */ SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ if( pExpr ){ pExpr->x.pSelect = pSelect; ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); sqlite3ExprSetHeightAndFlags(pParse, pExpr); }else{ assert( pParse->db->mallocFailed ); sqlite3SelectDelete(pParse->db, pSelect); } } /* ** Expression list pEList is a list of vector values. This function ** converts the contents of pEList to a VALUES(...) Select statement ** returning 1 row for each element of the list. For example, the ** expression list: ** ** ( (1,2), (3,4) (5,6) ) ** ** is translated to the equivalent of: ** ** VALUES(1,2), (3,4), (5,6) ** ** Each of the vector values in pEList must contain exactly nElem terms. ** If a list element that is not a vector or does not contain nElem terms, ** an error message is left in pParse. ** ** This is used as part of processing IN(...) expressions with a list ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". */ SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ int ii; Select *pRet = 0; assert( nElem>1 ); for(ii=0; iinExpr; ii++){ Select *pSel; Expr *pExpr = pEList->a[ii].pExpr; int nExprElem; if( pExpr->op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); nExprElem = pExpr->x.pList->nExpr; }else{ nExprElem = 1; } if( nExprElem!=nElem ){ sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", nExprElem, nExprElem>1?"s":"", nElem ); break; } assert( ExprUseXList(pExpr) ); pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); pExpr->x.pList = 0; if( pSel ){ if( pRet ){ pSel->op = TK_ALL; pSel->pPrior = pRet; } pRet = pSel; } } if( pRet && pRet->pPrior ){ pRet->selFlags |= SF_MultiValue; } sqlite3ExprListDelete(pParse->db, pEList); return pRet; } /* ** Join two expressions using an AND operator. If either expression is ** NULL, then just return the other expression. ** ** If one side or the other of the AND is known to be false, and neither side ** is part of an ON clause, then instead of returning an AND expression, ** just return a constant expression with a value of false. */ SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ sqlite3 *db = pParse->db; if( pLeft==0 ){ return pRight; }else if( pRight==0 ){ return pLeft; }else{ u32 f = pLeft->flags | pRight->flags; if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse && !IN_RENAME_OBJECT ){ sqlite3ExprDeferredDelete(pParse, pLeft); sqlite3ExprDeferredDelete(pParse, pRight); return sqlite3Expr(db, TK_INTEGER, "0"); }else{ return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); } } } /* ** Construct a new expression node for a function with multiple ** arguments. */ SQLITE_PRIVATE Expr *sqlite3ExprFunction( Parse *pParse, /* Parsing context */ ExprList *pList, /* Argument list */ const Token *pToken, /* Name of the function */ int eDistinct /* SF_Distinct or SF_ALL or 0 */ ){ Expr *pNew; sqlite3 *db = pParse->db; assert( pToken ); pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); if( pNew==0 ){ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ return 0; } assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); pNew->w.iOfst = (int)(pToken->z - pParse->zTail); if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] && !pParse->nested ){ sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); } pNew->x.pList = pList; ExprSetProperty(pNew, EP_HasFunc); assert( ExprUseXList(pNew) ); sqlite3ExprSetHeightAndFlags(pParse, pNew); if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); return pNew; } /* ** Report an error when attempting to use an ORDER BY clause within ** the arguments of a non-aggregate function. */ SQLITE_PRIVATE void sqlite3ExprOrderByAggregateError(Parse *pParse, Expr *p){ sqlite3ErrorMsg(pParse, "ORDER BY may not be used with non-aggregate %#T()", p ); } /* ** Attach an ORDER BY clause to a function call. ** ** functionname( arguments ORDER BY sortlist ) ** \_____________________/ \______/ ** pExpr pOrderBy ** ** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER ** and added to the Expr.pLeft field of the parent TK_FUNCTION node. */ SQLITE_PRIVATE void sqlite3ExprAddFunctionOrderBy( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The function call to which ORDER BY is to be added */ ExprList *pOrderBy /* The ORDER BY clause to add */ ){ Expr *pOB; sqlite3 *db = pParse->db; if( NEVER(pOrderBy==0) ){ assert( db->mallocFailed ); return; } if( pExpr==0 ){ assert( db->mallocFailed ); sqlite3ExprListDelete(db, pOrderBy); return; } assert( pExpr->op==TK_FUNCTION ); assert( pExpr->pLeft==0 ); assert( ExprUseXList(pExpr) ); if( pExpr->x.pList==0 || NEVER(pExpr->x.pList->nExpr==0) ){ /* Ignore ORDER BY on zero-argument aggregates */ sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pOrderBy); return; } if( IsWindowFunc(pExpr) ){ sqlite3ExprOrderByAggregateError(pParse, pExpr); sqlite3ExprListDelete(db, pOrderBy); return; } pOB = sqlite3ExprAlloc(db, TK_ORDER, 0, 0); if( pOB==0 ){ sqlite3ExprListDelete(db, pOrderBy); return; } pOB->x.pList = pOrderBy; assert( ExprUseXList(pOB) ); pExpr->pLeft = pOB; ExprSetProperty(pOB, EP_FullSize); } /* ** Check to see if a function is usable according to current access ** rules: ** ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL ** ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from ** top-level SQL ** ** If the function is not usable, create an error. */ SQLITE_PRIVATE void sqlite3ExprFunctionUsable( Parse *pParse, /* Parsing and code generating context */ const Expr *pExpr, /* The function invocation */ const FuncDef *pDef /* The function being invoked */ ){ assert( !IN_RENAME_OBJECT ); assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); if( ExprHasProperty(pExpr, EP_FromDDL) ){ if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 || (pParse->db->flags & SQLITE_TrustedSchema)==0 ){ /* Functions prohibited in triggers and views if: ** (1) tagged with SQLITE_DIRECTONLY ** (2) not tagged with SQLITE_INNOCUOUS (which means it ** is tagged with SQLITE_FUNC_UNSAFE) and ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning ** that the schema is possibly tainted). */ sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); } } } /* ** Assign a variable number to an expression that encodes a wildcard ** in the original SQL statement. ** ** Wildcards consisting of a single "?" are assigned the next sequential ** variable number. ** ** Wildcards of the form "?nnn" are assigned the number "nnn". We make ** sure "nnn" is not too big to avoid a denial of service attack when ** the SQL statement comes from an external source. ** ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number ** as the previous instance of the same wildcard. Or if this is the first ** instance of the wildcard, the next sequential variable number is ** assigned. */ SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ sqlite3 *db = pParse->db; const char *z; ynVar x; if( pExpr==0 ) return; assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); z = pExpr->u.zToken; assert( z!=0 ); assert( z[0]!=0 ); assert( n==(u32)sqlite3Strlen30(z) ); if( z[1]==0 ){ /* Wildcard of the form "?". Assign the next variable number */ assert( z[0]=='?' ); x = (ynVar)(++pParse->nVar); }else{ int doAdd = 0; if( z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ i64 i; int bOk; if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ i = z[1]-'0'; /* The common case of ?N for a single digit N */ bOk = 1; }else{ bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); } testcase( i==0 ); testcase( i==1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); return; } x = (ynVar)i; if( x>pParse->nVar ){ pParse->nVar = (int)x; doAdd = 1; }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ doAdd = 1; } }else{ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable ** number as the prior appearance of the same name, or if the name ** has never appeared before, reuse the same variable number */ x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); if( x==0 ){ x = (ynVar)(++pParse->nVar); doAdd = 1; } } if( doAdd ){ pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); } } pExpr->iColumn = x; if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "too many SQL variables"); sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); } } /* ** Recursively delete an expression tree. */ static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ assert( p!=0 ); assert( db!=0 ); assert( !ExprUseUValue(p) || p->u.iValue>=0 ); assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); #ifdef SQLITE_DEBUG if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ assert( p->pLeft==0 ); assert( p->pRight==0 ); assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); assert( !ExprUseXList(p) || p->x.pList==0 ); } #endif if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ /* The Expr.x union is never used at the same time as Expr.pRight */ assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); if( p->pRight ){ assert( !ExprHasProperty(p, EP_WinFunc) ); sqlite3ExprDeleteNN(db, p->pRight); }else if( ExprUseXSelect(p) ){ assert( !ExprHasProperty(p, EP_WinFunc) ); sqlite3SelectDelete(db, p->x.pSelect); }else{ sqlite3ExprListDelete(db, p->x.pList); #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(p, EP_WinFunc) ){ sqlite3WindowDelete(db, p->y.pWin); } #endif } } if( !ExprHasProperty(p, EP_Static) ){ sqlite3DbNNFreeNN(db, p); } } SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){ if( p ) sqlite3ExprDeleteNN(db, p); } SQLITE_PRIVATE void sqlite3ExprDeleteGeneric(sqlite3 *db, void *p){ if( ALWAYS(p) ) sqlite3ExprDeleteNN(db, (Expr*)p); } /* ** Clear both elements of an OnOrUsing object */ SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ if( p==0 ){ /* Nothing to clear */ }else if( p->pOn ){ sqlite3ExprDeleteNN(db, p->pOn); }else if( p->pUsing ){ sqlite3IdListDelete(db, p->pUsing); } } /* ** Arrange to cause pExpr to be deleted when the pParse is deleted. ** This is similar to sqlite3ExprDelete() except that the delete is ** deferred until the pParse is deleted. ** ** The pExpr might be deleted immediately on an OOM error. ** ** The deferred delete is (currently) implemented by adding the ** pExpr to the pParse->pConstExpr list with a register number of 0. */ SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ sqlite3ParserAddCleanup(pParse, sqlite3ExprDeleteGeneric, pExpr); } /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the ** expression. */ SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ if( p ){ if( IN_RENAME_OBJECT ){ sqlite3RenameExprUnmap(pParse, p); } sqlite3ExprDeleteNN(pParse->db, p); } } /* ** Return the number of bytes allocated for the expression structure ** passed as the first argument. This is always one of EXPR_FULLSIZE, ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. */ static int exprStructSize(const Expr *p){ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; return EXPR_FULLSIZE; } /* ** The dupedExpr*Size() routines each return the number of bytes required ** to store a copy of an expression or expression tree. They differ in ** how much of the tree is measured. ** ** dupedExprStructSize() Size of only the Expr structure ** dupedExprNodeSize() Size of Expr + space for token ** dupedExprSize() Expr + token + subtree components ** *************************************************************************** ** ** The dupedExprStructSize() function returns two values OR-ed together: ** (1) the space required for a copy of the Expr structure only and ** (2) the EP_xxx flags that indicate what the structure size should be. ** The return values is always one of: ** ** EXPR_FULLSIZE ** EXPR_REDUCEDSIZE | EP_Reduced ** EXPR_TOKENONLYSIZE | EP_TokenOnly ** ** The size of the structure can be found by masking the return value ** of this routine with 0xfff. The flags can be found by masking the ** return value with EP_Reduced|EP_TokenOnly. ** ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size ** (unreduced) Expr objects as they or originally constructed by the parser. ** During expression analysis, extra information is computed and moved into ** later parts of the Expr object and that extra information might get chopped ** off if the expression is reduced. Note also that it does not work to ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal ** to reduce a pristine expression tree from the parser. The implementation ** of dupedExprStructSize() contain multiple assert() statements that attempt ** to enforce this constraint. */ static int dupedExprStructSize(const Expr *p, int flags){ int nSize; assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ assert( EXPR_FULLSIZE<=0xfff ); assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); if( 0==flags || ExprHasProperty(p, EP_FullSize) ){ nSize = EXPR_FULLSIZE; }else{ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasProperty(p, EP_OuterON) ); assert( !ExprHasVVAProperty(p, EP_NoReduce) ); if( p->pLeft || p->x.pList ){ nSize = EXPR_REDUCEDSIZE | EP_Reduced; }else{ assert( p->pRight==0 ); nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; } } return nSize; } /* ** This function returns the space in bytes required to store the copy ** of the Expr structure and a copy of the Expr.u.zToken string (if that ** string is defined.) */ static int dupedExprNodeSize(const Expr *p, int flags){ int nByte = dupedExprStructSize(p, flags) & 0xfff; if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nByte += sqlite3Strlen30NN(p->u.zToken)+1; } return ROUND8(nByte); } /* ** Return the number of bytes required to create a duplicate of the ** expression passed as the first argument. ** ** The value returned includes space to create a copy of the Expr struct ** itself and the buffer referred to by Expr.u.zToken, if any. ** ** The return value includes space to duplicate all Expr nodes in the ** tree formed by Expr.pLeft and Expr.pRight, but not any other ** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin. */ static int dupedExprSize(const Expr *p){ int nByte; assert( p!=0 ); nByte = dupedExprNodeSize(p, EXPRDUP_REDUCE); if( p->pLeft ) nByte += dupedExprSize(p->pLeft); if( p->pRight ) nByte += dupedExprSize(p->pRight); assert( nByte==ROUND8(nByte) ); return nByte; } /* ** An EdupBuf is a memory allocation used to stored multiple Expr objects ** together with their Expr.zToken content. This is used to help implement ** compression while doing sqlite3ExprDup(). The top-level Expr does the ** allocation for itself and many of its decendents, then passes an instance ** of the structure down into exprDup() so that they decendents can have ** access to that memory. */ typedef struct EdupBuf EdupBuf; struct EdupBuf { u8 *zAlloc; /* Memory space available for storage */ #ifdef SQLITE_DEBUG u8 *zEnd; /* First byte past the end of memory */ #endif }; /* ** This function is similar to sqlite3ExprDup(), except that if pEdupBuf ** is not NULL then it points to memory that can be used to store a copy ** of the input Expr p together with its p->u.zToken (if any). pEdupBuf ** is updated with the new buffer tail prior to returning. */ static Expr *exprDup( sqlite3 *db, /* Database connection (for memory allocation) */ const Expr *p, /* Expr tree to be duplicated */ int dupFlags, /* EXPRDUP_REDUCE for compression. 0 if not */ EdupBuf *pEdupBuf /* Preallocated storage space, or NULL */ ){ Expr *pNew; /* Value to return */ EdupBuf sEdupBuf; /* Memory space from which to build Expr object */ u32 staticFlag; /* EP_Static if space not obtained from malloc */ int nToken = -1; /* Space needed for p->u.zToken. -1 means unknown */ assert( db!=0 ); assert( p ); assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); assert( pEdupBuf==0 || dupFlags==EXPRDUP_REDUCE ); /* Figure out where to write the new Expr structure. */ if( pEdupBuf ){ sEdupBuf.zAlloc = pEdupBuf->zAlloc; #ifdef SQLITE_DEBUG sEdupBuf.zEnd = pEdupBuf->zEnd; #endif staticFlag = EP_Static; assert( sEdupBuf.zAlloc!=0 ); assert( dupFlags==EXPRDUP_REDUCE ); }else{ int nAlloc; if( dupFlags ){ nAlloc = dupedExprSize(p); }else if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nToken = sqlite3Strlen30NN(p->u.zToken)+1; nAlloc = ROUND8(EXPR_FULLSIZE + nToken); }else{ nToken = 0; nAlloc = ROUND8(EXPR_FULLSIZE); } assert( nAlloc==ROUND8(nAlloc) ); sEdupBuf.zAlloc = sqlite3DbMallocRawNN(db, nAlloc); #ifdef SQLITE_DEBUG sEdupBuf.zEnd = sEdupBuf.zAlloc ? sEdupBuf.zAlloc+nAlloc : 0; #endif staticFlag = 0; } pNew = (Expr *)sEdupBuf.zAlloc; assert( EIGHT_BYTE_ALIGNMENT(pNew) ); if( pNew ){ /* Set nNewSize to the size allocated for the structure pointed to ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed ** by the copy of the p->u.zToken string (if any). */ const unsigned nStructSize = dupedExprStructSize(p, dupFlags); int nNewSize = nStructSize & 0xfff; if( nToken<0 ){ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nToken = sqlite3Strlen30(p->u.zToken) + 1; }else{ nToken = 0; } } if( dupFlags ){ assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= nNewSize+nToken ); assert( ExprHasProperty(p, EP_Reduced)==0 ); memcpy(sEdupBuf.zAlloc, p, nNewSize); }else{ u32 nSize = (u32)exprStructSize(p); assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= (int)EXPR_FULLSIZE+nToken ); memcpy(sEdupBuf.zAlloc, p, nSize); if( nSizeflags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); pNew->flags |= staticFlag; ExprClearVVAProperties(pNew); if( dupFlags ){ ExprSetVVAProperty(pNew, EP_Immutable); } /* Copy the p->u.zToken string, if any. */ assert( nToken>=0 ); if( nToken>0 ){ char *zToken = pNew->u.zToken = (char*)&sEdupBuf.zAlloc[nNewSize]; memcpy(zToken, p->u.zToken, nToken); nNewSize += nToken; } sEdupBuf.zAlloc += ROUND8(nNewSize); if( ((p->flags|pNew->flags)&(EP_TokenOnly|EP_Leaf))==0 ){ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ if( ExprUseXSelect(p) ){ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); }else{ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, p->op!=TK_ORDER ? dupFlags : 0); } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(p, EP_WinFunc) ){ pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); assert( ExprHasProperty(pNew, EP_WinFunc) ); } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* Fill in pNew->pLeft and pNew->pRight. */ if( dupFlags ){ if( p->op==TK_SELECT_COLUMN ){ pNew->pLeft = p->pLeft; assert( p->pRight==0 || p->pRight==p->pLeft || ExprHasProperty(p->pLeft, EP_Subquery) ); }else{ pNew->pLeft = p->pLeft ? exprDup(db, p->pLeft, EXPRDUP_REDUCE, &sEdupBuf) : 0; } pNew->pRight = p->pRight ? exprDup(db, p->pRight, EXPRDUP_REDUCE, &sEdupBuf) : 0; }else{ if( p->op==TK_SELECT_COLUMN ){ pNew->pLeft = p->pLeft; assert( p->pRight==0 || p->pRight==p->pLeft || ExprHasProperty(p->pLeft, EP_Subquery) ); }else{ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); } pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); } } } if( pEdupBuf ) memcpy(pEdupBuf, &sEdupBuf, sizeof(sEdupBuf)); assert( sEdupBuf.zAlloc <= sEdupBuf.zEnd ); return pNew; } /* ** Create and return a deep copy of the object passed as the second ** argument. If an OOM condition is encountered, NULL is returned ** and the db->mallocFailed flag set. */ #ifndef SQLITE_OMIT_CTE SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p){ With *pRet = 0; if( p ){ sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); pRet = sqlite3DbMallocZero(db, nByte); if( pRet ){ int i; pRet->nCte = p->nCte; for(i=0; inCte; i++){ pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); pRet->a[i].eM10d = p->a[i].eM10d; } } } return pRet; } #else # define sqlite3WithDup(x,y) 0 #endif #ifndef SQLITE_OMIT_WINDOWFUNC /* ** The gatherSelectWindows() procedure and its helper routine ** gatherSelectWindowsCallback() are used to scan all the expressions ** an a newly duplicated SELECT statement and gather all of the Window ** objects found there, assembling them onto the linked list at Select->pWin. */ static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ Select *pSelect = pWalker->u.pSelect; Window *pWin = pExpr->y.pWin; assert( pWin ); assert( IsWindowFunc(pExpr) ); assert( pWin->ppThis==0 ); sqlite3WindowLink(pSelect, pWin); } return WRC_Continue; } static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; } static void gatherSelectWindows(Select *p){ Walker w; w.xExprCallback = gatherSelectWindowsCallback; w.xSelectCallback = gatherSelectWindowsSelectCallback; w.xSelectCallback2 = 0; w.pParse = 0; w.u.pSelect = p; sqlite3WalkSelect(&w, p); } #endif /* ** The following group of routines make deep copies of expressions, ** expression lists, ID lists, and select statements. The copies can ** be deleted (by being passed to their respective ...Delete() routines) ** without effecting the originals. ** ** The expression list, ID, and source lists return by sqlite3ExprListDup(), ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded ** by subsequent calls to sqlite*ListAppend() routines. ** ** Any tables that the SrcList might point to are not duplicated. ** ** The flags parameter contains a combination of the EXPRDUP_XXX flags. ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a ** truncated version of the usual Expr structure that will be stored as ** part of the in-memory representation of the database schema. */ SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ assert( flags==0 || flags==EXPRDUP_REDUCE ); return p ? exprDup(db, p, flags, 0) : 0; } SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ ExprList *pNew; struct ExprList_item *pItem; const struct ExprList_item *pOldItem; int i; Expr *pPriorSelectColOld = 0; Expr *pPriorSelectColNew = 0; assert( db!=0 ); if( p==0 ) return 0; pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); if( pNew==0 ) return 0; pNew->nExpr = p->nExpr; pNew->nAlloc = p->nAlloc; pItem = pNew->a; pOldItem = p->a; for(i=0; inExpr; i++, pItem++, pOldItem++){ Expr *pOldExpr = pOldItem->pExpr; Expr *pNewExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); if( pOldExpr && pOldExpr->op==TK_SELECT_COLUMN && (pNewExpr = pItem->pExpr)!=0 ){ if( pNewExpr->pRight ){ pPriorSelectColOld = pOldExpr->pRight; pPriorSelectColNew = pNewExpr->pRight; pNewExpr->pLeft = pNewExpr->pRight; }else{ if( pOldExpr->pLeft!=pPriorSelectColOld ){ pPriorSelectColOld = pOldExpr->pLeft; pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); pNewExpr->pRight = pPriorSelectColNew; } pNewExpr->pLeft = pPriorSelectColNew; } } pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); pItem->fg = pOldItem->fg; pItem->fg.done = 0; pItem->u = pOldItem->u; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from ** the build, then none of the following routines, except for ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes ** called with a NULL argument. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ || !defined(SQLITE_OMIT_SUBQUERY) SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ SrcList *pNew; int i; int nByte; assert( db!=0 ); if( p==0 ) return 0; nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); pNew = sqlite3DbMallocRawNN(db, nByte ); if( pNew==0 ) return 0; pNew->nSrc = pNew->nAlloc = p->nSrc; for(i=0; inSrc; i++){ SrcItem *pNewItem = &pNew->a[i]; const SrcItem *pOldItem = &p->a[i]; Table *pTab; pNewItem->pSchema = pOldItem->pSchema; pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); pNewItem->fg = pOldItem->fg; pNewItem->iCursor = pOldItem->iCursor; pNewItem->addrFillSub = pOldItem->addrFillSub; pNewItem->regReturn = pOldItem->regReturn; if( pNewItem->fg.isIndexedBy ){ pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); } pNewItem->u2 = pOldItem->u2; if( pNewItem->fg.isCte ){ pNewItem->u2.pCteUse->nUse++; } if( pNewItem->fg.isTabFunc ){ pNewItem->u1.pFuncArg = sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); } pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nTabRef++; } pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); if( pOldItem->fg.isUsing ){ assert( pNewItem->fg.isUsing ); pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); }else{ pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); } pNewItem->colUsed = pOldItem->colUsed; } return pNew; } SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ IdList *pNew; int i; assert( db!=0 ); if( p==0 ) return 0; assert( p->eU4!=EU4_EXPR ); pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); if( pNew==0 ) return 0; pNew->nId = p->nId; pNew->eU4 = p->eU4; for(i=0; inId; i++){ struct IdList_item *pNewItem = &pNew->a[i]; const struct IdList_item *pOldItem = &p->a[i]; pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->u4 = pOldItem->u4; } return pNew; } SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ Select *pRet = 0; Select *pNext = 0; Select **pp = &pRet; const Select *p; assert( db!=0 ); for(p=pDup; p; p=p->pPrior){ Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); if( pNew==0 ) break; pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); pNew->op = p->op; pNew->pNext = pNext; pNew->pPrior = 0; pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); pNew->iLimit = 0; pNew->iOffset = 0; pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->nSelectRow = p->nSelectRow; pNew->pWith = sqlite3WithDup(db, p->pWith); #ifndef SQLITE_OMIT_WINDOWFUNC pNew->pWin = 0; pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); #endif pNew->selId = p->selId; if( db->mallocFailed ){ /* Any prior OOM might have left the Select object incomplete. ** Delete the whole thing rather than allow an incomplete Select ** to be used by the code generator. */ pNew->pNext = 0; sqlite3SelectDelete(db, pNew); break; } *pp = pNew; pp = &pNew->pPrior; pNext = pNew; } return pRet; } #else SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ assert( p==0 ); return 0; } #endif /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. ** ** The pList argument must be either NULL or a pointer to an ExprList ** obtained from a prior call to sqlite3ExprListAppend(). ** ** If a memory allocation error occurs, the entire list is freed and ** NULL is returned. If non-NULL is returned, then it is guaranteed ** that the new entry was successfully appended. */ static const struct ExprList_item zeroItem = {0}; SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( sqlite3 *db, /* Database handle. Used for memory allocation */ Expr *pExpr /* Expression to be appended. Might be NULL */ ){ struct ExprList_item *pItem; ExprList *pList; pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); if( pList==0 ){ sqlite3ExprDelete(db, pExpr); return 0; } pList->nAlloc = 4; pList->nExpr = 1; pItem = &pList->a[0]; *pItem = zeroItem; pItem->pExpr = pExpr; return pList; } SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( sqlite3 *db, /* Database handle. Used for memory allocation */ ExprList *pList, /* List to which to append. Might be NULL */ Expr *pExpr /* Expression to be appended. Might be NULL */ ){ struct ExprList_item *pItem; ExprList *pNew; pList->nAlloc *= 2; pNew = sqlite3DbRealloc(db, pList, sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); if( pNew==0 ){ sqlite3ExprListDelete(db, pList); sqlite3ExprDelete(db, pExpr); return 0; }else{ pList = pNew; } pItem = &pList->a[pList->nExpr++]; *pItem = zeroItem; pItem->pExpr = pExpr; return pList; } SQLITE_PRIVATE ExprList *sqlite3ExprListAppend( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ Expr *pExpr /* Expression to be appended. Might be NULL */ ){ struct ExprList_item *pItem; if( pList==0 ){ return sqlite3ExprListAppendNew(pParse->db,pExpr); } if( pList->nAllocnExpr+1 ){ return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); } pItem = &pList->a[pList->nExpr++]; *pItem = zeroItem; pItem->pExpr = pExpr; return pList; } /* ** pColumns and pExpr form a vector assignment which is part of the SET ** clause of an UPDATE statement. Like this: ** ** (a,b,c) = (expr1,expr2,expr3) ** Or: (a,b,c) = (SELECT x,y,z FROM ....) ** ** For each term of the vector assignment, append new entries to the ** expression list pList. In the case of a subquery on the RHS, append ** TK_SELECT_COLUMN expressions. */ SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ IdList *pColumns, /* List of names of LHS of the assignment */ Expr *pExpr /* Vector expression to be appended. Might be NULL */ ){ sqlite3 *db = pParse->db; int n; int i; int iFirst = pList ? pList->nExpr : 0; /* pColumns can only be NULL due to an OOM but an OOM will cause an ** exit prior to this routine being invoked */ if( NEVER(pColumns==0) ) goto vector_append_error; if( pExpr==0 ) goto vector_append_error; /* If the RHS is a vector, then we can immediately check to see that ** the size of the RHS and LHS match. But if the RHS is a SELECT, ** wildcards ("*") in the result set of the SELECT must be expanded before ** we can do the size check, so defer the size check until code generation. */ if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ sqlite3ErrorMsg(pParse, "%d columns assigned %d values", pColumns->nId, n); goto vector_append_error; } for(i=0; inId; i++){ Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); assert( pSubExpr!=0 || db->mallocFailed ); if( pSubExpr==0 ) continue; pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); if( pList ){ assert( pList->nExpr==iFirst+i+1 ); pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; pColumns->a[i].zName = 0; } } if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ Expr *pFirst = pList->a[iFirst].pExpr; assert( pFirst!=0 ); assert( pFirst->op==TK_SELECT_COLUMN ); /* Store the SELECT statement in pRight so it will be deleted when ** sqlite3ExprListDelete() is called */ pFirst->pRight = pExpr; pExpr = 0; /* Remember the size of the LHS in iTable so that we can check that ** the RHS and LHS sizes match during code generation. */ pFirst->iTable = pColumns->nId; } vector_append_error: sqlite3ExprUnmapAndDelete(pParse, pExpr); sqlite3IdListDelete(db, pColumns); return pList; } /* ** Set the sort order for the last element on the given ExprList. */ SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ struct ExprList_item *pItem; if( p==0 ) return; assert( p->nExpr>0 ); assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); assert( iSortOrder==SQLITE_SO_UNDEFINED || iSortOrder==SQLITE_SO_ASC || iSortOrder==SQLITE_SO_DESC ); assert( eNulls==SQLITE_SO_UNDEFINED || eNulls==SQLITE_SO_ASC || eNulls==SQLITE_SO_DESC ); pItem = &p->a[p->nExpr-1]; assert( pItem->fg.bNulls==0 ); if( iSortOrder==SQLITE_SO_UNDEFINED ){ iSortOrder = SQLITE_SO_ASC; } pItem->fg.sortFlags = (u8)iSortOrder; if( eNulls!=SQLITE_SO_UNDEFINED ){ pItem->fg.bNulls = 1; if( iSortOrder!=eNulls ){ pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; } } } /* ** Set the ExprList.a[].zEName element of the most recently added item ** on the expression list. ** ** pList might be NULL following an OOM error. But pName should never be ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag ** is set. */ SQLITE_PRIVATE void sqlite3ExprListSetName( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to add the span. */ const Token *pName, /* Name to be added */ int dequote /* True to cause the name to be dequoted */ ){ assert( pList!=0 || pParse->db->mallocFailed!=0 ); assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); if( pList ){ struct ExprList_item *pItem; assert( pList->nExpr>0 ); pItem = &pList->a[pList->nExpr-1]; assert( pItem->zEName==0 ); assert( pItem->fg.eEName==ENAME_NAME ); pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); if( dequote ){ /* If dequote==0, then pName->z does not point to part of a DDL ** statement handled by the parser. And so no token need be added ** to the token-map. */ sqlite3Dequote(pItem->zEName); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); } } } } /* ** Set the ExprList.a[].zSpan element of the most recently added item ** on the expression list. ** ** pList might be NULL following an OOM error. But pSpan should never be ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag ** is set. */ SQLITE_PRIVATE void sqlite3ExprListSetSpan( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to add the span. */ const char *zStart, /* Start of the span */ const char *zEnd /* End of the span */ ){ sqlite3 *db = pParse->db; assert( pList!=0 || db->mallocFailed!=0 ); if( pList ){ struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; assert( pList->nExpr>0 ); if( pItem->zEName==0 ){ pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); pItem->fg.eEName = ENAME_SPAN; } } } /* ** If the expression list pEList contains more than iLimit elements, ** leave an error message in pParse. */ SQLITE_PRIVATE void sqlite3ExprListCheckLength( Parse *pParse, ExprList *pEList, const char *zObject ){ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; testcase( pEList && pEList->nExpr==mx ); testcase( pEList && pEList->nExpr==mx+1 ); if( pEList && pEList->nExpr>mx ){ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); } } /* ** Delete an entire expression list. */ static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ int i = pList->nExpr; struct ExprList_item *pItem = pList->a; assert( pList->nExpr>0 ); assert( db!=0 ); do{ sqlite3ExprDelete(db, pItem->pExpr); if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); pItem++; }while( --i>0 ); sqlite3DbNNFreeNN(db, pList); } SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ if( pList ) exprListDeleteNN(db, pList); } SQLITE_PRIVATE void sqlite3ExprListDeleteGeneric(sqlite3 *db, void *pList){ if( ALWAYS(pList) ) exprListDeleteNN(db, (ExprList*)pList); } /* ** Return the bitwise-OR of all Expr.flags fields in the given ** ExprList. */ SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList *pList){ int i; u32 m = 0; assert( pList!=0 ); for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; assert( pExpr!=0 ); m |= pExpr->flags; } return m; } /* ** This is a SELECT-node callback for the expression walker that ** always "fails". By "fail" in this case, we mean set ** pWalker->eCode to zero and abort. ** ** This callback is used by multiple expression walkers. */ SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ UNUSED_PARAMETER(NotUsed); pWalker->eCode = 0; return WRC_Abort; } /* ** Check the input string to see if it is "true" or "false" (in any case). ** ** If the string is.... Return ** "true" EP_IsTrue ** "false" EP_IsFalse ** anything else 0 */ SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char *zIn){ if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; return 0; } /* ** If the input expression is an ID with the name "true" or "false" ** then convert it into an TK_TRUEFALSE term. Return non-zero if ** the conversion happened, and zero if the expression is unaltered. */ SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr *pExpr){ u32 v; assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 ){ pExpr->op = TK_TRUEFALSE; ExprSetProperty(pExpr, v); return 1; } return 0; } /* ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE ** and 0 if it is FALSE. */ SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr *pExpr){ pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr); assert( pExpr->op==TK_TRUEFALSE ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); return pExpr->u.zToken[4]==0; } /* ** If pExpr is an AND or OR expression, try to simplify it by eliminating ** terms that are always true or false. Return the simplified expression. ** Or return the original expression if no simplification is possible. ** ** Examples: ** ** (x<10) AND true => (x<10) ** (x<10) AND false => false ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) ** (x<10) AND (y=22 OR true) => (x<10) ** (y=22) OR true => true */ SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ assert( pExpr!=0 ); if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ pExpr = pExpr->op==TK_AND ? pRight : pLeft; }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ pExpr = pExpr->op==TK_AND ? pLeft : pRight; } } return pExpr; } /* ** These routines are Walker callbacks used to check expressions to ** see if they are "constant" for some definition of constant. The ** Walker.eCode value determines the type of "constant" we are looking ** for. ** ** These callback routines are used to implement the following: ** ** sqlite3ExprIsConstant() pWalker->eCode==1 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 ** ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression ** is found to not be a constant. ** ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 ** when parsing an existing schema out of the sqlite_schema table and 4 ** when processing a new CREATE TABLE statement. A bound parameter raises ** an error for new statements, but is silently converted ** to NULL for existing schemas. This allows sqlite_schema tables that ** contain a bound parameter because they were generated by older versions ** of SQLite to be parsed by newer versions of SQLite without raising a ** malformed schema error. */ static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ /* If pWalker->eCode is 2 then any term of the expression that comes from ** the ON or USING clauses of an outer join disqualifies the expression ** from being considered constant. */ if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ pWalker->eCode = 0; return WRC_Abort; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant ** and either pWalker->eCode==4 or 5 or the function has the ** SQLITE_FUNC_CONST flag. */ case TK_FUNCTION: if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) && !ExprHasProperty(pExpr, EP_WinFunc) ){ if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); return WRC_Continue; }else{ pWalker->eCode = 0; return WRC_Abort; } case TK_ID: /* Convert "true" or "false" in a DEFAULT clause into the ** appropriate TK_TRUEFALSE operator */ if( sqlite3ExprIdToTrueFalse(pExpr) ){ return WRC_Prune; } /* no break */ deliberate_fall_through case TK_COLUMN: case TK_AGG_FUNCTION: case TK_AGG_COLUMN: testcase( pExpr->op==TK_ID ); testcase( pExpr->op==TK_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); testcase( pExpr->op==TK_AGG_COLUMN ); if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ return WRC_Continue; } if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ return WRC_Continue; } /* no break */ deliberate_fall_through case TK_IF_NULL_ROW: case TK_REGISTER: case TK_DOT: testcase( pExpr->op==TK_REGISTER ); testcase( pExpr->op==TK_IF_NULL_ROW ); testcase( pExpr->op==TK_DOT ); pWalker->eCode = 0; return WRC_Abort; case TK_VARIABLE: if( pWalker->eCode==5 ){ /* Silently convert bound parameters that appear inside of CREATE ** statements into a NULL when parsing the CREATE statement text out ** of the sqlite_schema table */ pExpr->op = TK_NULL; }else if( pWalker->eCode==4 ){ /* A bound parameter in a CREATE statement that originates from ** sqlite3_prepare() causes an error */ pWalker->eCode = 0; return WRC_Abort; } /* no break */ deliberate_fall_through default: testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ return WRC_Continue; } } static int exprIsConst(Expr *p, int initFlag, int iCur){ Walker w; w.eCode = initFlag; w.xExprCallback = exprNodeIsConstant; w.xSelectCallback = sqlite3SelectWalkFail; #ifdef SQLITE_DEBUG w.xSelectCallback2 = sqlite3SelectWalkAssert2; #endif w.u.iCur = iCur; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** Walk an expression tree. Return non-zero if the expression is constant ** and 0 if it involves variables or function calls. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){ return exprIsConst(p, 1, 0); } /* ** Walk an expression tree. Return non-zero if ** ** (1) the expression is constant, and ** (2) the expression does originate in the ON or USING clause ** of a LEFT JOIN, and ** (3) the expression does not contain any EP_FixedCol TK_COLUMN ** operands created by the constant propagation optimization. ** ** When this routine returns true, it indicates that the expression ** can be added to the pParse->pConstExpr list and evaluated once when ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). */ SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){ return exprIsConst(p, 2, 0); } /* ** Walk an expression tree. Return non-zero if the expression is constant ** for any single row of the table with cursor iCur. In other words, the ** expression must not refer to any non-deterministic function nor any ** table other than iCur. */ SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){ return exprIsConst(p, 3, iCur); } /* ** Check pExpr to see if it is an constraint on the single data source ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr ** constrains pSrc but does not depend on any other tables or data ** sources anywhere else in the query. Return true (non-zero) if pExpr ** is a constraint on pSrc only. ** ** This is an optimization. False negatives will perhaps cause slower ** queries, but false positives will yield incorrect answers. So when in ** doubt, return 0. ** ** To be an single-source constraint, the following must be true: ** ** (1) pExpr cannot refer to any table other than pSrc->iCursor. ** ** (2) pExpr cannot use subqueries or non-deterministic functions. ** ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. ** (Is there some way to relax this constraint?) ** ** (4) If pSrc is the right operand of a LEFT JOIN, then... ** (4a) pExpr must come from an ON clause.. ** (4b) and specifically the ON clause associated with the LEFT JOIN. ** ** (5) If pSrc is not the right operand of a LEFT JOIN or the left ** operand of a RIGHT JOIN, then pExpr must be from the WHERE ** clause, not an ON clause. ** ** (6) Either: ** ** (6a) pExpr does not originate in an ON or USING clause, or ** ** (6b) The ON or USING clause from which pExpr is derived is ** not to the left of a RIGHT JOIN (or FULL JOIN). ** ** Without this restriction, accepting pExpr as a single-table ** constraint might move the the ON/USING filter expression ** from the left side of a RIGHT JOIN over to the right side, ** which leads to incorrect answers. See also restriction (9) ** on push-down. */ SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint( Expr *pExpr, /* The constraint */ const SrcList *pSrcList, /* Complete FROM clause */ int iSrc /* Which element of pSrcList to use */ ){ const SrcItem *pSrc = &pSrcList->a[iSrc]; if( pSrc->fg.jointype & JT_LTORJ ){ return 0; /* rule (3) */ } if( pSrc->fg.jointype & JT_LEFT ){ if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ }else{ if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ } if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */ ){ int jj; for(jj=0; jjw.iJoin==pSrcList->a[jj].iCursor ){ if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* restriction (6) */ } break; } } } return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ } /* ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). */ static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ ExprList *pGroupBy = pWalker->u.pGroupBy; int i; /* Check if pExpr is identical to any GROUP BY term. If so, consider ** it constant. */ for(i=0; inExpr; i++){ Expr *p = pGroupBy->a[i].pExpr; if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); if( sqlite3IsBinary(pColl) ){ return WRC_Prune; } } } /* Check if pExpr is a sub-select. If so, consider it variable. */ if( ExprUseXSelect(pExpr) ){ pWalker->eCode = 0; return WRC_Abort; } return exprNodeIsConstant(pWalker, pExpr); } /* ** Walk the expression tree passed as the first argument. Return non-zero ** if the expression consists entirely of constants or copies of terms ** in pGroupBy that sort with the BINARY collation sequence. ** ** This routine is used to determine if a term of the HAVING clause can ** be promoted into the WHERE clause. In order for such a promotion to work, ** the value of the HAVING clause term must be the same for all members of ** a "group". The requirement that the GROUP BY term must be BINARY ** assumes that no other collating sequence will have a finer-grained ** grouping than binary. In other words (A=B COLLATE binary) implies ** A=B in every other collating sequence. The requirement that the ** GROUP BY be BINARY is stricter than necessary. It would also work ** to promote HAVING clauses that use the same alternative collating ** sequence as the GROUP BY term, but that is much harder to check, ** alternative collating sequences are uncommon, and this is only an ** optimization, so we take the easy way out and simply require the ** GROUP BY to use the BINARY collating sequence. */ SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ Walker w; w.eCode = 1; w.xExprCallback = exprNodeIsConstantOrGroupBy; w.xSelectCallback = 0; w.u.pGroupBy = pGroupBy; w.pParse = pParse; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** Walk an expression tree for the DEFAULT field of a column definition ** in a CREATE TABLE statement. Return non-zero if the expression is ** acceptable for use as a DEFAULT. That is to say, return non-zero if ** the expression is constant or a function call with constant arguments. ** Return and 0 if there are any variables. ** ** isInit is true when parsing from sqlite_schema. isInit is false when ** processing a new CREATE TABLE statement. When isInit is true, parameters ** (such as ? or $abc) in the expression are converted into NULL. When ** isInit is false, parameters raise an error. Parameters should not be ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite ** allowed it, so we need to support it when reading sqlite_schema for ** backwards compatibility. ** ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ assert( isInit==0 || isInit==1 ); return exprIsConst(p, 4+isInit, 0); } #ifdef SQLITE_ENABLE_CURSOR_HINTS /* ** Walk an expression tree. Return 1 if the expression contains a ** subquery of some kind. Return 0 if there are no subqueries. */ SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr *p){ Walker w; w.eCode = 1; w.xExprCallback = sqlite3ExprWalkNoop; w.xSelectCallback = sqlite3SelectWalkFail; #ifdef SQLITE_DEBUG w.xSelectCallback2 = sqlite3SelectWalkAssert2; #endif sqlite3WalkExpr(&w, p); return w.eCode==0; } #endif /* ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. */ SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr *p, int *pValue){ int rc = 0; if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ /* If an expression is an integer literal that fits in a signed 32-bit ** integer, then the EP_IntValue flag will have already been set */ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); if( p->flags & EP_IntValue ){ *pValue = p->u.iValue; return 1; } switch( p->op ){ case TK_UPLUS: { rc = sqlite3ExprIsInteger(p->pLeft, pValue); break; } case TK_UMINUS: { int v = 0; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ assert( ((unsigned int)v)!=0x80000000 ); *pValue = -v; rc = 1; } break; } default: break; } return rc; } /* ** Return FALSE if there is no chance that the expression can be NULL. ** ** If the expression might be NULL or if the expression is too complex ** to tell return TRUE. ** ** This routine is used as an optimization, to skip OP_IsNull opcodes ** when we know that a value cannot be NULL. Hence, a false positive ** (returning TRUE when in fact the expression can never be NULL) might ** be a small performance hit but is otherwise harmless. On the other ** hand, a false negative (returning FALSE when the result could be NULL) ** will likely result in an incorrect answer. So when in doubt, return ** TRUE. */ SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr *p){ u8 op; assert( p!=0 ); while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; assert( p!=0 ); } op = p->op; if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; case TK_COLUMN: assert( ExprUseYTab(p) ); return ExprHasProperty(p, EP_CanBeNull) || NEVER(p->y.pTab==0) /* Reference to column of index on expr */ #ifdef SQLITE_ALLOW_ROWID_IN_VIEW || (p->iColumn==XN_ROWID && IsView(p->y.pTab)) #endif || (p->iColumn>=0 && p->y.pTab->aCol!=0 /* Possible due to prior error */ && ALWAYS(p->iColumny.pTab->nCol) && p->y.pTab->aCol[p->iColumn].notNull==0); default: return 1; } } /* ** Return TRUE if the given expression is a constant which would be ** unchanged by OP_Affinity with the affinity given in the second ** argument. ** ** This routine is used to determine if the OP_Affinity operation ** can be omitted. When in doubt return FALSE. A false negative ** is harmless. A false positive, however, can result in the wrong ** answer. */ SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ u8 op; int unaryMinus = 0; if( aff==SQLITE_AFF_BLOB ) return 1; while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ if( p->op==TK_UMINUS ) unaryMinus = 1; p = p->pLeft; } op = p->op; if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: { return aff>=SQLITE_AFF_NUMERIC; } case TK_FLOAT: { return aff>=SQLITE_AFF_NUMERIC; } case TK_STRING: { return !unaryMinus && aff==SQLITE_AFF_TEXT; } case TK_BLOB: { return !unaryMinus; } case TK_COLUMN: { assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; } default: { return 0; } } } /* ** Return TRUE if the given string is a row-id column name. */ SQLITE_PRIVATE int sqlite3IsRowid(const char *z){ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; if( sqlite3StrICmp(z, "OID")==0 ) return 1; return 0; } /* ** Return a pointer to a buffer containing a usable rowid alias for table ** pTab. An alias is usable if there is not an explicit user-defined column ** of the same name. */ SQLITE_PRIVATE const char *sqlite3RowidAlias(Table *pTab){ const char *azOpt[] = {"_ROWID_", "ROWID", "OID"}; int ii; assert( VisibleRowid(pTab) ); for(ii=0; iinCol; iCol++){ if( sqlite3_stricmp(azOpt[ii], pTab->aCol[iCol].zCnName)==0 ) break; } if( iCol==pTab->nCol ){ return azOpt[ii]; } } return 0; } /* ** pX is the RHS of an IN operator. If pX is a SELECT statement ** that can be simplified to a direct table access, then return ** a pointer to the SELECT statement. If pX is not a SELECT statement, ** or if the SELECT statement needs to be materialized into a transient ** table, then return NULL. */ #ifndef SQLITE_OMIT_SUBQUERY static Select *isCandidateForInOpt(const Expr *pX){ Select *p; SrcList *pSrc; ExprList *pEList; Table *pTab; int i; if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ p = pX->x.pSelect; if( p->pPrior ) return 0; /* Not a compound SELECT */ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); return 0; /* No DISTINCT keyword and no aggregate functions */ } assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ if( p->pLimit ) return 0; /* Has no LIMIT clause */ if( p->pWhere ) return 0; /* Has no WHERE clause */ pSrc = p->pSrc; assert( pSrc!=0 ); if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ pTab = pSrc->a[0].pTab; assert( pTab!=0 ); assert( !IsView(pTab) ); /* FROM clause is not a view */ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ pEList = p->pEList; assert( pEList!=0 ); /* All SELECT results must be columns. */ for(i=0; inExpr; i++){ Expr *pRes = pEList->a[i].pExpr; if( pRes->op!=TK_COLUMN ) return 0; assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ } return p; } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code that checks the left-most column of index table iCur to see if ** it contains any NULL entries. Cause the register at regHasNull to be set ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull ** to be set to NULL if iCur contains one or more NULL values. */ static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ int addr1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); VdbeComment((v, "first_entry_in(%d)", iCur)); sqlite3VdbeJumpHere(v, addr1); } #endif #ifndef SQLITE_OMIT_SUBQUERY /* ** The argument is an IN operator with a list (not a subquery) on the ** right-hand side. Return TRUE if that list is constant. */ static int sqlite3InRhsIsConstant(Expr *pIn){ Expr *pLHS; int res; assert( !ExprHasProperty(pIn, EP_xIsSelect) ); pLHS = pIn->pLeft; pIn->pLeft = 0; res = sqlite3ExprIsConstant(pIn); pIn->pLeft = pLHS; return res; } #endif /* ** This function is used by the implementation of the IN (...) operator. ** The pX parameter is the expression on the RHS of the IN operator, which ** might be either a list of expressions or a subquery. ** ** The job of this routine is to find or create a b-tree object that can ** be used either to test for membership in the RHS set or to iterate through ** all members of the RHS set, skipping duplicates. ** ** A cursor is opened on the b-tree object that is the RHS of the IN operator ** and the *piTab parameter is set to the index of that cursor. ** ** The returned value of this function indicates the b-tree type, as follows: ** ** IN_INDEX_ROWID - The cursor was opened on a database table. ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. ** IN_INDEX_EPH - The cursor was opened on a specially created and ** populated ephemeral table. ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be ** implemented as a sequence of comparisons. ** ** An existing b-tree might be used if the RHS expression pX is a simple ** subquery such as: ** ** SELECT , ... FROM ** ** If the RHS of the IN operator is a list or a more complex subquery, then ** an ephemeral table might need to be generated from the RHS and then ** pX->iTable made to point to the ephemeral table instead of an ** existing table. In this case, the creation and initialization of the ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag ** will be set on pX and the pX->y.sub fields will be set to show where ** the subroutine is coded. ** ** The inFlags parameter must contain, at a minimum, one of the bits ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will ** be used to loop over all values of the RHS of the IN operator. ** ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate ** through the set members) then the b-tree must not contain duplicates. ** An ephemeral table will be created unless the selected columns are guaranteed ** to be unique - either because it is an INTEGER PRIMARY KEY or due to ** a UNIQUE constraint or index. ** ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used ** for fast set membership tests) then an ephemeral table must ** be used unless is a single INTEGER PRIMARY KEY column or an ** index can be found with the specified as its left-most. ** ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and ** if the RHS of the IN operator is a list (not a subquery) then this ** routine might decide that creating an ephemeral b-tree for membership ** testing is too expensive and return IN_INDEX_NOOP. In that case, the ** calling routine should implement the IN operator using a sequence ** of Eq or Ne comparison operations. ** ** When the b-tree is being used for membership tests, the calling function ** might need to know whether or not the RHS side of the IN operator ** contains a NULL. If prRhsHasNull is not a NULL pointer and ** if there is any chance that the (...) might contain a NULL value at ** runtime, then a register is allocated and the register number written ** to *prRhsHasNull. If there is no chance that the (...) contains a ** NULL value, then *prRhsHasNull is left unchanged. ** ** If a register is allocated and its location stored in *prRhsHasNull, then ** the value in that register will be NULL if the b-tree contains one or more ** NULL values, and it will be some non-NULL value if the b-tree contains no ** NULL values. ** ** If the aiMap parameter is not NULL, it must point to an array containing ** one element for each column returned by the SELECT statement on the RHS ** of the IN(...) operator. The i'th entry of the array is populated with the ** offset of the index column that matches the i'th column returned by the ** SELECT. For example, if the expression and selected index are: ** ** (?,?,?) IN (SELECT a, b, c FROM t1) ** CREATE INDEX i1 ON t1(b, c, a); ** ** then aiMap[] is populated with {2, 0, 1}. */ #ifndef SQLITE_OMIT_SUBQUERY SQLITE_PRIVATE int sqlite3FindInIndex( Parse *pParse, /* Parsing context */ Expr *pX, /* The IN expression */ u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ int *prRhsHasNull, /* Register holding NULL status. See notes */ int *aiMap, /* Mapping from Index fields to RHS fields */ int *piTab /* OUT: index to use */ ){ Select *p; /* SELECT to the right of IN operator */ int eType = 0; /* Type of RHS table. IN_INDEX_* */ int iTab; /* Cursor of the RHS table */ int mustBeUnique; /* True if RHS must be unique */ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ assert( pX->op==TK_IN ); mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; iTab = pParse->nTab++; /* If the RHS of this IN(...) operator is a SELECT, and if it matters ** whether or not the SELECT result contains NULL values, check whether ** or not NULL is actually possible (it may not be, for example, due ** to NOT NULL constraints in the schema). If no NULL values are possible, ** set prRhsHasNull to 0 before continuing. */ if( prRhsHasNull && ExprUseXSelect(pX) ){ int i; ExprList *pEList = pX->x.pSelect->pEList; for(i=0; inExpr; i++){ if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; } if( i==pEList->nExpr ){ prRhsHasNull = 0; } } /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ sqlite3 *db = pParse->db; /* Database connection */ Table *pTab; /* Table
    . */ int iDb; /* Database idx for pTab */ ExprList *pEList = p->pEList; int nExpr = pEList->nExpr; assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ pTab = p->pSrc->a[0].pTab; /* Code an OP_Transaction and OP_TableLock for
    . */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDbtnum, 0, pTab->zName); assert(v); /* sqlite3GetVdbe() has always been previously called */ if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ /* The "x IN (SELECT rowid FROM table)" case */ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; ExplainQueryPlan((pParse, 0, "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); sqlite3VdbeJumpHere(v, iAddr); }else{ Index *pIdx; /* Iterator variable */ int affinity_ok = 1; int i; /* Check that the affinity that will be used to perform each ** comparison is the same as the affinity of each column in table ** on the RHS of the IN operator. If it not, it is not possible to ** use any index of the RHS table. */ for(i=0; ipLeft, i); int iCol = pEList->a[i].pExpr->iColumn; char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); testcase( cmpaff==SQLITE_AFF_BLOB ); testcase( cmpaff==SQLITE_AFF_TEXT ); switch( cmpaff ){ case SQLITE_AFF_BLOB: break; case SQLITE_AFF_TEXT: /* sqlite3CompareAffinity() only returns TEXT if one side or the ** other has no affinity and the other side is TEXT. Hence, ** the only way for cmpaff to be TEXT is for idxaff to be TEXT ** and for the term on the LHS of the IN to have no affinity. */ assert( idxaff==SQLITE_AFF_TEXT ); break; default: affinity_ok = sqlite3IsNumericAffinity(idxaff); } } if( affinity_ok ){ /* Search for an existing index that will work for this IN operator */ for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ Bitmask colUsed; /* Columns of the index used */ Bitmask mCol; /* Mask for the current column */ if( pIdx->nColumnpPartIdxWhere!=0 ) continue; /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute ** BITMASK(nExpr) without overflowing */ testcase( pIdx->nColumn==BMS-2 ); testcase( pIdx->nColumn==BMS-1 ); if( pIdx->nColumn>=BMS-1 ) continue; if( mustBeUnique ){ if( pIdx->nKeyCol>nExpr ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) ){ continue; /* This index is not unique over the IN RHS columns */ } } colUsed = 0; /* Columns of index used so far */ for(i=0; ipLeft, i); Expr *pRhs = pEList->a[i].pExpr; CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); int j; for(j=0; jaiColumn[j]!=pRhs->iColumn ) continue; assert( pIdx->azColl[j] ); if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ continue; } break; } if( j==nExpr ) break; mCol = MASKBIT(j); if( mCol & colUsed ) break; /* Each column used only once */ colUsed |= mCol; if( aiMap ) aiMap[i] = j; } assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); if( colUsed==(MASKBIT(nExpr)-1) ){ /* If we reach this point, that means the index pIdx is usable */ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); ExplainQueryPlan((pParse, 0, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; if( prRhsHasNull ){ #ifdef SQLITE_ENABLE_COLUMN_USED_MASK i64 mask = (1<nMem; if( nExpr==1 ){ sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); } } sqlite3VdbeJumpHere(v, iAddr); } } /* End loop over indexes */ } /* End if( affinity_ok ) */ } /* End if not an rowid index */ } /* End attempt to optimize using an index */ /* If no preexisting index is available for the IN clause ** and IN_INDEX_NOOP is an allowed reply ** and the RHS of the IN operator is a list, not a subquery ** and the RHS is not constant or has two or fewer terms, ** then it is not worth creating an ephemeral table to evaluate ** the IN operator so return IN_INDEX_NOOP. */ if( eType==0 && (inFlags & IN_INDEX_NOOP_OK) && ExprUseXList(pX) && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) ){ pParse->nTab--; /* Back out the allocation of the unused cursor */ iTab = -1; /* Cursor is not allocated */ eType = IN_INDEX_NOOP; } if( eType==0 ){ /* Could not find an existing table or index to use as the RHS b-tree. ** We will have to generate an ephemeral table to do the job. */ u32 savedNQueryLoop = pParse->nQueryLoop; int rMayHaveNull = 0; eType = IN_INDEX_EPH; if( inFlags & IN_INDEX_LOOP ){ pParse->nQueryLoop = 0; }else if( prRhsHasNull ){ *prRhsHasNull = rMayHaveNull = ++pParse->nMem; } assert( pX->op==TK_IN ); sqlite3CodeRhsOfIN(pParse, pX, iTab); if( rMayHaveNull ){ sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); } pParse->nQueryLoop = savedNQueryLoop; } if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ int i, n; n = sqlite3ExprVectorSize(pX->pLeft); for(i=0; ipLeft; int nVal = sqlite3ExprVectorSize(pLeft); Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; char *zRet; assert( pExpr->op==TK_IN ); zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); if( zRet ){ int i; for(i=0; ipEList->a[i].pExpr, a); }else{ zRet[i] = a; } } zRet[nVal] = '\0'; } return zRet; } #endif #ifndef SQLITE_OMIT_SUBQUERY /* ** Load the Parse object passed as the first argument with an error ** message of the form: ** ** "sub-select returns N columns - expected M" */ SQLITE_PRIVATE void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ if( pParse->nErr==0 ){ const char *zFmt = "sub-select returns %d columns - expected %d"; sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); } } #endif /* ** Expression pExpr is a vector that has been used in a context where ** it is not permitted. If pExpr is a sub-select vector, this routine ** loads the Parse object with a message of the form: ** ** "sub-select returns N columns - expected 1" ** ** Or, if it is a regular scalar vector: ** ** "row value misused" */ SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ #ifndef SQLITE_OMIT_SUBQUERY if( ExprUseXSelect(pExpr) ){ sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); }else #endif { sqlite3ErrorMsg(pParse, "row value misused"); } } #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code that will construct an ephemeral table containing all terms ** in the RHS of an IN operator. The IN operator can be in either of two ** forms: ** ** x IN (4,5,11) -- IN operator with list on right-hand side ** x IN (SELECT a FROM b) -- IN operator with subquery on the right ** ** The pExpr parameter is the IN operator. The cursor number for the ** constructed ephemeral table is returned. The first time the ephemeral ** table is computed, the cursor number is also stored in pExpr->iTable, ** however the cursor number returned might not be the same, as it might ** have been duplicated using OP_OpenDup. ** ** If the LHS expression ("x" in the examples) is a column value, or ** the SELECT statement returns a column value, then the affinity of that ** column is used to build the index keys. If both 'x' and the ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ SQLITE_PRIVATE void sqlite3CodeRhsOfIN( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The IN operator */ int iTab /* Use this cursor number */ ){ int addrOnce = 0; /* Address of the OP_Once instruction at top */ int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft; /* the LHS of the IN operator */ KeyInfo *pKeyInfo = 0; /* Key information */ int nVal; /* Size of vector pLeft */ Vdbe *v; /* The prepared statement under construction */ v = pParse->pVdbe; assert( v!=0 ); /* The evaluation of the IN must be repeated every time it ** is encountered if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can compute the RHS just once ** and reuse it many names. */ if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ /* Reuse of the RHS is allowed */ /* If this routine has already been coded, but the previous code ** might not have been invoked yet, so invoke it now as a subroutine. */ if( ExprHasProperty(pExpr, EP_Subrtn) ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); if( ExprUseXSelect(pExpr) ){ ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", pExpr->x.pSelect->selId)); } assert( ExprUseYSub(pExpr) ); sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr); assert( iTab!=pExpr->iTable ); sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); sqlite3VdbeJumpHere(v, addrOnce); return; } /* Begin coding the subroutine */ assert( !ExprUseYWin(pExpr) ); ExprSetProperty(pExpr, EP_Subrtn); assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); pExpr->y.sub.regReturn = ++pParse->nMem; pExpr->y.sub.iAddr = sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } /* Check to see if this is a vector IN operator */ pLeft = pExpr->pLeft; nVal = sqlite3ExprVectorSize(pLeft); /* Construct the ephemeral table that will contain the content of ** RHS of the IN operator. */ pExpr->iTable = iTab; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS if( ExprUseXSelect(pExpr) ){ VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); }else{ VdbeComment((v, "RHS of IN operator")); } #endif pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); if( ExprUseXSelect(pExpr) ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ Select *pSelect = pExpr->x.pSelect; ExprList *pEList = pSelect->pEList; ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", addrOnce?"":"CORRELATED ", pSelect->selId )); /* If the LHS and RHS of the IN operator do not match, that ** error will have been caught long before we reach this point. */ if( ALWAYS(pEList->nExpr==nVal) ){ Select *pCopy; SelectDest dest; int i; int rc; sqlite3SelectDestInit(&dest, SRT_Set, iTab); dest.zAffSdst = exprINAffinity(pParse, pExpr); pSelect->iLimit = 0; testcase( pSelect->selFlags & SF_Distinct ); testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); sqlite3SelectDelete(pParse->db, pCopy); sqlite3DbFree(pParse->db, dest.zAffSdst); if( rc ){ sqlite3KeyInfoUnref(pKeyInfo); return; } assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ assert( pEList!=0 ); assert( pEList->nExpr>0 ); assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); for(i=0; iaColl[i] = sqlite3BinaryCompareCollSeq( pParse, p, pEList->a[i].pExpr ); } } }else if( ALWAYS(pExpr->x.pList!=0) ){ /* Case 2: expr IN (exprlist) ** ** For each expression, build an index key from the evaluation and ** store it in the temporary table. If is a column, then use ** that columns affinity when building index keys. If is not ** a column, use numeric affinity. */ char affinity; /* Affinity of the LHS of the IN */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2; affinity = sqlite3ExprAffinity(pLeft); if( affinity<=SQLITE_AFF_NONE ){ affinity = SQLITE_AFF_BLOB; }else if( affinity==SQLITE_AFF_REAL ){ affinity = SQLITE_AFF_NUMERIC; } if( pKeyInfo ){ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); } /* Loop through each expression in . */ r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempReg(pParse); for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ Expr *pE2 = pItem->pExpr; /* If the expression is not constant then we will need to ** disable the test that was generated above that makes sure ** this code only executes once. Because for a non-constant ** expression we need to rerun this code each time. */ if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ sqlite3VdbeChangeToNoop(v, addrOnce-1); sqlite3VdbeChangeToNoop(v, addrOnce); ExprClearProperty(pExpr, EP_Subrtn); addrOnce = 0; } /* Evaluate the expression and insert it into the temp table */ sqlite3ExprCode(pParse, pE2, r1); sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); } sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } if( pKeyInfo ){ sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); } if( addrOnce ){ sqlite3VdbeAddOp1(v, OP_NullRow, iTab); sqlite3VdbeJumpHere(v, addrOnce); /* Subroutine return */ assert( ExprUseYSub(pExpr) ); assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn || pParse->nErr ); sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr, 1); VdbeCoverage(v); sqlite3ClearTempRegCache(pParse); } } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Generate code for scalar subqueries used as a subquery expression ** or EXISTS operator: ** ** (SELECT a FROM b) -- subquery ** EXISTS (SELECT a FROM b) -- EXISTS subquery ** ** The pExpr parameter is the SELECT or EXISTS operator to be coded. ** ** Return the register that holds the result. For a multi-column SELECT, ** the result is stored in a contiguous array of registers and the ** return value is the register of the left-most result column. ** Return 0 if an error occurs. */ #ifndef SQLITE_OMIT_SUBQUERY SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ int addrOnce = 0; /* Address of OP_Once at top of subroutine */ int rReg = 0; /* Register storing resulting */ Select *pSel; /* SELECT statement to encode */ SelectDest dest; /* How to deal with SELECT result */ int nReg; /* Registers to allocate */ Expr *pLimit; /* New limit expression */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; /* Address of OP_Explain instruction */ #endif Vdbe *v = pParse->pVdbe; assert( v!=0 ); if( pParse->nErr ) return 0; testcase( pExpr->op==TK_EXISTS ); testcase( pExpr->op==TK_SELECT ); assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprUseXSelect(pExpr) ); pSel = pExpr->x.pSelect; /* If this routine has already been coded, then invoke it as a ** subroutine. */ if( ExprHasProperty(pExpr, EP_Subrtn) ){ ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); assert( ExprUseYSub(pExpr) ); sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr); return pExpr->iTable; } /* Begin coding the subroutine */ assert( !ExprUseYWin(pExpr) ); assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); ExprSetProperty(pExpr, EP_Subrtn); pExpr->y.sub.regReturn = ++pParse->nMem; pExpr->y.sub.iAddr = sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; /* The evaluation of the EXISTS/SELECT must be repeated every time it ** is encountered if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } /* For a SELECT, generate code to put the values for all columns of ** the first row into an array of registers and return the index of ** the first register. ** ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) ** into a register and return that register number. ** ** In both cases, the query is augmented with "LIMIT 1". Any ** preexisting limit is discarded in place of the new LIMIT 1. */ ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d", addrOnce?"":"CORRELATED ", pSel->selId)); sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1); nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); pParse->nMem += nReg; if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; dest.iSdst = dest.iSDParm; dest.nSdst = nReg; sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); VdbeComment((v, "Init subquery result")); }else{ dest.eDest = SRT_Exists; sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } if( pSel->pLimit ){ /* The subquery already has a limit. If the pre-existing limit is X ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ sqlite3 *db = pParse->db; pLimit = sqlite3Expr(db, TK_INTEGER, "0"); if( pLimit ){ pLimit->affExpr = SQLITE_AFF_NUMERIC; pLimit = sqlite3PExpr(pParse, TK_NE, sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); } sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); pSel->pLimit->pLeft = pLimit; }else{ /* If there is no pre-existing limit add a limit of 1 */ pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); } pSel->iLimit = 0; if( sqlite3Select(pParse, pSel, &dest) ){ pExpr->op2 = pExpr->op; pExpr->op = TK_ERROR; return 0; } pExpr->iTable = rReg = dest.iSDParm; ExprSetVVAProperty(pExpr, EP_NoReduce); if( addrOnce ){ sqlite3VdbeJumpHere(v, addrOnce); } sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); /* Subroutine return */ assert( ExprUseYSub(pExpr) ); assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn || pParse->nErr ); sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, pExpr->y.sub.iAddr, 1); VdbeCoverage(v); sqlite3ClearTempRegCache(pParse); return rReg; } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_SUBQUERY /* ** Expr pIn is an IN(...) expression. This function checks that the ** sub-select on the RHS of the IN() operator has the same number of ** columns as the vector on the LHS. Or, if the RHS of the IN() is not ** a sub-query, that the LHS is a vector of size 1. */ SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ int nVector = sqlite3ExprVectorSize(pIn->pLeft); if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ if( nVector!=pIn->x.pSelect->pEList->nExpr ){ sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); return 1; } }else if( nVector!=1 ){ sqlite3VectorErrorMsg(pParse, pIn->pLeft); return 1; } return 0; } #endif #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code for an IN expression. ** ** x IN (SELECT ...) ** x IN (value, value, ...) ** ** The left-hand side (LHS) is a scalar or vector expression. The ** right-hand side (RHS) is an array of zero or more scalar values, or a ** subquery. If the RHS is a subquery, the number of result columns must ** match the number of columns in the vector on the LHS. If the RHS is ** a list of values, the LHS must be a scalar. ** ** The IN operator is true if the LHS value is contained within the RHS. ** The result is false if the LHS is definitely not in the RHS. The ** result is NULL if the presence of the LHS in the RHS cannot be ** determined due to NULLs. ** ** This routine generates code that jumps to destIfFalse if the LHS is not ** contained within the RHS. If due to NULLs we cannot determine if the LHS ** is contained in the RHS then jump to destIfNull. If the LHS is contained ** within the RHS then fall through. ** ** See the separate in-operator.md documentation file in the canonical ** SQLite source tree for additional information. */ static void sqlite3ExprCodeIN( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The IN expression */ int destIfFalse, /* Jump here if LHS is not contained in the RHS */ int destIfNull /* Jump here if the results are unknown due to NULLs */ ){ int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ int eType; /* Type of the RHS */ int rLhs; /* Register(s) holding the LHS values */ int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ Vdbe *v; /* Statement under construction */ int *aiMap = 0; /* Map from vector field to index column */ char *zAff = 0; /* Affinity string for comparisons */ int nVector; /* Size of vectors for this IN operator */ int iDummy; /* Dummy parameter to exprCodeVector() */ Expr *pLeft; /* The LHS of the IN operator */ int i; /* loop counter */ int destStep2; /* Where to jump when NULLs seen in step 2 */ int destStep6 = 0; /* Start of code for Step 6 */ int addrTruthOp; /* Address of opcode that determines the IN is true */ int destNotNull; /* Jump here if a comparison is not true in step 6 */ int addrTop; /* Top of the step-6 loop */ int iTab = 0; /* Index to use */ u8 okConstFactor = pParse->okConstFactor; assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); pLeft = pExpr->pLeft; if( sqlite3ExprCheckIN(pParse, pExpr) ) return; zAff = exprINAffinity(pParse, pExpr); nVector = sqlite3ExprVectorSize(pExpr->pLeft); aiMap = (int*)sqlite3DbMallocZero( pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 ); if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; /* Attempt to compute the RHS. After this step, if anything other than ** IN_INDEX_NOOP is returned, the table opened with cursor iTab ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, ** the RHS has not yet been coded. */ v = pParse->pVdbe; assert( v!=0 ); /* OOM detected prior to this routine */ VdbeNoopComment((v, "begin IN expr")); eType = sqlite3FindInIndex(pParse, pExpr, IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap, &iTab); assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC ); #ifdef SQLITE_DEBUG /* Confirm that aiMap[] contains nVector integer values between 0 and ** nVector-1. */ for(i=0; i from " IN (...)". If the LHS is a ** vector, then it is stored in an array of nVector registers starting ** at r1. ** ** sqlite3FindInIndex() might have reordered the fields of the LHS vector ** so that the fields are in the same order as an existing index. The ** aiMap[] array contains a mapping from the original LHS field order to ** the field order that matches the RHS index. ** ** Avoid factoring the LHS of the IN(...) expression out of the loop, ** even if it is constant, as OP_Affinity may be used on the register ** by code generated below. */ assert( pParse->okConstFactor==okConstFactor ); pParse->okConstFactor = 0; rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); pParse->okConstFactor = okConstFactor; for(i=0; ix.pList; pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); if( destIfNull!=destIfFalse ){ regCkNull = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); } for(ii=0; iinExpr; ii++){ r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); } sqlite3ReleaseTempReg(pParse, regToFree); if( iinExpr-1 || destIfNull!=destIfFalse ){ int op = rLhs!=r2 ? OP_Eq : OP_NotNull; sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, (void*)pColl, P4_COLLSEQ); VdbeCoverageIf(v, iinExpr-1 && op==OP_Eq); VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); VdbeCoverageIf(v, iinExpr-1 && op==OP_NotNull); VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); sqlite3VdbeChangeP5(v, zAff[0]); }else{ int op = rLhs!=r2 ? OP_Ne : OP_IsNull; assert( destIfNull==destIfFalse ); sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, (void*)pColl, P4_COLLSEQ); VdbeCoverageIf(v, op==OP_Ne); VdbeCoverageIf(v, op==OP_IsNull); sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); } } if( regCkNull ){ sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); sqlite3VdbeGoto(v, destIfFalse); } sqlite3VdbeResolveLabel(v, labelOk); sqlite3ReleaseTempReg(pParse, regCkNull); goto sqlite3ExprCodeIN_finished; } /* Step 2: Check to see if the LHS contains any NULL columns. If the ** LHS does contain NULLs then the result must be either FALSE or NULL. ** We will then skip the binary search of the RHS. */ if( destIfNull==destIfFalse ){ destStep2 = destIfFalse; }else{ destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); } for(i=0; ipLeft, i); if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; if( sqlite3ExprCanBeNull(p) ){ sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); VdbeCoverage(v); } } /* Step 3. The LHS is now known to be non-NULL. Do the binary search ** of the RHS using the LHS as a probe. If found, the result is ** true. */ if( eType==IN_INDEX_ROWID ){ /* In this case, the RHS is the ROWID of table b-tree and so we also ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 ** into a single opcode. */ sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); VdbeCoverage(v); addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ }else{ sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); if( destIfFalse==destIfNull ){ /* Combine Step 3 and Step 5 into a single opcode */ sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, rLhs, nVector); VdbeCoverage(v); goto sqlite3ExprCodeIN_finished; } /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, rLhs, nVector); VdbeCoverage(v); } /* Step 4. If the RHS is known to be non-NULL and we did not find ** an match on the search above, then the result must be FALSE. */ if( rRhsHasNull && nVector==1 ){ sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); VdbeCoverage(v); } /* Step 5. If we do not care about the difference between NULL and ** FALSE, then just return false. */ if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. ** If any comparison is NULL, then the result is NULL. If all ** comparisons are FALSE then the final result is FALSE. ** ** For a scalar LHS, it is sufficient to check just the first row ** of the RHS. */ if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); VdbeCoverage(v); if( nVector>1 ){ destNotNull = sqlite3VdbeMakeLabel(pParse); }else{ /* For nVector==1, combine steps 6 and 7 by immediately returning ** FALSE if the first comparison is not NULL */ destNotNull = destIfFalse; } for(i=0; i1 ){ sqlite3VdbeResolveLabel(v, destNotNull); sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); VdbeCoverage(v); /* Step 7: If we reach this point, we know that the result must ** be false. */ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); } /* Jumps here in order to return true. */ sqlite3VdbeJumpHere(v, addrTruthOp); sqlite3ExprCodeIN_finished: if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); VdbeComment((v, "end IN expr")); sqlite3ExprCodeIN_oom_error: sqlite3DbFree(pParse->db, aiMap); sqlite3DbFree(pParse->db, zAff); } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Generate an instruction that will put the floating point ** value described by z[0..n-1] into register iMem. ** ** The z[] string will probably not be zero-terminated. But the ** z[n] character is guaranteed to be something that does not look ** like the continuation of the number. */ static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ if( ALWAYS(z!=0) ){ double value; sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ if( negateFlag ) value = -value; sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); } } #endif /* ** Generate an instruction that will put the integer describe by ** text z[0..n-1] into register iMem. ** ** Expr.u.zToken is always UTF8 and zero-terminated. */ static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ Vdbe *v = pParse->pVdbe; if( pExpr->flags & EP_IntValue ){ int i = pExpr->u.iValue; assert( i>=0 ); if( negFlag ) i = -i; sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3DecOrHexToI64(z, &value); if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ #ifdef SQLITE_OMIT_FLOATING_POINT sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); #else #ifndef SQLITE_OMIT_HEX_INTEGER if( sqlite3_strnicmp(z,"0x",2)==0 ){ sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", negFlag?"-":"",pExpr); }else #endif { codeReal(v, z, negFlag, iMem); } #endif }else{ if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); } } } /* Generate code that will load into register regOut a value that is ** appropriate for the iIdxCol-th column of index pIdx. */ SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn( Parse *pParse, /* The parsing context */ Index *pIdx, /* The index whose column is to be loaded */ int iTabCur, /* Cursor pointing to a table row */ int iIdxCol, /* The column of the index to be loaded */ int regOut /* Store the index column value in this register */ ){ i16 iTabCol = pIdx->aiColumn[iIdxCol]; if( iTabCol==XN_EXPR ){ assert( pIdx->aColExpr ); assert( pIdx->aColExpr->nExpr>iIdxCol ); pParse->iSelfTab = iTabCur + 1; sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); pParse->iSelfTab = 0; }else{ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, iTabCol, regOut); } } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* ** Generate code that will compute the value of generated column pCol ** and store the result in register regOut */ SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn( Parse *pParse, /* Parsing context */ Table *pTab, /* Table containing the generated column */ Column *pCol, /* The generated column */ int regOut /* Put the result in this register */ ){ int iAddr; Vdbe *v = pParse->pVdbe; int nErr = pParse->nErr; assert( v!=0 ); assert( pParse->iSelfTab!=0 ); if( pParse->iSelfTab>0 ){ iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); }else{ iAddr = 0; } sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); if( pCol->affinity>=SQLITE_AFF_TEXT ){ sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); } if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1; } #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ /* ** Generate code to extract the value of the iCol-th column of a table. */ SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable( Vdbe *v, /* Parsing context */ Table *pTab, /* The table containing the value */ int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ int iCol, /* Index of the column to extract */ int regOut /* Extract the value into this register */ ){ Column *pCol; assert( v!=0 ); assert( pTab!=0 ); assert( iCol!=XN_EXPR ); if( iCol<0 || iCol==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); VdbeComment((v, "%s.rowid", pTab->zName)); }else{ int op; int x; if( IsVirtual(pTab) ){ op = OP_VColumn; x = iCol; #ifndef SQLITE_OMIT_GENERATED_COLUMNS }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ Parse *pParse = sqlite3VdbeParser(v); if( pCol->colFlags & COLFLAG_BUSY ){ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zCnName); }else{ int savedSelfTab = pParse->iSelfTab; pCol->colFlags |= COLFLAG_BUSY; pParse->iSelfTab = iTabCur+1; sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); pParse->iSelfTab = savedSelfTab; pCol->colFlags &= ~COLFLAG_BUSY; } return; #endif }else if( !HasRowid(pTab) ){ testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); op = OP_Column; }else{ x = sqlite3TableColumnToStorage(pTab,iCol); testcase( x!=iCol ); op = OP_Column; } sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); sqlite3ColumnDefault(v, pTab, iCol, regOut); } } /* ** Generate code that will extract the iColumn-th column from ** table pTab and store the column value in register iReg. ** ** There must be an open cursor to pTab in iTable when this routine ** is called. If iColumn<0 then code is generated that extracts the rowid. */ SQLITE_PRIVATE int sqlite3ExprCodeGetColumn( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* Description of the table we are reading from */ int iColumn, /* Index of the table column */ int iTable, /* The cursor pointing to the table */ int iReg, /* Store results here */ u8 p5 /* P5 value for OP_Column + FLAGS */ ){ assert( pParse->pVdbe!=0 ); assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 ); assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 ); sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); if( p5 ){ VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); if( pOp->opcode==OP_Column ) pOp->p5 = p5; if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG); } return iReg; } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. */ SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); } /* ** Convert a scalar expression node to a TK_REGISTER referencing ** register iReg. The caller must ensure that iReg already contains ** the correct value for the expression. */ static void exprToRegister(Expr *pExpr, int iReg){ Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); if( NEVER(p==0) ) return; p->op2 = p->op; p->op = TK_REGISTER; p->iTable = iReg; ExprClearProperty(p, EP_Skip); } /* ** Evaluate an expression (either a vector or a scalar expression) and store ** the result in contiguous temporary registers. Return the index of ** the first register used to store the result. ** ** If the returned result register is a temporary scalar, then also write ** that register number into *piFreeable. If the returned result register ** is not a temporary or if the expression is a vector set *piFreeable ** to 0. */ static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ int iResult; int nResult = sqlite3ExprVectorSize(p); if( nResult==1 ){ iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); }else{ *piFreeable = 0; if( p->op==TK_SELECT ){ #if SQLITE_OMIT_SUBQUERY iResult = 0; #else iResult = sqlite3CodeSubselect(pParse, p); #endif }else{ int i; iResult = pParse->nMem+1; pParse->nMem += nResult; assert( ExprUseXList(p) ); for(i=0; ix.pList->a[i].pExpr, i+iResult); } } } return iResult; } /* ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) ** so that a subsequent copy will not be merged into this one. */ static void setDoNotMergeFlagOnCopy(Vdbe *v){ if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */ } } /* ** Generate code to implement special SQL functions that are implemented ** in-line rather than by using the usual callbacks. */ static int exprCodeInlineFunction( Parse *pParse, /* Parsing context */ ExprList *pFarg, /* List of function arguments */ int iFuncId, /* Function ID. One of the INTFUNC_... values */ int target /* Store function result in this register */ ){ int nFarg; Vdbe *v = pParse->pVdbe; assert( v!=0 ); assert( pFarg!=0 ); nFarg = pFarg->nExpr; assert( nFarg>0 ); /* All in-line functions have at least one argument */ switch( iFuncId ){ case INLINEFUNC_coalesce: { /* Attempt a direct implementation of the built-in COALESCE() and ** IFNULL() functions. This avoids unnecessary evaluation of ** arguments past the first non-NULL argument. */ int endCoalesce = sqlite3VdbeMakeLabel(pParse); int i; assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; ia[i].pExpr, target); } setDoNotMergeFlagOnCopy(v); sqlite3VdbeResolveLabel(v, endCoalesce); break; } case INLINEFUNC_iif: { Expr caseExpr; memset(&caseExpr, 0, sizeof(caseExpr)); caseExpr.op = TK_CASE; caseExpr.x.pList = pFarg; return sqlite3ExprCodeTarget(pParse, &caseExpr, target); } #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC case INLINEFUNC_sqlite_offset: { Expr *pArg = pFarg->a[0].pExpr; if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } break; } #endif default: { /* The UNLIKELY() function is a no-op. The result is the value ** of the first argument. */ assert( nFarg==1 || nFarg==2 ); target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); break; } /*********************************************************************** ** Test-only SQL functions that are only usable if enabled ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS */ #if !defined(SQLITE_UNTESTABLE) case INLINEFUNC_expr_compare: { /* Compare two expressions using sqlite3ExprCompare() */ assert( nFarg==2 ); sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), target); break; } case INLINEFUNC_expr_implies_expr: { /* Compare two expressions using sqlite3ExprImpliesExpr() */ assert( nFarg==2 ); sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), target); break; } case INLINEFUNC_implies_nonnull_row: { /* Result of sqlite3ExprImpliesNonNullRow() */ Expr *pA1; assert( nFarg==2 ); pA1 = pFarg->a[1].pExpr; if( pA1->op==TK_COLUMN ){ sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1), target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } break; } case INLINEFUNC_affinity: { /* The AFFINITY() function evaluates to a string that describes ** the type affinity of the argument. This is used for testing of ** the SQLite type logic. */ const char *azAff[] = { "blob", "text", "numeric", "integer", "real", "flexnum" }; char aff; assert( nFarg==1 ); aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); assert( aff<=SQLITE_AFF_NONE || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) ); sqlite3VdbeLoadString(v, target, (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); break; } #endif /* !defined(SQLITE_UNTESTABLE) */ } return target; } /* ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr. ** If it is, then resolve the expression by reading from the index and ** return the register into which the value has been read. If pExpr is ** not an indexed expression, then return negative. */ static SQLITE_NOINLINE int sqlite3IndexedExprLookup( Parse *pParse, /* The parsing context */ Expr *pExpr, /* The expression to potentially bypass */ int target /* Where to store the result of the expression */ ){ IndexedExpr *p; Vdbe *v; for(p=pParse->pIdxEpr; p; p=p->pIENext){ u8 exprAff; int iDataCur = p->iDataCur; if( iDataCur<0 ) continue; if( pParse->iSelfTab ){ if( p->iDataCur!=pParse->iSelfTab-1 ) continue; iDataCur = -1; } if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue; assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC ); exprAff = sqlite3ExprAffinity(pExpr); if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB) || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT) || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC) ){ /* Affinity mismatch on a generated column */ continue; } v = pParse->pVdbe; assert( v!=0 ); if( p->bMaybeNullRow ){ /* If the index is on a NULL row due to an outer join, then we ** cannot extract the value from the index. The value must be ** computed using the original expression. */ int addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); sqlite3VdbeGoto(v, 0); p = pParse->pIdxEpr; pParse->pIdxEpr = 0; sqlite3ExprCode(pParse, pExpr, target); pParse->pIdxEpr = p; sqlite3VdbeJumpHere(v, addr+2); }else{ sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); } return target; } return -1; /* Not found */ } /* ** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This ** function checks the Parse.pIdxPartExpr list to see if this column ** can be replaced with a constant value. If so, it generates code to ** put the constant value in a register (ideally, but not necessarily, ** register iTarget) and returns the register number. ** ** Or, if the TK_COLUMN cannot be replaced by a constant, zero is ** returned. */ static int exprPartidxExprLookup(Parse *pParse, Expr *pExpr, int iTarget){ IndexedExpr *p; for(p=pParse->pIdxPartExpr; p; p=p->pIENext){ if( pExpr->iColumn==p->iIdxCol && pExpr->iTable==p->iDataCur ){ Vdbe *v = pParse->pVdbe; int addr = 0; int ret; if( p->bMaybeNullRow ){ addr = sqlite3VdbeAddOp1(v, OP_IfNullRow, p->iIdxCur); } ret = sqlite3ExprCodeTarget(pParse, p->pExpr, iTarget); sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, ret, 1, 0, (const char*)&p->aff, 1); if( addr ){ sqlite3VdbeJumpHere(v, addr); sqlite3VdbeChangeP3(v, addr, ret); } return ret; } } return 0; } /* ** Generate code into the current Vdbe to evaluate the given ** expression. Attempt to store the results in register "target". ** Return the register where results are stored. ** ** With this routine, there is no guarantee that results will ** be stored in target. The result might be stored in some other ** register if it is convenient to do so. The calling function ** must check the return code and move the results to the desired ** register. */ SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; /* The VM under construction */ int op; /* The opcode being coded */ int inReg = target; /* Results stored in register inReg */ int regFree1 = 0; /* If non-zero free this temporary register */ int regFree2 = 0; /* If non-zero free this temporary register */ int r1, r2; /* Various register numbers */ Expr tempX; /* Temporary expression node */ int p5 = 0; assert( target>0 && target<=pParse->nMem ); assert( v!=0 ); expr_code_doover: if( pExpr==0 ){ op = TK_NULL; }else if( pParse->pIdxEpr!=0 && !ExprHasProperty(pExpr, EP_Leaf) && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0 ){ return r1; }else{ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); op = pExpr->op; } assert( op!=TK_ORDER ); switch( op ){ case TK_AGG_COLUMN: { AggInfo *pAggInfo = pExpr->pAggInfo; struct AggInfo_col *pCol; assert( pAggInfo!=0 ); assert( pExpr->iAgg>=0 ); if( pExpr->iAgg>=pAggInfo->nColumn ){ /* Happens when the left table of a RIGHT JOIN is null and ** is using an expression index */ sqlite3VdbeAddOp2(v, OP_Null, 0, target); #ifdef SQLITE_VDBE_COVERAGE /* Verify that the OP_Null above is exercised by tests ** tag-20230325-2 */ sqlite3VdbeAddOp3(v, OP_NotNull, target, 1, 20230325); VdbeCoverageNeverTaken(v); #endif break; } pCol = &pAggInfo->aCol[pExpr->iAgg]; if( !pAggInfo->directMode ){ return AggInfoColumnReg(pAggInfo, pExpr->iAgg); }else if( pAggInfo->useSortingIdx ){ Table *pTab = pCol->pTab; sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, pCol->iSorterColumn, target); if( pTab==0 ){ /* No comment added */ }else if( pCol->iColumn<0 ){ VdbeComment((v,"%s.rowid",pTab->zName)); }else{ VdbeComment((v,"%s.%s", pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); } } return target; }else if( pExpr->y.pTab==0 ){ /* This case happens when the argument to an aggregate function ** is rewritten by aggregateConvertIndexedExprRefToColumn() */ sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target); return target; } /* Otherwise, fall thru into the TK_COLUMN case */ /* no break */ deliberate_fall_through } case TK_COLUMN: { int iTab = pExpr->iTable; int iReg; if( ExprHasProperty(pExpr, EP_FixedCol) ){ /* This COLUMN expression is really a constant due to WHERE clause ** constraints, and that constant is coded by the pExpr->pLeft ** expression. However, make sure the constant has the correct ** datatype by applying the Affinity of the table column to the ** constant. */ int aff; iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); assert( ExprUseYTab(pExpr) ); assert( pExpr->y.pTab!=0 ); aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); if( aff>SQLITE_AFF_BLOB ){ static const char zAff[] = "B\000C\000D\000E\000F"; assert( SQLITE_AFF_BLOB=='A' ); assert( SQLITE_AFF_TEXT=='B' ); sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, &zAff[(aff-'B')*2], P4_STATIC); } return iReg; } if( iTab<0 ){ if( pParse->iSelfTab<0 ){ /* Other columns in the same row for CHECK constraints or ** generated columns or for inserting into partial index. ** The row is unpacked into registers beginning at ** 0-(pParse->iSelfTab). The rowid (if any) is in a register ** immediately prior to the first column. */ Column *pCol; Table *pTab; int iSrc; int iCol = pExpr->iColumn; assert( ExprUseYTab(pExpr) ); pTab = pExpr->y.pTab; assert( pTab!=0 ); assert( iCol>=XN_ROWID ); assert( iColnCol ); if( iCol<0 ){ return -1-pParse->iSelfTab; } pCol = pTab->aCol + iCol; testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pCol->colFlags & COLFLAG_GENERATED ){ if( pCol->colFlags & COLFLAG_BUSY ){ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zCnName); return 0; } pCol->colFlags |= COLFLAG_BUSY; if( pCol->colFlags & COLFLAG_NOTAVAIL ){ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); } pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); return iSrc; }else #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ if( pCol->affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); sqlite3VdbeAddOp1(v, OP_RealAffinity, target); return target; }else{ return iSrc; } }else{ /* Coding an expression that is part of an index where column names ** in the index refer to the table to which the index belongs */ iTab = pParse->iSelfTab - 1; } } else if( pParse->pIdxPartExpr && 0!=(r1 = exprPartidxExprLookup(pParse, pExpr, target)) ){ return r1; } assert( ExprUseYTab(pExpr) ); assert( pExpr->y.pTab!=0 ); iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, pExpr->iColumn, iTab, target, pExpr->op2); return iReg; } case TK_INTEGER: { codeInteger(pParse, pExpr, 0, target); return target; } case TK_TRUEFALSE: { sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); return target; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pExpr->u.zToken, 0, target); return target; } #endif case TK_STRING: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3VdbeLoadString(v, target, pExpr->u.zToken); return target; } default: { /* Make NULL the default case so that if a bug causes an illegal ** Expr node to be passed into this function, it will be handled ** sanely and not crash. But keep the assert() to bring the problem ** to the attention of the developers. */ assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); sqlite3VdbeAddOp2(v, OP_Null, 0, target); return target; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { int n; const char *z; char *zBlob; assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); z = &pExpr->u.zToken[2]; n = sqlite3Strlen30(z) - 1; assert( z[n]=='\'' ); zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); return target; } #endif case TK_VARIABLE: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); if( pExpr->u.zToken[1]!=0 ){ const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); } return target; } case TK_REGISTER: { return pExpr->iTable; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ sqlite3ExprCode(pParse, pExpr->pLeft, target); assert( inReg==target ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3VdbeAddOp2(v, OP_Cast, target, sqlite3AffinityType(pExpr->u.zToken, 0)); return inReg; } #endif /* SQLITE_OMIT_CAST */ case TK_IS: case TK_ISNOT: op = (op==TK_IS) ? TK_EQ : TK_NE; p5 = SQLITE_NULLEQ; /* fall-through */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { Expr *pLeft = pExpr->pLeft; if( sqlite3ExprIsVector(pLeft) ){ codeVectorCompare(pParse, pExpr, target, op, p5); }else{ r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, sqlite3VdbeCurrentAddr(v)+2, p5, ExprHasProperty(pExpr,EP_Commuted)); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); if( p5==SQLITE_NULLEQ ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); }else{ sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); } testcase( regFree1==0 ); testcase( regFree2==0 ); } break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: { assert( TK_AND==OP_And ); testcase( op==TK_AND ); assert( TK_OR==OP_Or ); testcase( op==TK_OR ); assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp3(v, op, r2, r1, target); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_UMINUS: { Expr *pLeft = pExpr->pLeft; assert( pLeft ); if( pLeft->op==TK_INTEGER ){ codeInteger(pParse, pLeft, 1, target); return target; #ifndef SQLITE_OMIT_FLOATING_POINT }else if( pLeft->op==TK_FLOAT ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); codeReal(v, pLeft->u.zToken, 1, target); return target; #endif }else{ tempX.op = TK_INTEGER; tempX.flags = EP_IntValue|EP_TokenOnly; tempX.u.iValue = 0; ExprClearVVAProperties(&tempX); r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); testcase( regFree2==0 ); } break; } case TK_BITNOT: case TK_NOT: { assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); sqlite3VdbeAddOp2(v, op, r1, inReg); break; } case TK_TRUTH: { int isTrue; /* IS TRUE or IS NOT TRUE */ int bNormal; /* IS TRUE or IS FALSE */ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); isTrue = sqlite3ExprTruthValue(pExpr->pRight); bNormal = pExpr->op2==TK_IS; testcase( isTrue && bNormal); testcase( !isTrue && bNormal); sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); break; } case TK_ISNULL: case TK_NOTNULL: { int addr; assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); sqlite3VdbeAddOp2(v, OP_Integer, 0, target); sqlite3VdbeJumpHere(v, addr); break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 || NEVER(pExpr->iAgg<0) || NEVER(pExpr->iAgg>=pInfo->nFunc) ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); }else{ return AggInfoFuncReg(pInfo, pExpr->iAgg); } break; } case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ int nFarg; /* Number of function arguments */ FuncDef *pDef; /* The function definition object */ const char *zId; /* The function name */ u32 constMask = 0; /* Mask of function arguments that are constant */ int i; /* Loop counter */ sqlite3 *db = pParse->db; /* The database connection */ u8 enc = ENC(db); /* The text encoding used by this database */ CollSeq *pColl = 0; /* A collating sequence */ #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ return pExpr->y.pWin->regResult; } #endif if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ /* SQL functions can be expensive. So try to avoid running them ** multiple times if we know they always give the same result */ return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); } assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); assert( ExprUseXList(pExpr) ); pFarg = pExpr->x.pList; nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zId = pExpr->u.zToken; pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION if( pDef==0 && pParse->explain ){ pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); } #endif if( pDef==0 || pDef->xFinalize!=0 ){ sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); break; } if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){ assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); return exprCodeInlineFunction(pParse, pFarg, SQLITE_PTR_TO_INT(pDef->pUserData), target); }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ sqlite3ExprFunctionUsable(pParse, pExpr, pDef); } for(i=0; ia[i].pExpr) ){ testcase( i==31 ); constMask |= MASKBIT32(i); } if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); } } if( pFarg ){ if( constMask ){ r1 = pParse->nMem+1; pParse->nMem += nFarg; }else{ r1 = sqlite3GetTempRange(pParse, nFarg); } /* For length() and typeof() and octet_length() functions, ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid ** unnecessary data loading. */ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ u8 exprOp; assert( nFarg==1 ); assert( pFarg->a[0].pExpr!=0 ); exprOp = pFarg->a[0].pExpr->op; if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG ); assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG); pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG; } } sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR); }else{ r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the ** second argument, not the first, as the argument to test to ** see if it is a column in a virtual table. This is done because ** the left operand of infix functions (the operand we want to ** control overloading) ends up as the second argument to the ** function. The expression "A glob B" is equivalent to ** "glob(B,A). We want to use the A in "A glob B" to test ** for function overloading. But we use the B term in "glob(B,A)". */ if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); }else if( nFarg>0 ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, pDef, pExpr->op2); if( nFarg ){ if( constMask==0 ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); }else{ sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); } } return target; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { int nCol; testcase( op==TK_EXISTS ); testcase( op==TK_SELECT ); if( pParse->db->mallocFailed ){ return 0; }else if( op==TK_SELECT && ALWAYS( ExprUseXSelect(pExpr) ) && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ sqlite3SubselectError(pParse, nCol, 1); }else{ return sqlite3CodeSubselect(pParse, pExpr); } break; } case TK_SELECT_COLUMN: { int n; Expr *pLeft = pExpr->pLeft; if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); pLeft->op2 = pParse->withinRJSubrtn; } assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); n = sqlite3ExprVectorSize(pLeft); if( pExpr->iTable!=n ){ sqlite3ErrorMsg(pParse, "%d columns assigned %d values", pExpr->iTable, n); } return pLeft->iTable + pExpr->iColumn; } case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(pParse); int destIfNull = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, target); sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); sqlite3VdbeResolveLabel(v, destIfFalse); sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); sqlite3VdbeResolveLabel(v, destIfNull); return target; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { exprCodeBetween(pParse, pExpr, target, 0, 0); return target; } case TK_COLLATE: { if( !ExprHasProperty(pExpr, EP_Collate) ){ /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called ** "SOFT-COLLATE" that is added to constraints that are pushed down ** from outer queries into sub-queries by the push-down optimization. ** Clear subtypes as subtypes may not cross a subquery boundary. */ assert( pExpr->pLeft ); sqlite3ExprCode(pParse, pExpr->pLeft, target); sqlite3VdbeAddOp1(v, OP_ClrSubtype, target); return target; }else{ pExpr = pExpr->pLeft; goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ } } case TK_SPAN: case TK_UPLUS: { pExpr = pExpr->pLeft; goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. ** ** The expression is implemented using an OP_Param opcode. The p1 ** parameter is set to 0 for an old.rowid reference, or to (i+1) ** to reference another column of the old.* pseudo-table, where ** i is the index of the column. For a new.rowid reference, p1 is ** set to (n+1), where n is the number of columns in each pseudo-table. ** For a reference to any other column in the new.* pseudo-table, p1 ** is set to (n+2+i), where n and i are as defined previously. For ** example, if the table on which triggers are being fired is ** declared as: ** ** CREATE TABLE t1(a, b); ** ** Then p1 is interpreted as follows: ** ** p1==0 -> old.rowid p1==3 -> new.rowid ** p1==1 -> old.a p1==4 -> new.a ** p1==2 -> old.b p1==5 -> new.b */ Table *pTab; int iCol; int p1; assert( ExprUseYTab(pExpr) ); pTab = pExpr->y.pTab; iCol = pExpr->iColumn; p1 = pExpr->iTable * (pTab->nCol+1) + 1 + sqlite3TableColumnToStorage(pTab, iCol); assert( pExpr->iTable==0 || pExpr->iTable==1 ); assert( iCol>=-1 && iColnCol ); assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); assert( p1>=0 && p1<(pTab->nCol*2+2) ); sqlite3VdbeAddOp2(v, OP_Param, p1, target); VdbeComment((v, "r[%d]=%s.%s", target, (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) )); #ifndef SQLITE_OMIT_FLOATING_POINT /* If the column has REAL affinity, it may currently be stored as an ** integer. Use OP_RealAffinity to make sure it is really real. ** ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to ** floating point when extracting it from the record. */ if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); } #endif break; } case TK_VECTOR: { sqlite3ErrorMsg(pParse, "row value misused"); break; } /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions ** that derive from the right-hand table of a LEFT JOIN. The ** Expr.iTable value is the table number for the right-hand table. ** The expression is only evaluated if that table is not currently ** on a LEFT JOIN NULL row. */ case TK_IF_NULL_ROW: { int addrINR; u8 okConstFactor = pParse->okConstFactor; AggInfo *pAggInfo = pExpr->pAggInfo; if( pAggInfo ){ assert( pExpr->iAgg>=0 && pExpr->iAggnColumn ); if( !pAggInfo->directMode ){ inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg); break; } if( pExpr->pAggInfo->useSortingIdx ){ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, pAggInfo->aCol[pExpr->iAgg].iSorterColumn, target); inReg = target; break; } } addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target); /* The OP_IfNullRow opcode above can overwrite the result register with ** NULL. So we have to ensure that the result register is not a value ** that is suppose to be a constant. Two defenses are needed: ** (1) Temporarily disable factoring of constant expressions ** (2) Make sure the computed value really is stored in register ** "target" and not someplace else. */ pParse->okConstFactor = 0; /* note (1) above */ sqlite3ExprCode(pParse, pExpr->pLeft, target); assert( target==inReg ); pParse->okConstFactor = okConstFactor; sqlite3VdbeJumpHere(v, addrINR); break; } /* ** Form A: ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form B: ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END ** ** Form A is can be transformed into the equivalent form B as follows: ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... ** WHEN x=eN THEN rN ELSE y END ** ** X (if it exists) is in pExpr->pLeft. ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is ** odd. The Y is also optional. If the number of elements in x.pList ** is even, then Y is omitted and the "otherwise" result is NULL. ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. ** ** The result of the expression is the Ri for the first matching Ei, ** or if there is no matching Ei, the ELSE term Y, or if there is ** no ELSE term, NULL. */ case TK_CASE: { int endLabel; /* GOTO label for end of CASE stmt */ int nextCase; /* GOTO label for next WHEN clause */ int nExpr; /* 2x number of WHEN terms */ int i; /* Loop counter */ ExprList *pEList; /* List of WHEN terms */ struct ExprList_item *aListelem; /* Array of WHEN terms */ Expr opCompare; /* The X==Ei expression */ Expr *pX; /* The X expression */ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ Expr *pDel = 0; sqlite3 *db = pParse->db; assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); assert(pExpr->x.pList->nExpr > 0); pEList = pExpr->x.pList; aListelem = pEList->a; nExpr = pEList->nExpr; endLabel = sqlite3VdbeMakeLabel(pParse); if( (pX = pExpr->pLeft)!=0 ){ pDel = sqlite3ExprDup(db, pX, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDel); break; } testcase( pX->op==TK_COLUMN ); exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); testcase( regFree1==0 ); memset(&opCompare, 0, sizeof(opCompare)); opCompare.op = TK_EQ; opCompare.pLeft = pDel; pTest = &opCompare; /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: ** The value in regFree1 might get SCopy-ed into the file result. ** So make sure that the regFree1 register is not reused for other ** purposes and possibly overwritten. */ regFree1 = 0; } for(i=0; iop==TK_COLUMN ); sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); sqlite3VdbeGoto(v, endLabel); sqlite3VdbeResolveLabel(v, nextCase); } if( (nExpr&1)!=0 ){ sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } sqlite3ExprDelete(db, pDel); setDoNotMergeFlagOnCopy(v); sqlite3VdbeResolveLabel(v, endLabel); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { assert( pExpr->affExpr==OE_Rollback || pExpr->affExpr==OE_Abort || pExpr->affExpr==OE_Fail || pExpr->affExpr==OE_Ignore ); if( !pParse->pTriggerTab && !pParse->nested ){ sqlite3ErrorMsg(pParse, "RAISE() may only be used within a trigger-program"); return 0; } if( pExpr->affExpr==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affExpr==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); VdbeCoverage(v); }else{ sqlite3HaltConstraint(pParse, pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, pExpr->affExpr, pExpr->u.zToken, 0, 0); } break; } #endif } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); return inReg; } /* ** Generate code that will evaluate expression pExpr just one time ** per prepared statement execution. ** ** If the expression uses functions (that might throw an exception) then ** guard them with an OP_Once opcode to ensure that the code is only executed ** once. If no functions are involved, then factor the code out and put it at ** the end of the prepared statement in the initialization section. ** ** If regDest>0 then the result is always stored in that register and the ** result is not reusable. If regDest<0 then this routine is free to ** store the value wherever it wants. The register where the expression ** is stored is returned. When regDest<0, two identical expressions might ** code to the same register, if they do not contain function calls and hence ** are factored out into the initialization section at the end of the ** prepared statement. */ SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The expression to code when the VDBE initializes */ int regDest /* Store the value in this register */ ){ ExprList *p; assert( ConstFactorOk(pParse) ); assert( regDest!=0 ); p = pParse->pConstExpr; if( regDest<0 && p ){ struct ExprList_item *pItem; int i; for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ if( pItem->fg.reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ return pItem->u.iConstExprReg; } } } pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ Vdbe *v = pParse->pVdbe; int addr; assert( v ); addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); pParse->okConstFactor = 0; if( !pParse->db->mallocFailed ){ if( regDest<0 ) regDest = ++pParse->nMem; sqlite3ExprCode(pParse, pExpr, regDest); } pParse->okConstFactor = 1; sqlite3ExprDelete(pParse->db, pExpr); sqlite3VdbeJumpHere(v, addr); }else{ p = sqlite3ExprListAppend(pParse, p, pExpr); if( p ){ struct ExprList_item *pItem = &p->a[p->nExpr-1]; pItem->fg.reusable = regDest<0; if( regDest<0 ) regDest = ++pParse->nMem; pItem->u.iConstExprReg = regDest; } pParse->pConstExpr = p; } return regDest; } /* ** Generate code to evaluate an expression and store the results ** into a register. Return the register number where the results ** are stored. ** ** If the register is a temporary register that can be deallocated, ** then write its number into *pReg. If the result register is not ** a temporary, then set *pReg to zero. ** ** If pExpr is a constant, then this routine might generate this ** code to fill the register in the initialization section of the ** VDBE program, in order to factor it out of the evaluation loop. */ SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ int r2; pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); if( ConstFactorOk(pParse) && ALWAYS(pExpr!=0) && pExpr->op!=TK_REGISTER && sqlite3ExprIsConstantNotJoin(pExpr) ){ *pReg = 0; r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); }else{ int r1 = sqlite3GetTempReg(pParse); r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( r2==r1 ){ *pReg = r1; }else{ sqlite3ReleaseTempReg(pParse, r1); *pReg = 0; } } return r2; } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ SQLITE_PRIVATE void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); assert( target>0 && target<=pParse->nMem ); assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); if( pParse->pVdbe==0 ) return; inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); if( inReg!=target ){ u8 op; Expr *pX = sqlite3ExprSkipCollateAndLikely(pExpr); testcase( pX!=pExpr ); if( ALWAYS(pX) && (ExprHasProperty(pX,EP_Subquery) || pX->op==TK_REGISTER) ){ op = OP_Copy; }else{ op = OP_SCopy; } sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); } } /* ** Make a transient copy of expression pExpr and then code it using ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() ** except that the input expression is guaranteed to be unchanged. */ SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ sqlite3 *db = pParse->db; pExpr = sqlite3ExprDup(db, pExpr, 0); if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); sqlite3ExprDelete(db, pExpr); } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. If the expression is constant, then this routine ** might choose to code the expression at initialization time. */ SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); }else{ sqlite3ExprCodeCopy(pParse, pExpr, target); } } /* ** Generate code that pushes the value of every element of the given ** expression list into a sequence of registers beginning at target. ** ** Return the number of elements evaluated. The number returned will ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF ** is defined. ** ** The SQLITE_ECEL_DUP flag prevents the arguments from being ** filled using OP_SCopy. OP_Copy must be used instead. ** ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be ** factored out into initialization code. ** ** The SQLITE_ECEL_REF flag means that expressions in the list with ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored ** in registers at srcReg, and so the value can be copied from there. ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 ** are simply omitted rather than being copied from srcReg. */ SQLITE_PRIVATE int sqlite3ExprCodeExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* The expression list to be coded */ int target, /* Where to write results */ int srcReg, /* Source registers if SQLITE_ECEL_REF */ u8 flags /* SQLITE_ECEL_* flags */ ){ struct ExprList_item *pItem; int i, j, n; u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; Vdbe *v = pParse->pVdbe; assert( pList!=0 ); assert( target>0 ); assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ n = pList->nExpr; if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; for(pItem=pList->a, i=0; ipExpr; #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pItem->fg.bSorterRef ){ i--; n--; }else #endif if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ if( flags & SQLITE_ECEL_OMITREF ){ i--; n--; }else{ sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); } }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstantNotJoin(pExpr) ){ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); }else{ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); if( inReg!=target+i ){ VdbeOp *pOp; if( copyOp==OP_Copy && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy && pOp->p1+pOp->p3+1==inReg && pOp->p2+pOp->p3+1==target+i && pOp->p5==0 /* The do-not-merge flag must be clear */ ){ pOp->p3++; }else{ sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); } } } } return n; } /* ** Generate code for a BETWEEN operator. ** ** x BETWEEN y AND z ** ** The above is equivalent to ** ** x>=y AND x<=z ** ** Code it as such, taking care to do the common subexpression ** elimination of x. ** ** The xJumpIf parameter determines details: ** ** NULL: Store the boolean result in reg[dest] ** sqlite3ExprIfTrue: Jump to dest if true ** sqlite3ExprIfFalse: Jump to dest if false ** ** The jumpIfNull parameter is ignored if xJumpIf is NULL. */ static void exprCodeBetween( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The BETWEEN expression */ int dest, /* Jump destination or storage location */ void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ int jumpIfNull /* Take the jump if the BETWEEN is NULL */ ){ Expr exprAnd; /* The AND operator in x>=y AND x<=z */ Expr compLeft; /* The x>=y term */ Expr compRight; /* The x<=z term */ int regFree1 = 0; /* Temporary use register */ Expr *pDel = 0; sqlite3 *db = pParse->db; memset(&compLeft, 0, sizeof(Expr)); memset(&compRight, 0, sizeof(Expr)); memset(&exprAnd, 0, sizeof(Expr)); assert( ExprUseXList(pExpr) ); pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); if( db->mallocFailed==0 ){ exprAnd.op = TK_AND; exprAnd.pLeft = &compLeft; exprAnd.pRight = &compRight; compLeft.op = TK_GE; compLeft.pLeft = pDel; compLeft.pRight = pExpr->x.pList->a[0].pExpr; compRight.op = TK_LE; compRight.pLeft = pDel; compRight.pRight = pExpr->x.pList->a[1].pExpr; exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); if( xJump ){ xJump(pParse, &exprAnd, dest, jumpIfNull); }else{ /* Mark the expression is being from the ON or USING clause of a join ** so that the sqlite3ExprCodeTarget() routine will not attempt to move ** it into the Parse.pConstExpr list. We should use a new bit for this, ** for clarity, but we are out of bits in the Expr.flags field so we ** have to reuse the EP_OuterON bit. Bummer. */ pDel->flags |= EP_OuterON; sqlite3ExprCodeTarget(pParse, &exprAnd, dest); } sqlite3ReleaseTempReg(pParse, regFree1); } sqlite3ExprDelete(db, pDel); /* Ensure adequate test coverage */ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); testcase( xJump==0 ); } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is true but execution ** continues straight thru if the expression is false. ** ** If the expression evaluates to NULL (neither true nor false), then ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. ** ** This code depends on the fact that certain token values (ex: TK_EQ) ** are the same as opcode values (ex: OP_Eq) that implement the corresponding ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in ** the make process cause these values to align. Assert()s in the code ** below verify that the numbers are aligned correctly. */ SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ if( NEVER(pExpr==0) ) return; /* No way this can happen */ assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); op = pExpr->op; switch( op ){ case TK_AND: case TK_OR: { Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); if( pAlt!=pExpr ){ sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); }else if( op==TK_AND ){ int d2 = sqlite3VdbeMakeLabel(pParse); testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); }else{ testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); } break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_TRUTH: { int isNot; /* IS NOT TRUE or IS NOT FALSE */ int isTrue; /* IS TRUE or IS NOT TRUE */ testcase( jumpIfNull==0 ); isNot = pExpr->op2==TK_ISNOT; isTrue = sqlite3ExprTruthValue(pExpr->pRight); testcase( isTrue && isNot ); testcase( !isTrue && isNot ); if( isTrue ^ isNot ){ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, isNot ? SQLITE_JUMPIFNULL : 0); }else{ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, isNot ? SQLITE_JUMPIFNULL : 0); } break; } case TK_IS: case TK_ISNOT: testcase( op==TK_IS ); testcase( op==TK_ISNOT ); op = (op==TK_IS) ? TK_EQ : TK_NE; jumpIfNull = SQLITE_NULLEQ; /* no break */ deliberate_fall_through case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeTypeofColumn(v, r1); sqlite3VdbeAddOp2(v, op, r1, dest); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { int destIfFalse = sqlite3VdbeMakeLabel(pParse); int destIfNull = jumpIfNull ? dest : destIfFalse; sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); sqlite3VdbeGoto(v, dest); sqlite3VdbeResolveLabel(v, destIfFalse); break; } #endif default: { default_expr: if( ExprAlwaysTrue(pExpr) ){ sqlite3VdbeGoto(v, dest); }else if( ExprAlwaysFalse(pExpr) ){ /* No-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is false but execution ** continues straight thru if the expression is true. ** ** If the expression evaluates to NULL (neither true nor false) then ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull ** is 0. */ SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int regFree1 = 0; int regFree2 = 0; int r1, r2; assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ if( pExpr==0 ) return; assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); /* The value of pExpr->op and op are related as follows: ** ** pExpr->op op ** --------- ---------- ** TK_ISNULL OP_NotNull ** TK_NOTNULL OP_IsNull ** TK_NE OP_Eq ** TK_EQ OP_Ne ** TK_GT OP_Le ** TK_LE OP_Gt ** TK_GE OP_Lt ** TK_LT OP_Ge ** ** For other values of pExpr->op, op is undefined and unused. ** The value of TK_ and OP_ constants are arranged such that we ** can compute the mapping above using the following expression. ** Assert()s verify that the computation is correct. */ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); /* Verify correct alignment of TK_ and OP_ constants */ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); assert( pExpr->op!=TK_NE || op==OP_Eq ); assert( pExpr->op!=TK_EQ || op==OP_Ne ); assert( pExpr->op!=TK_LT || op==OP_Ge ); assert( pExpr->op!=TK_LE || op==OP_Gt ); assert( pExpr->op!=TK_GT || op==OP_Le ); assert( pExpr->op!=TK_GE || op==OP_Lt ); switch( pExpr->op ){ case TK_AND: case TK_OR: { Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); if( pAlt!=pExpr ){ sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); }else if( pExpr->op==TK_AND ){ testcase( jumpIfNull==0 ); sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); }else{ int d2 = sqlite3VdbeMakeLabel(pParse); testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); } break; } case TK_NOT: { testcase( jumpIfNull==0 ); sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_TRUTH: { int isNot; /* IS NOT TRUE or IS NOT FALSE */ int isTrue; /* IS TRUE or IS NOT TRUE */ testcase( jumpIfNull==0 ); isNot = pExpr->op2==TK_ISNOT; isTrue = sqlite3ExprTruthValue(pExpr->pRight); testcase( isTrue && isNot ); testcase( !isTrue && isNot ); if( isTrue ^ isNot ){ /* IS TRUE and IS NOT FALSE */ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, isNot ? 0 : SQLITE_JUMPIFNULL); }else{ /* IS FALSE and IS NOT TRUE */ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, isNot ? 0 : SQLITE_JUMPIFNULL); } break; } case TK_IS: case TK_ISNOT: testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; jumpIfNull = SQLITE_NULLEQ; /* no break */ deliberate_fall_through case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeTypeofColumn(v, r1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_IN: { if( jumpIfNull ){ sqlite3ExprCodeIN(pParse, pExpr, dest, dest); }else{ int destIfNull = sqlite3VdbeMakeLabel(pParse); sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); sqlite3VdbeResolveLabel(v, destIfNull); } break; } #endif default: { default_expr: if( ExprAlwaysFalse(pExpr) ){ sqlite3VdbeGoto(v, dest); }else if( ExprAlwaysTrue(pExpr) ){ /* no-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before ** code generation, and that copy is deleted after code generation. This ** ensures that the original pExpr is unchanged. */ SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ sqlite3 *db = pParse->db; Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); if( db->mallocFailed==0 ){ sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); } sqlite3ExprDelete(db, pCopy); } /* ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any ** type of expression. ** ** If pExpr is a simple SQL value - an integer, real, string, blob ** or NULL value - then the VDBE currently being prepared is configured ** to re-prepare each time a new value is bound to variable pVar. ** ** Additionally, if pExpr is a simple SQL value and the value is the ** same as that currently bound to variable pVar, non-zero is returned. ** Otherwise, if the values are not the same or if pExpr is not a simple ** SQL value, zero is returned. */ static int exprCompareVariable( const Parse *pParse, const Expr *pVar, const Expr *pExpr ){ int res = 0; int iVar; sqlite3_value *pL, *pR = 0; sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); if( pR ){ iVar = pVar->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); if( pL ){ if( sqlite3_value_type(pL)==SQLITE_TEXT ){ sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ } res = 0==sqlite3MemCompare(pL, pR, 0); } sqlite3ValueFree(pR); sqlite3ValueFree(pL); } return res; } /* ** Do a deep comparison of two expression trees. Return 0 if the two ** expressions are completely identical. Return 1 if they differ only ** by a COLLATE operator at the top level. Return 2 if there are differences ** other than the top-level COLLATE operator. ** ** If any subelement of pB has Expr.iTable==(-1) then it is allowed ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. ** ** The pA side might be using TK_REGISTER. If that is the case and pB is ** not using TK_REGISTER but is otherwise equivalent, then still return 0. ** ** Sometimes this routine will return 2 even if the two expressions ** really are equivalent. If we cannot prove that the expressions are ** identical, we return 2 just to be safe. So if this routine ** returns 2, then you do not really know for certain if the two ** expressions are the same. But if you get a 0 or 1 return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra 2 - that ** just might result in some slightly slower code. But returning ** an incorrect 0 or 1 could lead to a malfunction. ** ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in ** pParse->pReprepare can be matched against literals in pB. The ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. ** If pParse is NULL (the normal case) then any TK_VARIABLE term in ** Argument pParse should normally be NULL. If it is not NULL and pA or ** pB causes a return value of 2. */ SQLITE_PRIVATE int sqlite3ExprCompare( const Parse *pParse, const Expr *pA, const Expr *pB, int iTab ){ u32 combinedFlags; if( pA==0 || pB==0 ){ return pB==pA ? 0 : 2; } if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ return 0; } combinedFlags = pA->flags | pB->flags; if( combinedFlags & EP_IntValue ){ if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ return 0; } return 2; } if( pA->op!=pB->op || pA->op==TK_RAISE ){ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ return 1; } if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ return 1; } if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN && pB->iTable<0 && pA->iTable==iTab ){ /* fall through */ }else{ return 2; } } assert( !ExprHasProperty(pA, EP_IntValue) ); assert( !ExprHasProperty(pB, EP_IntValue) ); if( pA->u.zToken ){ if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; #ifndef SQLITE_OMIT_WINDOWFUNC assert( pA->op==pB->op ); if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ return 2; } if( ExprHasProperty(pA,EP_WinFunc) ){ if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ return 2; } } #endif }else if( pA->op==TK_NULL ){ return 0; }else if( pA->op==TK_COLLATE ){ if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( pB->u.zToken!=0 && pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return 2; } } if( (pA->flags & (EP_Distinct|EP_Commuted)) != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( (combinedFlags & EP_FixedCol)==0 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE && ALWAYS((combinedFlags & EP_Reduced)==0) ){ if( pA->iColumn!=pB->iColumn ) return 2; if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ return 2; } } } return 0; } /* ** Compare two ExprList objects. Return 0 if they are identical, 1 ** if they are certainly different, or 2 if it is not possible to ** determine if they are identical or not. ** ** If any subelement of pB has Expr.iTable==(-1) then it is allowed ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. ** ** This routine might return non-zero for equivalent ExprLists. The ** only consequence will be disabled optimizations. But this routine ** must never return 0 if the two ExprList objects are different, or ** a malfunction will result. ** ** Two NULL pointers are considered to be the same. But a NULL pointer ** always differs from a non-NULL pointer. */ SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ int i; if( pA==0 && pB==0 ) return 0; if( pA==0 || pB==0 ) return 1; if( pA->nExpr!=pB->nExpr ) return 1; for(i=0; inExpr; i++){ int res; Expr *pExprA = pA->a[i].pExpr; Expr *pExprB = pB->a[i].pExpr; if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; } return 0; } /* ** Like sqlite3ExprCompare() except COLLATE operators at the top-level ** are ignored. */ SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ return sqlite3ExprCompare(0, sqlite3ExprSkipCollate(pA), sqlite3ExprSkipCollate(pB), iTab); } /* ** Return non-zero if Expr p can only be true if pNN is not NULL. ** ** Or if seenNot is true, return non-zero if Expr p can only be ** non-NULL if pNN is not NULL */ static int exprImpliesNotNull( const Parse *pParse,/* Parsing context */ const Expr *p, /* The expression to be checked */ const Expr *pNN, /* The expression that is NOT NULL */ int iTab, /* Table being evaluated */ int seenNot /* Return true only if p can be any non-NULL value */ ){ assert( p ); assert( pNN ); if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ return pNN->op!=TK_NULL; } switch( p->op ){ case TK_IN: { if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } case TK_BETWEEN: { ExprList *pList; assert( ExprUseXList(p) ); pList = p->x.pList; assert( pList!=0 ); assert( pList->nExpr==2 ); if( seenNot ) return 0; if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) ){ return 1; } return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } case TK_EQ: case TK_NE: case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_PLUS: case TK_MINUS: case TK_BITOR: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: seenNot = 1; /* no break */ deliberate_fall_through case TK_STAR: case TK_REM: case TK_BITAND: case TK_SLASH: { if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; /* no break */ deliberate_fall_through } case TK_SPAN: case TK_COLLATE: case TK_UPLUS: case TK_UMINUS: { return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); } case TK_TRUTH: { if( seenNot ) return 0; if( p->op2!=TK_IS ) return 0; return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } case TK_BITNOT: case TK_NOT: { return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); } } return 0; } /* ** Return true if we can prove the pE2 will always be true if pE1 is ** true. Return false if we cannot complete the proof or if pE2 might ** be false. Examples: ** ** pE1: x==5 pE2: x==5 Result: true ** pE1: x>0 pE2: x==5 Result: false ** pE1: x=21 pE2: x=21 OR y=43 Result: true ** pE1: x!=123 pE2: x IS NOT NULL Result: true ** pE1: x!=?1 pE2: x IS NOT NULL Result: true ** pE1: x IS NULL pE2: x IS NOT NULL Result: false ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false ** ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has ** Expr.iTable<0 then assume a table number given by iTab. ** ** If pParse is not NULL, then the values of bound variables in pE1 are ** compared against literal values in pE2 and pParse->pVdbe->expmask is ** modified to record which bound variables are referenced. If pParse ** is NULL, then false will be returned if pE1 contains any bound variables. ** ** When in doubt, return false. Returning true might give a performance ** improvement. Returning false might cause a performance reduction, but ** it will always give the correct answer and is hence always safe. */ SQLITE_PRIVATE int sqlite3ExprImpliesExpr( const Parse *pParse, const Expr *pE1, const Expr *pE2, int iTab ){ if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ return 1; } if( pE2->op==TK_OR && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) ){ return 1; } if( pE2->op==TK_NOTNULL && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) ){ return 1; } return 0; } /* This is a helper function to impliesNotNullRow(). In this routine, ** set pWalker->eCode to one only if *both* of the input expressions ** separately have the implies-not-null-row property. */ static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){ if( pWalker->eCode==0 ){ sqlite3WalkExpr(pWalker, pE1); if( pWalker->eCode ){ pWalker->eCode = 0; sqlite3WalkExpr(pWalker, pE2); } } } /* ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). ** If the expression node requires that the table at pWalker->iCur ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. ** ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when ** evaluating terms in the ON clause of an inner join. ** ** This routine controls an optimization. False positives (setting ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives ** (never setting pWalker->eCode) is a harmless missed optimization. */ static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){ /* If iCur is used in an inner-join ON clause to the left of a ** RIGHT JOIN, that does *not* mean that the table must be non-null. ** But it is difficult to check for that condition precisely. ** To keep things simple, any use of iCur from any inner-join is ** ignored while attempting to simplify a RIGHT JOIN. */ return WRC_Prune; } switch( pExpr->op ){ case TK_ISNOT: case TK_ISNULL: case TK_NOTNULL: case TK_IS: case TK_VECTOR: case TK_FUNCTION: case TK_TRUTH: case TK_CASE: testcase( pExpr->op==TK_ISNOT ); testcase( pExpr->op==TK_ISNULL ); testcase( pExpr->op==TK_NOTNULL ); testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_VECTOR ); testcase( pExpr->op==TK_FUNCTION ); testcase( pExpr->op==TK_TRUTH ); testcase( pExpr->op==TK_CASE ); return WRC_Prune; case TK_COLUMN: if( pWalker->u.iCur==pExpr->iTable ){ pWalker->eCode = 1; return WRC_Abort; } return WRC_Prune; case TK_OR: case TK_AND: /* Both sides of an AND or OR must separately imply non-null-row. ** Consider these cases: ** 1. NOT (x AND y) ** 2. x OR y ** If only one of x or y is non-null-row, then the overall expression ** can be true if the other arm is false (case 1) or true (case 2). */ testcase( pExpr->op==TK_OR ); testcase( pExpr->op==TK_AND ); bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight); return WRC_Prune; case TK_IN: /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)", ** both of which can be true. But apart from these cases, if ** the left-hand side of the IN is NULL then the IN itself will be ** NULL. */ if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){ sqlite3WalkExpr(pWalker, pExpr->pLeft); } return WRC_Prune; case TK_BETWEEN: /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else ** both y and z must be non-null row */ assert( ExprUseXList(pExpr) ); assert( pExpr->x.pList->nExpr==2 ); sqlite3WalkExpr(pWalker, pExpr->pLeft); bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr, pExpr->x.pList->a[1].pExpr); return WRC_Prune; /* Virtual tables are allowed to use constraints like x=NULL. So ** a term of the form x=y does not prove that y is not null if x ** is the column of a virtual table */ case TK_EQ: case TK_NE: case TK_LT: case TK_LE: case TK_GT: case TK_GE: { Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pRight; testcase( pExpr->op==TK_EQ ); testcase( pExpr->op==TK_NE ); testcase( pExpr->op==TK_LT ); testcase( pExpr->op==TK_LE ); testcase( pExpr->op==TK_GT ); testcase( pExpr->op==TK_GE ); /* The y.pTab=0 assignment in wherecode.c always happens after the ** impliesNotNullRow() test */ assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) && IsVirtual(pLeft->y.pTab)) || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) && IsVirtual(pRight->y.pTab)) ){ return WRC_Prune; } /* no break */ deliberate_fall_through } default: return WRC_Continue; } } /* ** Return true (non-zero) if expression p can only be true if at least ** one column of table iTab is non-null. In other words, return true ** if expression p will always be NULL or false if every column of iTab ** is NULL. ** ** False negatives are acceptable. In other words, it is ok to return ** zero even if expression p will never be true of every column of iTab ** is NULL. A false negative is merely a missed optimization opportunity. ** ** False positives are not allowed, however. A false positive may result ** in an incorrect answer. ** ** Terms of p that are marked with EP_OuterON (and hence that come from ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. ** ** This routine is used to check if a LEFT JOIN can be converted into ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE ** clause requires that some column of the right table of the LEFT JOIN ** be non-NULL, then the LEFT JOIN can be safely converted into an ** ordinary join. */ SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){ Walker w; p = sqlite3ExprSkipCollateAndLikely(p); if( p==0 ) return 0; if( p->op==TK_NOTNULL ){ p = p->pLeft; }else{ while( p->op==TK_AND ){ if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1; p = p->pRight; } } w.xExprCallback = impliesNotNullRow; w.xSelectCallback = 0; w.xSelectCallback2 = 0; w.eCode = 0; w.mWFlags = isRJ!=0; w.u.iCur = iTab; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** An instance of the following structure is used by the tree walker ** to determine if an expression can be evaluated by reference to the ** index only, without having to do a search for the corresponding ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur ** is the cursor for the table. */ struct IdxCover { Index *pIdx; /* The index to be tested for coverage */ int iCur; /* Cursor number for the table corresponding to the index */ }; /* ** Check to see if there are references to columns in table ** pWalker->u.pIdxCover->iCur can be satisfied using the index ** pWalker->u.pIdxCover->pIdx. */ static int exprIdxCover(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN && pExpr->iTable==pWalker->u.pIdxCover->iCur && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 ){ pWalker->eCode = 1; return WRC_Abort; } return WRC_Continue; } /* ** Determine if an index pIdx on table with cursor iCur contains will ** the expression pExpr. Return true if the index does cover the ** expression and false if the pExpr expression references table columns ** that are not found in the index pIdx. ** ** An index covering an expression means that the expression can be ** evaluated using only the index and without having to lookup the ** corresponding table entry. */ SQLITE_PRIVATE int sqlite3ExprCoveredByIndex( Expr *pExpr, /* The index to be tested */ int iCur, /* The cursor number for the corresponding table */ Index *pIdx /* The index that might be used for coverage */ ){ Walker w; struct IdxCover xcov; memset(&w, 0, sizeof(w)); xcov.iCur = iCur; xcov.pIdx = pIdx; w.xExprCallback = exprIdxCover; w.u.pIdxCover = &xcov; sqlite3WalkExpr(&w, pExpr); return !w.eCode; } /* Structure used to pass information throughout the Walker in order to ** implement sqlite3ReferencesSrcList(). */ struct RefSrcList { sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ SrcList *pRef; /* Looking for references to these tables */ i64 nExclude; /* Number of tables to exclude from the search */ int *aiExclude; /* Cursor IDs for tables to exclude from the search */ }; /* ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). ** ** When entering a new subquery on the pExpr argument, add all FROM clause ** entries for that subquery to the exclude list. ** ** When leaving the subquery, remove those entries from the exclude list. */ static int selectRefEnter(Walker *pWalker, Select *pSelect){ struct RefSrcList *p = pWalker->u.pRefSrcList; SrcList *pSrc = pSelect->pSrc; i64 i, j; int *piNew; if( pSrc->nSrc==0 ) return WRC_Continue; j = p->nExclude; p->nExclude += pSrc->nSrc; piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); if( piNew==0 ){ p->nExclude = 0; return WRC_Abort; }else{ p->aiExclude = piNew; } for(i=0; inSrc; i++, j++){ p->aiExclude[j] = pSrc->a[i].iCursor; } return WRC_Continue; } static void selectRefLeave(Walker *pWalker, Select *pSelect){ struct RefSrcList *p = pWalker->u.pRefSrcList; SrcList *pSrc = pSelect->pSrc; if( p->nExclude ){ assert( p->nExclude>=pSrc->nSrc ); p->nExclude -= pSrc->nSrc; } } /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). ** ** Set the 0x01 bit of pWalker->eCode if there is a reference to any ** of the tables shown in RefSrcList.pRef. ** ** Set the 0x02 bit of pWalker->eCode if there is a reference to a ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. */ static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ int i; struct RefSrcList *p = pWalker->u.pRefSrcList; SrcList *pSrc = p->pRef; int nSrc = pSrc ? pSrc->nSrc : 0; for(i=0; iiTable==pSrc->a[i].iCursor ){ pWalker->eCode |= 1; return WRC_Continue; } } for(i=0; inExclude && p->aiExclude[i]!=pExpr->iTable; i++){} if( i>=p->nExclude ){ pWalker->eCode |= 2; } } return WRC_Continue; } /* ** Check to see if pExpr references any tables in pSrcList. ** Possible return values: ** ** 1 pExpr does references a table in pSrcList. ** ** 0 pExpr references some table that is not defined in either ** pSrcList or in subqueries of pExpr itself. ** ** -1 pExpr only references no tables at all, or it only ** references tables defined in subqueries of pExpr itself. ** ** As currently used, pExpr is always an aggregate function call. That ** fact is exploited for efficiency. */ SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ Walker w; struct RefSrcList x; assert( pParse->db!=0 ); memset(&w, 0, sizeof(w)); memset(&x, 0, sizeof(x)); w.xExprCallback = exprRefToSrcList; w.xSelectCallback = selectRefEnter; w.xSelectCallback2 = selectRefLeave; w.u.pRefSrcList = &x; x.db = pParse->db; x.pRef = pSrcList; assert( pExpr->op==TK_AGG_FUNCTION ); assert( ExprUseXList(pExpr) ); sqlite3WalkExprList(&w, pExpr->x.pList); if( pExpr->pLeft ){ assert( pExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pExpr->pLeft) ); assert( pExpr->pLeft->x.pList!=0 ); sqlite3WalkExprList(&w, pExpr->pLeft->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); } #endif if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); if( w.eCode & 0x01 ){ return 1; }else if( w.eCode ){ return 0; }else{ return -1; } } /* ** This is a Walker expression node callback. ** ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo ** object that is referenced does not refer directly to the Expr. If ** it does, make a copy. This is done because the pExpr argument is ** subject to change. ** ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete() ** which builds on the sqlite3ParserAddCleanup() mechanism. */ static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) && pExpr->pAggInfo!=0 ){ AggInfo *pAggInfo = pExpr->pAggInfo; int iAgg = pExpr->iAgg; Parse *pParse = pWalker->pParse; sqlite3 *db = pParse->db; assert( iAgg>=0 ); if( pExpr->op!=TK_AGG_FUNCTION ){ if( iAggnColumn && pAggInfo->aCol[iAgg].pCExpr==pExpr ){ pExpr = sqlite3ExprDup(db, pExpr, 0); if( pExpr ){ pAggInfo->aCol[iAgg].pCExpr = pExpr; sqlite3ExprDeferredDelete(pParse, pExpr); } } }else{ assert( pExpr->op==TK_AGG_FUNCTION ); if( ALWAYS(iAggnFunc) && pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ pExpr = sqlite3ExprDup(db, pExpr, 0); if( pExpr ){ pAggInfo->aFunc[iAgg].pFExpr = pExpr; sqlite3ExprDeferredDelete(pParse, pExpr); } } } } return WRC_Continue; } /* ** Initialize a Walker object so that will persist AggInfo entries referenced ** by the tree that is walked. */ SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ memset(pWalker, 0, sizeof(*pWalker)); pWalker->pParse = pParse; pWalker->xExprCallback = agginfoPersistExprCb; pWalker->xSelectCallback = sqlite3SelectWalkNoop; } /* ** Add a new element to the pAggInfo->aCol[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aCol = sqlite3ArrayAllocate( db, pInfo->aCol, sizeof(pInfo->aCol[0]), &pInfo->nColumn, &i ); return i; } /* ** Add a new element to the pAggInfo->aFunc[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aFunc = sqlite3ArrayAllocate( db, pInfo->aFunc, sizeof(pInfo->aFunc[0]), &pInfo->nFunc, &i ); return i; } /* ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn. ** Return the index in aCol[] of the entry that describes that column. ** ** If no prior entry is found, create a new one and return -1. The ** new column will have an index of pAggInfo->nColumn-1. */ static void findOrCreateAggInfoColumn( Parse *pParse, /* Parsing context */ AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */ Expr *pExpr /* Expr describing the column to find or insert */ ){ struct AggInfo_col *pCol; int k; assert( pAggInfo->iFirstReg==0 ); pCol = pAggInfo->aCol; for(k=0; knColumn; k++, pCol++){ if( pCol->pCExpr==pExpr ) return; if( pCol->iTable==pExpr->iTable && pCol->iColumn==pExpr->iColumn && pExpr->op!=TK_IF_NULL_ROW ){ goto fix_up_expr; } } k = addAggInfoColumn(pParse->db, pAggInfo); if( k<0 ){ /* OOM on resize */ assert( pParse->db->mallocFailed ); return; } pCol = &pAggInfo->aCol[k]; assert( ExprUseYTab(pExpr) ); pCol->pTab = pExpr->y.pTab; pCol->iTable = pExpr->iTable; pCol->iColumn = pExpr->iColumn; pCol->iSorterColumn = -1; pCol->pCExpr = pExpr; if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){ int j, n; ExprList *pGB = pAggInfo->pGroupBy; struct ExprList_item *pTerm = pGB->a; n = pGB->nExpr; for(j=0; jpExpr; if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && pE->iColumn==pExpr->iColumn ){ pCol->iSorterColumn = j; break; } } } if( pCol->iSorterColumn<0 ){ pCol->iSorterColumn = pAggInfo->nSortingColumn++; } fix_up_expr: ExprSetVVAProperty(pExpr, EP_NoReduce); assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo ); pExpr->pAggInfo = pAggInfo; if( pExpr->op==TK_COLUMN ){ pExpr->op = TK_AGG_COLUMN; } pExpr->iAgg = (i16)k; } /* ** This is the xExprCallback for a tree walker. It is used to ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates ** for additional information. */ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ int i; NameContext *pNC = pWalker->u.pNC; Parse *pParse = pNC->pParse; SrcList *pSrcList = pNC->pSrcList; AggInfo *pAggInfo = pNC->uNC.pAggInfo; assert( pNC->ncFlags & NC_UAggInfo ); assert( pAggInfo->iFirstReg==0 ); switch( pExpr->op ){ default: { IndexedExpr *pIEpr; Expr tmp; assert( pParse->iSelfTab==0 ); if( (pNC->ncFlags & NC_InAggFunc)==0 ) break; if( pParse->pIdxEpr==0 ) break; for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ int iDataCur = pIEpr->iDataCur; if( iDataCur<0 ) continue; if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break; } if( pIEpr==0 ) break; if( NEVER(!ExprUseYTab(pExpr)) ) break; for(i=0; inSrc; i++){ if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break; } if( i>=pSrcList->nSrc ) break; if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */ if( pParse->nErr ){ return WRC_Abort; } /* If we reach this point, it means that expression pExpr can be ** translated into a reference to an index column as described by ** pIEpr. */ memset(&tmp, 0, sizeof(tmp)); tmp.op = TK_AGG_COLUMN; tmp.iTable = pIEpr->iIdxCur; tmp.iColumn = pIEpr->iIdxCol; findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp); if( pParse->nErr ){ return WRC_Abort; } assert( pAggInfo->aCol!=0 ); assert( tmp.iAggnColumn ); pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr; pExpr->pAggInfo = pAggInfo; pExpr->iAgg = tmp.iAgg; return WRC_Prune; } case TK_IF_NULL_ROW: case TK_AGG_COLUMN: case TK_COLUMN: { testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_COLUMN ); testcase( pExpr->op==TK_IF_NULL_ROW ); /* Check to see if the column is in one of the tables in the FROM ** clause of the aggregate query */ if( ALWAYS(pSrcList!=0) ){ SrcItem *pItem = pSrcList->a; for(i=0; inSrc; i++, pItem++){ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); if( pExpr->iTable==pItem->iCursor ){ findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr); break; } /* endif pExpr->iTable==pItem->iCursor */ } /* end loop over pSrcList */ } return WRC_Continue; } case TK_AGG_FUNCTION: { if( (pNC->ncFlags & NC_InAggFunc)==0 && pWalker->walkerDepth==pExpr->op2 && pExpr->pAggInfo==0 ){ /* Check to see if pExpr is a duplicate of another aggregate ** function that is already in the pAggInfo structure */ struct AggInfo_func *pItem = pAggInfo->aFunc; for(i=0; inFunc; i++, pItem++){ if( NEVER(pItem->pFExpr==pExpr) ) break; if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ break; } } if( i>=pAggInfo->nFunc ){ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] */ u8 enc = ENC(pParse->db); i = addAggInfoFunc(pParse->db, pAggInfo); if( i>=0 ){ int nArg; assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); pItem = &pAggInfo->aFunc[i]; pItem->pFExpr = pExpr; assert( ExprUseUToken(pExpr) ); nArg = pExpr->x.pList ? pExpr->x.pList->nExpr : 0; pItem->pFunc = sqlite3FindFunction(pParse->db, pExpr->u.zToken, nArg, enc, 0); assert( pItem->bOBUnique==0 ); if( pExpr->pLeft && (pItem->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)==0 ){ /* The NEEDCOLL test above causes any ORDER BY clause on ** aggregate min() or max() to be ignored. */ ExprList *pOBList; assert( nArg>0 ); assert( pExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pExpr->pLeft) ); pItem->iOBTab = pParse->nTab++; pOBList = pExpr->pLeft->x.pList; assert( pOBList->nExpr>0 ); assert( pItem->bOBUnique==0 ); if( pOBList->nExpr==1 && nArg==1 && sqlite3ExprCompare(0,pOBList->a[0].pExpr, pExpr->x.pList->a[0].pExpr,0)==0 ){ pItem->bOBPayload = 0; pItem->bOBUnique = ExprHasProperty(pExpr, EP_Distinct); }else{ pItem->bOBPayload = 1; } pItem->bUseSubtype = (pItem->pFunc->funcFlags & SQLITE_SUBTYPE)!=0; }else{ pItem->iOBTab = -1; } if( ExprHasProperty(pExpr, EP_Distinct) && !pItem->bOBUnique ){ pItem->iDistinct = pParse->nTab++; }else{ pItem->iDistinct = -1; } } } /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry */ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(pExpr, EP_NoReduce); pExpr->iAgg = (i16)i; pExpr->pAggInfo = pAggInfo; return WRC_Prune; }else{ return WRC_Continue; } } } return WRC_Continue; } /* ** Analyze the pExpr expression looking for aggregate functions and ** for variables that need to be added to AggInfo object that pNC->pAggInfo ** points to. Additional entries are made on the AggInfo object as ** necessary. ** ** This routine should only be called after the expression has been ** analyzed by sqlite3ResolveExprNames(). */ SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ Walker w; w.xExprCallback = analyzeAggregate; w.xSelectCallback = sqlite3WalkerDepthIncrease; w.xSelectCallback2 = sqlite3WalkerDepthDecrease; w.walkerDepth = 0; w.u.pNC = pNC; w.pParse = 0; assert( pNC->pSrcList!=0 ); sqlite3WalkExpr(&w, pExpr); } /* ** Call sqlite3ExprAnalyzeAggregates() for every expression in an ** expression list. Return the number of errors. ** ** If an error is found, the analysis is cut short. */ SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ struct ExprList_item *pItem; int i; if( pList ){ for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); } } } /* ** Allocate a single new register for use to hold some intermediate result. */ SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){ if( pParse->nTempReg==0 ){ return ++pParse->nMem; } return pParse->aTempReg[--pParse->nTempReg]; } /* ** Deallocate a register, making available for reuse for some other ** purpose. */ SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ if( iReg ){ sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); if( pParse->nTempRegaTempReg) ){ pParse->aTempReg[pParse->nTempReg++] = iReg; } } } /* ** Allocate or deallocate a block of nReg consecutive registers. */ SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){ int i, n; if( nReg==1 ) return sqlite3GetTempReg(pParse); i = pParse->iRangeReg; n = pParse->nRangeReg; if( nReg<=n ){ pParse->iRangeReg += nReg; pParse->nRangeReg -= nReg; }else{ i = pParse->nMem+1; pParse->nMem += nReg; } return i; } SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, iReg); return; } sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); if( nReg>pParse->nRangeReg ){ pParse->nRangeReg = nReg; pParse->iRangeReg = iReg; } } /* ** Mark all temporary registers as being unavailable for reuse. ** ** Always invoke this procedure after coding a subroutine or co-routine ** that might be invoked from other parts of the code, to ensure that ** the sub/co-routine does not use registers in common with the code that ** invokes the sub/co-routine. */ SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){ pParse->nTempReg = 0; pParse->nRangeReg = 0; } /* ** Make sure sufficient registers have been allocated so that ** iReg is a valid register number. */ SQLITE_PRIVATE void sqlite3TouchRegister(Parse *pParse, int iReg){ if( pParse->nMemnMem = iReg; } #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG) /* ** Return the latest reusable register in the set of all registers. ** The value returned is no less than iMin. If any register iMin or ** greater is in permanent use, then return one more than that last ** permanent register. */ SQLITE_PRIVATE int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){ const ExprList *pList = pParse->pConstExpr; if( pList ){ int i; for(i=0; inExpr; i++){ if( pList->a[i].u.iConstExprReg>=iMin ){ iMin = pList->a[i].u.iConstExprReg + 1; } } } pParse->nTempReg = 0; pParse->nRangeReg = 0; return iMin; } #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */ /* ** Validate that no temporary register falls within the range of ** iFirst..iLast, inclusive. This routine is only call from within assert() ** statements. */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ int i; if( pParse->nRangeReg>0 && pParse->iRangeReg+pParse->nRangeReg > iFirst && pParse->iRangeReg <= iLast ){ return 0; } for(i=0; inTempReg; i++){ if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ return 0; } } if( pParse->pConstExpr ){ ExprList *pList = pParse->pConstExpr; for(i=0; inExpr; i++){ int iReg = pList->a[i].u.iConstExprReg; if( iReg==0 ) continue; if( iReg>=iFirst && iReg<=iLast ) return 0; } } return 1; } #endif /* SQLITE_DEBUG */ /************** End of expr.c ************************************************/ /************** Begin file alter.c *******************************************/ /* ** 2005 February 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that used to generate VDBE code ** that implements the ALTER TABLE command. */ /* #include "sqliteInt.h" */ /* ** The code in this file only exists if we are not omitting the ** ALTER TABLE logic from the build. */ #ifndef SQLITE_OMIT_ALTERTABLE /* ** Parameter zName is the name of a table that is about to be altered ** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN). ** If the table is a system table, this function leaves an error message ** in pParse->zErr (system tables may not be altered) and returns non-zero. ** ** Or, if zName is not a system table, zero is returned. */ static int isAlterableTable(Parse *pParse, Table *pTab){ if( 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) #ifndef SQLITE_OMIT_VIRTUALTABLE || (pTab->tabFlags & TF_Eponymous)!=0 || ( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(pParse->db) ) #endif ){ sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName); return 1; } return 0; } /* ** Generate code to verify that the schemas of database zDb and, if ** bTemp is not true, database "temp", can still be parsed. This is ** called at the end of the generation of an ALTER TABLE ... RENAME ... ** statement to ensure that the operation has not rendered any schema ** objects unusable. */ static void renameTestSchema( Parse *pParse, /* Parse context */ const char *zDb, /* Name of db to verify schema of */ int bTemp, /* True if this is the temp db */ const char *zWhen, /* "when" part of error message */ int bNoDQS /* Do not allow DQS in the schema */ ){ pParse->colNamesSet = 1; sqlite3NestedParse(pParse, "SELECT 1 " "FROM \"%w\"." LEGACY_SCHEMA_TABLE " " "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" " AND sqlite_rename_test(%Q, sql, type, name, %d, %Q, %d)=NULL ", zDb, zDb, bTemp, zWhen, bNoDQS ); if( bTemp==0 ){ sqlite3NestedParse(pParse, "SELECT 1 " "FROM temp." LEGACY_SCHEMA_TABLE " " "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" " AND sqlite_rename_test(%Q, sql, type, name, 1, %Q, %d)=NULL ", zDb, zWhen, bNoDQS ); } } /* ** Generate VM code to replace any double-quoted strings (but not double-quoted ** identifiers) within the "sql" column of the sqlite_schema table in ** database zDb with their single-quoted equivalents. If argument bTemp is ** not true, similarly update all SQL statements in the sqlite_schema table ** of the temp db. */ static void renameFixQuotes(Parse *pParse, const char *zDb, int bTemp){ sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET sql = sqlite_rename_quotefix(%Q, sql)" "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" , zDb, zDb ); if( bTemp==0 ){ sqlite3NestedParse(pParse, "UPDATE temp." LEGACY_SCHEMA_TABLE " SET sql = sqlite_rename_quotefix('temp', sql)" "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" " AND sql NOT LIKE 'create virtual%%'" ); } } /* ** Generate code to reload the schema for database iDb. And, if iDb!=1, for ** the temp database as well. */ static void renameReloadSchema(Parse *pParse, int iDb, u16 p5){ Vdbe *v = pParse->pVdbe; if( v ){ sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, iDb, 0, p5); if( iDb!=1 ) sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, 1, 0, p5); } } /* ** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" ** command. */ SQLITE_PRIVATE void sqlite3AlterRenameTable( Parse *pParse, /* Parser context. */ SrcList *pSrc, /* The table to rename. */ Token *pName /* The new table name. */ ){ int iDb; /* Database that contains the table */ char *zDb; /* Name of database iDb */ Table *pTab; /* Table being renamed */ char *zName = 0; /* NULL-terminated version of pName */ sqlite3 *db = pParse->db; /* Database connection */ int nTabName; /* Number of UTF-8 characters in zTabName */ const char *zTabName; /* Original name of the table */ Vdbe *v; VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */ if( NEVER(db->mallocFailed) ) goto exit_rename_table; assert( pSrc->nSrc==1 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_rename_table; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); zDb = db->aDb[iDb].zDbSName; /* Get a NULL terminated version of the new table name. */ zName = sqlite3NameFromToken(db, pName); if( !zName ) goto exit_rename_table; /* Check that a table or index named 'zName' does not already exist ** in database iDb. If so, this is an error. */ if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) || sqlite3IsShadowTableOf(db, pTab, zName) ){ sqlite3ErrorMsg(pParse, "there is already another table or index with this name: %s", zName); goto exit_rename_table; } /* Make sure it is not a system table being altered, or a reserved name ** that the table is being renamed to. */ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){ goto exit_rename_table; } if( SQLITE_OK!=sqlite3CheckObjectName(pParse,zName,"table",zName) ){ goto exit_rename_table; } #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName); goto exit_rename_table; } #endif #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ goto exit_rename_table; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto exit_rename_table; } if( IsVirtual(pTab) ){ pVTab = sqlite3GetVTable(db, pTab); if( pVTab->pVtab->pModule->xRename==0 ){ pVTab = 0; } } #endif /* Begin a transaction for database iDb. Then modify the schema cookie ** (since the ALTER TABLE modifies the schema). Call sqlite3MayAbort(), ** as the scalar functions (e.g. sqlite_rename_table()) invoked by the ** nested SQL may raise an exception. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto exit_rename_table; } sqlite3MayAbort(pParse); /* figure out how many UTF-8 characters are in zName */ zTabName = pTab->zName; nTabName = sqlite3Utf8CharLen(zTabName, -1); /* Rewrite all CREATE TABLE, INDEX, TRIGGER or VIEW statements in ** the schema to use the new table name. */ sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, %d) " "WHERE (type!='index' OR tbl_name=%Q COLLATE nocase)" "AND name NOT LIKE 'sqliteX_%%' ESCAPE 'X'" , zDb, zDb, zTabName, zName, (iDb==1), zTabName ); /* Update the tbl_name and name columns of the sqlite_schema table ** as required. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET " "tbl_name = %Q, " "name = CASE " "WHEN type='table' THEN %Q " "WHEN name LIKE 'sqliteX_autoindex%%' ESCAPE 'X' " " AND type='index' THEN " "'sqlite_autoindex_' || %Q || substr(name,%d+18) " "ELSE name END " "WHERE tbl_name=%Q COLLATE nocase AND " "(type='table' OR type='index' OR type='trigger');", zDb, zName, zName, zName, nTabName, zTabName ); #ifndef SQLITE_OMIT_AUTOINCREMENT /* If the sqlite_sequence table exists in this database, then update ** it with the new table name. */ if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){ sqlite3NestedParse(pParse, "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q", zDb, zName, pTab->zName); } #endif /* If the table being renamed is not itself part of the temp database, ** edit view and trigger definitions within the temp database ** as required. */ if( iDb!=1 ){ sqlite3NestedParse(pParse, "UPDATE sqlite_temp_schema SET " "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, 1), " "tbl_name = " "CASE WHEN tbl_name=%Q COLLATE nocase AND " " sqlite_rename_test(%Q, sql, type, name, 1, 'after rename', 0) " "THEN %Q ELSE tbl_name END " "WHERE type IN ('view', 'trigger')" , zDb, zTabName, zName, zTabName, zDb, zName); } /* If this is a virtual table, invoke the xRename() function if ** one is defined. The xRename() callback will modify the names ** of any resources used by the v-table implementation (including other ** SQLite tables) that are identified by the name of the virtual table. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( pVTab ){ int i = ++pParse->nMem; sqlite3VdbeLoadString(v, i, zName); sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB); } #endif renameReloadSchema(pParse, iDb, INITFLAG_AlterRename); renameTestSchema(pParse, zDb, iDb==1, "after rename", 0); exit_rename_table: sqlite3SrcListDelete(db, pSrc); sqlite3DbFree(db, zName); } /* ** Write code that will raise an error if the table described by ** zDb and zTab is not empty. */ static void sqlite3ErrorIfNotEmpty( Parse *pParse, /* Parsing context */ const char *zDb, /* Schema holding the table */ const char *zTab, /* Table to check for empty */ const char *zErr /* Error message text */ ){ sqlite3NestedParse(pParse, "SELECT raise(ABORT,%Q) FROM \"%w\".\"%w\"", zErr, zDb, zTab ); } /* ** This function is called after an "ALTER TABLE ... ADD" statement ** has been parsed. Argument pColDef contains the text of the new ** column definition. ** ** The Table structure pParse->pNewTable was extended to include ** the new column during parsing. */ SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ Table *pNew; /* Copy of pParse->pNewTable */ Table *pTab; /* Table being altered */ int iDb; /* Database number */ const char *zDb; /* Database name */ const char *zTab; /* Table name */ char *zCol; /* Null-terminated column definition */ Column *pCol; /* The new column */ Expr *pDflt; /* Default value for the new column */ sqlite3 *db; /* The database connection; */ Vdbe *v; /* The prepared statement under construction */ int r1; /* Temporary registers */ db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ) return; assert( db->mallocFailed==0 ); pNew = pParse->pNewTable; assert( pNew ); assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pNew->pSchema); zDb = db->aDb[iDb].zDbSName; zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */ pCol = &pNew->aCol[pNew->nCol-1]; pDflt = sqlite3ColumnExpr(pNew, pCol); pTab = sqlite3FindTable(db, zTab, zDb); assert( pTab ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ return; } #endif /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. ** If there is a NOT NULL constraint, then the default value for the ** column must not be NULL. */ if( pCol->colFlags & COLFLAG_PRIMKEY ){ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); return; } if( pNew->pIndex ){ sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); return; } if( (pCol->colFlags & COLFLAG_GENERATED)==0 ){ /* If the default value for the new column was specified with a ** literal NULL, then set pDflt to 0. This simplifies checking ** for an SQL NULL default below. */ assert( pDflt==0 || pDflt->op==TK_SPAN ); if( pDflt && pDflt->pLeft->op==TK_NULL ){ pDflt = 0; } assert( IsOrdinaryTable(pNew) ); if( (db->flags&SQLITE_ForeignKeys) && pNew->u.tab.pFKey && pDflt ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "Cannot add a REFERENCES column with non-NULL default value"); } if( pCol->notNull && !pDflt ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "Cannot add a NOT NULL column with default value NULL"); } /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal = 0; int rc; rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); if( rc!=SQLITE_OK ){ assert( db->mallocFailed == 1 ); return; } if( !pVal ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "Cannot add a column with non-constant default"); } sqlite3ValueFree(pVal); } }else if( pCol->colFlags & COLFLAG_STORED ){ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "cannot add a STORED column"); } /* Modify the CREATE TABLE statement. */ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); if( zCol ){ char *zEnd = &zCol[pColDef->n-1]; while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){ *zEnd-- = '\0'; } /* substr() operations on characters, but addColOffset is in bytes. So we ** have to use printf() to translate between these units: */ assert( IsOrdinaryTable(pTab) ); assert( IsOrdinaryTable(pNew) ); sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = printf('%%.%ds, ',sql) || %Q" " || substr(sql,1+length(printf('%%.%ds',sql))) " "WHERE type = 'table' AND name = %Q", zDb, pNew->u.tab.addColOffset, zCol, pNew->u.tab.addColOffset, zTab ); sqlite3DbFree(db, zCol); } v = sqlite3GetVdbe(pParse); if( v ){ /* Make sure the schema version is at least 3. But do not upgrade ** from less than 3 to 4, as that will corrupt any preexisting DESC ** index. */ r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v, OP_AddImm, r1, -2); sqlite3VdbeAddOp2(v, OP_IfPos, r1, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, 3); sqlite3ReleaseTempReg(pParse, r1); /* Reload the table definition */ renameReloadSchema(pParse, iDb, INITFLAG_AlterAdd); /* Verify that constraints are still satisfied */ if( pNew->pCheck!=0 || (pCol->notNull && (pCol->colFlags & COLFLAG_GENERATED)!=0) || (pTab->tabFlags & TF_Strict)!=0 ){ sqlite3NestedParse(pParse, "SELECT CASE WHEN quick_check GLOB 'CHECK*'" " THEN raise(ABORT,'CHECK constraint failed')" " WHEN quick_check GLOB 'non-* value in*'" " THEN raise(ABORT,'type mismatch on DEFAULT')" " ELSE raise(ABORT,'NOT NULL constraint failed')" " END" " FROM pragma_quick_check(%Q,%Q)" " WHERE quick_check GLOB 'CHECK*'" " OR quick_check GLOB 'NULL*'" " OR quick_check GLOB 'non-* value in*'", zTab, zDb ); } } } /* ** This function is called by the parser after the table-name in ** an "ALTER TABLE ADD" statement is parsed. Argument ** pSrc is the full-name of the table being altered. ** ** This routine makes a (partial) copy of the Table structure ** for the table being altered and sets Parse.pNewTable to point ** to it. Routines called by the parser as the column definition ** is parsed (i.e. sqlite3AddColumn()) add the new Column data to ** the copy. The copy of the Table structure is deleted by tokenize.c ** after parsing is finished. ** ** Routine sqlite3AlterFinishAddColumn() will be called to complete ** coding the "ALTER TABLE ... ADD" statement. */ SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){ Table *pNew; Table *pTab; int iDb; int i; int nAlloc; sqlite3 *db = pParse->db; /* Look up the table being altered. */ assert( pParse->pNewTable==0 ); assert( sqlite3BtreeHoldsAllMutexes(db) ); if( db->mallocFailed ) goto exit_begin_add_column; pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_begin_add_column; #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "virtual tables may not be altered"); goto exit_begin_add_column; } #endif /* Make sure this is not an attempt to ALTER a view. */ if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); goto exit_begin_add_column; } if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){ goto exit_begin_add_column; } sqlite3MayAbort(pParse); assert( IsOrdinaryTable(pTab) ); assert( pTab->u.tab.addColOffset>0 ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); /* Put a copy of the Table struct in Parse.pNewTable for the ** sqlite3AddColumn() function and friends to modify. But modify ** the name by adding an "sqlite_altertab_" prefix. By adding this ** prefix, we insure that the name will not collide with an existing ** table because user table are not allowed to have the "sqlite_" ** prefix on their name. */ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table)); if( !pNew ) goto exit_begin_add_column; pParse->pNewTable = pNew; pNew->nTabRef = 1; pNew->nCol = pTab->nCol; assert( pNew->nCol>0 ); nAlloc = (((pNew->nCol-1)/8)*8)+8; assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 ); pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc); pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName); if( !pNew->aCol || !pNew->zName ){ assert( db->mallocFailed ); goto exit_begin_add_column; } memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol); for(i=0; inCol; i++){ Column *pCol = &pNew->aCol[i]; pCol->zCnName = sqlite3DbStrDup(db, pCol->zCnName); pCol->hName = sqlite3StrIHash(pCol->zCnName); } assert( IsOrdinaryTable(pNew) ); pNew->u.tab.pDfltList = sqlite3ExprListDup(db, pTab->u.tab.pDfltList, 0); pNew->pSchema = db->aDb[iDb].pSchema; pNew->u.tab.addColOffset = pTab->u.tab.addColOffset; assert( pNew->nTabRef==1 ); exit_begin_add_column: sqlite3SrcListDelete(db, pSrc); return; } /* ** Parameter pTab is the subject of an ALTER TABLE ... RENAME COLUMN ** command. This function checks if the table is a view or virtual ** table (columns of views or virtual tables may not be renamed). If so, ** it loads an error message into pParse and returns non-zero. ** ** Or, if pTab is not a view or virtual table, zero is returned. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) static int isRealTable(Parse *pParse, Table *pTab, int bDrop){ const char *zType = 0; #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) ){ zType = "view"; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ zType = "virtual table"; } #endif if( zType ){ sqlite3ErrorMsg(pParse, "cannot %s %s \"%s\"", (bDrop ? "drop column from" : "rename columns of"), zType, pTab->zName ); return 1; } return 0; } #else /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ # define isRealTable(x,y,z) (0) #endif /* ** Handles the following parser reduction: ** ** cmd ::= ALTER TABLE pSrc RENAME COLUMN pOld TO pNew */ SQLITE_PRIVATE void sqlite3AlterRenameColumn( Parse *pParse, /* Parsing context */ SrcList *pSrc, /* Table being altered. pSrc->nSrc==1 */ Token *pOld, /* Name of column being changed */ Token *pNew /* New column name */ ){ sqlite3 *db = pParse->db; /* Database connection */ Table *pTab; /* Table being updated */ int iCol; /* Index of column being renamed */ char *zOld = 0; /* Old column name */ char *zNew = 0; /* New column name */ const char *zDb; /* Name of schema containing the table */ int iSchema; /* Index of the schema */ int bQuote; /* True to quote the new name */ /* Locate the table to be altered */ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_rename_column; /* Cannot alter a system table */ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_rename_column; if( SQLITE_OK!=isRealTable(pParse, pTab, 0) ) goto exit_rename_column; /* Which schema holds the table to be altered */ iSchema = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iSchema>=0 ); zDb = db->aDb[iSchema].zDbSName; #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ goto exit_rename_column; } #endif /* Make sure the old name really is a column name in the table to be ** altered. Set iCol to be the index of the column being renamed */ zOld = sqlite3NameFromToken(db, pOld); if( !zOld ) goto exit_rename_column; for(iCol=0; iColnCol; iCol++){ if( 0==sqlite3StrICmp(pTab->aCol[iCol].zCnName, zOld) ) break; } if( iCol==pTab->nCol ){ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pOld); goto exit_rename_column; } /* Ensure the schema contains no double-quoted strings */ renameTestSchema(pParse, zDb, iSchema==1, "", 0); renameFixQuotes(pParse, zDb, iSchema==1); /* Do the rename operation using a recursive UPDATE statement that ** uses the sqlite_rename_column() SQL function to compute the new ** CREATE statement text for the sqlite_schema table. */ sqlite3MayAbort(pParse); zNew = sqlite3NameFromToken(db, pNew); if( !zNew ) goto exit_rename_column; assert( pNew->n>0 ); bQuote = sqlite3Isquote(pNew->z[0]); sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, %d) " "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X' " " AND (type != 'index' OR tbl_name = %Q)", zDb, zDb, pTab->zName, iCol, zNew, bQuote, iSchema==1, pTab->zName ); sqlite3NestedParse(pParse, "UPDATE temp." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, 1) " "WHERE type IN ('trigger', 'view')", zDb, pTab->zName, iCol, zNew, bQuote ); /* Drop and reload the database schema. */ renameReloadSchema(pParse, iSchema, INITFLAG_AlterRename); renameTestSchema(pParse, zDb, iSchema==1, "after rename", 1); exit_rename_column: sqlite3SrcListDelete(db, pSrc); sqlite3DbFree(db, zOld); sqlite3DbFree(db, zNew); return; } /* ** Each RenameToken object maps an element of the parse tree into ** the token that generated that element. The parse tree element ** might be one of: ** ** * A pointer to an Expr that represents an ID ** * The name of a table column in Column.zName ** ** A list of RenameToken objects can be constructed during parsing. ** Each new object is created by sqlite3RenameTokenMap(). ** As the parse tree is transformed, the sqlite3RenameTokenRemap() ** routine is used to keep the mapping current. ** ** After the parse finishes, renameTokenFind() routine can be used ** to look up the actual token value that created some element in ** the parse tree. */ struct RenameToken { const void *p; /* Parse tree element created by token t */ Token t; /* The token that created parse tree element p */ RenameToken *pNext; /* Next is a list of all RenameToken objects */ }; /* ** The context of an ALTER TABLE RENAME COLUMN operation that gets passed ** down into the Walker. */ typedef struct RenameCtx RenameCtx; struct RenameCtx { RenameToken *pList; /* List of tokens to overwrite */ int nList; /* Number of tokens in pList */ int iCol; /* Index of column being renamed */ Table *pTab; /* Table being ALTERed */ const char *zOld; /* Old column name */ }; #ifdef SQLITE_DEBUG /* ** This function is only for debugging. It performs two tasks: ** ** 1. Checks that pointer pPtr does not already appear in the ** rename-token list. ** ** 2. Dereferences each pointer in the rename-token list. ** ** The second is most effective when debugging under valgrind or ** address-sanitizer or similar. If any of these pointers no longer ** point to valid objects, an exception is raised by the memory-checking ** tool. ** ** The point of this is to prevent comparisons of invalid pointer values. ** Even though this always seems to work, it is undefined according to the ** C standard. Example of undefined comparison: ** ** sqlite3_free(x); ** if( x==y ) ... ** ** Technically, as x no longer points into a valid object or to the byte ** following a valid object, it may not be used in comparison operations. */ static void renameTokenCheckAll(Parse *pParse, const void *pPtr){ assert( pParse==pParse->db->pParse ); assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); if( pParse->nErr==0 ){ const RenameToken *p; u32 i = 1; for(p=pParse->pRename; p; p=p->pNext){ if( p->p ){ assert( p->p!=pPtr ); i += *(u8*)(p->p) | 1; } } assert( i>0 ); } } #else # define renameTokenCheckAll(x,y) #endif /* ** Remember that the parser tree element pPtr was created using ** the token pToken. ** ** In other words, construct a new RenameToken object and add it ** to the list of RenameToken objects currently being built up ** in pParse->pRename. ** ** The pPtr argument is returned so that this routine can be used ** with tail recursion in tokenExpr() routine, for a small performance ** improvement. */ SQLITE_PRIVATE const void *sqlite3RenameTokenMap( Parse *pParse, const void *pPtr, const Token *pToken ){ RenameToken *pNew; assert( pPtr || pParse->db->mallocFailed ); renameTokenCheckAll(pParse, pPtr); if( ALWAYS(pParse->eParseMode!=PARSE_MODE_UNMAP) ){ pNew = sqlite3DbMallocZero(pParse->db, sizeof(RenameToken)); if( pNew ){ pNew->p = pPtr; pNew->t = *pToken; pNew->pNext = pParse->pRename; pParse->pRename = pNew; } } return pPtr; } /* ** It is assumed that there is already a RenameToken object associated ** with parse tree element pFrom. This function remaps the associated token ** to parse tree element pTo. */ SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse *pParse, const void *pTo, const void *pFrom){ RenameToken *p; renameTokenCheckAll(pParse, pTo); for(p=pParse->pRename; p; p=p->pNext){ if( p->p==pFrom ){ p->p = pTo; break; } } } /* ** Walker callback used by sqlite3RenameExprUnmap(). */ static int renameUnmapExprCb(Walker *pWalker, Expr *pExpr){ Parse *pParse = pWalker->pParse; sqlite3RenameTokenRemap(pParse, 0, (const void*)pExpr); if( ExprUseYTab(pExpr) ){ sqlite3RenameTokenRemap(pParse, 0, (const void*)&pExpr->y.pTab); } return WRC_Continue; } /* ** Iterate through the Select objects that are part of WITH clauses attached ** to select statement pSelect. */ static void renameWalkWith(Walker *pWalker, Select *pSelect){ With *pWith = pSelect->pWith; if( pWith ){ Parse *pParse = pWalker->pParse; int i; With *pCopy = 0; assert( pWith->nCte>0 ); if( (pWith->a[0].pSelect->selFlags & SF_Expanded)==0 ){ /* Push a copy of the With object onto the with-stack. We use a copy ** here as the original will be expanded and resolved (flags SF_Expanded ** and SF_Resolved) below. And the parser code that uses the with-stack ** fails if the Select objects on it have already been expanded and ** resolved. */ pCopy = sqlite3WithDup(pParse->db, pWith); pCopy = sqlite3WithPush(pParse, pCopy, 1); } for(i=0; inCte; i++){ Select *p = pWith->a[i].pSelect; NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; if( pCopy ) sqlite3SelectPrep(sNC.pParse, p, &sNC); if( sNC.pParse->db->mallocFailed ) return; sqlite3WalkSelect(pWalker, p); sqlite3RenameExprlistUnmap(pParse, pWith->a[i].pCols); } if( pCopy && pParse->pWith==pCopy ){ pParse->pWith = pCopy->pOuter; } } } /* ** Unmap all tokens in the IdList object passed as the second argument. */ static void unmapColumnIdlistNames( Parse *pParse, const IdList *pIdList ){ int ii; assert( pIdList!=0 ); for(ii=0; iinId; ii++){ sqlite3RenameTokenRemap(pParse, 0, (const void*)pIdList->a[ii].zName); } } /* ** Walker callback used by sqlite3RenameExprUnmap(). */ static int renameUnmapSelectCb(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; int i; if( pParse->nErr ) return WRC_Abort; testcase( p->selFlags & SF_View ); testcase( p->selFlags & SF_CopyCte ); if( p->selFlags & (SF_View|SF_CopyCte) ){ return WRC_Prune; } if( ALWAYS(p->pEList) ){ ExprList *pList = p->pEList; for(i=0; inExpr; i++){ if( pList->a[i].zEName && pList->a[i].fg.eEName==ENAME_NAME ){ sqlite3RenameTokenRemap(pParse, 0, (void*)pList->a[i].zEName); } } } if( ALWAYS(p->pSrc) ){ /* Every Select as a SrcList, even if it is empty */ SrcList *pSrc = p->pSrc; for(i=0; inSrc; i++){ sqlite3RenameTokenRemap(pParse, 0, (void*)pSrc->a[i].zName); if( pSrc->a[i].fg.isUsing==0 ){ sqlite3WalkExpr(pWalker, pSrc->a[i].u3.pOn); }else{ unmapColumnIdlistNames(pParse, pSrc->a[i].u3.pUsing); } } } renameWalkWith(pWalker, p); return WRC_Continue; } /* ** Remove all nodes that are part of expression pExpr from the rename list. */ SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse *pParse, Expr *pExpr){ u8 eMode = pParse->eParseMode; Walker sWalker; memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = pParse; sWalker.xExprCallback = renameUnmapExprCb; sWalker.xSelectCallback = renameUnmapSelectCb; pParse->eParseMode = PARSE_MODE_UNMAP; sqlite3WalkExpr(&sWalker, pExpr); pParse->eParseMode = eMode; } /* ** Remove all nodes that are part of expression-list pEList from the ** rename list. */ SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse *pParse, ExprList *pEList){ if( pEList ){ int i; Walker sWalker; memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = pParse; sWalker.xExprCallback = renameUnmapExprCb; sqlite3WalkExprList(&sWalker, pEList); for(i=0; inExpr; i++){ if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME) ){ sqlite3RenameTokenRemap(pParse, 0, (void*)pEList->a[i].zEName); } } } } /* ** Free the list of RenameToken objects given in the second argument */ static void renameTokenFree(sqlite3 *db, RenameToken *pToken){ RenameToken *pNext; RenameToken *p; for(p=pToken; p; p=pNext){ pNext = p->pNext; sqlite3DbFree(db, p); } } /* ** Search the Parse object passed as the first argument for a RenameToken ** object associated with parse tree element pPtr. If found, return a pointer ** to it. Otherwise, return NULL. ** ** If the second argument passed to this function is not NULL and a matching ** RenameToken object is found, remove it from the Parse object and add it to ** the list maintained by the RenameCtx object. */ static RenameToken *renameTokenFind( Parse *pParse, struct RenameCtx *pCtx, const void *pPtr ){ RenameToken **pp; if( NEVER(pPtr==0) ){ return 0; } for(pp=&pParse->pRename; (*pp); pp=&(*pp)->pNext){ if( (*pp)->p==pPtr ){ RenameToken *pToken = *pp; if( pCtx ){ *pp = pToken->pNext; pToken->pNext = pCtx->pList; pCtx->pList = pToken; pCtx->nList++; } return pToken; } } return 0; } /* ** This is a Walker select callback. It does nothing. It is only required ** because without a dummy callback, sqlite3WalkExpr() and similar do not ** descend into sub-select statements. */ static int renameColumnSelectCb(Walker *pWalker, Select *p){ if( p->selFlags & (SF_View|SF_CopyCte) ){ testcase( p->selFlags & SF_View ); testcase( p->selFlags & SF_CopyCte ); return WRC_Prune; } renameWalkWith(pWalker, p); return WRC_Continue; } /* ** This is a Walker expression callback. ** ** For every TK_COLUMN node in the expression tree, search to see ** if the column being references is the column being renamed by an ** ALTER TABLE statement. If it is, then attach its associated ** RenameToken object to the list of RenameToken objects being ** constructed in RenameCtx object at pWalker->u.pRename. */ static int renameColumnExprCb(Walker *pWalker, Expr *pExpr){ RenameCtx *p = pWalker->u.pRename; if( pExpr->op==TK_TRIGGER && pExpr->iColumn==p->iCol && pWalker->pParse->pTriggerTab==p->pTab ){ renameTokenFind(pWalker->pParse, p, (void*)pExpr); }else if( pExpr->op==TK_COLUMN && pExpr->iColumn==p->iCol && ALWAYS(ExprUseYTab(pExpr)) && p->pTab==pExpr->y.pTab ){ renameTokenFind(pWalker->pParse, p, (void*)pExpr); } return WRC_Continue; } /* ** The RenameCtx contains a list of tokens that reference a column that ** is being renamed by an ALTER TABLE statement. Return the "last" ** RenameToken in the RenameCtx and remove that RenameToken from the ** RenameContext. "Last" means the last RenameToken encountered when ** the input SQL is parsed from left to right. Repeated calls to this routine ** return all column name tokens in the order that they are encountered ** in the SQL statement. */ static RenameToken *renameColumnTokenNext(RenameCtx *pCtx){ RenameToken *pBest = pCtx->pList; RenameToken *pToken; RenameToken **pp; for(pToken=pBest->pNext; pToken; pToken=pToken->pNext){ if( pToken->t.z>pBest->t.z ) pBest = pToken; } for(pp=&pCtx->pList; *pp!=pBest; pp=&(*pp)->pNext); *pp = pBest->pNext; return pBest; } /* ** An error occurred while parsing or otherwise processing a database ** object (either pParse->pNewTable, pNewIndex or pNewTrigger) as part of an ** ALTER TABLE RENAME COLUMN program. The error message emitted by the ** sub-routine is currently stored in pParse->zErrMsg. This function ** adds context to the error message and then stores it in pCtx. */ static void renameColumnParseError( sqlite3_context *pCtx, const char *zWhen, sqlite3_value *pType, sqlite3_value *pObject, Parse *pParse ){ const char *zT = (const char*)sqlite3_value_text(pType); const char *zN = (const char*)sqlite3_value_text(pObject); char *zErr; zErr = sqlite3MPrintf(pParse->db, "error in %s %s%s%s: %s", zT, zN, (zWhen[0] ? " " : ""), zWhen, pParse->zErrMsg ); sqlite3_result_error(pCtx, zErr, -1); sqlite3DbFree(pParse->db, zErr); } /* ** For each name in the the expression-list pEList (i.e. each ** pEList->a[i].zName) that matches the string in zOld, extract the ** corresponding rename-token from Parse object pParse and add it ** to the RenameCtx pCtx. */ static void renameColumnElistNames( Parse *pParse, RenameCtx *pCtx, const ExprList *pEList, const char *zOld ){ if( pEList ){ int i; for(i=0; inExpr; i++){ const char *zName = pEList->a[i].zEName; if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME) && ALWAYS(zName!=0) && 0==sqlite3_stricmp(zName, zOld) ){ renameTokenFind(pParse, pCtx, (const void*)zName); } } } } /* ** For each name in the the id-list pIdList (i.e. each pIdList->a[i].zName) ** that matches the string in zOld, extract the corresponding rename-token ** from Parse object pParse and add it to the RenameCtx pCtx. */ static void renameColumnIdlistNames( Parse *pParse, RenameCtx *pCtx, const IdList *pIdList, const char *zOld ){ if( pIdList ){ int i; for(i=0; inId; i++){ const char *zName = pIdList->a[i].zName; if( 0==sqlite3_stricmp(zName, zOld) ){ renameTokenFind(pParse, pCtx, (const void*)zName); } } } } /* ** Parse the SQL statement zSql using Parse object (*p). The Parse object ** is initialized by this function before it is used. */ static int renameParseSql( Parse *p, /* Memory to use for Parse object */ const char *zDb, /* Name of schema SQL belongs to */ sqlite3 *db, /* Database handle */ const char *zSql, /* SQL to parse */ int bTemp /* True if SQL is from temp schema */ ){ int rc; sqlite3ParseObjectInit(p, db); if( zSql==0 ){ return SQLITE_NOMEM; } if( sqlite3StrNICmp(zSql,"CREATE ",7)!=0 ){ return SQLITE_CORRUPT_BKPT; } db->init.iDb = bTemp ? 1 : sqlite3FindDbName(db, zDb); p->eParseMode = PARSE_MODE_RENAME; p->db = db; p->nQueryLoop = 1; rc = sqlite3RunParser(p, zSql); if( db->mallocFailed ) rc = SQLITE_NOMEM; if( rc==SQLITE_OK && NEVER(p->pNewTable==0 && p->pNewIndex==0 && p->pNewTrigger==0) ){ rc = SQLITE_CORRUPT_BKPT; } #ifdef SQLITE_DEBUG /* Ensure that all mappings in the Parse.pRename list really do map to ** a part of the input string. */ if( rc==SQLITE_OK ){ int nSql = sqlite3Strlen30(zSql); RenameToken *pToken; for(pToken=p->pRename; pToken; pToken=pToken->pNext){ assert( pToken->t.z>=zSql && &pToken->t.z[pToken->t.n]<=&zSql[nSql] ); } } #endif db->init.iDb = 0; return rc; } /* ** This function edits SQL statement zSql, replacing each token identified ** by the linked list pRename with the text of zNew. If argument bQuote is ** true, then zNew is always quoted first. If no error occurs, the result ** is loaded into context object pCtx as the result. ** ** Or, if an error occurs (i.e. an OOM condition), an error is left in ** pCtx and an SQLite error code returned. */ static int renameEditSql( sqlite3_context *pCtx, /* Return result here */ RenameCtx *pRename, /* Rename context */ const char *zSql, /* SQL statement to edit */ const char *zNew, /* New token text */ int bQuote /* True to always quote token */ ){ i64 nNew = sqlite3Strlen30(zNew); i64 nSql = sqlite3Strlen30(zSql); sqlite3 *db = sqlite3_context_db_handle(pCtx); int rc = SQLITE_OK; char *zQuot = 0; char *zOut; i64 nQuot = 0; char *zBuf1 = 0; char *zBuf2 = 0; if( zNew ){ /* Set zQuot to point to a buffer containing a quoted copy of the ** identifier zNew. If the corresponding identifier in the original ** ALTER TABLE statement was quoted (bQuote==1), then set zNew to ** point to zQuot so that all substitutions are made using the ** quoted version of the new column name. */ zQuot = sqlite3MPrintf(db, "\"%w\" ", zNew); if( zQuot==0 ){ return SQLITE_NOMEM; }else{ nQuot = sqlite3Strlen30(zQuot)-1; } assert( nQuot>=nNew ); zOut = sqlite3DbMallocZero(db, nSql + pRename->nList*nQuot + 1); }else{ zOut = (char*)sqlite3DbMallocZero(db, (nSql*2+1) * 3); if( zOut ){ zBuf1 = &zOut[nSql*2+1]; zBuf2 = &zOut[nSql*4+2]; } } /* At this point pRename->pList contains a list of RenameToken objects ** corresponding to all tokens in the input SQL that must be replaced ** with the new column name, or with single-quoted versions of themselves. ** All that remains is to construct and return the edited SQL string. */ if( zOut ){ int nOut = nSql; memcpy(zOut, zSql, nSql); while( pRename->pList ){ int iOff; /* Offset of token to replace in zOut */ u32 nReplace; const char *zReplace; RenameToken *pBest = renameColumnTokenNext(pRename); if( zNew ){ if( bQuote==0 && sqlite3IsIdChar(*pBest->t.z) ){ nReplace = nNew; zReplace = zNew; }else{ nReplace = nQuot; zReplace = zQuot; if( pBest->t.z[pBest->t.n]=='"' ) nReplace++; } }else{ /* Dequote the double-quoted token. Then requote it again, this time ** using single quotes. If the character immediately following the ** original token within the input SQL was a single quote ('), then ** add another space after the new, single-quoted version of the ** token. This is so that (SELECT "string"'alias') maps to ** (SELECT 'string' 'alias'), and not (SELECT 'string''alias'). */ memcpy(zBuf1, pBest->t.z, pBest->t.n); zBuf1[pBest->t.n] = 0; sqlite3Dequote(zBuf1); sqlite3_snprintf(nSql*2, zBuf2, "%Q%s", zBuf1, pBest->t.z[pBest->t.n]=='\'' ? " " : "" ); zReplace = zBuf2; nReplace = sqlite3Strlen30(zReplace); } iOff = pBest->t.z - zSql; if( pBest->t.n!=nReplace ){ memmove(&zOut[iOff + nReplace], &zOut[iOff + pBest->t.n], nOut - (iOff + pBest->t.n) ); nOut += nReplace - pBest->t.n; zOut[nOut] = '\0'; } memcpy(&zOut[iOff], zReplace, nReplace); sqlite3DbFree(db, pBest); } sqlite3_result_text(pCtx, zOut, -1, SQLITE_TRANSIENT); sqlite3DbFree(db, zOut); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zQuot); return rc; } /* ** Set all pEList->a[].fg.eEName fields in the expression-list to val. */ static void renameSetENames(ExprList *pEList, int val){ if( pEList ){ int i; for(i=0; inExpr; i++){ assert( val==ENAME_NAME || pEList->a[i].fg.eEName==ENAME_NAME ); pEList->a[i].fg.eEName = val; } } } /* ** Resolve all symbols in the trigger at pParse->pNewTrigger, assuming ** it was read from the schema of database zDb. Return SQLITE_OK if ** successful. Otherwise, return an SQLite error code and leave an error ** message in the Parse object. */ static int renameResolveTrigger(Parse *pParse){ sqlite3 *db = pParse->db; Trigger *pNew = pParse->pNewTrigger; TriggerStep *pStep; NameContext sNC; int rc = SQLITE_OK; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; assert( pNew->pTabSchema ); pParse->pTriggerTab = sqlite3FindTable(db, pNew->table, db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName ); pParse->eTriggerOp = pNew->op; /* ALWAYS() because if the table of the trigger does not exist, the ** error would have been hit before this point */ if( ALWAYS(pParse->pTriggerTab) ){ rc = sqlite3ViewGetColumnNames(pParse, pParse->pTriggerTab); } /* Resolve symbols in WHEN clause */ if( rc==SQLITE_OK && pNew->pWhen ){ rc = sqlite3ResolveExprNames(&sNC, pNew->pWhen); } for(pStep=pNew->step_list; rc==SQLITE_OK && pStep; pStep=pStep->pNext){ if( pStep->pSelect ){ sqlite3SelectPrep(pParse, pStep->pSelect, &sNC); if( pParse->nErr ) rc = pParse->rc; } if( rc==SQLITE_OK && pStep->zTarget ){ SrcList *pSrc = sqlite3TriggerStepSrc(pParse, pStep); if( pSrc ){ Select *pSel = sqlite3SelectNew( pParse, pStep->pExprList, pSrc, 0, 0, 0, 0, 0, 0 ); if( pSel==0 ){ pStep->pExprList = 0; pSrc = 0; rc = SQLITE_NOMEM; }else{ /* pStep->pExprList contains an expression-list used for an UPDATE ** statement. So the a[].zEName values are the RHS of the ** "= " clauses of the UPDATE statement. So, before ** running SelectPrep(), change all the eEName values in ** pStep->pExprList to ENAME_SPAN (from their current value of ** ENAME_NAME). This is to prevent any ids in ON() clauses that are ** part of pSrc from being incorrectly resolved against the ** a[].zEName values as if they were column aliases. */ renameSetENames(pStep->pExprList, ENAME_SPAN); sqlite3SelectPrep(pParse, pSel, 0); renameSetENames(pStep->pExprList, ENAME_NAME); rc = pParse->nErr ? SQLITE_ERROR : SQLITE_OK; assert( pStep->pExprList==0 || pStep->pExprList==pSel->pEList ); assert( pSrc==pSel->pSrc ); if( pStep->pExprList ) pSel->pEList = 0; pSel->pSrc = 0; sqlite3SelectDelete(db, pSel); } if( pStep->pFrom ){ int i; for(i=0; ipFrom->nSrc && rc==SQLITE_OK; i++){ SrcItem *p = &pStep->pFrom->a[i]; if( p->pSelect ){ sqlite3SelectPrep(pParse, p->pSelect, 0); } } } if( db->mallocFailed ){ rc = SQLITE_NOMEM; } sNC.pSrcList = pSrc; if( rc==SQLITE_OK && pStep->pWhere ){ rc = sqlite3ResolveExprNames(&sNC, pStep->pWhere); } if( rc==SQLITE_OK ){ rc = sqlite3ResolveExprListNames(&sNC, pStep->pExprList); } assert( !pStep->pUpsert || (!pStep->pWhere && !pStep->pExprList) ); if( pStep->pUpsert && rc==SQLITE_OK ){ Upsert *pUpsert = pStep->pUpsert; pUpsert->pUpsertSrc = pSrc; sNC.uNC.pUpsert = pUpsert; sNC.ncFlags = NC_UUpsert; rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget); if( rc==SQLITE_OK ){ ExprList *pUpsertSet = pUpsert->pUpsertSet; rc = sqlite3ResolveExprListNames(&sNC, pUpsertSet); } if( rc==SQLITE_OK ){ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertWhere); } if( rc==SQLITE_OK ){ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere); } sNC.ncFlags = 0; } sNC.pSrcList = 0; sqlite3SrcListDelete(db, pSrc); }else{ rc = SQLITE_NOMEM; } } } return rc; } /* ** Invoke sqlite3WalkExpr() or sqlite3WalkSelect() on all Select or Expr ** objects that are part of the trigger passed as the second argument. */ static void renameWalkTrigger(Walker *pWalker, Trigger *pTrigger){ TriggerStep *pStep; /* Find tokens to edit in WHEN clause */ sqlite3WalkExpr(pWalker, pTrigger->pWhen); /* Find tokens to edit in trigger steps */ for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){ sqlite3WalkSelect(pWalker, pStep->pSelect); sqlite3WalkExpr(pWalker, pStep->pWhere); sqlite3WalkExprList(pWalker, pStep->pExprList); if( pStep->pUpsert ){ Upsert *pUpsert = pStep->pUpsert; sqlite3WalkExprList(pWalker, pUpsert->pUpsertTarget); sqlite3WalkExprList(pWalker, pUpsert->pUpsertSet); sqlite3WalkExpr(pWalker, pUpsert->pUpsertWhere); sqlite3WalkExpr(pWalker, pUpsert->pUpsertTargetWhere); } if( pStep->pFrom ){ int i; for(i=0; ipFrom->nSrc; i++){ sqlite3WalkSelect(pWalker, pStep->pFrom->a[i].pSelect); } } } } /* ** Free the contents of Parse object (*pParse). Do not free the memory ** occupied by the Parse object itself. */ static void renameParseCleanup(Parse *pParse){ sqlite3 *db = pParse->db; Index *pIdx; if( pParse->pVdbe ){ sqlite3VdbeFinalize(pParse->pVdbe); } sqlite3DeleteTable(db, pParse->pNewTable); while( (pIdx = pParse->pNewIndex)!=0 ){ pParse->pNewIndex = pIdx->pNext; sqlite3FreeIndex(db, pIdx); } sqlite3DeleteTrigger(db, pParse->pNewTrigger); sqlite3DbFree(db, pParse->zErrMsg); renameTokenFree(db, pParse->pRename); sqlite3ParseObjectReset(pParse); } /* ** SQL function: ** ** sqlite_rename_column(SQL,TYPE,OBJ,DB,TABLE,COL,NEWNAME,QUOTE,TEMP) ** ** 0. zSql: SQL statement to rewrite ** 1. type: Type of object ("table", "view" etc.) ** 2. object: Name of object ** 3. Database: Database name (e.g. "main") ** 4. Table: Table name ** 5. iCol: Index of column to rename ** 6. zNew: New column name ** 7. bQuote: Non-zero if the new column name should be quoted. ** 8. bTemp: True if zSql comes from temp schema ** ** Do a column rename operation on the CREATE statement given in zSql. ** The iCol-th column (left-most is 0) of table zTable is renamed from zCol ** into zNew. The name should be quoted if bQuote is true. ** ** This function is used internally by the ALTER TABLE RENAME COLUMN command. ** It is only accessible to SQL created using sqlite3NestedParse(). It is ** not reachable from ordinary SQL passed into sqlite3_prepare() unless the ** SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test setting is enabled. */ static void renameColumnFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); RenameCtx sCtx; const char *zSql = (const char*)sqlite3_value_text(argv[0]); const char *zDb = (const char*)sqlite3_value_text(argv[3]); const char *zTable = (const char*)sqlite3_value_text(argv[4]); int iCol = sqlite3_value_int(argv[5]); const char *zNew = (const char*)sqlite3_value_text(argv[6]); int bQuote = sqlite3_value_int(argv[7]); int bTemp = sqlite3_value_int(argv[8]); const char *zOld; int rc; Parse sParse; Walker sWalker; Index *pIdx; int i; Table *pTab; #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; #endif UNUSED_PARAMETER(NotUsed); if( zSql==0 ) return; if( zTable==0 ) return; if( zNew==0 ) return; if( iCol<0 ) return; sqlite3BtreeEnterAll(db); pTab = sqlite3FindTable(db, zTable, zDb); if( pTab==0 || iCol>=pTab->nCol ){ sqlite3BtreeLeaveAll(db); return; } zOld = pTab->aCol[iCol].zCnName; memset(&sCtx, 0, sizeof(sCtx)); sCtx.iCol = ((iCol==pTab->iPKey) ? -1 : iCol); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = 0; #endif rc = renameParseSql(&sParse, zDb, db, zSql, bTemp); /* Find tokens that need to be replaced. */ memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = &sParse; sWalker.xExprCallback = renameColumnExprCb; sWalker.xSelectCallback = renameColumnSelectCb; sWalker.u.pRename = &sCtx; sCtx.pTab = pTab; if( rc!=SQLITE_OK ) goto renameColumnFunc_done; if( sParse.pNewTable ){ if( IsView(sParse.pNewTable) ){ Select *pSelect = sParse.pNewTable->u.view.pSelect; pSelect->selFlags &= ~SF_View; sParse.rc = SQLITE_OK; sqlite3SelectPrep(&sParse, pSelect, 0); rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc); if( rc==SQLITE_OK ){ sqlite3WalkSelect(&sWalker, pSelect); } if( rc!=SQLITE_OK ) goto renameColumnFunc_done; }else if( IsOrdinaryTable(sParse.pNewTable) ){ /* A regular table */ int bFKOnly = sqlite3_stricmp(zTable, sParse.pNewTable->zName); FKey *pFKey; sCtx.pTab = sParse.pNewTable; if( bFKOnly==0 ){ if( iColnCol ){ renameTokenFind( &sParse, &sCtx, (void*)sParse.pNewTable->aCol[iCol].zCnName ); } if( sCtx.iCol<0 ){ renameTokenFind(&sParse, &sCtx, (void*)&sParse.pNewTable->iPKey); } sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck); for(pIdx=sParse.pNewTable->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3WalkExprList(&sWalker, pIdx->aColExpr); } for(pIdx=sParse.pNewIndex; pIdx; pIdx=pIdx->pNext){ sqlite3WalkExprList(&sWalker, pIdx->aColExpr); } #ifndef SQLITE_OMIT_GENERATED_COLUMNS for(i=0; inCol; i++){ Expr *pExpr = sqlite3ColumnExpr(sParse.pNewTable, &sParse.pNewTable->aCol[i]); sqlite3WalkExpr(&sWalker, pExpr); } #endif } assert( IsOrdinaryTable(sParse.pNewTable) ); for(pFKey=sParse.pNewTable->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ for(i=0; inCol; i++){ if( bFKOnly==0 && pFKey->aCol[i].iFrom==iCol ){ renameTokenFind(&sParse, &sCtx, (void*)&pFKey->aCol[i]); } if( 0==sqlite3_stricmp(pFKey->zTo, zTable) && 0==sqlite3_stricmp(pFKey->aCol[i].zCol, zOld) ){ renameTokenFind(&sParse, &sCtx, (void*)pFKey->aCol[i].zCol); } } } } }else if( sParse.pNewIndex ){ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr); sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere); }else{ /* A trigger */ TriggerStep *pStep; rc = renameResolveTrigger(&sParse); if( rc!=SQLITE_OK ) goto renameColumnFunc_done; for(pStep=sParse.pNewTrigger->step_list; pStep; pStep=pStep->pNext){ if( pStep->zTarget ){ Table *pTarget = sqlite3LocateTable(&sParse, 0, pStep->zTarget, zDb); if( pTarget==pTab ){ if( pStep->pUpsert ){ ExprList *pUpsertSet = pStep->pUpsert->pUpsertSet; renameColumnElistNames(&sParse, &sCtx, pUpsertSet, zOld); } renameColumnIdlistNames(&sParse, &sCtx, pStep->pIdList, zOld); renameColumnElistNames(&sParse, &sCtx, pStep->pExprList, zOld); } } } /* Find tokens to edit in UPDATE OF clause */ if( sParse.pTriggerTab==pTab ){ renameColumnIdlistNames(&sParse, &sCtx,sParse.pNewTrigger->pColumns,zOld); } /* Find tokens to edit in various expressions and selects */ renameWalkTrigger(&sWalker, sParse.pNewTrigger); } assert( rc==SQLITE_OK ); rc = renameEditSql(context, &sCtx, zSql, zNew, bQuote); renameColumnFunc_done: if( rc!=SQLITE_OK ){ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){ sqlite3_result_value(context, argv[0]); }else if( sParse.zErrMsg ){ renameColumnParseError(context, "", argv[1], argv[2], &sParse); }else{ sqlite3_result_error_code(context, rc); } } renameParseCleanup(&sParse); renameTokenFree(db, sCtx.pList); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif sqlite3BtreeLeaveAll(db); } /* ** Walker expression callback used by "RENAME TABLE". */ static int renameTableExprCb(Walker *pWalker, Expr *pExpr){ RenameCtx *p = pWalker->u.pRename; if( pExpr->op==TK_COLUMN && ALWAYS(ExprUseYTab(pExpr)) && p->pTab==pExpr->y.pTab ){ renameTokenFind(pWalker->pParse, p, (void*)&pExpr->y.pTab); } return WRC_Continue; } /* ** Walker select callback used by "RENAME TABLE". */ static int renameTableSelectCb(Walker *pWalker, Select *pSelect){ int i; RenameCtx *p = pWalker->u.pRename; SrcList *pSrc = pSelect->pSrc; if( pSelect->selFlags & (SF_View|SF_CopyCte) ){ testcase( pSelect->selFlags & SF_View ); testcase( pSelect->selFlags & SF_CopyCte ); return WRC_Prune; } if( NEVER(pSrc==0) ){ assert( pWalker->pParse->db->mallocFailed ); return WRC_Abort; } for(i=0; inSrc; i++){ SrcItem *pItem = &pSrc->a[i]; if( pItem->pTab==p->pTab ){ renameTokenFind(pWalker->pParse, p, pItem->zName); } } renameWalkWith(pWalker, pSelect); return WRC_Continue; } /* ** This C function implements an SQL user function that is used by SQL code ** generated by the ALTER TABLE ... RENAME command to modify the definition ** of any foreign key constraints that use the table being renamed as the ** parent table. It is passed three arguments: ** ** 0: The database containing the table being renamed. ** 1. type: Type of object ("table", "view" etc.) ** 2. object: Name of object ** 3: The complete text of the schema statement being modified, ** 4: The old name of the table being renamed, and ** 5: The new name of the table being renamed. ** 6: True if the schema statement comes from the temp db. ** ** It returns the new schema statement. For example: ** ** sqlite_rename_table('main', 'CREATE TABLE t1(a REFERENCES t2)','t2','t3',0) ** -> 'CREATE TABLE t1(a REFERENCES t3)' */ static void renameTableFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); const char *zDb = (const char*)sqlite3_value_text(argv[0]); const char *zInput = (const char*)sqlite3_value_text(argv[3]); const char *zOld = (const char*)sqlite3_value_text(argv[4]); const char *zNew = (const char*)sqlite3_value_text(argv[5]); int bTemp = sqlite3_value_int(argv[6]); UNUSED_PARAMETER(NotUsed); if( zInput && zOld && zNew ){ Parse sParse; int rc; int bQuote = 1; RenameCtx sCtx; Walker sWalker; #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif sqlite3BtreeEnterAll(db); memset(&sCtx, 0, sizeof(RenameCtx)); sCtx.pTab = sqlite3FindTable(db, zOld, zDb); memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = &sParse; sWalker.xExprCallback = renameTableExprCb; sWalker.xSelectCallback = renameTableSelectCb; sWalker.u.pRename = &sCtx; rc = renameParseSql(&sParse, zDb, db, zInput, bTemp); if( rc==SQLITE_OK ){ int isLegacy = (db->flags & SQLITE_LegacyAlter); if( sParse.pNewTable ){ Table *pTab = sParse.pNewTable; if( IsView(pTab) ){ if( isLegacy==0 ){ Select *pSelect = pTab->u.view.pSelect; NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sParse; assert( pSelect->selFlags & SF_View ); pSelect->selFlags &= ~SF_View; sqlite3SelectPrep(&sParse, pTab->u.view.pSelect, &sNC); if( sParse.nErr ){ rc = sParse.rc; }else{ sqlite3WalkSelect(&sWalker, pTab->u.view.pSelect); } } }else{ /* Modify any FK definitions to point to the new table. */ #ifndef SQLITE_OMIT_FOREIGN_KEY if( (isLegacy==0 || (db->flags & SQLITE_ForeignKeys)) && !IsVirtual(pTab) ){ FKey *pFKey; assert( IsOrdinaryTable(pTab) ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ if( sqlite3_stricmp(pFKey->zTo, zOld)==0 ){ renameTokenFind(&sParse, &sCtx, (void*)pFKey->zTo); } } } #endif /* If this is the table being altered, fix any table refs in CHECK ** expressions. Also update the name that appears right after the ** "CREATE [VIRTUAL] TABLE" bit. */ if( sqlite3_stricmp(zOld, pTab->zName)==0 ){ sCtx.pTab = pTab; if( isLegacy==0 ){ sqlite3WalkExprList(&sWalker, pTab->pCheck); } renameTokenFind(&sParse, &sCtx, pTab->zName); } } } else if( sParse.pNewIndex ){ renameTokenFind(&sParse, &sCtx, sParse.pNewIndex->zName); if( isLegacy==0 ){ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere); } } #ifndef SQLITE_OMIT_TRIGGER else{ Trigger *pTrigger = sParse.pNewTrigger; TriggerStep *pStep; if( 0==sqlite3_stricmp(sParse.pNewTrigger->table, zOld) && sCtx.pTab->pSchema==pTrigger->pTabSchema ){ renameTokenFind(&sParse, &sCtx, sParse.pNewTrigger->table); } if( isLegacy==0 ){ rc = renameResolveTrigger(&sParse); if( rc==SQLITE_OK ){ renameWalkTrigger(&sWalker, pTrigger); for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){ if( pStep->zTarget && 0==sqlite3_stricmp(pStep->zTarget, zOld) ){ renameTokenFind(&sParse, &sCtx, pStep->zTarget); } if( pStep->pFrom ){ int i; for(i=0; ipFrom->nSrc; i++){ SrcItem *pItem = &pStep->pFrom->a[i]; if( 0==sqlite3_stricmp(pItem->zName, zOld) ){ renameTokenFind(&sParse, &sCtx, pItem->zName); } } } } } } } #endif } if( rc==SQLITE_OK ){ rc = renameEditSql(context, &sCtx, zInput, zNew, bQuote); } if( rc!=SQLITE_OK ){ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){ sqlite3_result_value(context, argv[3]); }else if( sParse.zErrMsg ){ renameColumnParseError(context, "", argv[1], argv[2], &sParse); }else{ sqlite3_result_error_code(context, rc); } } renameParseCleanup(&sParse); renameTokenFree(db, sCtx.pList); sqlite3BtreeLeaveAll(db); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif } return; } static int renameQuotefixExprCb(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_STRING && (pExpr->flags & EP_DblQuoted) ){ renameTokenFind(pWalker->pParse, pWalker->u.pRename, (const void*)pExpr); } return WRC_Continue; } /* SQL function: sqlite_rename_quotefix(DB,SQL) ** ** Rewrite the DDL statement "SQL" so that any string literals that use ** double-quotes use single quotes instead. ** ** Two arguments must be passed: ** ** 0: Database name ("main", "temp" etc.). ** 1: SQL statement to edit. ** ** The returned value is the modified SQL statement. For example, given ** the database schema: ** ** CREATE TABLE t1(a, b, c); ** ** SELECT sqlite_rename_quotefix('main', ** 'CREATE VIEW v1 AS SELECT "a", "string" FROM t1' ** ); ** ** returns the string: ** ** CREATE VIEW v1 AS SELECT "a", 'string' FROM t1 ** ** If there is a error in the input SQL, then raise an error, except ** if PRAGMA writable_schema=ON, then just return the input string ** unmodified following an error. */ static void renameQuotefixFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); char const *zDb = (const char*)sqlite3_value_text(argv[0]); char const *zInput = (const char*)sqlite3_value_text(argv[1]); #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif sqlite3BtreeEnterAll(db); UNUSED_PARAMETER(NotUsed); if( zDb && zInput ){ int rc; Parse sParse; rc = renameParseSql(&sParse, zDb, db, zInput, 0); if( rc==SQLITE_OK ){ RenameCtx sCtx; Walker sWalker; /* Walker to find tokens that need to be replaced. */ memset(&sCtx, 0, sizeof(RenameCtx)); memset(&sWalker, 0, sizeof(Walker)); sWalker.pParse = &sParse; sWalker.xExprCallback = renameQuotefixExprCb; sWalker.xSelectCallback = renameColumnSelectCb; sWalker.u.pRename = &sCtx; if( sParse.pNewTable ){ if( IsView(sParse.pNewTable) ){ Select *pSelect = sParse.pNewTable->u.view.pSelect; pSelect->selFlags &= ~SF_View; sParse.rc = SQLITE_OK; sqlite3SelectPrep(&sParse, pSelect, 0); rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc); if( rc==SQLITE_OK ){ sqlite3WalkSelect(&sWalker, pSelect); } }else{ int i; sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck); #ifndef SQLITE_OMIT_GENERATED_COLUMNS for(i=0; inCol; i++){ sqlite3WalkExpr(&sWalker, sqlite3ColumnExpr(sParse.pNewTable, &sParse.pNewTable->aCol[i])); } #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ } }else if( sParse.pNewIndex ){ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr); sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere); }else{ #ifndef SQLITE_OMIT_TRIGGER rc = renameResolveTrigger(&sParse); if( rc==SQLITE_OK ){ renameWalkTrigger(&sWalker, sParse.pNewTrigger); } #endif /* SQLITE_OMIT_TRIGGER */ } if( rc==SQLITE_OK ){ rc = renameEditSql(context, &sCtx, zInput, 0, 0); } renameTokenFree(db, sCtx.pList); } if( rc!=SQLITE_OK ){ if( sqlite3WritableSchema(db) && rc==SQLITE_ERROR ){ sqlite3_result_value(context, argv[1]); }else{ sqlite3_result_error_code(context, rc); } } renameParseCleanup(&sParse); } #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif sqlite3BtreeLeaveAll(db); } /* Function: sqlite_rename_test(DB,SQL,TYPE,NAME,ISTEMP,WHEN,DQS) ** ** An SQL user function that checks that there are no parse or symbol ** resolution problems in a CREATE TRIGGER|TABLE|VIEW|INDEX statement. ** After an ALTER TABLE .. RENAME operation is performed and the schema ** reloaded, this function is called on each SQL statement in the schema ** to ensure that it is still usable. ** ** 0: Database name ("main", "temp" etc.). ** 1: SQL statement. ** 2: Object type ("view", "table", "trigger" or "index"). ** 3: Object name. ** 4: True if object is from temp schema. ** 5: "when" part of error message. ** 6: True to disable the DQS quirk when parsing SQL. ** ** The return value is computed as follows: ** ** A. If an error is seen and not in PRAGMA writable_schema=ON mode, ** then raise the error. ** B. Else if a trigger is created and the the table that the trigger is ** attached to is in database zDb, then return 1. ** C. Otherwise return NULL. */ static void renameTableTest( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); char const *zDb = (const char*)sqlite3_value_text(argv[0]); char const *zInput = (const char*)sqlite3_value_text(argv[1]); int bTemp = sqlite3_value_int(argv[4]); int isLegacy = (db->flags & SQLITE_LegacyAlter); char const *zWhen = (const char*)sqlite3_value_text(argv[5]); int bNoDQS = sqlite3_value_int(argv[6]); #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif UNUSED_PARAMETER(NotUsed); if( zDb && zInput ){ int rc; Parse sParse; int flags = db->flags; if( bNoDQS ) db->flags &= ~(SQLITE_DqsDML|SQLITE_DqsDDL); rc = renameParseSql(&sParse, zDb, db, zInput, bTemp); db->flags |= (flags & (SQLITE_DqsDML|SQLITE_DqsDDL)); if( rc==SQLITE_OK ){ if( isLegacy==0 && sParse.pNewTable && IsView(sParse.pNewTable) ){ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sParse; sqlite3SelectPrep(&sParse, sParse.pNewTable->u.view.pSelect, &sNC); if( sParse.nErr ) rc = sParse.rc; } else if( sParse.pNewTrigger ){ if( isLegacy==0 ){ rc = renameResolveTrigger(&sParse); } if( rc==SQLITE_OK ){ int i1 = sqlite3SchemaToIndex(db, sParse.pNewTrigger->pTabSchema); int i2 = sqlite3FindDbName(db, zDb); if( i1==i2 ){ /* Handle output case B */ sqlite3_result_int(context, 1); } } } } if( rc!=SQLITE_OK && zWhen && !sqlite3WritableSchema(db) ){ /* Output case A */ renameColumnParseError(context, zWhen, argv[2], argv[3],&sParse); } renameParseCleanup(&sParse); } #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif } /* ** The implementation of internal UDF sqlite_drop_column(). ** ** Arguments: ** ** argv[0]: An integer - the index of the schema containing the table ** argv[1]: CREATE TABLE statement to modify. ** argv[2]: An integer - the index of the column to remove. ** ** The value returned is a string containing the CREATE TABLE statement ** with column argv[2] removed. */ static void dropColumnFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); int iSchema = sqlite3_value_int(argv[0]); const char *zSql = (const char*)sqlite3_value_text(argv[1]); int iCol = sqlite3_value_int(argv[2]); const char *zDb = db->aDb[iSchema].zDbSName; int rc; Parse sParse; RenameToken *pCol; Table *pTab; const char *zEnd; char *zNew = 0; #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif UNUSED_PARAMETER(NotUsed); rc = renameParseSql(&sParse, zDb, db, zSql, iSchema==1); if( rc!=SQLITE_OK ) goto drop_column_done; pTab = sParse.pNewTable; if( pTab==0 || pTab->nCol==1 || iCol>=pTab->nCol ){ /* This can happen if the sqlite_schema table is corrupt */ rc = SQLITE_CORRUPT_BKPT; goto drop_column_done; } pCol = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol].zCnName); if( iColnCol-1 ){ RenameToken *pEnd; pEnd = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol+1].zCnName); zEnd = (const char*)pEnd->t.z; }else{ assert( IsOrdinaryTable(pTab) ); zEnd = (const char*)&zSql[pTab->u.tab.addColOffset]; while( ALWAYS(pCol->t.z[0]!=0) && pCol->t.z[0]!=',' ) pCol->t.z--; } zNew = sqlite3MPrintf(db, "%.*s%s", pCol->t.z-zSql, zSql, zEnd); sqlite3_result_text(context, zNew, -1, SQLITE_TRANSIENT); sqlite3_free(zNew); drop_column_done: renameParseCleanup(&sParse); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; #endif if( rc!=SQLITE_OK ){ sqlite3_result_error_code(context, rc); } } /* ** This function is called by the parser upon parsing an ** ** ALTER TABLE pSrc DROP COLUMN pName ** ** statement. Argument pSrc contains the possibly qualified name of the ** table being edited, and token pName the name of the column to drop. */ SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse *pParse, SrcList *pSrc, const Token *pName){ sqlite3 *db = pParse->db; /* Database handle */ Table *pTab; /* Table to modify */ int iDb; /* Index of db containing pTab in aDb[] */ const char *zDb; /* Database containing pTab ("main" etc.) */ char *zCol = 0; /* Name of column to drop */ int iCol; /* Index of column zCol in pTab->aCol[] */ /* Look up the table being altered. */ assert( pParse->pNewTable==0 ); assert( sqlite3BtreeHoldsAllMutexes(db) ); if( NEVER(db->mallocFailed) ) goto exit_drop_column; pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]); if( !pTab ) goto exit_drop_column; /* Make sure this is not an attempt to ALTER a view, virtual table or ** system table. */ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_drop_column; if( SQLITE_OK!=isRealTable(pParse, pTab, 1) ) goto exit_drop_column; /* Find the index of the column being dropped. */ zCol = sqlite3NameFromToken(db, pName); if( zCol==0 ){ assert( db->mallocFailed ); goto exit_drop_column; } iCol = sqlite3ColumnIndex(pTab, zCol); if( iCol<0 ){ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pName); goto exit_drop_column; } /* Do not allow the user to drop a PRIMARY KEY column or a column ** constrained by a UNIQUE constraint. */ if( pTab->aCol[iCol].colFlags & (COLFLAG_PRIMKEY|COLFLAG_UNIQUE) ){ sqlite3ErrorMsg(pParse, "cannot drop %s column: \"%s\"", (pTab->aCol[iCol].colFlags&COLFLAG_PRIMKEY) ? "PRIMARY KEY" : "UNIQUE", zCol ); goto exit_drop_column; } /* Do not allow the number of columns to go to zero */ if( pTab->nCol<=1 ){ sqlite3ErrorMsg(pParse, "cannot drop column \"%s\": no other columns exist",zCol); goto exit_drop_column; } /* Edit the sqlite_schema table */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); zDb = db->aDb[iDb].zDbSName; #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, zCol) ){ goto exit_drop_column; } #endif renameTestSchema(pParse, zDb, iDb==1, "", 0); renameFixQuotes(pParse, zDb, iDb==1); sqlite3NestedParse(pParse, "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET " "sql = sqlite_drop_column(%d, sql, %d) " "WHERE (type=='table' AND tbl_name=%Q COLLATE nocase)" , zDb, iDb, iCol, pTab->zName ); /* Drop and reload the database schema. */ renameReloadSchema(pParse, iDb, INITFLAG_AlterDrop); renameTestSchema(pParse, zDb, iDb==1, "after drop column", 1); /* Edit rows of table on disk */ if( pParse->nErr==0 && (pTab->aCol[iCol].colFlags & COLFLAG_VIRTUAL)==0 ){ int i; int addr; int reg; int regRec; Index *pPk = 0; int nField = 0; /* Number of non-virtual columns after drop */ int iCur; Vdbe *v = sqlite3GetVdbe(pParse); iCur = pParse->nTab++; sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite); addr = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); reg = ++pParse->nMem; if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, reg); pParse->nMem += pTab->nCol; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); pParse->nMem += pPk->nColumn; for(i=0; inKeyCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, reg+i+1); } nField = pPk->nKeyCol; } regRec = ++pParse->nMem; for(i=0; inCol; i++){ if( i!=iCol && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ int regOut; if( pPk ){ int iPos = sqlite3TableColumnToIndex(pPk, i); int iColPos = sqlite3TableColumnToIndex(pPk, iCol); if( iPosnKeyCol ) continue; regOut = reg+1+iPos-(iPos>iColPos); }else{ regOut = reg+1+nField; } if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regOut); }else{ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, i, regOut); } nField++; } } if( nField==0 ){ /* dbsqlfuzz 5f09e7bcc78b4954d06bf9f2400d7715f48d1fef */ pParse->nMem++; sqlite3VdbeAddOp2(v, OP_Null, 0, reg+1); nField = 1; } sqlite3VdbeAddOp3(v, OP_MakeRecord, reg+1, nField, regRec); if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iCur, regRec, reg+1, pPk->nKeyCol); }else{ sqlite3VdbeAddOp3(v, OP_Insert, iCur, regRec, reg); } sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); } exit_drop_column: sqlite3DbFree(db, zCol); sqlite3SrcListDelete(db, pSrc); } /* ** Register built-in functions used to help implement ALTER TABLE */ SQLITE_PRIVATE void sqlite3AlterFunctions(void){ static FuncDef aAlterTableFuncs[] = { INTERNAL_FUNCTION(sqlite_rename_column, 9, renameColumnFunc), INTERNAL_FUNCTION(sqlite_rename_table, 7, renameTableFunc), INTERNAL_FUNCTION(sqlite_rename_test, 7, renameTableTest), INTERNAL_FUNCTION(sqlite_drop_column, 3, dropColumnFunc), INTERNAL_FUNCTION(sqlite_rename_quotefix,2, renameQuotefixFunc), }; sqlite3InsertBuiltinFuncs(aAlterTableFuncs, ArraySize(aAlterTableFuncs)); } #endif /* SQLITE_ALTER_TABLE */ /************** End of alter.c ***********************************************/ /************** Begin file analyze.c *****************************************/ /* ** 2005-07-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code associated with the ANALYZE command. ** ** The ANALYZE command gather statistics about the content of tables ** and indices. These statistics are made available to the query planner ** to help it make better decisions about how to perform queries. ** ** The following system tables are or have been supported: ** ** CREATE TABLE sqlite_stat1(tbl, idx, stat); ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); ** ** Additional tables might be added in future releases of SQLite. ** The sqlite_stat2 table is not created or used unless the SQLite version ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only ** created and used by SQLite versions 3.7.9 through 3.29.0 when ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 ** is a superset of sqlite_stat2 and is also now deprecated. The ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite ** versions 3.8.1 and later. STAT4 is the only variant that is still ** supported. ** ** For most applications, sqlite_stat1 provides all the statistics required ** for the query planner to make good choices. ** ** Format of sqlite_stat1: ** ** There is normally one row per index, with the index identified by the ** name in the idx column. The tbl column is the name of the table to ** which the index belongs. In each such row, the stat column will be ** a string consisting of a list of integers. The first integer in this ** list is the number of rows in the index. (This is the same as the ** number of rows in the table, except for partial indices.) The second ** integer is the average number of rows in the index that have the same ** value in the first column of the index. The third integer is the average ** number of rows in the index that have the same value for the first two ** columns. The N-th integer (for N>1) is the average number of rows in ** the index which have the same value for the first N-1 columns. For ** a K-column index, there will be K+1 integers in the stat column. If ** the index is unique, then the last integer will be 1. ** ** The list of integers in the stat column can optionally be followed ** by the keyword "unordered". The "unordered" keyword, if it is present, ** must be separated from the last integer by a single space. If the ** "unordered" keyword is present, then the query planner assumes that ** the index is unordered and will not use the index for a range query. ** ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat ** column contains a single integer which is the (estimated) number of ** rows in the table identified by sqlite_stat1.tbl. ** ** Format of sqlite_stat2: ** ** The sqlite_stat2 is only created and is only used if SQLite is compiled ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between ** 3.6.18 and 3.7.8. The "stat2" table contains additional information ** about the distribution of keys within an index. The index is identified by ** the "idx" column and the "tbl" column is the name of the table to which ** the index belongs. There are usually 10 rows in the sqlite_stat2 ** table for each index. ** ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 ** inclusive are samples of the left-most key value in the index taken at ** evenly spaced points along the index. Let the number of samples be S ** (10 in the standard build) and let C be the number of rows in the index. ** Then the sampled rows are given by: ** ** rownumber = (i*C*2 + C)/(S*2) ** ** For i between 0 and S-1. Conceptually, the index space is divided into ** S uniform buckets and the samples are the middle row from each bucket. ** ** The format for sqlite_stat2 is recorded here for legacy reference. This ** version of SQLite does not support sqlite_stat2. It neither reads nor ** writes the sqlite_stat2 table. This version of SQLite only supports ** sqlite_stat3. ** ** Format for sqlite_stat3: ** ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the ** sqlite_stat4 format will be described first. Further information ** about sqlite_stat3 follows the sqlite_stat4 description. ** ** Format for sqlite_stat4: ** ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data ** to aid the query planner in choosing good indices based on the values ** that indexed columns are compared against in the WHERE clauses of ** queries. ** ** The sqlite_stat4 table contains multiple entries for each index. ** The idx column names the index and the tbl column is the table of the ** index. If the idx and tbl columns are the same, then the sample is ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the ** binary encoding of a key from the index. The nEq column is a ** list of integers. The first integer is the approximate number ** of entries in the index whose left-most column exactly matches ** the left-most column of the sample. The second integer in nEq ** is the approximate number of entries in the index where the ** first two columns match the first two columns of the sample. ** And so forth. nLt is another list of integers that show the approximate ** number of entries that are strictly less than the sample. The first ** integer in nLt contains the number of entries in the index where the ** left-most column is less than the left-most column of the sample. ** The K-th integer in the nLt entry is the number of index entries ** where the first K columns are less than the first K columns of the ** sample. The nDLt column is like nLt except that it contains the ** number of distinct entries in the index that are less than the ** sample. ** ** There can be an arbitrary number of sqlite_stat4 entries per index. ** The ANALYZE command will typically generate sqlite_stat4 tables ** that contain between 10 and 40 samples which are distributed across ** the key space, though not uniformly, and which include samples with ** large nEq values. ** ** Format for sqlite_stat3 redux: ** ** The sqlite_stat3 table is like sqlite_stat4 except that it only ** looks at the left-most column of the index. The sqlite_stat3.sample ** column contains the actual value of the left-most column instead ** of a blob encoding of the complete index key as is found in ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 ** all contain just a single integer which is the same as the first ** integer in the equivalent columns in sqlite_stat4. */ #ifndef SQLITE_OMIT_ANALYZE /* #include "sqliteInt.h" */ #if defined(SQLITE_ENABLE_STAT4) # define IsStat4 1 #else # define IsStat4 0 # undef SQLITE_STAT4_SAMPLES # define SQLITE_STAT4_SAMPLES 1 #endif /* ** This routine generates code that opens the sqlite_statN tables. ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when ** appropriate compile-time options are provided. ** ** If the sqlite_statN tables do not previously exist, it is created. ** ** Argument zWhere may be a pointer to a buffer containing a table name, ** or it may be a NULL pointer. If it is not NULL, then all entries in ** the sqlite_statN tables associated with the named table are deleted. ** If zWhere==0, then code is generated to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ int iDb, /* The database we are looking in */ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ const char *zWhere, /* Delete entries for this table or index */ const char *zWhereType /* Either "tbl" or "idx" */ ){ static const struct { const char *zName; const char *zCols; } aTable[] = { { "sqlite_stat1", "tbl,idx,stat" }, #if defined(SQLITE_ENABLE_STAT4) { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, #else { "sqlite_stat4", 0 }, #endif { "sqlite_stat3", 0 }, }; int i; sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); u32 aRoot[ArraySize(aTable)]; u8 aCreateTbl[ArraySize(aTable)]; #ifdef SQLITE_ENABLE_STAT4 const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1; #else const int nToOpen = 1; #endif if( v==0 ) return; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3VdbeDb(v)==db ); pDb = &db->aDb[iDb]; /* Create new statistic tables if they do not exist, or clear them ** if they do already exist. */ for(i=0; izDbSName))==0 ){ if( iregRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite3NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols ); aRoot[i] = (u32)pParse->regRoot; aCreateTbl[i] = OPFLAG_P2ISREG; } }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zDbSName, zTab, zWhereType, zWhere ); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK }else if( db->xPreUpdateCallback ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); #endif }else{ /* The sqlite_stat[134] table already exists. Delete all rows. */ sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb); } } } /* Open the sqlite_stat[134] tables for writing. */ for(i=0; inRowid ){ sqlite3DbFree(db, p->u.aRowid); p->nRowid = 0; } } #endif /* Initialize the BLOB value of a ROWID */ #ifdef SQLITE_ENABLE_STAT4 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){ assert( db!=0 ); if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); p->u.aRowid = sqlite3DbMallocRawNN(db, n); if( p->u.aRowid ){ p->nRowid = n; memcpy(p->u.aRowid, pData, n); }else{ p->nRowid = 0; } } #endif /* Initialize the INTEGER value of a ROWID. */ #ifdef SQLITE_ENABLE_STAT4 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){ assert( db!=0 ); if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); p->nRowid = 0; p->u.iRowid = iRowid; } #endif /* ** Copy the contents of object (*pFrom) into (*pTo). */ #ifdef SQLITE_ENABLE_STAT4 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){ pTo->isPSample = pFrom->isPSample; pTo->iCol = pFrom->iCol; pTo->iHash = pFrom->iHash; memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); if( pFrom->nRowid ){ sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); }else{ sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); } } #endif /* ** Reclaim all memory of a StatAccum structure. */ static void statAccumDestructor(void *pOld){ StatAccum *p = (StatAccum*)pOld; #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ){ int i; for(i=0; inCol; i++) sampleClear(p->db, p->aBest+i); for(i=0; imxSample; i++) sampleClear(p->db, p->a+i); sampleClear(p->db, &p->current); } #endif sqlite3DbFree(p->db, p); } /* ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters ** are: ** N: The number of columns in the index including the rowid/pk (note 1) ** K: The number of columns in the index excluding the rowid/pk. ** C: Estimated number of rows in the index ** L: A limit on the number of rows to scan, or 0 for no-limit ** ** Note 1: In the special case of the covering index that implements a ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the ** total number of columns in the table. ** ** For indexes on ordinary rowid tables, N==K+1. But for indexes on ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the ** PRIMARY KEY of the table. The covering index that implements the ** original WITHOUT ROWID table as N==K as a special case. ** ** This routine allocates the StatAccum object in heap memory. The return ** value is a pointer to the StatAccum object. The datatype of the ** return value is BLOB, but it is really just a pointer to the StatAccum ** object. */ static void statInit( sqlite3_context *context, int argc, sqlite3_value **argv ){ StatAccum *p; int nCol; /* Number of columns in index being sampled */ int nKeyCol; /* Number of key columns */ int nColUp; /* nCol rounded up for alignment */ int n; /* Bytes of space to allocate */ sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */ #ifdef SQLITE_ENABLE_STAT4 /* Maximum number of samples. 0 if STAT4 data is not collected */ int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0; #endif /* Decode the three function arguments */ UNUSED_PARAMETER(argc); nCol = sqlite3_value_int(argv[0]); assert( nCol>0 ); nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; nKeyCol = sqlite3_value_int(argv[1]); assert( nKeyCol<=nCol ); assert( nKeyCol>0 ); /* Allocate the space required for the StatAccum object */ n = sizeof(*p) + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */ #ifdef SQLITE_ENABLE_STAT4 n += sizeof(tRowcnt)*nColUp; /* StatAccum.anEq */ if( mxSample ){ n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */ + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */ + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample); } #endif p = sqlite3DbMallocZero(db, n); if( p==0 ){ sqlite3_result_error_nomem(context); return; } p->db = db; p->nEst = sqlite3_value_int64(argv[2]); p->nRow = 0; p->nLimit = sqlite3_value_int64(argv[3]); p->nCol = nCol; p->nKeyCol = nKeyCol; p->nSkipAhead = 0; p->current.anDLt = (tRowcnt*)&p[1]; #ifdef SQLITE_ENABLE_STAT4 p->current.anEq = &p->current.anDLt[nColUp]; p->mxSample = p->nLimit==0 ? mxSample : 0; if( mxSample ){ u8 *pSpace; /* Allocated space not yet assigned */ int i; /* Used to iterate through p->aSample[] */ p->iGet = -1; p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1); p->current.anLt = &p->current.anEq[nColUp]; p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); /* Set up the StatAccum.a[] and aBest[] arrays */ p->a = (struct StatSample*)&p->current.anLt[nColUp]; p->aBest = &p->a[mxSample]; pSpace = (u8*)(&p->a[mxSample+nCol]); for(i=0; i<(mxSample+nCol); i++){ p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); } assert( (pSpace - (u8*)p)==n ); for(i=0; iaBest[i].iCol = i; } } #endif /* Return a pointer to the allocated object to the caller. Note that ** only the pointer (the 2nd parameter) matters. The size of the object ** (given by the 3rd parameter) is never used and can be any positive ** value. */ sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor); } static const FuncDef statInitFuncdef = { 4, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ statInit, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "stat_init", /* zName */ {0} }; #ifdef SQLITE_ENABLE_STAT4 /* ** pNew and pOld are both candidate non-periodic samples selected for ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and ** considering only any trailing columns and the sample hash value, this ** function returns true if sample pNew is to be preferred over pOld. ** In other words, if we assume that the cardinalities of the selected ** column for pNew and pOld are equal, is pNew to be preferred over pOld. ** ** This function assumes that for each argument sample, the contents of ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. */ static int sampleIsBetterPost( StatAccum *pAccum, StatSample *pNew, StatSample *pOld ){ int nCol = pAccum->nCol; int i; assert( pNew->iCol==pOld->iCol ); for(i=pNew->iCol+1; ianEq[i]>pOld->anEq[i] ) return 1; if( pNew->anEq[i]anEq[i] ) return 0; } if( pNew->iHash>pOld->iHash ) return 1; return 0; } #endif #ifdef SQLITE_ENABLE_STAT4 /* ** Return true if pNew is to be preferred over pOld. ** ** This function assumes that for each argument sample, the contents of ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. */ static int sampleIsBetter( StatAccum *pAccum, StatSample *pNew, StatSample *pOld ){ tRowcnt nEqNew = pNew->anEq[pNew->iCol]; tRowcnt nEqOld = pOld->anEq[pOld->iCol]; assert( pOld->isPSample==0 && pNew->isPSample==0 ); assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); if( (nEqNew>nEqOld) ) return 1; if( nEqNew==nEqOld ){ if( pNew->iColiCol ) return 1; return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); } return 0; } /* ** Copy the contents of sample *pNew into the p->a[] array. If necessary, ** remove the least desirable sample from p->a[] to make room. */ static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){ StatSample *pSample = 0; int i; assert( IsStat4 || nEqZero==0 ); /* StatAccum.nMaxEqZero is set to the maximum number of leading 0 ** values in the anEq[] array of any sample in StatAccum.a[]. In ** other words, if nMaxEqZero is n, then it is guaranteed that there ** are no samples with StatSample.anEq[m]==0 for (m>=n). */ if( nEqZero>p->nMaxEqZero ){ p->nMaxEqZero = nEqZero; } if( pNew->isPSample==0 ){ StatSample *pUpgrade = 0; assert( pNew->anEq[pNew->iCol]>0 ); /* This sample is being added because the prefix that ends in column ** iCol occurs many times in the table. However, if we have already ** added a sample that shares this prefix, there is no need to add ** this one. Instead, upgrade the priority of the highest priority ** existing sample that shares this prefix. */ for(i=p->nSample-1; i>=0; i--){ StatSample *pOld = &p->a[i]; if( pOld->anEq[pNew->iCol]==0 ){ if( pOld->isPSample ) return; assert( pOld->iCol>pNew->iCol ); assert( sampleIsBetter(p, pNew, pOld) ); if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ pUpgrade = pOld; } } } if( pUpgrade ){ pUpgrade->iCol = pNew->iCol; pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; goto find_new_min; } } /* If necessary, remove sample iMin to make room for the new sample. */ if( p->nSample>=p->mxSample ){ StatSample *pMin = &p->a[p->iMin]; tRowcnt *anEq = pMin->anEq; tRowcnt *anLt = pMin->anLt; tRowcnt *anDLt = pMin->anDLt; sampleClear(p->db, pMin); memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); pSample = &p->a[p->nSample-1]; pSample->nRowid = 0; pSample->anEq = anEq; pSample->anDLt = anDLt; pSample->anLt = anLt; p->nSample = p->mxSample-1; } /* The "rows less-than" for the rowid column must be greater than that ** for the last sample in the p->a[] array. Otherwise, the samples would ** be out of order. */ assert( p->nSample==0 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); /* Insert the new sample */ pSample = &p->a[p->nSample]; sampleCopy(p, pSample, pNew); p->nSample++; /* Zero the first nEqZero entries in the anEq[] array. */ memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); find_new_min: if( p->nSample>=p->mxSample ){ int iMin = -1; for(i=0; imxSample; i++){ if( p->a[i].isPSample ) continue; if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ iMin = i; } } assert( iMin>=0 ); p->iMin = iMin; } } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef SQLITE_ENABLE_STAT4 /* ** Field iChng of the index being scanned has changed. So at this point ** p->current contains a sample that reflects the previous row of the ** index. The value of anEq[iChng] and subsequent anEq[] elements are ** correct at this point. */ static void samplePushPrevious(StatAccum *p, int iChng){ int i; /* Check if any samples from the aBest[] array should be pushed ** into IndexSample.a[] at this point. */ for(i=(p->nCol-2); i>=iChng; i--){ StatSample *pBest = &p->aBest[i]; pBest->anEq[i] = p->current.anEq[i]; if( p->nSamplemxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ sampleInsert(p, pBest, i); } } /* Check that no sample contains an anEq[] entry with an index of ** p->nMaxEqZero or greater set to zero. */ for(i=p->nSample-1; i>=0; i--){ int j; for(j=p->nMaxEqZero; jnCol; j++) assert( p->a[i].anEq[j]>0 ); } /* Update the anEq[] fields of any samples already collected. */ if( iChngnMaxEqZero ){ for(i=p->nSample-1; i>=0; i--){ int j; for(j=iChng; jnCol; j++){ if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; } } p->nMaxEqZero = iChng; } } #endif /* SQLITE_ENABLE_STAT4 */ /* ** Implementation of the stat_push SQL function: stat_push(P,C,R) ** Arguments: ** ** P Pointer to the StatAccum object created by stat_init() ** C Index of left-most column to differ from previous row ** R Rowid for the current row. Might be a key record for ** WITHOUT ROWID tables. ** ** The purpose of this routine is to collect statistical data and/or ** samples from the index being analyzed into the StatAccum object. ** The stat_get() SQL function will be used afterwards to ** retrieve the information gathered. ** ** This SQL function usually returns NULL, but might return an integer ** if it wants the byte-code to do special processing. ** ** The R parameter is only used for STAT4 */ static void statPush( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; /* The three function arguments */ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); int iChng = sqlite3_value_int(argv[1]); UNUSED_PARAMETER( argc ); UNUSED_PARAMETER( context ); assert( p->nCol>0 ); assert( iChngnCol ); if( p->nRow==0 ){ /* This is the first call to this function. Do initialization. */ #ifdef SQLITE_ENABLE_STAT4 for(i=0; inCol; i++) p->current.anEq[i] = 1; #endif }else{ /* Second and subsequent calls get processed here */ #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ) samplePushPrevious(p, iChng); #endif /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply ** to the current row of the index. */ #ifdef SQLITE_ENABLE_STAT4 for(i=0; icurrent.anEq[i]++; } #endif for(i=iChng; inCol; i++){ p->current.anDLt[i]++; #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i]; p->current.anEq[i] = 1; #endif } } p->nRow++; #ifdef SQLITE_ENABLE_STAT4 if( p->mxSample ){ tRowcnt nLt; if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); }else{ sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), sqlite3_value_blob(argv[2])); } p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; nLt = p->current.anLt[p->nCol-1]; /* Check if this is to be a periodic sample. If so, add it. */ if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ p->current.isPSample = 1; p->current.iCol = 0; sampleInsert(p, &p->current, p->nCol-1); p->current.isPSample = 0; } /* Update the aBest[] array. */ for(i=0; i<(p->nCol-1); i++){ p->current.iCol = i; if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ sampleCopy(p, &p->aBest[i], &p->current); } } }else #endif if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){ p->nSkipAhead++; sqlite3_result_int(context, p->current.anDLt[0]>0); } } static const FuncDef statPushFuncdef = { 2+IsStat4, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ statPush, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "stat_push", /* zName */ {0} }; #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ /* ** Implementation of the stat_get(P,J) SQL function. This routine is ** used to query statistical information that has been gathered into ** the StatAccum object by prior calls to stat_push(). The P parameter ** has type BLOB but it is really just a pointer to the StatAccum object. ** The content to returned is determined by the parameter J ** which is one of the STAT_GET_xxxx values defined above. ** ** The stat_get(P,J) function is not available to generic SQL. It is ** inserted as part of a manually constructed bytecode program. (See ** the callStatGet() routine below.) It is guaranteed that the P ** parameter will always be a pointer to a StatAccum object, never a ** NULL. ** ** If STAT4 is not enabled, then J is always ** STAT_GET_STAT1 and is hence omitted and this routine becomes ** a one-parameter function, stat_get(P), that always returns the ** stat1 table entry information. */ static void statGet( sqlite3_context *context, int argc, sqlite3_value **argv ){ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); #ifdef SQLITE_ENABLE_STAT4 /* STAT4 has a parameter on this routine. */ int eCall = sqlite3_value_int(argv[1]); assert( argc==2 ); assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT || eCall==STAT_GET_NDLT ); assert( eCall==STAT_GET_STAT1 || p->mxSample ); if( eCall==STAT_GET_STAT1 ) #else assert( argc==1 ); #endif { /* Return the value to store in the "stat" column of the sqlite_stat1 ** table for this index. ** ** The value is a string composed of a list of integers describing ** the index. The first integer in the list is the total number of ** entries in the index. There is one additional integer in the list ** for each indexed column. This additional integer is an estimate of ** the number of rows matched by a equality query on the index using ** a key with the corresponding number of fields. In other words, ** if the index is on columns (a,b) and the sqlite_stat1 value is ** "100 10 2", then SQLite estimates that: ** ** * the index contains 100 rows, ** * "WHERE a=?" matches 10 rows, and ** * "WHERE a=? AND b=?" matches 2 rows. ** ** If D is the count of distinct values and K is the total number of ** rows, then each estimate is usually computed as: ** ** I = (K+D-1)/D ** ** In other words, I is K/D rounded up to the next whole integer. ** However, if I is between 1.0 and 1.1 (in other words if I is ** close to 1.0 but just a little larger) then do not round up but ** instead keep the I value at 1.0. */ sqlite3_str sStat; /* Text of the constructed "stat" line */ int i; /* Loop counter */ sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100); sqlite3_str_appendf(&sStat, "%llu", p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow); for(i=0; inKeyCol; i++){ u64 nDistinct = p->current.anDLt[i] + 1; u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1; sqlite3_str_appendf(&sStat, " %llu", iVal); #ifdef SQLITE_ENABLE_STAT4 assert( p->current.anEq[i] ); #endif } sqlite3ResultStrAccum(context, &sStat); } #ifdef SQLITE_ENABLE_STAT4 else if( eCall==STAT_GET_ROWID ){ if( p->iGet<0 ){ samplePushPrevious(p, 0); p->iGet = 0; } if( p->iGetnSample ){ StatSample *pS = p->a + p->iGet; if( pS->nRowid==0 ){ sqlite3_result_int64(context, pS->u.iRowid); }else{ sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, SQLITE_TRANSIENT); } } }else{ tRowcnt *aCnt = 0; sqlite3_str sStat; int i; assert( p->iGetnSample ); switch( eCall ){ case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; default: { aCnt = p->a[p->iGet].anDLt; p->iGet++; break; } } sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100); for(i=0; inCol; i++){ sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]); } if( sStat.nChar ) sStat.nChar--; sqlite3ResultStrAccum(context, &sStat); } #endif /* SQLITE_ENABLE_STAT4 */ #ifndef SQLITE_DEBUG UNUSED_PARAMETER( argc ); #endif } static const FuncDef statGetFuncdef = { 1+IsStat4, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ statGet, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "stat_get", /* zName */ {0} }; static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){ #ifdef SQLITE_ENABLE_STAT4 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif assert( regOut!=regStat && regOut!=regStat+1 ); sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4, &statGetFuncdef, 0); } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* Add a comment to the most recent VDBE opcode that is the name ** of the k-th column of the pIdx index. */ static void analyzeVdbeCommentIndexWithColumnName( Vdbe *v, /* Prepared statement under construction */ Index *pIdx, /* Index whose column is being loaded */ int k /* Which column index */ ){ int i; /* Index of column in the table */ assert( k>=0 && knColumn ); i = pIdx->aiColumn[k]; if( NEVER(i==XN_ROWID) ){ VdbeComment((v,"%s.rowid",pIdx->zName)); }else if( i==XN_EXPR ){ assert( pIdx->bHasExpr ); VdbeComment((v,"%s.expr(%d)",pIdx->zName, k)); }else{ VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName)); } } #else # define analyzeVdbeCommentIndexWithColumnName(a,b,c) #endif /* SQLITE_DEBUG */ /* ** Generate code to do an analysis of all indices associated with ** a single table. */ static void analyzeOneTable( Parse *pParse, /* Parser context */ Table *pTab, /* Table whose indices are to be analyzed */ Index *pOnlyIdx, /* If not NULL, only analyze this one index */ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ int iMem, /* Available memory locations begin here */ int iTab /* Next available cursor */ ){ sqlite3 *db = pParse->db; /* Database handle */ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ int iTabCur; /* Table cursor */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int jZeroRows = -1; /* Jump from here if number of rows is zero */ int iDb; /* Index of database containing pTab */ u8 needTableCnt = 1; /* True to count the table */ int regNewRowid = iMem++; /* Rowid for the inserted record */ int regStat = iMem++; /* Register to hold StatAccum object */ int regChng = iMem++; /* Index of changed index field */ int regRowid = iMem++; /* Rowid argument passed to stat_push() */ int regTemp = iMem++; /* Temporary use register */ int regTemp2 = iMem++; /* Second temporary use register */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ int regPrev = iMem; /* MUST BE LAST (see below) */ #ifdef SQLITE_ENABLE_STAT4 int doOnce = 1; /* Flag for a one-time computation */ #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK Table *pStat1 = 0; #endif sqlite3TouchRegister(pParse, iMem); assert( sqlite3NoTempsInRange(pParse, regNewRowid, iMem) ); v = sqlite3GetVdbe(pParse); if( v==0 || NEVER(pTab==0) ){ return; } if( !IsOrdinaryTable(pTab) ){ /* Do not gather statistics on views or virtual tables */ return; } if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ /* Do not gather statistics on system tables */ return; } assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, db->aDb[iDb].zDbSName ) ){ return; } #endif #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( db->xPreUpdateCallback ){ pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); if( pStat1==0 ) return; pStat1->zName = (char*)&pStat1[1]; memcpy(pStat1->zName, "sqlite_stat1", 13); pStat1->nCol = 3; pStat1->iPKey = -1; sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC); } #endif /* Establish a read-lock on the table at the shared-cache level. ** Open a read-only cursor on the table. Also allocate a cursor number ** to use for scanning indexes (iIdxCur). No index cursor is opened at ** this time though. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iTabCur = iTab++; iIdxCur = iTab++; pParse->nTab = MAX(pParse->nTab, iTab); sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); sqlite3VdbeLoadString(v, regTabname, pTab->zName); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol; /* Number of columns in pIdx. "N" */ int addrRewind; /* Address of "OP_Rewind iIdxCur" */ int addrNextRow; /* Address of "next_row:" */ const char *zIdxName; /* Name of the index */ int nColTest; /* Number of columns to test for changes */ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ nCol = pIdx->nKeyCol; zIdxName = pTab->zName; nColTest = nCol - 1; }else{ nCol = pIdx->nColumn; zIdxName = pIdx->zName; nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; } /* Populate the register containing the index name. */ sqlite3VdbeLoadString(v, regIdxname, zIdxName); VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); /* ** Pseudo-code for loop that calls stat_push(): ** ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto chng_addr_0; ** ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 ** regChng = 1 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 ** ... ** regChng = N ** goto chng_addr_N ** ** chng_addr_0: ** regPrev(0) = idx(0) ** chng_addr_1: ** regPrev(1) = idx(1) ** ... ** ** endDistinctTest: ** regRowid = idx(rowid) ** stat_push(P, regChng, regRowid) ** Next csr ** if !eof(csr) goto next_row; ** ** end_of_scan: */ /* Make sure there are enough memory cells allocated to accommodate ** the regPrev array and a trailing rowid (the rowid slot is required ** when building a record to insert into the sample column of ** the sqlite_stat4 table. */ sqlite3TouchRegister(pParse, regPrev+nColTest); /* Open a read-only cursor on the index being analyzed. */ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); /* Invoke the stat_init() function. The arguments are: ** ** (1) the number of columns in the index including the rowid ** (or for a WITHOUT ROWID table, the number of PK columns), ** (2) the number of columns in the key without the rowid/pk ** (3) estimated number of rows in the index, */ sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1); assert( regRowid==regStat+2 ); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid); #ifdef SQLITE_ENABLE_STAT4 if( OptimizationEnabled(db, SQLITE_Stat4) ){ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp); addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); VdbeCoverage(v); }else #endif { addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1); } assert( regTemp2==regStat+4 ); sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2); sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4, &statInitFuncdef, 0); /* Implementation of the following: ** ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto next_push_0; ** */ sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); addrNextRow = sqlite3VdbeCurrentAddr(v); if( nColTest>0 ){ int endDistinctTest = sqlite3VdbeMakeLabel(pParse); int *aGotoChng; /* Array of jump instruction addresses */ aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); if( aGotoChng==0 ) continue; /* ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 ** regChng = 1 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 ** ... ** regChng = N ** goto endDistinctTest */ sqlite3VdbeAddOp0(v, OP_Goto); addrNextRow = sqlite3VdbeCurrentAddr(v); if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ /* For a single-column UNIQUE index, once we have found a non-NULL ** row, we know that all the rest will be distinct, so skip ** subsequent distinctness tests. */ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); VdbeCoverage(v); } for(i=0; iazColl[i]); sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); aGotoChng[i] = sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); sqlite3VdbeGoto(v, endDistinctTest); /* ** chng_addr_0: ** regPrev(0) = idx(0) ** chng_addr_1: ** regPrev(1) = idx(1) ** ... */ sqlite3VdbeJumpHere(v, addrNextRow-1); for(i=0; ipTable); int j, k, regKey; regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; jnKeyCol; j++){ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); assert( k>=0 && knColumn ); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); analyzeVdbeCommentIndexWithColumnName(v,pIdx,k); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } } #endif assert( regChng==(regStat+1) ); { sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4, &statPushFuncdef, 0); if( db->nAnalysisLimit ){ int j1, j2, j3; j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v); j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v); j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); sqlite3VdbeJumpHere(v, j2); sqlite3VdbeJumpHere(v, j3); }else{ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); } } /* Add the entry to the stat1 table. */ callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1); assert( "BBB"[0]==SQLITE_AFF_TEXT ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); #endif sqlite3VdbeChangeP5(v, OPFLAG_APPEND); /* Add the entries to the stat4 table. */ #ifdef SQLITE_ENABLE_STAT4 if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){ int regEq = regStat1; int regLt = regStat1+1; int regDLt = regStat1+2; int regSample = regStat1+3; int regCol = regStat1+4; int regSampleRowid = regCol + nCol; int addrNext; int addrIsNull; u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; if( doOnce ){ int mxCol = nCol; Index *pX; /* Compute the maximum number of columns in any index */ for(pX=pTab->pIndex; pX; pX=pX->pNext){ int nColX; /* Number of columns in pX */ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pX) ){ nColX = pX->nKeyCol; }else{ nColX = pX->nColumn; } if( nColX>mxCol ) mxCol = nColX; } /* Allocate space to compute results for the largest index */ sqlite3TouchRegister(pParse, regCol+mxCol); doOnce = 0; #ifdef SQLITE_DEBUG /* Verify that the call to sqlite3ClearTempRegCache() below ** really is needed. ** https://sqlite.org/forum/forumpost/83cb4a95a0 (2023-03-25) */ testcase( !sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) ); #endif sqlite3ClearTempRegCache(pParse); /* tag-20230325-1 */ assert( sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) ); } assert( sqlite3NoTempsInRange(pParse, regEq, regCol+nCol) ); addrNext = sqlite3VdbeCurrentAddr(v); callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(pParse, regStat, STAT_GET_NEQ, regEq); callStatGet(pParse, regStat, STAT_GET_NLT, regLt); callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); VdbeCoverage(v); for(i=0; izName)); sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); assert( "BBB"[0]==SQLITE_AFF_TEXT ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); #endif sqlite3VdbeJumpHere(v, jZeroRows); } } /* ** Generate code that will cause the most recent index analysis to ** be loaded into internal hash tables where is can be used. */ static void loadAnalysis(Parse *pParse, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); } } /* ** Generate code that will do an analysis of an entire database */ static void analyzeDatabase(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; int iTab; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 3; openStatTable(pParse, iDb, iStatCur, 0, 0); iMem = pParse->nMem+1; iTab = pParse->nTab; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); #ifdef SQLITE_ENABLE_STAT4 iMem = sqlite3FirstAvailableRegister(pParse, iMem); #else assert( iMem==sqlite3FirstAvailableRegister(pParse,iMem) ); #endif } loadAnalysis(pParse, iDb); } /* ** Generate code that will do an analysis of a single table in ** a database. If pOnlyIdx is not NULL then it is a single index ** in pTab that should be analyzed. */ static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 3; if( pOnlyIdx ){ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); }else{ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); } analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); loadAnalysis(pParse, iDb); } /* ** Generate code for the ANALYZE command. The parser calls this routine ** when it recognizes an ANALYZE command. ** ** ANALYZE -- 1 ** ANALYZE -- 2 ** ANALYZE ?.? -- 3 ** ** Form 1 causes all indices in all attached databases to be analyzed. ** Form 2 analyzes all indices the single database named. ** Form 3 analyzes all indices associated with the named table. */ SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ sqlite3 *db = pParse->db; int iDb; int i; char *z, *zDb; Table *pTab; Index *pIdx; Token *pTableName; Vdbe *v; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; } assert( pName2!=0 || pName1==0 ); if( pName1==0 ){ /* Form 1: Analyze everything */ for(i=0; inDb; i++){ if( i==1 ) continue; /* Do not analyze the TEMP database */ analyzeDatabase(pParse, i); } }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ /* Analyze the schema named as the argument */ analyzeDatabase(pParse, iDb); }else{ /* Form 3: Analyze the table or index named as an argument */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); if( iDb>=0 ){ zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; z = sqlite3NameFromToken(db, pTableName); if( z ){ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ analyzeTable(pParse, pTab, 0); } sqlite3DbFree(db, z); } } } if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ sqlite3VdbeAddOp0(v, OP_Expire); } } /* ** Used to pass information from the analyzer reader through to the ** callback routine. */ typedef struct analysisInfo analysisInfo; struct analysisInfo { sqlite3 *db; const char *zDatabase; }; /* ** The first argument points to a nul-terminated string containing a ** list of space separated integers. Read the first nOut of these into ** the array aOut[]. */ static void decodeIntArray( char *zIntArray, /* String containing int array to decode */ int nOut, /* Number of slots in aOut[] */ tRowcnt *aOut, /* Store integers here */ LogEst *aLog, /* Or, if aOut==0, here */ Index *pIndex /* Handle extra flags for this index, if not NULL */ ){ char *z = zIntArray; int c; int i; tRowcnt v; #ifdef SQLITE_ENABLE_STAT4 if( z==0 ) z = ""; #else assert( z!=0 ); #endif for(i=0; *z && i='0' && c<='9' ){ v = v*10 + c - '0'; z++; } #ifdef SQLITE_ENABLE_STAT4 if( aOut ) aOut[i] = v; if( aLog ) aLog[i] = sqlite3LogEst(v); #else assert( aOut==0 ); UNUSED_PARAMETER(aOut); assert( aLog!=0 ); aLog[i] = sqlite3LogEst(v); #endif if( *z==' ' ) z++; } #ifndef SQLITE_ENABLE_STAT4 assert( pIndex!=0 ); { #else if( pIndex ){ #endif pIndex->bUnordered = 0; pIndex->noSkipScan = 0; while( z[0] ){ if( sqlite3_strglob("unordered*", z)==0 ){ pIndex->bUnordered = 1; }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ int sz = sqlite3Atoi(z+3); if( sz<2 ) sz = 2; pIndex->szIdxRow = sqlite3LogEst(sz); }else if( sqlite3_strglob("noskipscan*", z)==0 ){ pIndex->noSkipScan = 1; } #ifdef SQLITE_ENABLE_COSTMULT else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); } #endif while( z[0]!=0 && z[0]!=' ' ) z++; while( z[0]==' ' ) z++; } /* Set the bLowQual flag if the peak number of rows obtained ** from a full equality match is so large that a full table scan ** seems likely to be faster than using the index. */ if( aLog[0] > 66 /* Index has more than 100 rows */ && aLog[0] <= aLog[nOut-1] /* And only a single value seen */ ){ pIndex->bLowQual = 1; } } } /* ** This callback is invoked once for each index when reading the ** sqlite_stat1 table. ** ** argv[0] = name of the table ** argv[1] = name of the index (might be NULL) ** argv[2] = results of analysis - on integer for each column ** ** Entries for which argv[1]==NULL simply record the number of rows in ** the table. */ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ analysisInfo *pInfo = (analysisInfo*)pData; Index *pIndex; Table *pTable; const char *z; assert( argc==3 ); UNUSED_PARAMETER2(NotUsed, argc); if( argv==0 || argv[0]==0 || argv[2]==0 ){ return 0; } pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); if( pTable==0 ){ return 0; } if( argv[1]==0 ){ pIndex = 0; }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ pIndex = sqlite3PrimaryKeyIndex(pTable); }else{ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); } z = argv[2]; if( pIndex ){ tRowcnt *aiRowEst = 0; int nCol = pIndex->nKeyCol+1; #ifdef SQLITE_ENABLE_STAT4 /* Index.aiRowEst may already be set here if there are duplicate ** sqlite_stat1 entries for this index. In that case just clobber ** the old data with the new instead of allocating a new array. */ if( pIndex->aiRowEst==0 ){ pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); } aiRowEst = pIndex->aiRowEst; #endif pIndex->bUnordered = 0; decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); pIndex->hasStat1 = 1; if( pIndex->pPartIdxWhere==0 ){ pTable->nRowLogEst = pIndex->aiRowLogEst[0]; pTable->tabFlags |= TF_HasStat1; } }else{ Index fakeIdx; fakeIdx.szIdxRow = pTable->szTabRow; #ifdef SQLITE_ENABLE_COSTMULT fakeIdx.pTable = pTable; #endif decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); pTable->szTabRow = fakeIdx.szIdxRow; pTable->tabFlags |= TF_HasStat1; } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ assert( db!=0 ); assert( pIdx!=0 ); #ifdef SQLITE_ENABLE_STAT4 if( pIdx->aSample ){ int j; for(j=0; jnSample; j++){ IndexSample *p = &pIdx->aSample[j]; sqlite3DbFree(db, p->p); } sqlite3DbFree(db, pIdx->aSample); } if( db->pnBytesFreed==0 ){ pIdx->nSample = 0; pIdx->aSample = 0; } #else UNUSED_PARAMETER(db); UNUSED_PARAMETER(pIdx); #endif /* SQLITE_ENABLE_STAT4 */ } #ifdef SQLITE_ENABLE_STAT4 /* ** Populate the pIdx->aAvgEq[] array based on the samples currently ** stored in pIdx->aSample[]. */ static void initAvgEq(Index *pIdx){ if( pIdx ){ IndexSample *aSample = pIdx->aSample; IndexSample *pFinal = &aSample[pIdx->nSample-1]; int iCol; int nCol = 1; if( pIdx->nSampleCol>1 ){ /* If this is stat4 data, then calculate aAvgEq[] values for all ** sample columns except the last. The last is always set to 1, as ** once the trailing PK fields are considered all index keys are ** unique. */ nCol = pIdx->nSampleCol-1; pIdx->aAvgEq[nCol] = 1; } for(iCol=0; iColnSample; int i; /* Used to iterate through samples */ tRowcnt sumEq = 0; /* Sum of the nEq values */ tRowcnt avgEq = 0; tRowcnt nRow; /* Number of rows in index */ i64 nSum100 = 0; /* Number of terms contributing to sumEq */ i64 nDist100; /* Number of distinct values in index */ if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ nRow = pFinal->anLt[iCol]; nDist100 = (i64)100 * pFinal->anDLt[iCol]; nSample--; }else{ nRow = pIdx->aiRowEst[0]; nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; } pIdx->nRowEst0 = nRow; /* Set nSum to the number of distinct (iCol+1) field prefixes that ** occur in the stat4 table for this index. Set sumEq to the sum of ** the nEq values for column iCol for the same set (adding the value ** only once where there exist duplicate prefixes). */ for(i=0; inSample-1) || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){ sumEq += aSample[i].anEq[iCol]; nSum100 += 100; } } if( nDist100>nSum100 && sumEqaAvgEq[iCol] = avgEq; } } } /* ** Look up an index by name. Or, if the name of a WITHOUT ROWID table ** is supplied instead, find the PRIMARY KEY index for that table. */ static Index *findIndexOrPrimaryKey( sqlite3 *db, const char *zName, const char *zDb ){ Index *pIdx = sqlite3FindIndex(db, zName, zDb); if( pIdx==0 ){ Table *pTab = sqlite3FindTable(db, zName, zDb); if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); } return pIdx; } /* ** Load the content from either the sqlite_stat4 ** into the relevant Index.aSample[] arrays. ** ** Arguments zSql1 and zSql2 must point to SQL statements that return ** data equivalent to the following: ** ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 ** ** where %Q is replaced with the database name before the SQL is executed. */ static int loadStatTbl( sqlite3 *db, /* Database handle */ const char *zSql1, /* SQL statement 1 (see above) */ const char *zSql2, /* SQL statement 2 (see above) */ const char *zDb /* Database name (e.g. "main") */ ){ int rc; /* Result codes from subroutines */ sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ char *zSql; /* Text of the SQL statement */ Index *pPrevIdx = 0; /* Previous index in the loop */ IndexSample *pSample; /* A slot in pIdx->aSample[] */ assert( db->lookaside.bDisable ); zSql = sqlite3MPrintf(db, zSql1, zDb); if( !zSql ){ return SQLITE_NOMEM_BKPT; } rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); sqlite3DbFree(db, zSql); if( rc ) return rc; while( sqlite3_step(pStmt)==SQLITE_ROW ){ int nIdxCol = 1; /* Number of columns in stat4 records */ char *zIndex; /* Index name */ Index *pIdx; /* Pointer to the index object */ int nSample; /* Number of samples */ int nByte; /* Bytes of space required */ int i; /* Bytes of space required */ tRowcnt *pSpace; zIndex = (char *)sqlite3_column_text(pStmt, 0); if( zIndex==0 ) continue; nSample = sqlite3_column_int(pStmt, 1); pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); assert( pIdx==0 || pIdx->nSample==0 ); if( pIdx==0 ) continue; if( pIdx->aSample!=0 ){ /* The same index appears in sqlite_stat4 under multiple names */ continue; } assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ nIdxCol = pIdx->nKeyCol; }else{ nIdxCol = pIdx->nColumn; } pIdx->nSampleCol = nIdxCol; pIdx->mxSample = nSample; nByte = sizeof(IndexSample) * nSample; nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ pIdx->aSample = sqlite3DbMallocZero(db, nByte); if( pIdx->aSample==0 ){ sqlite3_finalize(pStmt); return SQLITE_NOMEM_BKPT; } pSpace = (tRowcnt*)&pIdx->aSample[nSample]; pIdx->aAvgEq = pSpace; pSpace += nIdxCol; pIdx->pTable->tabFlags |= TF_HasStat4; for(i=0; iaSample[i].anEq = pSpace; pSpace += nIdxCol; pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; } assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); } rc = sqlite3_finalize(pStmt); if( rc ) return rc; zSql = sqlite3MPrintf(db, zSql2, zDb); if( !zSql ){ return SQLITE_NOMEM_BKPT; } rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); sqlite3DbFree(db, zSql); if( rc ) return rc; while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex; /* Index name */ Index *pIdx; /* Pointer to the index object */ int nCol = 1; /* Number of columns in index */ zIndex = (char *)sqlite3_column_text(pStmt, 0); if( zIndex==0 ) continue; pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); if( pIdx==0 ) continue; if( pIdx->nSample>=pIdx->mxSample ){ /* Too many slots used because the same index appears in ** sqlite_stat4 using multiple names */ continue; } /* This next condition is true if data has already been loaded from ** the sqlite_stat4 table. */ nCol = pIdx->nSampleCol; if( pIdx!=pPrevIdx ){ initAvgEq(pPrevIdx); pPrevIdx = pIdx; } pSample = &pIdx->aSample[pIdx->nSample]; decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); /* Take a copy of the sample. Add 8 extra 0x00 bytes the end of the buffer. ** This is in case the sample record is corrupted. In that case, the ** sqlite3VdbeRecordCompare() may read up to two varints past the ** end of the allocated buffer before it realizes it is dealing with ** a corrupt record. Or it might try to read a large integer from the ** buffer. In any case, eight 0x00 bytes prevents this from causing ** a buffer overread. */ pSample->n = sqlite3_column_bytes(pStmt, 4); pSample->p = sqlite3DbMallocZero(db, pSample->n + 8); if( pSample->p==0 ){ sqlite3_finalize(pStmt); return SQLITE_NOMEM_BKPT; } if( pSample->n ){ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); } pIdx->nSample++; } rc = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); return rc; } /* ** Load content from the sqlite_stat4 table into ** the Index.aSample[] arrays of all indices. */ static int loadStat4(sqlite3 *db, const char *zDb){ int rc = SQLITE_OK; /* Result codes from subroutines */ const Table *pStat4; assert( db->lookaside.bDisable ); if( OptimizationEnabled(db, SQLITE_Stat4) && (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0 && IsOrdinaryTable(pStat4) ){ rc = loadStatTbl(db, "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx COLLATE nocase", "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", zDb ); } return rc; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] ** arrays. The contents of sqlite_stat4 are used to populate the ** Index.aSample[] arrays. ** ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined ** during compilation and the sqlite_stat4 table is present, no data is ** read from it. ** ** If SQLITE_ENABLE_STAT4 was defined during compilation and the ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is ** returned. However, in this case, data is read from the sqlite_stat1 ** table (if it is present) before returning. ** ** If an OOM error occurs, this function always sets db->mallocFailed. ** This means if the caller does not care about other errors, the return ** code may be ignored. */ SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; int rc = SQLITE_OK; Schema *pSchema = db->aDb[iDb].pSchema; const Table *pStat1; assert( iDb>=0 && iDbnDb ); assert( db->aDb[iDb].pBt!=0 ); /* Clear any prior statistics */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); pTab->tabFlags &= ~TF_HasStat1; } for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); pIdx->hasStat1 = 0; #ifdef SQLITE_ENABLE_STAT4 sqlite3DeleteIndexSamples(db, pIdx); pIdx->aSample = 0; #endif } /* Load new statistics out of the sqlite_stat1 table */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zDbSName; if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)) && IsOrdinaryTable(pStat1) ){ zSql = sqlite3MPrintf(db, "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); sqlite3DbFree(db, zSql); } } /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); } /* Load the statistics from the sqlite_stat4 table. */ #ifdef SQLITE_ENABLE_STAT4 if( rc==SQLITE_OK ){ DisableLookaside; rc = loadStat4(db, sInfo.zDatabase); EnableLookaside; } for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3_free(pIdx->aiRowEst); pIdx->aiRowEst = 0; } #endif if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); } return rc; } #endif /* SQLITE_OMIT_ANALYZE */ /************** End of analyze.c *********************************************/ /************** Begin file attach.c ******************************************/ /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_ATTACH /* ** Resolve an expression that was part of an ATTACH or DETACH statement. This ** is slightly different from resolving a normal SQL expression, because simple ** identifiers are treated as strings, not possible column names or aliases. ** ** i.e. if the parser sees: ** ** ATTACH DATABASE abc AS def ** ** it treats the two expressions as literal strings 'abc' and 'def' instead of ** looking for columns of the same name. ** ** This only applies to the root node of pExpr, so the statement: ** ** ATTACH DATABASE abc||def AS 'db2' ** ** will fail because neither abc or def can be resolved. */ static int resolveAttachExpr(NameContext *pName, Expr *pExpr) { int rc = SQLITE_OK; if( pExpr ){ if( pExpr->op!=TK_ID ){ rc = sqlite3ResolveExprNames(pName, pExpr); }else{ pExpr->op = TK_STRING; } } return rc; } /* ** Return true if zName points to a name that may be used to refer to ** database iDb attached to handle db. */ SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName){ return ( sqlite3StrICmp(db->aDb[iDb].zDbSName, zName)==0 || (iDb==0 && sqlite3StrICmp("main", zName)==0) ); } /* ** An SQL user-function registered to do the work of an ATTACH statement. The ** three arguments to the function come directly from an attach statement: ** ** ATTACH DATABASE x AS y KEY z ** ** SELECT sqlite_attach(x, y, z) ** ** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the ** third argument. ** ** If the db->init.reopenMemdb flags is set, then instead of attaching a ** new database, close the database on db->init.iDb and reopen it as an ** empty MemDB. */ static void attachFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ int i; int rc = 0; sqlite3 *db = sqlite3_context_db_handle(context); const char *zName; const char *zFile; char *zPath = 0; char *zErr = 0; unsigned int flags; Db *aNew; /* New array of Db pointers */ Db *pNew = 0; /* Db object for the newly attached database */ char *zErrDyn = 0; sqlite3_vfs *pVfs; UNUSED_PARAMETER(NotUsed); zFile = (const char *)sqlite3_value_text(argv[0]); zName = (const char *)sqlite3_value_text(argv[1]); if( zFile==0 ) zFile = ""; if( zName==0 ) zName = ""; #ifndef SQLITE_OMIT_DESERIALIZE # define REOPEN_AS_MEMDB(db) (db->init.reopenMemdb) #else # define REOPEN_AS_MEMDB(db) (0) #endif if( REOPEN_AS_MEMDB(db) ){ /* This is not a real ATTACH. Instead, this routine is being called ** from sqlite3_deserialize() to close database db->init.iDb and ** reopen it as a MemDB */ Btree *pNewBt = 0; pVfs = sqlite3_vfs_find("memdb"); if( pVfs==0 ) return; rc = sqlite3BtreeOpen(pVfs, "x\0", db, &pNewBt, 0, SQLITE_OPEN_MAIN_DB); if( rc==SQLITE_OK ){ Schema *pNewSchema = sqlite3SchemaGet(db, pNewBt); if( pNewSchema ){ /* Both the Btree and the new Schema were allocated successfully. ** Close the old db and update the aDb[] slot with the new memdb ** values. */ pNew = &db->aDb[db->init.iDb]; if( ALWAYS(pNew->pBt) ) sqlite3BtreeClose(pNew->pBt); pNew->pBt = pNewBt; pNew->pSchema = pNewSchema; }else{ sqlite3BtreeClose(pNewBt); rc = SQLITE_NOMEM; } } if( rc ) goto attach_error; }else{ /* This is a real ATTACH ** ** Check for the following errors: ** ** * Too many attached databases, ** * Transaction currently open ** * Specified database name already being used. */ if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){ zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d", db->aLimit[SQLITE_LIMIT_ATTACHED] ); goto attach_error; } for(i=0; inDb; i++){ assert( zName ); if( sqlite3DbIsNamed(db, i, zName) ){ zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName); goto attach_error; } } /* Allocate the new entry in the db->aDb[] array and initialize the schema ** hash tables. */ if( db->aDb==db->aDbStatic ){ aNew = sqlite3DbMallocRawNN(db, sizeof(db->aDb[0])*3 ); if( aNew==0 ) return; memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); }else{ aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); if( aNew==0 ) return; } db->aDb = aNew; pNew = &db->aDb[db->nDb]; memset(pNew, 0, sizeof(*pNew)); /* Open the database file. If the btree is successfully opened, use ** it to obtain the database schema. At this point the schema may ** or may not be initialized. */ flags = db->openFlags; rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); return; } assert( pVfs ); flags |= SQLITE_OPEN_MAIN_DB; rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags); db->nDb++; pNew->zDbSName = sqlite3DbStrDup(db, zName); } db->noSharedCache = 0; if( rc==SQLITE_CONSTRAINT ){ rc = SQLITE_ERROR; zErrDyn = sqlite3MPrintf(db, "database is already attached"); }else if( rc==SQLITE_OK ){ Pager *pPager; pNew->pSchema = sqlite3SchemaGet(db, pNew->pBt); if( !pNew->pSchema ){ rc = SQLITE_NOMEM_BKPT; }else if( pNew->pSchema->file_format && pNew->pSchema->enc!=ENC(db) ){ zErrDyn = sqlite3MPrintf(db, "attached databases must use the same text encoding as main database"); rc = SQLITE_ERROR; } sqlite3BtreeEnter(pNew->pBt); pPager = sqlite3BtreePager(pNew->pBt); sqlite3PagerLockingMode(pPager, db->dfltLockMode); sqlite3BtreeSecureDelete(pNew->pBt, sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) ); #ifndef SQLITE_OMIT_PAGER_PRAGMAS sqlite3BtreeSetPagerFlags(pNew->pBt, PAGER_SYNCHRONOUS_FULL | (db->flags & PAGER_FLAGS_MASK)); #endif sqlite3BtreeLeave(pNew->pBt); } pNew->safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; if( rc==SQLITE_OK && pNew->zDbSName==0 ){ rc = SQLITE_NOMEM_BKPT; } /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC if( rc==SQLITE_OK ){ extern int sqlcipherCodecAttach(sqlite3*, int, const void*, int); extern void sqlcipherCodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; int t = sqlite3_value_type(argv[2]); switch( t ){ case SQLITE_INTEGER: case SQLITE_FLOAT: zErrDyn = sqlite3DbStrDup(db, "Invalid key value"); rc = SQLITE_ERROR; break; case SQLITE_TEXT: case SQLITE_BLOB: nKey = sqlite3_value_bytes(argv[2]); zKey = (char *)sqlite3_value_blob(argv[2]); rc = sqlcipherCodecAttach(db, db->nDb-1, zKey, nKey); break; case SQLITE_NULL: /* No key specified. Use the key from URI filename, or if none, ** use the key from the main database. */ if( sqlite3CodecQueryParameters(db, zName, zPath)==0 ){ sqlcipherCodecGetKey(db, 0, (void**)&zKey, &nKey); if( nKey || sqlite3BtreeGetRequestedReserve(db->aDb[0].pBt)>0 ){ rc = sqlcipherCodecAttach(db, db->nDb-1, zKey, nKey); } } break; } } #endif /* END SQLCIPHER */ sqlite3_free_filename( zPath ); /* If the file was opened successfully, read the schema for the new database. ** If this fails, or if opening the file failed, then close the file and ** remove the entry from the db->aDb[] array. i.e. put everything back the ** way we found it. */ if( rc==SQLITE_OK ){ sqlite3BtreeEnterAll(db); db->init.iDb = 0; db->mDbFlags &= ~(DBFLAG_SchemaKnownOk); if( !REOPEN_AS_MEMDB(db) ){ rc = sqlite3Init(db, &zErrDyn); } sqlite3BtreeLeaveAll(db); assert( zErrDyn==0 || rc!=SQLITE_OK ); } #ifdef SQLITE_USER_AUTHENTICATION if( rc==SQLITE_OK && !REOPEN_AS_MEMDB(db) ){ u8 newAuth = 0; rc = sqlite3UserAuthCheckLogin(db, zName, &newAuth); if( newAuthauth.authLevel ){ rc = SQLITE_AUTH_USER; } } #endif if( rc ){ if( ALWAYS(!REOPEN_AS_MEMDB(db)) ){ int iDb = db->nDb - 1; assert( iDb>=2 ); if( db->aDb[iDb].pBt ){ sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; db->aDb[iDb].pSchema = 0; } sqlite3ResetAllSchemasOfConnection(db); db->nDb = iDb; if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); sqlite3DbFree(db, zErrDyn); zErrDyn = sqlite3MPrintf(db, "out of memory"); }else if( zErrDyn==0 ){ zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile); } } goto attach_error; } return; attach_error: /* Return an error if we get here */ if( zErrDyn ){ sqlite3_result_error(context, zErrDyn, -1); sqlite3DbFree(db, zErrDyn); } if( rc ) sqlite3_result_error_code(context, rc); } /* ** An SQL user-function registered to do the work of an DETACH statement. The ** three arguments to the function come directly from a detach statement: ** ** DETACH DATABASE x ** ** SELECT sqlite_detach(x) */ static void detachFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ const char *zName = (const char *)sqlite3_value_text(argv[0]); sqlite3 *db = sqlite3_context_db_handle(context); int i; Db *pDb = 0; HashElem *pEntry; char zErr[128]; UNUSED_PARAMETER(NotUsed); if( zName==0 ) zName = ""; for(i=0; inDb; i++){ pDb = &db->aDb[i]; if( pDb->pBt==0 ) continue; if( sqlite3DbIsNamed(db, i, zName) ) break; } if( i>=db->nDb ){ sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName); goto detach_error; } if( i<2 ){ sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName); goto detach_error; } if( sqlite3BtreeTxnState(pDb->pBt)!=SQLITE_TXN_NONE || sqlite3BtreeIsInBackup(pDb->pBt) ){ sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); goto detach_error; } /* If any TEMP triggers reference the schema being detached, move those ** triggers to reference the TEMP schema itself. */ assert( db->aDb[1].pSchema ); pEntry = sqliteHashFirst(&db->aDb[1].pSchema->trigHash); while( pEntry ){ Trigger *pTrig = (Trigger*)sqliteHashData(pEntry); if( pTrig->pTabSchema==pDb->pSchema ){ pTrig->pTabSchema = pTrig->pSchema; } pEntry = sqliteHashNext(pEntry); } sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; sqlite3CollapseDatabaseArray(db); return; detach_error: sqlite3_result_error(context, zErr, -1); } /* ** This procedure generates VDBE code for a single invocation of either the ** sqlite_detach() or sqlite_attach() SQL user functions. */ static void codeAttach( Parse *pParse, /* The parser context */ int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */ FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */ Expr *pAuthArg, /* Expression to pass to authorization callback */ Expr *pFilename, /* Name of database file */ Expr *pDbname, /* Name of the database to use internally */ Expr *pKey /* Database key for encryption extension */ ){ int rc; NameContext sName; Vdbe *v; sqlite3* db = pParse->db; int regArgs; if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto attach_end; if( pParse->nErr ) goto attach_end; memset(&sName, 0, sizeof(NameContext)); sName.pParse = pParse; if( SQLITE_OK!=resolveAttachExpr(&sName, pFilename) || SQLITE_OK!=resolveAttachExpr(&sName, pDbname) || SQLITE_OK!=resolveAttachExpr(&sName, pKey) ){ goto attach_end; } #ifndef SQLITE_OMIT_AUTHORIZATION if( ALWAYS(pAuthArg) ){ char *zAuthArg; if( pAuthArg->op==TK_STRING ){ assert( !ExprHasProperty(pAuthArg, EP_IntValue) ); zAuthArg = pAuthArg->u.zToken; }else{ zAuthArg = 0; } rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0); if(rc!=SQLITE_OK ){ goto attach_end; } } #endif /* SQLITE_OMIT_AUTHORIZATION */ v = sqlite3GetVdbe(pParse); regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ sqlite3VdbeAddFunctionCall(pParse, 0, regArgs+3-pFunc->nArg, regArgs+3, pFunc->nArg, pFunc, 0); /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this ** statement only). For DETACH, set it to false (expire all existing ** statements). */ sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH)); } attach_end: sqlite3ExprDelete(db, pFilename); sqlite3ExprDelete(db, pDbname); sqlite3ExprDelete(db, pKey); } /* ** Called by the parser to compile a DETACH statement. ** ** DETACH pDbname */ SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){ static const FuncDef detach_func = { 1, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ detachFunc, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "sqlite_detach", /* zName */ {0} }; codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname); } /* ** Called by the parser to compile an ATTACH statement. ** ** ATTACH p AS pDbname KEY pKey */ SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){ static const FuncDef attach_func = { 3, /* nArg */ SQLITE_UTF8, /* funcFlags */ 0, /* pUserData */ 0, /* pNext */ attachFunc, /* xSFunc */ 0, /* xFinalize */ 0, 0, /* xValue, xInverse */ "sqlite_attach", /* zName */ {0} }; codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey); } #endif /* SQLITE_OMIT_ATTACH */ /* ** Expression callback used by sqlite3FixAAAA() routines. */ static int fixExprCb(Walker *p, Expr *pExpr){ DbFixer *pFix = p->u.pFix; if( !pFix->bTemp ) ExprSetProperty(pExpr, EP_FromDDL); if( pExpr->op==TK_VARIABLE ){ if( pFix->pParse->db->init.busy ){ pExpr->op = TK_NULL; }else{ sqlite3ErrorMsg(pFix->pParse, "%s cannot use variables", pFix->zType); return WRC_Abort; } } return WRC_Continue; } /* ** Select callback used by sqlite3FixAAAA() routines. */ static int fixSelectCb(Walker *p, Select *pSelect){ DbFixer *pFix = p->u.pFix; int i; SrcItem *pItem; sqlite3 *db = pFix->pParse->db; int iDb = sqlite3FindDbName(db, pFix->zDb); SrcList *pList = pSelect->pSrc; if( NEVER(pList==0) ) return WRC_Continue; for(i=0, pItem=pList->a; inSrc; i++, pItem++){ if( pFix->bTemp==0 ){ if( pItem->zDatabase ){ if( iDb!=sqlite3FindDbName(db, pItem->zDatabase) ){ sqlite3ErrorMsg(pFix->pParse, "%s %T cannot reference objects in database %s", pFix->zType, pFix->pName, pItem->zDatabase); return WRC_Abort; } sqlite3DbFree(db, pItem->zDatabase); pItem->zDatabase = 0; pItem->fg.notCte = 1; } pItem->pSchema = pFix->pSchema; pItem->fg.fromDDL = 1; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) if( pList->a[i].fg.isUsing==0 && sqlite3WalkExpr(&pFix->w, pList->a[i].u3.pOn) ){ return WRC_Abort; } #endif } if( pSelect->pWith ){ for(i=0; ipWith->nCte; i++){ if( sqlite3WalkSelect(p, pSelect->pWith->a[i].pSelect) ){ return WRC_Abort; } } } return WRC_Continue; } /* ** Initialize a DbFixer structure. This routine must be called prior ** to passing the structure to one of the sqliteFixAAAA() routines below. */ SQLITE_PRIVATE void sqlite3FixInit( DbFixer *pFix, /* The fixer to be initialized */ Parse *pParse, /* Error messages will be written here */ int iDb, /* This is the database that must be used */ const char *zType, /* "view", "trigger", or "index" */ const Token *pName /* Name of the view, trigger, or index */ ){ sqlite3 *db = pParse->db; assert( db->nDb>iDb ); pFix->pParse = pParse; pFix->zDb = db->aDb[iDb].zDbSName; pFix->pSchema = db->aDb[iDb].pSchema; pFix->zType = zType; pFix->pName = pName; pFix->bTemp = (iDb==1); pFix->w.pParse = pParse; pFix->w.xExprCallback = fixExprCb; pFix->w.xSelectCallback = fixSelectCb; pFix->w.xSelectCallback2 = sqlite3WalkWinDefnDummyCallback; pFix->w.walkerDepth = 0; pFix->w.eCode = 0; pFix->w.u.pFix = pFix; } /* ** The following set of routines walk through the parse tree and assign ** a specific database to all table references where the database name ** was left unspecified in the original SQL statement. The pFix structure ** must have been initialized by a prior call to sqlite3FixInit(). ** ** These routines are used to make sure that an index, trigger, or ** view in one database does not refer to objects in a different database. ** (Exception: indices, triggers, and views in the TEMP database are ** allowed to refer to anything.) If a reference is explicitly made ** to an object in a different database, an error message is added to ** pParse->zErrMsg and these routines return non-zero. If everything ** checks out, these routines return 0. */ SQLITE_PRIVATE int sqlite3FixSrcList( DbFixer *pFix, /* Context of the fixation */ SrcList *pList /* The Source list to check and modify */ ){ int res = 0; if( pList ){ Select s; memset(&s, 0, sizeof(s)); s.pSrc = pList; res = sqlite3WalkSelect(&pFix->w, &s); } return res; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) SQLITE_PRIVATE int sqlite3FixSelect( DbFixer *pFix, /* Context of the fixation */ Select *pSelect /* The SELECT statement to be fixed to one database */ ){ return sqlite3WalkSelect(&pFix->w, pSelect); } SQLITE_PRIVATE int sqlite3FixExpr( DbFixer *pFix, /* Context of the fixation */ Expr *pExpr /* The expression to be fixed to one database */ ){ return sqlite3WalkExpr(&pFix->w, pExpr); } #endif #ifndef SQLITE_OMIT_TRIGGER SQLITE_PRIVATE int sqlite3FixTriggerStep( DbFixer *pFix, /* Context of the fixation */ TriggerStep *pStep /* The trigger step be fixed to one database */ ){ while( pStep ){ if( sqlite3WalkSelect(&pFix->w, pStep->pSelect) || sqlite3WalkExpr(&pFix->w, pStep->pWhere) || sqlite3WalkExprList(&pFix->w, pStep->pExprList) || sqlite3FixSrcList(pFix, pStep->pFrom) ){ return 1; } #ifndef SQLITE_OMIT_UPSERT { Upsert *pUp; for(pUp=pStep->pUpsert; pUp; pUp=pUp->pNextUpsert){ if( sqlite3WalkExprList(&pFix->w, pUp->pUpsertTarget) || sqlite3WalkExpr(&pFix->w, pUp->pUpsertTargetWhere) || sqlite3WalkExprList(&pFix->w, pUp->pUpsertSet) || sqlite3WalkExpr(&pFix->w, pUp->pUpsertWhere) ){ return 1; } } } #endif pStep = pStep->pNext; } return 0; } #endif /************** End of attach.c **********************************************/ /************** Begin file auth.c ********************************************/ /* ** 2003 January 11 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the sqlite3_set_authorizer() ** API. This facility is an optional feature of the library. Embedded ** systems that do not need this facility may omit it by recompiling ** the library with -DSQLITE_OMIT_AUTHORIZATION=1 */ /* #include "sqliteInt.h" */ /* ** All of the code in this file may be omitted by defining a single ** macro. */ #ifndef SQLITE_OMIT_AUTHORIZATION /* ** Set or clear the access authorization function. ** ** The access authorization function is be called during the compilation ** phase to verify that the user has read and/or write access permission on ** various fields of the database. The first argument to the auth function ** is a copy of the 3rd argument to this routine. The second argument ** to the auth function is one of these constants: ** ** SQLITE_CREATE_INDEX ** SQLITE_CREATE_TABLE ** SQLITE_CREATE_TEMP_INDEX ** SQLITE_CREATE_TEMP_TABLE ** SQLITE_CREATE_TEMP_TRIGGER ** SQLITE_CREATE_TEMP_VIEW ** SQLITE_CREATE_TRIGGER ** SQLITE_CREATE_VIEW ** SQLITE_DELETE ** SQLITE_DROP_INDEX ** SQLITE_DROP_TABLE ** SQLITE_DROP_TEMP_INDEX ** SQLITE_DROP_TEMP_TABLE ** SQLITE_DROP_TEMP_TRIGGER ** SQLITE_DROP_TEMP_VIEW ** SQLITE_DROP_TRIGGER ** SQLITE_DROP_VIEW ** SQLITE_INSERT ** SQLITE_PRAGMA ** SQLITE_READ ** SQLITE_SELECT ** SQLITE_TRANSACTION ** SQLITE_UPDATE ** ** The third and fourth arguments to the auth function are the name of ** the table and the column that are being accessed. The auth function ** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If ** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY ** means that the SQL statement will never-run - the sqlite3_exec() call ** will return with an error. SQLITE_IGNORE means that the SQL statement ** should run but attempts to read the specified column will return NULL ** and attempts to write the column will be ignored. ** ** Setting the auth function to NULL disables this hook. The default ** setting of the auth function is NULL. */ SQLITE_API int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xAuth = (sqlite3_xauth)xAuth; db->pAuthArg = pArg; if( db->xAuth ) sqlite3ExpirePreparedStatements(db, 1); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Write an error message into pParse->zErrMsg that explains that the ** user-supplied authorization function returned an illegal value. */ static void sqliteAuthBadReturnCode(Parse *pParse){ sqlite3ErrorMsg(pParse, "authorizer malfunction"); pParse->rc = SQLITE_ERROR; } /* ** Invoke the authorization callback for permission to read column zCol from ** table zTab in database zDb. This function assumes that an authorization ** callback has been registered (i.e. that sqlite3.xAuth is not NULL). ** ** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed ** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE ** is treated as SQLITE_DENY. In this case an error is left in pParse. */ SQLITE_PRIVATE int sqlite3AuthReadCol( Parse *pParse, /* The parser context */ const char *zTab, /* Table name */ const char *zCol, /* Column name */ int iDb /* Index of containing database. */ ){ sqlite3 *db = pParse->db; /* Database handle */ char *zDb = db->aDb[iDb].zDbSName; /* Schema name of attached database */ int rc; /* Auth callback return code */ if( db->init.busy ) return SQLITE_OK; rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext #ifdef SQLITE_USER_AUTHENTICATION ,db->auth.zAuthUser #endif ); if( rc==SQLITE_DENY ){ char *z = sqlite3_mprintf("%s.%s", zTab, zCol); if( db->nDb>2 || iDb!=0 ) z = sqlite3_mprintf("%s.%z", zDb, z); sqlite3ErrorMsg(pParse, "access to %z is prohibited", z); pParse->rc = SQLITE_AUTH; }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){ sqliteAuthBadReturnCode(pParse); } return rc; } /* ** The pExpr should be a TK_COLUMN expression. The table referred to ** is in pTabList or else it is the NEW or OLD table of a trigger. ** Check to see if it is OK to read this particular column. ** ** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN ** instruction into a TK_NULL. If the auth function returns SQLITE_DENY, ** then generate an error. */ SQLITE_PRIVATE void sqlite3AuthRead( Parse *pParse, /* The parser context */ Expr *pExpr, /* The expression to check authorization on */ Schema *pSchema, /* The schema of the expression */ SrcList *pTabList /* All table that pExpr might refer to */ ){ Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ int iDb; /* The index of the database the expression refers to */ int iCol; /* Index of column in table */ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); assert( !IN_RENAME_OBJECT ); assert( pParse->db->xAuth!=0 ); iDb = sqlite3SchemaToIndex(pParse->db, pSchema); if( iDb<0 ){ /* An attempt to read a column out of a subquery or other ** temporary table. */ return; } if( pExpr->op==TK_TRIGGER ){ pTab = pParse->pTriggerTab; }else{ assert( pTabList ); for(iSrc=0; iSrcnSrc; iSrc++){ if( pExpr->iTable==pTabList->a[iSrc].iCursor ){ pTab = pTabList->a[iSrc].pTab; break; } } } iCol = pExpr->iColumn; if( pTab==0 ) return; if( iCol>=0 ){ assert( iColnCol ); zCol = pTab->aCol[iCol].zCnName; }else if( pTab->iPKey>=0 ){ assert( pTab->iPKeynCol ); zCol = pTab->aCol[pTab->iPKey].zCnName; }else{ zCol = "ROWID"; } assert( iDb>=0 && iDbdb->nDb ); if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){ pExpr->op = TK_NULL; } } /* ** Do an authorization check using the code and arguments given. Return ** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY ** is returned, then the error count and error message in pParse are ** modified appropriately. */ SQLITE_PRIVATE int sqlite3AuthCheck( Parse *pParse, int code, const char *zArg1, const char *zArg2, const char *zArg3 ){ sqlite3 *db = pParse->db; int rc; /* Don't do any authorization checks if the database is initializing ** or if the parser is being invoked from within sqlite3_declare_vtab. */ assert( !IN_RENAME_OBJECT || db->xAuth==0 ); if( db->xAuth==0 || db->init.busy || IN_SPECIAL_PARSE ){ return SQLITE_OK; } /* EVIDENCE-OF: R-43249-19882 The third through sixth parameters to the ** callback are either NULL pointers or zero-terminated strings that ** contain additional details about the action to be authorized. ** ** The following testcase() macros show that any of the 3rd through 6th ** parameters can be either NULL or a string. */ testcase( zArg1==0 ); testcase( zArg2==0 ); testcase( zArg3==0 ); testcase( pParse->zAuthContext==0 ); rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext #ifdef SQLITE_USER_AUTHENTICATION ,db->auth.zAuthUser #endif ); if( rc==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized"); pParse->rc = SQLITE_AUTH; }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){ rc = SQLITE_DENY; sqliteAuthBadReturnCode(pParse); } return rc; } /* ** Push an authorization context. After this routine is called, the ** zArg3 argument to authorization callbacks will be zContext until ** popped. Or if pParse==0, this routine is a no-op. */ SQLITE_PRIVATE void sqlite3AuthContextPush( Parse *pParse, AuthContext *pContext, const char *zContext ){ assert( pParse ); pContext->pParse = pParse; pContext->zAuthContext = pParse->zAuthContext; pParse->zAuthContext = zContext; } /* ** Pop an authorization context that was previously pushed ** by sqlite3AuthContextPush */ SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){ if( pContext->pParse ){ pContext->pParse->zAuthContext = pContext->zAuthContext; pContext->pParse = 0; } } #endif /* SQLITE_OMIT_AUTHORIZATION */ /************** End of auth.c ************************************************/ /************** Begin file build.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the SQLite parser ** when syntax rules are reduced. The routines in this file handle the ** following kinds of SQL syntax: ** ** CREATE TABLE ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_SHARED_CACHE /* ** The TableLock structure is only used by the sqlite3TableLock() and ** codeTableLocks() functions. */ struct TableLock { int iDb; /* The database containing the table to be locked */ Pgno iTab; /* The root page of the table to be locked */ u8 isWriteLock; /* True for write lock. False for a read lock */ const char *zLockName; /* Name of the table */ }; /* ** Record the fact that we want to lock a table at run-time. ** ** The table to be locked has root page iTab and is found in database iDb. ** A read or a write lock can be taken depending on isWritelock. ** ** This routine just records the fact that the lock is desired. The ** code to make the lock occur is generated by a later call to ** codeTableLocks() which occurs during sqlite3FinishCoding(). */ static SQLITE_NOINLINE void lockTable( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ Pgno iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ Parse *pToplevel; int i; int nBytes; TableLock *p; assert( iDb>=0 ); pToplevel = sqlite3ParseToplevel(pParse); for(i=0; inTableLock; i++){ p = &pToplevel->aTableLock[i]; if( p->iDb==iDb && p->iTab==iTab ){ p->isWriteLock = (p->isWriteLock || isWriteLock); return; } } nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); pToplevel->aTableLock = sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); if( pToplevel->aTableLock ){ p = &pToplevel->aTableLock[pToplevel->nTableLock++]; p->iDb = iDb; p->iTab = iTab; p->isWriteLock = isWriteLock; p->zLockName = zName; }else{ pToplevel->nTableLock = 0; sqlite3OomFault(pToplevel->db); } } SQLITE_PRIVATE void sqlite3TableLock( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ Pgno iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ if( iDb==1 ) return; if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; lockTable(pParse, iDb, iTab, isWriteLock, zName); } /* ** Code an OP_TableLock instruction for each table locked by the ** statement (configured by calls to sqlite3TableLock()). */ static void codeTableLocks(Parse *pParse){ int i; Vdbe *pVdbe = pParse->pVdbe; assert( pVdbe!=0 ); for(i=0; inTableLock; i++){ TableLock *p = &pParse->aTableLock[i]; int p1 = p->iDb; sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, p->zLockName, P4_STATIC); } } #else #define codeTableLocks(x) #endif /* ** Return TRUE if the given yDbMask object is empty - if it contains no ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() ** macros when SQLITE_MAX_ATTACHED is greater than 30. */ #if SQLITE_MAX_ATTACHED>30 SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask m){ int i; for(i=0; ipToplevel==0 ); db = pParse->db; assert( db->pParse==pParse ); if( pParse->nested ) return; if( pParse->nErr ){ if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM; return; } assert( db->mallocFailed==0 ); /* Begin by generating some termination code at the end of the ** vdbe program */ v = pParse->pVdbe; if( v==0 ){ if( db->init.busy ){ pParse->rc = SQLITE_DONE; return; } v = sqlite3GetVdbe(pParse); if( v==0 ) pParse->rc = SQLITE_ERROR; } assert( !pParse->isMultiWrite || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); if( v ){ if( pParse->bReturning ){ Returning *pReturning = pParse->u1.pReturning; int addrRewind; int reg; if( pReturning->nRetCol ){ sqlite3VdbeAddOp0(v, OP_FkCheck); addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); VdbeCoverage(v); reg = pReturning->iRetReg; for(i=0; inRetCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); } sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrRewind); } } sqlite3VdbeAddOp0(v, OP_Halt); #if SQLITE_USER_AUTHENTICATION if( pParse->nTableLock>0 && db->init.busy==0 ){ sqlite3UserAuthInit(db); if( db->auth.authLevelrc = SQLITE_AUTH_USER; return; } } #endif /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); sqlite3VdbeJumpHere(v, 0); assert( db->nDb>0 ); iDb = 0; do{ Schema *pSchema; if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; sqlite3VdbeUsesBtree(v, iDb); pSchema = db->aDb[iDb].pSchema; sqlite3VdbeAddOp4Int(v, OP_Transaction, /* Opcode */ iDb, /* P1 */ DbMaskTest(pParse->writeMask,iDb), /* P2 */ pSchema->schema_cookie, /* P3 */ pSchema->iGeneration /* P4 */ ); if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); VdbeComment((v, "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); }while( ++iDbnDb ); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=0; inVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; #endif #ifndef SQLITE_OMIT_SHARED_CACHE /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ if( pParse->nTableLock ) codeTableLocks(pParse); #endif /* Initialize any AUTOINCREMENT data structures required. */ if( pParse->pAinc ) sqlite3AutoincrementBegin(pParse); /* Code constant expressions that were factored out of inner loops. */ if( pParse->pConstExpr ){ ExprList *pEL = pParse->pConstExpr; pParse->okConstFactor = 0; for(i=0; inExpr; i++){ assert( pEL->a[i].u.iConstExprReg>0 ); sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); } } if( pParse->bReturning ){ Returning *pRet = pParse->u1.pReturning; if( pRet->nRetCol ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); } } /* Finally, jump back to the beginning of the executable code. */ sqlite3VdbeGoto(v, 1); } /* Get the VDBE program ready for execution */ assert( v!=0 || pParse->nErr ); assert( db->mallocFailed==0 || pParse->nErr ); if( pParse->nErr==0 ){ /* A minimum of one cursor is required if autoincrement is used * See ticket [a696379c1f08866] */ assert( pParse->pAinc==0 || pParse->nTab>0 ); sqlite3VdbeMakeReady(v, pParse); pParse->rc = SQLITE_DONE; }else{ pParse->rc = SQLITE_ERROR; } } /* ** Run the parser and code generator recursively in order to generate ** code for the SQL statement given onto the end of the pParse context ** currently under construction. Notes: ** ** * The final OP_Halt is not appended and other initialization ** and finalization steps are omitted because those are handling by the ** outermost parser. ** ** * Built-in SQL functions always take precedence over application-defined ** SQL functions. In other words, it is not possible to override a ** built-in function. */ SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ va_list ap; char *zSql; sqlite3 *db = pParse->db; u32 savedDbFlags = db->mDbFlags; char saveBuf[PARSE_TAIL_SZ]; if( pParse->nErr ) return; if( pParse->eParseMode ) return; assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ va_start(ap, zFormat); zSql = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); if( zSql==0 ){ /* This can result either from an OOM or because the formatted string ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set ** an error */ if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; pParse->nErr++; return; } pParse->nested++; memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); db->mDbFlags |= DBFLAG_PreferBuiltin; sqlite3RunParser(pParse, zSql); db->mDbFlags = savedDbFlags; sqlite3DbFree(db, zSql); memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); pParse->nested--; } #if SQLITE_USER_AUTHENTICATION /* ** Return TRUE if zTable is the name of the system table that stores the ** list of users and their access credentials. */ SQLITE_PRIVATE int sqlite3UserAuthTable(const char *zTable){ return sqlite3_stricmp(zTable, "sqlite_user")==0; } #endif /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the table and the ** first matching table is returned. (No checking for duplicate table ** names is done.) The search order is TEMP first, then MAIN, then any ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); #if SQLITE_USER_AUTHENTICATION /* Only the admin user is allowed to know that the sqlite_user table ** exists */ if( db->auth.authLevelnDb; i++){ if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; } if( i>=db->nDb ){ /* No match against the official names. But always match "main" ** to schema 0 as a legacy fallback. */ if( sqlite3StrICmp(zDatabase,"main")==0 ){ i = 0; }else{ return 0; } } p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( i==1 ){ if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, LEGACY_TEMP_SCHEMA_TABLE); } }else{ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, LEGACY_SCHEMA_TABLE); } } } }else{ /* Match against TEMP first */ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); if( p ) return p; /* The main database is second */ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); if( p ) return p; /* Attached databases are in order of attachment */ for(i=2; inDb; i++){ assert( sqlite3SchemaMutexHeld(db, i, 0) ); p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); if( p ) break; } if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE); }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, LEGACY_TEMP_SCHEMA_TABLE); } } } return p; } /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. Also leave an ** error message in pParse->zErrMsg. ** ** The difference between this routine and sqlite3FindTable() is that this ** routine leaves an error message in pParse->zErrMsg where ** sqlite3FindTable() does not. */ SQLITE_PRIVATE Table *sqlite3LocateTable( Parse *pParse, /* context in which to report errors */ u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ const char *zName, /* Name of the table we are looking for */ const char *zDbase /* Name of the database. Might be NULL */ ){ Table *p; sqlite3 *db = pParse->db; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 && SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return 0; } p = sqlite3FindTable(db, zName, zDbase); if( p==0 ){ #ifndef SQLITE_OMIT_VIRTUALTABLE /* If zName is the not the name of a table in the schema created using ** CREATE, then check to see if it is the name of an virtual table that ** can be an eponymous virtual table. */ if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){ Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ pMod = sqlite3PragmaVtabRegister(db, zName); } if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ testcase( pMod->pEpoTab==0 ); return pMod->pEpoTab; } } #endif if( flags & LOCATE_NOERR ) return 0; pParse->checkSchema = 1; }else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){ p = 0; } if( p==0 ){ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; if( zDbase ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); } }else{ assert( HasRowid(p) || p->iPKey<0 ); } return p; } /* ** Locate the table identified by *p. ** ** This is a wrapper around sqlite3LocateTable(). The difference between ** sqlite3LocateTable() and this function is that this function restricts ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be ** non-NULL if it is part of a view or trigger program definition. See ** sqlite3FixSrcList() for details. */ SQLITE_PRIVATE Table *sqlite3LocateTableItem( Parse *pParse, u32 flags, SrcItem *p ){ const char *zDb; assert( p->pSchema==0 || p->zDatabase==0 ); if( p->pSchema ){ int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); zDb = pParse->db->aDb[iDb].zDbSName; }else{ zDb = p->zDatabase; } return sqlite3LocateTable(pParse, flags, p->zName, zDb); } /* ** Return the preferred table name for system tables. Translate legacy ** names into the new preferred names, as appropriate. */ SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char *zName){ if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ return PREFERRED_SCHEMA_TABLE; } if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ return PREFERRED_TEMP_SCHEMA_TABLE; } } return zName; } /* ** Locate the in-memory structure that describes ** a particular index given the name of that index ** and the name of the database that contains the index. ** Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the ** table and the first matching index is returned. (No checking ** for duplicate index names is done.) The search order is ** TEMP first, then MAIN, then any auxiliary databases added ** using the ATTACH command. */ SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ Schema *pSchema = db->aDb[j].pSchema; assert( pSchema ); if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); p = sqlite3HashFind(&pSchema->idxHash, zName); if( p ) break; } return p; } /* ** Reclaim the memory used by an index */ SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3 *db, Index *p){ #ifndef SQLITE_OMIT_ANALYZE sqlite3DeleteIndexSamples(db, p); #endif sqlite3ExprDelete(db, p->pPartIdxWhere); sqlite3ExprListDelete(db, p->aColExpr); sqlite3DbFree(db, p->zColAff); if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); #ifdef SQLITE_ENABLE_STAT4 sqlite3_free(p->aiRowEst); #endif sqlite3DbFree(db, p); } /* ** For the index called zIdxName which is found in the database iDb, ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ Index *pIndex; Hash *pHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pHash = &db->aDb[iDb].pSchema->idxHash; pIndex = sqlite3HashInsert(pHash, zIdxName, 0); if( ALWAYS(pIndex) ){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; /* Justification of ALWAYS(); The index must be on the list of ** indices. */ p = pIndex->pTable->pIndex; while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } if( ALWAYS(p && p->pNext==pIndex) ){ p->pNext = pIndex->pNext; } } sqlite3FreeIndex(db, pIndex); } db->mDbFlags |= DBFLAG_SchemaChange; } /* ** Look through the list of open database files in db->aDb[] and if ** any have been closed, remove them from the list. Reallocate the ** db->aDb[] structure to a smaller size, if possible. ** ** Entry 0 (the "main" database) and entry 1 (the "temp" database) ** are never candidates for being collapsed. */ SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3 *db){ int i, j; for(i=j=2; inDb; i++){ struct Db *pDb = &db->aDb[i]; if( pDb->pBt==0 ){ sqlite3DbFree(db, pDb->zDbSName); pDb->zDbSName = 0; continue; } if( jaDb[j] = db->aDb[i]; } j++; } db->nDb = j; if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); sqlite3DbFree(db, db->aDb); db->aDb = db->aDbStatic; } } /* ** Reset the schema for the database at index iDb. Also reset the ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. ** Deferred resets may be run by calling with iDb<0. */ SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ int i; assert( iDbnDb ); if( iDb>=0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); DbSetProperty(db, iDb, DB_ResetWanted); DbSetProperty(db, 1, DB_ResetWanted); db->mDbFlags &= ~DBFLAG_SchemaKnownOk; } if( db->nSchemaLock==0 ){ for(i=0; inDb; i++){ if( DbHasProperty(db, i, DB_ResetWanted) ){ sqlite3SchemaClear(db->aDb[i].pSchema); } } } } /* ** Erase all schema information from all attached databases (including ** "main" and "temp") for a single database connection. */ SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ int i; sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ if( db->nSchemaLock==0 ){ sqlite3SchemaClear(pDb->pSchema); }else{ DbSetProperty(db, i, DB_ResetWanted); } } } db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); if( db->nSchemaLock==0 ){ sqlite3CollapseDatabaseArray(db); } } /* ** This routine is called when a commit occurs. */ SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){ db->mDbFlags &= ~DBFLAG_SchemaChange; } /* ** Set the expression associated with a column. This is usually ** the DEFAULT value, but might also be the expression that computes ** the value for a generated column. */ SQLITE_PRIVATE void sqlite3ColumnSetExpr( Parse *pParse, /* Parsing context */ Table *pTab, /* The table containing the column */ Column *pCol, /* The column to receive the new DEFAULT expression */ Expr *pExpr /* The new default expression */ ){ ExprList *pList; assert( IsOrdinaryTable(pTab) ); pList = pTab->u.tab.pDfltList; if( pCol->iDflt==0 || NEVER(pList==0) || NEVER(pList->nExpriDflt) ){ pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); }else{ sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); pList->a[pCol->iDflt-1].pExpr = pExpr; } } /* ** Return the expression associated with a column. The expression might be ** the DEFAULT clause or the AS clause of a generated column. ** Return NULL if the column has no associated expression. */ SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ if( pCol->iDflt==0 ) return 0; if( !IsOrdinaryTable(pTab) ) return 0; if( NEVER(pTab->u.tab.pDfltList==0) ) return 0; if( NEVER(pTab->u.tab.pDfltList->nExpriDflt) ) return 0; return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; } /* ** Set the collating sequence name for a column. */ SQLITE_PRIVATE void sqlite3ColumnSetColl( sqlite3 *db, Column *pCol, const char *zColl ){ i64 nColl; i64 n; char *zNew; assert( zColl!=0 ); n = sqlite3Strlen30(pCol->zCnName) + 1; if( pCol->colFlags & COLFLAG_HASTYPE ){ n += sqlite3Strlen30(pCol->zCnName+n) + 1; } nColl = sqlite3Strlen30(zColl) + 1; zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n); if( zNew ){ pCol->zCnName = zNew; memcpy(pCol->zCnName + n, zColl, nColl); pCol->colFlags |= COLFLAG_HASCOLL; } } /* ** Return the collating sequence name for a column */ SQLITE_PRIVATE const char *sqlite3ColumnColl(Column *pCol){ const char *z; if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; z = pCol->zCnName; while( *z ){ z++; } if( pCol->colFlags & COLFLAG_HASTYPE ){ do{ z++; }while( *z ); } return z+1; } /* ** Delete memory allocated for the column names of a table or view (the ** Table.aCol[] array). */ SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ int i; Column *pCol; assert( pTable!=0 ); assert( db!=0 ); if( (pCol = pTable->aCol)!=0 ){ for(i=0; inCol; i++, pCol++){ assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); sqlite3DbFree(db, pCol->zCnName); } sqlite3DbNNFreeNN(db, pTable->aCol); if( IsOrdinaryTable(pTable) ){ sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); } if( db->pnBytesFreed==0 ){ pTable->aCol = 0; pTable->nCol = 0; if( IsOrdinaryTable(pTable) ){ pTable->u.tab.pDfltList = 0; } } } } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But it does destroy ** memory structures of the indices and foreign keys associated with ** the table. ** ** The db parameter is optional. It is needed if the Table object ** contains lookaside memory. (Table objects in the schema do not use ** lookaside memory, but some ephemeral Table objects do.) Or the ** db parameter can be used with db->pnBytesFreed to measure the memory ** used by the Table object. */ static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ Index *pIndex, *pNext; #ifdef SQLITE_DEBUG /* Record the number of outstanding lookaside allocations in schema Tables ** prior to doing any free() operations. Since schema Tables do not use ** lookaside, this number should not change. ** ** If malloc has already failed, it may be that it failed while allocating ** a Table object that was going to be marked ephemeral. So do not check ** that no lookaside memory is used in this case either. */ int nLookaside = 0; assert( db!=0 ); if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ nLookaside = sqlite3LookasideUsed(db, 0); } #endif /* Delete all indices associated with this table. */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){ char *zName = pIndex->zName; TESTONLY ( Index *pOld = ) sqlite3HashInsert( &pIndex->pSchema->idxHash, zName, 0 ); assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); assert( pOld==pIndex || pOld==0 ); } sqlite3FreeIndex(db, pIndex); } if( IsOrdinaryTable(pTable) ){ sqlite3FkDelete(db, pTable); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( IsVirtual(pTable) ){ sqlite3VtabClear(db, pTable); } #endif else{ assert( IsView(pTable) ); sqlite3SelectDelete(db, pTable->u.view.pSelect); } /* Delete the Table structure itself. */ sqlite3DeleteColumnNames(db, pTable); sqlite3DbFree(db, pTable->zName); sqlite3DbFree(db, pTable->zColAff); sqlite3ExprListDelete(db, pTable->pCheck); sqlite3DbFree(db, pTable); /* Verify that no lookaside memory was used by schema tables */ assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); } SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ /* Do not delete the table until the reference count reaches zero. */ assert( db!=0 ); if( !pTable ) return; if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return; deleteTable(db, pTable); } SQLITE_PRIVATE void sqlite3DeleteTableGeneric(sqlite3 *db, void *pTable){ sqlite3DeleteTable(db, (Table*)pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure with all its indices and foreign keys. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ Table *p; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDbnDb ); assert( zTabName ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); sqlite3DeleteTable(db, p); db->mDbFlags |= DBFLAG_SchemaChange; } /* ** Given a token, return a string that consists of the text of that ** token. Space to hold the returned string ** is obtained from sqliteMalloc() and must be freed by the calling ** function. ** ** Any quotation marks (ex: "name", 'name', [name], or `name`) that ** surround the body of the token are removed. ** ** Tokens are often just pointers into the original SQL text and so ** are not \000 terminated and are not persistent. The returned string ** is \000 terminated and is persistent. */ SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){ char *zName; if( pName ){ zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n); sqlite3Dequote(zName); }else{ zName = 0; } return zName; } /* ** Open the sqlite_schema table stored in database number iDb for ** writing. The table is opened using cursor 0. */ SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *p, int iDb){ Vdbe *v = sqlite3GetVdbe(p); sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE); sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); if( p->nTab==0 ){ p->nTab = 1; } } /* ** Parameter zName points to a nul-terminated buffer containing the name ** of a database ("main", "temp" or the name of an attached db). This ** function returns the index of the named database in db->aDb[], or ** -1 if the named db cannot be found. */ SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){ int i = -1; /* Database number */ if( zName ){ Db *pDb; for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; /* "main" is always an acceptable alias for the primary database ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; } } return i; } /* ** The token *pName contains the name of a database (either "main" or ** "temp" or the name of an attached db). This routine returns the ** index of the named database in db->aDb[], or -1 if the named db ** does not exist. */ SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){ int i; /* Database number */ char *zName; /* Name we are searching for */ zName = sqlite3NameFromToken(db, pName); i = sqlite3FindDbName(db, zName); sqlite3DbFree(db, zName); return i; } /* The table or view or trigger name is passed to this routine via tokens ** pName1 and pName2. If the table name was fully qualified, for example: ** ** CREATE TABLE xxx.yyy (...); ** ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if ** the table name is not fully qualified, i.e.: ** ** CREATE TABLE yyy(...); ** ** Then pName1 is set to "yyy" and pName2 is "". ** ** This routine sets the *ppUnqual pointer to point at the token (pName1 or ** pName2) that stores the unqualified table name. The index of the ** database "xxx" is returned. */ SQLITE_PRIVATE int sqlite3TwoPartName( Parse *pParse, /* Parsing and code generating context */ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ Token *pName2, /* The "yyy" in the name "xxx.yyy" */ Token **pUnqual /* Write the unqualified object name here */ ){ int iDb; /* Database holding the object */ sqlite3 *db = pParse->db; assert( pName2!=0 ); if( pName2->n>0 ){ if( db->init.busy ) { sqlite3ErrorMsg(pParse, "corrupt database"); return -1; } *pUnqual = pName2; iDb = sqlite3FindDb(db, pName1); if( iDb<0 ){ sqlite3ErrorMsg(pParse, "unknown database %T", pName1); return -1; } }else{ assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE || (db->mDbFlags & DBFLAG_Vacuum)!=0); iDb = db->init.iDb; *pUnqual = pName1; } return iDb; } /* ** True if PRAGMA writable_schema is ON */ SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3 *db){ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_WriteSchema ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_Defensive ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== (SQLITE_WriteSchema|SQLITE_Defensive) ); return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; } /* ** This routine is used to check if the UTF-8 string zName is a legal ** unqualified name for a new schema object (table, index, view or ** trigger). All names are legal except those that begin with the string ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace ** is reserved for internal use. ** ** When parsing the sqlite_schema table, this routine also checks to ** make sure the "type", "name", and "tbl_name" columns are consistent ** with the SQL. */ SQLITE_PRIVATE int sqlite3CheckObjectName( Parse *pParse, /* Parsing context */ const char *zName, /* Name of the object to check */ const char *zType, /* Type of this object */ const char *zTblName /* Parent table name for triggers and indexes */ ){ sqlite3 *db = pParse->db; if( sqlite3WritableSchema(db) || db->init.imposterTable || !sqlite3Config.bExtraSchemaChecks ){ /* Skip these error checks for writable_schema=ON */ return SQLITE_OK; } if( db->init.busy ){ if( sqlite3_stricmp(zType, db->init.azInit[0]) || sqlite3_stricmp(zName, db->init.azInit[1]) || sqlite3_stricmp(zTblName, db->init.azInit[2]) ){ sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ return SQLITE_ERROR; } }else{ if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) ){ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); return SQLITE_ERROR; } } return SQLITE_OK; } /* ** Return the PRIMARY KEY index of a table */ SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table *pTab){ Index *p; for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} return p; } /* ** Convert an table column number into a index column number. That is, ** for the column iCol in the table (as defined by the CREATE TABLE statement) ** find the (first) offset of that column in index pIdx. Or return -1 ** if column iCol is not used in index pIdx. */ SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ int i; for(i=0; inColumn; i++){ if( iCol==pIdx->aiColumn[i] ) return i; } return -1; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Convert a storage column number into a table column number. ** ** The storage column number (0,1,2,....) is the index of the value ** as it appears in the record on disk. The true column number ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. ** ** The storage column number is less than the table column number if ** and only there are VIRTUAL columns to the left. ** ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. */ SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ if( pTab->tabFlags & TF_HasVirtual ){ int i; for(i=0; i<=iCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; } } return iCol; } #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Convert a table column number into a storage column number. ** ** The storage column number (0,1,2,....) is the index of the value ** as it appears in the record on disk. Or, if the input column is ** the N-th virtual column (zero-based) then the storage number is ** the number of non-virtual columns in the table plus N. ** ** The true column number is the index (0,1,2,...) of the column in ** the CREATE TABLE statement. ** ** If the input column is a VIRTUAL column, then it should not appear ** in storage. But the value sometimes is cached in registers that ** follow the range of registers used to construct storage. This ** avoids computing the same VIRTUAL column multiple times, and provides ** values for use by OP_Param opcodes in triggers. Hence, if the ** input column is a VIRTUAL table, put it after all the other columns. ** ** In the following, N means "normal column", S means STORED, and ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: ** ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); ** -- 0 1 2 3 4 5 6 7 8 ** ** Then the mapping from this function is as follows: ** ** INPUTS: 0 1 2 3 4 5 6 7 8 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 ** ** So, in other words, this routine shifts all the virtual columns to ** the end. ** ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and ** this routine is a no-op macro. If the pTab does not have any virtual ** columns, then this routine is no-op that always return iCol. If iCol ** is negative (indicating the ROWID column) then this routine return iCol. */ SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ int i; i16 n; assert( iColnCol ); if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; for(i=0, n=0; iaCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; } if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ /* iCol is a virtual column itself */ return pTab->nNVCol + i - n; }else{ /* iCol is a normal or stored column */ return n; } } #endif /* ** Insert a single OP_JournalMode query opcode in order to force the ** prepared statement to return false for sqlite3_stmt_readonly(). This ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS ** will return false for sqlite3_stmt_readonly() even if that statement ** is a read-only no-op. */ static void sqlite3ForceNotReadOnly(Parse *pParse){ int iReg = ++pParse->nMem; Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); sqlite3VdbeUsesBtree(v, 0); } } /* ** Begin constructing a new table representation in memory. This is ** the first of several action routines that get called in response ** to a CREATE TABLE statement. In particular, this routine is called ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp ** flag is true if the table should be stored in the auxiliary database ** file instead of in the main database file. This is normally the case ** when the "TEMP" or "TEMPORARY" keyword occurs in between ** CREATE and TABLE. ** ** The new table record is initialized and put in pParse->pNewTable. ** As more of the CREATE TABLE statement is parsed, additional action ** routines will be called to add more information to this record. ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine ** is called to complete the construction of the new table record. */ SQLITE_PRIVATE void sqlite3StartTable( Parse *pParse, /* Parser context */ Token *pName1, /* First part of the name of the table or view */ Token *pName2, /* Second part of the name of the table or view */ int isTemp, /* True if this is a TEMP table */ int isView, /* True if this is a VIEW */ int isVirtual, /* True if this is a VIRTUAL table */ int noErr /* Do nothing if table already exists */ ){ Table *pTable; char *zName = 0; /* The name of the new table */ sqlite3 *db = pParse->db; Vdbe *v; int iDb; /* Database number to create the table in */ Token *pName; /* Unqualified name of the table to create */ if( db->init.busy && db->init.newTnum==1 ){ /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ iDb = db->init.iDb; zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); pName = pName1; }else{ /* The common case */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) return; if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ /* If creating a temp table, the name may not be qualified. Unless ** the database name is "temp" anyway. */ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); return; } if( !OMIT_TEMPDB && isTemp ) iDb = 1; zName = sqlite3NameFromToken(db, pName); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (void*)zName, pName); } } pParse->sNameToken = *pName; if( zName==0 ) return; if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ goto begin_table_error; } if( db->init.iDb==1 ) isTemp = 1; #ifndef SQLITE_OMIT_AUTHORIZATION assert( isTemp==0 || isTemp==1 ); assert( isView==0 || isView==1 ); { static const u8 aCode[] = { SQLITE_CREATE_TABLE, SQLITE_CREATE_TEMP_TABLE, SQLITE_CREATE_VIEW, SQLITE_CREATE_TEMP_VIEW }; char *zDb = db->aDb[iDb].zDbSName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ goto begin_table_error; } if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], zName, 0, zDb) ){ goto begin_table_error; } } #endif /* Make sure the new table name does not collide with an existing ** index or table name in the same database. Issue an error message if ** it does. The exception is if the statement being parsed was passed ** to an sqlite3_declare_vtab() call. In that case only the column names ** and types will be used, so there is no need to test for namespace ** collisions. */ if( !IN_SPECIAL_PARSE ){ char *zDb = db->aDb[iDb].zDbSName; if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto begin_table_error; } pTable = sqlite3FindTable(db, zName, zDb); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "%s %T already exists", (IsView(pTable)? "view" : "table"), pName); }else{ assert( !db->init.busy || CORRUPT_DB ); sqlite3CodeVerifySchema(pParse, iDb); sqlite3ForceNotReadOnly(pParse); } goto begin_table_error; } if( sqlite3FindIndex(db, zName, zDb)!=0 ){ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); goto begin_table_error; } } pTable = sqlite3DbMallocZero(db, sizeof(Table)); if( pTable==0 ){ assert( db->mallocFailed ); pParse->rc = SQLITE_NOMEM_BKPT; pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nTabRef = 1; #ifdef SQLITE_DEFAULT_ROWEST pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); #else pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); #endif assert( pParse->pNewTable==0 ); pParse->pNewTable = pTable; /* Begin generating the code that will insert the table record into ** the schema table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause ** indices to be created and the table record must come before the ** indices. Hence, the record number for the table must be allocated ** now. */ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ int addr1; int fileFormat; int reg1, reg2, reg3; /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( isVirtual ){ sqlite3VdbeAddOp0(v, OP_VBegin); } #endif /* If the file format and encoding in the database have not been set, ** set them now. */ reg1 = pParse->regRowid = ++pParse->nMem; reg2 = pParse->regRoot = ++pParse->nMem; reg3 = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1 : SQLITE_MAX_FILE_FORMAT; sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); sqlite3VdbeJumpHere(v, addr1); /* This just creates a place-holder record in the sqlite_schema table. ** The record created does not contain anything yet. It will be replaced ** by the real entry in code generated at sqlite3EndTable(). ** ** The rowid for the new entry is left in register pParse->regRowid. ** The root page number of the new table is left in reg pParse->regRoot. ** The rowid and root page number values are needed by the code that ** sqlite3EndTable will generate. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) if( isView || isVirtual ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); }else #endif { assert( !pParse->bReturning ); pParse->u1.addrCrTab = sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); } sqlite3OpenSchemaTable(pParse, iDb); sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeAddOp0(v, OP_Close); } /* Normal (non-error) return. */ return; /* If an error occurs, we jump here */ begin_table_error: pParse->checkSchema = 1; sqlite3DbFree(db, zName); return; } /* Set properties of a table column based on the (magical) ** name of the column. */ #if SQLITE_ENABLE_HIDDEN_COLUMNS SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ pCol->colFlags |= COLFLAG_HIDDEN; if( pTab ) pTab->tabFlags |= TF_HasHidden; }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ pTab->tabFlags |= TF_OOOHidden; } } #endif /* ** Clean up the data structures associated with the RETURNING clause. */ static void sqlite3DeleteReturning(sqlite3 *db, void *pArg){ Returning *pRet = (Returning*)pArg; Hash *pHash; pHash = &(db->aDb[1].pSchema->trigHash); sqlite3HashInsert(pHash, pRet->zName, 0); sqlite3ExprListDelete(db, pRet->pReturnEL); sqlite3DbFree(db, pRet); } /* ** Add the RETURNING clause to the parse currently underway. ** ** This routine creates a special TEMP trigger that will fire for each row ** of the DML statement. That TEMP trigger contains a single SELECT ** statement with a result set that is the argument of the RETURNING clause. ** The trigger has the Trigger.bReturning flag and an opcode of ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator ** knows to handle it specially. The TEMP trigger is automatically ** removed at the end of the parse. ** ** When this routine is called, we do not yet know if the RETURNING clause ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a ** RETURNING trigger instead. It will then be converted into the appropriate ** type on the first call to sqlite3TriggersExist(). */ SQLITE_PRIVATE void sqlite3AddReturning(Parse *pParse, ExprList *pList){ Returning *pRet; Hash *pHash; sqlite3 *db = pParse->db; if( pParse->pNewTrigger ){ sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); }else{ assert( pParse->bReturning==0 || pParse->ifNotExists ); } pParse->bReturning = 1; pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); if( pRet==0 ){ sqlite3ExprListDelete(db, pList); return; } pParse->u1.pReturning = pRet; pRet->pParse = pParse; pRet->pReturnEL = pList; sqlite3ParserAddCleanup(pParse, sqlite3DeleteReturning, pRet); testcase( pParse->earlyCleanup ); if( db->mallocFailed ) return; sqlite3_snprintf(sizeof(pRet->zName), pRet->zName, "sqlite_returning_%p", pParse); pRet->retTrig.zName = pRet->zName; pRet->retTrig.op = TK_RETURNING; pRet->retTrig.tr_tm = TRIGGER_AFTER; pRet->retTrig.bReturning = 1; pRet->retTrig.pSchema = db->aDb[1].pSchema; pRet->retTrig.pTabSchema = db->aDb[1].pSchema; pRet->retTrig.step_list = &pRet->retTStep; pRet->retTStep.op = TK_RETURNING; pRet->retTStep.pTrig = &pRet->retTrig; pRet->retTStep.pExprList = pList; pHash = &(db->aDb[1].pSchema->trigHash); assert( sqlite3HashFind(pHash, pRet->zName)==0 || pParse->nErr || pParse->ifNotExists ); if( sqlite3HashInsert(pHash, pRet->zName, &pRet->retTrig) ==&pRet->retTrig ){ sqlite3OomFault(db); } } /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqlite3StartTable() gets called ** first to get things going. Then this routine is called for each ** column. */ SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ Table *p; int i; char *z; char *zType; Column *pCol; sqlite3 *db = pParse->db; u8 hName; Column *aNew; u8 eType = COLTYPE_CUSTOM; u8 szEst = 1; char affinity = SQLITE_AFF_BLOB; if( (p = pParse->pNewTable)==0 ) return; if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); return; } if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); /* Because keywords GENERATE ALWAYS can be converted into identifiers ** by the parser, we can sometimes end up with a typename that ends ** with "generated always". Check for this case and omit the surplus ** text. */ if( sType.n>=16 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 ){ sType.n -= 6; while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; if( sType.n>=9 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 ){ sType.n -= 9; while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; } } /* Check for standard typenames. For standard typenames we will ** set the Column.eType field rather than storing the typename after ** the column name, in order to save space. */ if( sType.n>=3 ){ sqlite3DequoteToken(&sType); for(i=0; i0) ); if( z==0 ) return; if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); memcpy(z, sName.z, sName.n); z[sName.n] = 0; sqlite3Dequote(z); hName = sqlite3StrIHash(z); for(i=0; inCol; i++){ if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); sqlite3DbFree(db, z); return; } } aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0])); if( aNew==0 ){ sqlite3DbFree(db, z); return; } p->aCol = aNew; pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zCnName = z; pCol->hName = hName; sqlite3ColumnPropertiesFromName(p, pCol); if( sType.n==0 ){ /* If there is no type specified, columns have the default affinity ** 'BLOB' with a default size of 4 bytes. */ pCol->affinity = affinity; pCol->eCType = eType; pCol->szEst = szEst; #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( affinity==SQLITE_AFF_BLOB ){ if( 4>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } } #endif }else{ zType = z + sqlite3Strlen30(z) + 1; memcpy(zType, sType.z, sType.n); zType[sType.n] = 0; sqlite3Dequote(zType); pCol->affinity = sqlite3AffinityType(zType, pCol); pCol->colFlags |= COLFLAG_HASTYPE; } p->nCol++; p->nNVCol++; pParse->constraintName.n = 0; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has ** been seen on a column. This routine sets the notNull flag on ** the column currently under construction. */ SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){ Table *p; Column *pCol; p = pParse->pNewTable; if( p==0 || NEVER(p->nCol<1) ) return; pCol = &p->aCol[p->nCol-1]; pCol->notNull = (u8)onError; p->tabFlags |= TF_HasNotNull; /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created ** on this column. */ if( pCol->colFlags & COLFLAG_UNIQUE ){ Index *pIdx; for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); if( pIdx->aiColumn[0]==p->nCol-1 ){ pIdx->uniqNotNull = 1; } } } } /* ** Scan the column type name zType (length nType) and return the ** associated affinity type. ** ** This routine does a case-independent search of zType for the ** substrings in the following table. If one of the substrings is ** found, the corresponding affinity is returned. If zType contains ** more than one of the substrings, entries toward the top of ** the table take priority. For example, if zType is 'BLOBINT', ** SQLITE_AFF_INTEGER is returned. ** ** Substring | Affinity ** -------------------------------- ** 'INT' | SQLITE_AFF_INTEGER ** 'CHAR' | SQLITE_AFF_TEXT ** 'CLOB' | SQLITE_AFF_TEXT ** 'TEXT' | SQLITE_AFF_TEXT ** 'BLOB' | SQLITE_AFF_BLOB ** 'REAL' | SQLITE_AFF_REAL ** 'FLOA' | SQLITE_AFF_REAL ** 'DOUB' | SQLITE_AFF_REAL ** ** If none of the substrings in the above table are found, ** SQLITE_AFF_NUMERIC is returned. */ SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn, Column *pCol){ u32 h = 0; char aff = SQLITE_AFF_NUMERIC; const char *zChar = 0; assert( zIn!=0 ); while( zIn[0] ){ u8 x = *(u8*)zIn; h = (h<<8) + sqlite3UpperToLower[x]; zIn++; if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ aff = SQLITE_AFF_TEXT; zChar = zIn; }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ aff = SQLITE_AFF_TEXT; }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ aff = SQLITE_AFF_TEXT; }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ aff = SQLITE_AFF_BLOB; if( zIn[0]=='(' ) zChar = zIn; #ifndef SQLITE_OMIT_FLOATING_POINT }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; #endif }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ aff = SQLITE_AFF_INTEGER; break; } } /* If pCol is not NULL, store an estimate of the field size. The ** estimate is scaled so that the size of an integer is 1. */ if( pCol ){ int v = 0; /* default size is approx 4 bytes */ if( aff r=(k/4+1) */ sqlite3GetInt32(zChar, &v); break; } zChar++; } }else{ v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( v>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } #endif v = v/4 + 1; if( v>255 ) v = 255; pCol->szEst = v; } return aff; } /* ** The expression is the default value for the most recently added column ** of the table currently under construction. ** ** Default value expressions must be constant. Raise an exception if this ** is not the case. ** ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ SQLITE_PRIVATE void sqlite3AddDefaultValue( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The parsed expression of the default value */ const char *zStart, /* Start of the default value text */ const char *zEnd /* First character past end of default value text */ ){ Table *p; Column *pCol; sqlite3 *db = pParse->db; p = pParse->pNewTable; if( p!=0 ){ int isInit = db->init.busy && db->init.iDb!=1; pCol = &(p->aCol[p->nCol-1]); if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", pCol->zCnName); #ifndef SQLITE_OMIT_GENERATED_COLUMNS }else if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); #endif }else{ /* A copy of pExpr is used instead of the original, as pExpr contains ** tokens that point to volatile memory. */ Expr x, *pDfltExpr; memset(&x, 0, sizeof(x)); x.op = TK_SPAN; x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); x.pLeft = pExpr; x.flags = EP_Skip; pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); sqlite3DbFree(db, x.u.zToken); sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); } } if( IN_RENAME_OBJECT ){ sqlite3RenameExprUnmap(pParse, pExpr); } sqlite3ExprDelete(db, pExpr); } /* ** Backwards Compatibility Hack: ** ** Historical versions of SQLite accepted strings as column names in ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: ** ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); ** ** This is goofy. But to preserve backwards compatibility we continue to ** accept it. This routine does the necessary conversion. It converts ** the expression given in its argument from a TK_STRING into a TK_ID ** if the expression is just a TK_STRING with an optional COLLATE clause. ** If the expression is anything other than TK_STRING, the expression is ** unchanged. */ static void sqlite3StringToId(Expr *p){ if( p->op==TK_STRING ){ p->op = TK_ID; }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ p->pLeft->op = TK_ID; } } /* ** Tag the given column as being part of the PRIMARY KEY */ static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ pCol->colFlags |= COLFLAG_PRIMKEY; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "generated columns cannot be part of the PRIMARY KEY"); } #endif } /* ** Designate the PRIMARY KEY for the table. pList is a list of names ** of columns that form the primary key. If pList is NULL, then the ** most recently added column of the table is the primary key. ** ** A table can have at most one primary key. If the table already has ** a primary key (and this is the second primary key) then create an ** error. ** ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, ** then we will try to use that column as the rowid. Set the Table.iPKey ** field of the table under construction to be the index of the ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is ** no INTEGER PRIMARY KEY. ** ** If the key is not an INTEGER PRIMARY KEY, then create a unique ** index for the key. No index is created for INTEGER PRIMARY KEYs. */ SQLITE_PRIVATE void sqlite3AddPrimaryKey( Parse *pParse, /* Parsing context */ ExprList *pList, /* List of field names to be indexed */ int onError, /* What to do with a uniqueness conflict */ int autoInc, /* True if the AUTOINCREMENT keyword is present */ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ ){ Table *pTab = pParse->pNewTable; Column *pCol = 0; int iCol = -1, i; int nTerm; if( pTab==0 ) goto primary_key_exit; if( pTab->tabFlags & TF_HasPrimaryKey ){ sqlite3ErrorMsg(pParse, "table \"%s\" has more than one primary key", pTab->zName); goto primary_key_exit; } pTab->tabFlags |= TF_HasPrimaryKey; if( pList==0 ){ iCol = pTab->nCol - 1; pCol = &pTab->aCol[iCol]; makeColumnPartOfPrimaryKey(pParse, pCol); nTerm = 1; }else{ nTerm = pList->nExpr; for(i=0; ia[i].pExpr); assert( pCExpr!=0 ); sqlite3StringToId(pCExpr); if( pCExpr->op==TK_ID ){ const char *zCName; assert( !ExprHasProperty(pCExpr, EP_IntValue) ); zCName = pCExpr->u.zToken; for(iCol=0; iColnCol; iCol++){ if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ pCol = &pTab->aCol[iCol]; makeColumnPartOfPrimaryKey(pParse, pCol); break; } } } } } if( nTerm==1 && pCol && pCol->eCType==COLTYPE_INTEGER && sortOrder!=SQLITE_SO_DESC ){ if( IN_RENAME_OBJECT && pList ){ Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); } pTab->iPKey = iCol; pTab->keyConf = (u8)onError; assert( autoInc==0 || autoInc==1 ); pTab->tabFlags |= autoInc*TF_Autoincrement; if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags; (void)sqlite3HasExplicitNulls(pParse, pList); }else if( autoInc ){ #ifndef SQLITE_OMIT_AUTOINCREMENT sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " "INTEGER PRIMARY KEY"); #endif }else{ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); pList = 0; } primary_key_exit: sqlite3ExprListDelete(pParse->db, pList); return; } /* ** Add a new CHECK constraint to the table currently under construction. */ SQLITE_PRIVATE void sqlite3AddCheckConstraint( Parse *pParse, /* Parsing context */ Expr *pCheckExpr, /* The check expression */ const char *zStart, /* Opening "(" */ const char *zEnd /* Closing ")" */ ){ #ifndef SQLITE_OMIT_CHECK Table *pTab = pParse->pNewTable; sqlite3 *db = pParse->db; if( pTab && !IN_DECLARE_VTAB && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) ){ pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); if( pParse->constraintName.n ){ sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); }else{ Token t; for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } t.z = zStart; t.n = (int)(zEnd - t.z); sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); } }else #endif { sqlite3ExprDelete(pParse->db, pCheckExpr); } } /* ** Set the collation function of the most recently parsed table column ** to the CollSeq given. */ SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){ Table *p; int i; char *zColl; /* Dequoted name of collation sequence */ sqlite3 *db; if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; i = p->nCol-1; db = pParse->db; zColl = sqlite3NameFromToken(db, pToken); if( !zColl ) return; if( sqlite3LocateCollSeq(pParse, zColl) ){ Index *pIdx; sqlite3ColumnSetColl(db, &p->aCol[i], zColl); /* If the column is declared as " PRIMARY KEY COLLATE ", ** then an index may have been created on this column before the ** collation type was added. Correct this if it is the case. */ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nKeyCol==1 ); if( pIdx->aiColumn[0]==i ){ pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]); } } } sqlite3DbFree(db, zColl); } /* Change the most recently parsed column to be a GENERATED ALWAYS AS ** column. */ SQLITE_PRIVATE void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ #ifndef SQLITE_OMIT_GENERATED_COLUMNS u8 eType = COLFLAG_VIRTUAL; Table *pTab = pParse->pNewTable; Column *pCol; if( pTab==0 ){ /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ goto generated_done; } pCol = &(pTab->aCol[pTab->nCol-1]); if( IN_DECLARE_VTAB ){ sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); goto generated_done; } if( pCol->iDflt>0 ) goto generated_error; if( pType ){ if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ /* no-op */ }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ eType = COLFLAG_STORED; }else{ goto generated_error; } } if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; pCol->colFlags |= eType; assert( TF_HasVirtual==COLFLAG_VIRTUAL ); assert( TF_HasStored==COLFLAG_STORED ); pTab->tabFlags |= eType; if( pCol->colFlags & COLFLAG_PRIMKEY ){ makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ } if( ALWAYS(pExpr) && pExpr->op==TK_ID ){ /* The value of a generated column needs to be a real expression, not ** just a reference to another column, in order for covering index ** optimizations to work correctly. So if the value is not an expression, ** turn it into one by adding a unary "+" operator. */ pExpr = sqlite3PExpr(pParse, TK_UPLUS, pExpr, 0); } if( pExpr && pExpr->op!=TK_RAISE ) pExpr->affExpr = pCol->affinity; sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); pExpr = 0; goto generated_done; generated_error: sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", pCol->zCnName); generated_done: sqlite3ExprDelete(pParse->db, pExpr); #else /* Throw and error for the GENERATED ALWAYS AS clause if the ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ sqlite3ErrorMsg(pParse, "generated columns not supported"); sqlite3ExprDelete(pParse->db, pExpr); #endif } /* ** Generate code that will increment the schema cookie. ** ** The schema cookie is used to determine when the schema for the ** database changes. After each schema change, the cookie value ** changes. When a process first reads the schema it records the ** cookie. Thereafter, whenever it goes to access the database, ** it checks the cookie to make sure the schema has not changed ** since it was last read. ** ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. ** ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments ** the schema-version whenever the schema changes. */ SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); } /* ** Measure the number of characters needed to output the given ** identifier. The number returned includes any quotes used ** but does not include the null terminator. ** ** The estimate is conservative. It might be larger that what is ** really needed. */ static int identLength(const char *z){ int n; for(n=0; *z; n++, z++){ if( *z=='"' ){ n++; } } return n + 2; } /* ** The first parameter is a pointer to an output buffer. The second ** parameter is a pointer to an integer that contains the offset at ** which to write into the output buffer. This function copies the ** nul-terminated string pointed to by the third parameter, zSignedIdent, ** to the specified offset in the buffer and updates *pIdx to refer ** to the first byte after the last byte written before returning. ** ** If the string zSignedIdent consists entirely of alphanumeric ** characters, does not begin with a digit and is not an SQL keyword, ** then it is copied to the output buffer exactly as it is. Otherwise, ** it is quoted using double-quotes. */ static void identPut(char *z, int *pIdx, char *zSignedIdent){ unsigned char *zIdent = (unsigned char*)zSignedIdent; int i, j, needQuote; i = *pIdx; for(j=0; zIdent[j]; j++){ if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; } needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID || zIdent[j]!=0 || j==0; if( needQuote ) z[i++] = '"'; for(j=0; zIdent[j]; j++){ z[i++] = zIdent[j]; if( zIdent[j]=='"' ) z[i++] = '"'; } if( needQuote ) z[i++] = '"'; z[i] = 0; *pIdx = i; } /* ** Generate a CREATE TABLE statement appropriate for the given ** table. Memory to hold the text of the statement is obtained ** from sqliteMalloc() and must be freed by the calling function. */ static char *createTableStmt(sqlite3 *db, Table *p){ int i, k, n; char *zStmt; char *zSep, *zSep2, *zEnd; Column *pCol; n = 0; for(pCol = p->aCol, i=0; inCol; i++, pCol++){ n += identLength(pCol->zCnName) + 5; } n += identLength(p->zName); if( n<50 ){ zSep = ""; zSep2 = ","; zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqlite3DbMallocRaw(0, n); if( zStmt==0 ){ sqlite3OomFault(db); return 0; } sqlite3_snprintf(n, zStmt, "CREATE TABLE "); k = sqlite3Strlen30(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(pCol=p->aCol, i=0; inCol; i++, pCol++){ static const char * const azType[] = { /* SQLITE_AFF_BLOB */ "", /* SQLITE_AFF_TEXT */ " TEXT", /* SQLITE_AFF_NUMERIC */ " NUM", /* SQLITE_AFF_INTEGER */ " INT", /* SQLITE_AFF_REAL */ " REAL", /* SQLITE_AFF_FLEXNUM */ " NUM", }; int len; const char *zType; sqlite3_snprintf(n-k, &zStmt[k], zSep); k += sqlite3Strlen30(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, pCol->zCnName); assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); testcase( pCol->affinity==SQLITE_AFF_BLOB ); testcase( pCol->affinity==SQLITE_AFF_TEXT ); testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); testcase( pCol->affinity==SQLITE_AFF_INTEGER ); testcase( pCol->affinity==SQLITE_AFF_REAL ); testcase( pCol->affinity==SQLITE_AFF_FLEXNUM ); zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; len = sqlite3Strlen30(zType); assert( pCol->affinity==SQLITE_AFF_BLOB || pCol->affinity==SQLITE_AFF_FLEXNUM || pCol->affinity==sqlite3AffinityType(zType, 0) ); memcpy(&zStmt[k], zType, len); k += len; assert( k<=n ); } sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); return zStmt; } /* ** Resize an Index object to hold N columns total. Return SQLITE_OK ** on success and SQLITE_NOMEM on an OOM error. */ static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ char *zExtra; int nByte; if( pIdx->nColumn>=N ) return SQLITE_OK; assert( pIdx->isResized==0 ); nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; zExtra = sqlite3DbMallocZero(db, nByte); if( zExtra==0 ) return SQLITE_NOMEM_BKPT; memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); pIdx->azColl = (const char**)zExtra; zExtra += sizeof(char*)*N; memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); pIdx->aiRowLogEst = (LogEst*)zExtra; zExtra += sizeof(LogEst)*N; memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); pIdx->aiColumn = (i16*)zExtra; zExtra += sizeof(i16)*N; memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); pIdx->aSortOrder = (u8*)zExtra; pIdx->nColumn = N; pIdx->isResized = 1; return SQLITE_OK; } /* ** Estimate the total row width for a table. */ static void estimateTableWidth(Table *pTab){ unsigned wTable = 0; const Column *pTabCol; int i; for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ wTable += pTabCol->szEst; } if( pTab->iPKey<0 ) wTable++; pTab->szTabRow = sqlite3LogEst(wTable*4); } /* ** Estimate the average size of a row for an index. */ static void estimateIndexWidth(Index *pIdx){ unsigned wIndex = 0; int i; const Column *aCol = pIdx->pTable->aCol; for(i=0; inColumn; i++){ i16 x = pIdx->aiColumn[i]; assert( xpTable->nCol ); wIndex += x<0 ? 1 : aCol[x].szEst; } pIdx->szIdxRow = sqlite3LogEst(wIndex*4); } /* Return true if column number x is any of the first nCol entries of aiCol[]. ** This is used to determine if the column number x appears in any of the ** first nCol entries of an index. */ static int hasColumn(const i16 *aiCol, int nCol, int x){ while( nCol-- > 0 ){ if( x==*(aiCol++) ){ return 1; } } return 0; } /* ** Return true if any of the first nKey entries of index pIdx exactly ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may ** or may not be the same index as pPk. ** ** The first nKey entries of pIdx are guaranteed to be ordinary columns, ** not a rowid or expression. ** ** This routine differs from hasColumn() in that both the column and the ** collating sequence must match for this routine, but for hasColumn() only ** the column name must match. */ static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ int i, j; assert( nKey<=pIdx->nColumn ); assert( iColnColumn,pPk->nKeyCol) ); assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); assert( pPk->pTable->tabFlags & TF_WithoutRowid ); assert( pPk->pTable==pIdx->pTable ); testcase( pPk==pIdx ); j = pPk->aiColumn[iCol]; assert( j!=XN_ROWID && j!=XN_EXPR ); for(i=0; iaiColumn[i]>=0 || j>=0 ); if( pIdx->aiColumn[i]==j && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 ){ return 1; } } return 0; } /* Recompute the colNotIdxed field of the Index. ** ** colNotIdxed is a bitmask that has a 0 bit representing each indexed ** columns that are within the first 63 columns of the table and a 1 for ** all other bits (all columns that are not in the index). The ** high-order bit of colNotIdxed is always 1. All unindexed columns ** of the table have a 1. ** ** 2019-10-24: For the purpose of this computation, virtual columns are ** not considered to be covered by the index, even if they are in the ** index, because we do not trust the logic in whereIndexExprTrans() to be ** able to find all instances of a reference to the indexed table column ** and convert them into references to the index. Hence we always want ** the actual table at hand in order to recompute the virtual column, if ** necessary. ** ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask ** to determine if the index is covering index. */ static void recomputeColumnsNotIndexed(Index *pIdx){ Bitmask m = 0; int j; Table *pTab = pIdx->pTable; for(j=pIdx->nColumn-1; j>=0; j--){ int x = pIdx->aiColumn[j]; if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ testcase( x==BMS-1 ); testcase( x==BMS-2 ); if( xcolNotIdxed = ~m; assert( (pIdx->colNotIdxed>>63)==1 ); /* See note-20221022-a */ } /* ** This routine runs at the end of parsing a CREATE TABLE statement that ** has a WITHOUT ROWID clause. The job of this routine is to convert both ** internal schema data structures and the generated VDBE code so that they ** are appropriate for a WITHOUT ROWID table instead of a rowid table. ** Changes include: ** ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY ** into BTREE_BLOBKEY. ** (3) Bypass the creation of the sqlite_schema table entry ** for the PRIMARY KEY as the primary key index is now ** identified by the sqlite_schema table entry of the table itself. ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the ** schema to the rootpage from the main table. ** (5) Add all table columns to the PRIMARY KEY Index object ** so that the PRIMARY KEY is a covering index. The surplus ** columns are part of KeyInfo.nAllField and are not used for ** sorting or lookup or uniqueness checks. ** (6) Replace the rowid tail on all automatically generated UNIQUE ** indices with the PRIMARY KEY columns. ** ** For virtual tables, only (1) is performed. */ static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ Index *pIdx; Index *pPk; int nPk; int nExtra; int i, j; sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) */ if( !db->init.imposterTable ){ for(i=0; inCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 && (pTab->aCol[i].notNull==OE_None) ){ pTab->aCol[i].notNull = OE_Abort; } } pTab->tabFlags |= TF_HasNotNull; } /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY ** into BTREE_BLOBKEY. */ assert( !pParse->bReturning ); if( pParse->u1.addrCrTab ){ assert( v ); sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); } /* Locate the PRIMARY KEY index. Or, if this table was originally ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. */ if( pTab->iPKey>=0 ){ ExprList *pList; Token ipkToken; sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); pList = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); if( pList==0 ){ pTab->tabFlags &= ~TF_WithoutRowid; return; } if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); } pList->a[0].fg.sortFlags = pParse->iPkSortOrder; assert( pParse->pNewTable==pTab ); pTab->iPKey = -1; sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, SQLITE_IDXTYPE_PRIMARYKEY); if( pParse->nErr ){ pTab->tabFlags &= ~TF_WithoutRowid; return; } assert( db->mallocFailed==0 ); pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk->nKeyCol==1 ); }else{ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); /* ** Remove all redundant columns from the PRIMARY KEY. For example, change ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later ** code assumes the PRIMARY KEY contains no repeated columns. */ for(i=j=1; inKeyCol; i++){ if( isDupColumn(pPk, j, pPk, i) ){ pPk->nColumn--; }else{ testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); pPk->azColl[j] = pPk->azColl[i]; pPk->aSortOrder[j] = pPk->aSortOrder[i]; pPk->aiColumn[j++] = pPk->aiColumn[i]; } } pPk->nKeyCol = j; } assert( pPk!=0 ); pPk->isCovering = 1; if( !db->init.imposterTable ) pPk->uniqNotNull = 1; nPk = pPk->nColumn = pPk->nKeyCol; /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema ** table entry. This is only required if currently generating VDBE ** code for a CREATE TABLE (not when parsing one as part of reading ** a database schema). */ if( v && pPk->tnum>0 ){ assert( db->init.busy==0 ); sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); } /* The root page of the PRIMARY KEY is the table root page */ pPk->tnum = pTab->tnum; /* Update the in-memory representation of all UNIQUE indices by converting ** the final rowid column into one or more columns of the PRIMARY KEY. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int n; if( IsPrimaryKeyIndex(pIdx) ) continue; for(i=n=0; inKeyCol, pPk, i) ){ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); n++; } } if( n==0 ){ /* This index is a superset of the primary key */ pIdx->nColumn = pIdx->nKeyCol; continue; } if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; for(i=0, j=pIdx->nKeyCol; inKeyCol, pPk, i) ){ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); pIdx->aiColumn[j] = pPk->aiColumn[i]; pIdx->azColl[j] = pPk->azColl[i]; if( pPk->aSortOrder[i] ){ /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ pIdx->bAscKeyBug = 1; } j++; } } assert( pIdx->nColumn>=pIdx->nKeyCol+n ); assert( pIdx->nColumn>=j ); } /* Add all table columns to the PRIMARY KEY index */ nExtra = 0; for(i=0; inCol; i++){ if( !hasColumn(pPk->aiColumn, nPk, i) && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; } if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; for(i=0, j=nPk; inCol; i++){ if( !hasColumn(pPk->aiColumn, j, i) && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ assert( jnColumn ); pPk->aiColumn[j] = i; pPk->azColl[j] = sqlite3StrBINARY; j++; } } assert( pPk->nColumn==j ); assert( pTab->nNVCol<=j ); recomputeColumnsNotIndexed(pPk); } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if pTab is a virtual table and zName is a shadow table name ** for that virtual table. */ SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ int nName; /* Length of zName */ Module *pMod; /* Module for the virtual table */ if( !IsVirtual(pTab) ) return 0; nName = sqlite3Strlen30(pTab->zName); if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; if( zName[nName]!='_' ) return 0; pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); if( pMod==0 ) return 0; if( pMod->pModule->iVersion<3 ) return 0; if( pMod->pModule->xShadowName==0 ) return 0; return pMod->pModule->xShadowName(zName+nName+1); } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Table pTab is a virtual table. If it the virtual table implementation ** exists and has an xShadowName method, then loop over all other ordinary ** tables within the same schema looking for shadow tables of pTab, and mark ** any shadow tables seen using the TF_Shadow flag. */ SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){ int nName; /* Length of pTab->zName */ Module *pMod; /* Module for the virtual table */ HashElem *k; /* For looping through the symbol table */ assert( IsVirtual(pTab) ); pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); if( pMod==0 ) return; if( NEVER(pMod->pModule==0) ) return; if( pMod->pModule->iVersion<3 ) return; if( pMod->pModule->xShadowName==0 ) return; assert( pTab->zName!=0 ); nName = sqlite3Strlen30(pTab->zName); for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pOther = sqliteHashData(k); assert( pOther->zName!=0 ); if( !IsOrdinaryTable(pOther) ) continue; if( pOther->tabFlags & TF_Shadow ) continue; if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0 && pOther->zName[nName]=='_' && pMod->pModule->xShadowName(pOther->zName+nName+1) ){ pOther->tabFlags |= TF_Shadow; } } } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if zName is a shadow table name in the current database ** connection. ** ** zName is temporarily modified while this routine is running, but is ** restored to its original value prior to this routine returning. */ SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ char *zTail; /* Pointer to the last "_" in zName */ Table *pTab; /* Table that zName is a shadow of */ zTail = strrchr(zName, '_'); if( zTail==0 ) return 0; *zTail = 0; pTab = sqlite3FindTable(db, zName, 0); *zTail = '_'; if( pTab==0 ) return 0; if( !IsVirtual(pTab) ) return 0; return sqlite3IsShadowTableOf(db, pTab, zName); } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_DEBUG /* ** Mark all nodes of an expression as EP_Immutable, indicating that ** they should not be changed. Expressions attached to a table or ** index definition are tagged this way to help ensure that we do ** not pass them into code generator routines by mistake. */ static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ (void)pWalker; ExprSetVVAProperty(pExpr, EP_Immutable); return WRC_Continue; } static void markExprListImmutable(ExprList *pList){ if( pList ){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = markImmutableExprStep; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = 0; sqlite3WalkExprList(&w, pList); } } #else #define markExprListImmutable(X) /* no-op */ #endif /* SQLITE_DEBUG */ /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure that other action routines have been building ** is added to the internal hash tables, assuming no errors have ** occurred. ** ** An entry for the table is made in the schema table on disk, unless ** this is a temporary table or db->init.busy==1. When db->init.busy==1 ** it means we are reading the sqlite_schema table because we just ** connected to the database or because the sqlite_schema table has ** recently changed, so the entry for this table already exists in ** the sqlite_schema table. We do not want to create it again. ** ** If the pSelect argument is not NULL, it means that this routine ** was called to create a table generated from a ** "CREATE TABLE ... AS SELECT ..." statement. The column names of ** the new table will match the result set of the SELECT. */ SQLITE_PRIVATE void sqlite3EndTable( Parse *pParse, /* Parse context */ Token *pCons, /* The ',' token after the last column defn. */ Token *pEnd, /* The ')' before options in the CREATE TABLE */ u32 tabOpts, /* Extra table options. Usually 0. */ Select *pSelect /* Select from a "CREATE ... AS SELECT" */ ){ Table *p; /* The new table */ sqlite3 *db = pParse->db; /* The database connection */ int iDb; /* Database in which the table lives */ Index *pIdx; /* An implied index of the table */ if( pEnd==0 && pSelect==0 ){ return; } p = pParse->pNewTable; if( p==0 ) return; if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ p->tabFlags |= TF_Shadow; } /* If the db->init.busy is 1 it means we are reading the SQL off the ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the db->init.newTnum field. (The page number ** should have been put there by the sqliteOpenCb routine.) ** ** If the root page number is 1, that means this is the sqlite_schema ** table itself. So mark it read-only. */ if( db->init.busy ){ if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){ sqlite3ErrorMsg(pParse, ""); return; } p->tnum = db->init.newTnum; if( p->tnum==1 ) p->tabFlags |= TF_Readonly; } /* Special processing for tables that include the STRICT keyword: ** ** * Do not allow custom column datatypes. Every column must have ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB. ** ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY, ** then all columns of the PRIMARY KEY must have a NOT NULL ** constraint. */ if( tabOpts & TF_Strict ){ int ii; p->tabFlags |= TF_Strict; for(ii=0; iinCol; ii++){ Column *pCol = &p->aCol[ii]; if( pCol->eCType==COLTYPE_CUSTOM ){ if( pCol->colFlags & COLFLAG_HASTYPE ){ sqlite3ErrorMsg(pParse, "unknown datatype for %s.%s: \"%s\"", p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "") ); }else{ sqlite3ErrorMsg(pParse, "missing datatype for %s.%s", p->zName, pCol->zCnName); } return; }else if( pCol->eCType==COLTYPE_ANY ){ pCol->affinity = SQLITE_AFF_BLOB; } if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0 && p->iPKey!=ii && pCol->notNull == OE_None ){ pCol->notNull = OE_Abort; p->tabFlags |= TF_HasNotNull; } } } assert( (p->tabFlags & TF_HasPrimaryKey)==0 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); assert( (p->tabFlags & TF_HasPrimaryKey)!=0 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); /* Special processing for WITHOUT ROWID Tables */ if( tabOpts & TF_WithoutRowid ){ if( (p->tabFlags & TF_Autoincrement) ){ sqlite3ErrorMsg(pParse, "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); return; } if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); return; } p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; convertToWithoutRowidTable(pParse, p); } iDb = sqlite3SchemaToIndex(db, p->pSchema); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); if( pParse->nErr ){ /* If errors are seen, delete the CHECK constraints now, else they might ** actually be used if PRAGMA writable_schema=ON is set. */ sqlite3ExprListDelete(db, p->pCheck); p->pCheck = 0; }else{ markExprListImmutable(p->pCheck); } } #endif /* !defined(SQLITE_OMIT_CHECK) */ #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( p->tabFlags & TF_HasGenerated ){ int ii, nNG = 0; testcase( p->tabFlags & TF_HasVirtual ); testcase( p->tabFlags & TF_HasStored ); for(ii=0; iinCol; ii++){ u32 colFlags = p->aCol[ii].colFlags; if( (colFlags & COLFLAG_GENERATED)!=0 ){ Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); testcase( colFlags & COLFLAG_VIRTUAL ); testcase( colFlags & COLFLAG_STORED ); if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ /* If there are errors in resolving the expression, change the ** expression to a NULL. This prevents code generators that operate ** on the expression from inserting extra parts into the expression ** tree that have been allocated from lookaside memory, which is ** illegal in a schema and will lead to errors or heap corruption ** when the database connection closes. */ sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], sqlite3ExprAlloc(db, TK_NULL, 0, 0)); } }else{ nNG++; } } if( nNG==0 ){ sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); return; } } #endif /* Estimate the average row size for the table and for all implied indices */ estimateTableWidth(p); for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ estimateIndexWidth(pIdx); } /* If not initializing, then create a record for the new table ** in the schema table of the database. ** ** If this is a TEMPORARY table, write the entry into the auxiliary ** file instead of into the main database file. */ if( !db->init.busy ){ int n; Vdbe *v; char *zType; /* "view" or "table" */ char *zType2; /* "VIEW" or "TABLE" */ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ v = sqlite3GetVdbe(pParse); if( NEVER(v==0) ) return; sqlite3VdbeAddOp1(v, OP_Close, 0); /* ** Initialize zType for the new view or table. */ if( IsOrdinaryTable(p) ){ /* A regular table */ zType = "table"; zType2 = "TABLE"; #ifndef SQLITE_OMIT_VIEW }else{ /* A view */ zType = "view"; zType2 = "VIEW"; #endif } /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT ** statement to populate the new table. The root-page number for the ** new table is in register pParse->regRoot. ** ** Once the SELECT has been coded by sqlite3Select(), it is in a ** suitable state to query for the column names and types to be used ** by the new table. ** ** A shared-cache write-lock is not required to write to the new table, ** as a schema-lock must have already been obtained to create it. Since ** a schema-lock excludes all other database users, the write-lock would ** be redundant. */ if( pSelect ){ SelectDest dest; /* Where the SELECT should store results */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int regRec; /* A record to be insert into the new table */ int regRowid; /* Rowid of the next row to insert */ int addrInsLoop; /* Top of the loop for inserting rows */ Table *pSelTab; /* A table that describes the SELECT results */ if( IN_SPECIAL_PARSE ){ pParse->rc = SQLITE_ERROR; pParse->nErr++; return; } regYield = ++pParse->nMem; regRec = ++pParse->nMem; regRowid = ++pParse->nMem; assert(pParse->nTab==1); sqlite3MayAbort(pParse); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); pParse->nTab = 2; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); if( pParse->nErr ) return; pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = p->nNVCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); sqlite3Select(pParse, pSelect, &dest); if( pParse->nErr ) return; sqlite3VdbeEndCoroutine(v, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); sqlite3TableAffinity(v, p, 0); sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); sqlite3VdbeGoto(v, addrInsLoop); sqlite3VdbeJumpHere(v, addrInsLoop); sqlite3VdbeAddOp1(v, OP_Close, 1); } /* Compute the complete text of the CREATE statement */ if( pSelect ){ zStmt = createTableStmt(db, p); }else{ Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; n = (int)(pEnd2->z - pParse->sNameToken.z); if( pEnd2->z[0]!=';' ) n += pEnd2->n; zStmt = sqlite3MPrintf(db, "CREATE %s %.*s", zType2, n, pParse->sNameToken.z ); } /* A slot for the record has already been allocated in the ** schema table. We just need to update that slot with all ** the information we've collected. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" " WHERE rowid=#%d", db->aDb[iDb].zDbSName, zType, p->zName, p->zName, pParse->regRoot, zStmt, pParse->regRowid ); sqlite3DbFree(db, zStmt); sqlite3ChangeCookie(pParse, iDb); #ifndef SQLITE_OMIT_AUTOINCREMENT /* Check to see if we need to create an sqlite_sequence table for ** keeping track of autoincrement keys. */ if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ Db *pDb = &db->aDb[iDb]; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( pDb->pSchema->pSeqTab==0 ){ sqlite3NestedParse(pParse, "CREATE TABLE %Q.sqlite_sequence(name,seq)", pDb->zDbSName ); } } #endif /* Reparse everything to update our internal data structures */ sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); /* Test for cycles in generated columns and illegal expressions ** in CHECK constraints and in DEFAULT clauses. */ if( p->tabFlags & TF_HasGenerated ){ sqlite3VdbeAddOp4(v, OP_SqlExec, 1, 0, 0, sqlite3MPrintf(db, "SELECT*FROM\"%w\".\"%w\"", db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC); } sqlite3VdbeAddOp4(v, OP_SqlExec, 1, 0, 0, sqlite3MPrintf(db, "PRAGMA \"%w\".integrity_check(%Q)", db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC); } /* Add the table to the in-memory representation of the database. */ if( db->init.busy ){ Table *pOld; Schema *pSchema = p->pSchema; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); assert( HasRowid(p) || p->iPKey<0 ); pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ sqlite3OomFault(db); return; } pParse->pNewTable = 0; db->mDbFlags |= DBFLAG_SchemaChange; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ assert( !pParse->nested ); #ifndef SQLITE_OMIT_AUTOINCREMENT if( strcmp(p->zName, "sqlite_sequence")==0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); p->pSchema->pSeqTab = p; } #endif } #ifndef SQLITE_OMIT_ALTERTABLE if( !pSelect && IsOrdinaryTable(p) ){ assert( pCons && pEnd ); if( pCons->z==0 ){ pCons = pEnd; } p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); } #endif } #ifndef SQLITE_OMIT_VIEW /* ** The parser calls this routine in order to create a new VIEW */ SQLITE_PRIVATE void sqlite3CreateView( Parse *pParse, /* The parsing context */ Token *pBegin, /* The CREATE token that begins the statement */ Token *pName1, /* The token that holds the name of the view */ Token *pName2, /* The token that holds the name of the view */ ExprList *pCNames, /* Optional list of view column names */ Select *pSelect, /* A SELECT statement that will become the new view */ int isTemp, /* TRUE for a TEMPORARY view */ int noErr /* Suppress error messages if VIEW already exists */ ){ Table *p; int n; const char *z; Token sEnd; DbFixer sFix; Token *pName = 0; int iDb; sqlite3 *db = pParse->db; if( pParse->nVar>0 ){ sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); goto create_view_fail; } sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); p = pParse->pNewTable; if( p==0 || pParse->nErr ) goto create_view_fail; /* Legacy versions of SQLite allowed the use of the magic "rowid" column ** on a view, even though views do not have rowids. The following flag ** setting fixes this problem. But the fix can be disabled by compiling ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that ** depend upon the old buggy behavior. The ability can also be toggled ** using sqlite3_config(SQLITE_CONFIG_ROWID_IN_VIEW,...) */ #ifdef SQLITE_ALLOW_ROWID_IN_VIEW p->tabFlags |= sqlite3Config.mNoVisibleRowid; /* Optional. Allow by default */ #else p->tabFlags |= TF_NoVisibleRowid; /* Never allow rowid in view */ #endif sqlite3TwoPartName(pParse, pName1, pName2, &pName); iDb = sqlite3SchemaToIndex(db, p->pSchema); sqlite3FixInit(&sFix, pParse, iDb, "view", pName); if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; /* Make a copy of the entire SELECT statement that defines the view. ** This will force all the Expr.token.z values to be dynamically ** allocated rather than point to the input string - which means that ** they will persist after the current sqlite3_exec() call returns. */ pSelect->selFlags |= SF_View; if( IN_RENAME_OBJECT ){ p->u.view.pSelect = pSelect; pSelect = 0; }else{ p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); } p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); p->eTabType = TABTYP_VIEW; if( db->mallocFailed ) goto create_view_fail; /* Locate the end of the CREATE VIEW statement. Make sEnd point to ** the end. */ sEnd = pParse->sLastToken; assert( sEnd.z[0]!=0 || sEnd.n==0 ); if( sEnd.z[0]!=';' ){ sEnd.z += sEnd.n; } sEnd.n = 0; n = (int)(sEnd.z - pBegin->z); assert( n>0 ); z = pBegin->z; while( sqlite3Isspace(z[n-1]) ){ n--; } sEnd.z = &z[n-1]; sEnd.n = 1; /* Use sqlite3EndTable() to add the view to the schema table */ sqlite3EndTable(pParse, 0, &sEnd, 0, 0); create_view_fail: sqlite3SelectDelete(db, pSelect); if( IN_RENAME_OBJECT ){ sqlite3RenameExprlistUnmap(pParse, pCNames); } sqlite3ExprListDelete(db, pCNames); return; } #endif /* SQLITE_OMIT_VIEW */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) /* ** The Table structure pTable is really a VIEW. Fill in the names of ** the columns of the view in the pTable structure. Return the number ** of errors. If an error is seen leave an error message in pParse->zErrMsg. */ static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){ Table *pSelTab; /* A fake table from which we get the result set */ Select *pSel; /* Copy of the SELECT that implements the view */ int nErr = 0; /* Number of errors encountered */ sqlite3 *db = pParse->db; /* Database connection for malloc errors */ #ifndef SQLITE_OMIT_VIRTUALTABLE int rc; #endif #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth; /* Saved xAuth pointer */ #endif assert( pTable ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTable) ){ db->nSchemaLock++; rc = sqlite3VtabCallConnect(pParse, pTable); db->nSchemaLock--; return rc; } #endif #ifndef SQLITE_OMIT_VIEW /* A positive nCol means the columns names for this view are ** already known. This routine is not called unless either the ** table is virtual or nCol is zero. */ assert( pTable->nCol<=0 ); /* A negative nCol is a special marker meaning that we are currently ** trying to compute the column names. If we enter this routine with ** a negative nCol, it means two or more views form a loop, like this: ** ** CREATE VIEW one AS SELECT * FROM two; ** CREATE VIEW two AS SELECT * FROM one; ** ** Actually, the error above is now caught prior to reaching this point. ** But the following test is still important as it does come up ** in the following: ** ** CREATE TABLE main.ex1(a); ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; ** SELECT * FROM temp.ex1; */ if( pTable->nCol<0 ){ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); return 1; } assert( pTable->nCol>=0 ); /* If we get this far, it means we need to compute the table names. ** Note that the call to sqlite3ResultSetOfSelect() will expand any ** "*" elements in the results set of the view and will assign cursors ** to the elements of the FROM clause. But we do not want these changes ** to be permanent. So the computation is done on a copy of the SELECT ** statement that defines the view. */ assert( IsView(pTable) ); pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); if( pSel ){ u8 eParseMode = pParse->eParseMode; int nTab = pParse->nTab; int nSelect = pParse->nSelect; pParse->eParseMode = PARSE_MODE_NORMAL; sqlite3SrcListAssignCursors(pParse, pSel->pSrc); pTable->nCol = -1; DisableLookaside; #ifndef SQLITE_OMIT_AUTHORIZATION xAuth = db->xAuth; db->xAuth = 0; pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); db->xAuth = xAuth; #else pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); #endif pParse->nTab = nTab; pParse->nSelect = nSelect; if( pSelTab==0 ){ pTable->nCol = 0; nErr++; }else if( pTable->pCheck ){ /* CREATE VIEW name(arglist) AS ... ** The names of the columns in the table are taken from ** arglist which is stored in pTable->pCheck. The pCheck field ** normally holds CHECK constraints on an ordinary table, but for ** a VIEW it holds the list of column names. */ sqlite3ColumnsFromExprList(pParse, pTable->pCheck, &pTable->nCol, &pTable->aCol); if( pParse->nErr==0 && pTable->nCol==pSel->pEList->nExpr ){ assert( db->mallocFailed==0 ); sqlite3SubqueryColumnTypes(pParse, pTable, pSel, SQLITE_AFF_NONE); } }else{ /* CREATE VIEW name AS... without an argument list. Construct ** the column names from the SELECT statement that defines the view. */ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); pSelTab->nCol = 0; pSelTab->aCol = 0; assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); } pTable->nNVCol = pTable->nCol; sqlite3DeleteTable(db, pSelTab); sqlite3SelectDelete(db, pSel); EnableLookaside; pParse->eParseMode = eParseMode; } else { nErr++; } pTable->pSchema->schemaFlags |= DB_UnresetViews; if( db->mallocFailed ){ sqlite3DeleteColumnNames(db, pTable); } #endif /* SQLITE_OMIT_VIEW */ return nErr; } SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ assert( pTable!=0 ); if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0; return viewGetColumnNames(pParse, pTable); } #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifndef SQLITE_OMIT_VIEW /* ** Clear the column names from every VIEW in database idx. */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; assert( sqlite3SchemaMutexHeld(db, idx, 0) ); if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( IsView(pTab) ){ sqlite3DeleteColumnNames(db, pTab); } } DbClearProperty(db, idx, DB_UnresetViews); } #else # define sqliteViewResetAll(A,B) #endif /* SQLITE_OMIT_VIEW */ /* ** This function is called by the VDBE to adjust the internal schema ** used by SQLite when the btree layer moves a table root page. The ** root-page of a table or index in database iDb has changed from iFrom ** to iTo. ** ** Ticket #1728: The symbol table might still contain information ** on tables and/or indices that are the process of being deleted. ** If you are unlucky, one of those deleted indices or tables might ** have the same rootpage number as the real table or index that is ** being moved. So we cannot stop searching after the first match ** because the first match might be for one of the deleted indices ** or tables and not the table/index that is actually being moved. ** We must continue looping until all tables and indices with ** rootpage==iFrom have been converted to have a rootpage of iTo ** in order to be certain that we got the right one. */ #ifndef SQLITE_OMIT_AUTOVACUUM SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ HashElem *pElem; Hash *pHash; Db *pDb; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pDb = &db->aDb[iDb]; pHash = &pDb->pSchema->tblHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); if( pTab->tnum==iFrom ){ pTab->tnum = iTo; } } pHash = &pDb->pSchema->idxHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Index *pIdx = sqliteHashData(pElem); if( pIdx->tnum==iFrom ){ pIdx->tnum = iTo; } } } #endif /* ** Write code to erase the table with root-page iTable from database iDb. ** Also write code to modify the sqlite_schema table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); int r1 = sqlite3GetTempReg(pParse); if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); sqlite3MayAbort(pParse); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy stores an in integer r1. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_schema table to ** reflect this. ** ** The "#NNN" in the SQL is a special constant that means whatever value ** is in register NNN. See grammar rules associated with the TK_REGISTER ** token for additional information. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET rootpage=%d WHERE #%d AND rootpage=#%d", pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); #endif sqlite3ReleaseTempReg(pParse, r1); } /* ** Write VDBE code to erase table pTab and all associated indices on disk. ** Code to update the sqlite_schema tables and internal schema definitions ** in case a root-page belonging to another table is moved by the btree layer ** is also added (this can happen with an auto-vacuum database). */ static void destroyTable(Parse *pParse, Table *pTab){ /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM ** is not defined), then it is important to call OP_Destroy on the ** table and index root-pages in order, starting with the numerically ** largest root-page number. This guarantees that none of the root-pages ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the ** following were coded: ** ** OP_Destroy 4 0 ** ... ** OP_Destroy 5 0 ** ** and root page 5 happened to be the largest root-page number in the ** database, then root page 5 would be moved to page 4 by the ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit ** a free-list page. */ Pgno iTab = pTab->tnum; Pgno iDestroyed = 0; while( 1 ){ Index *pIdx; Pgno iLargest = 0; if( iDestroyed==0 || iTabpIndex; pIdx; pIdx=pIdx->pNext){ Pgno iIdx = pIdx->tnum; assert( pIdx->pSchema==pTab->pSchema ); if( (iDestroyed==0 || (iIdxiLargest ){ iLargest = iIdx; } } if( iLargest==0 ){ return; }else{ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); assert( iDb>=0 && iDbdb->nDb ); destroyRootPage(pParse, iLargest, iDb); iDestroyed = iLargest; } } } /* ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) ** after a DROP INDEX or DROP TABLE command. */ static void sqlite3ClearStatTables( Parse *pParse, /* The parsing context */ int iDb, /* The database number */ const char *zType, /* "idx" or "tbl" */ const char *zName /* Name of index or table */ ){ int i; const char *zDbName = pParse->db->aDb[iDb].zDbSName; for(i=1; i<=4; i++){ char zTab[24]; sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", zDbName, zTab, zType, zName ); } } } /* ** Generate code to drop a table. */ SQLITE_PRIVATE void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ Vdbe *v; sqlite3 *db = pParse->db; Trigger *pTrigger; Db *pDb = &db->aDb[iDb]; v = sqlite3GetVdbe(pParse); assert( v!=0 ); sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3VdbeAddOp0(v, OP_VBegin); } #endif /* Drop all triggers associated with the table being dropped. Code ** is generated to remove entries from sqlite_schema and/or ** sqlite_temp_schema if required. */ pTrigger = sqlite3TriggerList(pParse, pTab); while( pTrigger ){ assert( pTrigger->pSchema==pTab->pSchema || pTrigger->pSchema==db->aDb[1].pSchema ); sqlite3DropTriggerPtr(pParse, pTrigger); pTrigger = pTrigger->pNext; } #ifndef SQLITE_OMIT_AUTOINCREMENT /* Remove any entries of the sqlite_sequence table associated with ** the table being dropped. This is done before the table is dropped ** at the btree level, in case the sqlite_sequence table needs to ** move as a result of the drop (can happen in auto-vacuum mode). */ if( pTab->tabFlags & TF_Autoincrement ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", pDb->zDbSName, pTab->zName ); } #endif /* Drop all entries in the schema table that refer to the ** table. The program name loops through the schema table and deletes ** every row that refers to a table of the same name as the one being ** dropped. Triggers are handled separately because a trigger can be ** created in the temp database that refers to a table in another ** database. */ sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE tbl_name=%Q and type!='trigger'", pDb->zDbSName, pTab->zName); if( !isView && !IsVirtual(pTab) ){ destroyTable(pParse, pTab); } /* Remove the table entry from SQLite's internal schema and modify ** the schema cookie. */ if( IsVirtual(pTab) ){ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); sqlite3MayAbort(pParse); } sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); sqlite3ChangeCookie(pParse, iDb); sqliteViewResetAll(db, iDb); } /* ** Return TRUE if shadow tables should be read-only in the current ** context. */ SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db){ #ifndef SQLITE_OMIT_VIRTUALTABLE if( (db->flags & SQLITE_Defensive)!=0 && db->pVtabCtx==0 && db->nVdbeExec==0 && !sqlite3VtabInSync(db) ){ return 1; } #endif return 0; } /* ** Return true if it is not allowed to drop the given table */ static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; return 1; } if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ return 1; } if( pTab->tabFlags & TF_Eponymous ){ return 1; } return 0; } /* ** This routine is called to do the work of a DROP TABLE statement. ** pName is the name of the table to be dropped. */ SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ Table *pTab; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( db->mallocFailed ){ goto exit_drop_table; } assert( pParse->nErr==0 ); assert( pName->nSrc==1 ); if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; if( noErr ) db->suppressErr++; assert( isView==0 || isView==LOCATE_VIEW ); pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); if( noErr ) db->suppressErr--; if( pTab==0 ){ if( noErr ){ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); sqlite3ForceNotReadOnly(pParse); } goto exit_drop_table; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDbnDb ); /* If pTab is a virtual table, call ViewGetColumnNames() to ensure ** it is initialized. */ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ goto exit_drop_table; } #ifndef SQLITE_OMIT_AUTHORIZATION { int code; const char *zTab = SCHEMA_TABLE(iDb); const char *zDb = db->aDb[iDb].zDbSName; const char *zArg2 = 0; if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ goto exit_drop_table; } if( isView ){ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_VIEW; }else{ code = SQLITE_DROP_VIEW; } #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( IsVirtual(pTab) ){ code = SQLITE_DROP_VTABLE; zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; #endif }else{ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_TABLE; }else{ code = SQLITE_DROP_TABLE; } } if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ goto exit_drop_table; } if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ goto exit_drop_table; } } #endif if( tableMayNotBeDropped(db, pTab) ){ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); goto exit_drop_table; } #ifndef SQLITE_OMIT_VIEW /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used ** on a table. */ if( isView && !IsView(pTab) ){ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); goto exit_drop_table; } if( !isView && IsView(pTab) ){ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); goto exit_drop_table; } #endif /* Generate code to remove the table from the schema table ** on disk. */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3BeginWriteOperation(pParse, 1, iDb); if( !isView ){ sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); sqlite3FkDropTable(pParse, pName, pTab); } sqlite3CodeDropTable(pParse, pTab, iDb, isView); } exit_drop_table: sqlite3SrcListDelete(db, pName); } /* ** This routine is called to create a new foreign key on the table ** currently under construction. pFromCol determines which columns ** in the current table point to the foreign key. If pFromCol==0 then ** connect the key to the last column inserted. pTo is the name of ** the table referred to (a.k.a the "parent" table). pToCol is a list ** of tables in the parent pTo table. flags contains all ** information about the conflict resolution algorithms specified ** in the ON DELETE, ON UPDATE and ON INSERT clauses. ** ** An FKey structure is created and added to the table currently ** under construction in the pParse->pNewTable field. ** ** The foreign key is set for IMMEDIATE processing. A subsequent call ** to sqlite3DeferForeignKey() might change this to DEFERRED. */ SQLITE_PRIVATE void sqlite3CreateForeignKey( Parse *pParse, /* Parsing context */ ExprList *pFromCol, /* Columns in this table that point to other table */ Token *pTo, /* Name of the other table */ ExprList *pToCol, /* Columns in the other table */ int flags /* Conflict resolution algorithms. */ ){ sqlite3 *db = pParse->db; #ifndef SQLITE_OMIT_FOREIGN_KEY FKey *pFKey = 0; FKey *pNextTo; Table *p = pParse->pNewTable; i64 nByte; int i; int nCol; char *z; assert( pTo!=0 ); if( p==0 || IN_DECLARE_VTAB ) goto fk_end; if( pFromCol==0 ){ int iCol = p->nCol-1; if( NEVER(iCol<0) ) goto fk_end; if( pToCol && pToCol->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "foreign key on %s" " should reference only one column of table %T", p->aCol[iCol].zCnName, pTo); goto fk_end; } nCol = 1; }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ sqlite3ErrorMsg(pParse, "number of columns in foreign key does not match the number of " "columns in the referenced table"); goto fk_end; }else{ nCol = pFromCol->nExpr; } nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; if( pToCol ){ for(i=0; inExpr; i++){ nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; } } pFKey = sqlite3DbMallocZero(db, nByte ); if( pFKey==0 ){ goto fk_end; } pFKey->pFrom = p; assert( IsOrdinaryTable(p) ); pFKey->pNextFrom = p->u.tab.pFKey; z = (char*)&pFKey->aCol[nCol]; pFKey->zTo = z; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (void*)z, pTo); } memcpy(z, pTo->z, pTo->n); z[pTo->n] = 0; sqlite3Dequote(z); z += pTo->n+1; pFKey->nCol = nCol; if( pFromCol==0 ){ pFKey->aCol[0].iFrom = p->nCol-1; }else{ for(i=0; inCol; j++){ if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ pFKey->aCol[i].iFrom = j; break; } } if( j>=p->nCol ){ sqlite3ErrorMsg(pParse, "unknown column \"%s\" in foreign key definition", pFromCol->a[i].zEName); goto fk_end; } if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); } } } if( pToCol ){ for(i=0; ia[i].zEName); pFKey->aCol[i].zCol = z; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); } memcpy(z, pToCol->a[i].zEName, n); z[n] = 0; z += n+1; } } pFKey->isDeferred = 0; pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, pFKey->zTo, (void *)pFKey ); if( pNextTo==pFKey ){ sqlite3OomFault(db); goto fk_end; } if( pNextTo ){ assert( pNextTo->pPrevTo==0 ); pFKey->pNextTo = pNextTo; pNextTo->pPrevTo = pFKey; } /* Link the foreign key to the table as the last step. */ assert( IsOrdinaryTable(p) ); p->u.tab.pFKey = pFKey; pFKey = 0; fk_end: sqlite3DbFree(db, pFKey); #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ sqlite3ExprListDelete(db, pFromCol); sqlite3ExprListDelete(db, pToCol); } /* ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED ** clause is seen as part of a foreign key definition. The isDeferred ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. ** The behavior of the most recently created foreign key is adjusted ** accordingly. */ SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ #ifndef SQLITE_OMIT_FOREIGN_KEY Table *pTab; FKey *pFKey; if( (pTab = pParse->pNewTable)==0 ) return; if( NEVER(!IsOrdinaryTable(pTab)) ) return; if( (pFKey = pTab->u.tab.pFKey)==0 ) return; assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ pFKey->isDeferred = (u8)isDeferred; #endif } /* ** Generate code that will erase and refill index *pIdx. This is ** used to initialize a newly created index or to recompute the ** content of an index in response to a REINDEX command. ** ** if memRootPage is not negative, it means that the index is newly ** created. The register specified by memRootPage contains the ** root page number of the index. If memRootPage is negative, then ** the index already exists and must be cleared before being refilled and ** the root page number of the index is taken from pIndex->tnum. */ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ int iSorter; /* Cursor opened by OpenSorter (if in use) */ int addr1; /* Address of top of loop */ int addr2; /* Address to jump to for next iteration */ Pgno tnum; /* Root page of index */ int iPartIdxLabel; /* Jump to this label to skip a row */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ int regRecord; /* Register holding assembled index record */ sqlite3 *db = pParse->db; /* The database connection */ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, db->aDb[iDb].zDbSName ) ){ return; } #endif /* Require a write-lock on the table to perform this operation */ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); v = sqlite3GetVdbe(pParse); if( v==0 ) return; if( memRootPage>=0 ){ tnum = (Pgno)memRootPage; }else{ tnum = pIndex->tnum; } pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); assert( pKey!=0 || pParse->nErr ); /* Open the sorter cursor if we are to use one. */ iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3MultiWrite(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); if( IsUniqueIndex(pIndex) ){ int j2 = sqlite3VdbeGoto(v, 1); addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeVerifyAbortable(v, OE_Abort); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); sqlite3VdbeJumpHere(v, j2); }else{ /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not ** abort. The exception is if one of the indexed expressions contains a ** user function that throws an exception when it is evaluated. But the ** overhead of adding a statement journal to a CREATE INDEX statement is ** very small (since most of the pages written do not contain content that ** needs to be restored if the statement aborts), so we call ** sqlite3MayAbort() for all CREATE INDEX statements. */ sqlite3MayAbort(pParse); addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); if( !pIndex->bAscKeyBug ){ /* This OP_SeekEnd opcode makes index insert for a REINDEX go much ** faster by avoiding unnecessary seeks. But the optimization does ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables ** with DESC primary keys, since those indexes have there keys in ** a different order from the main table. ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf */ sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); sqlite3VdbeAddOp1(v, OP_Close, iIdx); sqlite3VdbeAddOp1(v, OP_Close, iSorter); } /* ** Allocate heap space to hold an Index object with nCol columns. ** ** Increase the allocation size to provide an extra nExtra bytes ** of 8-byte aligned space after the Index object and return a ** pointer to this extra space in *ppExtra. */ SQLITE_PRIVATE Index *sqlite3AllocateIndexObject( sqlite3 *db, /* Database connection */ i16 nCol, /* Total number of columns in the index */ int nExtra, /* Number of bytes of extra space to alloc */ char **ppExtra /* Pointer to the "extra" space */ ){ Index *p; /* Allocated index object */ int nByte; /* Bytes of space for Index object + arrays */ nByte = ROUND8(sizeof(Index)) + /* Index structure */ ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ sizeof(i16)*nCol + /* Index.aiColumn */ sizeof(u8)*nCol); /* Index.aSortOrder */ p = sqlite3DbMallocZero(db, nByte + nExtra); if( p ){ char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; p->aSortOrder = (u8*)pExtra; p->nColumn = nCol; p->nKeyCol = nCol - 1; *ppExtra = ((char*)p) + nByte; } return p; } /* ** If expression list pList contains an expression that was parsed with ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in ** pParse and return non-zero. Otherwise, return zero. */ SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ if( pList ){ int i; for(i=0; inExpr; i++){ if( pList->a[i].fg.bNulls ){ u8 sf = pList->a[i].fg.sortFlags; sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", (sf==0 || sf==3) ? "FIRST" : "LAST" ); return 1; } } } return 0; } /* ** Create a new index for an SQL table. pName1.pName2 is the name of the index ** and pTblList is the name of the table that is to be indexed. Both will ** be NULL for a primary key or an index that is created to satisfy a ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable ** as the table to be indexed. pParse->pNewTable is a table that is ** currently being constructed by a CREATE TABLE statement. ** ** pList is a list of columns to be indexed. pList will be NULL if this ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ SQLITE_PRIVATE void sqlite3CreateIndex( Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ ExprList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ Token *pStart, /* The CREATE token that begins this statement */ Expr *pPIWhere, /* WHERE clause for partial indices */ int sortOrder, /* Sort order of primary key when pList==NULL */ int ifNotExist, /* Omit error if index already exists */ u8 idxType /* The index type */ ){ Table *pTab = 0; /* Table to be indexed */ Index *pIndex = 0; /* The index to be created */ char *zName = 0; /* Name of the index */ int nName; /* Number of characters in zName */ int i, j; DbFixer sFix; /* For assigning database names to pTable */ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ sqlite3 *db = pParse->db; Db *pDb; /* The specific table containing the indexed database */ int iDb; /* Index of the database that is being written */ Token *pName = 0; /* Unqualified name of the index to create */ struct ExprList_item *pListItem; /* For looping over pList */ int nExtra = 0; /* Space allocated for zExtra[] */ int nExtraCol; /* Number of extra columns needed */ char *zExtra = 0; /* Extra space after the Index object */ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ assert( db->pParse==pParse ); if( pParse->nErr ){ goto exit_create_index; } assert( db->mallocFailed==0 ); if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ goto exit_create_index; } if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_create_index; } if( sqlite3HasExplicitNulls(pParse, pList) ){ goto exit_create_index; } /* ** Find the table that is to be indexed. Return early if not found. */ if( pTblName!=0 ){ /* Use the two-part index name to determine the database ** to search for the table. 'Fix' the table name to this db ** before looking up the table. */ assert( pName1 && pName2 ); iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) goto exit_create_index; assert( pName && pName->z ); #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the table ** is a temp table. If so, set the database to 1. Do not do this ** if initializing a database schema. */ if( !db->init.busy ){ pTab = sqlite3SrcListLookup(pParse, pTblName); if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } } #endif sqlite3FixInit(&sFix, pParse, iDb, "index", pName); if( sqlite3FixSrcList(&sFix, pTblName) ){ /* Because the parser constructs pTblName from a single identifier, ** sqlite3FixSrcList can never fail. */ assert(0); } pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); assert( db->mallocFailed==0 || pTab==0 ); if( pTab==0 ) goto exit_create_index; if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ sqlite3ErrorMsg(pParse, "cannot create a TEMP index on non-TEMP table \"%s\"", pTab->zName); goto exit_create_index; } if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); }else{ assert( pName==0 ); assert( pStart==0 ); pTab = pParse->pNewTable; if( !pTab ) goto exit_create_index; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } pDb = &db->aDb[iDb]; assert( pTab!=0 ); if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 && db->init.busy==0 && pTblName!=0 #if SQLITE_USER_AUTHENTICATION && sqlite3UserAuthTable(pTab->zName)==0 #endif ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; } #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "views may not be indexed"); goto exit_create_index; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); goto exit_create_index; } #endif /* ** Find the name of the index. Make sure there is not already another ** index or table with the same name. ** ** Exception: If we are reading the names of permanent indices from the ** sqlite_schema table (because some other process changed the schema) and ** one of the index names collides with the name of a temporary table or ** index, then we will continue to process this index. ** ** If pName==0 it means that we are ** dealing with a primary key or UNIQUE constraint. We have to invent our ** own name. */ if( pName ){ zName = sqlite3NameFromToken(db, pName); if( zName==0 ) goto exit_create_index; assert( pName->z!=0 ); if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ goto exit_create_index; } if( !IN_RENAME_OBJECT ){ if( !db->init.busy ){ if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); goto exit_create_index; } } if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ if( !ifNotExist ){ sqlite3ErrorMsg(pParse, "index %s already exists", zName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); sqlite3ForceNotReadOnly(pParse); } goto exit_create_index; } } }else{ int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); if( zName==0 ){ goto exit_create_index; } /* Automatic index names generated from within sqlite3_declare_vtab() ** must have names that are distinct from normal automatic index names. ** The following statement converts "sqlite3_autoindex..." into ** "sqlite3_butoindex..." in order to make the names distinct. ** The "vtab_err.test" test demonstrates the need of this statement. */ if( IN_SPECIAL_PARSE ) zName[7]++; } /* Check for authorization to create an index. */ #ifndef SQLITE_OMIT_AUTHORIZATION if( !IN_RENAME_OBJECT ){ const char *zDb = pDb->zDbSName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ goto exit_create_index; } i = SQLITE_CREATE_INDEX; if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ goto exit_create_index; } } #endif /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ Token prevCol; Column *pCol = &pTab->aCol[pTab->nCol-1]; pCol->colFlags |= COLFLAG_UNIQUE; sqlite3TokenInit(&prevCol, pCol->zCnName); pList = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); if( pList==0 ) goto exit_create_index; assert( pList->nExpr==1 ); sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); }else{ sqlite3ExprListCheckLength(pParse, pList, "index"); if( pParse->nErr ) goto exit_create_index; } /* Figure out how many bytes of space are required to store explicitly ** specified collation sequence names. */ for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; assert( pExpr!=0 ); if( pExpr->op==TK_COLLATE ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); } } /* ** Allocate the index structure. */ nName = sqlite3Strlen30(zName); nExtraCol = pPk ? pPk->nKeyCol : 1; assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, nName + nExtra + 1, &zExtra); if( db->mallocFailed ){ goto exit_create_index; } assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); pIndex->zName = zExtra; zExtra += nName + 1; memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->onError = (u8)onError; pIndex->uniqNotNull = onError!=OE_None; pIndex->idxType = idxType; pIndex->pSchema = db->aDb[iDb].pSchema; pIndex->nKeyCol = pList->nExpr; if( pPIWhere ){ sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); pIndex->pPartIdxWhere = pPIWhere; pPIWhere = 0; } assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ sortOrderMask = 0; /* Ignore DESC */ } /* Analyze the list of expressions that form the terms of the index and ** report any errors. In the common case where the expression is exactly ** a table column, store that column in aiColumn[]. For general expressions, ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. ** ** TODO: Issue a warning if two or more columns of the index are identical. ** TODO: Issue a warning if the table primary key is used as part of the ** index key. */ pListItem = pList->a; if( IN_RENAME_OBJECT ){ pIndex->aColExpr = pList; pList = 0; } for(i=0; inKeyCol; i++, pListItem++){ Expr *pCExpr; /* The i-th index expression */ int requestedSortOrder; /* ASC or DESC on the i-th expression */ const char *zColl; /* Collation sequence name */ sqlite3StringToId(pListItem->pExpr); sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); if( pParse->nErr ) goto exit_create_index; pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); if( pCExpr->op!=TK_COLUMN ){ if( pTab==pParse->pNewTable ){ sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " "UNIQUE constraints"); goto exit_create_index; } if( pIndex->aColExpr==0 ){ pIndex->aColExpr = pList; pList = 0; } j = XN_EXPR; pIndex->aiColumn[i] = XN_EXPR; pIndex->uniqNotNull = 0; pIndex->bHasExpr = 1; }else{ j = pCExpr->iColumn; assert( j<=0x7fff ); if( j<0 ){ j = pTab->iPKey; }else{ if( pTab->aCol[j].notNull==0 ){ pIndex->uniqNotNull = 0; } if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ pIndex->bHasVCol = 1; pIndex->bHasExpr = 1; } } pIndex->aiColumn[i] = (i16)j; } zColl = 0; if( pListItem->pExpr->op==TK_COLLATE ){ int nColl; assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) ); zColl = pListItem->pExpr->u.zToken; nColl = sqlite3Strlen30(zColl) + 1; assert( nExtra>=nColl ); memcpy(zExtra, zColl, nColl); zColl = zExtra; zExtra += nColl; nExtra -= nColl; }else if( j>=0 ){ zColl = sqlite3ColumnColl(&pTab->aCol[j]); } if( !zColl ) zColl = sqlite3StrBINARY; if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ goto exit_create_index; } pIndex->azColl[i] = zColl; requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask; pIndex->aSortOrder[i] = (u8)requestedSortOrder; } /* Append the table key to the end of the index. For WITHOUT ROWID ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For ** normal tables (when pPk==0) this will be the rowid. */ if( pPk ){ for(j=0; jnKeyCol; j++){ int x = pPk->aiColumn[j]; assert( x>=0 ); if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ pIndex->nColumn--; }else{ testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); pIndex->aiColumn[i] = x; pIndex->azColl[i] = pPk->azColl[j]; pIndex->aSortOrder[i] = pPk->aSortOrder[j]; i++; } } assert( i==pIndex->nColumn ); }else{ pIndex->aiColumn[i] = XN_ROWID; pIndex->azColl[i] = sqlite3StrBINARY; } sqlite3DefaultRowEst(pIndex); if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); /* If this index contains every column of its table, then mark ** it as a covering index */ assert( HasRowid(pTab) || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); recomputeColumnsNotIndexed(pIndex); if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ pIndex->isCovering = 1; for(j=0; jnCol; j++){ if( j==pTab->iPKey ) continue; if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; pIndex->isCovering = 0; break; } } if( pTab==pParse->pNewTable ){ /* This routine has been called to create an automatic index as a ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or ** a PRIMARY KEY or UNIQUE clause following the column definitions. ** i.e. one of: ** ** CREATE TABLE t(x PRIMARY KEY, y); ** CREATE TABLE t(x, y, UNIQUE(x, y)); ** ** Either way, check to see if the table already has such an index. If ** so, don't bother creating this one. This only applies to ** automatically created indices. Users can do as they wish with ** explicit indices. ** ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent ** (and thus suppressing the second one) even if they have different ** sort orders. ** ** If there are different collating sequences or if the columns of ** the constraint occur in different orders, then the constraints are ** considered distinct and both result in separate indices. */ Index *pIdx; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int k; assert( IsUniqueIndex(pIdx) ); assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); assert( IsUniqueIndex(pIndex) ); if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; for(k=0; knKeyCol; k++){ const char *z1; const char *z2; assert( pIdx->aiColumn[k]>=0 ); if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; z1 = pIdx->azColl[k]; z2 = pIndex->azColl[k]; if( sqlite3StrICmp(z1, z2) ) break; } if( k==pIdx->nKeyCol ){ if( pIdx->onError!=pIndex->onError ){ /* This constraint creates the same index as a previous ** constraint specified somewhere in the CREATE TABLE statement. ** However the ON CONFLICT clauses are different. If both this ** constraint and the previous equivalent constraint have explicit ** ON CONFLICT clauses this is an error. Otherwise, use the ** explicitly specified behavior for the index. */ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ sqlite3ErrorMsg(pParse, "conflicting ON CONFLICT clauses specified", 0); } if( pIdx->onError==OE_Default ){ pIdx->onError = pIndex->onError; } } if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; if( IN_RENAME_OBJECT ){ pIndex->pNext = pParse->pNewIndex; pParse->pNewIndex = pIndex; pIndex = 0; } goto exit_create_index; } } } if( !IN_RENAME_OBJECT ){ /* Link the new Index structure to its table and to the other ** in-memory database structures. */ assert( pParse->nErr==0 ); if( db->init.busy ){ Index *p; assert( !IN_SPECIAL_PARSE ); assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); if( pTblName!=0 ){ pIndex->tnum = db->init.newTnum; if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ sqlite3ErrorMsg(pParse, "invalid rootpage"); pParse->rc = SQLITE_CORRUPT_BKPT; goto exit_create_index; } } p = sqlite3HashInsert(&pIndex->pSchema->idxHash, pIndex->zName, pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ sqlite3OomFault(db); goto exit_create_index; } db->mDbFlags |= DBFLAG_SchemaChange; } /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then ** emit code to allocate the index rootpage on disk and make an entry for ** the index in the sqlite_schema table and populate the index with ** content. But, do not do this if we are simply reading the sqlite_schema ** table to parse the schema, or if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table. ** ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY ** or UNIQUE index in a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ else if( HasRowid(pTab) || pTblName!=0 ){ Vdbe *v; char *zStmt; int iMem = ++pParse->nMem; v = sqlite3GetVdbe(pParse); if( v==0 ) goto exit_create_index; sqlite3BeginWriteOperation(pParse, 1, iDb); /* Create the rootpage for the index using CreateIndex. But before ** doing so, code a Noop instruction and store its address in ** Index.tnum. This is required in case this index is actually a ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In ** that case the convertToWithoutRowidTable() routine will replace ** the Noop with a Goto to jump over the VDBE code generated below. */ pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); /* Gather the complete text of the CREATE INDEX statement into ** the zStmt variable */ assert( pName!=0 || pStart==0 ); if( pStart ){ int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; if( pName->z[n-1]==';' ) n--; /* A named index with an explicit CREATE INDEX statement */ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", onError==OE_None ? "" : " UNIQUE", n, pName->z); }else{ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ /* zStmt = sqlite3MPrintf(""); */ zStmt = 0; } /* Add an entry in sqlite_schema for this index */ sqlite3NestedParse(pParse, "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", db->aDb[iDb].zDbSName, pIndex->zName, pTab->zName, iMem, zStmt ); sqlite3DbFree(db, zStmt); /* Fill the index with data and reparse the schema. Code an OP_Expire ** to invalidate all pre-compiled statements. */ if( pTblName ){ sqlite3RefillIndex(pParse, pIndex, iMem); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); } sqlite3VdbeJumpHere(v, (int)pIndex->tnum); } } if( db->init.busy || pTblName==0 ){ pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; pIndex = 0; } else if( IN_RENAME_OBJECT ){ assert( pParse->pNewIndex==0 ); pParse->pNewIndex = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ) sqlite3FreeIndex(db, pIndex); if( pTab ){ /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. ** The list was already ordered when this routine was entered, so at this ** point at most a single index (the newly added index) will be out of ** order. So we have to reorder at most one index. */ Index **ppFrom; Index *pThis; for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ Index *pNext; if( pThis->onError!=OE_Replace ) continue; while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ *ppFrom = pNext; pThis->pNext = pNext->pNext; pNext->pNext = pThis; ppFrom = &pNext->pNext; } break; } #ifdef SQLITE_DEBUG /* Verify that all REPLACE indexes really are now at the end ** of the index list. In other words, no other index type ever ** comes after a REPLACE index on the list. */ for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ assert( pThis->onError!=OE_Replace || pThis->pNext==0 || pThis->pNext->onError==OE_Replace ); } #endif } sqlite3ExprDelete(db, pPIWhere); sqlite3ExprListDelete(db, pList); sqlite3SrcListDelete(db, pTblName); sqlite3DbFree(db, zName); } /* ** Fill the Index.aiRowEst[] array with default information - information ** to be used when we have not run the ANALYZE command. ** ** aiRowEst[0] is supposed to contain the number of elements in the index. ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the ** number of rows in the table that match any particular value of the ** first column of the index. aiRowEst[2] is an estimate of the number ** of rows that match any particular combination of the first 2 columns ** of the index. And so forth. It must always be the case that * ** aiRowEst[N]<=aiRowEst[N-1] ** aiRowEst[N]>=1 ** ** Apart from that, we have little to go on besides intuition as to ** how aiRowEst[] should be initialized. The numbers generated here ** are based on typical values found in actual indices. */ SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){ /* 10, 9, 8, 7, 6 */ static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; LogEst *a = pIdx->aiRowLogEst; LogEst x; int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); int i; /* Indexes with default row estimates should not have stat1 data */ assert( !pIdx->hasStat1 ); /* Set the first entry (number of rows in the index) to the estimated ** number of rows in the table, or half the number of rows in the table ** for a partial index. ** ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 ** table but other parts we are having to guess at, then do not let the ** estimated number of rows in the table be less than 1000 (LogEst 99). ** Failure to do this can cause the indexes for which we do not have ** stat1 data to be ignored by the query planner. */ x = pIdx->pTable->nRowLogEst; assert( 99==sqlite3LogEst(1000) ); if( x<99 ){ pIdx->pTable->nRowLogEst = x = 99; } if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } a[0] = x; /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is ** 6 and each subsequent value (if any) is 5. */ memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ a[i] = 23; assert( 23==sqlite3LogEst(5) ); } assert( 0==sqlite3LogEst(1) ); if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; } /* ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ Index *pIndex; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( db->mallocFailed ){ goto exit_drop_index; } assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */ assert( pName->nSrc==1 ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; } pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); if( pIndex==0 ){ if( !ifExists ){ sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); }else{ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); sqlite3ForceNotReadOnly(pParse); } pParse->checkSchema = 1; goto exit_drop_index; } if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); goto exit_drop_index; } iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_INDEX; Table *pTab = pIndex->pTable; const char *zDb = db->aDb[iDb].zDbSName; const char *zTab = SCHEMA_TABLE(iDb); if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ goto exit_drop_index; } if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ goto exit_drop_index; } } #endif /* Generate code to remove the index and from the schema table */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3BeginWriteOperation(pParse, 1, iDb); sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'", db->aDb[iDb].zDbSName, pIndex->zName ); sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); sqlite3ChangeCookie(pParse, iDb); destroyRootPage(pParse, pIndex->tnum, iDb); sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); } exit_drop_index: sqlite3SrcListDelete(db, pName); } /* ** pArray is a pointer to an array of objects. Each object in the ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() ** to extend the array so that there is space for a new object at the end. ** ** When this function is called, *pnEntry contains the current size of ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes ** in total). ** ** If the realloc() is successful (i.e. if no OOM condition occurs), the ** space allocated for the new object is zeroed, *pnEntry updated to ** reflect the new size of the array and a pointer to the new allocation ** returned. *pIdx is set to the index of the new array entry in this case. ** ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains ** unchanged and a copy of pArray returned. */ SQLITE_PRIVATE void *sqlite3ArrayAllocate( sqlite3 *db, /* Connection to notify of malloc failures */ void *pArray, /* Array of objects. Might be reallocated */ int szEntry, /* Size of each object in the array */ int *pnEntry, /* Number of objects currently in use */ int *pIdx /* Write the index of a new slot here */ ){ char *z; sqlite3_int64 n = *pIdx = *pnEntry; if( (n & (n-1))==0 ){ sqlite3_int64 sz = (n==0) ? 1 : 2*n; void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); if( pNew==0 ){ *pIdx = -1; return pArray; } pArray = pNew; } z = (char*)pArray; memset(&z[n * szEntry], 0, szEntry); ++*pnEntry; return pArray; } /* ** Append a new element to the given IdList. Create a new IdList if ** need be. ** ** A new IdList is returned, or NULL if malloc() fails. */ SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ sqlite3 *db = pParse->db; int i; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(IdList) ); if( pList==0 ) return 0; }else{ IdList *pNew; pNew = sqlite3DbRealloc(db, pList, sizeof(IdList) + pList->nId*sizeof(pList->a)); if( pNew==0 ){ sqlite3IdListDelete(db, pList); return 0; } pList = pNew; } i = pList->nId++; pList->a[i].zName = sqlite3NameFromToken(db, pToken); if( IN_RENAME_OBJECT && pList->a[i].zName ){ sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); } return pList; } /* ** Delete an IdList. */ SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ int i; assert( db!=0 ); if( pList==0 ) return; assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */ for(i=0; inId; i++){ sqlite3DbFree(db, pList->a[i].zName); } sqlite3DbNNFreeNN(db, pList); } /* ** Return the index in pList of the identifier named zId. Return -1 ** if not found. */ SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){ int i; assert( pList!=0 ); for(i=0; inId; i++){ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; } return -1; } /* ** Maximum size of a SrcList object. ** The SrcList object is used to represent the FROM clause of a ** SELECT statement, and the query planner cannot deal with more ** than 64 tables in a join. So any value larger than 64 here ** is sufficient for most uses. Smaller values, like say 10, are ** appropriate for small and memory-limited applications. */ #ifndef SQLITE_MAX_SRCLIST # define SQLITE_MAX_SRCLIST 200 #endif /* ** Expand the space allocated for the given SrcList object by ** creating nExtra new slots beginning at iStart. iStart is zero based. ** New slots are zeroed. ** ** For example, suppose a SrcList initially contains two entries: A,B. ** To append 3 new entries onto the end, do this: ** ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); ** ** After the call above it would contain: A, B, nil, nil, nil. ** If the iStart argument had been 1 instead of 2, then the result ** would have been: A, nil, nil, nil, B. To prepend the new slots, ** the iStart value would be 0. The result then would ** be: nil, nil, nil, A, B. ** ** If a memory allocation fails or the SrcList becomes too large, leave ** the original SrcList unchanged, return NULL, and leave an error message ** in pParse. */ SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge( Parse *pParse, /* Parsing context into which errors are reported */ SrcList *pSrc, /* The SrcList to be enlarged */ int nExtra, /* Number of new slots to add to pSrc->a[] */ int iStart /* Index in pSrc->a[] of first new slot */ ){ int i; /* Sanity checking on calling parameters */ assert( iStart>=0 ); assert( nExtra>=1 ); assert( pSrc!=0 ); assert( iStart<=pSrc->nSrc ); /* Allocate additional space if needed */ if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ SrcList *pNew; sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; sqlite3 *db = pParse->db; if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", SQLITE_MAX_SRCLIST); return 0; } if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; pNew = sqlite3DbRealloc(db, pSrc, sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); if( pNew==0 ){ assert( db->mallocFailed ); return 0; } pSrc = pNew; pSrc->nAlloc = nAlloc; } /* Move existing slots that come after the newly inserted slots ** out of the way */ for(i=pSrc->nSrc-1; i>=iStart; i--){ pSrc->a[i+nExtra] = pSrc->a[i]; } pSrc->nSrc += nExtra; /* Zero the newly allocated slots */ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); for(i=iStart; ia[i].iCursor = -1; } /* Return a pointer to the enlarged SrcList */ return pSrc; } /* ** Append a new table name to the given SrcList. Create a new SrcList if ** need be. A new entry is created in the SrcList even if pTable is NULL. ** ** A SrcList is returned, or NULL if there is an OOM error or if the ** SrcList grows to large. The returned ** SrcList might be the same as the SrcList that was input or it might be ** a new one. If an OOM error does occurs, then the prior value of pList ** that is input to this routine is automatically freed. ** ** If pDatabase is not null, it means that the table has an optional ** database name prefix. Like this: "database.table". The pDatabase ** points to the table name and the pTable points to the database name. ** The SrcList.a[].zName field is filled with the table name which might ** come from pTable (if pDatabase is NULL) or from pDatabase. ** SrcList.a[].zDatabase is filled with the database name from pTable, ** or with NULL if no database is specified. ** ** In other words, if call like this: ** ** sqlite3SrcListAppend(D,A,B,0); ** ** Then B is a table name and the database name is unspecified. If called ** like this: ** ** sqlite3SrcListAppend(D,A,B,C); ** ** Then C is the table name and B is the database name. If C is defined ** then so is B. In other words, we never have a case where: ** ** sqlite3SrcListAppend(D,A,0,C); ** ** Both pTable and pDatabase are assumed to be quoted. They are dequoted ** before being added to the SrcList. */ SQLITE_PRIVATE SrcList *sqlite3SrcListAppend( Parse *pParse, /* Parsing context, in which errors are reported */ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ Token *pTable, /* Table to append */ Token *pDatabase /* Database of the table */ ){ SrcItem *pItem; sqlite3 *db; assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ assert( pParse!=0 ); assert( pParse->db!=0 ); db = pParse->db; if( pList==0 ){ pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); if( pList==0 ) return 0; pList->nAlloc = 1; pList->nSrc = 1; memset(&pList->a[0], 0, sizeof(pList->a[0])); pList->a[0].iCursor = -1; }else{ SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); if( pNew==0 ){ sqlite3SrcListDelete(db, pList); return 0; }else{ pList = pNew; } } pItem = &pList->a[pList->nSrc-1]; if( pDatabase && pDatabase->z==0 ){ pDatabase = 0; } if( pDatabase ){ pItem->zName = sqlite3NameFromToken(db, pDatabase); pItem->zDatabase = sqlite3NameFromToken(db, pTable); }else{ pItem->zName = sqlite3NameFromToken(db, pTable); pItem->zDatabase = 0; } return pList; } /* ** Assign VdbeCursor index numbers to all tables in a SrcList */ SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ int i; SrcItem *pItem; assert( pList || pParse->db->mallocFailed ); if( ALWAYS(pList) ){ for(i=0, pItem=pList->a; inSrc; i++, pItem++){ if( pItem->iCursor>=0 ) continue; pItem->iCursor = pParse->nTab++; if( pItem->pSelect ){ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); } } } } /* ** Delete an entire SrcList including all its substructure. */ SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ int i; SrcItem *pItem; assert( db!=0 ); if( pList==0 ) return; for(pItem=pList->a, i=0; inSrc; i++, pItem++){ if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase); if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName); if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias); if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); sqlite3DeleteTable(db, pItem->pTab); if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); if( pItem->fg.isUsing ){ sqlite3IdListDelete(db, pItem->u3.pUsing); }else if( pItem->u3.pOn ){ sqlite3ExprDelete(db, pItem->u3.pOn); } } sqlite3DbNNFreeNN(db, pList); } /* ** This routine is called by the parser to add a new term to the ** end of a growing FROM clause. The "p" parameter is the part of ** the FROM clause that has already been constructed. "p" is NULL ** if this is the first term of the FROM clause. pTable and pDatabase ** are the name of the table and database named in the FROM clause term. ** pDatabase is NULL if the database name qualifier is missing - the ** usual case. If the term has an alias, then pAlias points to the ** alias token. If the term is a subquery, then pSubquery is the ** SELECT statement that the subquery encodes. The pTable and ** pDatabase parameters are NULL for subqueries. The pOn and pUsing ** parameters are the content of the ON and USING clauses. ** ** Return a new SrcList which encodes is the FROM with the new ** term added. */ SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm( Parse *pParse, /* Parsing context */ SrcList *p, /* The left part of the FROM clause already seen */ Token *pTable, /* Name of the table to add to the FROM clause */ Token *pDatabase, /* Name of the database containing pTable */ Token *pAlias, /* The right-hand side of the AS subexpression */ Select *pSubquery, /* A subquery used in place of a table name */ OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */ ){ SrcItem *pItem; sqlite3 *db = pParse->db; if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){ sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", (pOnUsing->pOn ? "ON" : "USING") ); goto append_from_error; } p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); if( p==0 ){ goto append_from_error; } assert( p->nSrc>0 ); pItem = &p->a[p->nSrc-1]; assert( (pTable==0)==(pDatabase==0) ); assert( pItem->zName==0 || pDatabase!=0 ); if( IN_RENAME_OBJECT && pItem->zName ){ Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; sqlite3RenameTokenMap(pParse, pItem->zName, pToken); } assert( pAlias!=0 ); if( pAlias->n ){ pItem->zAlias = sqlite3NameFromToken(db, pAlias); } if( pSubquery ){ pItem->pSelect = pSubquery; if( pSubquery->selFlags & SF_NestedFrom ){ pItem->fg.isNestedFrom = 1; } } assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 ); assert( pItem->fg.isUsing==0 ); if( pOnUsing==0 ){ pItem->u3.pOn = 0; }else if( pOnUsing->pUsing ){ pItem->fg.isUsing = 1; pItem->u3.pUsing = pOnUsing->pUsing; }else{ pItem->u3.pOn = pOnUsing->pOn; } return p; append_from_error: assert( p==0 ); sqlite3ClearOnOrUsing(db, pOnUsing); sqlite3SelectDelete(db, pSubquery); return 0; } /* ** Add an INDEXED BY or NOT INDEXED clause to the most recently added ** element of the source-list passed as the second argument. */ SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ assert( pIndexedBy!=0 ); if( p && pIndexedBy->n>0 ){ SrcItem *pItem; assert( p->nSrc>0 ); pItem = &p->a[p->nSrc-1]; assert( pItem->fg.notIndexed==0 ); assert( pItem->fg.isIndexedBy==0 ); assert( pItem->fg.isTabFunc==0 ); if( pIndexedBy->n==1 && !pIndexedBy->z ){ /* A "NOT INDEXED" clause was supplied. See parse.y ** construct "indexed_opt" for details. */ pItem->fg.notIndexed = 1; }else{ pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); pItem->fg.isIndexedBy = 1; assert( pItem->fg.isCte==0 ); /* No collision on union u2 */ } } } /* ** Append the contents of SrcList p2 to SrcList p1 and return the resulting ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 ** are deleted by this function. */ SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ assert( p1 && p1->nSrc==1 ); if( p2 ){ SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); if( pNew==0 ){ sqlite3SrcListDelete(pParse->db, p2); }else{ p1 = pNew; memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); sqlite3DbFree(pParse->db, p2); p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype); } } return p1; } /* ** Add the list of function arguments to the SrcList entry for a ** table-valued-function. */ SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ if( p ){ SrcItem *pItem = &p->a[p->nSrc-1]; assert( pItem->fg.notIndexed==0 ); assert( pItem->fg.isIndexedBy==0 ); assert( pItem->fg.isTabFunc==0 ); pItem->u1.pFuncArg = pList; pItem->fg.isTabFunc = 1; }else{ sqlite3ExprListDelete(pParse->db, pList); } } /* ** When building up a FROM clause in the parser, the join operator ** is initially attached to the left operand. But the code generator ** expects the join operator to be on the right operand. This routine ** Shifts all join operators from left to right for an entire FROM ** clause. ** ** Example: Suppose the join is like this: ** ** A natural cross join B ** ** The operator is "natural cross join". The A and B operands are stored ** in p->a[0] and p->a[1], respectively. The parser initially stores the ** operator with A. This routine shifts that operator over to B. ** ** Additional changes: ** ** * All tables to the left of the right-most RIGHT JOIN are tagged with ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the ** code generator can easily tell that the table is part of ** the left operand of at least one RIGHT JOIN. */ SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){ (void)pParse; if( p && p->nSrc>1 ){ int i = p->nSrc-1; u8 allFlags = 0; do{ allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype; }while( (--i)>0 ); p->a[0].fg.jointype = 0; /* All terms to the left of a RIGHT JOIN should be tagged with the ** JT_LTORJ flags */ if( allFlags & JT_RIGHT ){ for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){} i--; assert( i>=0 ); do{ p->a[i].fg.jointype |= JT_LTORJ; }while( (--i)>=0 ); } } } /* ** Generate VDBE code for a BEGIN statement. */ SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){ sqlite3 *db; Vdbe *v; int i; assert( pParse!=0 ); db = pParse->db; assert( db!=0 ); if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ return; } v = sqlite3GetVdbe(pParse); if( !v ) return; if( type!=TK_DEFERRED ){ for(i=0; inDb; i++){ int eTxnType; Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeIsReadonly(pBt) ){ eTxnType = 0; /* Read txn */ }else if( type==TK_EXCLUSIVE ){ eTxnType = 2; /* Exclusive txn */ }else{ eTxnType = 1; /* Write txn */ } sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); sqlite3VdbeUsesBtree(v, i); } } sqlite3VdbeAddOp0(v, OP_AutoCommit); } /* ** Generate VDBE code for a COMMIT or ROLLBACK statement. ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise ** code is generated for a COMMIT. */ SQLITE_PRIVATE void sqlite3EndTransaction(Parse *pParse, int eType){ Vdbe *v; int isRollback; assert( pParse!=0 ); assert( pParse->db!=0 ); assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); isRollback = eType==TK_ROLLBACK; if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ return; } v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); } } /* ** This function is called by the parser when it parses a command to create, ** release or rollback an SQL savepoint. */ SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ char *zName = sqlite3NameFromToken(pParse->db, pName); if( zName ){ Vdbe *v = sqlite3GetVdbe(pParse); #ifndef SQLITE_OMIT_AUTHORIZATION static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); #endif if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ sqlite3DbFree(pParse->db, zName); return; } sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); } } /* ** Make sure the TEMP database is open and available for use. Return ** the number of errors. Leave any error messages in the pParse structure. */ SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){ sqlite3 *db = pParse->db; if( db->aDb[1].pBt==0 && !pParse->explain ){ int rc; Btree *pBt; static const int flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TEMP_DB; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } db->aDb[1].pBt = pBt; assert( db->aDb[1].pSchema ); if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ sqlite3OomFault(db); return 1; } } return 0; } /* ** Record the fact that the schema cookie will need to be verified ** for database iDb. The code to actually verify the schema cookie ** will occur at the end of the top-level VDBE and will be generated ** later, by sqlite3FinishCoding(). */ static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ assert( iDb>=0 && iDbdb->nDb ); assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDbdb, iDb, 0) ); if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ DbMaskSet(pToplevel->cookieMask, iDb); if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pToplevel); } } } SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); } /* ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each ** attached database. Otherwise, invoke it for the database named zDb only. */ SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ sqlite3 *db = pParse->db; int i; for(i=0; inDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ sqlite3CodeVerifySchema(pParse, i); } } } /* ** Generate VDBE code that prepares for doing an operation that ** might change the database. ** ** This routine starts a new transaction if we are not already within ** a transaction. If we are already within a transaction, then a checkpoint ** is set if the setStatement parameter is true. A checkpoint should ** be set for operations that might fail (due to a constraint) part of ** the way through and which will need to undo some writes without having to ** rollback the whole transaction. For operations where all constraints ** can be checked before any changes are made to the database, it is never ** necessary to undo a write and the checkpoint should not be set. */ SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); DbMaskSet(pToplevel->writeMask, iDb); pToplevel->isMultiWrite |= setStatement; } /* ** Indicate that the statement currently under construction might write ** more than one entry (example: deleting one row then inserting another, ** inserting multiple rows in a table, or inserting a row and index entries.) ** If an abort occurs after some of these writes have completed, then it will ** be necessary to undo the completed writes. */ SQLITE_PRIVATE void sqlite3MultiWrite(Parse *pParse){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pToplevel->isMultiWrite = 1; } /* ** The code generator calls this routine if is discovers that it is ** possible to abort a statement prior to completion. In order to ** perform this abort without corrupting the database, we need to make ** sure that the statement is protected by a statement transaction. ** ** Technically, we only need to set the mayAbort flag if the ** isMultiWrite flag was previously set. There is a time dependency ** such that the abort must occur after the multiwrite. This makes ** some statements involving the REPLACE conflict resolution algorithm ** go a little faster. But taking advantage of this time dependency ** makes it more difficult to prove that the code is correct (in ** particular, it prevents us from writing an effective ** implementation of sqlite3AssertMayAbort()) and so we have chosen ** to take the safe route and skip the optimization. */ SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pToplevel->mayAbort = 1; } /* ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT ** error. The onError parameter determines which (if any) of the statement ** and/or current transaction is rolled back. */ SQLITE_PRIVATE void sqlite3HaltConstraint( Parse *pParse, /* Parsing context */ int errCode, /* extended error code */ int onError, /* Constraint type */ char *p4, /* Error message */ i8 p4type, /* P4_STATIC or P4_TRANSIENT */ u8 p5Errmsg /* P5_ErrMsg type */ ){ Vdbe *v; assert( pParse->pVdbe!=0 ); v = sqlite3GetVdbe(pParse); assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); if( onError==OE_Abort ){ sqlite3MayAbort(pParse); } sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); sqlite3VdbeChangeP5(v, p5Errmsg); } /* ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. */ SQLITE_PRIVATE void sqlite3UniqueConstraint( Parse *pParse, /* Parsing context */ int onError, /* Constraint type */ Index *pIdx /* The index that triggers the constraint */ ){ char *zErr; int j; StrAccum errMsg; Table *pTab = pIdx->pTable; sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); if( pIdx->aColExpr ){ sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); }else{ for(j=0; jnKeyCol; j++){ char *zCol; assert( pIdx->aiColumn[j]>=0 ); zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; if( j ) sqlite3_str_append(&errMsg, ", ", 2); sqlite3_str_appendall(&errMsg, pTab->zName); sqlite3_str_append(&errMsg, ".", 1); sqlite3_str_appendall(&errMsg, zCol); } } zErr = sqlite3StrAccumFinish(&errMsg); sqlite3HaltConstraint(pParse, IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY : SQLITE_CONSTRAINT_UNIQUE, onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); } /* ** Code an OP_Halt due to non-unique rowid. */ SQLITE_PRIVATE void sqlite3RowidConstraint( Parse *pParse, /* Parsing context */ int onError, /* Conflict resolution algorithm */ Table *pTab /* The table with the non-unique rowid */ ){ char *zMsg; int rc; if( pTab->iPKey>=0 ){ zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, pTab->aCol[pTab->iPKey].zCnName); rc = SQLITE_CONSTRAINT_PRIMARYKEY; }else{ zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); rc = SQLITE_CONSTRAINT_ROWID; } sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, P5_ConstraintUnique); } /* ** Check to see if pIndex uses the collating sequence pColl. Return ** true if it does and false if it does not. */ #ifndef SQLITE_OMIT_REINDEX static int collationMatch(const char *zColl, Index *pIndex){ int i; assert( zColl!=0 ); for(i=0; inColumn; i++){ const char *z = pIndex->azColl[i]; assert( z!=0 || pIndex->aiColumn[i]<0 ); if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ return 1; } } return 0; } #endif /* ** Recompute all indices of pTab that use the collating sequence pColl. ** If pColl==0 then recompute all indices of pTab. */ #ifndef SQLITE_OMIT_REINDEX static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ if( !IsVirtual(pTab) ){ Index *pIndex; /* An index associated with pTab */ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( zColl==0 || collationMatch(zColl, pIndex) ){ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); } } } } #endif /* ** Recompute all indices of all tables in all databases where the ** indices use the collating sequence pColl. If pColl==0 then recompute ** all indices everywhere. */ #ifndef SQLITE_OMIT_REINDEX static void reindexDatabases(Parse *pParse, char const *zColl){ Db *pDb; /* A single database */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ for(iDb=0, pDb=db->aDb; iDbnDb; iDb++, pDb++){ assert( pDb!=0 ); for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); reindexTable(pParse, pTab, zColl); } } } #endif /* ** Generate code for the REINDEX command. ** ** REINDEX -- 1 ** REINDEX -- 2 ** REINDEX ?.? -- 3 ** REINDEX ?.? -- 4 ** ** Form 1 causes all indices in all attached databases to be rebuilt. ** Form 2 rebuilds all indices in all databases that use the named ** collating function. Forms 3 and 4 rebuild the named index or all ** indices associated with the named table. */ #ifndef SQLITE_OMIT_REINDEX SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ char *z; /* Name of a table or index */ const char *zDb; /* Name of the database */ Table *pTab; /* A table in the database */ Index *pIndex; /* An index associated with pTab */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ Token *pObjName; /* Name of the table or index to be reindexed */ /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; } if( pName1==0 ){ reindexDatabases(pParse, 0); return; }else if( NEVER(pName2==0) || pName2->z==0 ){ char *zColl; assert( pName1->z ); zColl = sqlite3NameFromToken(pParse->db, pName1); if( !zColl ) return; pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); if( pColl ){ reindexDatabases(pParse, zColl); sqlite3DbFree(db, zColl); return; } sqlite3DbFree(db, zColl); } iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); if( iDb<0 ) return; z = sqlite3NameFromToken(db, pObjName); if( z==0 ) return; zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; pTab = sqlite3FindTable(db, z, zDb); if( pTab ){ reindexTable(pParse, pTab, 0); sqlite3DbFree(db, z); return; } pIndex = sqlite3FindIndex(db, z, zDb); sqlite3DbFree(db, z); if( pIndex ){ iDb = sqlite3SchemaToIndex(db, pIndex->pTable->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); return; } sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); } #endif /* ** Return a KeyInfo structure that is appropriate for the given Index. ** ** The caller should invoke sqlite3KeyInfoUnref() on the returned object ** when it has finished using it. */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; int nKey = pIdx->nKeyCol; KeyInfo *pKey; if( pParse->nErr ) return 0; if( pIdx->uniqNotNull ){ pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); }else{ pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); } if( pKey ){ assert( sqlite3KeyInfoIsWriteable(pKey) ); for(i=0; iazColl[i]; pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : sqlite3LocateCollSeq(pParse, zColl); pKey->aSortFlags[i] = pIdx->aSortOrder[i]; assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); } if( pParse->nErr ){ assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); if( pIdx->bNoQuery==0 ){ /* Deactivate the index because it contains an unknown collating ** sequence. The only way to reactive the index is to reload the ** schema. Adding the missing collating sequence later does not ** reactive the index. The application had the chance to register ** the missing index using the collation-needed callback. For ** simplicity, SQLite will not give the application a second chance. */ pIdx->bNoQuery = 1; pParse->rc = SQLITE_ERROR_RETRY; } sqlite3KeyInfoUnref(pKey); pKey = 0; } } return pKey; } #ifndef SQLITE_OMIT_CTE /* ** Create a new CTE object */ SQLITE_PRIVATE Cte *sqlite3CteNew( Parse *pParse, /* Parsing context */ Token *pName, /* Name of the common-table */ ExprList *pArglist, /* Optional column name list for the table */ Select *pQuery, /* Query used to initialize the table */ u8 eM10d /* The MATERIALIZED flag */ ){ Cte *pNew; sqlite3 *db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); assert( pNew!=0 || db->mallocFailed ); if( db->mallocFailed ){ sqlite3ExprListDelete(db, pArglist); sqlite3SelectDelete(db, pQuery); }else{ pNew->pSelect = pQuery; pNew->pCols = pArglist; pNew->zName = sqlite3NameFromToken(pParse->db, pName); pNew->eM10d = eM10d; } return pNew; } /* ** Clear information from a Cte object, but do not deallocate storage ** for the object itself. */ static void cteClear(sqlite3 *db, Cte *pCte){ assert( pCte!=0 ); sqlite3ExprListDelete(db, pCte->pCols); sqlite3SelectDelete(db, pCte->pSelect); sqlite3DbFree(db, pCte->zName); } /* ** Free the contents of the CTE object passed as the second argument. */ SQLITE_PRIVATE void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ assert( pCte!=0 ); cteClear(db, pCte); sqlite3DbFree(db, pCte); } /* ** This routine is invoked once per CTE by the parser while parsing a ** WITH clause. The CTE described by the third argument is added to ** the WITH clause of the second argument. If the second argument is ** NULL, then a new WITH argument is created. */ SQLITE_PRIVATE With *sqlite3WithAdd( Parse *pParse, /* Parsing context */ With *pWith, /* Existing WITH clause, or NULL */ Cte *pCte /* CTE to add to the WITH clause */ ){ sqlite3 *db = pParse->db; With *pNew; char *zName; if( pCte==0 ){ return pWith; } /* Check that the CTE name is unique within this WITH clause. If ** not, store an error in the Parse structure. */ zName = pCte->zName; if( zName && pWith ){ int i; for(i=0; inCte; i++){ if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); } } } if( pWith ){ sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); pNew = sqlite3DbRealloc(db, pWith, nByte); }else{ pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); } assert( (pNew!=0 && zName!=0) || db->mallocFailed ); if( db->mallocFailed ){ sqlite3CteDelete(db, pCte); pNew = pWith; }else{ pNew->a[pNew->nCte++] = *pCte; sqlite3DbFree(db, pCte); } return pNew; } /* ** Free the contents of the With object passed as the second argument. */ SQLITE_PRIVATE void sqlite3WithDelete(sqlite3 *db, With *pWith){ if( pWith ){ int i; for(i=0; inCte; i++){ cteClear(db, &pWith->a[i]); } sqlite3DbFree(db, pWith); } } SQLITE_PRIVATE void sqlite3WithDeleteGeneric(sqlite3 *db, void *pWith){ sqlite3WithDelete(db, (With*)pWith); } #endif /* !defined(SQLITE_OMIT_CTE) */ /************** End of build.c ***********************************************/ /************** Begin file callback.c ****************************************/ /* ** 2005 May 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains functions used to access the internal hash tables ** of user defined functions and collation sequences. */ /* #include "sqliteInt.h" */ /* ** Invoke the 'collation needed' callback to request a collation sequence ** in the encoding enc of name zName, length nName. */ static void callCollNeeded(sqlite3 *db, int enc, const char *zName){ assert( !db->xCollNeeded || !db->xCollNeeded16 ); if( db->xCollNeeded ){ char *zExternal = sqlite3DbStrDup(db, zName); if( !zExternal ) return; db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal); sqlite3DbFree(db, zExternal); } #ifndef SQLITE_OMIT_UTF16 if( db->xCollNeeded16 ){ char const *zExternal; sqlite3_value *pTmp = sqlite3ValueNew(db); sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); if( zExternal ){ db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); } sqlite3ValueFree(pTmp); } #endif } /* ** This routine is called if the collation factory fails to deliver a ** collation function in the best encoding but there may be other versions ** of this collation function (for other text encodings) available. Use one ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if ** possible. */ static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ CollSeq *pColl2; char *z = pColl->zName; int i; static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; for(i=0; i<3; i++){ pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0); if( pColl2->xCmp!=0 ){ memcpy(pColl, pColl2, sizeof(CollSeq)); pColl->xDel = 0; /* Do not copy the destructor */ return SQLITE_OK; } } return SQLITE_ERROR; } /* ** This routine is called on a collation sequence before it is used to ** check that it is defined. An undefined collation sequence exists when ** a database is loaded that contains references to collation sequences ** that have not been defined by sqlite3_create_collation() etc. ** ** If required, this routine calls the 'collation needed' callback to ** request a definition of the collating sequence. If this doesn't work, ** an equivalent collating sequence that uses a text encoding different ** from the main database is substituted, if one is available. */ SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ if( pColl && pColl->xCmp==0 ){ const char *zName = pColl->zName; sqlite3 *db = pParse->db; CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName); if( !p ){ return SQLITE_ERROR; } assert( p==pColl ); } return SQLITE_OK; } /* ** Locate and return an entry from the db.aCollSeq hash table. If the entry ** specified by zName and nName is not found and parameter 'create' is ** true, then create a new entry. Otherwise return NULL. ** ** Each pointer stored in the sqlite3.aCollSeq hash table contains an ** array of three CollSeq structures. The first is the collation sequence ** preferred for UTF-8, the second UTF-16le, and the third UTF-16be. ** ** Stored immediately after the three collation sequences is a copy of ** the collation sequence name. A pointer to this string is stored in ** each collation sequence structure. */ static CollSeq *findCollSeqEntry( sqlite3 *db, /* Database connection */ const char *zName, /* Name of the collating sequence */ int create /* Create a new entry if true */ ){ CollSeq *pColl; pColl = sqlite3HashFind(&db->aCollSeq, zName); if( 0==pColl && create ){ int nName = sqlite3Strlen30(zName) + 1; pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName); if( pColl ){ CollSeq *pDel = 0; pColl[0].zName = (char*)&pColl[3]; pColl[0].enc = SQLITE_UTF8; pColl[1].zName = (char*)&pColl[3]; pColl[1].enc = SQLITE_UTF16LE; pColl[2].zName = (char*)&pColl[3]; pColl[2].enc = SQLITE_UTF16BE; memcpy(pColl[0].zName, zName, nName); pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl); /* If a malloc() failure occurred in sqlite3HashInsert(), it will ** return the pColl pointer to be deleted (because it wasn't added ** to the hash table). */ assert( pDel==0 || pDel==pColl ); if( pDel!=0 ){ sqlite3OomFault(db); sqlite3DbFree(db, pDel); pColl = 0; } } } return pColl; } /* ** Parameter zName points to a UTF-8 encoded string nName bytes long. ** Return the CollSeq* pointer for the collation sequence named zName ** for the encoding 'enc' from the database 'db'. ** ** If the entry specified is not found and 'create' is true, then create a ** new entry. Otherwise return NULL. ** ** A separate function sqlite3LocateCollSeq() is a wrapper around ** this routine. sqlite3LocateCollSeq() invokes the collation factory ** if necessary and generates an error message if the collating sequence ** cannot be found. ** ** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq() */ SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq( sqlite3 *db, /* Database connection to search */ u8 enc, /* Desired text encoding */ const char *zName, /* Name of the collating sequence. Might be NULL */ int create /* True to create CollSeq if doesn't already exist */ ){ CollSeq *pColl; assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); if( zName ){ pColl = findCollSeqEntry(db, zName, create); if( pColl ) pColl += enc-1; }else{ pColl = db->pDfltColl; } return pColl; } /* ** Change the text encoding for a database connection. This means that ** the pDfltColl must change as well. */ SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); db->enc = enc; /* EVIDENCE-OF: R-08308-17224 The default collating function for all ** strings is BINARY. */ db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0); sqlite3ExpirePreparedStatements(db, 1); } /* ** This function is responsible for invoking the collation factory callback ** or substituting a collation sequence of a different encoding when the ** requested collation sequence is not available in the desired encoding. ** ** If it is not NULL, then pColl must point to the database native encoding ** collation sequence with name zName, length nName. ** ** The return value is either the collation sequence to be used in database ** db for collation type name zName, length nName, or NULL, if no collation ** sequence can be found. If no collation is found, leave an error message. ** ** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq() */ SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq( Parse *pParse, /* Parsing context */ u8 enc, /* The desired encoding for the collating sequence */ CollSeq *pColl, /* Collating sequence with native encoding, or NULL */ const char *zName /* Collating sequence name */ ){ CollSeq *p; sqlite3 *db = pParse->db; p = pColl; if( !p ){ p = sqlite3FindCollSeq(db, enc, zName, 0); } if( !p || !p->xCmp ){ /* No collation sequence of this type for this encoding is registered. ** Call the collation factory to see if it can supply us with one. */ callCollNeeded(db, enc, zName); p = sqlite3FindCollSeq(db, enc, zName, 0); } if( p && !p->xCmp && synthCollSeq(db, p) ){ p = 0; } assert( !p || p->xCmp ); if( p==0 ){ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); pParse->rc = SQLITE_ERROR_MISSING_COLLSEQ; } return p; } /* ** This function returns the collation sequence for database native text ** encoding identified by the string zName. ** ** If the requested collation sequence is not available, or not available ** in the database native encoding, the collation factory is invoked to ** request it. If the collation factory does not supply such a sequence, ** and the sequence is available in another text encoding, then that is ** returned instead. ** ** If no versions of the requested collations sequence are available, or ** another error occurs, NULL is returned and an error message written into ** pParse. ** ** This routine is a wrapper around sqlite3FindCollSeq(). This routine ** invokes the collation factory if the named collation cannot be found ** and generates an error message. ** ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() */ SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ sqlite3 *db = pParse->db; u8 enc = ENC(db); u8 initbusy = db->init.busy; CollSeq *pColl; pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); if( !initbusy && (!pColl || !pColl->xCmp) ){ pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); } return pColl; } /* During the search for the best function definition, this procedure ** is called to test how well the function passed as the first argument ** matches the request for a function with nArg arguments in a system ** that uses encoding enc. The value returned indicates how well the ** request is matched. A higher value indicates a better match. ** ** If nArg is -1 that means to only return a match (non-zero) if p->nArg ** is also -1. In other words, we are searching for a function that ** takes a variable number of arguments. ** ** If nArg is -2 that means that we are searching for any function ** regardless of the number of arguments it uses, so return a positive ** match score for any ** ** The returned value is always between 0 and 6, as follows: ** ** 0: Not a match. ** 1: UTF8/16 conversion required and function takes any number of arguments. ** 2: UTF16 byte order change required and function takes any number of args. ** 3: encoding matches and function takes any number of arguments ** 4: UTF8/16 conversion required - argument count matches exactly ** 5: UTF16 byte order conversion required - argument count matches exactly ** 6: Perfect match: encoding and argument count match exactly. ** ** If nArg==(-2) then any function with a non-null xSFunc is ** a perfect match and any function with xSFunc NULL is ** a non-match. */ #define FUNC_PERFECT_MATCH 6 /* The score for a perfect match */ static int matchQuality( FuncDef *p, /* The function we are evaluating for match quality */ int nArg, /* Desired number of arguments. (-1)==any */ u8 enc /* Desired text encoding */ ){ int match; assert( p->nArg>=-1 ); /* Wrong number of arguments means "no match" */ if( p->nArg!=nArg ){ if( nArg==(-2) ) return (p->xSFunc==0) ? 0 : FUNC_PERFECT_MATCH; if( p->nArg>=0 ) return 0; } /* Give a better score to a function with a specific number of arguments ** than to function that accepts any number of arguments. */ if( p->nArg==nArg ){ match = 4; }else{ match = 1; } /* Bonus points if the text encoding matches */ if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){ match += 2; /* Exact encoding match */ }else if( (enc & p->funcFlags & 2)!=0 ){ match += 1; /* Both are UTF16, but with different byte orders */ } return match; } /* ** Search a FuncDefHash for a function with the given name. Return ** a pointer to the matching FuncDef if found, or 0 if there is no match. */ SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch( int h, /* Hash of the name */ const char *zFunc /* Name of function */ ){ FuncDef *p; for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){ assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); if( sqlite3StrICmp(p->zName, zFunc)==0 ){ return p; } } return 0; } /* ** Insert a new FuncDef into a FuncDefHash hash table. */ SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs( FuncDef *aDef, /* List of global functions to be inserted */ int nDef /* Length of the apDef[] list */ ){ int i; for(i=0; ipNext!=&aDef[i] ); aDef[i].pNext = pOther->pNext; pOther->pNext = &aDef[i]; }else{ aDef[i].pNext = 0; aDef[i].u.pHash = sqlite3BuiltinFunctions.a[h]; sqlite3BuiltinFunctions.a[h] = &aDef[i]; } } } /* ** Locate a user function given a name, a number of arguments and a flag ** indicating whether the function prefers UTF-16 over UTF-8. Return a ** pointer to the FuncDef structure that defines that function, or return ** NULL if the function does not exist. ** ** If the createFlag argument is true, then a new (blank) FuncDef ** structure is created and liked into the "db" structure if a ** no matching function previously existed. ** ** If nArg is -2, then the first valid function found is returned. A ** function is valid if xSFunc is non-zero. The nArg==(-2) ** case is used to see if zName is a valid function name for some number ** of arguments. If nArg is -2, then createFlag must be 0. ** ** If createFlag is false, then a function with the required name and ** number of arguments may be returned even if the eTextRep flag does not ** match that requested. */ SQLITE_PRIVATE FuncDef *sqlite3FindFunction( sqlite3 *db, /* An open database */ const char *zName, /* Name of the function. zero-terminated */ int nArg, /* Number of arguments. -1 means any number */ u8 enc, /* Preferred text encoding */ u8 createFlag /* Create new entry if true and does not otherwise exist */ ){ FuncDef *p; /* Iterator variable */ FuncDef *pBest = 0; /* Best match found so far */ int bestScore = 0; /* Score of best match */ int h; /* Hash value */ int nName; /* Length of the name */ assert( nArg>=(-2) ); assert( nArg>=(-1) || createFlag==0 ); nName = sqlite3Strlen30(zName); /* First search for a match amongst the application-defined functions. */ p = (FuncDef*)sqlite3HashFind(&db->aFunc, zName); while( p ){ int score = matchQuality(p, nArg, enc); if( score>bestScore ){ pBest = p; bestScore = score; } p = p->pNext; } /* If no match is found, search the built-in functions. ** ** If the DBFLAG_PreferBuiltin flag is set, then search the built-in ** functions even if a prior app-defined function was found. And give ** priority to built-in functions. ** ** Except, if createFlag is true, that means that we are trying to ** install a new function. Whatever FuncDef structure is returned it will ** have fields overwritten with new information appropriate for the ** new function. But the FuncDefs for built-in functions are read-only. ** So we must not search for built-ins when creating a new function. */ if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){ bestScore = 0; h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName); p = sqlite3FunctionSearch(h, zName); while( p ){ int score = matchQuality(p, nArg, enc); if( score>bestScore ){ pBest = p; bestScore = score; } p = p->pNext; } } /* If the createFlag parameter is true and the search did not reveal an ** exact match for the name, number of arguments and encoding, then add a ** new entry to the hash table and return it. */ if( createFlag && bestScorezName = (const char*)&pBest[1]; pBest->nArg = (u16)nArg; pBest->funcFlags = enc; memcpy((char*)&pBest[1], zName, nName+1); for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z]; pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest); if( pOther==pBest ){ sqlite3DbFree(db, pBest); sqlite3OomFault(db); return 0; }else{ pBest->pNext = pOther; } } if( pBest && (pBest->xSFunc || createFlag) ){ return pBest; } return 0; } /* ** Free all resources held by the schema structure. The void* argument points ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the ** pointer itself, it just cleans up subsidiary resources (i.e. the contents ** of the schema hash tables). ** ** The Schema.cache_size variable is not cleared. */ SQLITE_PRIVATE void sqlite3SchemaClear(void *p){ Hash temp1; Hash temp2; HashElem *pElem; Schema *pSchema = (Schema *)p; sqlite3 xdb; memset(&xdb, 0, sizeof(xdb)); temp1 = pSchema->tblHash; temp2 = pSchema->trigHash; sqlite3HashInit(&pSchema->trigHash); sqlite3HashClear(&pSchema->idxHash); for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ sqlite3DeleteTrigger(&xdb, (Trigger*)sqliteHashData(pElem)); } sqlite3HashClear(&temp2); sqlite3HashInit(&pSchema->tblHash); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(&xdb, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; if( pSchema->schemaFlags & DB_SchemaLoaded ){ pSchema->iGeneration++; } pSchema->schemaFlags &= ~(DB_SchemaLoaded|DB_ResetWanted); } /* ** Find and return the schema associated with a BTree. Create ** a new one if necessary. */ SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ Schema * p; if( pBt ){ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear); }else{ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); } if( !p ){ sqlite3OomFault(db); }else if ( 0==p->file_format ){ sqlite3HashInit(&p->tblHash); sqlite3HashInit(&p->idxHash); sqlite3HashInit(&p->trigHash); sqlite3HashInit(&p->fkeyHash); p->enc = SQLITE_UTF8; } return p; } /************** End of callback.c ********************************************/ /************** Begin file delete.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. */ /* #include "sqliteInt.h" */ /* ** While a SrcList can in general represent multiple tables and subqueries ** (as in the FROM clause of a SELECT statement) in this case it contains ** the name of a single table, as one might find in an INSERT, DELETE, ** or UPDATE statement. Look up that table in the symbol table and ** return a pointer. Set an error message and return NULL if the table ** name is not found or if any other error occurs. ** ** The following fields are initialized appropriate in pSrc: ** ** pSrc->a[0].pTab Pointer to the Table object ** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one ** */ SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ SrcItem *pItem = pSrc->a; Table *pTab; assert( pItem && pSrc->nSrc>=1 ); pTab = sqlite3LocateTableItem(pParse, 0, pItem); if( pItem->pTab ) sqlite3DeleteTable(pParse->db, pItem->pTab); pItem->pTab = pTab; pItem->fg.notCte = 1; if( pTab ){ pTab->nTabRef++; if( pItem->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pItem) ){ pTab = 0; } } return pTab; } /* Generate byte-code that will report the number of rows modified ** by a DELETE, INSERT, or UPDATE statement. */ SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe *v, int regCounter, const char *zColName){ sqlite3VdbeAddOp0(v, OP_FkCheck); sqlite3VdbeAddOp2(v, OP_ResultRow, regCounter, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zColName, SQLITE_STATIC); } /* Return true if table pTab is read-only. ** ** A table is read-only if any of the following are true: ** ** 1) It is a virtual table and no implementation of the xUpdate method ** has been provided ** ** 2) A trigger is currently being coded and the table is a virtual table ** that is SQLITE_VTAB_DIRECTONLY or if PRAGMA trusted_schema=OFF and ** the table is not SQLITE_VTAB_INNOCUOUS. ** ** 3) It is a system table (i.e. sqlite_schema), this call is not ** part of a nested parse and writable_schema pragma has not ** been specified ** ** 4) The table is a shadow table, the database connection is in ** defensive mode, and the current sqlite3_prepare() ** is for a top-level SQL statement. */ static int vtabIsReadOnly(Parse *pParse, Table *pTab){ if( sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 ){ return 1; } /* Within triggers: ** * Do not allow DELETE, INSERT, or UPDATE of SQLITE_VTAB_DIRECTONLY ** virtual tables ** * Only allow DELETE, INSERT, or UPDATE of non-SQLITE_VTAB_INNOCUOUS ** virtual tables if PRAGMA trusted_schema=ON. */ if( pParse->pToplevel!=0 && pTab->u.vtab.p->eVtabRisk > ((pParse->db->flags & SQLITE_TrustedSchema)!=0) ){ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", pTab->zName); } return 0; } static int tabIsReadOnly(Parse *pParse, Table *pTab){ sqlite3 *db; if( IsVirtual(pTab) ){ return vtabIsReadOnly(pParse, pTab); } if( (pTab->tabFlags & (TF_Readonly|TF_Shadow))==0 ) return 0; db = pParse->db; if( (pTab->tabFlags & TF_Readonly)!=0 ){ return sqlite3WritableSchema(db)==0 && pParse->nested==0; } assert( pTab->tabFlags & TF_Shadow ); return sqlite3ReadOnlyShadowTables(db); } /* ** Check to make sure the given table is writable. ** ** If pTab is not writable -> generate an error message and return 1. ** If pTab is writable but other errors have occurred -> return 1. ** If pTab is writable and no prior errors -> return 0; */ SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, Trigger *pTrigger){ if( tabIsReadOnly(pParse, pTab) ){ sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); return 1; } #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) && (pTrigger==0 || (pTrigger->bReturning && pTrigger->pNext==0)) ){ sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName); return 1; } #endif return 0; } #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) /* ** Evaluate a view and store its result in an ephemeral table. The ** pWhere argument is an optional WHERE clause that restricts the ** set of rows in the view that are to be added to the ephemeral table. */ SQLITE_PRIVATE void sqlite3MaterializeView( Parse *pParse, /* Parsing context */ Table *pView, /* View definition */ Expr *pWhere, /* Optional WHERE clause to be added */ ExprList *pOrderBy, /* Optional ORDER BY clause */ Expr *pLimit, /* Optional LIMIT clause */ int iCur /* Cursor number for ephemeral table */ ){ SelectDest dest; Select *pSel; SrcList *pFrom; sqlite3 *db = pParse->db; int iDb = sqlite3SchemaToIndex(db, pView->pSchema); pWhere = sqlite3ExprDup(db, pWhere, 0); pFrom = sqlite3SrcListAppend(pParse, 0, 0, 0); if( pFrom ){ assert( pFrom->nSrc==1 ); pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName); pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName); assert( pFrom->a[0].fg.isUsing==0 ); assert( pFrom->a[0].u3.pOn==0 ); } pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, pOrderBy, SF_IncludeHidden, pLimit); sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur); sqlite3Select(pParse, pSel, &dest); sqlite3SelectDelete(db, pSel); } #endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */ #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Generate an expression tree to implement the WHERE, ORDER BY, ** and LIMIT/OFFSET portion of DELETE and UPDATE statements. ** ** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1; ** \__________________________/ ** pLimitWhere (pInClause) */ SQLITE_PRIVATE Expr *sqlite3LimitWhere( Parse *pParse, /* The parser context */ SrcList *pSrc, /* the FROM clause -- which tables to scan */ Expr *pWhere, /* The WHERE clause. May be null */ ExprList *pOrderBy, /* The ORDER BY clause. May be null */ Expr *pLimit, /* The LIMIT clause. May be null */ char *zStmtType /* Either DELETE or UPDATE. For err msgs. */ ){ sqlite3 *db = pParse->db; Expr *pLhs = NULL; /* LHS of IN(SELECT...) operator */ Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */ ExprList *pEList = NULL; /* Expression list containing only pSelectRowid*/ SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */ Select *pSelect = NULL; /* Complete SELECT tree */ Table *pTab; /* Check that there isn't an ORDER BY without a LIMIT clause. */ if( pOrderBy && pLimit==0 ) { sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType); sqlite3ExprDelete(pParse->db, pWhere); sqlite3ExprListDelete(pParse->db, pOrderBy); return 0; } /* We only need to generate a select expression if there ** is a limit/offset term to enforce. */ if( pLimit == 0 ) { return pWhere; } /* Generate a select expression tree to enforce the limit/offset ** term for the DELETE or UPDATE statement. For example: ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** becomes: ** DELETE FROM table_a WHERE rowid IN ( ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** ); */ pTab = pSrc->a[0].pTab; if( HasRowid(pTab) ){ pLhs = sqlite3PExpr(pParse, TK_ROW, 0, 0); pEList = sqlite3ExprListAppend( pParse, 0, sqlite3PExpr(pParse, TK_ROW, 0, 0) ); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->nKeyCol>=1 ); if( pPk->nKeyCol==1 ){ const char *zName; assert( pPk->aiColumn[0]>=0 && pPk->aiColumn[0]nCol ); zName = pTab->aCol[pPk->aiColumn[0]].zCnName; pLhs = sqlite3Expr(db, TK_ID, zName); pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, zName)); }else{ int i; for(i=0; inKeyCol; i++){ Expr *p; assert( pPk->aiColumn[i]>=0 && pPk->aiColumn[i]nCol ); p = sqlite3Expr(db, TK_ID, pTab->aCol[pPk->aiColumn[i]].zCnName); pEList = sqlite3ExprListAppend(pParse, pEList, p); } pLhs = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); if( pLhs ){ pLhs->x.pList = sqlite3ExprListDup(db, pEList, 0); } } } /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree ** and the SELECT subtree. */ pSrc->a[0].pTab = 0; pSelectSrc = sqlite3SrcListDup(db, pSrc, 0); pSrc->a[0].pTab = pTab; if( pSrc->a[0].fg.isIndexedBy ){ assert( pSrc->a[0].fg.isCte==0 ); pSrc->a[0].u2.pIBIndex = 0; pSrc->a[0].fg.isIndexedBy = 0; sqlite3DbFree(db, pSrc->a[0].u1.zIndexedBy); }else if( pSrc->a[0].fg.isCte ){ pSrc->a[0].u2.pCteUse->nUse++; } /* generate the SELECT expression tree. */ pSelect = sqlite3SelectNew(pParse, pEList, pSelectSrc, pWhere, 0 ,0, pOrderBy,0,pLimit ); /* now generate the new WHERE rowid IN clause for the DELETE/UPDATE */ pInClause = sqlite3PExpr(pParse, TK_IN, pLhs, 0); sqlite3PExprAddSelect(pParse, pInClause, pSelect); return pInClause; } #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */ /* && !defined(SQLITE_OMIT_SUBQUERY) */ /* ** Generate code for a DELETE FROM statement. ** ** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL; ** \________/ \________________/ ** pTabList pWhere */ SQLITE_PRIVATE void sqlite3DeleteFrom( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table from which we should delete things */ Expr *pWhere, /* The WHERE clause. May be null */ ExprList *pOrderBy, /* ORDER BY clause. May be null */ Expr *pLimit /* LIMIT clause. May be null */ ){ Vdbe *v; /* The virtual database engine */ Table *pTab; /* The table from which records will be deleted */ int i; /* Loop counter */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Index *pIdx; /* For looping over indices of the table */ int iTabCur; /* Cursor number for the table */ int iDataCur = 0; /* VDBE cursor for the canonical data source */ int iIdxCur = 0; /* Cursor number of the first index */ int nIdx; /* Number of indices */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ NameContext sNC; /* Name context to resolve expressions in */ int iDb; /* Database number */ int memCnt = 0; /* Memory cell used for change counting */ int rcauth; /* Value returned by authorization callback */ int eOnePass; /* ONEPASS_OFF or _SINGLE or _MULTI */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ u8 *aToOpen = 0; /* Open cursor iTabCur+j if aToOpen[j] is true */ Index *pPk; /* The PRIMARY KEY index on the table */ int iPk = 0; /* First of nPk registers holding PRIMARY KEY value */ i16 nPk = 1; /* Number of columns in the PRIMARY KEY */ int iKey; /* Memory cell holding key of row to be deleted */ i16 nKey; /* Number of memory cells in the row key */ int iEphCur = 0; /* Ephemeral table holding all primary key values */ int iRowSet = 0; /* Register for rowset of rows to delete */ int addrBypass = 0; /* Address of jump over the delete logic */ int addrLoop = 0; /* Top of the delete loop */ int addrEphOpen = 0; /* Instruction to open the Ephemeral table */ int bComplex; /* True if there are triggers or FKs or ** subqueries in the WHERE clause */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to delete from a view */ Trigger *pTrigger; /* List of table triggers, if required */ #endif memset(&sContext, 0, sizeof(sContext)); db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ){ goto delete_from_cleanup; } assert( db->mallocFailed==0 ); assert( pTabList->nSrc==1 ); /* Locate the table which we want to delete. This table has to be ** put in an SrcList structure because some of the subroutines we ** will be calling are designed to work with multiple tables and expect ** an SrcList* parameter instead of just a Table* parameter. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto delete_from_cleanup; /* Figure out if we have any triggers and if the table being ** deleted from is a view */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); isView = IsView(pTab); #else # define pTrigger 0 # define isView 0 #endif bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0); #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Delete() at %s:%d", __FILE__, __LINE__); sqlite3TreeViewDelete(pParse->pWith, pTabList, pWhere, pOrderBy, pLimit, pTrigger); } #endif #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( !isView ){ pWhere = sqlite3LimitWhere( pParse, pTabList, pWhere, pOrderBy, pLimit, "DELETE" ); pOrderBy = 0; pLimit = 0; } #endif /* If pTab is really a view, make sure it has been initialized. */ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto delete_from_cleanup; } if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ goto delete_from_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDbnDb ); rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, db->aDb[iDb].zDbSName); assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE ); if( rcauth==SQLITE_DENY ){ goto delete_from_cleanup; } assert(!isView || pTrigger); /* Assign cursor numbers to the table and all its indices. */ assert( pTabList->nSrc==1 ); iTabCur = pTabList->a[0].iCursor = pParse->nTab++; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ pParse->nTab++; } /* Start the view context */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, bComplex, iDb); /* If we are trying to delete from a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, pOrderBy, pLimit, iTabCur ); iDataCur = iIdxCur = iTabCur; pOrderBy = 0; pLimit = 0; } #endif /* Resolve the column names in the WHERE clause. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto delete_from_cleanup; } /* Initialize the counter of the number of rows deleted, if ** we are counting rows. */ if( (db->flags & SQLITE_CountRows)!=0 && !pParse->nested && !pParse->pTriggerTab && !pParse->bReturning ){ memCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); } #ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION /* Special case: A DELETE without a WHERE clause deletes everything. ** It is easier just to erase the whole table. Prior to version 3.6.5, ** this optimization caused the row change count (the value returned by ** API function sqlite3_count_changes) to be set incorrectly. ** ** The "rcauth==SQLITE_OK" terms is the ** IMPLEMENTATION-OF: R-17228-37124 If the action code is SQLITE_DELETE and ** the callback returns SQLITE_IGNORE then the DELETE operation proceeds but ** the truncate optimization is disabled and all rows are deleted ** individually. */ if( rcauth==SQLITE_OK && pWhere==0 && !bComplex && !IsVirtual(pTab) #ifdef SQLITE_ENABLE_PREUPDATE_HOOK && db->xPreUpdateCallback==0 #endif ){ assert( !isView ); sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); if( HasRowid(pTab) ){ sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt ? memCnt : -1, pTab->zName, P4_STATIC); } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->pSchema==pTab->pSchema ); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Clear, pIdx->tnum, iDb, memCnt ? memCnt : -1); }else{ sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); } } }else #endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */ { u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK; if( sNC.ncFlags & NC_Subquery ) bComplex = 1; wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW); if( HasRowid(pTab) ){ /* For a rowid table, initialize the RowSet to an empty set */ pPk = 0; assert( nPk==1 ); iRowSet = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); }else{ /* For a WITHOUT ROWID table, create an ephemeral table used to ** hold all primary keys for rows to be deleted. */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); nPk = pPk->nKeyCol; iPk = pParse->nMem+1; pParse->nMem += nPk; iEphCur = pParse->nTab++; addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } /* Construct a query to find the rowid or primary key for every row ** to be deleted, based on the WHERE clause. Set variable eOnePass ** to indicate the strategy used to implement this delete: ** ** ONEPASS_OFF: Two-pass approach - use a FIFO for rowids/PK values. ** ONEPASS_SINGLE: One-pass approach - at most one row deleted. ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,0,wcf,iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI ); assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF || OptimizationDisabled(db, SQLITE_OnePass) ); if( eOnePass!=ONEPASS_SINGLE ) sqlite3MultiWrite(pParse); if( sqlite3WhereUsesDeferredSeek(pWInfo) ){ sqlite3VdbeAddOp1(v, OP_FinishSeek, iTabCur); } /* Keep track of the number of rows to be deleted */ if( memCnt ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } /* Extract the rowid or primary key for the current row */ if( pPk ){ for(i=0; iaiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pPk->aiColumn[i], iPk+i); } iKey = iPk; }else{ iKey = ++pParse->nMem; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, -1, iKey); } if( eOnePass!=ONEPASS_OFF ){ /* For ONEPASS, no need to store the rowid/primary-key. There is only ** one, so just keep it in its register(s) and fall through to the ** delete code. */ nKey = nPk; /* OP_Found will use an unpacked key */ aToOpen = sqlite3DbMallocRawNN(db, nIdx+2); if( aToOpen==0 ){ sqlite3WhereEnd(pWInfo); goto delete_from_cleanup; } memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0; if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen); addrBypass = sqlite3VdbeMakeLabel(pParse); }else{ if( pPk ){ /* Add the PK key for this row to the temporary table */ iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, sqlite3IndexAffinityStr(pParse->db, pPk), nPk); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEphCur, iKey, iPk, nPk); }else{ /* Add the rowid of the row to be deleted to the RowSet */ nKey = 1; /* OP_DeferredSeek always uses a single rowid */ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey); } sqlite3WhereEnd(pWInfo); } /* Unless this is a view, open cursors for the table we are ** deleting from and all its indices. If this is a view, then the ** only effect this statement has is to fire the INSTEAD OF ** triggers. */ if( !isView ){ int iAddrOnce = 0; if( eOnePass==ONEPASS_MULTI ){ iAddrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } testcase( IsVirtual(pTab) ); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, OPFLAG_FORDELETE, iTabCur, aToOpen, &iDataCur, &iIdxCur); assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur ); assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 ); if( eOnePass==ONEPASS_MULTI ){ sqlite3VdbeJumpHereOrPopInst(v, iAddrOnce); } } /* Set up a loop over the rowids/primary-keys that were found in the ** where-clause loop above. */ if( eOnePass!=ONEPASS_OFF ){ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 || IsView(pTab) ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); if( IsVirtual(pTab) ){ sqlite3VdbeAddOp3(v, OP_Column, iEphCur, 0, iKey); }else{ sqlite3VdbeAddOp2(v, OP_RowData, iEphCur, iKey); } assert( nKey==0 ); /* OP_Found will use a composite key */ }else{ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey); VdbeCoverage(v); assert( nKey==1 ); } /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE ); sqlite3MayAbort(pParse); if( eOnePass==ONEPASS_SINGLE ){ sqlite3VdbeAddOp1(v, OP_Close, iTabCur); if( sqlite3IsToplevel(pParse) ){ pParse->isMultiWrite = 0; } } sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, OE_Abort); }else #endif { int count = (pParse->nested==0); /* True to count changes */ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]); } /* End of the loop over all rowids/primary-keys. */ if( eOnePass!=ONEPASS_OFF ){ sqlite3VdbeResolveLabel(v, addrBypass); sqlite3WhereEnd(pWInfo); }else if( pPk ){ sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrLoop); }else{ sqlite3VdbeGoto(v, addrLoop); sqlite3VdbeJumpHere(v, addrLoop); } } /* End non-truncate path */ /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* Return the number of rows that were deleted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( memCnt ){ sqlite3CodeChangeCount(v, memCnt, "rows deleted"); } delete_from_cleanup: sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) sqlite3ExprListDelete(db, pOrderBy); sqlite3ExprDelete(db, pLimit); #endif if( aToOpen ) sqlite3DbNNFreeNN(db, aToOpen); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif /* ** This routine generates VDBE code that causes a single row of a ** single table to be deleted. Both the original table entry and ** all indices are removed. ** ** Preconditions: ** ** 1. iDataCur is an open cursor on the btree that is the canonical data ** store for the table. (This will be either the table itself, ** in the case of a rowid table, or the PRIMARY KEY index in the case ** of a WITHOUT ROWID table.) ** ** 2. Read/write cursors for all indices of pTab must be open as ** cursor number iIdxCur+i for the i-th index. ** ** 3. The primary key for the row to be deleted must be stored in a ** sequence of nPk memory cells starting at iPk. If nPk==0 that means ** that a search record formed from OP_MakeRecord is contained in the ** single memory location iPk. ** ** eMode: ** Parameter eMode may be passed either ONEPASS_OFF (0), ONEPASS_SINGLE, or ** ONEPASS_MULTI. If eMode is not ONEPASS_OFF, then the cursor ** iDataCur already points to the row to delete. If eMode is ONEPASS_OFF ** then this function must seek iDataCur to the entry identified by iPk ** and nPk before reading from it. ** ** If eMode is ONEPASS_MULTI, then this call is being made as part ** of a ONEPASS delete that affects multiple rows. In this case, if ** iIdxNoSeek is a valid cursor number (>=0) and is not the same as ** iDataCur, then its position should be preserved following the delete ** operation. Or, if iIdxNoSeek is not a valid cursor number, the ** position of iDataCur should be preserved instead. ** ** iIdxNoSeek: ** If iIdxNoSeek is a valid cursor number (>=0) not equal to iDataCur, ** then it identifies an index cursor (from within array of cursors ** starting at iIdxCur) that already points to the index entry to be deleted. ** Except, this optimization is disabled if there are BEFORE triggers since ** the trigger body might have moved the cursor. */ SQLITE_PRIVATE void sqlite3GenerateRowDelete( Parse *pParse, /* Parsing context */ Table *pTab, /* Table containing the row to be deleted */ Trigger *pTrigger, /* List of triggers to (potentially) fire */ int iDataCur, /* Cursor from which column data is extracted */ int iIdxCur, /* First index cursor */ int iPk, /* First memory cell containing the PRIMARY KEY */ i16 nPk, /* Number of PRIMARY KEY memory cells */ u8 count, /* If non-zero, increment the row change counter */ u8 onconf, /* Default ON CONFLICT policy for triggers */ u8 eMode, /* ONEPASS_OFF, _SINGLE, or _MULTI. See above */ int iIdxNoSeek /* Cursor number of cursor that does not need seeking */ ){ Vdbe *v = pParse->pVdbe; /* Vdbe */ int iOld = 0; /* First register in OLD.* array */ int iLabel; /* Label resolved to end of generated code */ u8 opSeek; /* Seek opcode */ /* Vdbe is guaranteed to have been allocated by this stage. */ assert( v ); VdbeModuleComment((v, "BEGIN: GenRowDel(%d,%d,%d,%d)", iDataCur, iIdxCur, iPk, (int)nPk)); /* Seek cursor iCur to the row to delete. If this row no longer exists ** (this can happen if a trigger program has already deleted it), do ** not attempt to delete it or fire any DELETE triggers. */ iLabel = sqlite3VdbeMakeLabel(pParse); opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound; if( eMode==ONEPASS_OFF ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); VdbeCoverageIf(v, opSeek==OP_NotExists); VdbeCoverageIf(v, opSeek==OP_NotFound); } /* If there are any triggers to fire, allocate a range of registers to ** use for the old.* references in the triggers. */ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ u32 mask; /* Mask of OLD.* columns in use */ int iCol; /* Iterator used while populating OLD.* */ int addrStart; /* Start of BEFORE trigger programs */ /* TODO: Could use temporary registers here. Also could attempt to ** avoid copying the contents of the rowid register. */ mask = sqlite3TriggerColmask( pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf ); mask |= sqlite3FkOldmask(pParse, pTab); iOld = pParse->nMem+1; pParse->nMem += (1 + pTab->nCol); /* Populate the OLD.* pseudo-table register array. These values will be ** used by any BEFORE and AFTER triggers that exist. */ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld); for(iCol=0; iColnCol; iCol++){ testcase( mask!=0xffffffff && iCol==31 ); testcase( mask!=0xffffffff && iCol==32 ); if( mask==0xffffffff || (iCol<=31 && (mask & MASKBIT32(iCol))!=0) ){ int kk = sqlite3TableColumnToStorage(pTab, iCol); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+kk+1); } } /* Invoke BEFORE DELETE trigger programs. */ addrStart = sqlite3VdbeCurrentAddr(v); sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel ); /* If any BEFORE triggers were coded, then seek the cursor to the ** row to be deleted again. It may be that the BEFORE triggers moved ** the cursor or already deleted the row that the cursor was ** pointing to. ** ** Also disable the iIdxNoSeek optimization since the BEFORE trigger ** may have moved that cursor. */ if( addrStart=0 ); iIdxNoSeek = -1; } /* Do FK processing. This call checks that any FK constraints that ** refer to this table (i.e. constraints attached to other tables) ** are not violated by deleting this row. */ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0); } /* Delete the index and table entries. Skip this step if pTab is really ** a view (in which case the only effect of the DELETE statement is to ** fire the INSTEAD OF triggers). ** ** If variable 'count' is non-zero, then this OP_Delete instruction should ** invoke the update-hook. The pre-update-hook, on the other hand should ** be invoked unless table pTab is a system table. The difference is that ** the update-hook is not invoked for rows removed by REPLACE, but the ** pre-update-hook is. */ if( !IsView(pTab) ){ u8 p5 = 0; sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek); sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0)); if( pParse->nested==0 || 0==sqlite3_stricmp(pTab->zName, "sqlite_stat1") ){ sqlite3VdbeAppendP4(v, (char*)pTab, P4_TABLE); } if( eMode!=ONEPASS_OFF ){ sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE); } if( iIdxNoSeek>=0 && iIdxNoSeek!=iDataCur ){ sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek); } if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION; sqlite3VdbeChangeP5(v, p5); } /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just deleted. */ sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0); /* Invoke AFTER DELETE trigger programs. */ if( pTrigger ){ sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel ); } /* Jump here if the row had already been deleted before any BEFORE ** trigger programs were invoked. Or if a trigger program throws a ** RAISE(IGNORE) exception. */ sqlite3VdbeResolveLabel(v, iLabel); VdbeModuleComment((v, "END: GenRowDel()")); } /* ** This routine generates VDBE code that causes the deletion of all ** index entries associated with a single row of a single table, pTab ** ** Preconditions: ** ** 1. A read/write cursor "iDataCur" must be open on the canonical storage ** btree for the table pTab. (This will be either the table itself ** for rowid tables or to the primary key index for WITHOUT ROWID ** tables.) ** ** 2. Read/write cursors for all indices of pTab must be open as ** cursor number iIdxCur+i for the i-th index. (The pTab->pIndex ** index is the 0-th index.) ** ** 3. The "iDataCur" cursor must be already be positioned on the row ** that is to be deleted. */ SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* Table containing the row to be deleted */ int iDataCur, /* Cursor of table holding data. */ int iIdxCur, /* First index cursor */ int *aRegIdx, /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */ int iIdxNoSeek /* Do not delete from this cursor */ ){ int i; /* Index loop counter */ int r1 = -1; /* Register holding an index key */ int iPartIdxLabel; /* Jump destination for skipping partial index entries */ Index *pIdx; /* Current index */ Index *pPrior = 0; /* Prior index */ Vdbe *v; /* The prepared statement under construction */ Index *pPk; /* PRIMARY KEY index, or NULL for rowid tables */ v = pParse->pVdbe; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ assert( iIdxCur+i!=iDataCur || pPk==pIdx ); if( aRegIdx!=0 && aRegIdx[i]==0 ) continue; if( pIdx==pPk ) continue; if( iIdxCur+i==iIdxNoSeek ) continue; VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName)); r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1, &iPartIdxLabel, pPrior, r1); sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1, pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn); sqlite3VdbeChangeP5(v, 1); /* Cause IdxDelete to error if no entry found */ sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); pPrior = pIdx; } } /* ** Generate code that will assemble an index key and stores it in register ** regOut. The key with be for index pIdx which is an index on pTab. ** iCur is the index of a cursor open on the pTab table and pointing to ** the entry that needs indexing. If pTab is a WITHOUT ROWID table, then ** iCur must be the cursor of the PRIMARY KEY index. ** ** Return a register number which is the first in a block of ** registers that holds the elements of the index key. The ** block of registers has already been deallocated by the time ** this routine returns. ** ** If *piPartIdxLabel is not NULL, fill it in with a label and jump ** to that label if pIdx is a partial index that should be skipped. ** The label should be resolved using sqlite3ResolvePartIdxLabel(). ** A partial index should be skipped if its WHERE clause evaluates ** to false or null. If pIdx is not a partial index, *piPartIdxLabel ** will be set to zero which is an empty label that is ignored by ** sqlite3ResolvePartIdxLabel(). ** ** The pPrior and regPrior parameters are used to implement a cache to ** avoid unnecessary register loads. If pPrior is not NULL, then it is ** a pointer to a different index for which an index key has just been ** computed into register regPrior. If the current pIdx index is generating ** its key into the same sequence of registers and if pPrior and pIdx share ** a column in common, then the register corresponding to that column already ** holds the correct value and the loading of that register is skipped. ** This optimization is helpful when doing a DELETE or an INTEGRITY_CHECK ** on a table with multiple indices, and especially with the ROWID or ** PRIMARY KEY columns of the index. */ SQLITE_PRIVATE int sqlite3GenerateIndexKey( Parse *pParse, /* Parsing context */ Index *pIdx, /* The index for which to generate a key */ int iDataCur, /* Cursor number from which to take column data */ int regOut, /* Put the new key into this register if not 0 */ int prefixOnly, /* Compute only a unique prefix of the key */ int *piPartIdxLabel, /* OUT: Jump to this label to skip partial index */ Index *pPrior, /* Previously generated index key */ int regPrior /* Register holding previous generated key */ ){ Vdbe *v = pParse->pVdbe; int j; int regBase; int nCol; if( piPartIdxLabel ){ if( pIdx->pPartIdxWhere ){ *piPartIdxLabel = sqlite3VdbeMakeLabel(pParse); pParse->iSelfTab = iDataCur + 1; sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel, SQLITE_JUMPIFNULL); pParse->iSelfTab = 0; pPrior = 0; /* Ticket a9efb42811fa41ee 2019-11-02; ** pPartIdxWhere may have corrupted regPrior registers */ }else{ *piPartIdxLabel = 0; } } nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn; regBase = sqlite3GetTempRange(pParse, nCol); if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0; for(j=0; jaiColumn[j]==pIdx->aiColumn[j] && pPrior->aiColumn[j]!=XN_EXPR ){ /* This column was already computed by the previous index */ continue; } sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iDataCur, j, regBase+j); if( pIdx->aiColumn[j]>=0 ){ /* If the column affinity is REAL but the number is an integer, then it ** might be stored in the table as an integer (using a compact ** representation) then converted to REAL by an OP_RealAffinity opcode. ** But we are getting ready to store this value back into an index, where ** it should be converted by to INTEGER again. So omit the ** OP_RealAffinity opcode if it is present */ sqlite3VdbeDeletePriorOpcode(v, OP_RealAffinity); } } if( regOut ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut); } sqlite3ReleaseTempRange(pParse, regBase, nCol); return regBase; } /* ** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label ** because it was a partial index, then this routine should be called to ** resolve that label. */ SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse *pParse, int iLabel){ if( iLabel ){ sqlite3VdbeResolveLabel(pParse->pVdbe, iLabel); } } /************** End of delete.c **********************************************/ /************** Begin file func.c ********************************************/ /* ** 2002 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C-language implementations for many of the SQL ** functions of SQLite. (Some function, and in particular the date and ** time functions, are implemented separately.) */ /* #include "sqliteInt.h" */ /* #include */ /* #include */ #ifndef SQLITE_OMIT_FLOATING_POINT /* #include */ #endif /* #include "vdbeInt.h" */ /* ** Return the collating function associated with a function. */ static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ VdbeOp *pOp; assert( context->pVdbe!=0 ); pOp = &context->pVdbe->aOp[context->iOp-1]; assert( pOp->opcode==OP_CollSeq ); assert( pOp->p4type==P4_COLLSEQ ); return pOp->p4.pColl; } /* ** Indicate that the accumulator load should be skipped on this ** iteration of the aggregate loop. */ static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ assert( context->isError<=0 ); context->isError = -1; context->skipFlag = 1; } /* ** Implementation of the non-aggregate min() and max() functions */ static void minmaxFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; int mask; /* 0 for min() or 0xffffffff for max() */ int iBest; CollSeq *pColl; assert( argc>1 ); mask = sqlite3_user_data(context)==0 ? 0 : -1; pColl = sqlite3GetFuncCollSeq(context); assert( pColl ); assert( mask==-1 || mask==0 ); iBest = 0; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; for(i=1; i=0 ){ testcase( mask==0 ); iBest = i; } } sqlite3_result_value(context, argv[iBest]); } /* ** Return the type of the argument. */ static void typeofFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ static const char *azType[] = { "integer", "real", "text", "blob", "null" }; int i = sqlite3_value_type(argv[0]) - 1; UNUSED_PARAMETER(NotUsed); assert( i>=0 && i=0xc0 ){ while( (*z & 0xc0)==0x80 ){ z++; z0++; } } } sqlite3_result_int(context, (int)(z-z0)); break; } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the octet_length() function */ static void bytelengthFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==1 ); UNUSED_PARAMETER(argc); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_BLOB: { sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); break; } case SQLITE_INTEGER: case SQLITE_FLOAT: { i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2; sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m); break; } case SQLITE_TEXT: { if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){ sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); }else{ sqlite3_result_int(context, sqlite3_value_bytes16(argv[0])); } break; } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the abs() function. ** ** IMP: R-23979-26855 The abs(X) function returns the absolute value of ** the numeric argument X. */ static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ assert( argc==1 ); UNUSED_PARAMETER(argc); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_INTEGER: { i64 iVal = sqlite3_value_int64(argv[0]); if( iVal<0 ){ if( iVal==SMALLEST_INT64 ){ /* IMP: R-31676-45509 If X is the integer -9223372036854775808 ** then abs(X) throws an integer overflow error since there is no ** equivalent positive 64-bit two complement value. */ sqlite3_result_error(context, "integer overflow", -1); return; } iVal = -iVal; } sqlite3_result_int64(context, iVal); break; } case SQLITE_NULL: { /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ sqlite3_result_null(context); break; } default: { /* Because sqlite3_value_double() returns 0.0 if the argument is not ** something that can be converted into a number, we have: ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob ** that cannot be converted to a numeric value. */ double rVal = sqlite3_value_double(argv[0]); if( rVal<0 ) rVal = -rVal; sqlite3_result_double(context, rVal); break; } } } /* ** Implementation of the instr() function. ** ** instr(haystack,needle) finds the first occurrence of needle ** in haystack and returns the number of previous characters plus 1, ** or 0 if needle does not occur within haystack. ** ** If both haystack and needle are BLOBs, then the result is one more than ** the number of bytes in haystack prior to the first occurrence of needle, ** or 0 if needle never occurs in haystack. */ static void instrFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zHaystack; const unsigned char *zNeedle; int nHaystack; int nNeedle; int typeHaystack, typeNeedle; int N = 1; int isText; unsigned char firstChar; sqlite3_value *pC1 = 0; sqlite3_value *pC2 = 0; UNUSED_PARAMETER(argc); typeHaystack = sqlite3_value_type(argv[0]); typeNeedle = sqlite3_value_type(argv[1]); if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; nHaystack = sqlite3_value_bytes(argv[0]); nNeedle = sqlite3_value_bytes(argv[1]); if( nNeedle>0 ){ if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ zHaystack = sqlite3_value_blob(argv[0]); zNeedle = sqlite3_value_blob(argv[1]); isText = 0; }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){ zHaystack = sqlite3_value_text(argv[0]); zNeedle = sqlite3_value_text(argv[1]); isText = 1; }else{ pC1 = sqlite3_value_dup(argv[0]); zHaystack = sqlite3_value_text(pC1); if( zHaystack==0 ) goto endInstrOOM; nHaystack = sqlite3_value_bytes(pC1); pC2 = sqlite3_value_dup(argv[1]); zNeedle = sqlite3_value_text(pC2); if( zNeedle==0 ) goto endInstrOOM; nNeedle = sqlite3_value_bytes(pC2); isText = 1; } if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM; firstChar = zNeedle[0]; while( nNeedle<=nHaystack && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0) ){ N++; do{ nHaystack--; zHaystack++; }while( isText && (zHaystack[0]&0xc0)==0x80 ); } if( nNeedle>nHaystack ) N = 0; } sqlite3_result_int(context, N); endInstr: sqlite3_value_free(pC1); sqlite3_value_free(pC2); return; endInstrOOM: sqlite3_result_error_nomem(context); goto endInstr; } /* ** Implementation of the printf() (a.k.a. format()) SQL function. */ static void printfFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ PrintfArguments x; StrAccum str; const char *zFormat; int n; sqlite3 *db = sqlite3_context_db_handle(context); if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ x.nArg = argc-1; x.nUsed = 0; x.apArg = argv+1; sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); str.printfFlags = SQLITE_PRINTF_SQLFUNC; sqlite3_str_appendf(&str, zFormat, &x); n = str.nChar; sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n, SQLITE_DYNAMIC); } } /* ** Implementation of the substr() function. ** ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. ** p1 is 1-indexed. So substr(x,1,1) returns the first character ** of x. If x is text, then we actually count UTF-8 characters. ** If x is a blob, then we count bytes. ** ** If p1 is negative, then we begin abs(p1) from the end of x[]. ** ** If p2 is negative, return the p2 characters preceding p1. */ static void substrFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *z; const unsigned char *z2; int len; int p0type; i64 p1, p2; int negP2 = 0; assert( argc==3 || argc==2 ); if( sqlite3_value_type(argv[1])==SQLITE_NULL || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) ){ return; } p0type = sqlite3_value_type(argv[0]); p1 = sqlite3_value_int(argv[1]); if( p0type==SQLITE_BLOB ){ len = sqlite3_value_bytes(argv[0]); z = sqlite3_value_blob(argv[0]); if( z==0 ) return; assert( len==sqlite3_value_bytes(argv[0]) ); }else{ z = sqlite3_value_text(argv[0]); if( z==0 ) return; len = 0; if( p1<0 ){ for(z2=z; *z2; len++){ SQLITE_SKIP_UTF8(z2); } } } #ifdef SQLITE_SUBSTR_COMPATIBILITY /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as ** as substr(X,1,N) - it returns the first N characters of X. This ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8] ** from 2009-02-02 for compatibility of applications that exploited the ** old buggy behavior. */ if( p1==0 ) p1 = 1; /* */ #endif if( argc==3 ){ p2 = sqlite3_value_int(argv[2]); if( p2<0 ){ p2 = -p2; negP2 = 1; } }else{ p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; } if( p1<0 ){ p1 += len; if( p1<0 ){ p2 += p1; if( p2<0 ) p2 = 0; p1 = 0; } }else if( p1>0 ){ p1--; }else if( p2>0 ){ p2--; } if( negP2 ){ p1 -= p2; if( p1<0 ){ p2 += p1; p1 = 0; } } assert( p1>=0 && p2>=0 ); if( p0type!=SQLITE_BLOB ){ while( *z && p1 ){ SQLITE_SKIP_UTF8(z); p1--; } for(z2=z; *z2 && p2; p2--){ SQLITE_SKIP_UTF8(z2); } sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT, SQLITE_UTF8); }else{ if( p1+p2>len ){ p2 = len-p1; if( p2<0 ) p2 = 0; } sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT); } } /* ** Implementation of the round() function */ #ifndef SQLITE_OMIT_FLOATING_POINT static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ int n = 0; double r; char *zBuf; assert( argc==1 || argc==2 ); if( argc==2 ){ if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; n = sqlite3_value_int(argv[1]); if( n>30 ) n = 30; if( n<0 ) n = 0; } if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; r = sqlite3_value_double(argv[0]); /* If Y==0 and X will fit in a 64-bit int, ** handle the rounding directly, ** otherwise use printf. */ if( r<-4503599627370496.0 || r>+4503599627370496.0 ){ /* The value has no fractional part so there is nothing to round */ }else if( n==0 ){ r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5))); }else{ zBuf = sqlite3_mprintf("%!.*f",n,r); if( zBuf==0 ){ sqlite3_result_error_nomem(context); return; } sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); sqlite3_free(zBuf); } sqlite3_result_double(context, r); } #endif /* ** Allocate nByte bytes of space using sqlite3Malloc(). If the ** allocation fails, call sqlite3_result_error_nomem() to notify ** the database handle that malloc() has failed and return NULL. ** If nByte is larger than the maximum string or blob length, then ** raise an SQLITE_TOOBIG exception and return NULL. */ static void *contextMalloc(sqlite3_context *context, i64 nByte){ char *z; sqlite3 *db = sqlite3_context_db_handle(context); assert( nByte>0 ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); z = 0; }else{ z = sqlite3Malloc(nByte); if( !z ){ sqlite3_result_error_nomem(context); } } return z; } /* ** Implementation of the upper() and lower() SQL functions. */ static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ char *z1; const char *z2; int i, n; UNUSED_PARAMETER(argc); z2 = (char*)sqlite3_value_text(argv[0]); n = sqlite3_value_bytes(argv[0]); /* Verify that the call to _bytes() does not invalidate the _text() pointer */ assert( z2==(char*)sqlite3_value_text(argv[0]) ); if( z2 ){ z1 = contextMalloc(context, ((i64)n)+1); if( z1 ){ for(i=0; imatchOne; /* "?" or "_" */ u32 matchAll = pInfo->matchAll; /* "*" or "%" */ u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */ const u8 *zEscaped = 0; /* One past the last escaped input char */ while( (c = Utf8Read(zPattern))!=0 ){ if( c==matchAll ){ /* Match "*" */ /* Skip over multiple "*" characters in the pattern. If there ** are also "?" characters, skip those as well, but consume a ** single character of the input string for each "?" skipped */ while( (c=Utf8Read(zPattern)) == matchAll || (c == matchOne && matchOne!=0) ){ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ return SQLITE_NOWILDCARDMATCH; } } if( c==0 ){ return SQLITE_MATCH; /* "*" at the end of the pattern matches */ }else if( c==matchOther ){ if( pInfo->matchSet==0 ){ c = sqlite3Utf8Read(&zPattern); if( c==0 ) return SQLITE_NOWILDCARDMATCH; }else{ /* "[...]" immediately follows the "*". We have to do a slow ** recursive search in this case, but it is an unusual case. */ assert( matchOther<0x80 ); /* '[' is a single-byte character */ while( *zString ){ int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; SQLITE_SKIP_UTF8(zString); } return SQLITE_NOWILDCARDMATCH; } } /* At this point variable c contains the first character of the ** pattern string past the "*". Search in the input string for the ** first matching character and recursively continue the match from ** that point. ** ** For a case-insensitive search, set variable cx to be the same as ** c but in the other case and search the input string for either ** c or cx. */ if( c<0x80 ){ char zStop[3]; int bMatch; if( noCase ){ zStop[0] = sqlite3Toupper(c); zStop[1] = sqlite3Tolower(c); zStop[2] = 0; }else{ zStop[0] = c; zStop[1] = 0; } while(1){ zString += strcspn((const char*)zString, zStop); if( zString[0]==0 ) break; zString++; bMatch = patternCompare(zPattern,zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; } }else{ int bMatch; while( (c2 = Utf8Read(zString))!=0 ){ if( c2!=c ) continue; bMatch = patternCompare(zPattern,zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; } } return SQLITE_NOWILDCARDMATCH; } if( c==matchOther ){ if( pInfo->matchSet==0 ){ c = sqlite3Utf8Read(&zPattern); if( c==0 ) return SQLITE_NOMATCH; zEscaped = zPattern; }else{ u32 prior_c = 0; int seen = 0; int invert = 0; c = sqlite3Utf8Read(&zString); if( c==0 ) return SQLITE_NOMATCH; c2 = sqlite3Utf8Read(&zPattern); if( c2=='^' ){ invert = 1; c2 = sqlite3Utf8Read(&zPattern); } if( c2==']' ){ if( c==']' ) seen = 1; c2 = sqlite3Utf8Read(&zPattern); } while( c2 && c2!=']' ){ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ c2 = sqlite3Utf8Read(&zPattern); if( c>=prior_c && c<=c2 ) seen = 1; prior_c = 0; }else{ if( c==c2 ){ seen = 1; } prior_c = c2; } c2 = sqlite3Utf8Read(&zPattern); } if( c2==0 || (seen ^ invert)==0 ){ return SQLITE_NOMATCH; } continue; } } c2 = Utf8Read(zString); if( c==c2 ) continue; if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){ continue; } if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; return SQLITE_NOMATCH; } return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH; } /* ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and ** non-zero if there is no match. */ SQLITE_API int sqlite3_strglob(const char *zGlobPattern, const char *zString){ if( zString==0 ){ return zGlobPattern!=0; }else if( zGlobPattern==0 ){ return 1; }else { return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '['); } } /* ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for ** a miss - like strcmp(). */ SQLITE_API int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){ if( zStr==0 ){ return zPattern!=0; }else if( zPattern==0 ){ return 1; }else{ return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc); } } /* ** Count the number of times that the LIKE operator (or GLOB which is ** just a variation of LIKE) gets called. This is used for testing ** only. */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_like_count = 0; #endif /* ** Implementation of the like() SQL function. This function implements ** the built-in LIKE operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(B,A). ** ** This same function (with a different compareInfo structure) computes ** the GLOB operator. */ static void likeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zA, *zB; u32 escape; int nPat; sqlite3 *db = sqlite3_context_db_handle(context); struct compareInfo *pInfo = sqlite3_user_data(context); struct compareInfo backupInfo; #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( sqlite3_value_type(argv[0])==SQLITE_BLOB || sqlite3_value_type(argv[1])==SQLITE_BLOB ){ #ifdef SQLITE_TEST sqlite3_like_count++; #endif sqlite3_result_int(context, 0); return; } #endif /* Limit the length of the LIKE or GLOB pattern to avoid problems ** of deep recursion and N*N behavior in patternCompare(). */ nPat = sqlite3_value_bytes(argv[0]); testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); return; } if( argc==3 ){ /* The escape character string must consist of a single UTF-8 character. ** Otherwise, return an error. */ const unsigned char *zEsc = sqlite3_value_text(argv[2]); if( zEsc==0 ) return; if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ sqlite3_result_error(context, "ESCAPE expression must be a single character", -1); return; } escape = sqlite3Utf8Read(&zEsc); if( escape==pInfo->matchAll || escape==pInfo->matchOne ){ memcpy(&backupInfo, pInfo, sizeof(backupInfo)); pInfo = &backupInfo; if( escape==pInfo->matchAll ) pInfo->matchAll = 0; if( escape==pInfo->matchOne ) pInfo->matchOne = 0; } }else{ escape = pInfo->matchSet; } zB = sqlite3_value_text(argv[0]); zA = sqlite3_value_text(argv[1]); if( zA && zB ){ #ifdef SQLITE_TEST sqlite3_like_count++; #endif sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH); } } /* ** Implementation of the NULLIF(x,y) function. The result is the first ** argument if the arguments are different. The result is NULL if the ** arguments are equal to each other. */ static void nullifFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ CollSeq *pColl = sqlite3GetFuncCollSeq(context); UNUSED_PARAMETER(NotUsed); if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ sqlite3_result_value(context, argv[0]); } } /* ** Implementation of the sqlite_version() function. The result is the version ** of the SQLite library that is running. */ static void versionFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); /* IMP: R-48699-48617 This function is an SQL wrapper around the ** sqlite3_libversion() C-interface. */ sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); } /* ** Implementation of the sqlite_source_id() function. The result is a string ** that identifies the particular version of the source code used to build ** SQLite. */ static void sourceidFunc( sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); /* IMP: R-24470-31136 This function is an SQL wrapper around the ** sqlite3_sourceid() C interface. */ sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); } /* ** Implementation of the sqlite_log() function. This is a wrapper around ** sqlite3_log(). The return value is NULL. The function exists purely for ** its side-effects. */ static void errlogFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ UNUSED_PARAMETER(argc); UNUSED_PARAMETER(context); sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); } /* ** Implementation of the sqlite_compileoption_used() function. ** The result is an integer that identifies if the compiler option ** was used to build SQLite. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS static void compileoptionusedFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zOptName; assert( argc==1 ); UNUSED_PARAMETER(argc); /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL ** function is a wrapper around the sqlite3_compileoption_used() C/C++ ** function. */ if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); } } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /* ** Implementation of the sqlite_compileoption_get() function. ** The result is a string that identifies the compiler options ** used to build SQLite. */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS static void compileoptiongetFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int n; assert( argc==1 ); UNUSED_PARAMETER(argc); /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. */ n = sqlite3_value_int(argv[0]); sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); } #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ /* Array for converting from half-bytes (nybbles) into ASCII hex ** digits. */ static const char hexdigits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; /* ** Append to pStr text that is the SQL literal representation of the ** value contained in pValue. */ SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){ /* As currently implemented, the string must be initially empty. ** we might relax this requirement in the future, but that will ** require enhancements to the implementation. */ assert( pStr!=0 && pStr->nChar==0 ); switch( sqlite3_value_type(pValue) ){ case SQLITE_FLOAT: { double r1, r2; const char *zVal; r1 = sqlite3_value_double(pValue); sqlite3_str_appendf(pStr, "%!0.15g", r1); zVal = sqlite3_str_value(pStr); if( zVal ){ sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8); if( r1!=r2 ){ sqlite3_str_reset(pStr); sqlite3_str_appendf(pStr, "%!0.20e", r1); } } break; } case SQLITE_INTEGER: { sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue)); break; } case SQLITE_BLOB: { char const *zBlob = sqlite3_value_blob(pValue); i64 nBlob = sqlite3_value_bytes(pValue); assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */ sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4); if( pStr->accError==0 ){ char *zText = pStr->zText; int i; for(i=0; i>4)&0x0F]; zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; } zText[(nBlob*2)+2] = '\''; zText[(nBlob*2)+3] = '\0'; zText[0] = 'X'; zText[1] = '\''; pStr->nChar = nBlob*2 + 3; } break; } case SQLITE_TEXT: { const unsigned char *zArg = sqlite3_value_text(pValue); sqlite3_str_appendf(pStr, "%Q", zArg); break; } default: { assert( sqlite3_value_type(pValue)==SQLITE_NULL ); sqlite3_str_append(pStr, "NULL", 4); break; } } } /* ** Implementation of the QUOTE() function. ** ** The quote(X) function returns the text of an SQL literal which is the ** value of its argument suitable for inclusion into an SQL statement. ** Strings are surrounded by single-quotes with escapes on interior quotes ** as needed. BLOBs are encoded as hexadecimal literals. Strings with ** embedded NUL characters cannot be represented as string literals in SQL ** and hence the returned string literal is truncated prior to the first NUL. */ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ sqlite3_str str; sqlite3 *db = sqlite3_context_db_handle(context); assert( argc==1 ); UNUSED_PARAMETER(argc); sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); sqlite3QuoteValue(&str,argv[0]); sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar, SQLITE_DYNAMIC); if( str.accError!=SQLITE_OK ){ sqlite3_result_null(context); sqlite3_result_error_code(context, str.accError); } } /* ** The unicode() function. Return the integer unicode code-point value ** for the first character of the input string. */ static void unicodeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *z = sqlite3_value_text(argv[0]); (void)argc; if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z)); } /* ** The char() function takes zero or more arguments, each of which is ** an integer. It constructs a string where each character of the string ** is the unicode character for the corresponding integer argument. */ static void charFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ unsigned char *z, *zOut; int i; zOut = z = sqlite3_malloc64( argc*4+1 ); if( z==0 ){ sqlite3_result_error_nomem(context); return; } for(i=0; i0x10ffff ) x = 0xfffd; c = (unsigned)(x & 0x1fffff); if( c<0x00080 ){ *zOut++ = (u8)(c&0xFF); }else if( c<0x00800 ){ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); *zOut++ = 0x80 + (u8)(c & 0x3F); }else if( c<0x10000 ){ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); }else{ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); } \ } *zOut = 0; sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); } /* ** The hex() function. Interpret the argument as a blob. Return ** a hexadecimal rendering as text. */ static void hexFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i, n; const unsigned char *pBlob; char *zHex, *z; assert( argc==1 ); UNUSED_PARAMETER(argc); pBlob = sqlite3_value_blob(argv[0]); n = sqlite3_value_bytes(argv[0]); assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ z = zHex = contextMalloc(context, ((i64)n)*2 + 1); if( zHex ){ for(i=0; i>4)&0xf]; *(z++) = hexdigits[c&0xf]; } *z = 0; sqlite3_result_text64(context, zHex, (u64)(z-zHex), sqlite3_free, SQLITE_UTF8); } } /* ** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr ** contains character ch, or 0 if it does not. */ static int strContainsChar(const u8 *zStr, int nStr, u32 ch){ const u8 *zEnd = &zStr[nStr]; const u8 *z = zStr; while( zmallocFailed ); return; } if( zPattern[0]==0 ){ assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); sqlite3_result_text(context, (const char*)zStr, nStr, SQLITE_TRANSIENT); return; } nPattern = sqlite3_value_bytes(argv[1]); assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ zRep = sqlite3_value_text(argv[2]); if( zRep==0 ) return; nRep = sqlite3_value_bytes(argv[2]); assert( zRep==sqlite3_value_text(argv[2]) ); nOut = nStr + 1; assert( nOutnPattern ){ nOut += nRep - nPattern; testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); sqlite3_free(zOut); return; } cntExpand++; if( (cntExpand&(cntExpand-1))==0 ){ /* Grow the size of the output buffer only on substitutions ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */ u8 *zOld; zOld = zOut; zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1)); if( zOut==0 ){ sqlite3_result_error_nomem(context); sqlite3_free(zOld); return; } } } memcpy(&zOut[j], zRep, nRep); j += nRep; i += nPattern-1; } } assert( j+nStr-i+1<=nOut ); memcpy(&zOut[j], &zStr[i], nStr-i); j += nStr - i; assert( j<=nOut ); zOut[j] = 0; sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); } /* ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. */ static void trimFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zIn; /* Input string */ const unsigned char *zCharSet; /* Set of characters to trim */ unsigned int nIn; /* Number of bytes in input */ int flags; /* 1: trimleft 2: trimright 3: trim */ int i; /* Loop counter */ unsigned int *aLen = 0; /* Length of each character in zCharSet */ unsigned char **azChar = 0; /* Individual characters in zCharSet */ int nChar; /* Number of characters in zCharSet */ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ return; } zIn = sqlite3_value_text(argv[0]); if( zIn==0 ) return; nIn = (unsigned)sqlite3_value_bytes(argv[0]); assert( zIn==sqlite3_value_text(argv[0]) ); if( argc==1 ){ static const unsigned lenOne[] = { 1 }; static unsigned char * const azOne[] = { (u8*)" " }; nChar = 1; aLen = (unsigned*)lenOne; azChar = (unsigned char **)azOne; zCharSet = 0; }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ return; }else{ const unsigned char *z; for(z=zCharSet, nChar=0; *z; nChar++){ SQLITE_SKIP_UTF8(z); } if( nChar>0 ){ azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+sizeof(unsigned))); if( azChar==0 ){ return; } aLen = (unsigned*)&azChar[nChar]; for(z=zCharSet, nChar=0; *z; nChar++){ azChar[nChar] = (unsigned char *)z; SQLITE_SKIP_UTF8(z); aLen[nChar] = (unsigned)(z - azChar[nChar]); } } } if( nChar>0 ){ flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); if( flags & 1 ){ while( nIn>0 ){ unsigned int len = 0; for(i=0; i=nChar ) break; zIn += len; nIn -= len; } } if( flags & 2 ){ while( nIn>0 ){ unsigned int len = 0; for(i=0; i=nChar ) break; nIn -= len; } } if( zCharSet ){ sqlite3_free(azChar); } } sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); } /* The core implementation of the CONCAT(...) and CONCAT_WS(SEP,...) ** functions. ** ** Return a string value that is the concatenation of all non-null ** entries in argv[]. Use zSep as the separator. */ static void concatFuncCore( sqlite3_context *context, int argc, sqlite3_value **argv, int nSep, const char *zSep ){ i64 j, k, n = 0; int i; char *z; for(i=0; i0 ){ const char *v = (const char*)sqlite3_value_text(argv[i]); if( v!=0 ){ if( j>0 && nSep>0 ){ memcpy(&z[j], zSep, nSep); j += nSep; } memcpy(&z[j], v, k); j += k; } } } z[j] = 0; assert( j<=n ); sqlite3_result_text64(context, z, j, sqlite3_free, SQLITE_UTF8); } /* ** The CONCAT(...) function. Generate a string result that is the ** concatentation of all non-null arguments. */ static void concatFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ concatFuncCore(context, argc, argv, 0, ""); } /* ** The CONCAT_WS(separator, ...) function. ** ** Generate a string that is the concatenation of 2nd through the Nth ** argument. Use the first argument (which must be non-NULL) as the ** separator. */ static void concatwsFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int nSep = sqlite3_value_bytes(argv[0]); const char *zSep = (const char*)sqlite3_value_text(argv[0]); if( zSep==0 ) return; concatFuncCore(context, argc-1, argv+1, nSep, zSep); } #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION /* ** The "unknown" function is automatically substituted in place of ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN ** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used. ** When the "sqlite3" command-line shell is built using this functionality, ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries ** involving application-defined functions to be examined in a generic ** sqlite3 shell. */ static void unknownFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ /* no-op */ (void)context; (void)argc; (void)argv; } #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/ /* IMP: R-25361-16150 This function is omitted from SQLite by default. It ** is only available if the SQLITE_SOUNDEX compile-time option is used ** when SQLite is built. */ #ifdef SQLITE_SOUNDEX /* ** Compute the soundex encoding of a word. ** ** IMP: R-59782-00072 The soundex(X) function returns a string that is the ** soundex encoding of the string X. */ static void soundexFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ char zResult[8]; const u8 *zIn; int i, j; static const unsigned char iCode[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, }; assert( argc==1 ); zIn = (u8*)sqlite3_value_text(argv[0]); if( zIn==0 ) zIn = (u8*)""; for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} if( zIn[i] ){ u8 prevcode = iCode[zIn[i]&0x7f]; zResult[0] = sqlite3Toupper(zIn[i]); for(j=1; j<4 && zIn[i]; i++){ int code = iCode[zIn[i]&0x7f]; if( code>0 ){ if( code!=prevcode ){ prevcode = code; zResult[j++] = code + '0'; } }else{ prevcode = 0; } } while( j<4 ){ zResult[j++] = '0'; } zResult[j] = 0; sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); }else{ /* IMP: R-64894-50321 The string "?000" is returned if the argument ** is NULL or contains no ASCII alphabetic characters. */ sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); } } #endif /* SQLITE_SOUNDEX */ #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** A function that loads a shared-library extension then returns NULL. */ static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ const char *zFile = (const char *)sqlite3_value_text(argv[0]); const char *zProc; sqlite3 *db = sqlite3_context_db_handle(context); char *zErrMsg = 0; /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc ** flag is set. See the sqlite3_enable_load_extension() API. */ if( (db->flags & SQLITE_LoadExtFunc)==0 ){ sqlite3_result_error(context, "not authorized", -1); return; } if( argc==2 ){ zProc = (const char *)sqlite3_value_text(argv[1]); }else{ zProc = 0; } if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ sqlite3_result_error(context, zErrMsg, -1); sqlite3_free(zErrMsg); } } #endif /* ** An instance of the following structure holds the context of a ** sum() or avg() aggregate computation. */ typedef struct SumCtx SumCtx; struct SumCtx { double rSum; /* Running sum as as a double */ double rErr; /* Error term for Kahan-Babushka-Neumaier summation */ i64 iSum; /* Running sum as a signed integer */ i64 cnt; /* Number of elements summed */ u8 approx; /* True if any non-integer value was input to the sum */ u8 ovrfl; /* Integer overflow seen */ }; /* ** Do one step of the Kahan-Babushka-Neumaier summation. ** ** https://en.wikipedia.org/wiki/Kahan_summation_algorithm ** ** Variables are marked "volatile" to defeat c89 x86 floating point ** optimizations can mess up this algorithm. */ static void kahanBabuskaNeumaierStep( volatile SumCtx *pSum, volatile double r ){ volatile double s = pSum->rSum; volatile double t = s + r; if( fabs(s) > fabs(r) ){ pSum->rErr += (s - t) + r; }else{ pSum->rErr += (r - t) + s; } pSum->rSum = t; } /* ** Add a (possibly large) integer to the running sum. */ static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){ i64 iBig, iSm; iSm = iVal % 16384; iBig = iVal - iSm; kahanBabuskaNeumaierStep(pSum, iBig); kahanBabuskaNeumaierStep(pSum, iSm); }else{ kahanBabuskaNeumaierStep(pSum, (double)iVal); } } /* ** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer */ static void kahanBabuskaNeumaierInit( volatile SumCtx *p, i64 iVal ){ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){ i64 iSm = iVal % 16384; p->rSum = (double)(iVal - iSm); p->rErr = (double)iSm; }else{ p->rSum = (double)iVal; p->rErr = 0.0; } } /* ** Routines used to compute the sum, average, and total. ** ** The SUM() function follows the (broken) SQL standard which means ** that it returns NULL if it sums over no inputs. TOTAL returns ** 0.0 in that case. In addition, TOTAL always returns a float where ** SUM might return an integer if it never encounters a floating point ** value. TOTAL never fails, but SUM might through an exception if ** it overflows an integer. */ static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ SumCtx *p; int type; assert( argc==1 ); UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); if( p && type!=SQLITE_NULL ){ p->cnt++; if( p->approx==0 ){ if( type!=SQLITE_INTEGER ){ kahanBabuskaNeumaierInit(p, p->iSum); p->approx = 1; kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0])); }else{ i64 x = p->iSum; if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){ p->iSum = x; }else{ p->ovrfl = 1; kahanBabuskaNeumaierInit(p, p->iSum); p->approx = 1; kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0])); } } }else{ if( type==SQLITE_INTEGER ){ kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0])); }else{ p->ovrfl = 0; kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0])); } } } } #ifndef SQLITE_OMIT_WINDOWFUNC static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){ SumCtx *p; int type; assert( argc==1 ); UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); /* p is always non-NULL because sumStep() will have been called first ** to initialize it */ if( ALWAYS(p) && type!=SQLITE_NULL ){ assert( p->cnt>0 ); p->cnt--; if( !p->approx ){ p->iSum -= sqlite3_value_int64(argv[0]); }else if( type==SQLITE_INTEGER ){ i64 iVal = sqlite3_value_int64(argv[0]); if( iVal!=SMALLEST_INT64 ){ kahanBabuskaNeumaierStepInt64(p, -iVal); }else{ kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64); kahanBabuskaNeumaierStepInt64(p, 1); } }else{ kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0])); } } } #else # define sumInverse 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ static void sumFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ if( p->approx ){ if( p->ovrfl ){ sqlite3_result_error(context,"integer overflow",-1); }else if( !sqlite3IsOverflow(p->rErr) ){ sqlite3_result_double(context, p->rSum+p->rErr); }else{ sqlite3_result_double(context, p->rSum); } }else{ sqlite3_result_int64(context, p->iSum); } } } static void avgFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ double r; if( p->approx ){ r = p->rSum; if( !sqlite3IsOverflow(p->rErr) ) r += p->rErr; }else{ r = (double)(p->iSum); } sqlite3_result_double(context, r/(double)p->cnt); } } static void totalFinalize(sqlite3_context *context){ SumCtx *p; double r = 0.0; p = sqlite3_aggregate_context(context, 0); if( p ){ if( p->approx ){ r = p->rSum; if( !sqlite3IsOverflow(p->rErr) ) r += p->rErr; }else{ r = (double)(p->iSum); } } sqlite3_result_double(context, r); } /* ** The following structure keeps track of state information for the ** count() aggregate function. */ typedef struct CountCtx CountCtx; struct CountCtx { i64 n; #ifdef SQLITE_DEBUG int bInverse; /* True if xInverse() ever called */ #endif }; /* ** Routines to implement the count() aggregate function. */ static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ CountCtx *p; p = sqlite3_aggregate_context(context, sizeof(*p)); if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ p->n++; } #ifndef SQLITE_OMIT_DEPRECATED /* The sqlite3_aggregate_count() function is deprecated. But just to make ** sure it still operates correctly, verify that its count agrees with our ** internal count when using count(*) and when the total count can be ** expressed as a 32-bit integer. */ assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse || p->n==sqlite3_aggregate_count(context) ); #endif } static void countFinalize(sqlite3_context *context){ CountCtx *p; p = sqlite3_aggregate_context(context, 0); sqlite3_result_int64(context, p ? p->n : 0); } #ifndef SQLITE_OMIT_WINDOWFUNC static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){ CountCtx *p; p = sqlite3_aggregate_context(ctx, sizeof(*p)); /* p is always non-NULL since countStep() will have been called first */ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){ p->n--; #ifdef SQLITE_DEBUG p->bInverse = 1; #endif } } #else # define countInverse 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** Routines to implement min() and max() aggregate functions. */ static void minmaxStep( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ Mem *pArg = (Mem *)argv[0]; Mem *pBest; UNUSED_PARAMETER(NotUsed); pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); if( !pBest ) return; if( sqlite3_value_type(pArg)==SQLITE_NULL ){ if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); }else if( pBest->flags ){ int max; int cmp; CollSeq *pColl = sqlite3GetFuncCollSeq(context); /* This step function is used for both the min() and max() aggregates, ** the only difference between the two being that the sense of the ** comparison is inverted. For the max() aggregate, the ** sqlite3_user_data() function returns (void *)-1. For min() it ** returns (void *)db, where db is the sqlite3* database pointer. ** Therefore the next statement sets variable 'max' to 1 for the max() ** aggregate, or 0 for min(). */ max = sqlite3_user_data(context)!=0; cmp = sqlite3MemCompare(pBest, pArg, pColl); if( (max && cmp<0) || (!max && cmp>0) ){ sqlite3VdbeMemCopy(pBest, pArg); }else{ sqlite3SkipAccumulatorLoad(context); } }else{ pBest->db = sqlite3_context_db_handle(context); sqlite3VdbeMemCopy(pBest, pArg); } } static void minMaxValueFinalize(sqlite3_context *context, int bValue){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); if( pRes ){ if( pRes->flags ){ sqlite3_result_value(context, pRes); } if( bValue==0 ) sqlite3VdbeMemRelease(pRes); } } #ifndef SQLITE_OMIT_WINDOWFUNC static void minMaxValue(sqlite3_context *context){ minMaxValueFinalize(context, 1); } #else # define minMaxValue 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ static void minMaxFinalize(sqlite3_context *context){ minMaxValueFinalize(context, 0); } /* ** group_concat(EXPR, ?SEPARATOR?) ** string_agg(EXPR, SEPARATOR) ** ** The SEPARATOR goes before the EXPR string. This is tragic. The ** groupConcatInverse() implementation would have been easier if the ** SEPARATOR were appended after EXPR. And the order is undocumented, ** so we could change it, in theory. But the old behavior has been ** around for so long that we dare not, for fear of breaking something. */ typedef struct { StrAccum str; /* The accumulated concatenation */ #ifndef SQLITE_OMIT_WINDOWFUNC int nAccum; /* Number of strings presently concatenated */ int nFirstSepLength; /* Used to detect separator length change */ /* If pnSepLengths!=0, refs an array of inter-string separator lengths, ** stored as actually incorporated into presently accumulated result. ** (Hence, its slots in use number nAccum-1 between method calls.) ** If pnSepLengths==0, nFirstSepLength is the length used throughout. */ int *pnSepLengths; #endif } GroupConcatCtx; static void groupConcatStep( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zVal; GroupConcatCtx *pGCC; const char *zSep; int nVal, nSep; assert( argc==1 || argc==2 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); if( pGCC ){ sqlite3 *db = sqlite3_context_db_handle(context); int firstTerm = pGCC->str.mxAlloc==0; pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; if( argc==1 ){ if( !firstTerm ){ sqlite3_str_appendchar(&pGCC->str, 1, ','); } #ifndef SQLITE_OMIT_WINDOWFUNC else{ pGCC->nFirstSepLength = 1; } #endif }else if( !firstTerm ){ zSep = (char*)sqlite3_value_text(argv[1]); nSep = sqlite3_value_bytes(argv[1]); if( zSep ){ sqlite3_str_append(&pGCC->str, zSep, nSep); } #ifndef SQLITE_OMIT_WINDOWFUNC else{ nSep = 0; } if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){ int *pnsl = pGCC->pnSepLengths; if( pnsl == 0 ){ /* First separator length variation seen, start tracking them. */ pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int)); if( pnsl!=0 ){ int i = 0, nA = pGCC->nAccum-1; while( inFirstSepLength; } }else{ pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int)); } if( pnsl!=0 ){ if( ALWAYS(pGCC->nAccum>0) ){ pnsl[pGCC->nAccum-1] = nSep; } pGCC->pnSepLengths = pnsl; }else{ sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM); } } #endif } #ifndef SQLITE_OMIT_WINDOWFUNC else{ pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]); } pGCC->nAccum += 1; #endif zVal = (char*)sqlite3_value_text(argv[0]); nVal = sqlite3_value_bytes(argv[0]); if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal); } } #ifndef SQLITE_OMIT_WINDOWFUNC static void groupConcatInverse( sqlite3_context *context, int argc, sqlite3_value **argv ){ GroupConcatCtx *pGCC; assert( argc==1 || argc==2 ); (void)argc; /* Suppress unused parameter warning */ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); /* pGCC is always non-NULL since groupConcatStep() will have always ** run first to initialize it */ if( ALWAYS(pGCC) ){ int nVS; /* Must call sqlite3_value_text() to convert the argument into text prior ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */ (void)sqlite3_value_text(argv[0]); nVS = sqlite3_value_bytes(argv[0]); pGCC->nAccum -= 1; if( pGCC->pnSepLengths!=0 ){ assert(pGCC->nAccum >= 0); if( pGCC->nAccum>0 ){ nVS += *pGCC->pnSepLengths; memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1, (pGCC->nAccum-1)*sizeof(int)); } }else{ /* If removing single accumulated string, harmlessly over-do. */ nVS += pGCC->nFirstSepLength; } if( nVS>=(int)pGCC->str.nChar ){ pGCC->str.nChar = 0; }else{ pGCC->str.nChar -= nVS; memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar); } if( pGCC->str.nChar==0 ){ pGCC->str.mxAlloc = 0; sqlite3_free(pGCC->pnSepLengths); pGCC->pnSepLengths = 0; } } } #else # define groupConcatInverse 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ static void groupConcatFinalize(sqlite3_context *context){ GroupConcatCtx *pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); if( pGCC ){ sqlite3ResultStrAccum(context, &pGCC->str); #ifndef SQLITE_OMIT_WINDOWFUNC sqlite3_free(pGCC->pnSepLengths); #endif } } #ifndef SQLITE_OMIT_WINDOWFUNC static void groupConcatValue(sqlite3_context *context){ GroupConcatCtx *pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); if( pGCC ){ StrAccum *pAccum = &pGCC->str; if( pAccum->accError==SQLITE_TOOBIG ){ sqlite3_result_error_toobig(context); }else if( pAccum->accError==SQLITE_NOMEM ){ sqlite3_result_error_nomem(context); }else{ const char *zText = sqlite3_str_value(pAccum); sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT); } } } #else # define groupConcatValue 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** This routine does per-connection function registration. Most ** of the built-in functions above are part of the global function set. ** This routine only deals with those that are not global. */ SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){ int rc = sqlite3_overload_function(db, "MATCH", 2); assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); } /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC { extern void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **); sqlite3CreateFunc(db, "sqlcipher_export", -1, SQLITE_TEXT, 0, sqlcipher_exportFunc, 0, 0, 0, 0, 0); } #ifdef SQLCIPHER_EXT #include "sqlcipher_funcs_init.h" #endif #endif /* END SQLCIPHER */ } /* ** Re-register the built-in LIKE functions. The caseSensitive ** parameter determines whether or not the LIKE operator is case ** sensitive. */ SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ FuncDef *pDef; struct compareInfo *pInfo; int flags; int nArg; if( caseSensitive ){ pInfo = (struct compareInfo*)&likeInfoAlt; flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE; }else{ pInfo = (struct compareInfo*)&likeInfoNorm; flags = SQLITE_FUNC_LIKE; } for(nArg=2; nArg<=3; nArg++){ sqlite3CreateFunc(db, "like", nArg, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0); pDef = sqlite3FindFunction(db, "like", nArg, SQLITE_UTF8, 0); pDef->funcFlags |= flags; pDef->funcFlags &= ~SQLITE_FUNC_UNSAFE; } } /* ** pExpr points to an expression which implements a function. If ** it is appropriate to apply the LIKE optimization to that function ** then set aWc[0] through aWc[2] to the wildcard characters and the ** escape character and then return TRUE. If the function is not a ** LIKE-style function then return FALSE. ** ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE ** operator if c is a string literal that is exactly one byte in length. ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is ** no ESCAPE clause. ** ** *pIsNocase is set to true if uppercase and lowercase are equivalent for ** the function (default for LIKE). If the function makes the distinction ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to ** false. */ SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ FuncDef *pDef; int nExpr; assert( pExpr!=0 ); assert( pExpr->op==TK_FUNCTION ); assert( ExprUseXList(pExpr) ); if( !pExpr->x.pList ){ return 0; } nExpr = pExpr->x.pList->nExpr; assert( !ExprHasProperty(pExpr, EP_IntValue) ); pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0); #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION if( pDef==0 ) return 0; #endif if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){ return 0; } /* The memcpy() statement assumes that the wildcard characters are ** the first three statements in the compareInfo structure. The ** asserts() that follow verify that assumption */ memcpy(aWc, pDef->pUserData, 3); assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); if( nExpr<3 ){ aWc[3] = 0; }else{ Expr *pEscape = pExpr->x.pList->a[2].pExpr; char *zEscape; if( pEscape->op!=TK_STRING ) return 0; assert( !ExprHasProperty(pEscape, EP_IntValue) ); zEscape = pEscape->u.zToken; if( zEscape[0]==0 || zEscape[1]!=0 ) return 0; if( zEscape[0]==aWc[0] ) return 0; if( zEscape[0]==aWc[1] ) return 0; aWc[3] = zEscape[0]; } *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; return 1; } /* Mathematical Constants */ #ifndef M_PI # define M_PI 3.141592653589793238462643383279502884 #endif #ifndef M_LN10 # define M_LN10 2.302585092994045684017991454684364208 #endif #ifndef M_LN2 # define M_LN2 0.693147180559945309417232121458176568 #endif /* Extra math functions that require linking with -lm */ #ifdef SQLITE_ENABLE_MATH_FUNCTIONS /* ** Implementation SQL functions: ** ** ceil(X) ** ceiling(X) ** floor(X) ** ** The sqlite3_user_data() pointer is a pointer to the libm implementation ** of the underlying C function. */ static void ceilingFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==1 ); switch( sqlite3_value_numeric_type(argv[0]) ){ case SQLITE_INTEGER: { sqlite3_result_int64(context, sqlite3_value_int64(argv[0])); break; } case SQLITE_FLOAT: { double (*x)(double) = (double(*)(double))sqlite3_user_data(context); sqlite3_result_double(context, x(sqlite3_value_double(argv[0]))); break; } default: { break; } } } /* ** On some systems, ceil() and floor() are intrinsic function. You are ** unable to take a pointer to these functions. Hence, we here wrap them ** in our own actual functions. */ static double xCeil(double x){ return ceil(x); } static double xFloor(double x){ return floor(x); } /* ** Some systems do not have log2() and log10() in their standard math ** libraries. */ #if defined(HAVE_LOG10) && HAVE_LOG10==0 # define log10(X) (0.4342944819032517867*log(X)) #endif #if defined(HAVE_LOG2) && HAVE_LOG2==0 # define log2(X) (1.442695040888963456*log(X)) #endif /* ** Implementation of SQL functions: ** ** ln(X) - natural logarithm ** log(X) - log X base 10 ** log10(X) - log X base 10 ** log(B,X) - log X base B */ static void logFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ double x, b, ans; assert( argc==1 || argc==2 ); switch( sqlite3_value_numeric_type(argv[0]) ){ case SQLITE_INTEGER: case SQLITE_FLOAT: x = sqlite3_value_double(argv[0]); if( x<=0.0 ) return; break; default: return; } if( argc==2 ){ switch( sqlite3_value_numeric_type(argv[0]) ){ case SQLITE_INTEGER: case SQLITE_FLOAT: b = log(x); if( b<=0.0 ) return; x = sqlite3_value_double(argv[1]); if( x<=0.0 ) return; break; default: return; } ans = log(x)/b; }else{ switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){ case 1: ans = log10(x); break; case 2: ans = log2(x); break; default: ans = log(x); break; } } sqlite3_result_double(context, ans); } /* ** Functions to converts degrees to radians and radians to degrees. */ static double degToRad(double x){ return x*(M_PI/180.0); } static double radToDeg(double x){ return x*(180.0/M_PI); } /* ** Implementation of 1-argument SQL math functions: ** ** exp(X) - Compute e to the X-th power */ static void math1Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ int type0; double v0, ans; double (*x)(double); assert( argc==1 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; v0 = sqlite3_value_double(argv[0]); x = (double(*)(double))sqlite3_user_data(context); ans = x(v0); sqlite3_result_double(context, ans); } /* ** Implementation of 2-argument SQL math functions: ** ** power(X,Y) - Compute X to the Y-th power */ static void math2Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ int type0, type1; double v0, v1, ans; double (*x)(double,double); assert( argc==2 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; type1 = sqlite3_value_numeric_type(argv[1]); if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return; v0 = sqlite3_value_double(argv[0]); v1 = sqlite3_value_double(argv[1]); x = (double(*)(double,double))sqlite3_user_data(context); ans = x(v0, v1); sqlite3_result_double(context, ans); } /* ** Implementation of 0-argument pi() function. */ static void piFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==0 ); (void)argv; sqlite3_result_double(context, M_PI); } #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ /* ** Implementation of sign(X) function. */ static void signFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int type0; double x; UNUSED_PARAMETER(argc); assert( argc==1 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; x = sqlite3_value_double(argv[0]); sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0); } #ifdef SQLITE_DEBUG /* ** Implementation of fpdecode(x,y,z) function. ** ** x is a real number that is to be decoded. y is the precision. ** z is the maximum real precision. */ static void fpdecodeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ FpDecode s; double x; int y, z; char zBuf[100]; UNUSED_PARAMETER(argc); assert( argc==3 ); x = sqlite3_value_double(argv[0]); y = sqlite3_value_int(argv[1]); z = sqlite3_value_int(argv[2]); sqlite3FpDecode(&s, x, y, z); if( s.isSpecial==2 ){ sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN"); }else{ sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP); } sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } #endif /* SQLITE_DEBUG */ /* ** All of the FuncDef structures in the aBuiltinFunc[] array above ** to the global function hash table. This occurs at start-time (as ** a consequence of calling sqlite3_initialize()). ** ** After this routine runs */ SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void){ /* ** The following array holds FuncDef structures for all of the functions ** defined in this file. ** ** The array cannot be constant since changes are made to the ** FuncDef.pHash elements at start-time. The elements of this array ** are read-only after initialization is complete. ** ** For peak efficiency, put the most frequently used function last. */ static FuncDef aBuiltinFunc[] = { /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/ #if !defined(SQLITE_UNTESTABLE) TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0), TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0), TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0), TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0), #endif /* !defined(SQLITE_UNTESTABLE) */ /***** Regular functions *****/ #ifdef SQLITE_SOUNDEX FUNCTION(soundex, 1, 0, 0, soundexFunc ), #endif #ifndef SQLITE_OMIT_LOAD_EXTENSION SFUNCTION(load_extension, 1, 0, 0, loadExt ), SFUNCTION(load_extension, 2, 0, 0, loadExt ), #endif #if SQLITE_USER_AUTHENTICATION FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ), #endif #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ), #endif FUNCTION(ltrim, 1, 1, 0, trimFunc ), FUNCTION(ltrim, 2, 1, 0, trimFunc ), FUNCTION(rtrim, 1, 2, 0, trimFunc ), FUNCTION(rtrim, 2, 2, 0, trimFunc ), FUNCTION(trim, 1, 3, 0, trimFunc ), FUNCTION(trim, 2, 3, 0, trimFunc ), FUNCTION(min, -1, 0, 1, minmaxFunc ), FUNCTION(min, 0, 0, 1, 0 ), WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), FUNCTION(max, -1, 1, 1, minmaxFunc ), FUNCTION(max, 0, 1, 1, 0 ), WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN), FUNCTION(instr, 2, 0, 0, instrFunc ), FUNCTION(printf, -1, 0, 0, printfFunc ), FUNCTION(format, -1, 0, 0, printfFunc ), FUNCTION(unicode, 1, 0, 0, unicodeFunc ), FUNCTION(char, -1, 0, 0, charFunc ), FUNCTION(abs, 1, 0, 0, absFunc ), #ifdef SQLITE_DEBUG FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ), #endif #ifndef SQLITE_OMIT_FLOATING_POINT FUNCTION(round, 1, 0, 0, roundFunc ), FUNCTION(round, 2, 0, 0, roundFunc ), #endif FUNCTION(upper, 1, 0, 0, upperFunc ), FUNCTION(lower, 1, 0, 0, lowerFunc ), FUNCTION(hex, 1, 0, 0, hexFunc ), FUNCTION(unhex, 1, 0, 0, unhexFunc ), FUNCTION(unhex, 2, 0, 0, unhexFunc ), FUNCTION(concat, -1, 0, 0, concatFunc ), FUNCTION(concat, 0, 0, 0, 0 ), FUNCTION(concat_ws, -1, 0, 0, concatwsFunc ), FUNCTION(concat_ws, 0, 0, 0, 0 ), FUNCTION(concat_ws, 1, 0, 0, 0 ), INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ), VFUNCTION(random, 0, 0, 0, randomFunc ), VFUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ), DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), FUNCTION(quote, 1, 0, 0, quoteFunc ), VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), VFUNCTION(changes, 0, 0, 0, changes ), VFUNCTION(total_changes, 0, 0, 0, total_changes ), FUNCTION(replace, 3, 0, 0, replaceFunc ), FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), FUNCTION(substr, 2, 0, 0, substrFunc ), FUNCTION(substr, 3, 0, 0, substrFunc ), FUNCTION(substring, 2, 0, 0, substrFunc ), FUNCTION(substring, 3, 0, 0, substrFunc ), WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0), WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0), WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0), WAGGREGATE(count, 0,0,0, countStep, countFinalize, countFinalize, countInverse, SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ), WAGGREGATE(count, 1,0,0, countStep, countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ), WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), WAGGREGATE(string_agg, 2, 0, 0, groupConcatStep, groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), #ifdef SQLITE_CASE_SENSITIVE_LIKE LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), #else LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), #endif #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION FUNCTION(unknown, -1, 0, 0, unknownFunc ), #endif FUNCTION(coalesce, 1, 0, 0, 0 ), FUNCTION(coalesce, 0, 0, 0, 0 ), #ifdef SQLITE_ENABLE_MATH_FUNCTIONS MFUNCTION(ceil, 1, xCeil, ceilingFunc ), MFUNCTION(ceiling, 1, xCeil, ceilingFunc ), MFUNCTION(floor, 1, xFloor, ceilingFunc ), #if SQLITE_HAVE_C99_MATH_FUNCS MFUNCTION(trunc, 1, trunc, ceilingFunc ), #endif FUNCTION(ln, 1, 0, 0, logFunc ), FUNCTION(log, 1, 1, 0, logFunc ), FUNCTION(log10, 1, 1, 0, logFunc ), FUNCTION(log2, 1, 2, 0, logFunc ), FUNCTION(log, 2, 0, 0, logFunc ), MFUNCTION(exp, 1, exp, math1Func ), MFUNCTION(pow, 2, pow, math2Func ), MFUNCTION(power, 2, pow, math2Func ), MFUNCTION(mod, 2, fmod, math2Func ), MFUNCTION(acos, 1, acos, math1Func ), MFUNCTION(asin, 1, asin, math1Func ), MFUNCTION(atan, 1, atan, math1Func ), MFUNCTION(atan2, 2, atan2, math2Func ), MFUNCTION(cos, 1, cos, math1Func ), MFUNCTION(sin, 1, sin, math1Func ), MFUNCTION(tan, 1, tan, math1Func ), MFUNCTION(cosh, 1, cosh, math1Func ), MFUNCTION(sinh, 1, sinh, math1Func ), MFUNCTION(tanh, 1, tanh, math1Func ), #if SQLITE_HAVE_C99_MATH_FUNCS MFUNCTION(acosh, 1, acosh, math1Func ), MFUNCTION(asinh, 1, asinh, math1Func ), MFUNCTION(atanh, 1, atanh, math1Func ), #endif MFUNCTION(sqrt, 1, sqrt, math1Func ), MFUNCTION(radians, 1, degToRad, math1Func ), MFUNCTION(degrees, 1, radToDeg, math1Func ), FUNCTION(pi, 0, 0, 0, piFunc ), #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ FUNCTION(sign, 1, 0, 0, signFunc ), INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ), INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ), }; #ifndef SQLITE_OMIT_ALTERTABLE sqlite3AlterFunctions(); #endif sqlite3WindowFunctions(); sqlite3RegisterDateTimeFunctions(); sqlite3RegisterJsonFunctions(); sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc)); #if 0 /* Enable to print out how the built-in functions are hashed */ { int i; FuncDef *p; for(i=0; iu.pHash){ int n = sqlite3Strlen30(p->zName); int h = p->zName[0] + n; assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); printf(" %s(%d)", p->zName, h); } printf("\n"); } } #endif } /************** End of func.c ************************************************/ /************** Begin file fkey.c ********************************************/ /* ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used by the compiler to add foreign key ** support to compiled SQL statements. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_FOREIGN_KEY #ifndef SQLITE_OMIT_TRIGGER /* ** Deferred and Immediate FKs ** -------------------------- ** ** Foreign keys in SQLite come in two flavours: deferred and immediate. ** If an immediate foreign key constraint is violated, ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current ** statement transaction rolled back. If a ** deferred foreign key constraint is violated, no action is taken ** immediately. However if the application attempts to commit the ** transaction before fixing the constraint violation, the attempt fails. ** ** Deferred constraints are implemented using a simple counter associated ** with the database handle. The counter is set to zero each time a ** database transaction is opened. Each time a statement is executed ** that causes a foreign key violation, the counter is incremented. Each ** time a statement is executed that removes an existing violation from ** the database, the counter is decremented. When the transaction is ** committed, the commit fails if the current value of the counter is ** greater than zero. This scheme has two big drawbacks: ** ** * When a commit fails due to a deferred foreign key constraint, ** there is no way to tell which foreign constraint is not satisfied, ** or which row it is not satisfied for. ** ** * If the database contains foreign key violations when the ** transaction is opened, this may cause the mechanism to malfunction. ** ** Despite these problems, this approach is adopted as it seems simpler ** than the alternatives. ** ** INSERT operations: ** ** I.1) For each FK for which the table is the child table, search ** the parent table for a match. If none is found increment the ** constraint counter. ** ** I.2) For each FK for which the table is the parent table, ** search the child table for rows that correspond to the new ** row in the parent table. Decrement the counter for each row ** found (as the constraint is now satisfied). ** ** DELETE operations: ** ** D.1) For each FK for which the table is the child table, ** search the parent table for a row that corresponds to the ** deleted row in the child table. If such a row is not found, ** decrement the counter. ** ** D.2) For each FK for which the table is the parent table, search ** the child table for rows that correspond to the deleted row ** in the parent table. For each found increment the counter. ** ** UPDATE operations: ** ** An UPDATE command requires that all 4 steps above are taken, but only ** for FK constraints for which the affected columns are actually ** modified (values must be compared at runtime). ** ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. ** This simplifies the implementation a bit. ** ** For the purposes of immediate FK constraints, the OR REPLACE conflict ** resolution is considered to delete rows before the new row is inserted. ** If a delete caused by OR REPLACE violates an FK constraint, an exception ** is thrown, even if the FK constraint would be satisfied after the new ** row is inserted. ** ** Immediate constraints are usually handled similarly. The only difference ** is that the counter used is stored as part of each individual statement ** object (struct Vdbe). If, after the statement has run, its immediate ** constraint counter is greater than zero, ** it returns SQLITE_CONSTRAINT_FOREIGNKEY ** and the statement transaction is rolled back. An exception is an INSERT ** statement that inserts a single row only (no triggers). In this case, ** instead of using a counter, an exception is thrown immediately if the ** INSERT violates a foreign key constraint. This is necessary as such ** an INSERT does not open a statement transaction. ** ** TODO: How should dropping a table be handled? How should renaming a ** table be handled? ** ** ** Query API Notes ** --------------- ** ** Before coding an UPDATE or DELETE row operation, the code-generator ** for those two operations needs to know whether or not the operation ** requires any FK processing and, if so, which columns of the original ** row are required by the FK processing VDBE code (i.e. if FKs were ** implemented using triggers, which of the old.* columns would be ** accessed). No information is required by the code-generator before ** coding an INSERT operation. The functions used by the UPDATE/DELETE ** generation code to query for this information are: ** ** sqlite3FkRequired() - Test to see if FK processing is required. ** sqlite3FkOldmask() - Query for the set of required old.* columns. ** ** ** Externally accessible module functions ** -------------------------------------- ** ** sqlite3FkCheck() - Check for foreign key violations. ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. ** sqlite3FkDelete() - Delete an FKey structure. */ /* ** VDBE Calling Convention ** ----------------------- ** ** Example: ** ** For the following INSERT statement: ** ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); ** INSERT INTO t1 VALUES(1, 2, 3.1); ** ** Register (x): 2 (type integer) ** Register (x+1): 1 (type integer) ** Register (x+2): NULL (type NULL) ** Register (x+3): 3.1 (type real) */ /* ** A foreign key constraint requires that the key columns in the parent ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. ** Given that pParent is the parent table for foreign key constraint pFKey, ** search the schema for a unique index on the parent key columns. ** ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx ** is set to point to the unique index. ** ** If the parent key consists of a single column (the foreign key constraint ** is not a composite foreign key), output variable *paiCol is set to NULL. ** Otherwise, it is set to point to an allocated array of size N, where ** N is the number of columns in the parent key. The first element of the ** array is the index of the child table column that is mapped by the FK ** constraint to the parent table column stored in the left-most column ** of index *ppIdx. The second element of the array is the index of the ** child table column that corresponds to the second left-most column of ** *ppIdx, and so on. ** ** If the required index cannot be found, either because: ** ** 1) The named parent key columns do not exist, or ** ** 2) The named parent key columns do exist, but are not subject to a ** UNIQUE or PRIMARY KEY constraint, or ** ** 3) No parent key columns were provided explicitly as part of the ** foreign key definition, and the parent table does not have a ** PRIMARY KEY, or ** ** 4) No parent key columns were provided explicitly as part of the ** foreign key definition, and the PRIMARY KEY of the parent table ** consists of a different number of columns to the child key in ** the child table. ** ** then non-zero is returned, and a "foreign key mismatch" error loaded ** into pParse. If an OOM error occurs, non-zero is returned and the ** pParse->db->mallocFailed flag is set. */ SQLITE_PRIVATE int sqlite3FkLocateIndex( Parse *pParse, /* Parse context to store any error in */ Table *pParent, /* Parent table of FK constraint pFKey */ FKey *pFKey, /* Foreign key to find index for */ Index **ppIdx, /* OUT: Unique index on parent table */ int **paiCol /* OUT: Map of index columns in pFKey */ ){ Index *pIdx = 0; /* Value to return via *ppIdx */ int *aiCol = 0; /* Value to return via *paiCol */ int nCol = pFKey->nCol; /* Number of columns in parent key */ char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ /* The caller is responsible for zeroing output parameters. */ assert( ppIdx && *ppIdx==0 ); assert( !paiCol || *paiCol==0 ); assert( pParse ); /* If this is a non-composite (single column) foreign key, check if it ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx ** and *paiCol set to zero and return early. ** ** Otherwise, for a composite foreign key (more than one column), allocate ** space for the aiCol array (returned via output parameter *paiCol). ** Non-composite foreign keys do not require the aiCol array. */ if( nCol==1 ){ /* The FK maps to the IPK if any of the following are true: ** ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly ** mapped to the primary key of table pParent, or ** 2) The FK is explicitly mapped to a column declared as INTEGER ** PRIMARY KEY. */ if( pParent->iPKey>=0 ){ if( !zKey ) return 0; if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){ return 0; } } }else if( paiCol ){ assert( nCol>1 ); aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); if( !aiCol ) return 1; *paiCol = aiCol; } for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number ** of columns. If each indexed column corresponds to a foreign key ** column of pFKey, then this index is a winner. */ if( zKey==0 ){ /* If zKey is NULL, then this foreign key is implicitly mapped to ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be ** identified by the test. */ if( IsPrimaryKeyIndex(pIdx) ){ if( aiCol ){ int i; for(i=0; iaCol[i].iFrom; } break; } }else{ /* If zKey is non-NULL, then this foreign key was declared to ** map to an explicit list of columns in table pParent. Check if this ** index matches those columns. Also, check that the index uses ** the default collation sequences for each column. */ int i, j; for(i=0; iaiColumn[i]; /* Index of column in parent tbl */ const char *zDfltColl; /* Def. collation for column */ char *zIdxCol; /* Name of indexed column */ if( iCol<0 ) break; /* No foreign keys against expression indexes */ /* If the index uses a collation sequence that is different from ** the default collation sequence for the column, this index is ** unusable. Bail out early in this case. */ zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]); if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; zIdxCol = pParent->aCol[iCol].zCnName; for(j=0; jaCol[j].zCol, zIdxCol)==0 ){ if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; break; } } if( j==nCol ) break; } if( i==nCol ) break; /* pIdx is usable */ } } } if( !pIdx ){ if( !pParse->disableTriggers ){ sqlite3ErrorMsg(pParse, "foreign key mismatch - \"%w\" referencing \"%w\"", pFKey->pFrom->zName, pFKey->zTo); } sqlite3DbFree(pParse->db, aiCol); return 1; } *ppIdx = pIdx; return 0; } /* ** This function is called when a row is inserted into or deleted from the ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed ** on the child table of pFKey, this function is invoked twice for each row ** affected - once to "delete" the old row, and then again to "insert" the ** new row. ** ** Each time it is called, this function generates VDBE code to locate the ** row in the parent table that corresponds to the row being inserted into ** or deleted from the child table. If the parent row can be found, no ** special action is taken. Otherwise, if the parent row can *not* be ** found in the parent table: ** ** Operation | FK type | Action taken ** -------------------------------------------------------------------------- ** INSERT immediate Increment the "immediate constraint counter". ** ** DELETE immediate Decrement the "immediate constraint counter". ** ** INSERT deferred Increment the "deferred constraint counter". ** ** DELETE deferred Decrement the "deferred constraint counter". ** ** These operations are identified in the comment at the top of this file ** (fkey.c) as "I.1" and "D.1". */ static void fkLookupParent( Parse *pParse, /* Parse context */ int iDb, /* Index of database housing pTab */ Table *pTab, /* Parent table of FK pFKey */ Index *pIdx, /* Unique index on parent key columns in pTab */ FKey *pFKey, /* Foreign key constraint */ int *aiCol, /* Map from parent key columns to child table columns */ int regData, /* Address of array containing child table row */ int nIncr, /* Increment constraint counter by this */ int isIgnore /* If true, pretend pTab contains all NULL values */ ){ int i; /* Iterator variable */ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ int iCur = pParse->nTab - 1; /* Cursor number to use */ int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */ sqlite3VdbeVerifyAbortable(v, (!pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) && !pParse->pToplevel && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); /* If nIncr is less than zero, then check at runtime if there are any ** outstanding constraints to resolve. If there are not, there is no need ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ if( nIncr<0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); VdbeCoverage(v); } for(i=0; inCol; i++){ int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); } if( isIgnore==0 ){ if( pIdx==0 ){ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY ** column of the parent table (table pTab). */ int iMustBeInt; /* Address of MustBeInt instruction */ int regTemp = sqlite3GetTempReg(pParse); /* Invoke MustBeInt to coerce the child key value to an integer (i.e. ** apply the affinity of the parent key). If this fails, then there ** is no matching parent key. Before using MustBeInt, make a copy of ** the value. Otherwise, the value inserted into the child key column ** will have INTEGER affinity applied to it, which may not be correct. */ sqlite3VdbeAddOp2(v, OP_SCopy, sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp); iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); VdbeCoverage(v); /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. */ if( pTab==pFKey->pFrom && nIncr==1 ){ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); } sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); sqlite3VdbeGoto(v, iOk); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); sqlite3VdbeJumpHere(v, iMustBeInt); sqlite3ReleaseTempReg(pParse, regTemp); }else{ int nCol = pFKey->nCol; int regTemp = sqlite3GetTempRange(pParse, nCol); sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); for(i=0; ipFrom, aiCol[i])+1+regData, regTemp+i); } /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. ** ** If any of the parent-key values are NULL, then the row cannot match ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any ** of the parent-key values are NULL (at this point it is known that ** none of the child key values are). */ if( pTab==pFKey->pFrom && nIncr==1 ){ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; for(i=0; ipFrom,aiCol[i]) +1+regData; int iParent = 1+regData; iParent += sqlite3TableColumnToStorage(pIdx->pTable, pIdx->aiColumn[i]); assert( pIdx->aiColumn[i]>=0 ); assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); } sqlite3VdbeGoto(v, iOk); } sqlite3VdbeAddOp4(v, OP_Affinity, regTemp, nCol, 0, sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regTemp, nCol); VdbeCoverage(v); sqlite3ReleaseTempRange(pParse, regTemp, nCol); } } if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) && !pParse->pToplevel && !pParse->isMultiWrite ){ /* Special case: If this is an INSERT statement that will insert exactly ** one row into the table, raise a constraint immediately instead of ** incrementing a counter. This is necessary as the VM code is being ** generated for will not open a statement transaction. */ assert( nIncr==1 ); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); }else{ if( nIncr>0 && pFKey->isDeferred==0 ){ sqlite3MayAbort(pParse); } sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); } sqlite3VdbeResolveLabel(v, iOk); sqlite3VdbeAddOp1(v, OP_Close, iCur); } /* ** Return an Expr object that refers to a memory register corresponding ** to column iCol of table pTab. ** ** regBase is the first of an array of register that contains the data ** for pTab. regBase itself holds the rowid. regBase+1 holds the first ** column. regBase+2 holds the second column, and so forth. */ static Expr *exprTableRegister( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* The table whose content is at r[regBase]... */ int regBase, /* Contents of table pTab */ i16 iCol /* Which column of pTab is desired */ ){ Expr *pExpr; Column *pCol; const char *zColl; sqlite3 *db = pParse->db; pExpr = sqlite3Expr(db, TK_REGISTER, 0); if( pExpr ){ if( iCol>=0 && iCol!=pTab->iPKey ){ pCol = &pTab->aCol[iCol]; pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1; pExpr->affExpr = pCol->affinity; zColl = sqlite3ColumnColl(pCol); if( zColl==0 ) zColl = db->pDfltColl->zName; pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); }else{ pExpr->iTable = regBase; pExpr->affExpr = SQLITE_AFF_INTEGER; } } return pExpr; } /* ** Return an Expr object that refers to column iCol of table pTab which ** has cursor iCur. */ static Expr *exprTableColumn( sqlite3 *db, /* The database connection */ Table *pTab, /* The table whose column is desired */ int iCursor, /* The open cursor on the table */ i16 iCol /* The column that is wanted */ ){ Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); if( pExpr ){ assert( ExprUseYTab(pExpr) ); pExpr->y.pTab = pTab; pExpr->iTable = iCursor; pExpr->iColumn = iCol; } return pExpr; } /* ** This function is called to generate code executed when a row is deleted ** from the parent table of foreign key constraint pFKey and, if pFKey is ** deferred, when a row is inserted into the same table. When generating ** code for an SQL UPDATE operation, this function may be called twice - ** once to "delete" the old row and once to "insert" the new row. ** ** Parameter nIncr is passed -1 when inserting a row (as this may decrease ** the number of FK violations in the db) or +1 when deleting one (as this ** may increase the number of FK constraint problems). ** ** The code generated by this function scans through the rows in the child ** table that correspond to the parent table row being deleted or inserted. ** For each child row found, one of the following actions is taken: ** ** Operation | FK type | Action taken ** -------------------------------------------------------------------------- ** DELETE immediate Increment the "immediate constraint counter". ** ** INSERT immediate Decrement the "immediate constraint counter". ** ** DELETE deferred Increment the "deferred constraint counter". ** ** INSERT deferred Decrement the "deferred constraint counter". ** ** These operations are identified in the comment at the top of this file ** (fkey.c) as "I.2" and "D.2". */ static void fkScanChildren( Parse *pParse, /* Parse context */ SrcList *pSrc, /* The child table to be scanned */ Table *pTab, /* The parent table */ Index *pIdx, /* Index on parent covering the foreign key */ FKey *pFKey, /* The foreign key linking pSrc to pTab */ int *aiCol, /* Map from pIdx cols to child table cols */ int regData, /* Parent row data starts here */ int nIncr /* Amount to increment deferred counter by */ ){ sqlite3 *db = pParse->db; /* Database handle */ int i; /* Iterator variable */ Expr *pWhere = 0; /* WHERE clause to scan with */ NameContext sNameContext; /* Context used to resolve WHERE clause */ WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ int iFkIfZero = 0; /* Address of OP_FkIfZero */ Vdbe *v = sqlite3GetVdbe(pParse); assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); assert( pIdx!=0 || HasRowid(pTab) ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); VdbeCoverage(v); } /* Create an Expr object representing an SQL expression like: ** ** = AND = ... ** ** The collation sequence used for the comparison should be that of ** the parent key columns. The affinity of the parent key column should ** be applied to each child key value before the comparison takes place. */ for(i=0; inCol; i++){ Expr *pLeft; /* Value from parent table row */ Expr *pRight; /* Column ref to child table */ Expr *pEq; /* Expression (pLeft = pRight) */ i16 iCol; /* Index of column in child table */ const char *zCol; /* Name of column in child table */ iCol = pIdx ? pIdx->aiColumn[i] : -1; pLeft = exprTableRegister(pParse, pTab, regData, iCol); iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iCol>=0 ); zCol = pFKey->pFrom->aCol[iCol].zCnName; pRight = sqlite3Expr(db, TK_ID, zCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); } /* If the child table is the same as the parent table, then add terms ** to the WHERE clause that prevent this entry from being scanned. ** The added WHERE clause terms are like this: ** ** $current_rowid!=rowid ** NOT( $current_a==a AND $current_b==b AND ... ) ** ** The first form is used for rowid tables. The second form is used ** for WITHOUT ROWID tables. In the second form, the *parent* key is ** (a,b,...). Either the parent or primary key could be used to ** uniquely identify the current row, but the parent key is more convenient ** as the required values have already been loaded into registers ** by the caller. */ if( pTab==pFKey->pFrom && nIncr>0 ){ Expr *pNe; /* Expression (pLeft != pRight) */ Expr *pLeft; /* Value from parent table row */ Expr *pRight; /* Column ref to child table */ if( HasRowid(pTab) ){ pLeft = exprTableRegister(pParse, pTab, regData, -1); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); }else{ Expr *pEq, *pAll = 0; assert( pIdx!=0 ); for(i=0; inKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; assert( iCol>=0 ); pLeft = exprTableRegister(pParse, pTab, regData, iCol); pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName); pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight); pAll = sqlite3ExprAnd(pParse, pAll, pEq); } pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); } pWhere = sqlite3ExprAnd(pParse, pWhere, pNe); } /* Resolve the references in the WHERE clause. */ memset(&sNameContext, 0, sizeof(NameContext)); sNameContext.pSrcList = pSrc; sNameContext.pParse = pParse; sqlite3ResolveExprNames(&sNameContext, pWhere); /* Create VDBE to loop through the entries in pSrc that match the WHERE ** clause. For each row found, increment either the deferred or immediate ** foreign key constraint counter. */ if( pParse->nErr==0 ){ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0, 0); sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); if( pWInfo ){ sqlite3WhereEnd(pWInfo); } } /* Clean up the WHERE clause constructed above. */ sqlite3ExprDelete(db, pWhere); if( iFkIfZero ){ sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero); } } /* ** This function returns a linked list of FKey objects (connected by ** FKey.pNextTo) holding all children of table pTab. For example, ** given the following schema: ** ** CREATE TABLE t1(a PRIMARY KEY); ** CREATE TABLE t2(b REFERENCES t1(a); ** ** Calling this function with table "t1" as an argument returns a pointer ** to the FKey structure representing the foreign key constraint on table ** "t2". Calling this function with "t2" as the argument would return a ** NULL pointer (as there are no FK constraints for which t2 is the parent ** table). */ SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *pTab){ return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); } /* ** The second argument is a Trigger structure allocated by the ** fkActionTrigger() routine. This function deletes the Trigger structure ** and all of its sub-components. ** ** The Trigger structure or any of its sub-components may be allocated from ** the lookaside buffer belonging to database handle dbMem. */ static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ if( p ){ TriggerStep *pStep = p->step_list; sqlite3ExprDelete(dbMem, pStep->pWhere); sqlite3ExprListDelete(dbMem, pStep->pExprList); sqlite3SelectDelete(dbMem, pStep->pSelect); sqlite3ExprDelete(dbMem, p->pWhen); sqlite3DbFree(dbMem, p); } } /* ** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys ** in a particular database. This needs to happen when the schema ** changes. */ SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){ HashElem *k; Hash *pHash = &db->aDb[iDb].pSchema->tblHash; for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){ Table *pTab = sqliteHashData(k); FKey *pFKey; if( !IsOrdinaryTable(pTab) ) continue; for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0; fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0; } } } /* ** This function is called to generate code that runs when table pTab is ** being dropped from the database. The SrcList passed as the second argument ** to this function contains a single entry guaranteed to resolve to ** table pTab. ** ** Normally, no code is required. However, if either ** ** (a) The table is the parent table of a FK constraint, or ** (b) The table is the child table of a deferred FK constraint and it is ** determined at runtime that there are outstanding deferred FK ** constraint violations in the database, ** ** then the equivalent of "DELETE FROM " is executed before dropping ** the table from the database. Triggers are disabled while running this ** DELETE, but foreign key actions are not. */ SQLITE_PRIVATE void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ sqlite3 *db = pParse->db; if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){ int iSkip = 0; Vdbe *v = sqlite3GetVdbe(pParse); assert( v ); /* VDBE has already been allocated */ assert( IsOrdinaryTable(pTab) ); if( sqlite3FkReferences(pTab)==0 ){ /* Search for a deferred foreign key constraint for which this table ** is the child table. If one cannot be found, return without ** generating any VDBE code. If one can be found, then jump over ** the entire DELETE if there are no outstanding deferred constraints ** when this statement is run. */ FKey *p; for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; } if( !p ) return; iSkip = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); } pParse->disableTriggers = 1; sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); pParse->disableTriggers = 0; /* If the DELETE has generated immediate foreign key constraint ** violations, halt the VDBE and return an error at this point, before ** any modifications to the schema are made. This is because statement ** transactions are not able to rollback schema changes. ** ** If the SQLITE_DeferFKs flag is set, then this is not required, as ** the statement transaction will not be rolled back even if FK ** constraints are violated. */ if( (db->flags & SQLITE_DeferFKs)==0 ){ sqlite3VdbeVerifyAbortable(v, OE_Abort); sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); } if( iSkip ){ sqlite3VdbeResolveLabel(v, iSkip); } } } /* ** The second argument points to an FKey object representing a foreign key ** for which pTab is the child table. An UPDATE statement against pTab ** is currently being processed. For each column of the table that is ** actually updated, the corresponding element in the aChange[] array ** is zero or greater (if a column is unmodified the corresponding element ** is set to -1). If the rowid column is modified by the UPDATE statement ** the bChngRowid argument is non-zero. ** ** This function returns true if any of the columns that are part of the ** child key for FK constraint *p are modified. */ static int fkChildIsModified( Table *pTab, /* Table being updated */ FKey *p, /* Foreign key for which pTab is the child */ int *aChange, /* Array indicating modified columns */ int bChngRowid /* True if rowid is modified by this update */ ){ int i; for(i=0; inCol; i++){ int iChildKey = p->aCol[i].iFrom; if( aChange[iChildKey]>=0 ) return 1; if( iChildKey==pTab->iPKey && bChngRowid ) return 1; } return 0; } /* ** The second argument points to an FKey object representing a foreign key ** for which pTab is the parent table. An UPDATE statement against pTab ** is currently being processed. For each column of the table that is ** actually updated, the corresponding element in the aChange[] array ** is zero or greater (if a column is unmodified the corresponding element ** is set to -1). If the rowid column is modified by the UPDATE statement ** the bChngRowid argument is non-zero. ** ** This function returns true if any of the columns that are part of the ** parent key for FK constraint *p are modified. */ static int fkParentIsModified( Table *pTab, FKey *p, int *aChange, int bChngRowid ){ int i; for(i=0; inCol; i++){ char *zKey = p->aCol[i].zCol; int iKey; for(iKey=0; iKeynCol; iKey++){ if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ Column *pCol = &pTab->aCol[iKey]; if( zKey ){ if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1; }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ return 1; } } } } return 0; } /* ** Return true if the parser passed as the first argument is being ** used to code a trigger that is really a "SET NULL" action belonging ** to trigger pFKey. */ static int isSetNullAction(Parse *pParse, FKey *pFKey){ Parse *pTop = sqlite3ParseToplevel(pParse); if( pTop->pTriggerPrg ){ Trigger *p = pTop->pTriggerPrg->pTrigger; if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) ){ assert( (pTop->db->flags & SQLITE_FkNoAction)==0 ); return 1; } } return 0; } /* ** This function is called when inserting, deleting or updating a row of ** table pTab to generate VDBE code to perform foreign key constraint ** processing for the operation. ** ** For a DELETE operation, parameter regOld is passed the index of the ** first register in an array of (pTab->nCol+1) registers containing the ** rowid of the row being deleted, followed by each of the column values ** of the row being deleted, from left to right. Parameter regNew is passed ** zero in this case. ** ** For an INSERT operation, regOld is passed zero and regNew is passed the ** first register of an array of (pTab->nCol+1) registers containing the new ** row data. ** ** For an UPDATE operation, this function is called twice. Once before ** the original record is deleted from the table using the calling convention ** described for DELETE. Then again after the original record is deleted ** but before the new record is inserted using the INSERT convention. */ SQLITE_PRIVATE void sqlite3FkCheck( Parse *pParse, /* Parse context */ Table *pTab, /* Row is being deleted from this table */ int regOld, /* Previous row data is stored here */ int regNew, /* New row data is stored here */ int *aChange, /* Array indicating UPDATEd columns (or 0) */ int bChngRowid /* True if rowid is UPDATEd */ ){ sqlite3 *db = pParse->db; /* Database handle */ FKey *pFKey; /* Used to iterate through FKs */ int iDb; /* Index of database containing pTab */ const char *zDb; /* Name of database containing pTab */ int isIgnoreErrors = pParse->disableTriggers; /* Exactly one of regOld and regNew should be non-zero. */ assert( (regOld==0)!=(regNew==0) ); /* If foreign-keys are disabled, this function is a no-op. */ if( (db->flags&SQLITE_ForeignKeys)==0 ) return; if( !IsOrdinaryTable(pTab) ) return; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zDb = db->aDb[iDb].zDbSName; /* Loop through all the foreign key constraints for which pTab is the ** child table (the table that the foreign key definition is part of). */ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ Table *pTo; /* Parent table of foreign key pFKey */ Index *pIdx = 0; /* Index on key columns in pTo */ int *aiFree = 0; int *aiCol; int iCol; int i; int bIgnore = 0; if( aChange && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ continue; } /* Find the parent table of this foreign key. Also find a unique index ** on the parent key columns in the parent table. If either of these ** schema items cannot be located, set an error in pParse and return ** early. */ if( pParse->disableTriggers ){ pTo = sqlite3FindTable(db, pFKey->zTo, zDb); }else{ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); } if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); if( !isIgnoreErrors || db->mallocFailed ) return; if( pTo==0 ){ /* If isIgnoreErrors is true, then a table is being dropped. In this ** case SQLite runs a "DELETE FROM xxx" on the table being dropped ** before actually dropping it in order to check FK constraints. ** If the parent table of an FK constraint on the current table is ** missing, behave as if it is empty. i.e. decrement the relevant ** FK counter for each row of the current table with non-NULL keys. */ Vdbe *v = sqlite3GetVdbe(pParse); int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; for(i=0; inCol; i++){ int iFromCol, iReg; iFromCol = pFKey->aCol[i].iFrom; iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); } continue; } assert( pFKey->nCol==1 || (aiFree && pIdx) ); if( aiFree ){ aiCol = aiFree; }else{ iCol = pFKey->aCol[0].iFrom; aiCol = &iCol; } for(i=0; inCol; i++){ if( aiCol[i]==pTab->iPKey ){ aiCol[i] = -1; } assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Request permission to read the parent key columns. If the ** authorization callback returns SQLITE_IGNORE, behave as if any ** values read from the parent table are NULL. */ if( db->xAuth ){ int rcauth; char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName; rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); bIgnore = (rcauth==SQLITE_IGNORE); } #endif } /* Take a shared-cache advisory read-lock on the parent table. Allocate ** a cursor to use to search the unique index on the parent key columns ** in the parent table. */ sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); pParse->nTab++; if( regOld!=0 ){ /* A row is being removed from the child table. Search for the parent. ** If the parent does not exist, removing the child row resolves an ** outstanding foreign key constraint violation. */ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); } if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ /* A row is being added to the child table. If a parent row cannot ** be found, adding the child row has violated the FK constraint. ** ** If this operation is being performed as part of a trigger program ** that is actually a "SET NULL" action belonging to this very ** foreign key, then omit this scan altogether. As all child key ** values are guaranteed to be NULL, it is not possible for adding ** this row to cause an FK violation. */ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); } sqlite3DbFree(db, aiFree); } /* Loop through all the foreign key constraints that refer to this table. ** (the "child" constraints) */ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ Index *pIdx = 0; /* Foreign key index for pFKey */ SrcList *pSrc; int *aiCol = 0; if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ continue; } if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) && !pParse->pToplevel && !pParse->isMultiWrite ){ assert( regOld==0 && regNew!=0 ); /* Inserting a single row into a parent table cannot cause (or fix) ** an immediate foreign key violation. So do nothing in this case. */ continue; } if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ if( !isIgnoreErrors || db->mallocFailed ) return; continue; } assert( aiCol || pFKey->nCol==1 ); /* Create a SrcList structure containing the child table. We need the ** child table as a SrcList for sqlite3WhereBegin() */ pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); if( pSrc ){ SrcItem *pItem = pSrc->a; pItem->pTab = pFKey->pFrom; pItem->zName = pFKey->pFrom->zName; pItem->pTab->nTabRef++; pItem->iCursor = pParse->nTab++; if( regNew!=0 ){ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); } if( regOld!=0 ){ int eAction = pFKey->aAction[aChange!=0]; if( (db->flags & SQLITE_FkNoAction) ) eAction = OE_None; fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); /* If this is a deferred FK constraint, or a CASCADE or SET NULL ** action applies, then any foreign key violations caused by ** removing the parent key will be rectified by the action trigger. ** So do not set the "may-abort" flag in this case. ** ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the ** may-abort flag will eventually be set on this statement anyway ** (when this function is called as part of processing the UPDATE ** within the action trigger). ** ** Note 2: At first glance it may seem like SQLite could simply omit ** all OP_FkCounter related scans when either CASCADE or SET NULL ** applies. The trouble starts if the CASCADE or SET NULL action ** trigger causes other triggers or action rules attached to the ** child table to fire. In these cases the fk constraint counters ** might be set incorrectly if any OP_FkCounter related scans are ** omitted. */ if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ sqlite3MayAbort(pParse); } } pItem->zName = 0; sqlite3SrcListDelete(db, pSrc); } sqlite3DbFree(db, aiCol); } } #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) /* ** This function is called before generating code to update or delete a ** row contained in table pTab. */ SQLITE_PRIVATE u32 sqlite3FkOldmask( Parse *pParse, /* Parse context */ Table *pTab /* Table being modified */ ){ u32 mask = 0; if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ FKey *p; int i; for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ for(i=0; inCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); } for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ Index *pIdx = 0; sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); if( pIdx ){ for(i=0; inKeyCol; i++){ assert( pIdx->aiColumn[i]>=0 ); mask |= COLUMN_MASK(pIdx->aiColumn[i]); } } } } return mask; } /* ** This function is called before generating code to update or delete a ** row contained in table pTab. If the operation is a DELETE, then ** parameter aChange is passed a NULL value. For an UPDATE, aChange points ** to an array of size N, where N is the number of columns in table pTab. ** If the i'th column is not modified by the UPDATE, then the corresponding ** entry in the aChange[] array is set to -1. If the column is modified, ** the value is 0 or greater. Parameter chngRowid is set to true if the ** UPDATE statement modifies the rowid fields of the table. ** ** If any foreign key processing will be required, this function returns ** non-zero. If there is no foreign key related processing, this function ** returns zero. ** ** For an UPDATE, this function returns 2 if: ** ** * There are any FKs for which pTab is the child and the parent table ** and any FK processing at all is required (even of a different FK), or ** ** * the UPDATE modifies one or more parent keys for which the action is ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). ** ** Or, assuming some other foreign key processing is required, 1. */ SQLITE_PRIVATE int sqlite3FkRequired( Parse *pParse, /* Parse context */ Table *pTab, /* Table being modified */ int *aChange, /* Non-NULL for UPDATE operations */ int chngRowid /* True for UPDATE that affects rowid */ ){ int eRet = 1; /* Value to return if bHaveFK is true */ int bHaveFK = 0; /* If FK processing is required */ if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ if( !aChange ){ /* A DELETE operation. Foreign key processing is required if the ** table in question is either the child or parent table for any ** foreign key constraint. */ bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey); }else{ /* This is an UPDATE. Foreign key processing is only required if the ** operation modifies one or more child or parent key columns. */ FKey *p; /* Check if any child key columns are being modified. */ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2; bHaveFK = 1; } } /* Check if any parent key columns are being modified. */ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ if( (pParse->db->flags & SQLITE_FkNoAction)==0 && p->aAction[1]!=OE_None ){ return 2; } bHaveFK = 1; } } } } return bHaveFK ? eRet : 0; } /* ** This function is called when an UPDATE or DELETE operation is being ** compiled on table pTab, which is the parent table of foreign-key pFKey. ** If the current operation is an UPDATE, then the pChanges parameter is ** passed a pointer to the list of columns being modified. If it is a ** DELETE, pChanges is passed a NULL pointer. ** ** It returns a pointer to a Trigger structure containing a trigger ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. ** If the action is "NO ACTION" then a NULL pointer is returned (these actions ** require no special handling by the triggers sub-system, code for them is ** created by fkScanChildren()). ** ** For example, if pFKey is the foreign key and pTab is table "p" in ** the following schema: ** ** CREATE TABLE p(pk PRIMARY KEY); ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); ** ** then the returned trigger structure is equivalent to: ** ** CREATE TRIGGER ... DELETE ON p BEGIN ** DELETE FROM c WHERE ck = old.pk; ** END; ** ** The returned pointer is cached as part of the foreign key object. It ** is eventually freed along with the rest of the foreign key object by ** sqlite3FkDelete(). */ static Trigger *fkActionTrigger( Parse *pParse, /* Parse context */ Table *pTab, /* Table being updated or deleted from */ FKey *pFKey, /* Foreign key to get action for */ ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ ){ sqlite3 *db = pParse->db; /* Database handle */ int action; /* One of OE_None, OE_Cascade etc. */ Trigger *pTrigger; /* Trigger definition to return */ int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ action = pFKey->aAction[iAction]; if( (db->flags & SQLITE_FkNoAction) ) action = OE_None; if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ return 0; } pTrigger = pFKey->apTrigger[iAction]; if( action!=OE_None && !pTrigger ){ char const *zFrom; /* Name of child table */ int nFrom; /* Length in bytes of zFrom */ Index *pIdx = 0; /* Parent key index for this FK */ int *aiCol = 0; /* child table cols -> parent key cols */ TriggerStep *pStep = 0; /* First (only) step of trigger program */ Expr *pWhere = 0; /* WHERE clause of trigger step */ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ int i; /* Iterator variable */ Expr *pWhen = 0; /* WHEN clause for the trigger */ if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; assert( aiCol || pFKey->nCol==1 ); for(i=0; inCol; i++){ Token tOld = { "old", 3 }; /* Literal "old" token */ Token tNew = { "new", 3 }; /* Literal "new" token */ Token tFromCol; /* Name of column in child table */ Token tToCol; /* Name of column in parent table */ int iFromCol; /* Idx of column in child table */ Expr *pEq; /* tFromCol = OLD.tToCol */ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iFromCol>=0 ); assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKeynCol) ); assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); sqlite3TokenInit(&tToCol, pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName); sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName); /* Create the expression "OLD.zToCol = zFromCol". It is important ** that the "OLD.zToCol" term is on the LHS of the = operator, so ** that the affinity and collation sequence associated with the ** parent table are used for the comparison. */ pEq = sqlite3PExpr(pParse, TK_EQ, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) ); pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); /* For ON UPDATE, construct the next term of the WHEN clause. ** The final WHEN clause will be like this: ** ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) */ if( pChanges ){ pEq = sqlite3PExpr(pParse, TK_IS, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) ); pWhen = sqlite3ExprAnd(pParse, pWhen, pEq); } if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ Expr *pNew; if( action==OE_Cascade ){ pNew = sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); }else if( action==OE_SetDflt ){ Column *pCol = pFKey->pFrom->aCol + iFromCol; Expr *pDflt; if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); pDflt = 0; }else{ pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol); } if( pDflt ){ pNew = sqlite3ExprDup(db, pDflt, 0); }else{ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); } }else{ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); } pList = sqlite3ExprListAppend(pParse, pList, pNew); sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); } } sqlite3DbFree(db, aiCol); zFrom = pFKey->pFrom->zName; nFrom = sqlite3Strlen30(zFrom); if( action==OE_Restrict ){ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); SrcList *pSrc; Expr *pRaise; pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); if( pRaise ){ pRaise->affExpr = OE_Abort; } pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); if( pSrc ){ assert( pSrc->nSrc==1 ); pSrc->a[0].zName = sqlite3DbStrDup(db, zFrom); pSrc->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName); } pSelect = sqlite3SelectNew(pParse, sqlite3ExprListAppend(pParse, 0, pRaise), pSrc, pWhere, 0, 0, 0, 0, 0 ); pWhere = 0; } /* Disable lookaside memory allocation */ DisableLookaside; pTrigger = (Trigger *)sqlite3DbMallocZero(db, sizeof(Trigger) + /* struct Trigger */ sizeof(TriggerStep) + /* Single step in trigger program */ nFrom + 1 /* Space for pStep->zTarget */ ); if( pTrigger ){ pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; pStep->zTarget = (char *)&pStep[1]; memcpy((char *)pStep->zTarget, zFrom, nFrom); pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); if( pWhen ){ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); } } /* Re-enable the lookaside buffer, if it was disabled earlier. */ EnableLookaside; sqlite3ExprDelete(db, pWhere); sqlite3ExprDelete(db, pWhen); sqlite3ExprListDelete(db, pList); sqlite3SelectDelete(db, pSelect); if( db->mallocFailed==1 ){ fkTriggerDelete(db, pTrigger); return 0; } assert( pStep!=0 ); assert( pTrigger!=0 ); switch( action ){ case OE_Restrict: pStep->op = TK_SELECT; break; case OE_Cascade: if( !pChanges ){ pStep->op = TK_DELETE; break; } /* no break */ deliberate_fall_through default: pStep->op = TK_UPDATE; } pStep->pTrig = pTrigger; pTrigger->pSchema = pTab->pSchema; pTrigger->pTabSchema = pTab->pSchema; pFKey->apTrigger[iAction] = pTrigger; pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); } return pTrigger; } /* ** This function is called when deleting or updating a row to implement ** any required CASCADE, SET NULL or SET DEFAULT actions. */ SQLITE_PRIVATE void sqlite3FkActions( Parse *pParse, /* Parse context */ Table *pTab, /* Table being updated or deleted from */ ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ int regOld, /* Address of array containing old row */ int *aChange, /* Array indicating UPDATEd columns (or 0) */ int bChngRowid /* True if rowid is UPDATEd */ ){ /* If foreign-key support is enabled, iterate through all FKs that ** refer to table pTab. If there is an action associated with the FK ** for this operation (either update or delete), invoke the associated ** trigger sub-program. */ if( pParse->db->flags&SQLITE_ForeignKeys ){ FKey *pFKey; /* Iterator variable */ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); if( pAct ){ sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); } } } } } #endif /* ifndef SQLITE_OMIT_TRIGGER */ /* ** Free all memory associated with foreign key definitions attached to ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash ** hash table. */ SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){ FKey *pFKey; /* Iterator variable */ FKey *pNext; /* Copy of pFKey->pNextFrom */ assert( IsOrdinaryTable(pTab) ); assert( db!=0 ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); /* Remove the FK from the fkeyHash hash table. */ if( db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ const char *z = (pFKey->pNextTo ? pFKey->pNextTo->zTo : pFKey->zTo); sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, pFKey->pNextTo); } if( pFKey->pNextTo ){ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; } } /* EV: R-30323-21917 Each foreign key constraint in SQLite is ** classified as either immediate or deferred. */ assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); /* Delete any triggers created to implement actions for this FK. */ #ifndef SQLITE_OMIT_TRIGGER fkTriggerDelete(db, pFKey->apTrigger[0]); fkTriggerDelete(db, pFKey->apTrigger[1]); #endif pNext = pFKey->pNextFrom; sqlite3DbFree(db, pFKey); } } #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ /************** End of fkey.c ************************************************/ /************** Begin file insert.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. */ /* #include "sqliteInt.h" */ /* ** Generate code that will ** ** (1) acquire a lock for table pTab then ** (2) open pTab as cursor iCur. ** ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index ** for that table that is actually opened. */ SQLITE_PRIVATE void sqlite3OpenTable( Parse *pParse, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ int iDb, /* The database index in sqlite3.aDb[] */ Table *pTab, /* The table to be opened */ int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; assert( !IsVirtual(pTab) ); assert( pParse->pVdbe!=0 ); v = pParse->pVdbe; assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); if( !pParse->db->noSharedCache ){ sqlite3TableLock(pParse, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); } if( HasRowid(pTab) ){ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); VdbeComment((v, "%s", pTab->zName)); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pPk); VdbeComment((v, "%s", pTab->zName)); } } /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'F' REAL ** ** An extra 'D' is appended to the end of the string to cover the ** rowid that appears as the last column in every index. ** ** Memory for the buffer containing the column index affinity string ** is managed along with the rest of the Index structure. It will be ** released when sqlite3DeleteIndex() is called. */ static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ /* The first time a column affinity string for a particular index is ** required, it is allocated and populated here. It is then stored as ** a member of the Index structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); if( !pIdx->zColAff ){ sqlite3OomFault(db); return 0; } for(n=0; nnColumn; n++){ i16 x = pIdx->aiColumn[n]; char aff; if( x>=0 ){ aff = pTab->aCol[x].affinity; }else if( x==XN_ROWID ){ aff = SQLITE_AFF_INTEGER; }else{ assert( x==XN_EXPR ); assert( pIdx->bHasExpr ); assert( pIdx->aColExpr!=0 ); aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); } if( affSQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; pIdx->zColAff[n] = aff; } pIdx->zColAff[n] = 0; return pIdx->zColAff; } SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); return pIdx->zColAff; } /* ** Compute an affinity string for a table. Space is obtained ** from sqlite3DbMalloc(). The caller is responsible for freeing ** the space when done. */ SQLITE_PRIVATE char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ char *zColAff; zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); if( zColAff ){ int i, j; for(i=j=0; inCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ zColAff[j++] = pTab->aCol[i].affinity; } } do{ zColAff[j--] = 0; }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); } return zColAff; } /* ** Make changes to the evolving bytecode to do affinity transformations ** of values that are about to be gathered into a row for table pTab. ** ** For ordinary (legacy, non-strict) tables: ** ----------------------------------------- ** ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. ** ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries ** which were then optimized out) then this routine becomes a no-op. ** ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the ** affinities for register iReg and following. Or if iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character per column: ** ** Character Column affinity ** --------- --------------- ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'E' REAL ** ** For STRICT tables: ** ------------------ ** ** Generate an appropriate OP_TypeCheck opcode that will verify the ** datatypes against the column definitions in pTab. If iReg==0, that ** means an OP_MakeRecord opcode has already been generated and should be ** the last opcode generated. The new OP_TypeCheck needs to be inserted ** before the OP_MakeRecord. The new OP_TypeCheck should use the same ** register set as the OP_MakeRecord. If iReg>0 then register iReg is ** the first of a series of registers that will form the new record. ** Apply the type checking to that array of registers. */ SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ int i; char *zColAff; if( pTab->tabFlags & TF_Strict ){ if( iReg==0 ){ /* Move the previous opcode (which should be OP_MakeRecord) forward ** by one slot and insert a new OP_TypeCheck where the current ** OP_MakeRecord is found */ VdbeOp *pPrev; sqlite3VdbeAppendP4(v, pTab, P4_TABLE); pPrev = sqlite3VdbeGetLastOp(v); assert( pPrev!=0 ); assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); pPrev->opcode = OP_TypeCheck; sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); }else{ /* Insert an isolated OP_Typecheck */ sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } return; } zColAff = pTab->zColAff; if( zColAff==0 ){ zColAff = sqlite3TableAffinityStr(0, pTab); if( !zColAff ){ sqlite3OomFault(sqlite3VdbeDb(v)); return; } pTab->zColAff = zColAff; } assert( zColAff!=0 ); i = sqlite3Strlen30NN(zColAff); if( i ){ if( iReg ){ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); }else{ assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program. This is used to see if ** a statement of the form "INSERT INTO SELECT ..." can ** run without using a temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; #endif for(i=1; iopcode==OP_OpenRead && pOp->p3==iDb ){ Index *pIndex; Pgno tnum = pOp->p2; if( tnum==pTab->tnum ){ return 1; } for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( tnum==pIndex->tnum ){ return 1; } } } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ assert( pOp->p4.pVtab!=0 ); assert( pOp->p4type==P4_VTAB ); return 1; } #endif } return 0; } /* This walker callback will compute the union of colFlags flags for all ** referenced columns in a CHECK constraint or generated column expression. */ static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ assert( pExpr->iColumn < pWalker->u.pTab->nCol ); pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; } return WRC_Continue; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* ** All regular columns for table pTab have been puts into registers ** starting with iRegStore. The registers that correspond to STORED ** or VIRTUAL columns have not yet been initialized. This routine goes ** back and computes the values for those columns based on the previously ** computed normal columns. */ SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns( Parse *pParse, /* Parsing context */ int iRegStore, /* Register holding the first column */ Table *pTab /* The table */ ){ int i; Walker w; Column *pRedo; int eProgress; VdbeOp *pOp; assert( pTab->tabFlags & TF_HasGenerated ); testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); /* Before computing generated columns, first go through and make sure ** that appropriate affinity has been applied to the regular columns */ sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); if( (pTab->tabFlags & TF_HasStored)!=0 ){ pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); if( pOp->opcode==OP_Affinity ){ /* Change the OP_Affinity argument to '@' (NONE) for all stored ** columns. '@' is the no-op affinity and those columns have not ** yet been computed. */ int ii, jj; char *zP4 = pOp->p4.z; assert( zP4!=0 ); assert( pOp->p4type==P4_DYNAMIC ); for(ii=jj=0; zP4[jj]; ii++){ if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ continue; } if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ zP4[jj] = SQLITE_AFF_NONE; } jj++; } }else if( pOp->opcode==OP_TypeCheck ){ /* If an OP_TypeCheck was generated because the table is STRICT, ** then set the P3 operand to indicate that generated columns should ** not be checked */ pOp->p3 = 1; } } /* Because there can be multiple generated columns that refer to one another, ** this is a two-pass algorithm. On the first pass, mark all generated ** columns as "not available". */ for(i=0; inCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; } } w.u.pTab = pTab; w.xExprCallback = exprColumnFlagUnion; w.xSelectCallback = 0; w.xSelectCallback2 = 0; /* On the second pass, compute the value of each NOT-AVAILABLE column. ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as ** they are needed. */ pParse->iSelfTab = -iRegStore; do{ eProgress = 0; pRedo = 0; for(i=0; inCol; i++){ Column *pCol = pTab->aCol + i; if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ int x; pCol->colFlags |= COLFLAG_BUSY; w.eCode = 0; sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); pCol->colFlags &= ~COLFLAG_BUSY; if( w.eCode & COLFLAG_NOTAVAIL ){ pRedo = pCol; continue; } eProgress = 1; assert( pCol->colFlags & COLFLAG_GENERATED ); x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); pCol->colFlags &= ~COLFLAG_NOTAVAIL; } } }while( pRedo && eProgress ); if( pRedo ){ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); } pParse->iSelfTab = 0; } #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* ** Locate or create an AutoincInfo structure associated with table pTab ** which is in database iDb. Return the register number for the register ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT ** table. (Also return zero when doing a VACUUM since we do not want to ** update the AUTOINCREMENT counters during a VACUUM.) ** ** There is at most one AutoincInfo structure per table even if the ** same table is autoincremented multiple times due to inserts within ** triggers. A new AutoincInfo structure is created if this is the ** first use of table pTab. On 2nd and subsequent uses, the original ** AutoincInfo structure is used. ** ** Four consecutive registers are allocated: ** ** (1) The name of the pTab table. ** (2) The maximum ROWID of pTab. ** (3) The rowid in sqlite_sequence of pTab ** (4) The original value of the max ROWID in pTab, or NULL if none ** ** The 2nd register is the one that is returned. That is all the ** insert routine needs to know about. */ static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ assert( pParse->db->aDb[iDb].pSchema!=0 ); if( (pTab->tabFlags & TF_Autoincrement)!=0 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); AutoincInfo *pInfo; Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; /* Verify that the sqlite_sequence table exists and is an ordinary ** rowid table with exactly two columns. ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ if( pSeqTab==0 || !HasRowid(pSeqTab) || NEVER(IsVirtual(pSeqTab)) || pSeqTab->nCol!=2 ){ pParse->nErr++; pParse->rc = SQLITE_CORRUPT_SEQUENCE; return 0; } pInfo = pToplevel->pAinc; while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } if( pInfo==0 ){ pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); testcase( pParse->earlyCleanup ); if( pParse->db->mallocFailed ) return 0; pInfo->pNext = pToplevel->pAinc; pToplevel->pAinc = pInfo; pInfo->pTab = pTab; pInfo->iDb = iDb; pToplevel->nMem++; /* Register to hold name of table */ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ } memId = pInfo->regCtr; } return memId; } /* ** This routine generates code that will initialize all of the ** register used by the autoincrement tracker. */ SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){ AutoincInfo *p; /* Information about an AUTOINCREMENT */ sqlite3 *db = pParse->db; /* The database connection */ Db *pDb; /* Database only autoinc table */ int memId; /* Register holding max rowid */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ /* This routine is never called during trigger-generation. It is ** only called from the top-level */ assert( pParse->pTriggerTab==0 ); assert( sqlite3IsToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList autoInc[] = { /* 0 */ {OP_Null, 0, 0, 0}, /* 1 */ {OP_Rewind, 0, 10, 0}, /* 2 */ {OP_Column, 0, 0, 0}, /* 3 */ {OP_Ne, 0, 9, 0}, /* 4 */ {OP_Rowid, 0, 0, 0}, /* 5 */ {OP_Column, 0, 1, 0}, /* 6 */ {OP_AddImm, 0, 0, 0}, /* 7 */ {OP_Copy, 0, 0, 0}, /* 8 */ {OP_Goto, 0, 11, 0}, /* 9 */ {OP_Next, 0, 2, 0}, /* 10 */ {OP_Integer, 0, 0, 0}, /* 11 */ {OP_Close, 0, 0, 0} }; VdbeOp *aOp; pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); if( aOp==0 ) break; aOp[0].p2 = memId; aOp[0].p3 = memId+2; aOp[2].p3 = memId; aOp[3].p1 = memId-1; aOp[3].p3 = memId; aOp[3].p5 = SQLITE_JUMPIFNULL; aOp[4].p2 = memId+1; aOp[5].p3 = memId; aOp[6].p1 = memId; aOp[7].p2 = memId+2; aOp[7].p1 = memId; aOp[10].p2 = memId; if( pParse->nTab==0 ) pParse->nTab = 1; } } /* ** Update the maximum rowid for an autoincrement calculation. ** ** This routine should be called when the regRowid register holds a ** new rowid that is about to be inserted. If that new rowid is ** larger than the maximum rowid in the memId memory cell, then the ** memory cell is updated. */ static void autoIncStep(Parse *pParse, int memId, int regRowid){ if( memId>0 ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); } } /* ** This routine generates the code needed to write autoincrement ** maximum rowid values back into the sqlite_sequence register. ** Every statement that might do an INSERT into an autoincrement ** table (either directly or through triggers) needs to call this ** routine just before the "exit" code. */ static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList autoIncEnd[] = { /* 0 */ {OP_NotNull, 0, 2, 0}, /* 1 */ {OP_NewRowid, 0, 0, 0}, /* 2 */ {OP_MakeRecord, 0, 2, 0}, /* 3 */ {OP_Insert, 0, 0, 0}, /* 4 */ {OP_Close, 0, 0, 0} }; VdbeOp *aOp; Db *pDb = &db->aDb[p->iDb]; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); VdbeCoverage(v); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); if( aOp==0 ) break; aOp[0].p1 = memId+1; aOp[1].p2 = memId+1; aOp[2].p1 = memId-1; aOp[2].p3 = iRec; aOp[3].p2 = iRec; aOp[3].p3 = memId+1; aOp[3].p5 = OPFLAG_APPEND; sqlite3ReleaseTempReg(pParse, iRec); } } SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){ if( pParse->pAinc ) autoIncrementEnd(pParse); } #else /* ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines ** above are all no-ops */ # define autoIncBegin(A,B,C) (0) # define autoIncStep(A,B,C) #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Forward declaration */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ); /* ** This routine is called to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... ** insert into TABLE (IDLIST) select ** insert into TABLE (IDLIST) default values ** ** The IDLIST following the table name is always optional. If omitted, ** then a list of all (non-hidden) columns for the table is substituted. ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST ** is omitted. ** ** For the pSelect parameter holds the values to be inserted for the ** first two forms shown above. A VALUES clause is really just short-hand ** for a SELECT statement that omits the FROM clause and everything else ** that follows. If the pSelect parameter is NULL, that means that the ** DEFAULT VALUES form of the INSERT statement is intended. ** ** The code generated follows one of four templates. For a simple ** insert with data coming from a single-row VALUES clause, the code executes ** once straight down through. Pseudo-code follows (we call this ** the "1st template"): ** ** open write cursor to
    and its indices ** put VALUES clause expressions into registers ** write the resulting record into
    ** cleanup ** ** The three remaining templates assume the statement is of the form ** ** INSERT INTO
    SELECT ... ** ** If the SELECT clause is of the restricted form "SELECT * FROM " - ** in other words if the SELECT pulls all columns from a single table ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and ** if and are distinct tables but have identical ** schemas, including all the same indices, then a special optimization ** is invoked that copies raw records from over to . ** See the xferOptimization() function for the implementation of this ** template. This is the 2nd template. ** ** open a write cursor to
    ** open read cursor on ** transfer all records in over to
    ** close cursors ** foreach index on
    ** open a write cursor on the
    index ** open a read cursor on the corresponding index ** transfer all records from the read to the write cursors ** close cursors ** end foreach ** ** The 3rd template is for when the second template does not apply ** and the SELECT clause does not read from
    at any time. ** The generated code follows this template: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the rows in the SELECT ** load values into registers R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end-coroutine X ** B: open write cursor to
    and its indices ** C: yield X, at EOF goto D ** insert the select result into
    from R..R+n ** goto C ** D: cleanup ** ** The 4th template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, ** we have to use an intermediate table to store the results of ** the select. The template is like this: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** load value into register R..R+n ** yield X ** end loop ** cleanup after the SELECT ** end co-routine R ** B: open temp table ** L: yield X, at EOF goto M ** insert row from R..R+n into temp table ** goto L ** M: open write cursor to
    and its indices ** rewind temp table ** C: loop over rows of intermediate table ** transfer values form intermediate table into
    ** end loop ** D: cleanup */ SQLITE_PRIVATE void sqlite3Insert( Parse *pParse, /* Parser context */ SrcList *pTabList, /* Name of table into which we are inserting */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ int onError, /* How to handle constraint errors */ Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ ){ sqlite3 *db; /* The main database structure */ Table *pTab; /* The table to insert into. aka TABLE */ int i, j; /* Loop counters */ Vdbe *v; /* Generate code into this virtual machine */ Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int iDataCur = 0; /* VDBE cursor that is the main data repository */ int iIdxCur = 0; /* First index cursor */ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ u8 appendFlag = 0; /* True if the insert is likely to be an append */ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ u8 bIdListInOrder; /* True if IDLIST is in table order */ ExprList *pList = 0; /* List of VALUES() to be inserted */ int iRegStore; /* Register in which to store next column */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ int *aRegIdx = 0; /* One register allocated to each index */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of trigger times */ #endif db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ){ goto insert_cleanup; } assert( db->mallocFailed==0 ); dest.iSDParm = 0; /* Suppress a harmless compiler warning */ /* If the Select object is really just a simple VALUES() list with a ** single row (the common case) then keep that one row of values ** and discard the other (unused) parts of the pSelect object */ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ pList = pSelect->pEList; pSelect->pEList = 0; sqlite3SelectDelete(db, pSelect); pSelect = 0; } /* Locate the table into which we will be inserting new information. */ assert( pTabList->nSrc==1 ); pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDbnDb ); if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, db->aDb[iDb].zDbSName) ){ goto insert_cleanup; } withoutRowid = !HasRowid(pTab); /* Figure out if we have any triggers and if the table being ** inserted into is a view */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); isView = IsView(pTab); #else # define pTrigger 0 # define tmask 0 # define isView 0 #endif #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, onError, pUpsert, pTrigger); } #endif /* If pTab is really a view, make sure it has been initialized. ** ViewGetColumnNames() is a no-op if pTab is not a view. */ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto insert_cleanup; } /* Cannot insert into a read-only table. */ if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ goto insert_cleanup; } /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); #ifndef SQLITE_OMIT_XFER_OPT /* If the statement is of the form ** ** INSERT INTO SELECT * FROM ; ** ** Then special optimizations can be applied that make the transfer ** very fast and which reduce fragmentation of indices. ** ** This is the 2nd template. */ if( pColumn==0 && pSelect!=0 && pTrigger==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ assert( !pTrigger ); assert( pList==0 ); goto insert_end; } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Allocate a block registers to hold the rowid and the values ** for all columns of the new row. */ regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } regData = regRowid+1; /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. ** ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the ipkColumn variable ** the index into IDLIST of the primary key column. ipkColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the INTEGER ** PRIMARY KEY in the original table is pTab->iPKey.) After this ** loop, if ipkColumn==(-1), that means that integer primary key ** is unspecified, and hence the table is either WITHOUT ROWID or ** it will automatically generated an integer primary key. ** ** bIdListInOrder is true if the columns in IDLIST are in storage ** order. This enables an optimization that avoids shuffling the ** columns into storage order. False negatives are harmless, ** but false positives will cause database corruption. */ bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; if( pColumn ){ assert( pColumn->eU4!=EU4_EXPR ); pColumn->eU4 = EU4_IDX; for(i=0; inId; i++){ pColumn->a[i].u4.idx = -1; } for(i=0; inId; i++){ for(j=0; jnCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ pColumn->a[i].u4.idx = j; if( i!=j ) bIdListInOrder = 0; if( j==pTab->iPKey ){ ipkColumn = i; assert( !withoutRowid ); } #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ sqlite3ErrorMsg(pParse, "cannot INSERT into generated column \"%s\"", pTab->aCol[j].zCnName); goto insert_cleanup; } #endif break; } } if( j>=pTab->nCol ){ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ ipkColumn = i; bIdListInOrder = 0; }else{ sqlite3ErrorMsg(pParse, "table %S has no column named %s", pTabList->a, pColumn->a[i].zName); pParse->checkSchema = 1; goto insert_cleanup; } } } } /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT or from a multi-row VALUES clause. ** Generate a co-routine to run the SELECT. */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int rc; /* Result code */ regYield = ++pParse->nMem; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); dest.iSdst = bIdListInOrder ? regData : 0; dest.nSdst = pTab->nCol; rc = sqlite3Select(pParse, pSelect, &dest); regFromSelect = dest.iSdst; assert( db->pParse==pParse ); if( rc || pParse->nErr ) goto insert_cleanup; assert( db->mallocFailed==0 ); sqlite3VdbeEndCoroutine(v, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to ** FALSE if each output row of the SELECT can be written directly into ** the destination table (template 3). ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( pTrigger || readsTable(pParse, iDb, pTab) ){ useTempTable = 1; } if( useTempTable ){ /* Invoke the coroutine to extract information from the SELECT ** and add it to a transient table srcTab. The code generated ** here is from the 4th template: ** ** B: open temp table ** L: yield X, goto M at EOF ** insert row from R..R+n into temp table ** goto L ** M: ... */ int regRec; /* Register to hold packed record */ int regTempRowid; /* Register to hold temp table ROWID */ int addrL; /* Label "L" */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeGoto(v, addrL); sqlite3VdbeJumpHere(v, addrL); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ /* This is the case if the data for the INSERT is coming from a ** single-row VALUES clause */ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; srcTab = -1; assert( useTempTable==0 ); if( pList ){ nColumn = pList->nExpr; if( sqlite3ResolveExprListNames(&sNC, pList) ){ goto insert_cleanup; } }else{ nColumn = 0; } } /* If there is no IDLIST term but the table has an integer primary ** key, the set the ipkColumn variable to the integer primary key ** column index in the original table definition. */ if( pColumn==0 && nColumn>0 ){ ipkColumn = pTab->iPKey; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); for(i=ipkColumn-1; i>=0; i--){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); ipkColumn--; } } } #endif /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ assert( TF_HasHidden==COLFLAG_HIDDEN ); assert( TF_HasGenerated==COLFLAG_GENERATED ); assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ for(i=0; inCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; } } if( nColumn!=(pTab->nCol-nHidden) ){ sqlite3ErrorMsg(pParse, "table %S has %d columns but %d values were supplied", pTabList->a, pTab->nCol-nHidden, nColumn); goto insert_cleanup; } } if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* Initialize the count of rows to be inserted */ if( (db->flags & SQLITE_CountRows)!=0 && !pParse->nested && !pParse->pTriggerTab && !pParse->bReturning ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } /* If this is not a view, open the table and and all indices */ if( !isView ){ int nIdx; nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, &iDataCur, &iIdxCur); aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); if( aRegIdx==0 ){ goto insert_cleanup; } for(i=0, pIdx=pTab->pIndex; ipNext, i++){ assert( pIdx ); aRegIdx[i] = ++pParse->nMem; pParse->nMem += pIdx->nColumn; } aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ } #ifndef SQLITE_OMIT_UPSERT if( pUpsert ){ Upsert *pNx; if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", pTab->zName); goto insert_cleanup; } if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); goto insert_cleanup; } if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ goto insert_cleanup; } pTabList->a[0].iCursor = iDataCur; pNx = pUpsert; do{ pNx->pUpsertSrc = pTabList; pNx->regData = regData; pNx->iDataCur = iDataCur; pNx->iIdxCur = iIdxCur; if( pNx->pUpsertTarget ){ if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx, pUpsert) ){ goto insert_cleanup; } } pNx = pNx->pNextUpsert; }while( pNx!=0 ); } #endif /* This is the top of the main insertion loop */ if( useTempTable ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 4): ** ** rewind temp table, if empty goto D ** C: loop over rows of intermediate table ** transfer values form intermediate table into
    ** end loop ** D: ... */ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); addrCont = sqlite3VdbeCurrentAddr(v); }else if( pSelect ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 3): ** ** C: yield X, at EOF goto D ** insert the select result into
    from R..R+n ** goto C ** D: ... */ sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); if( ipkColumn>=0 ){ /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the ** SELECT, go ahead and copy the value into the rowid slot now, so that ** the value does not get overwritten by a NULL at tag-20191021-002. */ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); } } /* Compute data for ordinary columns of the new entry. Values ** are written in storage order into registers starting with regData. ** Only ordinary columns are computed in this loop. The rowid ** (if there is one) is computed later and generated columns are ** computed after the rowid since they might depend on the value ** of the rowid. */ nHidden = 0; iRegStore = regData; assert( regData==regRowid+1 ); for(i=0; inCol; i++, iRegStore++){ int k; u32 colFlags; assert( i>=nHidden ); if( i==pTab->iPKey ){ /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled ** using the rowid. So put a NULL in the IPK slot of the record to avoid ** using excess space. The file format definition requires this extra ** NULL - we cannot optimize further by skipping the column completely */ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); continue; } if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ nHidden++; if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ /* Virtual columns do not participate in OP_MakeRecord. So back up ** iRegStore by one slot to compensate for the iRegStore++ in the ** outer for() loop */ iRegStore--; continue; }else if( (colFlags & COLFLAG_STORED)!=0 ){ /* Stored columns are computed later. But if there are BEFORE ** triggers, the slots used for stored columns will be OP_Copy-ed ** to a second block of registers, so the register needs to be ** initialized to NULL to avoid an uninitialized register read */ if( tmask & TRIGGER_BEFORE ){ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); } continue; }else if( pColumn==0 ){ /* Hidden columns that are not explicitly named in the INSERT ** get there default value */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; } } if( pColumn ){ assert( pColumn->eU4==EU4_IDX ); for(j=0; jnId && pColumn->a[j].u4.idx!=i; j++){} if( j>=pColumn->nId ){ /* A column not named in the insert column list gets its ** default value */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; } k = j; }else if( nColumn==0 ){ /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ sqlite3ExprCodeFactorable(pParse, sqlite3ColumnExpr(pTab, &pTab->aCol[i]), iRegStore); continue; }else{ k = i - nHidden; } if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); }else if( pSelect ){ if( regFromSelect!=regData ){ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); } }else{ Expr *pX = pList->a[k].pExpr; int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); if( y!=iRegStore ){ sqlite3VdbeAddOp2(v, ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); } } } /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(pParse); if( tmask & TRIGGER_BEFORE ){ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); /* build the NEW.* reference row. Note that if there is an INTEGER ** PRIMARY KEY into which a NULL is being inserted, that NULL will be ** translated into a unique ID for the row. But on a BEFORE trigger, ** we do not know what the unique ID will be (because the insert has ** not happened yet) so we substitute a rowid of -1 */ if( ipkColumn<0 ){ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); }else{ int addr1; assert( !withoutRowid ); if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); } addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); } /* Copy the new data already generated. */ assert( pTab->nNVCol>0 || pParse->nErr>0 ); sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Compute the new value for generated columns after all other ** columns have already been computed. This must be done after ** computing the ROWID in case one of the generated columns ** refers to the ROWID. */ if( pTab->tabFlags & TF_HasGenerated ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); } #endif /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3TableAffinity(v, pTab, regCols+1); } /* Fire BEFORE or INSTEAD OF triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, pTab, regCols-pTab->nCol-1, onError, endOfLoop); sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); } if( !isView ){ if( IsVirtual(pTab) ){ /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( ipkColumn>=0 ){ /* Compute the new rowid */ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); }else if( pSelect ){ /* Rowid already initialized at tag-20191021-001 */ }else{ Expr *pIpk = pList->a[ipkColumn].pExpr; if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; }else{ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); } } /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid ** to generate a unique primary key value. */ if( !appendFlag ){ int addr1; if( !IsVirtual(pTab) ){ addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); sqlite3VdbeJumpHere(v, addr1); }else{ addr1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); } }else if( IsVirtual(pTab) || withoutRowid ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); }else{ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; } autoIncStep(pParse, regAutoinc, regRowid); #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Compute the new value for generated columns after all other ** columns have already been computed. This must be done after ** computing the ROWID in case one of the generated columns ** is derived from the INTEGER PRIMARY KEY. */ if( pTab->tabFlags & TF_HasGenerated ){ sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); } #endif /* Generate code to check constraints and generate index keys and ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); }else #endif { int isReplace = 0;/* Set to true if constraints may cause a replace */ int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert ); if( db->flags & SQLITE_ForeignKeys ){ sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); } /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE ** constraints or (b) there are no triggers and this table is not a ** parent table in a foreign key constraint. It is safe to set the ** flag in the second case as if any REPLACE constraint is hit, an ** OP_Delete or OP_IdxDelete instruction will be executed on each ** cursor that is disturbed. And these instructions both clear the ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT ** functionality. */ bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, regIns, aRegIdx, 0, appendFlag, bUseSeek ); } #ifdef SQLITE_ALLOW_ROWID_IN_VIEW }else if( pParse->bReturning ){ /* If there is a RETURNING clause, populate the rowid register with ** constant value -1, in case one or more of the returned expressions ** refer to the "rowid" of the view. */ sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); #endif } /* Update the count of rows that are inserted */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ /* Code AFTER triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, pTab, regData-2-pTab->nCol, onError, endOfLoop); } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrInsTop); sqlite3VdbeAddOp1(v, OP_Close, srcTab); }else if( pSelect ){ sqlite3VdbeGoto(v, addrCont); #ifdef SQLITE_DEBUG /* If we are jumping back to an OP_Yield that is preceded by an ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the ** OP_ReleaseReg will be included in the loop. */ if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); sqlite3VdbeChangeP5(v, 1); } #endif sqlite3VdbeJumpHere(v, addrInsTop); } #ifndef SQLITE_OMIT_XFER_OPT insert_end: #endif /* SQLITE_OMIT_XFER_OPT */ /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows inserted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( regRowCount ){ sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); } insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3UpsertDelete(db, pUpsert); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif #ifdef tmask #undef tmask #endif /* ** Meanings of bits in of pWalker->eCode for ** sqlite3ExprReferencesUpdatedColumn() */ #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this ** expression node references any of the ** columns that are being modified by an UPDATE statement. */ static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN ){ assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); if( pExpr->iColumn>=0 ){ if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ pWalker->eCode |= CKCNSTRNT_COLUMN; } }else{ pWalker->eCode |= CKCNSTRNT_ROWID; } } return WRC_Continue; } /* ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The ** only columns that are modified by the UPDATE are those for which ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. ** ** Return true if CHECK constraint pExpr uses any of the ** changing columns (or the rowid if it is changing). In other words, ** return true if this CHECK constraint must be validated for ** the new row in the UPDATE statement. ** ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. ** The operation of this routine is the same - return true if an only if ** the expression uses one or more of columns identified by the second and ** third arguments. */ SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn( Expr *pExpr, /* The expression to be checked */ int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ int chngRowid /* True if UPDATE changes the rowid */ ){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = 0; w.xExprCallback = checkConstraintExprNode; w.u.aiCol = aiChng; sqlite3WalkExpr(&w, pExpr); if( !chngRowid ){ testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); w.eCode &= ~CKCNSTRNT_ROWID; } testcase( w.eCode==0 ); testcase( w.eCode==CKCNSTRNT_COLUMN ); testcase( w.eCode==CKCNSTRNT_ROWID ); testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); return w.eCode!=0; } /* ** The sqlite3GenerateConstraintChecks() routine usually wants to visit ** the indexes of a table in the order provided in the Table->pIndex list. ** However, sometimes (rarely - when there is an upsert) it wants to visit ** the indexes in a different order. The following data structures accomplish ** this. ** ** The IndexIterator object is used to walk through all of the indexes ** of a table in either Index.pNext order, or in some other order established ** by an array of IndexListTerm objects. */ typedef struct IndexListTerm IndexListTerm; typedef struct IndexIterator IndexIterator; struct IndexIterator { int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ int i; /* Index of the current item from the list */ union { struct { /* Use this object for eType==0: A Index.pNext list */ Index *pIdx; /* The current Index */ } lx; struct { /* Use this object for eType==1; Array of IndexListTerm */ int nIdx; /* Size of the array */ IndexListTerm *aIdx; /* Array of IndexListTerms */ } ax; } u; }; /* When IndexIterator.eType==1, then each index is an array of instances ** of the following object */ struct IndexListTerm { Index *p; /* The index */ int ix; /* Which entry in the original Table.pIndex list is this index*/ }; /* Return the first index on the list */ static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ assert( pIter->i==0 ); if( pIter->eType ){ *pIx = pIter->u.ax.aIdx[0].ix; return pIter->u.ax.aIdx[0].p; }else{ *pIx = 0; return pIter->u.lx.pIdx; } } /* Return the next index from the list. Return NULL when out of indexes */ static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ if( pIter->eType ){ int i = ++pIter->i; if( i>=pIter->u.ax.nIdx ){ *pIx = i; return 0; } *pIx = pIter->u.ax.aIdx[i].ix; return pIter->u.ax.aIdx[i].p; }else{ ++(*pIx); pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; return pIter->u.lx.pIdx; } } /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE ** on table pTab. ** ** The regNewData parameter is the first register in a range that contains ** the data to be inserted or the data after the update. There will be ** pTab->nCol+1 registers in this range. The first register (the one ** that regNewData points to) will contain the new rowid, or NULL in the ** case of a WITHOUT ROWID table. The second register in the range will ** contain the content of the first table column. The third register will ** contain the content of the second table column. And so forth. ** ** The regOldData parameter is similar to regNewData except that it contains ** the data prior to an UPDATE rather than afterwards. regOldData is zero ** for an INSERT. This routine can distinguish between UPDATE and INSERT by ** checking regOldData for zero. ** ** For an UPDATE, the pkChng boolean is true if the true primary key (the ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) ** might be modified by the UPDATE. If pkChng is false, then the key of ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. ** ** For an INSERT, the pkChng boolean indicates whether or not the rowid ** was explicitly specified as part of the INSERT statement. If pkChng ** is zero, it means that the either rowid is computed automatically or ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, ** pkChng will only be true if the INSERT statement provides an integer ** value for either the rowid column or its INTEGER PRIMARY KEY alias. ** ** The code generated by this routine will store new index entries into ** registers identified by aRegIdx[]. No index entry is created for ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is ** the same as the order of indices on the linked list of indices ** at pTab->pIndex. ** ** (2019-05-07) The generated code also creates a new record for the ** main table, if pTab is a rowid table, and stores that record in the ** register identified by aRegIdx[nIdx] - in other words in the first ** entry of aRegIdx[] past the last index. It is important that the ** record be generated during constraint checks to avoid affinity changes ** to the register content that occur after constraint checks but before ** the new record is inserted. ** ** The caller must have already opened writeable cursors on the main ** table and all applicable indices (that is to say, all indices for which ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor ** for the first index in the pTab->pIndex list. Cursors for other indices ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. ** ** This routine also generates code to check constraints. NOT NULL, ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, ** then the appropriate action is performed. There are five possible ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. ** ** Constraint type Action What Happens ** --------------- ---------- ---------------------------------------- ** any ROLLBACK The current transaction is rolled back and ** sqlite3_step() returns immediately with a ** return code of SQLITE_CONSTRAINT. ** ** any ABORT Back out changes from the current command ** only (do not do a complete rollback) then ** cause sqlite3_step() to return immediately ** with SQLITE_CONSTRAINT. ** ** any FAIL Sqlite3_step() returns immediately with a ** return code of SQLITE_CONSTRAINT. The ** transaction is not rolled back and any ** changes to prior rows are retained. ** ** any IGNORE The attempt in insert or update the current ** row is skipped, without throwing an error. ** Processing continues with the next row. ** (There is an immediate jump to ignoreDest.) ** ** NOT NULL REPLACE The NULL value is replace by the default ** value for that column. If the default value ** is NULL, the action is the same as ABORT. ** ** UNIQUE REPLACE The other row that conflicts with the row ** being inserted is removed. ** ** CHECK REPLACE Illegal. The results in an exception. ** ** Which action to take is determined by the overrideError parameter. ** Or if overrideError==OE_Default, then the pParse->onError parameter ** is used. Or if pParse->onError==OE_Default then the onError value ** for the constraint is used. */ SQLITE_PRIVATE void sqlite3GenerateConstraintChecks( Parse *pParse, /* The parser context */ Table *pTab, /* The table being inserted or updated */ int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ int iDataCur, /* Canonical data cursor (main table or PK index) */ int iIdxCur, /* First index cursor */ int regNewData, /* First register in a range holding values to insert */ int regOldData, /* Previous content. 0 for INSERTs */ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ u8 overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ int *aiChng, /* column i is unchanged if aiChng[i]<0 */ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ ){ Vdbe *v; /* VDBE under construction */ Index *pIdx; /* Pointer to one of the indices */ Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ sqlite3 *db; /* Database connection */ int i; /* loop counter */ int ix; /* Index loop counter */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ u8 isUpdate; /* True if this is an UPDATE operation */ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ int ipkTop = 0; /* Top of the IPK uniqueness check */ int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ /* Variables associated with retesting uniqueness constraints after ** replace triggers fire have run */ int regTrigCnt; /* Register used to count replace trigger invocations */ int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ int nReplaceTrig = 0; /* Number of replace triggers coded */ IndexIterator sIdxIter; /* Index iterator */ isUpdate = regOldData!=0; db = pParse->db; v = pParse->pVdbe; assert( v!=0 ); assert( !IsView(pTab) ); /* This table is not a VIEW */ nCol = pTab->nCol; /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for ** normal rowid tables. nPkField is the number of key fields in the ** pPk index or 1 for a rowid table. In other words, nPkField is the ** number of fields in the true primary key of the table. */ if( HasRowid(pTab) ){ pPk = 0; nPkField = 1; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); nPkField = pPk->nKeyCol; } /* Record that this module has started */ VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", iDataCur, iIdxCur, regNewData, regOldData, pkChng)); /* Test all NOT NULL constraints. */ if( pTab->tabFlags & TF_HasNotNull ){ int b2ndPass = 0; /* True if currently running 2nd pass */ int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ int nGenerated = 0; /* Number of generated columns with NOT NULL */ while(1){ /* Make 2 passes over columns. Exit loop via "break" */ for(i=0; iaCol[i]; /* The column to check for NOT NULL */ int isGenerated; /* non-zero if column is generated */ onError = pCol->notNull; if( onError==OE_None ) continue; /* No NOT NULL on this column */ if( i==pTab->iPKey ){ continue; /* ROWID is never NULL */ } isGenerated = pCol->colFlags & COLFLAG_GENERATED; if( isGenerated && !b2ndPass ){ nGenerated++; continue; /* Generated columns processed on 2nd pass */ } if( aiChng && aiChng[i]<0 && !isGenerated ){ /* Do not check NOT NULL on columns that do not change */ continue; } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( onError==OE_Replace ){ if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); testcase( pCol->colFlags & COLFLAG_GENERATED ); onError = OE_Abort; }else{ assert( !isGenerated ); } }else if( b2ndPass && !isGenerated ){ continue; } assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace ); testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; switch( onError ){ case OE_Replace: { int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); VdbeCoverage(v); assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); nSeenReplace++; sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab, pCol), iReg); sqlite3VdbeJumpHere(v, addr1); break; } case OE_Abort: sqlite3MayAbort(pParse); /* no break */ deliberate_fall_through case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pCol->zCnName); testcase( zMsg==0 && db->mallocFailed==0 ); sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, iReg); sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); VdbeCoverage(v); break; } default: { assert( onError==OE_Ignore ); sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); VdbeCoverage(v); break; } } /* end switch(onError) */ } /* end loop i over columns */ if( nGenerated==0 && nSeenReplace==0 ){ /* If there are no generated columns with NOT NULL constraints ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single ** pass is sufficient */ break; } if( b2ndPass ) break; /* Never need more than 2 passes */ b2ndPass = 1; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the ** first pass, recomputed values for all generated columns, as ** those values might depend on columns affected by the REPLACE. */ sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); } #endif } /* end of 2-pass loop */ } /* end if( has-not-null-constraints ) */ /* Test all CHECK constraints */ #ifndef SQLITE_OMIT_CHECK if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = pTab->pCheck; pParse->iSelfTab = -(regNewData+1); onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; inExpr; i++){ int allOk; Expr *pCopy; Expr *pExpr = pCheck->a[i].pExpr; if( aiChng && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) ){ /* The check constraints do not reference any of the columns being ** updated so there is no point it verifying the check constraint */ continue; } if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } allOk = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeVerifyAbortable(v, onError); pCopy = sqlite3ExprDup(db, pExpr, 0); if( !db->mallocFailed ){ sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); } sqlite3ExprDelete(db, pCopy); if( onError==OE_Ignore ){ sqlite3VdbeGoto(v, ignoreDest); }else{ char *zName = pCheck->a[i].zEName; assert( zName!=0 || pParse->db->mallocFailed ); if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, onError, zName, P4_TRANSIENT, P5_ConstraintCheck); } sqlite3VdbeResolveLabel(v, allOk); } pParse->iSelfTab = 0; } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* UNIQUE and PRIMARY KEY constraints should be handled in the following ** order: ** ** (1) OE_Update ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore ** (3) OE_Replace ** ** OE_Fail and OE_Ignore must happen before any changes are made. ** OE_Update guarantees that only a single row will change, so it ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback ** could happen in any order, but they are grouped up front for ** convenience. ** ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 ** The order of constraints used to have OE_Update as (2) and OE_Abort ** and so forth as (1). But apparently PostgreSQL checks the OE_Update ** constraint before any others, so it had to be moved. ** ** Constraint checking code is generated in this order: ** (A) The rowid constraint ** (B) Unique index constraints that do not have OE_Replace as their ** default conflict resolution strategy ** (C) Unique index that do use OE_Replace by default. ** ** The ordering of (2) and (3) is accomplished by making sure the linked ** list of indexes attached to a table puts all OE_Replace indexes last ** in the list. See sqlite3CreateIndex() for where that happens. */ sIdxIter.eType = 0; sIdxIter.i = 0; sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ sIdxIter.u.lx.pIdx = pTab->pIndex; if( pUpsert ){ if( pUpsert->pUpsertTarget==0 ){ /* There is just on ON CONFLICT clause and it has no constraint-target */ assert( pUpsert->pNextUpsert==0 ); if( pUpsert->isDoUpdate==0 ){ /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. ** Make all unique constraint resolution be OE_Ignore */ overrideError = OE_Ignore; pUpsert = 0; }else{ /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ overrideError = OE_Update; } }else if( pTab->pIndex!=0 ){ /* Otherwise, we'll need to run the IndexListTerm array version of the ** iterator to ensure that all of the ON CONFLICT conditions are ** checked first and in order. */ int nIdx, jj; u64 nByte; Upsert *pTerm; u8 *bUsed; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ assert( aRegIdx[nIdx]>0 ); } sIdxIter.eType = 1; sIdxIter.u.ax.nIdx = nIdx; nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; pUpsert->pToFree = sIdxIter.u.ax.aIdx; for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ if( pTerm->pUpsertTarget==0 ) break; if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ jj = 0; pIdx = pTab->pIndex; while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ pIdx = pIdx->pNext; jj++; } if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ bUsed[jj] = 1; sIdxIter.u.ax.aIdx[i].p = pIdx; sIdxIter.u.ax.aIdx[i].ix = jj; i++; } for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ if( bUsed[jj] ) continue; sIdxIter.u.ax.aIdx[i].p = pIdx; sIdxIter.u.ax.aIdx[i].ix = jj; i++; } assert( i==nIdx ); } } /* Determine if it is possible that triggers (either explicitly coded ** triggers or FK resolution actions) might run as a result of deletes ** that happen when OE_Replace conflict resolution occurs. (Call these ** "replace triggers".) If any replace triggers run, we will need to ** recheck all of the uniqueness constraints after they have all run. ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. ** ** If replace triggers are a possibility, then ** ** (1) Allocate register regTrigCnt and initialize it to zero. ** That register will count the number of replace triggers that ** fire. Constraint recheck only occurs if the number is positive. ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. ** (3) Initialize addrRecheck and lblRecheckOk ** ** The uniqueness rechecking code will create a series of tests to run ** in a second pass. The addrRecheck and lblRecheckOk variables are ** used to link together these tests which are separated from each other ** in the generate bytecode. */ if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ /* There are not DELETE triggers nor FK constraints. No constraint ** rechecks are needed. */ pTrigger = 0; regTrigCnt = 0; }else{ if( db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); }else{ pTrigger = 0; regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); } if( regTrigCnt ){ /* Replace triggers might exist. Allocate the counter and ** initialize it to zero. */ regTrigCnt = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); VdbeComment((v, "trigger count")); lblRecheckOk = sqlite3VdbeMakeLabel(pParse); addrRecheck = lblRecheckOk; } } /* If rowid is changing, make sure the new rowid does not previously ** exist in the table. */ if( pkChng && pPk==0 ){ int addrRowidOk = sqlite3VdbeMakeLabel(pParse); /* Figure out what action to take in case of a rowid collision */ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* figure out whether or not upsert applies in this case */ if( pUpsert ){ pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); if( pUpsertClause!=0 ){ if( pUpsertClause->isDoUpdate==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } if( pUpsertClause!=pUpsert ){ /* The first ON CONFLICT clause has a conflict target other than ** the IPK. We have to jump ahead to that first ON CONFLICT clause ** and then come back here and deal with the IPK afterwards */ upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); } } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ if( onError==OE_Replace /* IPK rule is REPLACE */ && onError!=overrideError /* Rules for other constraints are different */ && pTab->pIndex /* There exist other constraints */ && !upsertIpkDelay /* IPK check already deferred by UPSERT */ ){ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; VdbeComment((v, "defer IPK REPLACE until last")); } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has changed, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ VdbeNoopComment((v, "uniqueness check for ROWID")); sqlite3VdbeVerifyAbortable(v, onError); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); switch( onError ){ default: { onError = OE_Abort; /* no break */ deliberate_fall_through } case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3RowidConstraint(pParse, onError, pTab); break; } case OE_Replace: { /* If there are DELETE triggers on this table and the ** recursive-triggers flag is set, call GenerateRowDelete() to ** remove the conflicting row from the table. This will fire ** the triggers and remove both the table and index b-tree entries. ** ** Otherwise, if there are no triggers or the recursive-triggers ** flag is not set, but the table has one or more indexes, call ** GenerateRowIndexDelete(). This removes the index b-tree entries ** only. The table b-tree entry will be replaced by the new entry ** when it is inserted. ** ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, ** also invoke MultiWrite() to indicate that this VDBE may require ** statement rollback (if the statement is aborted after the delete ** takes place). Earlier versions called sqlite3MultiWrite() regardless, ** but being more selective here allows statements like: ** ** REPLACE INTO t(rowid) VALUES($newrowid) ** ** to run without a statement journal if there are no indexes on the ** table. */ if( regTrigCnt ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regNewData, 1, 0, OE_Replace, 1, -1); sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ nReplaceTrig++; }else{ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK assert( HasRowid(pTab) ); /* This OP_Delete opcode fires the pre-update-hook only. It does ** not modify the b-tree. It is more efficient to let the coming ** OP_Insert replace the existing entry than it is to delete the ** existing entry and then insert a new one. */ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ if( pTab->pIndex ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); } } seenReplace = 1; break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); /* no break */ deliberate_fall_through } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } } sqlite3VdbeResolveLabel(v, addrRowidOk); if( pUpsert && pUpsertClause!=pUpsert ){ upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); }else if( ipkTop ){ ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, ipkTop-1); } } /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Compute the revised record entries for indices as we go. ** ** This loop also handles the case of the PRIMARY KEY index for a ** WITHOUT ROWID table. */ for(pIdx = indexIteratorFirst(&sIdxIter, &ix); pIdx; pIdx = indexIteratorNext(&sIdxIter, &ix) ){ int regIdx; /* Range of registers holding content for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ int addrConflictCk; /* First opcode in the conflict check logic */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ if( pUpsert ){ pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); if( upsertIpkDelay && pUpsertClause==pUpsert ){ sqlite3VdbeJumpHere(v, upsertIpkDelay); } } addrUniqueOk = sqlite3VdbeMakeLabel(pParse); if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } VdbeNoopComment((v, "prep index %s", pIdx->zName)); iThisCur = iIdxCur+ix; /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->iSelfTab = -(regNewData+1); sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, SQLITE_JUMPIFNULL); pParse->iSelfTab = 0; } /* Create a record for this index entry as it should appear after ** the insert or update. Store that record in the aRegIdx[ix] register */ regIdx = aRegIdx[ix]+1; for(i=0; inColumn; i++){ int iField = pIdx->aiColumn[i]; int x; if( iField==XN_EXPR ){ pParse->iSelfTab = -(regNewData+1); sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); pParse->iSelfTab = 0; VdbeComment((v, "%s column %d", pIdx->zName, i)); }else if( iField==XN_ROWID || iField==pTab->iPKey ){ x = regNewData; sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); VdbeComment((v, "rowid")); }else{ testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); } } sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); VdbeComment((v, "for %s", pIdx->zName)); #ifdef SQLITE_ENABLE_NULL_TRIM if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ sqlite3SetMakeRecordP5(v, pIdx->pTable); } #endif sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); /* In an UPDATE operation, if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table and there has been no change the ** primary key, then no collision is possible. The collision detection ** logic below can all be skipped. */ if( isUpdate && pPk==pIdx && pkChng==0 ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } /* Find out what action to take in case there is a uniqueness conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Figure out if the upsert clause applies to this index */ if( pUpsertClause ){ if( pUpsertClause->isDoUpdate==0 ){ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ }else{ onError = OE_Update; /* DO UPDATE */ } } /* Collision detection may be omitted if all of the following are true: ** (1) The conflict resolution algorithm is REPLACE ** (2) The table is a WITHOUT ROWID table ** (3) There are no secondary indexes on the table ** (4) No delete triggers need to be fired if there is a conflict ** (5) No FK constraint counters need to be updated if a conflict occurs. ** ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row ** must be explicitly deleted in order to ensure any pre-update hook ** is invoked. */ assert( IsOrdinaryTable(pTab) ); #ifndef SQLITE_ENABLE_PREUPDATE_HOOK if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ && pPk==pIdx /* Condition 2 */ && onError==OE_Replace /* Condition 1 */ && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ /* Check to see if the new index entry will be unique */ sqlite3VdbeVerifyAbortable(v, onError); addrConflictCk = sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, regIdx, pIdx->nKeyCol); VdbeCoverage(v); /* Generate code to handle collisions */ regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); if( isUpdate || onError==OE_Replace ){ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); /* Conflict only if the rowid of the existing index entry ** is different from old-rowid */ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } }else{ int x; /* Extract the PRIMARY KEY from the end of the index entry and ** store it in registers regR..regR+nPk-1 */ if( pIdx!=pPk ){ for(i=0; inKeyCol; i++){ assert( pPk->aiColumn[i]>=0 ); x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); VdbeComment((v, "%s.%s", pTab->zName, pTab->aCol[pPk->aiColumn[i]].zCnName)); } } if( isUpdate ){ /* If currently processing the PRIMARY KEY of a WITHOUT ROWID ** table, only conflict if the new PRIMARY KEY values are actually ** different from the old. See TH3 withoutrowid04.test. ** ** For a UNIQUE index, only conflict if the PRIMARY KEY values ** of the matched index row are different from the original PRIMARY ** KEY values of this row before the update. */ int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; int op = OP_Ne; int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); for(i=0; inKeyCol; i++){ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); x = pPk->aiColumn[i]; assert( x>=0 ); if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } x = sqlite3TableColumnToStorage(pTab, x); sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverageIf(v, op==OP_Eq); VdbeCoverageIf(v, op==OP_Ne); } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); switch( onError ){ case OE_Rollback: case OE_Abort: case OE_Fail: { testcase( onError==OE_Rollback ); testcase( onError==OE_Abort ); testcase( onError==OE_Fail ); sqlite3UniqueConstraint(pParse, onError, pIdx); break; } #ifndef SQLITE_OMIT_UPSERT case OE_Update: { sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); /* no break */ deliberate_fall_through } #endif case OE_Ignore: { testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } default: { int nConflictCk; /* Number of opcodes in conflict check logic */ assert( onError==OE_Replace ); nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; assert( nConflictCk>0 || db->mallocFailed ); testcase( nConflictCk<=0 ); testcase( nConflictCk>1 ); if( regTrigCnt ){ sqlite3MultiWrite(pParse); nReplaceTrig++; } if( pTrigger && isUpdate ){ sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); } sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regR, nPkField, 0, OE_Replace, (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); if( pTrigger && isUpdate ){ sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); } if( regTrigCnt ){ int addrBypass; /* Jump destination to bypass recheck logic */ sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ VdbeComment((v, "bypass recheck")); /* Here we insert code that will be invoked after all constraint ** checks have run, if and only if one or more replace triggers ** fired. */ sqlite3VdbeResolveLabel(v, lblRecheckOk); lblRecheckOk = sqlite3VdbeMakeLabel(pParse); if( pIdx->pPartIdxWhere ){ /* Bypass the recheck if this partial index is not defined ** for the current row */ sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); VdbeCoverage(v); } /* Copy the constraint check code from above, except change ** the constraint-ok jump destination to be the address of ** the next retest block */ while( nConflictCk>0 ){ VdbeOp x; /* Conflict check opcode to copy */ /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. ** Hence, make a complete copy of the opcode, rather than using ** a pointer to the opcode. */ x = *sqlite3VdbeGetOp(v, addrConflictCk); if( x.opcode!=OP_IdxRowid ){ int p2; /* New P2 value for copied conflict check opcode */ const char *zP4; if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ p2 = lblRecheckOk; }else{ p2 = x.p2; } zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); sqlite3VdbeChangeP5(v, x.p5); VdbeCoverageIf(v, p2!=x.p2); } nConflictCk--; addrConflictCk++; } /* If the retest fails, issue an abort */ sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ } seenReplace = 1; break; } } sqlite3VdbeResolveLabel(v, addrUniqueOk); if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); if( pUpsertClause && upsertIpkReturn && sqlite3UpsertNextIsIPK(pUpsertClause) ){ sqlite3VdbeGoto(v, upsertIpkDelay+1); sqlite3VdbeJumpHere(v, upsertIpkReturn); upsertIpkReturn = 0; } } /* If the IPK constraint is a REPLACE, run it last */ if( ipkTop ){ sqlite3VdbeGoto(v, ipkTop); VdbeComment((v, "Do IPK REPLACE")); assert( ipkBottom>0 ); sqlite3VdbeJumpHere(v, ipkBottom); } /* Recheck all uniqueness constraints after replace triggers have run */ testcase( regTrigCnt!=0 && nReplaceTrig==0 ); assert( regTrigCnt!=0 || nReplaceTrig==0 ); if( nReplaceTrig ){ sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); if( !pPk ){ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); VdbeCoverage(v); sqlite3RowidConstraint(pParse, OE_Abort, pTab); }else{ sqlite3VdbeGoto(v, addrRecheck); } sqlite3VdbeResolveLabel(v, lblRecheckOk); } /* Generate the table record */ if( HasRowid(pTab) ){ int regRec = aRegIdx[ix]; sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); sqlite3SetMakeRecordP5(v, pTab); if( !bAffinityDone ){ sqlite3TableAffinity(v, pTab, 0); } } *pbMayReplace = seenReplace; VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); } #ifdef SQLITE_ENABLE_NULL_TRIM /* ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) ** to be the number of columns in table pTab that must not be NULL-trimmed. ** ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. */ SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ u16 i; /* Records with omitted columns are only allowed for schema format ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ if( pTab->pSchema->file_format<2 ) return; for(i=pTab->nCol-1; i>0; i--){ if( pTab->aCol[i].iDflt!=0 ) break; if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; } sqlite3VdbeChangeP5(v, i+1); } #endif /* ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor ** number is iCur, and register regData contains the new record for the ** PK index. This function adds code to invoke the pre-update hook, ** if one is registered. */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK static void codeWithoutRowidPreupdate( Parse *pParse, /* Parse context */ Table *pTab, /* Table being updated */ int iCur, /* Cursor number for table */ int regData /* Data containing new record */ ){ Vdbe *v = pParse->pVdbe; int r = sqlite3GetTempReg(pParse); assert( !HasRowid(pTab) ); assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); sqlite3VdbeAddOp2(v, OP_Integer, 0, r); sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); sqlite3ReleaseTempReg(pParse, r); } #else # define codeWithoutRowidPreupdate(a,b,c,d) #endif /* ** This routine generates code to finish the INSERT or UPDATE operation ** that was started by a prior call to sqlite3GenerateConstraintChecks. ** A consecutive range of registers starting at regNewData contains the ** rowid and the content to be inserted. ** ** The arguments to this routine should be the same as the first six ** arguments to sqlite3GenerateConstraintChecks. */ SQLITE_PRIVATE void sqlite3CompleteInsertion( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int iDataCur, /* Cursor of the canonical data source */ int iIdxCur, /* First index cursor */ int regNewData, /* Range of content */ int *aRegIdx, /* Register used by each index. 0 for unused indices */ int update_flags, /* True for UPDATE, False for INSERT */ int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int i; /* Loop counter */ assert( update_flags==0 || update_flags==OPFLAG_ISUPDATE || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) ); v = pParse->pVdbe; assert( v!=0 ); assert( !IsView(pTab) ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ /* All REPLACE indexes are at the end of the list */ assert( pIdx->onError!=OE_Replace || pIdx->pNext==0 || pIdx->pNext->onError==OE_Replace ); if( aRegIdx[i]==0 ) continue; if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); } pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ pik_flags |= OPFLAG_NCHANGE; pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); if( update_flags==0 ){ codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); } } sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], aRegIdx[i]+1, pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); sqlite3VdbeChangeP5(v, pik_flags); } if( !HasRowid(pTab) ) return; if( pParse->nested ){ pik_flags = 0; }else{ pik_flags = OPFLAG_NCHANGE; pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); } if( appendBias ){ pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); if( !pParse->nested ){ sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } sqlite3VdbeChangeP5(v, pik_flags); } /* ** Allocate cursors for the pTab table and all its indices and generate ** code to open and initialized those cursors. ** ** The cursor for the object that contains the complete data (normally ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT ** ROWID table) is returned in *piDataCur. The first index cursor is ** returned in *piIdxCur. The number of indices is returned. ** ** Use iBase as the first cursor (either the *piDataCur for rowid tables ** or the first index for WITHOUT ROWID tables) if it is non-negative. ** If iBase is negative, then allocate the next available cursor. ** ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the ** pTab->pIndex list. ** ** If pTab is a virtual table, then this routine is a no-op and the ** *piDataCur and *piIdxCur values are left uninitialized. */ SQLITE_PRIVATE int sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int op, /* OP_OpenRead or OP_OpenWrite */ u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ int iBase, /* Use this for the table cursor, if there is one */ u8 *aToOpen, /* If not NULL: boolean for each table and index */ int *piDataCur, /* Write the database source cursor number here */ int *piIdxCur /* Write the first index cursor number here */ ){ int i; int iDb; int iDataCur; Index *pIdx; Vdbe *v; assert( op==OP_OpenRead || op==OP_OpenWrite ); assert( op==OP_OpenWrite || p5==0 ); assert( piDataCur!=0 ); assert( piIdxCur!=0 ); if( IsVirtual(pTab) ){ /* This routine is a no-op for virtual tables. Leave the output ** variables *piDataCur and *piIdxCur set to illegal cursor numbers ** for improved error detection. */ *piDataCur = *piIdxCur = -999; return 0; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = pParse->pVdbe; assert( v!=0 ); if( iBase<0 ) iBase = pParse->nTab; iDataCur = iBase++; *piDataCur = iDataCur; if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); }else if( pParse->db->noSharedCache==0 ){ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); } *piIdxCur = iBase; for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ int iIdxCur = iBase++; assert( pIdx->pSchema==pTab->pSchema ); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ *piDataCur = iIdxCur; p5 = 0; } if( aToOpen==0 || aToOpen[i+1] ){ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); sqlite3VdbeChangeP5(v, p5); VdbeComment((v, "%s", pIdx->zName)); } } if( iBase>pParse->nTab ) pParse->nTab = iBase; return i; } #ifdef SQLITE_TEST /* ** The following global variable is incremented whenever the ** transfer optimization is used. This is used for testing ** purposes only - to make sure the transfer optimization really ** is happening when it is supposed to. */ SQLITE_API int sqlite3_xferopt_count; #endif /* SQLITE_TEST */ #ifndef SQLITE_OMIT_XFER_OPT /* ** Check to see if index pSrc is compatible as a source of data ** for index pDest in an insert transfer optimization. The rules ** for a compatible index: ** ** * The index is over the same set of columns ** * The same DESC and ASC markings occurs on all columns ** * The same onError processing (OE_Abort, OE_Ignore, etc) ** * The same collating sequence on each column ** * The index has the exact same WHERE clause */ static int xferCompatibleIndex(Index *pDest, Index *pSrc){ int i; assert( pDest && pSrc ); assert( pDest->pTable!=pSrc->pTable ); if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ return 0; /* Different number of columns */ } if( pDest->onError!=pSrc->onError ){ return 0; /* Different conflict resolution strategies */ } for(i=0; inKeyCol; i++){ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ return 0; /* Different columns indexed */ } if( pSrc->aiColumn[i]==XN_EXPR ){ assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, pDest->aColExpr->a[i].pExpr, -1)!=0 ){ return 0; /* Different expressions in the index */ } } if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ return 0; /* Different sort orders */ } if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ return 0; /* Different collating sequences */ } } if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ return 0; /* Different WHERE clauses */ } /* If no test above fails then the indices must be compatible */ return 1; } /* ** Attempt the transfer optimization on INSERTs of the form ** ** INSERT INTO tab1 SELECT * FROM tab2; ** ** The xfer optimization transfers raw records from tab2 over to tab1. ** Columns are not decoded and reassembled, which greatly improves ** performance. Raw index records are transferred in the same way. ** ** The xfer optimization is only attempted if tab1 and tab2 are compatible. ** There are lots of rules for determining compatibility - see comments ** embedded in the code for details. ** ** This routine returns TRUE if the optimization is guaranteed to be used. ** Sometimes the xfer optimization will only work if the destination table ** is empty - a factor that can only be determined at run-time. In that ** case, this routine generates code for the xfer optimization but also ** does a test to see if the destination table is empty and jumps over the ** xfer optimization code if the test fails. In that case, this routine ** returns FALSE so that the caller will know to go ahead and generate ** an unoptimized transfer. This routine also returns FALSE if there ** is no chance that the xfer optimization can be applied. ** ** This optimization is particularly useful at making VACUUM run faster. */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ){ sqlite3 *db = pParse->db; ExprList *pEList; /* The result set of the SELECT */ Table *pSrc; /* The table in the FROM clause of SELECT */ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ SrcItem *pItem; /* An element of pSelect->pSrc */ int i; /* Loop counter */ int iDbSrc; /* The database of pSrc */ int iSrc, iDest; /* Cursors from source and destination */ int addr1, addr2; /* Loop addresses */ int emptyDestTest = 0; /* Address of test for empty pDest */ int emptySrcTest = 0; /* Address of test for empty pSrc */ Vdbe *v; /* The VDBE we are building */ int regAutoinc; /* Memory register used by AUTOINC */ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ int regData, regRowid; /* Registers holding data and rowid */ assert( pSelect!=0 ); if( pParse->pWith || pSelect->pWith ){ /* Do not attempt to process this query if there are an WITH clauses ** attached to it. Proceeding may generate a false "no such table: xxx" ** error if pSelect reads from a CTE named "xxx". */ return 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pDest) ){ return 0; /* tab1 must not be a virtual table */ } #endif if( onError==OE_Default ){ if( pDest->iPKey>=0 ) onError = pDest->keyConf; if( onError==OE_Default ) onError = OE_Abort; } assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ if( pSelect->pSrc->nSrc!=1 ){ return 0; /* FROM clause must have exactly one term */ } if( pSelect->pSrc->a[0].pSelect ){ return 0; /* FROM clause cannot contain a subquery */ } if( pSelect->pWhere ){ return 0; /* SELECT may not have a WHERE clause */ } if( pSelect->pOrderBy ){ return 0; /* SELECT may not have an ORDER BY clause */ } /* Do not need to test for a HAVING clause. If HAVING is present but ** there is no ORDER BY, we will get an error. */ if( pSelect->pGroupBy ){ return 0; /* SELECT may not have a GROUP BY clause */ } if( pSelect->pLimit ){ return 0; /* SELECT may not have a LIMIT clause */ } if( pSelect->pPrior ){ return 0; /* SELECT may not be a compound query */ } if( pSelect->selFlags & SF_Distinct ){ return 0; /* SELECT may not be DISTINCT */ } pEList = pSelect->pEList; assert( pEList!=0 ); if( pEList->nExpr!=1 ){ return 0; /* The result set must have exactly one column */ } assert( pEList->a[0].pExpr ); if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ return 0; /* The result set must be the special operator "*" */ } /* At this point we have established that the statement is of the ** correct syntactic form to participate in this optimization. Now ** we have to check the semantics. */ pItem = pSelect->pSrc->a; pSrc = sqlite3LocateTableItem(pParse, 0, pItem); if( pSrc==0 ){ return 0; /* FROM clause does not contain a real table */ } if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ return 0; /* tab1 and tab2 may not be the same table */ } if( HasRowid(pDest)!=HasRowid(pSrc) ){ return 0; /* source and destination must both be WITHOUT ROWID or not */ } if( !IsOrdinaryTable(pSrc) ){ return 0; /* tab2 may not be a view or virtual table */ } if( pDest->nCol!=pSrc->nCol ){ return 0; /* Number of columns must be the same in tab1 and tab2 */ } if( pDest->iPKey!=pSrc->iPKey ){ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ } if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ return 0; /* Cannot feed from a non-strict into a strict table */ } for(i=0; inCol; i++){ Column *pDestCol = &pDest->aCol[i]; Column *pSrcCol = &pSrc->aCol[i]; #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN ){ return 0; /* Neither table may have __hidden__ columns */ } #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Even if tables t1 and t2 have identical schemas, if they contain ** generated columns, then this statement is semantically incorrect: ** ** INSERT INTO t2 SELECT * FROM t1; ** ** The reason is that generated column values are returned by the ** the SELECT statement on the right but the INSERT statement on the ** left wants them to be omitted. ** ** Nevertheless, this is a useful notational shorthand to tell SQLite ** to do a bulk transfer all of the content from t1 over to t2. ** ** We could, in theory, disable this (except for internal use by the ** VACUUM command where it is actually needed). But why do that? It ** seems harmless enough, and provides a useful service. */ if( (pDestCol->colFlags & COLFLAG_GENERATED) != (pSrcCol->colFlags & COLFLAG_GENERATED) ){ return 0; /* Both columns have the same generated-column type */ } /* But the transfer is only allowed if both the source and destination ** tables have the exact same expressions for generated columns. ** This requirement could be relaxed for VIRTUAL columns, I suppose. */ if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ if( sqlite3ExprCompare(0, sqlite3ColumnExpr(pSrc, pSrcCol), sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); testcase( pDestCol->colFlags & COLFLAG_STORED ); return 0; /* Different generator expressions */ } } #endif if( pDestCol->affinity!=pSrcCol->affinity ){ return 0; /* Affinity must be the same on all columns */ } if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), sqlite3ColumnColl(pSrcCol))!=0 ){ return 0; /* Collating sequence must be the same on all columns */ } if( pDestCol->notNull && !pSrcCol->notNull ){ return 0; /* tab2 must be NOT NULL if tab1 is */ } /* Default values for second and subsequent columns need to match. */ if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); if( (pDestExpr==0)!=(pSrcExpr==0) || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, pSrcExpr->u.zToken)!=0) ){ return 0; /* Default values must be the same for all columns */ } } } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ if( IsUniqueIndex(pDestIdx) ){ destHasUniqueIdx = 1; } for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } if( pSrcIdx==0 ){ return 0; /* pDestIdx has no corresponding index in pSrc */ } if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema && sqlite3FaultSim(411)==SQLITE_OK ){ /* The sqlite3FaultSim() call allows this corruption test to be ** bypassed during testing, in order to exercise other corruption tests ** further downstream. */ return 0; /* Corrupt schema - two indexes on the same btree */ } } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && (db->mDbFlags & DBFLAG_Vacuum)==0 && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif #ifndef SQLITE_OMIT_FOREIGN_KEY /* Disallow the transfer optimization if the destination table contains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM ** command, and the VACUUM command disables foreign key constraints. So ** the extra complication to make this rule less restrictive is probably ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] */ assert( IsOrdinaryTable(pDest) ); if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ return 0; } #endif if( (db->flags & SQLITE_CountRows)!=0 ){ return 0; /* xfer opt does not play well with PRAGMA count_changes */ } /* If we get this far, it means that the xfer optimization is at ** least a possibility, though it might only work if the destination ** table (tab1) is initially empty. */ #ifdef SQLITE_TEST sqlite3_xferopt_count++; #endif iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); v = sqlite3GetVdbe(pParse); sqlite3CodeVerifySchema(pParse, iDbSrc); iSrc = pParse->nTab++; iDest = pParse->nTab++; regAutoinc = autoIncBegin(pParse, iDbDest, pDest); regData = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, regData); regRowid = sqlite3GetTempReg(pParse); sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); assert( HasRowid(pDest) || destHasUniqueIdx ); if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ || destHasUniqueIdx /* (2) */ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ )){ /* In some circumstances, we are able to run the xfer optimization ** only if the destination table is initially empty. Unless the ** DBFLAG_Vacuum flag is set, this block generates code to make ** that determination. If DBFLAG_Vacuum is set, then the destination ** table is always empty. ** ** Conditions under which the destination must be empty: ** ** (1) There is no INTEGER PRIMARY KEY but there are indices. ** (If the destination is not initially empty, the rowid fields ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) ** ** (3) onError is something other than OE_Abort and OE_Rollback. */ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, addr1); } if( HasRowid(pSrc) ){ u8 insFlags; sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeVerifyAbortable(v, onError); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); VdbeCoverage(v); sqlite3RowidConstraint(pParse, onError, pDest); sqlite3VdbeJumpHere(v, addr2); } autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); assert( (pDest->tabFlags & TF_Autoincrement)==0 ); } if( db->mDbFlags & DBFLAG_Vacuum ){ sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; }else{ insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); insFlags &= ~OPFLAG_PREFORMAT; }else #endif { sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); } sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); } sqlite3VdbeChangeP5(v, insFlags); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); }else{ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ u8 idxInsFlags = 0; for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( db->mDbFlags & DBFLAG_Vacuum ){ /* This INSERT command is part of a VACUUM operation, which guarantees ** that the destination table is empty. If all indexed columns use ** collation sequence BINARY, then it can also be assumed that the ** index will be populated by inserting keys in strictly sorted ** order. In this case, instead of seeking within the b-tree as part ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the ** OP_IdxInsert to seek to the point within the b-tree where each key ** should be inserted. This is faster. ** ** If any of the indexed columns use a collation sequence other than ** BINARY, this optimization is disabled. This is because the user ** might change the definition of a collation sequence and then run ** a VACUUM command. In that case keys may not be written in strictly ** sorted order. */ for(i=0; inColumn; i++){ const char *zColl = pSrcIdx->azColl[i]; if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; } if( i==pSrcIdx->nColumn ){ idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); } }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ idxInsFlags |= OPFLAG_NCHANGE; } if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); if( (db->mDbFlags & DBFLAG_Vacuum)==0 && !HasRowid(pDest) && IsPrimaryKeyIndex(pDestIdx) ){ codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); } } sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); } if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regData); if( emptyDestTest ){ sqlite3AutoincrementEnd(pParse); sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); sqlite3VdbeJumpHere(v, emptyDestTest); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); return 0; }else{ return 1; } } #endif /* SQLITE_OMIT_XFER_OPT */ /************** End of insert.c **********************************************/ /************** Begin file legacy.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. */ /* #include "sqliteInt.h" */ /* ** Execute SQL code. Return one of the SQLITE_ success/failure ** codes. Also write an error message into memory obtained from ** malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result ** the xCallback() function is called. pArg becomes the first ** argument to xCallback(). If xCallback=NULL then no callback ** is invoked, even for queries. */ SQLITE_API int sqlite3_exec( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite3_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; /* Return code */ const char *zLeftover; /* Tail of unprocessed SQL */ sqlite3_stmt *pStmt = 0; /* The current SQL statement */ char **azCols = 0; /* Names of result columns */ int callbackIsInit; /* True if callback data is initialized */ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; if( zSql==0 ) zSql = ""; sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK); while( rc==SQLITE_OK && zSql[0] ){ int nCol = 0; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; continue; } callbackIsInit = 0; while( 1 ){ int i; rc = sqlite3_step(pStmt); /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !callbackIsInit && db->flags&SQLITE_NullCallback)) ){ if( !callbackIsInit ){ nCol = sqlite3_column_count(pStmt); azCols = sqlite3DbMallocRaw(db, (2*nCol+1)*sizeof(const char*)); if( azCols==0 ){ goto exec_out; } for(i=0; ierrMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; } /************** End of legacy.c **********************************************/ /************** Begin file loadext.c *****************************************/ /* ** 2006 June 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to dynamically load extensions into ** the SQLite library. */ #ifndef SQLITE_CORE #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ #endif /************** Include sqlite3ext.h in the middle of loadext.c **************/ /************** Begin file sqlite3ext.h **************************************/ /* ** 2006 June 7 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the SQLite interface for use by ** shared libraries that want to be imported as extensions into ** an SQLite instance. Shared libraries that intend to be loaded ** as extensions by SQLite should #include this file instead of ** sqlite3.h. */ #ifndef SQLITE3EXT_H #define SQLITE3EXT_H /* #include "sqlite3.h" */ /* ** The following structure holds pointers to all of the SQLite API ** routines. ** ** WARNING: In order to maintain backwards compatibility, add new ** interfaces to the end of this structure only. If you insert new ** interfaces in the middle of this structure, then older different ** versions of SQLite will not be able to load each other's shared ** libraries! */ struct sqlite3_api_routines { void * (*aggregate_context)(sqlite3_context*,int nBytes); int (*aggregate_count)(sqlite3_context*); int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*)); int (*bind_double)(sqlite3_stmt*,int,double); int (*bind_int)(sqlite3_stmt*,int,int); int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64); int (*bind_null)(sqlite3_stmt*,int); int (*bind_parameter_count)(sqlite3_stmt*); int (*bind_parameter_index)(sqlite3_stmt*,const char*zName); const char * (*bind_parameter_name)(sqlite3_stmt*,int); int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*)); int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*)); int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*); int (*busy_handler)(sqlite3*,int(*)(void*,int),void*); int (*busy_timeout)(sqlite3*,int ms); int (*changes)(sqlite3*); int (*close)(sqlite3*); int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*, int eTextRep,const char*)); int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*, int eTextRep,const void*)); const void * (*column_blob)(sqlite3_stmt*,int iCol); int (*column_bytes)(sqlite3_stmt*,int iCol); int (*column_bytes16)(sqlite3_stmt*,int iCol); int (*column_count)(sqlite3_stmt*pStmt); const char * (*column_database_name)(sqlite3_stmt*,int); const void * (*column_database_name16)(sqlite3_stmt*,int); const char * (*column_decltype)(sqlite3_stmt*,int i); const void * (*column_decltype16)(sqlite3_stmt*,int); double (*column_double)(sqlite3_stmt*,int iCol); int (*column_int)(sqlite3_stmt*,int iCol); sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol); const char * (*column_name)(sqlite3_stmt*,int); const void * (*column_name16)(sqlite3_stmt*,int); const char * (*column_origin_name)(sqlite3_stmt*,int); const void * (*column_origin_name16)(sqlite3_stmt*,int); const char * (*column_table_name)(sqlite3_stmt*,int); const void * (*column_table_name16)(sqlite3_stmt*,int); const unsigned char * (*column_text)(sqlite3_stmt*,int iCol); const void * (*column_text16)(sqlite3_stmt*,int iCol); int (*column_type)(sqlite3_stmt*,int iCol); sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol); void * (*commit_hook)(sqlite3*,int(*)(void*),void*); int (*complete)(const char*sql); int (*complete16)(const void*sql); int (*create_collation)(sqlite3*,const char*,int,void*, int(*)(void*,int,const void*,int,const void*)); int (*create_collation16)(sqlite3*,const void*,int,void*, int(*)(void*,int,const void*,int,const void*)); int (*create_function)(sqlite3*,const char*,int,int,void*, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*)); int (*create_function16)(sqlite3*,const void*,int,int,void*, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*)); int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*); int (*data_count)(sqlite3_stmt*pStmt); sqlite3 * (*db_handle)(sqlite3_stmt*); int (*declare_vtab)(sqlite3*,const char*); int (*enable_shared_cache)(int); int (*errcode)(sqlite3*db); const char * (*errmsg)(sqlite3*); const void * (*errmsg16)(sqlite3*); int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**); int (*expired)(sqlite3_stmt*); int (*finalize)(sqlite3_stmt*pStmt); void (*free)(void*); void (*free_table)(char**result); int (*get_autocommit)(sqlite3*); void * (*get_auxdata)(sqlite3_context*,int); int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**); int (*global_recover)(void); void (*interruptx)(sqlite3*); sqlite_int64 (*last_insert_rowid)(sqlite3*); const char * (*libversion)(void); int (*libversion_number)(void); void *(*malloc)(int); char * (*mprintf)(const char*,...); int (*open)(const char*,sqlite3**); int (*open16)(const void*,sqlite3**); int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*); void (*progress_handler)(sqlite3*,int,int(*)(void*),void*); void *(*realloc)(void*,int); int (*reset)(sqlite3_stmt*pStmt); void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_double)(sqlite3_context*,double); void (*result_error)(sqlite3_context*,const char*,int); void (*result_error16)(sqlite3_context*,const void*,int); void (*result_int)(sqlite3_context*,int); void (*result_int64)(sqlite3_context*,sqlite_int64); void (*result_null)(sqlite3_context*); void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*)); void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*)); void (*result_value)(sqlite3_context*,sqlite3_value*); void * (*rollback_hook)(sqlite3*,void(*)(void*),void*); int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*, const char*,const char*),void*); void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*)); char * (*xsnprintf)(int,char*,const char*,...); int (*step)(sqlite3_stmt*); int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*, char const**,char const**,int*,int*,int*); void (*thread_cleanup)(void); int (*total_changes)(sqlite3*); void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*); int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*); void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*, sqlite_int64),void*); void * (*user_data)(sqlite3_context*); const void * (*value_blob)(sqlite3_value*); int (*value_bytes)(sqlite3_value*); int (*value_bytes16)(sqlite3_value*); double (*value_double)(sqlite3_value*); int (*value_int)(sqlite3_value*); sqlite_int64 (*value_int64)(sqlite3_value*); int (*value_numeric_type)(sqlite3_value*); const unsigned char * (*value_text)(sqlite3_value*); const void * (*value_text16)(sqlite3_value*); const void * (*value_text16be)(sqlite3_value*); const void * (*value_text16le)(sqlite3_value*); int (*value_type)(sqlite3_value*); char *(*vmprintf)(const char*,va_list); /* Added ??? */ int (*overload_function)(sqlite3*, const char *zFuncName, int nArg); /* Added by 3.3.13 */ int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); int (*clear_bindings)(sqlite3_stmt*); /* Added by 3.4.1 */ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*, void (*xDestroy)(void *)); /* Added by 3.5.0 */ int (*bind_zeroblob)(sqlite3_stmt*,int,int); int (*blob_bytes)(sqlite3_blob*); int (*blob_close)(sqlite3_blob*); int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64, int,sqlite3_blob**); int (*blob_read)(sqlite3_blob*,void*,int,int); int (*blob_write)(sqlite3_blob*,const void*,int,int); int (*create_collation_v2)(sqlite3*,const char*,int,void*, int(*)(void*,int,const void*,int,const void*), void(*)(void*)); int (*file_control)(sqlite3*,const char*,int,void*); sqlite3_int64 (*memory_highwater)(int); sqlite3_int64 (*memory_used)(void); sqlite3_mutex *(*mutex_alloc)(int); void (*mutex_enter)(sqlite3_mutex*); void (*mutex_free)(sqlite3_mutex*); void (*mutex_leave)(sqlite3_mutex*); int (*mutex_try)(sqlite3_mutex*); int (*open_v2)(const char*,sqlite3**,int,const char*); int (*release_memory)(int); void (*result_error_nomem)(sqlite3_context*); void (*result_error_toobig)(sqlite3_context*); int (*sleep)(int); void (*soft_heap_limit)(int); sqlite3_vfs *(*vfs_find)(const char*); int (*vfs_register)(sqlite3_vfs*,int); int (*vfs_unregister)(sqlite3_vfs*); int (*xthreadsafe)(void); void (*result_zeroblob)(sqlite3_context*,int); void (*result_error_code)(sqlite3_context*,int); int (*test_control)(int, ...); void (*randomness)(int,void*); sqlite3 *(*context_db_handle)(sqlite3_context*); int (*extended_result_codes)(sqlite3*,int); int (*limit)(sqlite3*,int,int); sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*); const char *(*sql)(sqlite3_stmt*); int (*status)(int,int*,int*,int); int (*backup_finish)(sqlite3_backup*); sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*); int (*backup_pagecount)(sqlite3_backup*); int (*backup_remaining)(sqlite3_backup*); int (*backup_step)(sqlite3_backup*,int); const char *(*compileoption_get)(int); int (*compileoption_used)(const char*); int (*create_function_v2)(sqlite3*,const char*,int,int,void*, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void(*xDestroy)(void*)); int (*db_config)(sqlite3*,int,...); sqlite3_mutex *(*db_mutex)(sqlite3*); int (*db_status)(sqlite3*,int,int*,int*,int); int (*extended_errcode)(sqlite3*); void (*log)(int,const char*,...); sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64); const char *(*sourceid)(void); int (*stmt_status)(sqlite3_stmt*,int,int); int (*strnicmp)(const char*,const char*,int); int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*); int (*wal_autocheckpoint)(sqlite3*,int); int (*wal_checkpoint)(sqlite3*,const char*); void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*); int (*blob_reopen)(sqlite3_blob*,sqlite3_int64); int (*vtab_config)(sqlite3*,int op,...); int (*vtab_on_conflict)(sqlite3*); /* Version 3.7.16 and later */ int (*close_v2)(sqlite3*); const char *(*db_filename)(sqlite3*,const char*); int (*db_readonly)(sqlite3*,const char*); int (*db_release_memory)(sqlite3*); const char *(*errstr)(int); int (*stmt_busy)(sqlite3_stmt*); int (*stmt_readonly)(sqlite3_stmt*); int (*stricmp)(const char*,const char*); int (*uri_boolean)(const char*,const char*,int); sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64); const char *(*uri_parameter)(const char*,const char*); char *(*xvsnprintf)(int,char*,const char*,va_list); int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*); /* Version 3.8.7 and later */ int (*auto_extension)(void(*)(void)); int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64, void(*)(void*)); int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64, void(*)(void*),unsigned char); int (*cancel_auto_extension)(void(*)(void)); int (*load_extension)(sqlite3*,const char*,const char*,char**); void *(*malloc64)(sqlite3_uint64); sqlite3_uint64 (*msize)(void*); void *(*realloc64)(void*,sqlite3_uint64); void (*reset_auto_extension)(void); void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64, void(*)(void*)); void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64, void(*)(void*), unsigned char); int (*strglob)(const char*,const char*); /* Version 3.8.11 and later */ sqlite3_value *(*value_dup)(const sqlite3_value*); void (*value_free)(sqlite3_value*); int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64); int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64); /* Version 3.9.0 and later */ unsigned int (*value_subtype)(sqlite3_value*); void (*result_subtype)(sqlite3_context*,unsigned int); /* Version 3.10.0 and later */ int (*status64)(int,sqlite3_int64*,sqlite3_int64*,int); int (*strlike)(const char*,const char*,unsigned int); int (*db_cacheflush)(sqlite3*); /* Version 3.12.0 and later */ int (*system_errno)(sqlite3*); /* Version 3.14.0 and later */ int (*trace_v2)(sqlite3*,unsigned,int(*)(unsigned,void*,void*,void*),void*); char *(*expanded_sql)(sqlite3_stmt*); /* Version 3.18.0 and later */ void (*set_last_insert_rowid)(sqlite3*,sqlite3_int64); /* Version 3.20.0 and later */ int (*prepare_v3)(sqlite3*,const char*,int,unsigned int, sqlite3_stmt**,const char**); int (*prepare16_v3)(sqlite3*,const void*,int,unsigned int, sqlite3_stmt**,const void**); int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*)); void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*)); void *(*value_pointer)(sqlite3_value*,const char*); int (*vtab_nochange)(sqlite3_context*); int (*value_nochange)(sqlite3_value*); const char *(*vtab_collation)(sqlite3_index_info*,int); /* Version 3.24.0 and later */ int (*keyword_count)(void); int (*keyword_name)(int,const char**,int*); int (*keyword_check)(const char*,int); sqlite3_str *(*str_new)(sqlite3*); char *(*str_finish)(sqlite3_str*); void (*str_appendf)(sqlite3_str*, const char *zFormat, ...); void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list); void (*str_append)(sqlite3_str*, const char *zIn, int N); void (*str_appendall)(sqlite3_str*, const char *zIn); void (*str_appendchar)(sqlite3_str*, int N, char C); void (*str_reset)(sqlite3_str*); int (*str_errcode)(sqlite3_str*); int (*str_length)(sqlite3_str*); char *(*str_value)(sqlite3_str*); /* Version 3.25.0 and later */ int (*create_window_function)(sqlite3*,const char*,int,int,void*, void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInv)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*)); /* Version 3.26.0 and later */ const char *(*normalized_sql)(sqlite3_stmt*); /* Version 3.28.0 and later */ int (*stmt_isexplain)(sqlite3_stmt*); int (*value_frombind)(sqlite3_value*); /* Version 3.30.0 and later */ int (*drop_modules)(sqlite3*,const char**); /* Version 3.31.0 and later */ sqlite3_int64 (*hard_heap_limit64)(sqlite3_int64); const char *(*uri_key)(const char*,int); const char *(*filename_database)(const char*); const char *(*filename_journal)(const char*); const char *(*filename_wal)(const char*); /* Version 3.32.0 and later */ const char *(*create_filename)(const char*,const char*,const char*, int,const char**); void (*free_filename)(const char*); sqlite3_file *(*database_file_object)(const char*); /* Version 3.34.0 and later */ int (*txn_state)(sqlite3*,const char*); /* Version 3.36.1 and later */ sqlite3_int64 (*changes64)(sqlite3*); sqlite3_int64 (*total_changes64)(sqlite3*); /* Version 3.37.0 and later */ int (*autovacuum_pages)(sqlite3*, unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int), void*, void(*)(void*)); /* Version 3.38.0 and later */ int (*error_offset)(sqlite3*); int (*vtab_rhs_value)(sqlite3_index_info*,int,sqlite3_value**); int (*vtab_distinct)(sqlite3_index_info*); int (*vtab_in)(sqlite3_index_info*,int,int); int (*vtab_in_first)(sqlite3_value*,sqlite3_value**); int (*vtab_in_next)(sqlite3_value*,sqlite3_value**); /* Version 3.39.0 and later */ int (*deserialize)(sqlite3*,const char*,unsigned char*, sqlite3_int64,sqlite3_int64,unsigned); unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*, unsigned int); const char *(*db_name)(sqlite3*,int); /* Version 3.40.0 and later */ int (*value_encoding)(sqlite3_value*); /* Version 3.41.0 and later */ int (*is_interrupted)(sqlite3*); /* Version 3.43.0 and later */ int (*stmt_explain)(sqlite3_stmt*,int); /* Version 3.44.0 and later */ void *(*get_clientdata)(sqlite3*,const char*); int (*set_clientdata)(sqlite3*, const char*, void*, void(*)(void*)); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( sqlite3 *db, /* Handle to the database. */ char **pzErrMsg, /* Used to set error string on failure. */ const sqlite3_api_routines *pThunk /* Extension API function pointers. */ ); /* ** The following macros redefine the API routines so that they are ** redirected through the global sqlite3_api structure. ** ** This header file is also used by the loadext.c source file ** (part of the main SQLite library - not an extension) so that ** it can get access to the sqlite3_api_routines structure ** definition. But the main library does not want to redefine ** the API. So the redefinition macros are only valid if the ** SQLITE_CORE macros is undefined. */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) #define sqlite3_aggregate_context sqlite3_api->aggregate_context #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_aggregate_count sqlite3_api->aggregate_count #endif #define sqlite3_bind_blob sqlite3_api->bind_blob #define sqlite3_bind_double sqlite3_api->bind_double #define sqlite3_bind_int sqlite3_api->bind_int #define sqlite3_bind_int64 sqlite3_api->bind_int64 #define sqlite3_bind_null sqlite3_api->bind_null #define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count #define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index #define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name #define sqlite3_bind_text sqlite3_api->bind_text #define sqlite3_bind_text16 sqlite3_api->bind_text16 #define sqlite3_bind_value sqlite3_api->bind_value #define sqlite3_busy_handler sqlite3_api->busy_handler #define sqlite3_busy_timeout sqlite3_api->busy_timeout #define sqlite3_changes sqlite3_api->changes #define sqlite3_close sqlite3_api->close #define sqlite3_collation_needed sqlite3_api->collation_needed #define sqlite3_collation_needed16 sqlite3_api->collation_needed16 #define sqlite3_column_blob sqlite3_api->column_blob #define sqlite3_column_bytes sqlite3_api->column_bytes #define sqlite3_column_bytes16 sqlite3_api->column_bytes16 #define sqlite3_column_count sqlite3_api->column_count #define sqlite3_column_database_name sqlite3_api->column_database_name #define sqlite3_column_database_name16 sqlite3_api->column_database_name16 #define sqlite3_column_decltype sqlite3_api->column_decltype #define sqlite3_column_decltype16 sqlite3_api->column_decltype16 #define sqlite3_column_double sqlite3_api->column_double #define sqlite3_column_int sqlite3_api->column_int #define sqlite3_column_int64 sqlite3_api->column_int64 #define sqlite3_column_name sqlite3_api->column_name #define sqlite3_column_name16 sqlite3_api->column_name16 #define sqlite3_column_origin_name sqlite3_api->column_origin_name #define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16 #define sqlite3_column_table_name sqlite3_api->column_table_name #define sqlite3_column_table_name16 sqlite3_api->column_table_name16 #define sqlite3_column_text sqlite3_api->column_text #define sqlite3_column_text16 sqlite3_api->column_text16 #define sqlite3_column_type sqlite3_api->column_type #define sqlite3_column_value sqlite3_api->column_value #define sqlite3_commit_hook sqlite3_api->commit_hook #define sqlite3_complete sqlite3_api->complete #define sqlite3_complete16 sqlite3_api->complete16 #define sqlite3_create_collation sqlite3_api->create_collation #define sqlite3_create_collation16 sqlite3_api->create_collation16 #define sqlite3_create_function sqlite3_api->create_function #define sqlite3_create_function16 sqlite3_api->create_function16 #define sqlite3_create_module sqlite3_api->create_module #define sqlite3_create_module_v2 sqlite3_api->create_module_v2 #define sqlite3_data_count sqlite3_api->data_count #define sqlite3_db_handle sqlite3_api->db_handle #define sqlite3_declare_vtab sqlite3_api->declare_vtab #define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache #define sqlite3_errcode sqlite3_api->errcode #define sqlite3_errmsg sqlite3_api->errmsg #define sqlite3_errmsg16 sqlite3_api->errmsg16 #define sqlite3_exec sqlite3_api->exec #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_expired sqlite3_api->expired #endif #define sqlite3_finalize sqlite3_api->finalize #define sqlite3_free sqlite3_api->free #define sqlite3_free_table sqlite3_api->free_table #define sqlite3_get_autocommit sqlite3_api->get_autocommit #define sqlite3_get_auxdata sqlite3_api->get_auxdata #define sqlite3_get_table sqlite3_api->get_table #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_global_recover sqlite3_api->global_recover #endif #define sqlite3_interrupt sqlite3_api->interruptx #define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid #define sqlite3_libversion sqlite3_api->libversion #define sqlite3_libversion_number sqlite3_api->libversion_number #define sqlite3_malloc sqlite3_api->malloc #define sqlite3_mprintf sqlite3_api->mprintf #define sqlite3_open sqlite3_api->open #define sqlite3_open16 sqlite3_api->open16 #define sqlite3_prepare sqlite3_api->prepare #define sqlite3_prepare16 sqlite3_api->prepare16 #define sqlite3_prepare_v2 sqlite3_api->prepare_v2 #define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 #define sqlite3_profile sqlite3_api->profile #define sqlite3_progress_handler sqlite3_api->progress_handler #define sqlite3_realloc sqlite3_api->realloc #define sqlite3_reset sqlite3_api->reset #define sqlite3_result_blob sqlite3_api->result_blob #define sqlite3_result_double sqlite3_api->result_double #define sqlite3_result_error sqlite3_api->result_error #define sqlite3_result_error16 sqlite3_api->result_error16 #define sqlite3_result_int sqlite3_api->result_int #define sqlite3_result_int64 sqlite3_api->result_int64 #define sqlite3_result_null sqlite3_api->result_null #define sqlite3_result_text sqlite3_api->result_text #define sqlite3_result_text16 sqlite3_api->result_text16 #define sqlite3_result_text16be sqlite3_api->result_text16be #define sqlite3_result_text16le sqlite3_api->result_text16le #define sqlite3_result_value sqlite3_api->result_value #define sqlite3_rollback_hook sqlite3_api->rollback_hook #define sqlite3_set_authorizer sqlite3_api->set_authorizer #define sqlite3_set_auxdata sqlite3_api->set_auxdata #define sqlite3_snprintf sqlite3_api->xsnprintf #define sqlite3_step sqlite3_api->step #define sqlite3_table_column_metadata sqlite3_api->table_column_metadata #define sqlite3_thread_cleanup sqlite3_api->thread_cleanup #define sqlite3_total_changes sqlite3_api->total_changes #define sqlite3_trace sqlite3_api->trace #ifndef SQLITE_OMIT_DEPRECATED #define sqlite3_transfer_bindings sqlite3_api->transfer_bindings #endif #define sqlite3_update_hook sqlite3_api->update_hook #define sqlite3_user_data sqlite3_api->user_data #define sqlite3_value_blob sqlite3_api->value_blob #define sqlite3_value_bytes sqlite3_api->value_bytes #define sqlite3_value_bytes16 sqlite3_api->value_bytes16 #define sqlite3_value_double sqlite3_api->value_double #define sqlite3_value_int sqlite3_api->value_int #define sqlite3_value_int64 sqlite3_api->value_int64 #define sqlite3_value_numeric_type sqlite3_api->value_numeric_type #define sqlite3_value_text sqlite3_api->value_text #define sqlite3_value_text16 sqlite3_api->value_text16 #define sqlite3_value_text16be sqlite3_api->value_text16be #define sqlite3_value_text16le sqlite3_api->value_text16le #define sqlite3_value_type sqlite3_api->value_type #define sqlite3_vmprintf sqlite3_api->vmprintf #define sqlite3_vsnprintf sqlite3_api->xvsnprintf #define sqlite3_overload_function sqlite3_api->overload_function #define sqlite3_prepare_v2 sqlite3_api->prepare_v2 #define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 #define sqlite3_clear_bindings sqlite3_api->clear_bindings #define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob #define sqlite3_blob_bytes sqlite3_api->blob_bytes #define sqlite3_blob_close sqlite3_api->blob_close #define sqlite3_blob_open sqlite3_api->blob_open #define sqlite3_blob_read sqlite3_api->blob_read #define sqlite3_blob_write sqlite3_api->blob_write #define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2 #define sqlite3_file_control sqlite3_api->file_control #define sqlite3_memory_highwater sqlite3_api->memory_highwater #define sqlite3_memory_used sqlite3_api->memory_used #define sqlite3_mutex_alloc sqlite3_api->mutex_alloc #define sqlite3_mutex_enter sqlite3_api->mutex_enter #define sqlite3_mutex_free sqlite3_api->mutex_free #define sqlite3_mutex_leave sqlite3_api->mutex_leave #define sqlite3_mutex_try sqlite3_api->mutex_try #define sqlite3_open_v2 sqlite3_api->open_v2 #define sqlite3_release_memory sqlite3_api->release_memory #define sqlite3_result_error_nomem sqlite3_api->result_error_nomem #define sqlite3_result_error_toobig sqlite3_api->result_error_toobig #define sqlite3_sleep sqlite3_api->sleep #define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit #define sqlite3_vfs_find sqlite3_api->vfs_find #define sqlite3_vfs_register sqlite3_api->vfs_register #define sqlite3_vfs_unregister sqlite3_api->vfs_unregister #define sqlite3_threadsafe sqlite3_api->xthreadsafe #define sqlite3_result_zeroblob sqlite3_api->result_zeroblob #define sqlite3_result_error_code sqlite3_api->result_error_code #define sqlite3_test_control sqlite3_api->test_control #define sqlite3_randomness sqlite3_api->randomness #define sqlite3_context_db_handle sqlite3_api->context_db_handle #define sqlite3_extended_result_codes sqlite3_api->extended_result_codes #define sqlite3_limit sqlite3_api->limit #define sqlite3_next_stmt sqlite3_api->next_stmt #define sqlite3_sql sqlite3_api->sql #define sqlite3_status sqlite3_api->status #define sqlite3_backup_finish sqlite3_api->backup_finish #define sqlite3_backup_init sqlite3_api->backup_init #define sqlite3_backup_pagecount sqlite3_api->backup_pagecount #define sqlite3_backup_remaining sqlite3_api->backup_remaining #define sqlite3_backup_step sqlite3_api->backup_step #define sqlite3_compileoption_get sqlite3_api->compileoption_get #define sqlite3_compileoption_used sqlite3_api->compileoption_used #define sqlite3_create_function_v2 sqlite3_api->create_function_v2 #define sqlite3_db_config sqlite3_api->db_config #define sqlite3_db_mutex sqlite3_api->db_mutex #define sqlite3_db_status sqlite3_api->db_status #define sqlite3_extended_errcode sqlite3_api->extended_errcode #define sqlite3_log sqlite3_api->log #define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64 #define sqlite3_sourceid sqlite3_api->sourceid #define sqlite3_stmt_status sqlite3_api->stmt_status #define sqlite3_strnicmp sqlite3_api->strnicmp #define sqlite3_unlock_notify sqlite3_api->unlock_notify #define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint #define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint #define sqlite3_wal_hook sqlite3_api->wal_hook #define sqlite3_blob_reopen sqlite3_api->blob_reopen #define sqlite3_vtab_config sqlite3_api->vtab_config #define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict /* Version 3.7.16 and later */ #define sqlite3_close_v2 sqlite3_api->close_v2 #define sqlite3_db_filename sqlite3_api->db_filename #define sqlite3_db_readonly sqlite3_api->db_readonly #define sqlite3_db_release_memory sqlite3_api->db_release_memory #define sqlite3_errstr sqlite3_api->errstr #define sqlite3_stmt_busy sqlite3_api->stmt_busy #define sqlite3_stmt_readonly sqlite3_api->stmt_readonly #define sqlite3_stricmp sqlite3_api->stricmp #define sqlite3_uri_boolean sqlite3_api->uri_boolean #define sqlite3_uri_int64 sqlite3_api->uri_int64 #define sqlite3_uri_parameter sqlite3_api->uri_parameter #define sqlite3_uri_vsnprintf sqlite3_api->xvsnprintf #define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2 /* Version 3.8.7 and later */ #define sqlite3_auto_extension sqlite3_api->auto_extension #define sqlite3_bind_blob64 sqlite3_api->bind_blob64 #define sqlite3_bind_text64 sqlite3_api->bind_text64 #define sqlite3_cancel_auto_extension sqlite3_api->cancel_auto_extension #define sqlite3_load_extension sqlite3_api->load_extension #define sqlite3_malloc64 sqlite3_api->malloc64 #define sqlite3_msize sqlite3_api->msize #define sqlite3_realloc64 sqlite3_api->realloc64 #define sqlite3_reset_auto_extension sqlite3_api->reset_auto_extension #define sqlite3_result_blob64 sqlite3_api->result_blob64 #define sqlite3_result_text64 sqlite3_api->result_text64 #define sqlite3_strglob sqlite3_api->strglob /* Version 3.8.11 and later */ #define sqlite3_value_dup sqlite3_api->value_dup #define sqlite3_value_free sqlite3_api->value_free #define sqlite3_result_zeroblob64 sqlite3_api->result_zeroblob64 #define sqlite3_bind_zeroblob64 sqlite3_api->bind_zeroblob64 /* Version 3.9.0 and later */ #define sqlite3_value_subtype sqlite3_api->value_subtype #define sqlite3_result_subtype sqlite3_api->result_subtype /* Version 3.10.0 and later */ #define sqlite3_status64 sqlite3_api->status64 #define sqlite3_strlike sqlite3_api->strlike #define sqlite3_db_cacheflush sqlite3_api->db_cacheflush /* Version 3.12.0 and later */ #define sqlite3_system_errno sqlite3_api->system_errno /* Version 3.14.0 and later */ #define sqlite3_trace_v2 sqlite3_api->trace_v2 #define sqlite3_expanded_sql sqlite3_api->expanded_sql /* Version 3.18.0 and later */ #define sqlite3_set_last_insert_rowid sqlite3_api->set_last_insert_rowid /* Version 3.20.0 and later */ #define sqlite3_prepare_v3 sqlite3_api->prepare_v3 #define sqlite3_prepare16_v3 sqlite3_api->prepare16_v3 #define sqlite3_bind_pointer sqlite3_api->bind_pointer #define sqlite3_result_pointer sqlite3_api->result_pointer #define sqlite3_value_pointer sqlite3_api->value_pointer /* Version 3.22.0 and later */ #define sqlite3_vtab_nochange sqlite3_api->vtab_nochange #define sqlite3_value_nochange sqlite3_api->value_nochange #define sqlite3_vtab_collation sqlite3_api->vtab_collation /* Version 3.24.0 and later */ #define sqlite3_keyword_count sqlite3_api->keyword_count #define sqlite3_keyword_name sqlite3_api->keyword_name #define sqlite3_keyword_check sqlite3_api->keyword_check #define sqlite3_str_new sqlite3_api->str_new #define sqlite3_str_finish sqlite3_api->str_finish #define sqlite3_str_appendf sqlite3_api->str_appendf #define sqlite3_str_vappendf sqlite3_api->str_vappendf #define sqlite3_str_append sqlite3_api->str_append #define sqlite3_str_appendall sqlite3_api->str_appendall #define sqlite3_str_appendchar sqlite3_api->str_appendchar #define sqlite3_str_reset sqlite3_api->str_reset #define sqlite3_str_errcode sqlite3_api->str_errcode #define sqlite3_str_length sqlite3_api->str_length #define sqlite3_str_value sqlite3_api->str_value /* Version 3.25.0 and later */ #define sqlite3_create_window_function sqlite3_api->create_window_function /* Version 3.26.0 and later */ #define sqlite3_normalized_sql sqlite3_api->normalized_sql /* Version 3.28.0 and later */ #define sqlite3_stmt_isexplain sqlite3_api->stmt_isexplain #define sqlite3_value_frombind sqlite3_api->value_frombind /* Version 3.30.0 and later */ #define sqlite3_drop_modules sqlite3_api->drop_modules /* Version 3.31.0 and later */ #define sqlite3_hard_heap_limit64 sqlite3_api->hard_heap_limit64 #define sqlite3_uri_key sqlite3_api->uri_key #define sqlite3_filename_database sqlite3_api->filename_database #define sqlite3_filename_journal sqlite3_api->filename_journal #define sqlite3_filename_wal sqlite3_api->filename_wal /* Version 3.32.0 and later */ #define sqlite3_create_filename sqlite3_api->create_filename #define sqlite3_free_filename sqlite3_api->free_filename #define sqlite3_database_file_object sqlite3_api->database_file_object /* Version 3.34.0 and later */ #define sqlite3_txn_state sqlite3_api->txn_state /* Version 3.36.1 and later */ #define sqlite3_changes64 sqlite3_api->changes64 #define sqlite3_total_changes64 sqlite3_api->total_changes64 /* Version 3.37.0 and later */ #define sqlite3_autovacuum_pages sqlite3_api->autovacuum_pages /* Version 3.38.0 and later */ #define sqlite3_error_offset sqlite3_api->error_offset #define sqlite3_vtab_rhs_value sqlite3_api->vtab_rhs_value #define sqlite3_vtab_distinct sqlite3_api->vtab_distinct #define sqlite3_vtab_in sqlite3_api->vtab_in #define sqlite3_vtab_in_first sqlite3_api->vtab_in_first #define sqlite3_vtab_in_next sqlite3_api->vtab_in_next /* Version 3.39.0 and later */ #ifndef SQLITE_OMIT_DESERIALIZE #define sqlite3_deserialize sqlite3_api->deserialize #define sqlite3_serialize sqlite3_api->serialize #endif #define sqlite3_db_name sqlite3_api->db_name /* Version 3.40.0 and later */ #define sqlite3_value_encoding sqlite3_api->value_encoding /* Version 3.41.0 and later */ #define sqlite3_is_interrupted sqlite3_api->is_interrupted /* Version 3.43.0 and later */ #define sqlite3_stmt_explain sqlite3_api->stmt_explain /* Version 3.44.0 and later */ #define sqlite3_get_clientdata sqlite3_api->get_clientdata #define sqlite3_set_clientdata sqlite3_api->set_clientdata #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; # define SQLITE_EXTENSION_INIT3 \ extern const sqlite3_api_routines *sqlite3_api; #else /* This case when the file is being statically linked into the ** application */ # define SQLITE_EXTENSION_INIT1 /*no-op*/ # define SQLITE_EXTENSION_INIT2(v) (void)v; /* unused parameter */ # define SQLITE_EXTENSION_INIT3 /*no-op*/ #endif #endif /* SQLITE3EXT_H */ /************** End of sqlite3ext.h ******************************************/ /************** Continuing where we left off in loadext.c ********************/ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Some API routines are omitted when various features are ** excluded from a build of SQLite. Substitute a NULL pointer ** for any missing APIs. */ #ifndef SQLITE_ENABLE_COLUMN_METADATA # define sqlite3_column_database_name 0 # define sqlite3_column_database_name16 0 # define sqlite3_column_table_name 0 # define sqlite3_column_table_name16 0 # define sqlite3_column_origin_name 0 # define sqlite3_column_origin_name16 0 #endif #ifdef SQLITE_OMIT_AUTHORIZATION # define sqlite3_set_authorizer 0 #endif #ifdef SQLITE_OMIT_UTF16 # define sqlite3_bind_text16 0 # define sqlite3_collation_needed16 0 # define sqlite3_column_decltype16 0 # define sqlite3_column_name16 0 # define sqlite3_column_text16 0 # define sqlite3_complete16 0 # define sqlite3_create_collation16 0 # define sqlite3_create_function16 0 # define sqlite3_errmsg16 0 # define sqlite3_open16 0 # define sqlite3_prepare16 0 # define sqlite3_prepare16_v2 0 # define sqlite3_prepare16_v3 0 # define sqlite3_result_error16 0 # define sqlite3_result_text16 0 # define sqlite3_result_text16be 0 # define sqlite3_result_text16le 0 # define sqlite3_value_text16 0 # define sqlite3_value_text16be 0 # define sqlite3_value_text16le 0 # define sqlite3_column_database_name16 0 # define sqlite3_column_table_name16 0 # define sqlite3_column_origin_name16 0 #endif #ifdef SQLITE_OMIT_COMPLETE # define sqlite3_complete 0 # define sqlite3_complete16 0 #endif #ifdef SQLITE_OMIT_DECLTYPE # define sqlite3_column_decltype16 0 # define sqlite3_column_decltype 0 #endif #ifdef SQLITE_OMIT_PROGRESS_CALLBACK # define sqlite3_progress_handler 0 #endif #ifdef SQLITE_OMIT_VIRTUALTABLE # define sqlite3_create_module 0 # define sqlite3_create_module_v2 0 # define sqlite3_declare_vtab 0 # define sqlite3_vtab_config 0 # define sqlite3_vtab_on_conflict 0 # define sqlite3_vtab_collation 0 #endif #ifdef SQLITE_OMIT_SHARED_CACHE # define sqlite3_enable_shared_cache 0 #endif #if defined(SQLITE_OMIT_TRACE) || defined(SQLITE_OMIT_DEPRECATED) # define sqlite3_profile 0 # define sqlite3_trace 0 #endif #ifdef SQLITE_OMIT_GET_TABLE # define sqlite3_free_table 0 # define sqlite3_get_table 0 #endif #ifdef SQLITE_OMIT_INCRBLOB #define sqlite3_bind_zeroblob 0 #define sqlite3_blob_bytes 0 #define sqlite3_blob_close 0 #define sqlite3_blob_open 0 #define sqlite3_blob_read 0 #define sqlite3_blob_write 0 #define sqlite3_blob_reopen 0 #endif #if defined(SQLITE_OMIT_TRACE) # define sqlite3_trace_v2 0 #endif /* ** The following structure contains pointers to all SQLite API routines. ** A pointer to this structure is passed into extensions when they are ** loaded so that the extension can make calls back into the SQLite ** library. ** ** When adding new APIs, add them to the bottom of this structure ** in order to preserve backwards compatibility. ** ** Extensions that use newer APIs should first call the ** sqlite3_libversion_number() to make sure that the API they ** intend to use is supported by the library. Extensions should ** also check to make sure that the pointer to the function is ** not NULL before calling it. */ static const sqlite3_api_routines sqlite3Apis = { sqlite3_aggregate_context, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_aggregate_count, #else 0, #endif sqlite3_bind_blob, sqlite3_bind_double, sqlite3_bind_int, sqlite3_bind_int64, sqlite3_bind_null, sqlite3_bind_parameter_count, sqlite3_bind_parameter_index, sqlite3_bind_parameter_name, sqlite3_bind_text, sqlite3_bind_text16, sqlite3_bind_value, sqlite3_busy_handler, sqlite3_busy_timeout, sqlite3_changes, sqlite3_close, sqlite3_collation_needed, sqlite3_collation_needed16, sqlite3_column_blob, sqlite3_column_bytes, sqlite3_column_bytes16, sqlite3_column_count, sqlite3_column_database_name, sqlite3_column_database_name16, sqlite3_column_decltype, sqlite3_column_decltype16, sqlite3_column_double, sqlite3_column_int, sqlite3_column_int64, sqlite3_column_name, sqlite3_column_name16, sqlite3_column_origin_name, sqlite3_column_origin_name16, sqlite3_column_table_name, sqlite3_column_table_name16, sqlite3_column_text, sqlite3_column_text16, sqlite3_column_type, sqlite3_column_value, sqlite3_commit_hook, sqlite3_complete, sqlite3_complete16, sqlite3_create_collation, sqlite3_create_collation16, sqlite3_create_function, sqlite3_create_function16, sqlite3_create_module, sqlite3_data_count, sqlite3_db_handle, sqlite3_declare_vtab, sqlite3_enable_shared_cache, sqlite3_errcode, sqlite3_errmsg, sqlite3_errmsg16, sqlite3_exec, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_expired, #else 0, #endif sqlite3_finalize, sqlite3_free, sqlite3_free_table, sqlite3_get_autocommit, sqlite3_get_auxdata, sqlite3_get_table, 0, /* Was sqlite3_global_recover(), but that function is deprecated */ sqlite3_interrupt, sqlite3_last_insert_rowid, sqlite3_libversion, sqlite3_libversion_number, sqlite3_malloc, sqlite3_mprintf, sqlite3_open, sqlite3_open16, sqlite3_prepare, sqlite3_prepare16, sqlite3_profile, sqlite3_progress_handler, sqlite3_realloc, sqlite3_reset, sqlite3_result_blob, sqlite3_result_double, sqlite3_result_error, sqlite3_result_error16, sqlite3_result_int, sqlite3_result_int64, sqlite3_result_null, sqlite3_result_text, sqlite3_result_text16, sqlite3_result_text16be, sqlite3_result_text16le, sqlite3_result_value, sqlite3_rollback_hook, sqlite3_set_authorizer, sqlite3_set_auxdata, sqlite3_snprintf, sqlite3_step, sqlite3_table_column_metadata, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_thread_cleanup, #else 0, #endif sqlite3_total_changes, sqlite3_trace, #ifndef SQLITE_OMIT_DEPRECATED sqlite3_transfer_bindings, #else 0, #endif sqlite3_update_hook, sqlite3_user_data, sqlite3_value_blob, sqlite3_value_bytes, sqlite3_value_bytes16, sqlite3_value_double, sqlite3_value_int, sqlite3_value_int64, sqlite3_value_numeric_type, sqlite3_value_text, sqlite3_value_text16, sqlite3_value_text16be, sqlite3_value_text16le, sqlite3_value_type, sqlite3_vmprintf, /* ** The original API set ends here. All extensions can call any ** of the APIs above provided that the pointer is not NULL. But ** before calling APIs that follow, extension should check the ** sqlite3_libversion_number() to make sure they are dealing with ** a library that is new enough to support that API. ************************************************************************* */ sqlite3_overload_function, /* ** Added after 3.3.13 */ sqlite3_prepare_v2, sqlite3_prepare16_v2, sqlite3_clear_bindings, /* ** Added for 3.4.1 */ sqlite3_create_module_v2, /* ** Added for 3.5.0 */ sqlite3_bind_zeroblob, sqlite3_blob_bytes, sqlite3_blob_close, sqlite3_blob_open, sqlite3_blob_read, sqlite3_blob_write, sqlite3_create_collation_v2, sqlite3_file_control, sqlite3_memory_highwater, sqlite3_memory_used, #ifdef SQLITE_MUTEX_OMIT 0, 0, 0, 0, 0, #else sqlite3_mutex_alloc, sqlite3_mutex_enter, sqlite3_mutex_free, sqlite3_mutex_leave, sqlite3_mutex_try, #endif sqlite3_open_v2, sqlite3_release_memory, sqlite3_result_error_nomem, sqlite3_result_error_toobig, sqlite3_sleep, sqlite3_soft_heap_limit, sqlite3_vfs_find, sqlite3_vfs_register, sqlite3_vfs_unregister, /* ** Added for 3.5.8 */ sqlite3_threadsafe, sqlite3_result_zeroblob, sqlite3_result_error_code, sqlite3_test_control, sqlite3_randomness, sqlite3_context_db_handle, /* ** Added for 3.6.0 */ sqlite3_extended_result_codes, sqlite3_limit, sqlite3_next_stmt, sqlite3_sql, sqlite3_status, /* ** Added for 3.7.4 */ sqlite3_backup_finish, sqlite3_backup_init, sqlite3_backup_pagecount, sqlite3_backup_remaining, sqlite3_backup_step, #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS sqlite3_compileoption_get, sqlite3_compileoption_used, #else 0, 0, #endif sqlite3_create_function_v2, sqlite3_db_config, sqlite3_db_mutex, sqlite3_db_status, sqlite3_extended_errcode, sqlite3_log, sqlite3_soft_heap_limit64, sqlite3_sourceid, sqlite3_stmt_status, sqlite3_strnicmp, #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY sqlite3_unlock_notify, #else 0, #endif #ifndef SQLITE_OMIT_WAL sqlite3_wal_autocheckpoint, sqlite3_wal_checkpoint, sqlite3_wal_hook, #else 0, 0, 0, #endif sqlite3_blob_reopen, sqlite3_vtab_config, sqlite3_vtab_on_conflict, sqlite3_close_v2, sqlite3_db_filename, sqlite3_db_readonly, sqlite3_db_release_memory, sqlite3_errstr, sqlite3_stmt_busy, sqlite3_stmt_readonly, sqlite3_stricmp, sqlite3_uri_boolean, sqlite3_uri_int64, sqlite3_uri_parameter, sqlite3_vsnprintf, sqlite3_wal_checkpoint_v2, /* Version 3.8.7 and later */ sqlite3_auto_extension, sqlite3_bind_blob64, sqlite3_bind_text64, sqlite3_cancel_auto_extension, sqlite3_load_extension, sqlite3_malloc64, sqlite3_msize, sqlite3_realloc64, sqlite3_reset_auto_extension, sqlite3_result_blob64, sqlite3_result_text64, sqlite3_strglob, /* Version 3.8.11 and later */ (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup, sqlite3_value_free, sqlite3_result_zeroblob64, sqlite3_bind_zeroblob64, /* Version 3.9.0 and later */ sqlite3_value_subtype, sqlite3_result_subtype, /* Version 3.10.0 and later */ sqlite3_status64, sqlite3_strlike, sqlite3_db_cacheflush, /* Version 3.12.0 and later */ sqlite3_system_errno, /* Version 3.14.0 and later */ sqlite3_trace_v2, sqlite3_expanded_sql, /* Version 3.18.0 and later */ sqlite3_set_last_insert_rowid, /* Version 3.20.0 and later */ sqlite3_prepare_v3, sqlite3_prepare16_v3, sqlite3_bind_pointer, sqlite3_result_pointer, sqlite3_value_pointer, /* Version 3.22.0 and later */ sqlite3_vtab_nochange, sqlite3_value_nochange, sqlite3_vtab_collation, /* Version 3.24.0 and later */ sqlite3_keyword_count, sqlite3_keyword_name, sqlite3_keyword_check, sqlite3_str_new, sqlite3_str_finish, sqlite3_str_appendf, sqlite3_str_vappendf, sqlite3_str_append, sqlite3_str_appendall, sqlite3_str_appendchar, sqlite3_str_reset, sqlite3_str_errcode, sqlite3_str_length, sqlite3_str_value, /* Version 3.25.0 and later */ sqlite3_create_window_function, /* Version 3.26.0 and later */ #ifdef SQLITE_ENABLE_NORMALIZE sqlite3_normalized_sql, #else 0, #endif /* Version 3.28.0 and later */ sqlite3_stmt_isexplain, sqlite3_value_frombind, /* Version 3.30.0 and later */ #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_drop_modules, #else 0, #endif /* Version 3.31.0 and later */ sqlite3_hard_heap_limit64, sqlite3_uri_key, sqlite3_filename_database, sqlite3_filename_journal, sqlite3_filename_wal, /* Version 3.32.0 and later */ sqlite3_create_filename, sqlite3_free_filename, sqlite3_database_file_object, /* Version 3.34.0 and later */ sqlite3_txn_state, /* Version 3.36.1 and later */ sqlite3_changes64, sqlite3_total_changes64, /* Version 3.37.0 and later */ sqlite3_autovacuum_pages, /* Version 3.38.0 and later */ sqlite3_error_offset, #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_vtab_rhs_value, sqlite3_vtab_distinct, sqlite3_vtab_in, sqlite3_vtab_in_first, sqlite3_vtab_in_next, #else 0, 0, 0, 0, 0, #endif /* Version 3.39.0 and later */ #ifndef SQLITE_OMIT_DESERIALIZE sqlite3_deserialize, sqlite3_serialize, #else 0, 0, #endif sqlite3_db_name, /* Version 3.40.0 and later */ sqlite3_value_encoding, /* Version 3.41.0 and later */ sqlite3_is_interrupted, /* Version 3.43.0 and later */ sqlite3_stmt_explain, /* Version 3.44.0 and later */ sqlite3_get_clientdata, sqlite3_set_clientdata }; /* True if x is the directory separator character */ #if SQLITE_OS_WIN # define DirSep(X) ((X)=='/'||(X)=='\\') #else # define DirSep(X) ((X)=='/') #endif /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. ** ** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong. ** ** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with ** error message text. The calling function should free this memory ** by calling sqlite3DbFree(db, ). */ static int sqlite3LoadExtension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ){ sqlite3_vfs *pVfs = db->pVfs; void *handle; sqlite3_loadext_entry xInit; char *zErrmsg = 0; const char *zEntry; char *zAltEntry = 0; void **aHandle; u64 nMsg = strlen(zFile); int ii; int rc; /* Shared library endings to try if zFile cannot be loaded as written */ static const char *azEndings[] = { #if SQLITE_OS_WIN "dll" #elif defined(__APPLE__) "dylib" #else "so" #endif }; if( pzErrMsg ) *pzErrMsg = 0; /* Ticket #1863. To avoid a creating security problems for older ** applications that relink against newer versions of SQLite, the ** ability to run load_extension is turned off by default. One ** must call either sqlite3_enable_load_extension(db) or ** sqlite3_db_config(db, SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, 1, 0) ** to turn on extension loading. */ if( (db->flags & SQLITE_LoadExtension)==0 ){ if( pzErrMsg ){ *pzErrMsg = sqlite3_mprintf("not authorized"); } return SQLITE_ERROR; } zEntry = zProc ? zProc : "sqlite3_extension_init"; /* tag-20210611-1. Some dlopen() implementations will segfault if given ** an oversize filename. Most filesystems have a pathname limit of 4K, ** so limit the extension filename length to about twice that. ** https://sqlite.org/forum/forumpost/08a0d6d9bf ** ** Later (2023-03-25): Save an extra 6 bytes for the filename suffix. ** See https://sqlite.org/forum/forumpost/24083b579d. */ if( nMsg>SQLITE_MAX_PATHLEN ) goto extension_not_found; /* Do not allow sqlite3_load_extension() to link to a copy of the ** running application, by passing in an empty filename. */ if( nMsg==0 ) goto extension_not_found; handle = sqlite3OsDlOpen(pVfs, zFile); #if SQLITE_OS_UNIX || SQLITE_OS_WIN for(ii=0; ii sqlite3_example_init ** C:/lib/mathfuncs.dll ==> sqlite3_mathfuncs_init */ if( xInit==0 && zProc==0 ){ int iFile, iEntry, c; int ncFile = sqlite3Strlen30(zFile); zAltEntry = sqlite3_malloc64(ncFile+30); if( zAltEntry==0 ){ sqlite3OsDlClose(pVfs, handle); return SQLITE_NOMEM_BKPT; } memcpy(zAltEntry, "sqlite3_", 8); for(iFile=ncFile-1; iFile>=0 && !DirSep(zFile[iFile]); iFile--){} iFile++; if( sqlite3_strnicmp(zFile+iFile, "lib", 3)==0 ) iFile += 3; for(iEntry=8; (c = zFile[iFile])!=0 && c!='.'; iFile++){ if( sqlite3Isalpha(c) ){ zAltEntry[iEntry++] = (char)sqlite3UpperToLower[(unsigned)c]; } } memcpy(zAltEntry+iEntry, "_init", 6); zEntry = zAltEntry; xInit = (sqlite3_loadext_entry)sqlite3OsDlSym(pVfs, handle, zEntry); } if( xInit==0 ){ if( pzErrMsg ){ nMsg += strlen(zEntry) + 300; *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg); if( zErrmsg ){ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */ sqlite3_snprintf((int)nMsg, zErrmsg, "no entry point [%s] in shared library [%s]", zEntry, zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } } sqlite3OsDlClose(pVfs, handle); sqlite3_free(zAltEntry); return SQLITE_ERROR; } sqlite3_free(zAltEntry); rc = xInit(db, &zErrmsg, &sqlite3Apis); if( rc ){ if( rc==SQLITE_OK_LOAD_PERMANENTLY ) return SQLITE_OK; if( pzErrMsg ){ *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg); } sqlite3_free(zErrmsg); sqlite3OsDlClose(pVfs, handle); return SQLITE_ERROR; } /* Append the new shared library handle to the db->aExtension array. */ aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1)); if( aHandle==0 ){ return SQLITE_NOMEM_BKPT; } if( db->nExtension>0 ){ memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension); } sqlite3DbFree(db, db->aExtension); db->aExtension = aHandle; db->aExtension[db->nExtension++] = handle; return SQLITE_OK; extension_not_found: if( pzErrMsg ){ nMsg += 300; *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg); if( zErrmsg ){ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */ sqlite3_snprintf((int)nMsg, zErrmsg, "unable to open shared library [%.*s]", SQLITE_MAX_PATHLEN, zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } } return SQLITE_ERROR; } SQLITE_API int sqlite3_load_extension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ){ int rc; sqlite3_mutex_enter(db->mutex); rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Call this routine when the database connection is closing in order ** to clean up loaded extensions */ SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){ int i; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; inExtension; i++){ sqlite3OsDlClose(db->pVfs, db->aExtension[i]); } sqlite3DbFree(db, db->aExtension); } /* ** Enable or disable extension loading. Extension loading is disabled by ** default so as not to open security holes in older applications. */ SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); if( onoff ){ db->flags |= SQLITE_LoadExtension|SQLITE_LoadExtFunc; }else{ db->flags &= ~(u64)(SQLITE_LoadExtension|SQLITE_LoadExtFunc); } sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #endif /* !defined(SQLITE_OMIT_LOAD_EXTENSION) */ /* ** The following object holds the list of automatically loaded ** extensions. ** ** This list is shared across threads. The SQLITE_MUTEX_STATIC_MAIN ** mutex must be held while accessing this list. */ typedef struct sqlite3AutoExtList sqlite3AutoExtList; static SQLITE_WSD struct sqlite3AutoExtList { u32 nExt; /* Number of entries in aExt[] */ void (**aExt)(void); /* Pointers to the extension init functions */ } sqlite3Autoext = { 0, 0 }; /* The "wsdAutoext" macro will resolve to the autoextension ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdStat can refer directly ** to the "sqlite3Autoext" state vector declared above. */ #ifdef SQLITE_OMIT_WSD # define wsdAutoextInit \ sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext) # define wsdAutoext x[0] #else # define wsdAutoextInit # define wsdAutoext sqlite3Autoext #endif /* ** Register a statically linked extension that is automatically ** loaded by every new database connection. */ SQLITE_API int sqlite3_auto_extension( void (*xInit)(void) ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( xInit==0 ) return SQLITE_MISUSE_BKPT; #endif #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ){ return rc; }else #endif { u32 i; #if SQLITE_THREADSAFE sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif wsdAutoextInit; sqlite3_mutex_enter(mutex); for(i=0; i=0; i--){ if( wsdAutoext.aExt[i]==xInit ){ wsdAutoext.nExt--; wsdAutoext.aExt[i] = wsdAutoext.aExt[wsdAutoext.nExt]; n++; break; } } sqlite3_mutex_leave(mutex); return n; } /* ** Reset the automatic extension loading mechanism. */ SQLITE_API void sqlite3_reset_auto_extension(void){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize()==SQLITE_OK ) #endif { #if SQLITE_THREADSAFE sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif wsdAutoextInit; sqlite3_mutex_enter(mutex); sqlite3_free(wsdAutoext.aExt); wsdAutoext.aExt = 0; wsdAutoext.nExt = 0; sqlite3_mutex_leave(mutex); } } /* ** Load all automatic extensions. ** ** If anything goes wrong, set an error in the database connection. */ SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){ u32 i; int go = 1; int rc; sqlite3_loadext_entry xInit; wsdAutoextInit; if( wsdAutoext.nExt==0 ){ /* Common case: early out without every having to acquire a mutex */ return; } for(i=0; go; i++){ char *zErrmsg; #if SQLITE_THREADSAFE sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); #endif #ifdef SQLITE_OMIT_LOAD_EXTENSION const sqlite3_api_routines *pThunk = 0; #else const sqlite3_api_routines *pThunk = &sqlite3Apis; #endif sqlite3_mutex_enter(mutex); if( i>=wsdAutoext.nExt ){ xInit = 0; go = 0; }else{ xInit = (sqlite3_loadext_entry)wsdAutoext.aExt[i]; } sqlite3_mutex_leave(mutex); zErrmsg = 0; if( xInit && (rc = xInit(db, &zErrmsg, pThunk))!=0 ){ sqlite3ErrorWithMsg(db, rc, "automatic extension loading failed: %s", zErrmsg); go = 0; } sqlite3_free(zErrmsg); } } /************** End of loadext.c *********************************************/ /************** Begin file pragma.c ******************************************/ /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. */ /* #include "sqliteInt.h" */ #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif #endif /*************************************************************************** ** The "pragma.h" include file is an automatically generated file that ** that includes the PragType_XXXX macro definitions and the aPragmaName[] ** object. This ensures that the aPragmaName[] table is arranged in ** lexicographical order to facility a binary search of the pragma name. ** Do not edit pragma.h directly. Edit and rerun the script in at ** ../tool/mkpragmatab.tcl. */ /************** Include pragma.h in the middle of pragma.c *******************/ /************** Begin file pragma.h ******************************************/ /* DO NOT EDIT! ** This file is automatically generated by the script at ** ../tool/mkpragmatab.tcl. To update the set of pragmas, edit ** that script and rerun it. */ /* The various pragma types */ #define PragTyp_KEY 255 #define PragTyp_ACTIVATE_EXTENSIONS 0 #define PragTyp_ANALYSIS_LIMIT 1 #define PragTyp_HEADER_VALUE 2 #define PragTyp_AUTO_VACUUM 3 #define PragTyp_FLAG 4 #define PragTyp_BUSY_TIMEOUT 5 #define PragTyp_CACHE_SIZE 6 #define PragTyp_CACHE_SPILL 7 #define PragTyp_CASE_SENSITIVE_LIKE 8 #define PragTyp_COLLATION_LIST 9 #define PragTyp_COMPILE_OPTIONS 10 #define PragTyp_DATA_STORE_DIRECTORY 11 #define PragTyp_DATABASE_LIST 12 #define PragTyp_DEFAULT_CACHE_SIZE 13 #define PragTyp_ENCODING 14 #define PragTyp_FOREIGN_KEY_CHECK 15 #define PragTyp_FOREIGN_KEY_LIST 16 #define PragTyp_FUNCTION_LIST 17 #define PragTyp_HARD_HEAP_LIMIT 18 #define PragTyp_INCREMENTAL_VACUUM 19 #define PragTyp_INDEX_INFO 20 #define PragTyp_INDEX_LIST 21 #define PragTyp_INTEGRITY_CHECK 22 #define PragTyp_JOURNAL_MODE 23 #define PragTyp_JOURNAL_SIZE_LIMIT 24 #define PragTyp_LOCK_PROXY_FILE 25 #define PragTyp_LOCKING_MODE 26 #define PragTyp_PAGE_COUNT 27 #define PragTyp_MMAP_SIZE 28 #define PragTyp_MODULE_LIST 29 #define PragTyp_OPTIMIZE 30 #define PragTyp_PAGE_SIZE 31 #define PragTyp_PRAGMA_LIST 32 #define PragTyp_SECURE_DELETE 33 #define PragTyp_SHRINK_MEMORY 34 #define PragTyp_SOFT_HEAP_LIMIT 35 #define PragTyp_SYNCHRONOUS 36 #define PragTyp_TABLE_INFO 37 #define PragTyp_TABLE_LIST 38 #define PragTyp_TEMP_STORE 39 #define PragTyp_TEMP_STORE_DIRECTORY 40 #define PragTyp_THREADS 41 #define PragTyp_WAL_AUTOCHECKPOINT 42 #define PragTyp_WAL_CHECKPOINT 43 #define PragTyp_LOCK_STATUS 44 #define PragTyp_STATS 45 /* Property flags associated with various pragma. */ #define PragFlg_NeedSchema 0x01 /* Force schema load before running */ #define PragFlg_NoColumns 0x02 /* OP_ResultRow called with zero columns */ #define PragFlg_NoColumns1 0x04 /* zero columns if RHS argument is present */ #define PragFlg_ReadOnly 0x08 /* Read-only HEADER_VALUE */ #define PragFlg_Result0 0x10 /* Acts as query when no argument */ #define PragFlg_Result1 0x20 /* Acts as query when has one argument */ #define PragFlg_SchemaOpt 0x40 /* Schema restricts name search if present */ #define PragFlg_SchemaReq 0x80 /* Schema required - "main" is default */ /* Names of columns for pragmas that return multi-column result ** or that return single-column results where the name of the ** result column is different from the name of the pragma */ static const char *const pragCName[] = { /* 0 */ "id", /* Used by: foreign_key_list */ /* 1 */ "seq", /* 2 */ "table", /* 3 */ "from", /* 4 */ "to", /* 5 */ "on_update", /* 6 */ "on_delete", /* 7 */ "match", /* 8 */ "cid", /* Used by: table_xinfo */ /* 9 */ "name", /* 10 */ "type", /* 11 */ "notnull", /* 12 */ "dflt_value", /* 13 */ "pk", /* 14 */ "hidden", /* table_info reuses 8 */ /* 15 */ "schema", /* Used by: table_list */ /* 16 */ "name", /* 17 */ "type", /* 18 */ "ncol", /* 19 */ "wr", /* 20 */ "strict", /* 21 */ "seqno", /* Used by: index_xinfo */ /* 22 */ "cid", /* 23 */ "name", /* 24 */ "desc", /* 25 */ "coll", /* 26 */ "key", /* 27 */ "name", /* Used by: function_list */ /* 28 */ "builtin", /* 29 */ "type", /* 30 */ "enc", /* 31 */ "narg", /* 32 */ "flags", /* 33 */ "tbl", /* Used by: stats */ /* 34 */ "idx", /* 35 */ "wdth", /* 36 */ "hght", /* 37 */ "flgs", /* 38 */ "seq", /* Used by: index_list */ /* 39 */ "name", /* 40 */ "unique", /* 41 */ "origin", /* 42 */ "partial", /* 43 */ "table", /* Used by: foreign_key_check */ /* 44 */ "rowid", /* 45 */ "parent", /* 46 */ "fkid", /* index_info reuses 21 */ /* 47 */ "seq", /* Used by: database_list */ /* 48 */ "name", /* 49 */ "file", /* 50 */ "busy", /* Used by: wal_checkpoint */ /* 51 */ "log", /* 52 */ "checkpointed", /* collation_list reuses 38 */ /* 53 */ "database", /* Used by: lock_status */ /* 54 */ "status", /* 55 */ "cache_size", /* Used by: default_cache_size */ /* module_list pragma_list reuses 9 */ /* 56 */ "timeout", /* Used by: busy_timeout */ }; /* Definitions of all built-in pragmas */ typedef struct PragmaName { const char *const zName; /* Name of pragma */ u8 ePragTyp; /* PragTyp_XXX value */ u8 mPragFlg; /* Zero or more PragFlg_XXX values */ u8 iPragCName; /* Start of column names in pragCName[] */ u8 nPragCName; /* Num of col names. 0 means use pragma name */ u64 iArg; /* Extra argument */ } PragmaName; static const PragmaName aPragmaName[] = { #if defined(SQLITE_ENABLE_CEROD) {/* zName: */ "activate_extensions", /* ePragTyp: */ PragTyp_ACTIVATE_EXTENSIONS, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif {/* zName: */ "analysis_limit", /* ePragTyp: */ PragTyp_ANALYSIS_LIMIT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "application_id", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_APPLICATION_ID }, #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) {/* zName: */ "auto_vacuum", /* ePragTyp: */ PragTyp_AUTO_VACUUM, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_AUTOMATIC_INDEX) {/* zName: */ "automatic_index", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_AutoIndex }, #endif #endif {/* zName: */ "busy_timeout", /* ePragTyp: */ PragTyp_BUSY_TIMEOUT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 56, 1, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "cache_size", /* ePragTyp: */ PragTyp_CACHE_SIZE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "cache_spill", /* ePragTyp: */ PragTyp_CACHE_SPILL, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA) {/* zName: */ "case_sensitive_like", /* ePragTyp: */ PragTyp_CASE_SENSITIVE_LIKE, /* ePragFlg: */ PragFlg_NoColumns, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif {/* zName: */ "cell_size_check", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CellSizeCk }, #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "checkpoint_fullfsync", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CkptFullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "collation_list", /* ePragTyp: */ PragTyp_COLLATION_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 38, 2, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS) {/* zName: */ "compile_options", /* ePragTyp: */ PragTyp_COMPILE_OPTIONS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "count_changes", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CountRows }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_OS_WIN {/* zName: */ "data_store_directory", /* ePragTyp: */ PragTyp_DATA_STORE_DIRECTORY, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "data_version", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_DATA_VERSION }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "database_list", /* ePragTyp: */ PragTyp_DATABASE_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 47, 3, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) {/* zName: */ "default_cache_size", /* ePragTyp: */ PragTyp_DEFAULT_CACHE_SIZE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 55, 1, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "defer_foreign_keys", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_DeferFKs }, #endif #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "empty_result_callbacks", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_NullCallback }, #endif #if !defined(SQLITE_OMIT_UTF16) {/* zName: */ "encoding", /* ePragTyp: */ PragTyp_ENCODING, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "foreign_key_check", /* ePragTyp: */ PragTyp_FOREIGN_KEY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 43, 4, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FOREIGN_KEY) {/* zName: */ "foreign_key_list", /* ePragTyp: */ PragTyp_FOREIGN_KEY_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 0, 8, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "foreign_keys", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ForeignKeys }, #endif #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "freelist_count", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_FREE_PAGE_COUNT }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "full_column_names", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_FullColNames }, {/* zName: */ "fullfsync", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_FullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) {/* zName: */ "function_list", /* ePragTyp: */ PragTyp_FUNCTION_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 27, 6, /* iArg: */ 0 }, #endif #endif {/* zName: */ "hard_heap_limit", /* ePragTyp: */ PragTyp_HARD_HEAP_LIMIT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, /* BEGIN SQLCIPHER */ #if defined(SQLITE_HAS_CODEC) {/* zName: */ "hexkey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 2 }, {/* zName: */ "hexrekey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 3 }, #endif /* END SQLCIPHER */ #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_CHECK) {/* zName: */ "ignore_check_constraints", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_IgnoreChecks }, #endif #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) {/* zName: */ "incremental_vacuum", /* ePragTyp: */ PragTyp_INCREMENTAL_VACUUM, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_NoColumns, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "index_info", /* ePragTyp: */ PragTyp_INDEX_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 21, 3, /* iArg: */ 0 }, {/* zName: */ "index_list", /* ePragTyp: */ PragTyp_INDEX_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 38, 5, /* iArg: */ 0 }, {/* zName: */ "index_xinfo", /* ePragTyp: */ PragTyp_INDEX_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 21, 6, /* iArg: */ 1 }, #endif #if !defined(SQLITE_OMIT_INTEGRITY_CHECK) {/* zName: */ "integrity_check", /* ePragTyp: */ PragTyp_INTEGRITY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "journal_mode", /* ePragTyp: */ PragTyp_JOURNAL_MODE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "journal_size_limit", /* ePragTyp: */ PragTyp_JOURNAL_SIZE_LIMIT, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif /* BEGIN SQLCIPHER */ #if defined(SQLITE_HAS_CODEC) {/* zName: */ "key", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif /* END SQLCIPHER */ #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "legacy_alter_table", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_LegacyAlter }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE {/* zName: */ "lock_proxy_file", /* ePragTyp: */ PragTyp_LOCK_PROXY_FILE, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) {/* zName: */ "lock_status", /* ePragTyp: */ PragTyp_LOCK_STATUS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 53, 2, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "locking_mode", /* ePragTyp: */ PragTyp_LOCKING_MODE, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "max_page_count", /* ePragTyp: */ PragTyp_PAGE_COUNT, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "mmap_size", /* ePragTyp: */ PragTyp_MMAP_SIZE, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if !defined(SQLITE_OMIT_VIRTUALTABLE) #if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) {/* zName: */ "module_list", /* ePragTyp: */ PragTyp_MODULE_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 9, 1, /* iArg: */ 0 }, #endif #endif #endif {/* zName: */ "optimize", /* ePragTyp: */ PragTyp_OPTIMIZE, /* ePragFlg: */ PragFlg_Result1|PragFlg_NeedSchema, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "page_count", /* ePragTyp: */ PragTyp_PAGE_COUNT, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "page_size", /* ePragTyp: */ PragTyp_PAGE_SIZE, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if defined(SQLITE_DEBUG) {/* zName: */ "parser_trace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ParserTrace }, #endif #endif #if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS) {/* zName: */ "pragma_list", /* ePragTyp: */ PragTyp_PRAGMA_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 9, 1, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "query_only", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_QueryOnly }, #endif #if !defined(SQLITE_OMIT_INTEGRITY_CHECK) {/* zName: */ "quick_check", /* ePragTyp: */ PragTyp_INTEGRITY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "read_uncommitted", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ReadUncommit }, {/* zName: */ "recursive_triggers", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_RecTriggers }, #endif /* BEGIN SQLCIPHER */ #if defined(SQLITE_HAS_CODEC) {/* zName: */ "rekey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 1 }, #endif /* END SQLCIPHER */ #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "reverse_unordered_selects", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ReverseOrder }, #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "schema_version", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_SCHEMA_VERSION }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "secure_delete", /* ePragTyp: */ PragTyp_SECURE_DELETE, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "short_column_names", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ShortColNames }, #endif {/* zName: */ "shrink_memory", /* ePragTyp: */ PragTyp_SHRINK_MEMORY, /* ePragFlg: */ PragFlg_NoColumns, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "soft_heap_limit", /* ePragTyp: */ PragTyp_SOFT_HEAP_LIMIT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if defined(SQLITE_DEBUG) {/* zName: */ "sql_trace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_SqlTrace }, #endif #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG) {/* zName: */ "stats", /* ePragTyp: */ PragTyp_STATS, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 33, 5, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "synchronous", /* ePragTyp: */ PragTyp_SYNCHRONOUS, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "table_info", /* ePragTyp: */ PragTyp_TABLE_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 8, 6, /* iArg: */ 0 }, {/* zName: */ "table_list", /* ePragTyp: */ PragTyp_TABLE_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1, /* ColNames: */ 15, 6, /* iArg: */ 0 }, {/* zName: */ "table_xinfo", /* ePragTyp: */ PragTyp_TABLE_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 8, 7, /* iArg: */ 1 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "temp_store", /* ePragTyp: */ PragTyp_TEMP_STORE, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "temp_store_directory", /* ePragTyp: */ PragTyp_TEMP_STORE_DIRECTORY, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif /* BEGIN SQLCIPHER */ #if defined(SQLITE_HAS_CODEC) {/* zName: */ "textkey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 4 }, {/* zName: */ "textrekey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 5 }, #endif /* END SQLCIPHER */ {/* zName: */ "threads", /* ePragTyp: */ PragTyp_THREADS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "trusted_schema", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_TrustedSchema }, #endif #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) {/* zName: */ "user_version", /* ePragTyp: */ PragTyp_HEADER_VALUE, /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ BTREE_USER_VERSION }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if defined(SQLITE_DEBUG) {/* zName: */ "vdbe_addoptrace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeAddopTrace }, {/* zName: */ "vdbe_debug", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_SqlTrace|SQLITE_VdbeListing|SQLITE_VdbeTrace }, {/* zName: */ "vdbe_eqp", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeEQP }, {/* zName: */ "vdbe_listing", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeListing }, {/* zName: */ "vdbe_trace", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_VdbeTrace }, #endif #endif #if !defined(SQLITE_OMIT_WAL) {/* zName: */ "wal_autocheckpoint", /* ePragTyp: */ PragTyp_WAL_AUTOCHECKPOINT, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "wal_checkpoint", /* ePragTyp: */ PragTyp_WAL_CHECKPOINT, /* ePragFlg: */ PragFlg_NeedSchema, /* ColNames: */ 50, 3, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "writable_schema", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_WriteSchema|SQLITE_NoSchemaError }, #endif }; /* Number of pragmas: 68 on by default, 78 total. */ /************** End of pragma.h **********************************************/ /************** Continuing where we left off in pragma.c *********************/ /* ** Interpret the given string as a safety level. Return 0 for OFF, ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or ** unrecognized string argument. The FULL and EXTRA option is disallowed ** if the omitFull parameter it 1. ** ** Note that the values returned are one less that the values that ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done ** to support legacy SQL code. The safety level used to be boolean ** and older scripts may have used numbers 0 for OFF and 1 for ON. */ static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ /* 123456789 123456789 123 */ static const char zText[] = "onoffalseyestruextrafull"; static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; /* on no off false yes true extra full */ int i, n; if( sqlite3Isdigit(*z) ){ return (u8)sqlite3Atoi(z); } n = sqlite3Strlen30(z); for(i=0; i=0&&i<=2)?i:0); } #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** Interpret the given string as a temp db location. Return 1 for file ** backed temporary databases, 2 for the Red-Black tree in memory database ** and 0 to use the compile-time default. */ static int getTempStore(const char *z){ if( z[0]>='0' && z[0]<='2' ){ return z[0] - '0'; }else if( sqlite3StrICmp(z, "file")==0 ){ return 1; }else if( sqlite3StrICmp(z, "memory")==0 ){ return 2; }else{ return 0; } } #endif /* SQLITE_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** Invalidate temp storage, either when the temp storage is changed ** from default, or when 'file' and the temp_store_directory has changed */ static int invalidateTempStorage(Parse *pParse){ sqlite3 *db = pParse->db; if( db->aDb[1].pBt!=0 ){ if( !db->autoCommit || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE ){ sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " "from within a transaction"); return SQLITE_ERROR; } sqlite3BtreeClose(db->aDb[1].pBt); db->aDb[1].pBt = 0; sqlite3ResetAllSchemasOfConnection(db); } return SQLITE_OK; } #endif /* SQLITE_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** If the TEMP database is open, close it and mark the database schema ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE ** or DEFAULT_TEMP_STORE pragmas. */ static int changeTempStorage(Parse *pParse, const char *zStorageType){ int ts = getTempStore(zStorageType); sqlite3 *db = pParse->db; if( db->temp_store==ts ) return SQLITE_OK; if( invalidateTempStorage( pParse ) != SQLITE_OK ){ return SQLITE_ERROR; } db->temp_store = (u8)ts; return SQLITE_OK; } #endif /* SQLITE_PAGER_PRAGMAS */ /* ** Set result column names for a pragma. */ static void setPragmaResultColumnNames( Vdbe *v, /* The query under construction */ const PragmaName *pPragma /* The pragma */ ){ u8 n = pPragma->nPragCName; sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); if( n==0 ){ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); }else{ int i, j; for(i=0, j=pPragma->iPragCName; iautoCommit ){ Db *pDb = db->aDb; int n = db->nDb; assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) == PAGER_FLAGS_MASK ); assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); while( (n--) > 0 ){ if( pDb->pBt ){ sqlite3BtreeSetPagerFlags(pDb->pBt, pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); } pDb++; } } } #else # define setAllPagerFlags(X) /* no-op */ #endif /* ** Return a human-readable name for a constraint resolution action. */ #ifndef SQLITE_OMIT_FOREIGN_KEY static const char *actionName(u8 action){ const char *zName; switch( action ){ case OE_SetNull: zName = "SET NULL"; break; case OE_SetDflt: zName = "SET DEFAULT"; break; case OE_Cascade: zName = "CASCADE"; break; case OE_Restrict: zName = "RESTRICT"; break; default: zName = "NO ACTION"; assert( action==OE_None ); break; } return zName; } #endif /* ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants ** defined in pager.h. This function returns the associated lowercase ** journal-mode name. */ SQLITE_PRIVATE const char *sqlite3JournalModename(int eMode){ static char * const azModeName[] = { "delete", "persist", "off", "truncate", "memory" #ifndef SQLITE_OMIT_WAL , "wal" #endif }; assert( PAGER_JOURNALMODE_DELETE==0 ); assert( PAGER_JOURNALMODE_PERSIST==1 ); assert( PAGER_JOURNALMODE_OFF==2 ); assert( PAGER_JOURNALMODE_TRUNCATE==3 ); assert( PAGER_JOURNALMODE_MEMORY==4 ); assert( PAGER_JOURNALMODE_WAL==5 ); assert( eMode>=0 && eMode<=ArraySize(azModeName) ); if( eMode==ArraySize(azModeName) ) return 0; return azModeName[eMode]; } /* ** Locate a pragma in the aPragmaName[] array. */ static const PragmaName *pragmaLocate(const char *zName){ int upr, lwr, mid = 0, rc; lwr = 0; upr = ArraySize(aPragmaName)-1; while( lwr<=upr ){ mid = (lwr+upr)/2; rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); if( rc==0 ) break; if( rc<0 ){ upr = mid - 1; }else{ lwr = mid + 1; } } return lwr>upr ? 0 : &aPragmaName[mid]; } /* ** Create zero or more entries in the output for the SQL functions ** defined by FuncDef p. */ static void pragmaFunclistLine( Vdbe *v, /* The prepared statement being created */ FuncDef *p, /* A particular function definition */ int isBuiltin, /* True if this is a built-in function */ int showInternFuncs /* True if showing internal functions */ ){ u32 mask = SQLITE_DETERMINISTIC | SQLITE_DIRECTONLY | SQLITE_SUBTYPE | SQLITE_INNOCUOUS | SQLITE_FUNC_INTERNAL ; if( showInternFuncs ) mask = 0xffffffff; for(; p; p=p->pNext){ const char *zType; static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" }; assert( SQLITE_FUNC_ENCMASK==0x3 ); assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 ); assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 ); assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 ); if( p->xSFunc==0 ) continue; if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0 && showInternFuncs==0 ){ continue; } if( p->xValue!=0 ){ zType = "w"; }else if( p->xFinalize!=0 ){ zType = "a"; }else{ zType = "s"; } sqlite3VdbeMultiLoad(v, 1, "sissii", p->zName, isBuiltin, zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK], p->nArg, (p->funcFlags & mask) ^ SQLITE_INNOCUOUS ); } } /* ** Helper subroutine for PRAGMA integrity_check: ** ** Generate code to output a single-column result row with a value of the ** string held in register 3. Decrement the result count in register 1 ** and halt if the maximum number of result rows have been issued. */ static int integrityCheckResultRow(Vdbe *v){ int addr; sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); return addr; } /* ** Process a pragma statement. ** ** Pragmas are of this form: ** ** PRAGMA [schema.]id [= value] ** ** The identifier might also be a string. The value is a string, and ** identifier, or a number. If minusFlag is true, then the value is ** a number that was preceded by a minus sign. ** ** If the left side is "database.id" then pId1 is the database name ** and pId2 is the id. If the left side is just "id" then pId1 is the ** id and pId2 is any empty string. */ SQLITE_PRIVATE void sqlite3Pragma( Parse *pParse, Token *pId1, /* First part of [schema.]id field */ Token *pId2, /* Second part of [schema.]id field, or NULL */ Token *pValue, /* Token for , or NULL */ int minusFlag /* True if a '-' sign preceded */ ){ char *zLeft = 0; /* Nul-terminated UTF-8 string */ char *zRight = 0; /* Nul-terminated UTF-8 string , or NULL */ const char *zDb = 0; /* The database name */ Token *pId; /* Pointer to token */ char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ int iDb; /* Database index for */ int rc; /* return value form SQLITE_FCNTL_PRAGMA */ sqlite3 *db = pParse->db; /* The database connection */ Db *pDb; /* The specific database being pragmaed */ Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ const PragmaName *pPragma; /* The pragma */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC extern int sqlcipher_codec_pragma(sqlite3*, int, Parse *, const char *, const char *); #endif /* END SQLCIPHER */ if( v==0 ) return; sqlite3VdbeRunOnlyOnce(v); pParse->nMem = 2; /* Interpret the [schema.] part of the pragma statement. iDb is the ** index of the database this pragma is being applied to in db.aDb[]. */ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); if( iDb<0 ) return; pDb = &db->aDb[iDb]; /* If the temp database has been explicitly named as part of the ** pragma, make sure it is open. */ if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ return; } zLeft = sqlite3NameFromToken(db, pId); if( !zLeft ) return; if( minusFlag ){ zRight = sqlite3MPrintf(db, "-%T", pValue); }else{ zRight = sqlite3NameFromToken(db, pValue); } assert( pId2 ); zDb = pId2->n>0 ? pDb->zDbSName : 0; if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ goto pragma_out; } /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS ** connection. If it returns SQLITE_OK, then assume that the VFS ** handled the pragma and generate a no-op prepared statement. ** ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file ** object corresponding to the database file to which the pragma ** statement refers. ** ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA ** file control is an array of pointers to strings (char**) in which the ** second element of the array is the name of the pragma and the third ** element is the argument to the pragma or NULL if the pragma has no ** argument. */ aFcntl[0] = 0; aFcntl[1] = zLeft; aFcntl[2] = zRight; aFcntl[3] = 0; db->busyHandler.nBusy = 0; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); if( rc==SQLITE_OK ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); returnSingleText(v, aFcntl[0]); sqlite3_free(aFcntl[0]); goto pragma_out; } if( rc!=SQLITE_NOTFOUND ){ if( aFcntl[0] ){ sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); sqlite3_free(aFcntl[0]); } pParse->nErr++; pParse->rc = rc; goto pragma_out; } /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC if(sqlcipher_codec_pragma(db, iDb, pParse, zLeft, zRight)) { /* sqlcipher_codec_pragma executes internal */ goto pragma_out; } #endif /* END SQLCIPHER */ /* Locate the pragma in the lookup table */ pPragma = pragmaLocate(zLeft); if( pPragma==0 ){ /* IMP: R-43042-22504 No error messages are generated if an ** unknown pragma is issued. */ goto pragma_out; } /* Make sure the database schema is loaded if the pragma requires that */ if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; } /* Register the result column names for pragmas that return results */ if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) ){ setPragmaResultColumnNames(v, pPragma); } /* Jump to the appropriate pragma handler */ switch( pPragma->ePragTyp ){ #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) /* ** PRAGMA [schema.]default_cache_size ** PRAGMA [schema.]default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** Older versions of SQLite would set the default cache size to a ** negative number to indicate synchronous=OFF. These days, synchronous ** is always on by default regardless of the sign of the default cache ** size. But continue to take the absolute value of the default cache ** size of historical compatibility. */ case PragTyp_DEFAULT_CACHE_SIZE: { static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList getCacheSize[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 2, 0}, { OP_Subtract, 1, 2, 1}, { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 1, 0}, /* 6 */ { OP_Noop, 0, 0, 0}, { OP_ResultRow, 1, 1, 0}, }; VdbeOp *aOp; sqlite3VdbeUsesBtree(v, iDb); if( !zRight ){ pParse->nMem += 2; sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; }else{ int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } break; } #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) /* ** PRAGMA [schema.]page_size ** PRAGMA [schema.]page_size=N ** ** The first form reports the current setting for the ** database page size in bytes. The second form sets the ** database page size value. The value can only be set if ** the database has not yet been created. */ case PragTyp_PAGE_SIZE: { Btree *pBt = pDb->pBt; assert( pBt!=0 ); if( !zRight ){ int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; returnSingleInt(v, size); }else{ /* Malloc may fail when setting the page-size, as there is an internal ** buffer that the pager module resizes using sqlite3_realloc(). */ db->nextPagesize = sqlite3Atoi(zRight); if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){ sqlite3OomFault(db); } } break; } /* ** PRAGMA [schema.]secure_delete ** PRAGMA [schema.]secure_delete=ON/OFF/FAST ** ** The first form reports the current setting for the ** secure_delete flag. The second form changes the secure_delete ** flag setting and reports the new value. */ case PragTyp_SECURE_DELETE: { Btree *pBt = pDb->pBt; int b = -1; assert( pBt!=0 ); if( zRight ){ if( sqlite3_stricmp(zRight, "fast")==0 ){ b = 2; }else{ b = sqlite3GetBoolean(zRight, 0); } } if( pId2->n==0 && b>=0 ){ int ii; for(ii=0; iinDb; ii++){ sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); } } b = sqlite3BtreeSecureDelete(pBt, b); returnSingleInt(v, b); break; } /* ** PRAGMA [schema.]max_page_count ** PRAGMA [schema.]max_page_count=N ** ** The first form reports the current setting for the ** maximum number of pages in the database file. The ** second form attempts to change this setting. Both ** forms return the current setting. ** ** The absolute value of N is used. This is undocumented and might ** change. The only purpose is to provide an easy way to test ** the sqlite3AbsInt32() function. ** ** PRAGMA [schema.]page_count ** ** Return the number of pages in the specified database. */ case PragTyp_PAGE_COUNT: { int iReg; i64 x = 0; sqlite3CodeVerifySchema(pParse, iDb); iReg = ++pParse->nMem; if( sqlite3Tolower(zLeft[0])=='p' ){ sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); }else{ if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){ if( x<0 ) x = 0; else if( x>0xfffffffe ) x = 0xfffffffe; }else{ x = 0; } sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x); } sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); break; } /* ** PRAGMA [schema.]locking_mode ** PRAGMA [schema.]locking_mode = (normal|exclusive) */ case PragTyp_LOCKING_MODE: { const char *zRet = "normal"; int eMode = getLockingMode(zRight); if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ /* Simple "PRAGMA locking_mode;" statement. This is a query for ** the current default locking mode (which may be different to ** the locking-mode of the main database). */ eMode = db->dfltLockMode; }else{ Pager *pPager; if( pId2->n==0 ){ /* This indicates that no database name was specified as part ** of the PRAGMA command. In this case the locking-mode must be ** set on all attached databases, as well as the main db file. ** ** Also, the sqlite3.dfltLockMode variable is set so that ** any subsequently attached databases also use the specified ** locking mode. */ int ii; assert(pDb==&db->aDb[0]); for(ii=2; iinDb; ii++){ pPager = sqlite3BtreePager(db->aDb[ii].pBt); sqlite3PagerLockingMode(pPager, eMode); } db->dfltLockMode = (u8)eMode; } pPager = sqlite3BtreePager(pDb->pBt); eMode = sqlite3PagerLockingMode(pPager, eMode); } assert( eMode==PAGER_LOCKINGMODE_NORMAL || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ zRet = "exclusive"; } returnSingleText(v, zRet); break; } /* ** PRAGMA [schema.]journal_mode ** PRAGMA [schema.]journal_mode = ** (delete|persist|off|truncate|memory|wal|off) */ case PragTyp_JOURNAL_MODE: { int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ int ii; /* Loop counter */ if( zRight==0 ){ /* If there is no "=MODE" part of the pragma, do a query for the ** current mode */ eMode = PAGER_JOURNALMODE_QUERY; }else{ const char *zMode; int n = sqlite3Strlen30(zRight); for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; } if( !zMode ){ /* If the "=MODE" part does not match any known journal mode, ** then do a query */ eMode = PAGER_JOURNALMODE_QUERY; } if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){ /* Do not allow journal-mode "OFF" in defensive since the database ** can become corrupted using ordinary SQL when the journal is off */ eMode = PAGER_JOURNALMODE_QUERY; } } if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ iDb = 0; pId2->n = 1; } for(ii=db->nDb-1; ii>=0; ii--){ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ sqlite3VdbeUsesBtree(v, ii); sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); } } sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); break; } /* ** PRAGMA [schema.]journal_size_limit ** PRAGMA [schema.]journal_size_limit=N ** ** Get or set the size limit on rollback journal files. */ case PragTyp_JOURNAL_SIZE_LIMIT: { Pager *pPager = sqlite3BtreePager(pDb->pBt); i64 iLimit = -2; if( zRight ){ sqlite3DecOrHexToI64(zRight, &iLimit); if( iLimit<-1 ) iLimit = -1; } iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); returnSingleInt(v, iLimit); break; } #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ /* ** PRAGMA [schema.]auto_vacuum ** PRAGMA [schema.]auto_vacuum=N ** ** Get or set the value of the database 'auto-vacuum' parameter. ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL */ #ifndef SQLITE_OMIT_AUTOVACUUM case PragTyp_AUTO_VACUUM: { Btree *pBt = pDb->pBt; assert( pBt!=0 ); if( !zRight ){ returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); }else{ int eAuto = getAutoVacuum(zRight); assert( eAuto>=0 && eAuto<=2 ); db->nextAutovac = (u8)eAuto; /* Call SetAutoVacuum() to set initialize the internal auto and ** incr-vacuum flags. This is required in case this connection ** creates the database file. It is important that it is created ** as an auto-vacuum capable db. */ rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ /* When setting the auto_vacuum mode to either "full" or ** "incremental", write the value of meta[6] in the database ** file. Before writing to meta[6], check that meta[3] indicates ** that this really is an auto-vacuum capable database. */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList setMeta6[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, { OP_If, 1, 0, 0}, /* 2 */ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ }; VdbeOp *aOp; int iAddr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[2].p2 = iAddr+4; aOp[4].p1 = iDb; aOp[4].p3 = eAuto - 1; sqlite3VdbeUsesBtree(v, iDb); } } break; } #endif /* ** PRAGMA [schema.]incremental_vacuum(N) ** ** Do N steps of incremental vacuuming on a database. */ #ifndef SQLITE_OMIT_AUTOVACUUM case PragTyp_INCREMENTAL_VACUUM: { int iLimit = 0, addr; if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ iLimit = 0x7fffffff; } sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_ResultRow, 1); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** PRAGMA [schema.]cache_size ** PRAGMA [schema.]cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The second form sets the local ** page cache size value. If N is positive then that is the ** number of pages in the cache. If N is negative, then the ** number of pages is adjusted so that the cache uses -N kibibytes ** of memory. */ case PragTyp_CACHE_SIZE: { assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( !zRight ){ returnSingleInt(v, pDb->pSchema->cache_size); }else{ int size = sqlite3Atoi(zRight); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } break; } /* ** PRAGMA [schema.]cache_spill ** PRAGMA cache_spill=BOOLEAN ** PRAGMA [schema.]cache_spill=N ** ** The first form reports the current local setting for the ** page cache spill size. The second form turns cache spill on ** or off. When turning cache spill on, the size is set to the ** current cache_size. The third form sets a spill size that ** may be different form the cache size. ** If N is positive then that is the ** number of pages in the cache. If N is negative, then the ** number of pages is adjusted so that the cache uses -N kibibytes ** of memory. ** ** If the number of cache_spill pages is less then the number of ** cache_size pages, no spilling occurs until the page count exceeds ** the number of cache_size pages. ** ** The cache_spill=BOOLEAN setting applies to all attached schemas, ** not just the schema specified. */ case PragTyp_CACHE_SPILL: { assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( !zRight ){ returnSingleInt(v, (db->flags & SQLITE_CacheSpill)==0 ? 0 : sqlite3BtreeSetSpillSize(pDb->pBt,0)); }else{ int size = 1; if( sqlite3GetInt32(zRight, &size) ){ sqlite3BtreeSetSpillSize(pDb->pBt, size); } if( sqlite3GetBoolean(zRight, size!=0) ){ db->flags |= SQLITE_CacheSpill; }else{ db->flags &= ~(u64)SQLITE_CacheSpill; } setAllPagerFlags(db); } break; } /* ** PRAGMA [schema.]mmap_size(N) ** ** Used to set mapping size limit. The mapping size limit is ** used to limit the aggregate size of all memory mapped regions of the ** database file. If this parameter is set to zero, then memory mapping ** is not used at all. If N is negative, then the default memory map ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. ** The parameter N is measured in bytes. ** ** This value is advisory. The underlying VFS is free to memory map ** as little or as much as it wants. Except, if N is set to 0 then the ** upper layers will never invoke the xFetch interfaces to the VFS. */ case PragTyp_MMAP_SIZE: { sqlite3_int64 sz; #if SQLITE_MAX_MMAP_SIZE>0 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( zRight ){ int ii; sqlite3DecOrHexToI64(zRight, &sz); if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; if( pId2->n==0 ) db->szMmap = sz; for(ii=db->nDb-1; ii>=0; ii--){ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); } } } sz = -1; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); #else sz = 0; rc = SQLITE_OK; #endif if( rc==SQLITE_OK ){ returnSingleInt(v, sz); }else if( rc!=SQLITE_NOTFOUND ){ pParse->nErr++; pParse->rc = rc; } break; } /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** ** Return or set the local value of the temp_store flag. Changing ** the local value does not make changes to the disk file and the default ** value will be restored the next time the database is opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ case PragTyp_TEMP_STORE: { if( !zRight ){ returnSingleInt(v, db->temp_store); }else{ changeTempStorage(pParse, zRight); } break; } /* ** PRAGMA temp_store_directory ** PRAGMA temp_store_directory = ""|"directory_name" ** ** Return or set the local value of the temp_store_directory flag. Changing ** the value sets a specific directory to be used for temporary files. ** Setting to a null string reverts to the default temporary directory search. ** If temporary directory is changed, then invalidateTempStorage. ** */ case PragTyp_TEMP_STORE_DIRECTORY: { sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); if( !zRight ){ returnSingleText(v, sqlite3_temp_directory); }else{ #ifndef SQLITE_OMIT_WSD if( zRight[0] ){ int res; rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); if( rc!=SQLITE_OK || res==0 ){ sqlite3ErrorMsg(pParse, "not a writable directory"); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); goto pragma_out; } } if( SQLITE_TEMP_STORE==0 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) || (SQLITE_TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqlite3_free(sqlite3_temp_directory); if( zRight[0] ){ sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); }else{ sqlite3_temp_directory = 0; } #endif /* SQLITE_OMIT_WSD */ } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); break; } #if SQLITE_OS_WIN /* ** PRAGMA data_store_directory ** PRAGMA data_store_directory = ""|"directory_name" ** ** Return or set the local value of the data_store_directory flag. Changing ** the value sets a specific directory to be used for database files that ** were specified with a relative pathname. Setting to a null string reverts ** to the default database directory, which for database files specified with ** a relative path will probably be based on the current directory for the ** process. Database file specified with an absolute path are not impacted ** by this setting, regardless of its value. ** */ case PragTyp_DATA_STORE_DIRECTORY: { sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); if( !zRight ){ returnSingleText(v, sqlite3_data_directory); }else{ #ifndef SQLITE_OMIT_WSD if( zRight[0] ){ int res; rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); if( rc!=SQLITE_OK || res==0 ){ sqlite3ErrorMsg(pParse, "not a writable directory"); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); goto pragma_out; } } sqlite3_free(sqlite3_data_directory); if( zRight[0] ){ sqlite3_data_directory = sqlite3_mprintf("%s", zRight); }else{ sqlite3_data_directory = 0; } #endif /* SQLITE_OMIT_WSD */ } sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); break; } #endif #if SQLITE_ENABLE_LOCKING_STYLE /* ** PRAGMA [schema.]lock_proxy_file ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" ** ** Return or set the value of the lock_proxy_file flag. Changing ** the value sets a specific file to be used for database access locks. ** */ case PragTyp_LOCK_PROXY_FILE: { if( !zRight ){ Pager *pPager = sqlite3BtreePager(pDb->pBt); char *proxy_file_path = NULL; sqlite3_file *pFile = sqlite3PagerFile(pPager); sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, &proxy_file_path); returnSingleText(v, proxy_file_path); }else{ Pager *pPager = sqlite3BtreePager(pDb->pBt); sqlite3_file *pFile = sqlite3PagerFile(pPager); int res; if( zRight[0] ){ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, zRight); } else { res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, NULL); } if( res!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); goto pragma_out; } } break; } #endif /* SQLITE_ENABLE_LOCKING_STYLE */ /* ** PRAGMA [schema.]synchronous ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ case PragTyp_SYNCHRONOUS: { if( !zRight ){ returnSingleInt(v, pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else if( iDb!=1 ){ int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; if( iLevel==0 ) iLevel = 1; pDb->safety_level = iLevel; pDb->bSyncSet = 1; setAllPagerFlags(db); } } break; } #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_FLAG_PRAGMAS case PragTyp_FLAG: { if( zRight==0 ){ setPragmaResultColumnNames(v, pPragma); returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); }else{ u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */ if( db->autoCommit==0 ){ /* Foreign key support may not be enabled or disabled while not ** in auto-commit mode. */ mask &= ~(SQLITE_ForeignKeys); } #if SQLITE_USER_AUTHENTICATION if( db->auth.authLevel==UAUTH_User ){ /* Do not allow non-admin users to modify the schema arbitrarily */ mask &= ~(SQLITE_WriteSchema); } #endif if( sqlite3GetBoolean(zRight, 0) ){ if( (mask & SQLITE_WriteSchema)==0 || (db->flags & SQLITE_Defensive)==0 ){ db->flags |= mask; } }else{ db->flags &= ~mask; if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; if( (mask & SQLITE_WriteSchema)!=0 && sqlite3_stricmp(zRight, "reset")==0 ){ /* IMP: R-60817-01178 If the argument is "RESET" then schema ** writing is disabled (as with "PRAGMA writable_schema=OFF") and, ** in addition, the schema is reloaded. */ sqlite3ResetAllSchemasOfConnection(db); } } /* Many of the flag-pragmas modify the code generated by the SQL ** compiler (eg. count_changes). So add an opcode to expire all ** compiled SQL statements after modifying a pragma value. */ sqlite3VdbeAddOp0(v, OP_Expire); setAllPagerFlags(db); } break; } #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS /* ** PRAGMA table_info(
    ) ** ** Return a single row for each column of the named table. The columns of ** the returned data set are: ** ** cid: Column id (numbered from left to right, starting at 0) ** name: Column name ** type: Column declaration type. ** notnull: True if 'NOT NULL' is part of column declaration ** dflt_value: The default value for the column, if any. ** pk: Non-zero for PK fields. */ case PragTyp_TABLE_INFO: if( zRight ){ Table *pTab; sqlite3CodeVerifyNamedSchema(pParse, zDb); pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); if( pTab ){ int i, k; int nHidden = 0; Column *pCol; Index *pPk = sqlite3PrimaryKeyIndex(pTab); pParse->nMem = 7; sqlite3ViewGetColumnNames(pParse, pTab); for(i=0, pCol=pTab->aCol; inCol; i++, pCol++){ int isHidden = 0; const Expr *pColExpr; if( pCol->colFlags & COLFLAG_NOINSERT ){ if( pPragma->iArg==0 ){ nHidden++; continue; } if( pCol->colFlags & COLFLAG_VIRTUAL ){ isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */ }else if( pCol->colFlags & COLFLAG_STORED ){ isHidden = 3; /* GENERATED ALWAYS AS ... STORED */ }else{ assert( pCol->colFlags & COLFLAG_HIDDEN ); isHidden = 1; /* HIDDEN */ } } if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ k = 0; }else if( pPk==0 ){ k = 1; }else{ for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} } pColExpr = sqlite3ColumnExpr(pTab,pCol); assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 ); assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue) || isHidden>=2 ); sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi", i-nHidden, pCol->zCnName, sqlite3ColumnType(pCol,""), pCol->notNull ? 1 : 0, (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken, k, isHidden); } } } break; /* ** PRAGMA table_list ** ** Return a single row for each table, virtual table, or view in the ** entire schema. ** ** schema: Name of attached database hold this table ** name: Name of the table itself ** type: "table", "view", "virtual", "shadow" ** ncol: Number of columns ** wr: True for a WITHOUT ROWID table ** strict: True for a STRICT table */ case PragTyp_TABLE_LIST: { int ii; pParse->nMem = 6; sqlite3CodeVerifyNamedSchema(pParse, zDb); for(ii=0; iinDb; ii++){ HashElem *k; Hash *pHash; int initNCol; if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue; /* Ensure that the Table.nCol field is initialized for all views ** and virtual tables. Each time we initialize a Table.nCol value ** for a table, that can potentially disrupt the hash table, so restart ** the initialization scan. */ pHash = &db->aDb[ii].pSchema->tblHash; initNCol = sqliteHashCount(pHash); while( initNCol-- ){ for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){ Table *pTab; if( k==0 ){ initNCol = 0; break; } pTab = sqliteHashData(k); if( pTab->nCol==0 ){ char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName); if( zSql ){ sqlite3_stmt *pDummy = 0; (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0); (void)sqlite3_finalize(pDummy); sqlite3DbFree(db, zSql); } if( db->mallocFailed ){ sqlite3ErrorMsg(db->pParse, "out of memory"); db->pParse->rc = SQLITE_NOMEM_BKPT; } pHash = &db->aDb[ii].pSchema->tblHash; break; } } } for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){ Table *pTab = sqliteHashData(k); const char *zType; if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue; if( IsView(pTab) ){ zType = "view"; }else if( IsVirtual(pTab) ){ zType = "virtual"; }else if( pTab->tabFlags & TF_Shadow ){ zType = "shadow"; }else{ zType = "table"; } sqlite3VdbeMultiLoad(v, 1, "sssiii", db->aDb[ii].zDbSName, sqlite3PreferredTableName(pTab->zName), zType, pTab->nCol, (pTab->tabFlags & TF_WithoutRowid)!=0, (pTab->tabFlags & TF_Strict)!=0 ); } } } break; #ifdef SQLITE_DEBUG case PragTyp_STATS: { Index *pIdx; HashElem *i; pParse->nMem = 5; sqlite3CodeVerifySchema(pParse, iDb); for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); sqlite3VdbeMultiLoad(v, 1, "ssiii", sqlite3PreferredTableName(pTab->zName), 0, pTab->szTabRow, pTab->nRowLogEst, pTab->tabFlags); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3VdbeMultiLoad(v, 2, "siiiX", pIdx->zName, pIdx->szIdxRow, pIdx->aiRowLogEst[0], pIdx->hasStat1); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); } } } break; #endif case PragTyp_INDEX_INFO: if( zRight ){ Index *pIdx; Table *pTab; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx==0 ){ /* If there is no index named zRight, check to see if there is a ** WITHOUT ROWID table named zRight, and if there is, show the ** structure of the PRIMARY KEY index for that table. */ pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); if( pTab && !HasRowid(pTab) ){ pIdx = sqlite3PrimaryKeyIndex(pTab); } } if( pIdx ){ int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema); int i; int mx; if( pPragma->iArg ){ /* PRAGMA index_xinfo (newer version with more rows and columns) */ mx = pIdx->nColumn; pParse->nMem = 6; }else{ /* PRAGMA index_info (legacy version) */ mx = pIdx->nKeyCol; pParse->nMem = 3; } pTab = pIdx->pTable; sqlite3CodeVerifySchema(pParse, iIdxDb); assert( pParse->nMem<=pPragma->nPragCName ); for(i=0; iaiColumn[i]; sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, cnum<0 ? 0 : pTab->aCol[cnum].zCnName); if( pPragma->iArg ){ sqlite3VdbeMultiLoad(v, 4, "isiX", pIdx->aSortOrder[i], pIdx->azColl[i], inKeyCol); } sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); } } } break; case PragTyp_INDEX_LIST: if( zRight ){ Index *pIdx; Table *pTab; int i; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); pParse->nMem = 5; sqlite3CodeVerifySchema(pParse, iTabDb); for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ const char *azOrigin[] = { "c", "u", "pk" }; sqlite3VdbeMultiLoad(v, 1, "isisi", i, pIdx->zName, IsUniqueIndex(pIdx), azOrigin[pIdx->idxType], pIdx->pPartIdxWhere!=0); } } } break; case PragTyp_DATABASE_LIST: { int i; pParse->nMem = 3; for(i=0; inDb; i++){ if( db->aDb[i].pBt==0 ) continue; assert( db->aDb[i].zDbSName!=0 ); sqlite3VdbeMultiLoad(v, 1, "iss", i, db->aDb[i].zDbSName, sqlite3BtreeGetFilename(db->aDb[i].pBt)); } } break; case PragTyp_COLLATION_LIST: { int i = 0; HashElem *p; pParse->nMem = 2; for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ CollSeq *pColl = (CollSeq *)sqliteHashData(p); sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); } } break; #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS case PragTyp_FUNCTION_LIST: { int i; HashElem *j; FuncDef *p; int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0; pParse->nMem = 6; for(i=0; iu.pHash ){ assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); pragmaFunclistLine(v, p, 1, showInternFunc); } } for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ p = (FuncDef*)sqliteHashData(j); assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); pragmaFunclistLine(v, p, 0, showInternFunc); } } break; #ifndef SQLITE_OMIT_VIRTUALTABLE case PragTyp_MODULE_LIST: { HashElem *j; pParse->nMem = 1; for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){ Module *pMod = (Module*)sqliteHashData(j); sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName); } } break; #endif /* SQLITE_OMIT_VIRTUALTABLE */ case PragTyp_PRAGMA_LIST: { int i; for(i=0; iu.tab.pFKey; if( pFK ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); int i = 0; pParse->nMem = 8; sqlite3CodeVerifySchema(pParse, iTabDb); while(pFK){ int j; for(j=0; jnCol; j++){ sqlite3VdbeMultiLoad(v, 1, "iissssss", i, j, pFK->zTo, pTab->aCol[pFK->aCol[j].iFrom].zCnName, pFK->aCol[j].zCol, actionName(pFK->aAction[1]), /* ON UPDATE */ actionName(pFK->aAction[0]), /* ON DELETE */ "NONE"); } ++i; pFK = pFK->pNextFrom; } } } } break; #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef SQLITE_OMIT_FOREIGN_KEY #ifndef SQLITE_OMIT_TRIGGER case PragTyp_FOREIGN_KEY_CHECK: { FKey *pFK; /* A foreign key constraint */ Table *pTab; /* Child table contain "REFERENCES" keyword */ Table *pParent; /* Parent table that child points to */ Index *pIdx; /* Index in the parent table */ int i; /* Loop counter: Foreign key number for pTab */ int j; /* Loop counter: Field of the foreign key */ HashElem *k; /* Loop counter: Next table in schema */ int x; /* result variable */ int regResult; /* 3 registers to hold a result row */ int regRow; /* Registers to hold a row from pTab */ int addrTop; /* Top of a loop checking foreign keys */ int addrOk; /* Jump here if the key is OK */ int *aiCols; /* child to parent column mapping */ regResult = pParse->nMem+1; pParse->nMem += 4; regRow = ++pParse->nMem; k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); while( k ){ if( zRight ){ pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); k = 0; }else{ pTab = (Table*)sqliteHashData(k); k = sqliteHashNext(k); } if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zDb = db->aDb[iDb].zDbSName; sqlite3CodeVerifySchema(pParse, iDb); sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); sqlite3TouchRegister(pParse, pTab->nCol+regRow); sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); sqlite3VdbeLoadString(v, regResult, pTab->zName); assert( IsOrdinaryTable(pTab) ); for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3FindTable(db, pFK->zTo, zDb); if( pParent==0 ) continue; pIdx = 0; sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); if( x==0 ){ if( pIdx==0 ){ sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); }else{ sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); } }else{ k = 0; break; } } assert( pParse->nErr>0 || pFK==0 ); if( pFK ) break; if( pParse->nTabnTab = i; addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); assert( IsOrdinaryTable(pTab) ); for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3FindTable(db, pFK->zTo, zDb); pIdx = 0; aiCols = 0; if( pParent ){ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); assert( x==0 || db->mallocFailed ); } addrOk = sqlite3VdbeMakeLabel(pParse); /* Generate code to read the child key values into registers ** regRow..regRow+n. If any of the child key values are NULL, this ** row cannot cause an FK violation. Jump directly to addrOk in ** this case. */ sqlite3TouchRegister(pParse, regRow + pFK->nCol); for(j=0; jnCol; j++){ int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); } /* Generate code to query the parent index for a matching parent ** key. If a match is found, jump to addrOk. */ if( pIdx ){ sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0, sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol); VdbeCoverage(v); }else if( pParent ){ int jmp = sqlite3VdbeCurrentAddr(v)+2; sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); sqlite3VdbeGoto(v, addrOk); assert( pFK->nCol==1 || db->mallocFailed ); } /* Generate code to report an FK violation to the caller. */ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); } sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1); sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); sqlite3VdbeResolveLabel(v, addrOk); sqlite3DbFree(db, aiCols); } sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrTop); } } break; #endif /* !defined(SQLITE_OMIT_TRIGGER) */ #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA /* Reinstall the LIKE and GLOB functions. The variant of LIKE ** used will be case sensitive or not depending on the RHS. */ case PragTyp_CASE_SENSITIVE_LIKE: { if( zRight ){ sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); } } break; #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */ #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 #endif #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* PRAGMA integrity_check ** PRAGMA integrity_check(N) ** PRAGMA quick_check ** PRAGMA quick_check(N) ** ** Verify the integrity of the database. ** ** The "quick_check" is reduced version of ** integrity_check designed to detect most database corruption ** without the overhead of cross-checking indexes. Quick_check ** is linear time whereas integrity_check is O(NlogN). ** ** The maximum number of errors is 100 by default. A different default ** can be specified using a numeric parameter N. ** ** Or, the parameter N can be the name of a table. In that case, only ** the one table named is verified. The freelist is only verified if ** the named table is "sqlite_schema" (or one of its aliases). ** ** All schemas are checked by default. To check just a single ** schema, use the form: ** ** PRAGMA schema.integrity_check; */ case PragTyp_INTEGRITY_CHECK: { int i, j, addr, mxErr; Table *pObjTab = 0; /* Check only this one table, if not NULL */ int isQuick = (sqlite3Tolower(zLeft[0])=='q'); /* If the PRAGMA command was of the form "PRAGMA .integrity_check", ** then iDb is set to the index of the database identified by . ** In this case, the integrity of database iDb only is verified by ** the VDBE created below. ** ** Otherwise, if the command was simply "PRAGMA integrity_check" (or ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb ** to -1 here, to indicate that the VDBE should verify the integrity ** of all attached databases. */ assert( iDb>=0 ); assert( iDb==0 || pId2->z ); if( pId2->z==0 ) iDb = -1; /* Initialize the VDBE program */ pParse->nMem = 6; /* Set the maximum error count */ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; if( zRight ){ if( sqlite3GetInt32(zRight, &mxErr) ){ if( mxErr<=0 ){ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; } }else{ pObjTab = sqlite3LocateTable(pParse, 0, zRight, iDb>=0 ? db->aDb[iDb].zDbSName : 0); } } sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */ /* Do an integrity check on each database file */ for(i=0; inDb; i++){ HashElem *x; /* For looping over tables in the schema */ Hash *pTbls; /* Set of all tables in the schema */ int *aRoot; /* Array of root page numbers of all btrees */ int cnt = 0; /* Number of entries in aRoot[] */ int mxIdx = 0; /* Maximum number of indexes for any table */ if( OMIT_TEMPDB && i==1 ) continue; if( iDb>=0 && i!=iDb ) continue; sqlite3CodeVerifySchema(pParse, i); pParse->okConstFactor = 0; /* tag-20230327-1 */ /* Do an integrity check of the B-Tree ** ** Begin by finding the root pages numbers ** for all tables and indices in the database. */ assert( sqlite3SchemaMutexHeld(db, i, 0) ); pTbls = &db->aDb[i].pSchema->tblHash; for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); /* Current table */ Index *pIdx; /* An index on pTab */ int nIdx; /* Number of indexes on pTab */ if( pObjTab && pObjTab!=pTab ) continue; if( HasRowid(pTab) ) cnt++; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } if( nIdx>mxIdx ) mxIdx = nIdx; } if( cnt==0 ) continue; if( pObjTab ) cnt++; aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); if( aRoot==0 ) break; cnt = 0; if( pObjTab ) aRoot[++cnt] = 0; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; if( pObjTab && pObjTab!=pTab ) continue; if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ aRoot[++cnt] = pIdx->tnum; } } aRoot[0] = cnt; /* Make sure sufficient number of registers have been allocated */ sqlite3TouchRegister(pParse, 8+mxIdx); sqlite3ClearTempRegCache(pParse); /* Do the b-tree integrity checks */ sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); sqlite3VdbeChangeP5(v, (u8)i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), P4_DYNAMIC); sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, addr); /* Make sure all the indices are constructed correctly. */ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx, *pPk; Index *pPrior = 0; /* Previous index */ int loopTop; int iDataCur, iIdxCur; int r1 = -1; int bStrict; /* True for a STRICT table */ int r2; /* Previous key for WITHOUT ROWID tables */ int mxCol; /* Maximum non-virtual column number */ if( pObjTab && pObjTab!=pTab ) continue; if( !IsOrdinaryTable(pTab) ) continue; if( isQuick || HasRowid(pTab) ){ pPk = 0; r2 = 0; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol); sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1, 0, &iDataCur, &iIdxCur); /* reg[7] counts the number of entries in the table. ** reg[8+i] counts the number of entries in the i-th index */ sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } assert( pParse->nMem>=8+j ); assert( sqlite3NoTempsInRange(pParse,1,7+j) ); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); /* Fetch the right-most column from the table. This will cause ** the entire record header to be parsed and sanity checked. It ** will also prepopulate the cursor column cache that is used ** by the OP_IsType code, so it is a required step. */ assert( !IsVirtual(pTab) ); if( HasRowid(pTab) ){ mxCol = -1; for(j=0; jnCol; j++){ if( (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)==0 ) mxCol++; } if( mxCol==pTab->iPKey ) mxCol--; }else{ /* COLFLAG_VIRTUAL columns are not included in the WITHOUT ROWID ** PK index column-count, so there is no need to account for them ** in this case. */ mxCol = sqlite3PrimaryKeyIndex(pTab)->nColumn-1; } if( mxCol>=0 ){ sqlite3VdbeAddOp3(v, OP_Column, iDataCur, mxCol, 3); sqlite3VdbeTypeofColumn(v, 3); } if( !isQuick ){ if( pPk ){ /* Verify WITHOUT ROWID keys are in ascending order */ int a1; char *zErr; a1 = sqlite3VdbeAddOp4Int(v, OP_IdxGT, iDataCur, 0,r2,pPk->nKeyCol); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_IsNull, r2); VdbeCoverage(v); zErr = sqlite3MPrintf(db, "row not in PRIMARY KEY order for %s", pTab->zName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, a1); sqlite3VdbeJumpHere(v, a1+1); for(j=0; jnKeyCol; j++){ sqlite3ExprCodeLoadIndexColumn(pParse, pPk, iDataCur, j, r2+j); } } } /* Verify datatypes for all columns: ** ** (1) NOT NULL columns may not contain a NULL ** (2) Datatype must be exact for non-ANY columns in STRICT tables ** (3) Datatype for TEXT columns in non-STRICT tables must be ** NULL, TEXT, or BLOB. ** (4) Datatype for numeric columns in non-STRICT tables must not ** be a TEXT value that can be losslessly converted to numeric. */ bStrict = (pTab->tabFlags & TF_Strict)!=0; for(j=0; jnCol; j++){ char *zErr; Column *pCol = pTab->aCol + j; /* The column to be checked */ int labelError; /* Jump here to report an error */ int labelOk; /* Jump here if all looks ok */ int p1, p3, p4; /* Operands to the OP_IsType opcode */ int doTypeCheck; /* Check datatypes (besides NOT NULL) */ if( j==pTab->iPKey ) continue; if( bStrict ){ doTypeCheck = pCol->eCType>COLTYPE_ANY; }else{ doTypeCheck = pCol->affinity>SQLITE_AFF_BLOB; } if( pCol->notNull==0 && !doTypeCheck ) continue; /* Compute the operands that will be needed for OP_IsType */ p4 = SQLITE_NULL; if( pCol->colFlags & COLFLAG_VIRTUAL ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); p1 = -1; p3 = 3; }else{ if( pCol->iDflt ){ sqlite3_value *pDfltValue = 0; sqlite3ValueFromExpr(db, sqlite3ColumnExpr(pTab,pCol), ENC(db), pCol->affinity, &pDfltValue); if( pDfltValue ){ p4 = sqlite3_value_type(pDfltValue); sqlite3ValueFree(pDfltValue); } } p1 = iDataCur; if( !HasRowid(pTab) ){ testcase( j!=sqlite3TableColumnToStorage(pTab, j) ); p3 = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), j); }else{ p3 = sqlite3TableColumnToStorage(pTab,j); testcase( p3!=j); } } labelError = sqlite3VdbeMakeLabel(pParse); labelOk = sqlite3VdbeMakeLabel(pParse); if( pCol->notNull ){ /* (1) NOT NULL columns may not contain a NULL */ int jmp3; int jmp2 = sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); VdbeCoverage(v); if( p1<0 ){ sqlite3VdbeChangeP5(v, 0x0f); /* INT, REAL, TEXT, or BLOB */ jmp3 = jmp2; }else{ sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */ /* OP_IsType does not detect NaN values in the database file ** which should be treated as a NULL. So if the header type ** is REAL, we have to load the actual data using OP_Column ** to reliably determine if the value is a NULL. */ sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3); sqlite3ColumnDefault(v, pTab, j, 3); jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk); VdbeCoverage(v); } zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, pCol->zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); if( doTypeCheck ){ sqlite3VdbeGoto(v, labelError); sqlite3VdbeJumpHere(v, jmp2); sqlite3VdbeJumpHere(v, jmp3); }else{ /* VDBE byte code will fall thru */ } } if( bStrict && doTypeCheck ){ /* (2) Datatype must be exact for non-ANY columns in STRICT tables*/ static unsigned char aStdTypeMask[] = { 0x1f, /* ANY */ 0x18, /* BLOB */ 0x11, /* INT */ 0x11, /* INTEGER */ 0x13, /* REAL */ 0x14 /* TEXT */ }; sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); assert( pCol->eCType>=1 && pCol->eCType<=sizeof(aStdTypeMask) ); sqlite3VdbeChangeP5(v, aStdTypeMask[pCol->eCType-1]); VdbeCoverage(v); zErr = sqlite3MPrintf(db, "non-%s value in %s.%s", sqlite3StdType[pCol->eCType-1], pTab->zName, pTab->aCol[j].zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); }else if( !bStrict && pCol->affinity==SQLITE_AFF_TEXT ){ /* (3) Datatype for TEXT columns in non-STRICT tables must be ** NULL, TEXT, or BLOB. */ sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */ VdbeCoverage(v); zErr = sqlite3MPrintf(db, "NUMERIC value in %s.%s", pTab->zName, pTab->aCol[j].zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); }else if( !bStrict && pCol->affinity>=SQLITE_AFF_NUMERIC ){ /* (4) Datatype for numeric columns in non-STRICT tables must not ** be a TEXT value that can be converted to numeric. */ sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); sqlite3VdbeChangeP5(v, 0x1b); /* NULL, INT, FLOAT, or BLOB */ VdbeCoverage(v); if( p1>=0 ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); } sqlite3VdbeAddOp4(v, OP_Affinity, 3, 1, 0, "C", P4_STATIC); sqlite3VdbeAddOp4Int(v, OP_IsType, -1, labelOk, 3, p4); sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */ VdbeCoverage(v); zErr = sqlite3MPrintf(db, "TEXT value in %s.%s", pTab->zName, pTab->aCol[j].zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); } sqlite3VdbeResolveLabel(v, labelError); integrityCheckResultRow(v); sqlite3VdbeResolveLabel(v, labelOk); } /* Verify CHECK constraints */ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0); if( db->mallocFailed==0 ){ int addrCkFault = sqlite3VdbeMakeLabel(pParse); int addrCkOk = sqlite3VdbeMakeLabel(pParse); char *zErr; int k; pParse->iSelfTab = iDataCur + 1; for(k=pCheck->nExpr-1; k>0; k--){ sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0); } sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, SQLITE_JUMPIFNULL); sqlite3VdbeResolveLabel(v, addrCkFault); pParse->iSelfTab = 0; zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s", pTab->zName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); integrityCheckResultRow(v); sqlite3VdbeResolveLabel(v, addrCkOk); } sqlite3ExprListDelete(db, pCheck); } if( !isQuick ){ /* Omit the remaining tests for quick_check */ /* Validate index entries for the current row */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2, jmp3, jmp4, jmp5, label6; int kk; int ckUniq = sqlite3VdbeMakeLabel(pParse); if( pPk==pIdx ) continue; r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, pPrior, r1); pPrior = pIdx; sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */ /* Verify that an index entry exists for the current table row */ jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, pIdx->nColumn); VdbeCoverage(v); sqlite3VdbeLoadString(v, 3, "row "); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeLoadString(v, 4, " missing from index "); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); jmp4 = integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, jmp2); /* The OP_IdxRowid opcode is an optimized version of OP_Column ** that extracts the rowid off the end of the index record. ** But it only works correctly if index record does not have ** any extra bytes at the end. Verify that this is the case. */ if( HasRowid(pTab) ){ int jmp7; sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur+j, 3); jmp7 = sqlite3VdbeAddOp3(v, OP_Eq, 3, 0, r1+pIdx->nColumn-1); VdbeCoverageNeverNull(v); sqlite3VdbeLoadString(v, 3, "rowid not at end-of-record for row "); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeLoadString(v, 4, " of index "); sqlite3VdbeGoto(v, jmp5-1); sqlite3VdbeJumpHere(v, jmp7); } /* Any indexed columns with non-BINARY collations must still hold ** the exact same text value as the table. */ label6 = 0; for(kk=0; kknKeyCol; kk++){ if( pIdx->azColl[kk]==sqlite3StrBINARY ) continue; if( label6==0 ) label6 = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+j, kk, 3); sqlite3VdbeAddOp3(v, OP_Ne, 3, label6, r1+kk); VdbeCoverage(v); } if( label6 ){ int jmp6 = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeResolveLabel(v, label6); sqlite3VdbeLoadString(v, 3, "row "); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeLoadString(v, 4, " values differ from index "); sqlite3VdbeGoto(v, jmp5-1); sqlite3VdbeJumpHere(v, jmp6); } /* For UNIQUE indexes, verify that only one entry exists with the ** current key. The entry is unique if (1) any column is NULL ** or (2) the next entry has a different key */ if( IsUniqueIndex(pIdx) ){ int uniqOk = sqlite3VdbeMakeLabel(pParse); int jmp6; for(kk=0; kknKeyCol; kk++){ int iCol = pIdx->aiColumn[kk]; assert( iCol!=XN_ROWID && iColnCol ); if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); VdbeCoverage(v); } jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); sqlite3VdbeGoto(v, uniqOk); sqlite3VdbeJumpHere(v, jmp6); sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, pIdx->nKeyCol); VdbeCoverage(v); sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); sqlite3VdbeGoto(v, jmp5); sqlite3VdbeResolveLabel(v, uniqOk); } sqlite3VdbeJumpHere(v, jmp4); sqlite3ResolvePartIdxLabel(pParse, jmp3); } } sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); sqlite3VdbeJumpHere(v, loopTop-1); if( !isQuick ){ sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ if( pPk==pIdx ) continue; sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); sqlite3VdbeLoadString(v, 4, pIdx->zName); sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, addr); } if( pPk ){ sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol); } } } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Second pass to invoke the xIntegrity method on all virtual ** tables. */ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); sqlite3_vtab *pVTab; int a1; if( pObjTab && pObjTab!=pTab ) continue; if( IsOrdinaryTable(pTab) ) continue; if( !IsVirtual(pTab) ) continue; if( pTab->nCol<=0 ){ const char *zMod = pTab->u.vtab.azArg[0]; if( sqlite3HashFind(&db->aModule, zMod)==0 ) continue; } sqlite3ViewGetColumnNames(pParse, pTab); if( pTab->u.vtab.p==0 ) continue; pVTab = pTab->u.vtab.p->pVtab; if( NEVER(pVTab==0) ) continue; if( NEVER(pVTab->pModule==0) ) continue; if( pVTab->pModule->iVersion<4 ) continue; if( pVTab->pModule->xIntegrity==0 ) continue; sqlite3VdbeAddOp3(v, OP_VCheck, i, 3, isQuick); pTab->nTabRef++; sqlite3VdbeAppendP4(v, pTab, P4_TABLEREF); a1 = sqlite3VdbeAddOp1(v, OP_IsNull, 3); VdbeCoverage(v); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, a1); continue; } #endif } { static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_IfNotZero, 1, 4, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, /* 3 */ { OP_Halt, 0, 0, 0}, /* 4 */ { OP_String8, 0, 3, 0}, /* 5 */ { OP_Goto, 0, 3, 0}, /* 6 */ }; VdbeOp *aOp; aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); if( aOp ){ aOp[0].p2 = 1-mxErr; aOp[2].p4type = P4_STATIC; aOp[2].p4.z = "ok"; aOp[5].p4type = P4_STATIC; aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT); } sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2); } } break; #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_UTF16 /* ** PRAGMA encoding ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" ** ** In its first form, this pragma returns the encoding of the main ** database. If the database is not initialized, it is initialized now. ** ** The second form of this pragma is a no-op if the main database file ** has not already been initialized. In this case it sets the default ** encoding that will be used for the main database file if a new file ** is created. If an existing main database file is opened, then the ** default text encoding for the existing database is used. ** ** In all cases new databases created using the ATTACH command are ** created to use the same default text encoding as the main database. If ** the main database has not been initialized and/or created when ATTACH ** is executed, this is done before the ATTACH operation. ** ** In the second form this pragma sets the text encoding to be used in ** new database files created using this database handle. It is only ** useful if invoked immediately after the main database i */ case PragTyp_ENCODING: { static const struct EncName { char *zName; u8 enc; } encnames[] = { { "UTF8", SQLITE_UTF8 }, { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ { "UTF16le", SQLITE_UTF16LE }, { "UTF16be", SQLITE_UTF16BE }, { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ { 0, 0 } }; const struct EncName *pEnc; if( !zRight ){ /* "PRAGMA encoding" */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); returnSingleText(v, encnames[ENC(pParse->db)].zName); }else{ /* "PRAGMA encoding = XXX" */ /* Only change the value of sqlite.enc if the database handle is not ** initialized. If the main database exists, the new sqlite.enc value ** will be overwritten when the schema is next loaded. If it does not ** already exists, it will be created to use the new encoding value. */ if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; SCHEMA_ENC(db) = enc; sqlite3SetTextEncoding(db, enc); break; } } if( !pEnc->zName ){ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); } } } } break; #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS /* ** PRAGMA [schema.]schema_version ** PRAGMA [schema.]schema_version = ** ** PRAGMA [schema.]user_version ** PRAGMA [schema.]user_version = ** ** PRAGMA [schema.]freelist_count ** ** PRAGMA [schema.]data_version ** ** PRAGMA [schema.]application_id ** PRAGMA [schema.]application_id = ** ** The pragma's schema_version and user_version are used to set or get ** the value of the schema-version and user-version, respectively. Both ** the schema-version and the user-version are 32-bit signed integers ** stored in the database header. ** ** The schema-cookie is usually only manipulated internally by SQLite. It ** is incremented by SQLite whenever the database schema is modified (by ** creating or dropping a table or index). The schema version is used by ** SQLite each time a query is executed to ensure that the internal cache ** of the schema used when compiling the SQL query matches the schema of ** the database against which the compiled query is actually executed. ** Subverting this mechanism by using "PRAGMA schema_version" to modify ** the schema-version is potentially dangerous and may lead to program ** crashes or database corruption. Use with caution! ** ** The user-version is not used internally by SQLite. It may be used by ** applications for any purpose. */ case PragTyp_HEADER_VALUE: { int iCookie = pPragma->iArg; /* Which cookie to read or write */ sqlite3VdbeUsesBtree(v, iDb); if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_SetCookie, 0, 0, 0}, /* 1 */ }; VdbeOp *aOp; sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[1].p2 = iCookie; aOp[1].p3 = sqlite3Atoi(zRight); aOp[1].p5 = 1; if( iCookie==BTREE_SCHEMA_VERSION && (db->flags & SQLITE_Defensive)!=0 ){ /* Do not allow the use of PRAGMA schema_version=VALUE in defensive ** mode. Change the OP_SetCookie opcode into a no-op. */ aOp[1].opcode = OP_Noop; } }else{ /* Read the specified cookie value */ static const VdbeOpList readCookie[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, 0}, /* 1 */ { OP_ResultRow, 1, 1, 0} }; VdbeOp *aOp; sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; aOp[0].p1 = iDb; aOp[1].p1 = iDb; aOp[1].p3 = iCookie; sqlite3VdbeReusable(v); } } break; #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* ** PRAGMA compile_options ** ** Return the names of all compile-time options used in this build, ** one option per row. */ case PragTyp_COMPILE_OPTIONS: { int i = 0; const char *zOpt; pParse->nMem = 1; while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ sqlite3VdbeLoadString(v, 1, zOpt); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } sqlite3VdbeReusable(v); } break; #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ #ifndef SQLITE_OMIT_WAL /* ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate ** ** Checkpoint the database. */ case PragTyp_WAL_CHECKPOINT: { int iBt = (pId2->z?iDb:SQLITE_MAX_DB); int eMode = SQLITE_CHECKPOINT_PASSIVE; if( zRight ){ if( sqlite3StrICmp(zRight, "full")==0 ){ eMode = SQLITE_CHECKPOINT_FULL; }else if( sqlite3StrICmp(zRight, "restart")==0 ){ eMode = SQLITE_CHECKPOINT_RESTART; }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ eMode = SQLITE_CHECKPOINT_TRUNCATE; } } pParse->nMem = 3; sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); } break; /* ** PRAGMA wal_autocheckpoint ** PRAGMA wal_autocheckpoint = N ** ** Configure a database connection to automatically checkpoint a database ** after accumulating N frames in the log. Or query for the current value ** of N. */ case PragTyp_WAL_AUTOCHECKPOINT: { if( zRight ){ sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); } returnSingleInt(v, db->xWalCallback==sqlite3WalDefaultHook ? SQLITE_PTR_TO_INT(db->pWalArg) : 0); } break; #endif /* ** PRAGMA shrink_memory ** ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database ** connection on which it is invoked to free up as much memory as it ** can, by calling sqlite3_db_release_memory(). */ case PragTyp_SHRINK_MEMORY: { sqlite3_db_release_memory(db); break; } /* ** PRAGMA optimize ** PRAGMA optimize(MASK) ** PRAGMA schema.optimize ** PRAGMA schema.optimize(MASK) ** ** Attempt to optimize the database. All schemas are optimized in the first ** two forms, and only the specified schema is optimized in the latter two. ** ** The details of optimizations performed by this pragma are expected ** to change and improve over time. Applications should anticipate that ** this pragma will perform new optimizations in future releases. ** ** The optional argument is a bitmask of optimizations to perform: ** ** 0x0001 Debugging mode. Do not actually perform any optimizations ** but instead return one line of text for each optimization ** that would have been done. Off by default. ** ** 0x0002 Run ANALYZE on tables that might benefit. On by default. ** See below for additional information. ** ** 0x0004 (Not yet implemented) Record usage and performance ** information from the current session in the ** database file so that it will be available to "optimize" ** pragmas run by future database connections. ** ** 0x0008 (Not yet implemented) Create indexes that might have ** been helpful to recent queries ** ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all ** of the optimizations listed above except Debug Mode, including new ** optimizations that have not yet been invented. If new optimizations are ** ever added that should be off by default, those off-by-default ** optimizations will have bitmasks of 0x10000 or larger. ** ** DETERMINATION OF WHEN TO RUN ANALYZE ** ** In the current implementation, a table is analyzed if only if all of ** the following are true: ** ** (1) MASK bit 0x02 is set. ** ** (2) The query planner used sqlite_stat1-style statistics for one or ** more indexes of the table at some point during the lifetime of ** the current connection. ** ** (3) One or more indexes of the table are currently unanalyzed OR ** the number of rows in the table has increased by 25 times or more ** since the last time ANALYZE was run. ** ** The rules for when tables are analyzed are likely to change in ** future releases. */ case PragTyp_OPTIMIZE: { int iDbLast; /* Loop termination point for the schema loop */ int iTabCur; /* Cursor for a table whose size needs checking */ HashElem *k; /* Loop over tables of a schema */ Schema *pSchema; /* The current schema */ Table *pTab; /* A table in the schema */ Index *pIdx; /* An index of the table */ LogEst szThreshold; /* Size threshold above which reanalysis needed */ char *zSubSql; /* SQL statement for the OP_SqlExec opcode */ u32 opMask; /* Mask of operations to perform */ if( zRight ){ opMask = (u32)sqlite3Atoi(zRight); if( (opMask & 0x02)==0 ) break; }else{ opMask = 0xfffe; } iTabCur = pParse->nTab++; for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){ if( iDb==1 ) continue; sqlite3CodeVerifySchema(pParse, iDb); pSchema = db->aDb[iDb].pSchema; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); /* If table pTab has not been used in a way that would benefit from ** having analysis statistics during the current session, then skip it. ** This also has the effect of skipping virtual tables and views */ if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue; /* Reanalyze if the table is 25 times larger than the last analysis */ szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 ); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !pIdx->hasStat1 ){ szThreshold = 0; /* Always analyze if any index lacks statistics */ break; } } if( szThreshold ){ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur, sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold); VdbeCoverage(v); } zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"", db->aDb[iDb].zDbSName, pTab->zName); if( opMask & 0x01 ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1); }else{ sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC); } } } sqlite3VdbeAddOp0(v, OP_Expire); break; } /* ** PRAGMA busy_timeout ** PRAGMA busy_timeout = N ** ** Call sqlite3_busy_timeout(db, N). Return the current timeout value ** if one is set. If no busy handler or a different busy handler is set ** then 0 is returned. Setting the busy_timeout to 0 or negative ** disables the timeout. */ /*case PragTyp_BUSY_TIMEOUT*/ default: { assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); if( zRight ){ sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); } returnSingleInt(v, db->busyTimeout); break; } /* ** PRAGMA soft_heap_limit ** PRAGMA soft_heap_limit = N ** ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the ** sqlite3_soft_heap_limit64() interface with the argument N, if N is ** specified and is a non-negative integer. ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always ** returns the same integer that would be returned by the ** sqlite3_soft_heap_limit64(-1) C-language function. */ case PragTyp_SOFT_HEAP_LIMIT: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ sqlite3_soft_heap_limit64(N); } returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); break; } /* ** PRAGMA hard_heap_limit ** PRAGMA hard_heap_limit = N ** ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap ** limit. The hard heap limit can be activated or lowered by this ** pragma, but not raised or deactivated. Only the ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate ** the hard heap limit. This allows an application to set a heap limit ** constraint that cannot be relaxed by an untrusted SQL script. */ case PragTyp_HARD_HEAP_LIMIT: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1); if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N); } returnSingleInt(v, sqlite3_hard_heap_limit64(-1)); break; } /* ** PRAGMA threads ** PRAGMA threads = N ** ** Configure the maximum number of worker threads. Return the new ** maximum, which might be less than requested. */ case PragTyp_THREADS: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK && N>=0 ){ sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); } returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); break; } /* ** PRAGMA analysis_limit ** PRAGMA analysis_limit = N ** ** Configure the maximum number of rows that ANALYZE will examine ** in each index that it looks at. Return the new limit. */ case PragTyp_ANALYSIS_LIMIT: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */ && N>=0 ){ db->nAnalysisLimit = (int)(N&0x7fffffff); } returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */ break; } #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* ** Report the current state of file logs for all databases */ case PragTyp_LOCK_STATUS: { static const char *const azLockName[] = { "unlocked", "shared", "reserved", "pending", "exclusive" }; int i; pParse->nMem = 2; for(i=0; inDb; i++){ Btree *pBt; const char *zState = "unknown"; int j; if( db->aDb[i].zDbSName==0 ) continue; pBt = db->aDb[i].pBt; if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ zState = "closed"; }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ zState = azLockName[j]; } sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); } break; } #endif /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC /* Pragma iArg ** ---------- ------ ** key 0 ** rekey 1 ** hexkey 2 ** hexrekey 3 ** textkey 4 ** textrekey 5 */ case PragTyp_KEY: { if( zRight ){ char zBuf[40]; const char *zKey = zRight; int n; if( pPragma->iArg==2 || pPragma->iArg==3 ){ u8 iByte; int i; for(i=0, iByte=0; iiArg<4 ? sqlite3Strlen30(zRight) : -1; } if( (pPragma->iArg & 1)==0 ){ rc = sqlite3_key_v2(db, zDb, zKey, n); }else{ rc = sqlite3_rekey_v2(db, zDb, zKey, n); } if( rc==SQLITE_OK && n!=0 ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "ok", SQLITE_STATIC); returnSingleText(v, "ok"); } else { sqlite3ErrorMsg(pParse, "An error occurred with PRAGMA key or rekey. " "PRAGMA key requires a key of one or more characters. " "PRAGMA rekey can only be run on an existing encrypted database. " "Use sqlcipher_export() and ATTACH to convert encrypted/plaintext databases."); goto pragma_out; } } break; } #endif /* END SQLCIPHER */ #if defined(SQLITE_ENABLE_CEROD) case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ sqlite3_activate_cerod(&zRight[6]); } } break; #endif } /* End of the PRAGMA switch */ /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only ** purpose is to execute assert() statements to verify that if the ** PragFlg_NoColumns1 flag is set and the caller specified an argument ** to the PRAGMA, the implementation has not added any OP_ResultRow ** instructions to the VM. */ if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ sqlite3VdbeVerifyNoResultRow(v); } pragma_out: sqlite3DbFree(db, zLeft); sqlite3DbFree(db, zRight); } #ifndef SQLITE_OMIT_VIRTUALTABLE /***************************************************************************** ** Implementation of an eponymous virtual table that runs a pragma. ** */ typedef struct PragmaVtab PragmaVtab; typedef struct PragmaVtabCursor PragmaVtabCursor; struct PragmaVtab { sqlite3_vtab base; /* Base class. Must be first */ sqlite3 *db; /* The database connection to which it belongs */ const PragmaName *pName; /* Name of the pragma */ u8 nHidden; /* Number of hidden columns */ u8 iHidden; /* Index of the first hidden column */ }; struct PragmaVtabCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ sqlite3_stmt *pPragma; /* The pragma statement to run */ sqlite_int64 iRowid; /* Current rowid */ char *azArg[2]; /* Value of the argument and schema */ }; /* ** Pragma virtual table module xConnect method. */ static int pragmaVtabConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ const PragmaName *pPragma = (const PragmaName*)pAux; PragmaVtab *pTab = 0; int rc; int i, j; char cSep = '('; StrAccum acc; char zBuf[200]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3_str_appendall(&acc, "CREATE TABLE x"); for(i=0, j=pPragma->iPragCName; inPragCName; i++, j++){ sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]); cSep = ','; } if( i==0 ){ sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName); i++; } j = 0; if( pPragma->mPragFlg & PragFlg_Result1 ){ sqlite3_str_appendall(&acc, ",arg HIDDEN"); j++; } if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ sqlite3_str_appendall(&acc, ",schema HIDDEN"); j++; } sqlite3_str_append(&acc, ")", 1); sqlite3StrAccumFinish(&acc); assert( strlen(zBuf) < sizeof(zBuf)-1 ); rc = sqlite3_declare_vtab(db, zBuf); if( rc==SQLITE_OK ){ pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); if( pTab==0 ){ rc = SQLITE_NOMEM; }else{ memset(pTab, 0, sizeof(PragmaVtab)); pTab->pName = pPragma; pTab->db = db; pTab->iHidden = i; pTab->nHidden = j; } }else{ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } *ppVtab = (sqlite3_vtab*)pTab; return rc; } /* ** Pragma virtual table module xDisconnect method. */ static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ PragmaVtab *pTab = (PragmaVtab*)pVtab; sqlite3_free(pTab); return SQLITE_OK; } /* Figure out the best index to use to search a pragma virtual table. ** ** There are not really any index choices. But we want to encourage the ** query planner to give == constraints on as many hidden parameters as ** possible, and especially on the first hidden parameter. So return a ** high cost if hidden parameters are unconstrained. */ static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ PragmaVtab *pTab = (PragmaVtab*)tab; const struct sqlite3_index_constraint *pConstraint; int i, j; int seen[2]; pIdxInfo->estimatedCost = (double)1; if( pTab->nHidden==0 ){ return SQLITE_OK; } pConstraint = pIdxInfo->aConstraint; seen[0] = 0; seen[1] = 0; for(i=0; inConstraint; i++, pConstraint++){ if( pConstraint->usable==0 ) continue; if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; if( pConstraint->iColumn < pTab->iHidden ) continue; j = pConstraint->iColumn - pTab->iHidden; assert( j < 2 ); seen[j] = i+1; } if( seen[0]==0 ){ pIdxInfo->estimatedCost = (double)2147483647; pIdxInfo->estimatedRows = 2147483647; return SQLITE_OK; } j = seen[0]-1; pIdxInfo->aConstraintUsage[j].argvIndex = 1; pIdxInfo->aConstraintUsage[j].omit = 1; if( seen[1]==0 ){ pIdxInfo->estimatedCost = (double)1000; pIdxInfo->estimatedRows = 1000; return SQLITE_OK; } pIdxInfo->estimatedCost = (double)20; pIdxInfo->estimatedRows = 20; j = seen[1]-1; pIdxInfo->aConstraintUsage[j].argvIndex = 2; pIdxInfo->aConstraintUsage[j].omit = 1; return SQLITE_OK; } /* Create a new cursor for the pragma virtual table */ static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ PragmaVtabCursor *pCsr; pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); if( pCsr==0 ) return SQLITE_NOMEM; memset(pCsr, 0, sizeof(PragmaVtabCursor)); pCsr->base.pVtab = pVtab; *ppCursor = &pCsr->base; return SQLITE_OK; } /* Clear all content from pragma virtual table cursor. */ static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ int i; sqlite3_finalize(pCsr->pPragma); pCsr->pPragma = 0; for(i=0; iazArg); i++){ sqlite3_free(pCsr->azArg[i]); pCsr->azArg[i] = 0; } } /* Close a pragma virtual table cursor */ static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; pragmaVtabCursorClear(pCsr); sqlite3_free(pCsr); return SQLITE_OK; } /* Advance the pragma virtual table cursor to the next row */ static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; int rc = SQLITE_OK; /* Increment the xRowid value */ pCsr->iRowid++; assert( pCsr->pPragma ); if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ rc = sqlite3_finalize(pCsr->pPragma); pCsr->pPragma = 0; pragmaVtabCursorClear(pCsr); } return rc; } /* ** Pragma virtual table module xFilter method. */ static int pragmaVtabFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); int rc; int i, j; StrAccum acc; char *zSql; UNUSED_PARAMETER(idxNum); UNUSED_PARAMETER(idxStr); pragmaVtabCursorClear(pCsr); j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; for(i=0; iazArg) ); assert( pCsr->azArg[j]==0 ); if( zText ){ pCsr->azArg[j] = sqlite3_mprintf("%s", zText); if( pCsr->azArg[j]==0 ){ return SQLITE_NOMEM; } } } sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); sqlite3_str_appendall(&acc, "PRAGMA "); if( pCsr->azArg[1] ){ sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]); } sqlite3_str_appendall(&acc, pTab->pName->zName); if( pCsr->azArg[0] ){ sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]); } zSql = sqlite3StrAccumFinish(&acc); if( zSql==0 ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); return rc; } return pragmaVtabNext(pVtabCursor); } /* ** Pragma virtual table module xEof method. */ static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; return (pCsr->pPragma==0); } /* The xColumn method simply returns the corresponding column from ** the PRAGMA. */ static int pragmaVtabColumn( sqlite3_vtab_cursor *pVtabCursor, sqlite3_context *ctx, int i ){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); if( iiHidden ){ sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); }else{ sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); } return SQLITE_OK; } /* ** Pragma virtual table module xRowid method. */ static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; *p = pCsr->iRowid; return SQLITE_OK; } /* The pragma virtual table object */ static const sqlite3_module pragmaVtabModule = { 0, /* iVersion */ 0, /* xCreate - create a table */ pragmaVtabConnect, /* xConnect - connect to an existing table */ pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */ pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */ 0, /* xDestroy - Drop a table */ pragmaVtabOpen, /* xOpen - open a cursor */ pragmaVtabClose, /* xClose - close a cursor */ pragmaVtabFilter, /* xFilter - configure scan constraints */ pragmaVtabNext, /* xNext - advance a cursor */ pragmaVtabEof, /* xEof */ pragmaVtabColumn, /* xColumn - read data */ pragmaVtabRowid, /* xRowid - read data */ 0, /* xUpdate - write data */ 0, /* xBegin - begin transaction */ 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ 0, /* xRename - rename the table */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; /* ** Check to see if zTabName is really the name of a pragma. If it is, ** then register an eponymous virtual table for that pragma and return ** a pointer to the Module object for the new virtual table. */ SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ const PragmaName *pName; assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); pName = pragmaLocate(zName+7); if( pName==0 ) return 0; if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; assert( sqlite3HashFind(&db->aModule, zName)==0 ); return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #endif /* SQLITE_OMIT_PRAGMA */ /************** End of pragma.c **********************************************/ /************** Begin file prepare.c *****************************************/ /* ** 2005 May 25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_prepare() ** interface, and routines that contribute to loading the database schema ** from disk. */ /* #include "sqliteInt.h" */ /* ** Fill the InitData structure with an error message that indicates ** that the database is corrupt. */ static void corruptSchema( InitData *pData, /* Initialization context */ char **azObj, /* Type and name of object being parsed */ const char *zExtra /* Error information */ ){ sqlite3 *db = pData->db; if( db->mallocFailed ){ pData->rc = SQLITE_NOMEM_BKPT; }else if( pData->pzErrMsg[0]!=0 ){ /* A error message has already been generated. Do not overwrite it */ }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){ static const char *azAlterType[] = { "rename", "drop column", "add column" }; *pData->pzErrMsg = sqlite3MPrintf(db, "error in %s %s after %s: %s", azObj[0], azObj[1], azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1], zExtra ); pData->rc = SQLITE_ERROR; }else if( db->flags & SQLITE_WriteSchema ){ pData->rc = SQLITE_CORRUPT_BKPT; }else{ char *z; const char *zObj = azObj[1] ? azObj[1] : "?"; z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); *pData->pzErrMsg = z; pData->rc = SQLITE_CORRUPT_BKPT; } } /* ** Check to see if any sibling index (another index on the same table) ** of pIndex has the same root page number, and if it does, return true. ** This would indicate a corrupt schema. */ SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ Index *p; for(p=pIndex->pTable->pIndex; p; p=p->pNext){ if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; } return 0; } /* forward declaration */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pReprepare, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ); /* ** This is the callback routine for the code that initializes the ** database. See sqlite3Init() below for additional information. ** This routine is also called from the OP_ParseSchema opcode of the VDBE. ** ** Each callback contains the following information: ** ** argv[0] = type of object: "table", "index", "trigger", or "view". ** argv[1] = name of thing being created ** argv[2] = associated table if an index or trigger ** argv[3] = root page number for table or index. 0 for trigger or view. ** argv[4] = SQL text for the CREATE statement. ** */ SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ InitData *pData = (InitData*)pInit; sqlite3 *db = pData->db; int iDb = pData->iDb; assert( argc==5 ); UNUSED_PARAMETER2(NotUsed, argc); assert( sqlite3_mutex_held(db->mutex) ); db->mDbFlags |= DBFLAG_EncodingFixed; if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ pData->nInitRow++; if( db->mallocFailed ){ corruptSchema(pData, argv, 0); return 1; } assert( iDb>=0 && iDbnDb ); if( argv[3]==0 ){ corruptSchema(pData, argv, 0); }else if( argv[4] && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ /* Call the parser to process a CREATE TABLE, INDEX or VIEW. ** But because db->init.busy is set to 1, no VDBE code is generated ** or executed. All the parser does is build the internal data ** structures that describe the table, index, or view. ** ** No other valid SQL statement, other than the variable CREATE statements, ** can begin with the letters "C" and "R". Thus, it is not possible run ** any other kind of statement while parsing the schema, even a corrupt ** schema. */ int rc; u8 saved_iDb = db->init.iDb; sqlite3_stmt *pStmt; TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ assert( db->init.busy ); db->init.iDb = iDb; if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 || (db->init.newTnum>pData->mxPage && pData->mxPage>0) ){ if( sqlite3Config.bExtraSchemaChecks ){ corruptSchema(pData, argv, "invalid rootpage"); } } db->init.orphanTrigger = 0; db->init.azInit = (const char**)argv; pStmt = 0; TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); rc = db->errCode; assert( (rc&0xFF)==(rcp&0xFF) ); db->init.iDb = saved_iDb; /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ if( SQLITE_OK!=rc ){ if( db->init.orphanTrigger ){ assert( iDb==1 ); }else{ if( rc > pData->rc ) pData->rc = rc; if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ corruptSchema(pData, argv, sqlite3_errmsg(db)); } } } db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ sqlite3_finalize(pStmt); }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ corruptSchema(pData, argv, 0); }else{ /* If the SQL column is blank it means this is an index that ** was created to be the PRIMARY KEY or to fulfill a UNIQUE ** constraint for a CREATE TABLE. The index should have already ** been created when we processed the CREATE TABLE. All we have ** to do here is record the root page number for that index. */ Index *pIndex; pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); if( pIndex==0 ){ corruptSchema(pData, argv, "orphan index"); }else if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 || pIndex->tnum<2 || pIndex->tnum>pData->mxPage || sqlite3IndexHasDuplicateRootPage(pIndex) ){ if( sqlite3Config.bExtraSchemaChecks ){ corruptSchema(pData, argv, "invalid rootpage"); } } } return 0; } /* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ SQLITE_PRIVATE int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ int rc; int i; #ifndef SQLITE_OMIT_DEPRECATED int size; #endif Db *pDb; char const *azArg[6]; int meta[5]; InitData initData; const char *zSchemaTabName; int openedTransaction = 0; int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); assert( iDb>=0 && iDbnDb ); assert( db->aDb[iDb].pSchema ); assert( sqlite3_mutex_held(db->mutex) ); assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); db->init.busy = 1; /* Construct the in-memory representation schema tables (sqlite_schema or ** sqlite_temp_schema) by invoking the parser directly. The appropriate ** table name will be inserted automatically by the parser so we can just ** use the abbreviation "x" here. The parser will also automatically tag ** the schema table as read-only. */ azArg[0] = "table"; azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); azArg[2] = azArg[1]; azArg[3] = "1"; azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," "rootpage int,sql text)"; azArg[5] = 0; initData.db = db; initData.iDb = iDb; initData.rc = SQLITE_OK; initData.pzErrMsg = pzErrMsg; initData.mInitFlags = mFlags; initData.nInitRow = 0; initData.mxPage = 0; sqlite3InitCallback(&initData, 5, (char **)azArg, 0); db->mDbFlags &= mask; if( initData.rc ){ rc = initData.rc; goto error_out; } /* Create a cursor to hold the database open */ pDb = &db->aDb[iDb]; if( pDb->pBt==0 ){ assert( iDb==1 ); DbSetProperty(db, 1, DB_SchemaLoaded); rc = SQLITE_OK; goto error_out; } /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed before this function returns. */ sqlite3BtreeEnter(pDb->pBt); if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); if( rc!=SQLITE_OK ){ sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); goto initone_error_out; } openedTransaction = 1; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Largest rootpage (auto/incr_vacuum mode) ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE ** meta[5] User version ** meta[6] Incremental vacuum mode ** meta[7] unused ** meta[8] unused ** meta[9] unused ** ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ for(i=0; ipBt, i+1, (u32 *)&meta[i]); } if( (db->flags & SQLITE_ResetDatabase)!=0 ){ memset(meta, 0, sizeof(meta)); } pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ u8 encoding; #ifndef SQLITE_OMIT_UTF16 /* If opening the main database, set ENC(db). */ encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; if( encoding==0 ) encoding = SQLITE_UTF8; #else encoding = SQLITE_UTF8; #endif if( db->nVdbeActive>0 && encoding!=ENC(db) && (db->mDbFlags & DBFLAG_Vacuum)==0 ){ rc = SQLITE_LOCKED; goto initone_error_out; }else{ sqlite3SetTextEncoding(db, encoding); } }else{ /* If opening an attached database, the encoding much match ENC(db) */ if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ sqlite3SetString(pzErrMsg, db, "attached databases must use the same" " text encoding as main database"); rc = SQLITE_ERROR; goto initone_error_out; } } } pDb->pSchema->enc = ENC(db); if( pDb->pSchema->cache_size==0 ){ #ifndef SQLITE_OMIT_DEPRECATED size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } pDb->pSchema->cache_size = size; #else pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; #endif sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants */ pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; if( pDb->pSchema->file_format==0 ){ pDb->pSchema->file_format = 1; } if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ sqlite3SetString(pzErrMsg, db, "unsupported file format"); rc = SQLITE_ERROR; goto initone_error_out; } /* Ticket #2804: When we open a database in the newer file format, ** clear the legacy_file_format pragma flag so that a VACUUM will ** not downgrade the database and thus invalidate any descending ** indices that the user might have created. */ if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ db->flags &= ~(u64)SQLITE_LegacyFileFmt; } /* Read the schema information out of the schema tables */ assert( db->init.busy ); initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); { char *zSql; zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\".%s ORDER BY rowid", db->aDb[iDb].zDbSName, zSchemaTabName); #ifndef SQLITE_OMIT_AUTHORIZATION { sqlite3_xauth xAuth; xAuth = db->xAuth; db->xAuth = 0; #endif rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; } #endif if( rc==SQLITE_OK ) rc = initData.rc; sqlite3DbFree(db, zSql); #ifndef SQLITE_OMIT_ANALYZE if( rc==SQLITE_OK ){ sqlite3AnalysisLoad(db, iDb); } #endif } assert( pDb == &(db->aDb[iDb]) ); if( db->mallocFailed ){ rc = SQLITE_NOMEM_BKPT; sqlite3ResetAllSchemasOfConnection(db); pDb = &db->aDb[iDb]; }else if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){ /* Hack: If the SQLITE_NoSchemaError flag is set, then consider ** the schema loaded, even if errors (other than OOM) occurred. In ** this situation the current sqlite3_prepare() operation will fail, ** but the following one will attempt to compile the supplied statement ** against whatever subset of the schema was loaded before the error ** occurred. ** ** The primary purpose of this is to allow access to the sqlite_schema ** table even when its contents have been corrupted. */ DbSetProperty(db, iDb, DB_SchemaLoaded); rc = SQLITE_OK; } /* Jump here for an error that occurs after successfully allocating ** curMain and calling sqlite3BtreeEnter(). For an error that occurs ** before that point, jump to error_out. */ initone_error_out: if( openedTransaction ){ sqlite3BtreeCommit(pDb->pBt); } sqlite3BtreeLeave(pDb->pBt); error_out: if( rc ){ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); } sqlite3ResetOneSchema(db, iDb); } db->init.busy = 0; return rc; } /* ** Initialize all database files - the main database file, the file ** used to store temporary tables, and any additional database files ** created using ATTACH statements. Return a success code. If an ** error occurs, write an error message into *pzErrMsg. ** ** After a database is initialized, the DB_SchemaLoaded bit is set ** bit is set in the flags field of the Db structure. */ SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){ int i, rc; int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); assert( sqlite3_mutex_held(db->mutex) ); assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); assert( db->init.busy==0 ); ENC(db) = SCHEMA_ENC(db); assert( db->nDb>0 ); /* Do the main schema first */ if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, 0, pzErrMsg, 0); if( rc ) return rc; } /* All other schemas after the main schema. The "temp" schema must be last */ for(i=db->nDb-1; i>0; i--){ assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, i, pzErrMsg, 0); if( rc ) return rc; } } if( commit_internal ){ sqlite3CommitInternalChanges(db); } return SQLITE_OK; } /* ** This routine is a no-op if the database schema is already initialized. ** Otherwise, the schema is loaded. An error code is returned. */ SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){ int rc = SQLITE_OK; sqlite3 *db = pParse->db; assert( sqlite3_mutex_held(db->mutex) ); if( !db->init.busy ){ rc = sqlite3Init(db, &pParse->zErrMsg); if( rc!=SQLITE_OK ){ pParse->rc = rc; pParse->nErr++; }else if( db->noSharedCache ){ db->mDbFlags |= DBFLAG_SchemaKnownOk; } } return rc; } /* ** Check schema cookies in all databases. If any cookie is out ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies ** make no changes to pParse->rc. */ static void schemaIsValid(Parse *pParse){ sqlite3 *db = pParse->db; int iDb; int rc; int cookie; assert( pParse->checkSchema ); assert( sqlite3_mutex_held(db->mutex) ); for(iDb=0; iDbnDb; iDb++){ int openedTransaction = 0; /* True if a transaction is opened */ Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ if( pBt==0 ) continue; /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed immediately after reading the meta-value. */ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); pParse->rc = SQLITE_NOMEM; } if( rc!=SQLITE_OK ) return; openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the ** value stored as part of the in-memory schema representation, ** set Parse.rc to SQLITE_SCHEMA. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA; sqlite3ResetOneSchema(db, iDb); } /* Close the transaction, if one was opened. */ if( openedTransaction ){ sqlite3BtreeCommit(pBt); } } } /* ** Convert a schema pointer into the iDb index that indicates ** which database file in db->aDb[] the schema refers to. ** ** If the same database is attached more than once, the first ** attached database is returned. */ SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ int i = -32768; /* If pSchema is NULL, then return -32768. This happens when code in ** expr.c is trying to resolve a reference to a transient table (i.e. one ** created by a sub-select). In this case the return value of this ** function should never be used. ** ** We return -32768 instead of the more usual -1 simply because using ** -32768 as the incorrect index into db->aDb[] is much ** more likely to cause a segfault than -1 (of course there are assert() ** statements too, but it never hurts to play the odds) and ** -32768 will still fit into a 16-bit signed integer. */ assert( sqlite3_mutex_held(db->mutex) ); if( pSchema ){ for(i=0; 1; i++){ assert( inDb ); if( db->aDb[i].pSchema==pSchema ){ break; } } assert( i>=0 && inDb ); } return i; } /* ** Free all memory allocations in the pParse object */ SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse *pParse){ sqlite3 *db = pParse->db; assert( db!=0 ); assert( db->pParse==pParse ); assert( pParse->nested==0 ); #ifndef SQLITE_OMIT_SHARED_CACHE if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock); #endif while( pParse->pCleanup ){ ParseCleanup *pCleanup = pParse->pCleanup; pParse->pCleanup = pCleanup->pNext; pCleanup->xCleanup(db, pCleanup->pPtr); sqlite3DbNNFreeNN(db, pCleanup); } if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel); if( pParse->pConstExpr ){ sqlite3ExprListDelete(db, pParse->pConstExpr); } assert( db->lookaside.bDisable >= pParse->disableLookaside ); db->lookaside.bDisable -= pParse->disableLookaside; db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; assert( pParse->db->pParse==pParse ); db->pParse = pParse->pOuterParse; } /* ** Add a new cleanup operation to a Parser. The cleanup should happen when ** the parser object is destroyed. But, beware: the cleanup might happen ** immediately. ** ** Use this mechanism for uncommon cleanups. There is a higher setup ** cost for this mechanism (an extra malloc), so it should not be used ** for common cleanups that happen on most calls. But for less ** common cleanups, we save a single NULL-pointer comparison in ** sqlite3ParseObjectReset(), which reduces the total CPU cycle count. ** ** If a memory allocation error occurs, then the cleanup happens immediately. ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the ** pParse->earlyCleanup flag is set in that case. Calling code show verify ** that test cases exist for which this happens, to guard against possible ** use-after-free errors following an OOM. The preferred way to do this is ** to immediately follow the call to this routine with: ** ** testcase( pParse->earlyCleanup ); ** ** This routine returns a copy of its pPtr input (the third parameter) ** except if an early cleanup occurs, in which case it returns NULL. So ** another way to check for early cleanup is to check the return value. ** Or, stop using the pPtr parameter with this call and use only its ** return value thereafter. Something like this: ** ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); */ SQLITE_PRIVATE void *sqlite3ParserAddCleanup( Parse *pParse, /* Destroy when this Parser finishes */ void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ void *pPtr /* Pointer to object to be cleaned up */ ){ ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); if( pCleanup ){ pCleanup->pNext = pParse->pCleanup; pParse->pCleanup = pCleanup; pCleanup->pPtr = pPtr; pCleanup->xCleanup = xCleanup; }else{ xCleanup(pParse->db, pPtr); pPtr = 0; #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) pParse->earlyCleanup = 1; #endif } return pPtr; } /* ** Turn bulk memory into a valid Parse object and link that Parse object ** into database connection db. ** ** Call sqlite3ParseObjectReset() to undo this operation. ** ** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which ** is generated by Lemon. */ SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){ memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ); memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); assert( db->pParse!=pParse ); pParse->pOuterParse = db->pParse; db->pParse = pParse; pParse->db = db; if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory"); } /* ** Maximum number of times that we will try again to prepare a statement ** that returns SQLITE_ERROR_RETRY. */ #ifndef SQLITE_MAX_PREPARE_RETRY # define SQLITE_MAX_PREPARE_RETRY 25 #endif /* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pReprepare, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc = SQLITE_OK; /* Result code */ int i; /* Loop counter */ Parse sParse; /* Parsing context */ /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */ memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ); memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); sParse.pOuterParse = db->pParse; db->pParse = &sParse; sParse.db = db; if( pReprepare ){ sParse.pReprepare = pReprepare; sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare); }else{ assert( sParse.pReprepare==0 ); } assert( ppStmt && *ppStmt==0 ); if( db->mallocFailed ){ sqlite3ErrorMsg(&sParse, "out of memory"); db->errCode = rc = SQLITE_NOMEM; goto end_prepare; } assert( sqlite3_mutex_held(db->mutex) ); /* For a long-term use prepared statement avoid the use of ** lookaside memory. */ if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ sParse.disableLookaside++; DisableLookaside; } sParse.prepFlags = prepFlags & 0xff; /* Check to verify that it is possible to get a read lock on all ** database schemas. The inability to get a read lock indicates that ** some other database connection is holding a write-lock, which in ** turn means that the other connection has made uncommitted changes ** to the schema. ** ** Were we to proceed and prepare the statement against the uncommitted ** schema changes and if those schema changes are subsequently rolled ** back and different changes are made in their place, then when this ** prepared statement goes to run the schema cookie would fail to detect ** the schema change. Disaster would follow. ** ** This thread is currently holding mutexes on all Btrees (because ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it ** is not possible for another thread to start a new schema change ** while this routine is running. Hence, we do not need to hold ** locks on the schema, we just need to make sure nobody else is ** holding them. ** ** Note that setting READ_UNCOMMITTED overrides most lock detection, ** but it does *not* override schema lock detection, so this all still ** works even if READ_UNCOMMITTED is set. */ if( !db->noSharedCache ){ for(i=0; inDb; i++) { Btree *pBt = db->aDb[i].pBt; if( pBt ){ assert( sqlite3BtreeHoldsMutex(pBt) ); rc = sqlite3BtreeSchemaLocked(pBt); if( rc ){ const char *zDb = db->aDb[i].zDbSName; sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); testcase( db->flags & SQLITE_ReadUncommit ); goto end_prepare; } } } } #ifndef SQLITE_OMIT_VIRTUALTABLE if( db->pDisconnect ) sqlite3VtabUnlockList(db); #endif if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ char *zSqlCopy; int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; testcase( nBytes==mxLen ); testcase( nBytes==mxLen+1 ); if( nBytes>mxLen ){ sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); rc = sqlite3ApiExit(db, SQLITE_TOOBIG); goto end_prepare; } zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); if( zSqlCopy ){ sqlite3RunParser(&sParse, zSqlCopy); sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; sqlite3DbFree(db, zSqlCopy); }else{ sParse.zTail = &zSql[nBytes]; } }else{ sqlite3RunParser(&sParse, zSql); } assert( 0==sParse.nQueryLoop ); if( pzTail ){ *pzTail = sParse.zTail; } if( db->init.busy==0 ){ sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); } if( db->mallocFailed ){ sParse.rc = SQLITE_NOMEM_BKPT; sParse.checkSchema = 0; } if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ if( sParse.checkSchema && db->init.busy==0 ){ schemaIsValid(&sParse); } if( sParse.pVdbe ){ sqlite3VdbeFinalize(sParse.pVdbe); } assert( 0==(*ppStmt) ); rc = sParse.rc; if( sParse.zErrMsg ){ sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg); sqlite3DbFree(db, sParse.zErrMsg); }else{ sqlite3Error(db, rc); } }else{ assert( sParse.zErrMsg==0 ); *ppStmt = (sqlite3_stmt*)sParse.pVdbe; rc = SQLITE_OK; sqlite3ErrorClear(db); } /* Delete any TriggerPrg structures allocated while parsing this statement. */ while( sParse.pTriggerPrg ){ TriggerPrg *pT = sParse.pTriggerPrg; sParse.pTriggerPrg = pT->pNext; sqlite3DbFree(db, pT); } end_prepare: sqlite3ParseObjectReset(&sParse); return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ Vdbe *pOld, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; int cnt = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); do{ /* Make multiple attempts to compile the SQL, until it either succeeds ** or encounters a permanent error. A schema problem after one schema ** reset is considered a permanent error. */ rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); assert( rc==SQLITE_OK || *ppStmt==0 ); if( rc==SQLITE_OK || db->mallocFailed ) break; }while( (rc==SQLITE_ERROR_RETRY && (cnt++)errMask)==rc ); db->busyHandler.nBusy = 0; sqlite3_mutex_leave(db->mutex); assert( rc==SQLITE_OK || (*ppStmt)==0 ); return rc; } /* ** Rerun the compilation of a statement after a schema change. ** ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, ** if the statement cannot be recompiled because another connection has ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error ** occurs, return SQLITE_SCHEMA. */ SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){ int rc; sqlite3_stmt *pNew; const char *zSql; sqlite3 *db; u8 prepFlags; assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); zSql = sqlite3_sql((sqlite3_stmt *)p); assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ db = sqlite3VdbeDb(p); assert( sqlite3_mutex_held(db->mutex) ); prepFlags = sqlite3VdbePrepareFlags(p); rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); if( rc ){ if( rc==SQLITE_NOMEM ){ sqlite3OomFault(db); } assert( pNew==0 ); return rc; }else{ assert( pNew!=0 ); } sqlite3VdbeSwap((Vdbe*)pNew, p); sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); sqlite3VdbeResetStepResult((Vdbe*)pNew); sqlite3VdbeFinalize((Vdbe*)pNew); return SQLITE_OK; } /* ** Two versions of the official API. Legacy and new use. In the legacy ** version, the original SQL text is not saved in the prepared statement ** and so if a schema change occurs, SQLITE_SCHEMA is returned by ** sqlite3_step(). In the new version, the original SQL text is retained ** and the statement is automatically recompiled if an schema change ** occurs. */ SQLITE_API int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } SQLITE_API int sqlite3_prepare_v2( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags ** parameter. ** ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); return rc; } SQLITE_API int sqlite3_prepare_v3( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, ** which is a bit array consisting of zero or more of the ** SQLITE_PREPARE_* flags. ** ** Proof by comparison to the implementation of sqlite3_prepare_v2() ** directly above. */ rc = sqlite3LockAndPrepare(db,zSql,nBytes, SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare16( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ /* This function currently works by first transforming the UTF-16 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The ** tricky bit is figuring out the pointer to return in *pzTail. */ char *zSql8; const char *zTail8 = 0; int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } if( nBytes>=0 ){ int sz; const char *z = (const char*)zSql; for(sz=0; szmutex); zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); if( zSql8 ){ rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); } if( zTail8 && pzTail ){ /* If sqlite3_prepare returns a tail pointer, we calculate the ** equivalent pointer into the UTF-16 string by counting the unicode ** characters between zSql8 and zTail8, and then returning a pointer ** the same number of characters into the UTF-16 string. */ int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); } sqlite3DbFree(db, zSql8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Two versions of the official API. Legacy and new use. In the legacy ** version, the original SQL text is not saved in the prepared statement ** and so if a schema change occurs, SQLITE_SCHEMA is returned by ** sqlite3_step(). In the new version, the original SQL text is retained ** and the statement is automatically recompiled if an schema change ** occurs. */ SQLITE_API int sqlite3_prepare16( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } SQLITE_API int sqlite3_prepare16_v2( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } SQLITE_API int sqlite3_prepare16_v3( sqlite3 *db, /* Database handle. */ const void *zSql, /* UTF-16 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const void **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3Prepare16(db,zSql,nBytes, SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } #endif /* SQLITE_OMIT_UTF16 */ /************** End of prepare.c *********************************************/ /************** Begin file select.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. */ /* #include "sqliteInt.h" */ /* ** An instance of the following object is used to record information about ** how to process the DISTINCT keyword, to simplify passing that information ** into the selectInnerLoop() routine. */ typedef struct DistinctCtx DistinctCtx; struct DistinctCtx { u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ int tabTnct; /* Ephemeral table used for DISTINCT processing */ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ }; /* ** An instance of the following object is used to record information about ** the ORDER BY (or GROUP BY) clause of query is being coded. ** ** The aDefer[] array is used by the sorter-references optimization. For ** example, assuming there is no index that can be used for the ORDER BY, ** for the query: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; ** ** it may be more efficient to add just the "a" values to the sorter, and ** retrieve the associated "bigblob" values directly from table t1 as the ** 10 smallest "a" values are extracted from the sorter. ** ** When the sorter-reference optimization is used, there is one entry in the ** aDefer[] array for each database table that may be read as values are ** extracted from the sorter. */ typedef struct SortCtx SortCtx; struct SortCtx { ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ int nOBSat; /* Number of ORDER BY terms satisfied by indices */ int iECursor; /* Cursor number for the sorter */ int regReturn; /* Register holding block-output return address */ int labelBkOut; /* Start label for the block-output subroutine */ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ int labelDone; /* Jump here when done, ex: LIMIT reached */ int labelOBLopt; /* Jump here when sorter is full */ u8 sortFlags; /* Zero or more SORTFLAG_* bits */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES u8 nDefer; /* Number of valid entries in aDefer[] */ struct DeferredCsr { Table *pTab; /* Table definition */ int iCsr; /* Cursor number for table */ int nKey; /* Number of PK columns for table pTab (>=1) */ } aDefer[4]; #endif struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrPush; /* First instruction to push data into sorter */ int addrPushEnd; /* Last instruction that pushes data into sorter */ #endif }; #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ /* ** Delete all the content of a Select structure. Deallocate the structure ** itself depending on the value of bFree ** ** If bFree==1, call sqlite3DbFree() on the p object. ** If bFree==0, Leave the first Select object unfreed */ static void clearSelect(sqlite3 *db, Select *p, int bFree){ assert( db!=0 ); while( p ){ Select *pPrior = p->pPrior; sqlite3ExprListDelete(db, p->pEList); sqlite3SrcListDelete(db, p->pSrc); sqlite3ExprDelete(db, p->pWhere); sqlite3ExprListDelete(db, p->pGroupBy); sqlite3ExprDelete(db, p->pHaving); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pLimit); if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); #ifndef SQLITE_OMIT_WINDOWFUNC if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ sqlite3WindowListDelete(db, p->pWinDefn); } while( p->pWin ){ assert( p->pWin->ppThis==&p->pWin ); sqlite3WindowUnlinkFromSelect(p->pWin); } #endif if( bFree ) sqlite3DbNNFreeNN(db, p); p = pPrior; bFree = 1; } } /* ** Initialize a SelectDest structure. */ SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ pDest->eDest = (u8)eDest; pDest->iSDParm = iParm; pDest->iSDParm2 = 0; pDest->zAffSdst = 0; pDest->iSdst = 0; pDest->nSdst = 0; } /* ** Allocate a new Select structure and return a pointer to that ** structure. */ SQLITE_PRIVATE Select *sqlite3SelectNew( Parse *pParse, /* Parsing context */ ExprList *pEList, /* which columns to include in the result */ SrcList *pSrc, /* the FROM clause -- which tables to scan */ Expr *pWhere, /* the WHERE clause */ ExprList *pGroupBy, /* the GROUP BY clause */ Expr *pHaving, /* the HAVING clause */ ExprList *pOrderBy, /* the ORDER BY clause */ u32 selFlags, /* Flag parameters, such as SF_Distinct */ Expr *pLimit /* LIMIT value. NULL means not used */ ){ Select *pNew, *pAllocated; Select standin; pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); if( pNew==0 ){ assert( pParse->db->mallocFailed ); pNew = &standin; } if( pEList==0 ){ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0)); } pNew->pEList = pEList; pNew->op = TK_SELECT; pNew->selFlags = selFlags; pNew->iLimit = 0; pNew->iOffset = 0; pNew->selId = ++pParse->nSelect; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->nSelectRow = 0; if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); pNew->pSrc = pSrc; pNew->pWhere = pWhere; pNew->pGroupBy = pGroupBy; pNew->pHaving = pHaving; pNew->pOrderBy = pOrderBy; pNew->pPrior = 0; pNew->pNext = 0; pNew->pLimit = pLimit; pNew->pWith = 0; #ifndef SQLITE_OMIT_WINDOWFUNC pNew->pWin = 0; pNew->pWinDefn = 0; #endif if( pParse->db->mallocFailed ) { clearSelect(pParse->db, pNew, pNew!=&standin); pAllocated = 0; }else{ assert( pNew->pSrc!=0 || pParse->nErr>0 ); } return pAllocated; } /* ** Delete the given Select structure and all of its substructures. */ SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){ if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); } SQLITE_PRIVATE void sqlite3SelectDeleteGeneric(sqlite3 *db, void *p){ if( ALWAYS(p) ) clearSelect(db, (Select*)p, 1); } /* ** Return a pointer to the right-most SELECT statement in a compound. */ static Select *findRightmost(Select *p){ while( p->pNext ) p = p->pNext; return p; } /* ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the ** type of join. Return an integer constant that expresses that type ** in terms of the following bit values: ** ** JT_INNER ** JT_CROSS ** JT_OUTER ** JT_NATURAL ** JT_LEFT ** JT_RIGHT ** ** A full outer join is the combination of JT_LEFT and JT_RIGHT. ** ** If an illegal or unsupported join type is seen, then still return ** a join type, but put an error in the pParse structure. ** ** These are the valid join types: ** ** ** pA pB pC Return Value ** ------- ----- ----- ------------ ** CROSS - - JT_CROSS ** INNER - - JT_INNER ** LEFT - - JT_LEFT|JT_OUTER ** LEFT OUTER - JT_LEFT|JT_OUTER ** RIGHT - - JT_RIGHT|JT_OUTER ** RIGHT OUTER - JT_RIGHT|JT_OUTER ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER ** NATURAL INNER - JT_NATURAL|JT_INNER ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT ** ** To preserve historical compatibly, SQLite also accepts a variety ** of other non-standard and in many cases nonsensical join types. ** This routine makes as much sense at it can from the nonsense join ** type and returns a result. Examples of accepted nonsense join types ** include but are not limited to: ** ** INNER CROSS JOIN -> same as JOIN ** NATURAL CROSS JOIN -> same as NATURAL JOIN ** OUTER LEFT JOIN -> same as LEFT JOIN ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN ** LEFT RIGHT JOIN -> same as FULL JOIN ** RIGHT OUTER FULL JOIN -> same as FULL JOIN ** CROSS CROSS CROSS JOIN -> same as JOIN ** ** The only restrictions on the join type name are: ** ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", ** or "FULL". ** ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, ** or "FULL". ** ** * If "OUTER" is present then there must also be one of ** "LEFT", "RIGHT", or "FULL" */ SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ int jointype = 0; Token *apAll[3]; Token *p; /* 0123456789 123456789 123456789 123 */ static const char zKeyText[] = "naturaleftouterightfullinnercross"; static const struct { u8 i; /* Beginning of keyword text in zKeyText[] */ u8 nChar; /* Length of the keyword in characters */ u8 code; /* Join type mask */ } aKeyword[] = { /* (0) natural */ { 0, 7, JT_NATURAL }, /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, /* (2) outer */ { 10, 5, JT_OUTER }, /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, /* (5) inner */ { 23, 5, JT_INNER }, /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, }; int i, j; apAll[0] = pA; apAll[1] = pB; apAll[2] = pC; for(i=0; i<3 && apAll[i]; i++){ p = apAll[i]; for(j=0; jn==aKeyword[j].nChar && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ jointype |= aKeyword[j].code; break; } } testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); if( j>=ArraySize(aKeyword) ){ jointype |= JT_ERROR; break; } } if( (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || (jointype & JT_ERROR)!=0 || (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER ){ const char *zSp1 = " "; const char *zSp2 = " "; if( pB==0 ){ zSp1++; } if( pC==0 ){ zSp2++; } sqlite3ErrorMsg(pParse, "unknown join type: " "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); jointype = JT_INNER; } return jointype; } /* ** Return the index of a column in a table. Return -1 if the column ** is not contained in the table. */ SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol){ int i; u8 h = sqlite3StrIHash(zCol); Column *pCol; for(pCol=pTab->aCol, i=0; inCol; pCol++, i++){ if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; } return -1; } /* ** Mark a subquery result column as having been used. */ SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ assert( pItem!=0 ); assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); if( pItem->fg.isNestedFrom ){ ExprList *pResults; assert( pItem->pSelect!=0 ); pResults = pItem->pSelect->pEList; assert( pResults!=0 ); assert( iCol>=0 && iColnExpr ); pResults->a[iCol].fg.bUsed = 1; } } /* ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a ** table that has a column named zCol. The search is left-to-right. ** The first match found is returned. ** ** When found, set *piTab and *piCol to the table index and column index ** of the matching column and return TRUE. ** ** If not found, return FALSE. */ static int tableAndColumnIndex( SrcList *pSrc, /* Array of tables to search */ int iStart, /* First member of pSrc->a[] to check */ int iEnd, /* Last member of pSrc->a[] to check */ const char *zCol, /* Name of the column we are looking for */ int *piTab, /* Write index of pSrc->a[] here */ int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ int bIgnoreHidden /* Ignore hidden columns */ ){ int i; /* For looping over tables in pSrc */ int iCol; /* Index of column matching zCol */ assert( iEndnSrc ); assert( iStart>=0 ); assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ for(i=iStart; i<=iEnd; i++){ iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); if( iCol>=0 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) ){ if( piTab ){ sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); *piTab = i; *piCol = iCol; } return 1; } } return 0; } /* ** Set the EP_OuterON property on all terms of the given expression. ** And set the Expr.w.iJoin to iTable for every term in the ** expression. ** ** The EP_OuterON property is used on terms of an expression to tell ** the OUTER JOIN processing logic that this term is part of the ** join restriction specified in the ON or USING clause and not a part ** of the more general WHERE clause. These terms are moved over to the ** WHERE clause during join processing but we need to remember that they ** originated in the ON or USING clause. ** ** The Expr.w.iJoin tells the WHERE clause processing that the ** expression depends on table w.iJoin even if that table is not ** explicitly mentioned in the expression. That information is needed ** for cases like this: ** ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 ** ** The where clause needs to defer the handling of the t1.x=5 ** term until after the t2 loop of the join. In that way, a ** NULL t2 row will be inserted whenever t1.x!=5. If we do not ** defer the handling of t1.x=5, it will be processed immediately ** after the t1 loop and rows with t1.x!=5 will never appear in ** the output, which is incorrect. */ SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); while( p ){ ExprSetProperty(p, joinFlag); assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(p, EP_NoReduce); p->w.iJoin = iTable; if( p->op==TK_FUNCTION ){ assert( ExprUseXList(p) ); if( p->x.pList ){ int i; for(i=0; ix.pList->nExpr; i++){ sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); } } } sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); p = p->pRight; } } /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN ** is simplified into an ordinary JOIN, and when an ON expression is ** "pushed down" into the WHERE clause of a subquery. ** ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. ** ** If nullable is true, that means that Expr p might evaluate to NULL even ** if it is a reference to a NOT NULL column. This can happen, for example, ** if the table that p references is on the left side of a RIGHT JOIN. ** If nullable is true, then take care to not remove the EP_CanBeNull bit. ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c */ static void unsetJoinExpr(Expr *p, int iTable, int nullable){ while( p ){ if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ ExprClearProperty(p, EP_OuterON|EP_InnerON); if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); } if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ ExprClearProperty(p, EP_CanBeNull); } if( p->op==TK_FUNCTION ){ assert( ExprUseXList(p) ); assert( p->pLeft==0 ); if( p->x.pList ){ int i; for(i=0; ix.pList->nExpr; i++){ unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); } } } unsetJoinExpr(p->pLeft, iTable, nullable); p = p->pRight; } } /* ** This routine processes the join information for a SELECT statement. ** ** * A NATURAL join is converted into a USING join. After that, we ** do not need to be concerned with NATURAL joins and we only have ** think about USING joins. ** ** * ON and USING clauses result in extra terms being added to the ** WHERE clause to enforce the specified constraints. The extra ** WHERE clause terms will be tagged with EP_OuterON or ** EP_InnerON so that we know that they originated in ON/USING. ** ** The terms of a FROM clause are contained in the Select.pSrc structure. ** The left most table is the first entry in Select.pSrc. The right-most ** table is the last entry. The join operator is held in the entry to ** the right. Thus entry 1 contains the join operator for the join between ** entries 0 and 1. Any ON or USING clauses associated with the join are ** also attached to the right entry. ** ** This routine returns the number of errors encountered. */ static int sqlite3ProcessJoin(Parse *pParse, Select *p){ SrcList *pSrc; /* All tables in the FROM clause */ int i, j; /* Loop counters */ SrcItem *pLeft; /* Left table being joined */ SrcItem *pRight; /* Right table being joined */ pSrc = p->pSrc; pLeft = &pSrc->a[0]; pRight = &pLeft[1]; for(i=0; inSrc-1; i++, pRight++, pLeft++){ Table *pRightTab = pRight->pTab; u32 joinType; if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; /* If this is a NATURAL join, synthesize an appropriate USING clause ** to specify which columns should be joined. */ if( pRight->fg.jointype & JT_NATURAL ){ IdList *pUsing = 0; if( pRight->fg.isUsing || pRight->u3.pOn ){ sqlite3ErrorMsg(pParse, "a NATURAL join may not have " "an ON or USING clause", 0); return 1; } for(j=0; jnCol; j++){ char *zName; /* Name of column in the right table */ if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; zName = pRightTab->aCol[j].zCnName; if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ pUsing = sqlite3IdListAppend(pParse, pUsing, 0); if( pUsing ){ assert( pUsing->nId>0 ); assert( pUsing->a[pUsing->nId-1].zName==0 ); pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); } } } if( pUsing ){ pRight->fg.isUsing = 1; pRight->fg.isSynthUsing = 1; pRight->u3.pUsing = pUsing; } if( pParse->nErr ) return 1; } /* Create extra terms on the WHERE clause for each column named ** in the USING clause. Example: If the two tables to be joined are ** A and B and the USING clause names X, Y, and Z, then add this ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z ** Report an error if any column mentioned in the USING clause is ** not contained in both tables to be joined. */ if( pRight->fg.isUsing ){ IdList *pList = pRight->u3.pUsing; sqlite3 *db = pParse->db; assert( pList!=0 ); for(j=0; jnId; j++){ char *zName; /* Name of the term in the USING clause */ int iLeft; /* Table on the left with matching column name */ int iLeftCol; /* Column number of matching column on the left */ int iRightCol; /* Column number of matching column on the right */ Expr *pE1; /* Reference to the column on the LEFT of the join */ Expr *pE2; /* Reference to the column on the RIGHT of the join */ Expr *pEq; /* Equality constraint. pE1 == pE2 */ zName = pList->a[j].zName; iRightCol = sqlite3ColumnIndex(pRightTab, zName); if( iRightCol<0 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, pRight->fg.isSynthUsing)==0 ){ sqlite3ErrorMsg(pParse, "cannot join using column %s - column " "not present in both tables", zName); return 1; } pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* This branch runs if the query contains one or more RIGHT or FULL ** JOINs. If only a single table on the left side of this join ** contains the zName column, then this branch is a no-op. ** But if there are two or more tables on the left side ** of the join, construct a coalesce() function that gathers all ** such tables. Raise an error if more than one of those references ** to zName is not also within a prior USING clause. ** ** We really ought to raise an error if there are two or more ** non-USING references to zName on the left of an INNER or LEFT ** JOIN. But older versions of SQLite do not do that, so we avoid ** adding a new error so as to not break legacy applications. */ ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ static const Token tkCoalesce = { "coalesce", 8 }; while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, pRight->fg.isSynthUsing)!=0 ){ if( pSrc->a[iLeft].fg.isUsing==0 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 ){ sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", zName); break; } pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); } if( pFuncArgs ){ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); } } pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); sqlite3SrcItemColumnUsed(pRight, iRightCol); pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); assert( pE2!=0 || pEq==0 ); if( pEq ){ ExprSetProperty(pEq, joinType); assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(pEq, EP_NoReduce); pEq->w.iJoin = pE2->iTable; } p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); } } /* Add the ON clause to the end of the WHERE clause, connected by ** an AND operator. */ else if( pRight->u3.pOn ){ sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); pRight->u3.pOn = 0; pRight->fg.isOn = 1; } } return 0; } /* ** An instance of this object holds information (beyond pParse and pSelect) ** needed to load the next result row that is to be added to the sorter. */ typedef struct RowLoadInfo RowLoadInfo; struct RowLoadInfo { int regResult; /* Store results in array of registers here */ u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra; /* Extra columns needed by sorter refs */ int regExtraResult; /* Where to load the extra columns */ #endif }; /* ** This routine does the work of loading query data into an array of ** registers so that it can be added to the sorter. */ static void innerLoopLoadRow( Parse *pParse, /* Statement under construction */ Select *pSelect, /* The query being coded */ RowLoadInfo *pInfo /* Info needed to complete the row load */ ){ sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 0, pInfo->ecelFlags); #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( pInfo->pExtra ){ sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); sqlite3ExprListDelete(pParse->db, pInfo->pExtra); } #endif } /* ** Code the OP_MakeRecord instruction that generates the entry to be ** added into the sorter. ** ** Return the register in which the result is stored. */ static int makeSorterRecord( Parse *pParse, SortCtx *pSort, Select *pSelect, int regBase, int nBase ){ int nOBSat = pSort->nOBSat; Vdbe *v = pParse->pVdbe; int regOut = ++pParse->nMem; if( pSort->pDeferredRowLoad ){ innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); return regOut; } /* ** Generate code that will push the record in registers regData ** through regData+nData-1 onto the sorter. */ static void pushOntoSorter( Parse *pParse, /* Parser context */ SortCtx *pSort, /* Information about the ORDER BY clause */ Select *pSelect, /* The whole SELECT statement */ int regData, /* First register holding data to be sorted */ int regOrigData, /* First register holding data before packing */ int nData, /* Number of elements in the regData data array */ int nPrefixReg /* No. of reg prior to regData available for use */ ){ Vdbe *v = pParse->pVdbe; /* Stmt under construction */ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ int regBase; /* Regs for sorter record */ int regRecord = 0; /* Assembled sorter record */ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ int op; /* Opcode to add sorter record to sorter */ int iLimit; /* LIMIT counter */ int iSkip = 0; /* End of the sorter insert loop */ assert( bSeq==0 || bSeq==1 ); /* Three cases: ** (1) The data to be sorted has already been packed into a Record ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the ** SQLITE_ECEL_OMITREF optimization, or due to the ** SortCtx.pDeferredRowLoad optimization. In any of these cases ** regOrigData is 0 to prevent this routine from trying to copy ** values that might not yet exist. */ assert( nData==1 || regData==regOrigData || regOrigData==0 ); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pSort->addrPush = sqlite3VdbeCurrentAddr(v); #endif if( nPrefixReg ){ assert( nPrefixReg==nExpr+bSeq ); regBase = regData - nPrefixReg; }else{ regBase = pParse->nMem + 1; pParse->nMem += nBase; } assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; pSort->labelDone = sqlite3VdbeMakeLabel(pParse); sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); if( bSeq ){ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); } if( nPrefixReg==0 && nData>0 ){ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); } if( nOBSat>0 ){ int regPrevKey; /* The first nOBSat columns of the previous row */ int addrFirst; /* Address of the OP_IfNot opcode */ int addrJmp; /* Address of the OP_Jump opcode */ VdbeOp *pOp; /* Opcode that opens the sorter */ int nKey; /* Number of sorting key columns, including OP_Sequence */ KeyInfo *pKI; /* Original KeyInfo on the sorter table */ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); regPrevKey = pParse->nMem+1; pParse->nMem += pSort->nOBSat; nKey = nExpr - pSort->nOBSat + bSeq; if( bSeq ){ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); }else{ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); } VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); if( pParse->db->mallocFailed ) return; pOp->p2 = nKey + nData; pKI = pOp->p4.pKeyInfo; memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); testcase( pKI->nAllField > pKI->nKeyField+2 ); pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, pKI->nAllField-pKI->nKeyField-1); pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */ addrJmp = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); pSort->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); if( iLimit ){ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); VdbeCoverage(v); } sqlite3VdbeJumpHere(v, addrFirst); sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); sqlite3VdbeJumpHere(v, addrJmp); } if( iLimit ){ /* At this point the values for the new sorter entry are stored ** in an array of registers. They need to be composed into a record ** and inserted into the sorter if either (a) there are currently ** less than LIMIT+OFFSET items or (b) the new record is smaller than ** the largest record currently in the sorter. If (b) is true and there ** are already LIMIT+OFFSET items in the sorter, delete the largest ** entry before inserting the new one. This way there are never more ** than LIMIT+OFFSET items in the sorter. ** ** If the new record does not need to be inserted into the sorter, ** jump to the next iteration of the loop. If the pSort->labelOBLopt ** value is not zero, then it is a label of where to jump. Otherwise, ** just bypass the row insert logic. See the header comment on the ** sqlite3WhereOrderByLimitOptLabel() function for additional info. */ int iCsr = pSort->iECursor; sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, 0, regBase+nOBSat, nExpr-nOBSat); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_Delete, iCsr); } if( regRecord==0 ){ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); } if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, regBase+nOBSat, nBase-nOBSat); if( iSkip ){ sqlite3VdbeChangeP2(v, iSkip, pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1; #endif } /* ** Add code to implement the OFFSET */ static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 ){ sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); VdbeComment((v, "OFFSET")); } } /* ** Add code that will check to make sure the array of registers starting at ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and ** distinct aggregates ("SELECT count(DISTINCT ) ..."). Three strategies ** are available. Which is used depends on the value of parameter eTnctType, ** as follows: ** ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: ** Build an ephemeral table that contains all entries seen before and ** skip entries which have been seen before. ** ** Parameter iTab is the cursor number of an ephemeral table that must ** be opened before the VM code generated by this routine is executed. ** The ephemeral cursor table is queried for a record identical to the ** record formed by the current array of registers. If one is found, ** jump to VM address addrRepeat. Otherwise, insert a new record into ** the ephemeral cursor and proceed. ** ** The returned value in this case is a copy of parameter iTab. ** ** WHERE_DISTINCT_ORDERED: ** In this case rows are being delivered sorted order. The ephemeral ** table is not required. Instead, the current set of values ** is compared against previous row. If they match, the new row ** is not distinct and control jumps to VM address addrRepeat. Otherwise, ** the VM program proceeds with processing the new row. ** ** The returned value in this case is the register number of the first ** in an array of registers used to store the previous result row so that ** it can be compared to the next. The caller must ensure that this ** register is initialized to NULL. (The fixDistinctOpenEph() routine ** will take care of this initialization.) ** ** WHERE_DISTINCT_UNIQUE: ** In this case it has already been determined that the rows are distinct. ** No special action is required. The return value is zero. ** ** Parameter pEList is the list of expressions used to generated the ** contents of each row. It is used by this routine to determine (a) ** how many elements there are in the array of registers and (b) the ** collation sequences that should be used for the comparisons if ** eTnctType is WHERE_DISTINCT_ORDERED. */ static int codeDistinct( Parse *pParse, /* Parsing and code generating context */ int eTnctType, /* WHERE_DISTINCT_* value */ int iTab, /* A sorting index used to test for distinctness */ int addrRepeat, /* Jump to here if not distinct */ ExprList *pEList, /* Expression for each element */ int regElem /* First element */ ){ int iRet = 0; int nResultCol = pEList->nExpr; Vdbe *v = pParse->pVdbe; switch( eTnctType ){ case WHERE_DISTINCT_ORDERED: { int i; int iJump; /* Jump destination */ int regPrev; /* Previous row content */ /* Allocate space for the previous row */ iRet = regPrev = pParse->nMem+1; pParse->nMem += nResultCol; iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; for(i=0; ia[i].pExpr); if( idb->mallocFailed ); sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); break; } case WHERE_DISTINCT_UNIQUE: { /* nothing to do */ break; } default: { int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, r1); iRet = iTab; break; } } return iRet; } /* ** This routine runs after codeDistinct(). It makes necessary ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() ** routine made use of. This processing must be done separately since ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually ** laid down. ** ** WHERE_DISTINCT_NOOP: ** WHERE_DISTINCT_UNORDERED: ** ** No adjustments necessary. This function is a no-op. ** ** WHERE_DISTINCT_UNIQUE: ** ** The ephemeral table is not needed. So change the ** OP_OpenEphemeral opcode into an OP_Noop. ** ** WHERE_DISTINCT_ORDERED: ** ** The ephemeral table is not needed. But we do need register ** iVal to be initialized to NULL. So change the OP_OpenEphemeral ** into an OP_Null on the iVal register. */ static void fixDistinctOpenEph( Parse *pParse, /* Parsing and code generating context */ int eTnctType, /* WHERE_DISTINCT_* value */ int iVal, /* Value returned by codeDistinct() */ int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ ){ if( pParse->nErr==0 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeChangeToNoop(v, iOpenEphAddr); if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); } if( eTnctType==WHERE_DISTINCT_ORDERED ){ /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared ** bit on the first register of the previous value. This will cause the ** OP_Ne added in codeDistinct() to always fail on the first iteration of ** the loop even if the first row is all NULLs. */ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); pOp->opcode = OP_Null; pOp->p1 = 1; pOp->p2 = iVal; } } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* ** This function is called as part of inner-loop generation for a SELECT ** statement with an ORDER BY that is not optimized by an index. It ** determines the expressions, if any, that the sorter-reference ** optimization should be used for. The sorter-reference optimization ** is used for SELECT queries like: ** ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 ** ** If the optimization is used for expression "bigblob", then instead of ** storing values read from that column in the sorter records, the PK of ** the row from table t1 is stored instead. Then, as records are extracted from ** the sorter to return to the user, the required value of bigblob is ** retrieved directly from table t1. If the values are very large, this ** can be more efficient than storing them directly in the sorter records. ** ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList ** for which the sorter-reference optimization should be enabled. ** Additionally, the pSort->aDefer[] array is populated with entries ** for all cursors required to evaluate all selected expressions. Finally. ** output variable (*ppExtra) is set to an expression list containing ** expressions for all extra PK values that should be stored in the ** sorter records. */ static void selectExprDefer( Parse *pParse, /* Leave any error here */ SortCtx *pSort, /* Sorter context */ ExprList *pEList, /* Expressions destined for sorter */ ExprList **ppExtra /* Expressions to append to sorter record */ ){ int i; int nDefer = 0; ExprList *pExtra = 0; for(i=0; inExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; Table *pTab; if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && ALWAYS( ExprUseYTab(pExpr) ) && (pTab = pExpr->y.pTab)!=0 && IsOrdinaryTable(pTab) && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 ){ int j; for(j=0; jaDefer[j].iCsr==pExpr->iTable ) break; } if( j==nDefer ){ if( nDefer==ArraySize(pSort->aDefer) ){ continue; }else{ int nKey = 1; int k; Index *pPk = 0; if( !HasRowid(pTab) ){ pPk = sqlite3PrimaryKeyIndex(pTab); nKey = pPk->nKeyCol; } for(k=0; kiTable = pExpr->iTable; assert( ExprUseYTab(pNew) ); pNew->y.pTab = pExpr->y.pTab; pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); } } pSort->aDefer[nDefer].pTab = pExpr->y.pTab; pSort->aDefer[nDefer].iCsr = pExpr->iTable; pSort->aDefer[nDefer].nKey = nKey; nDefer++; } } pItem->fg.bSorterRef = 1; } } } pSort->nDefer = (u8)nDefer; *ppExtra = pExtra; } #endif /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** If srcTab is negative, then the p->pEList expressions ** are evaluated in order to get the data for this row. If srcTab is ** zero or more, then data is pulled from srcTab and p->pEList is used only ** to get the number of columns and the collation sequence for each column. */ static void selectInnerLoop( Parse *pParse, /* The parser context */ Select *p, /* The complete select statement being coded */ int srcTab, /* Pull data from this table if non-negative */ SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ SelectDest *pDest, /* How to dispose of the results */ int iContinue, /* Jump here to continue with next row */ int iBreak /* Jump here to break out of the inner loop */ ){ Vdbe *v = pParse->pVdbe; int i; int hasDistinct; /* True if the DISTINCT keyword is present */ int eDest = pDest->eDest; /* How to dispose of results */ int iParm = pDest->iSDParm; /* First argument to disposal method */ int nResultCol; /* Number of result columns */ int nPrefixReg = 0; /* Number of extra registers before regResult */ RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ /* Usually, regResult is the first cell in an array of memory cells ** containing the current result row. In this case regOrig is set to the ** same value. However, if the results are being sent to the sorter, the ** values for any expressions that are also part of the sort-key are omitted ** from this array. In this case regOrig is set to zero. */ int regResult; /* Start of memory holding current results */ int regOrig; /* Start of memory holding full result (or 0) */ assert( v ); assert( p->pEList!=0 ); hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; if( pSort && pSort->pOrderBy==0 ) pSort = 0; if( pSort==0 && !hasDistinct ){ assert( iContinue!=0 ); codeOffset(v, p->iOffset, iContinue); } /* Pull the requested columns. */ nResultCol = p->pEList->nExpr; if( pDest->iSdst==0 ){ if( pSort ){ nPrefixReg = pSort->pOrderBy->nExpr; if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; pParse->nMem += nPrefixReg; } pDest->iSdst = pParse->nMem+1; pParse->nMem += nResultCol; }else if( pDest->iSdst+nResultCol > pParse->nMem ){ /* This is an error condition that can result, for example, when a SELECT ** on the right-hand side of an INSERT contains more result columns than ** there are columns in the table on the left. The error will be caught ** and reported later. But we need to make sure enough memory is allocated ** to avoid other spurious errors in the meantime. */ pParse->nMem += nResultCol; } pDest->nSdst = nResultCol; regOrig = regResult = pDest->iSdst; if( srcTab>=0 ){ for(i=0; ipEList->a[i].zEName)); } }else if( eDest!=SRT_Exists ){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES ExprList *pExtra = 0; #endif /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ ExprList *pEList; if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ ecelFlags = SQLITE_ECEL_DUP; }else{ ecelFlags = 0; } if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ /* For each expression in p->pEList that is a copy of an expression in ** the ORDER BY clause (pSort->pOrderBy), set the associated ** iOrderByCol value to one more than the index of the ORDER BY ** expression within the sort-key that pushOntoSorter() will generate. ** This allows the p->pEList field to be omitted from the sorted record, ** saving space and CPU cycles. */ ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); for(i=pSort->nOBSat; ipOrderBy->nExpr; i++){ int j; if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES selectExprDefer(pParse, pSort, p->pEList, &pExtra); if( pExtra && pParse->db->mallocFailed==0 ){ /* If there are any extra PK columns to add to the sorter records, ** allocate extra memory cells and adjust the OpenEphemeral ** instruction to account for the larger records. This is only ** required if there are one or more WITHOUT ROWID tables with ** composite primary keys in the SortCtx.aDefer[] array. */ VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); pOp->p2 += (pExtra->nExpr - pSort->nDefer); pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); pParse->nMem += pExtra->nExpr; } #endif /* Adjust nResultCol to account for columns that are omitted ** from the sorter by the optimizations in this branch */ pEList = p->pEList; for(i=0; inExpr; i++){ if( pEList->a[i].u.x.iOrderByCol>0 #ifdef SQLITE_ENABLE_SORTER_REFERENCES || pEList->a[i].fg.bSorterRef #endif ){ nResultCol--; regOrig = 0; } } testcase( regOrig ); testcase( eDest==SRT_Set ); testcase( eDest==SRT_Mem ); testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); assert( eDest==SRT_Set || eDest==SRT_Mem || eDest==SRT_Coroutine || eDest==SRT_Output || eDest==SRT_Upfrom ); } sRowLoadInfo.regResult = regResult; sRowLoadInfo.ecelFlags = ecelFlags; #ifdef SQLITE_ENABLE_SORTER_REFERENCES sRowLoadInfo.pExtra = pExtra; sRowLoadInfo.regExtraResult = regResult + nResultCol; if( pExtra ) nResultCol += pExtra->nExpr; #endif if( p->iLimit && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 && nPrefixReg>0 ){ assert( pSort!=0 ); assert( hasDistinct==0 ); pSort->pDeferredRowLoad = &sRowLoadInfo; regOrig = 0; }else{ innerLoopLoadRow(pParse, p, &sRowLoadInfo); } } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row ** part of the result. */ if( hasDistinct ){ int eType = pDistinct->eTnctType; int iTab = pDistinct->tabTnct; assert( nResultCol==p->pEList->nExpr ); iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); if( pSort==0 ){ codeOffset(v, p->iOffset, iContinue); } } switch( eDest ){ /* In this mode, write each query result to the key of the temporary ** table iParm. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT case SRT_Union: { int r1; r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); sqlite3ReleaseTempReg(pParse, r1); break; } /* Construct a record from the query result, but instead of ** saving that record, use it as a key to delete elements from ** the temporary table iParm. */ case SRT_Except: { sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); break; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* Store the result as data using a unique key. */ case SRT_Fifo: case SRT_DistFifo: case SRT_Table: case SRT_EphemTab: { int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); testcase( eDest==SRT_Table ); testcase( eDest==SRT_EphemTab ); testcase( eDest==SRT_Fifo ); testcase( eDest==SRT_DistFifo ); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG) /* A destination of SRT_Table and a non-zero iSDParm2 parameter means ** that this is an "UPDATE ... FROM" on a virtual table or view. In this ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC. ** This does not affect operation in any way - it just allows MakeRecord ** to process OPFLAG_NOCHANGE values without an assert() failing. */ if( eDest==SRT_Table && pDest->iSDParm2 ){ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); } #endif #ifndef SQLITE_OMIT_CTE if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); assert( pSort==0 ); } #endif if( pSort ){ assert( regResult==regOrig ); pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); }else{ int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); } sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); break; } case SRT_Upfrom: { if( pSort ){ pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ int i2 = pDest->iSDParm2; int r1 = sqlite3GetTempReg(pParse); /* If the UPDATE FROM join is an aggregate that matches no rows, it ** might still be trying to return one row, because that is what ** aggregates do. Don't record that empty row in the output table. */ sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult+(i2<0), nResultCol-(i2<0), r1); if( i2<0 ){ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); }else{ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); } } break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ case SRT_Set: { if( pSort ){ /* At first glance you would think we could optimize out the ** ORDER BY in this case since the order of entries in the set ** does not matter. But there might be a LIMIT clause, in which ** case the order does matter */ pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ int r1 = sqlite3GetTempReg(pParse); assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, r1, pDest->zAffSdst, nResultCol); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); sqlite3ReleaseTempReg(pParse, r1); } break; } /* If any row exist in the result set, record that fact and abort. */ case SRT_Exists: { sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); /* The LIMIT clause will terminate the loop for us */ break; } /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell or array of ** memory cells and break out of the scan loop. */ case SRT_Mem: { if( pSort ){ assert( nResultCol<=pDest->nSdst ); pushOntoSorter( pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else{ assert( nResultCol==pDest->nSdst ); assert( regResult==iParm ); /* The LIMIT clause will jump out of the loop for us */ } break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ case SRT_Coroutine: /* Send data to a co-routine */ case SRT_Output: { /* Return the results */ testcase( eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); if( pSort ){ pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); }else if( eDest==SRT_Coroutine ){ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); }else{ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); } break; } #ifndef SQLITE_OMIT_CTE /* Write the results into a priority queue that is order according to ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an ** index with pSO->nExpr+2 columns. Build a key using pSO for the first ** pSO->nExpr columns, then make sure all keys are unique by adding a ** final OP_Sequence column. The last column is the record as a blob. */ case SRT_DistQueue: case SRT_Queue: { int nKey; int r1, r2, r3; int addrTest = 0; ExprList *pSO; pSO = pDest->pOrderBy; assert( pSO ); nKey = pSO->nExpr; r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempRange(pParse, nKey+2); r3 = r2+nKey+1; if( eDest==SRT_DistQueue ){ /* If the destination is DistQueue, then cursor (iParm+1) is open ** on a second ephemeral index that holds all values every previously ** added to the queue. */ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, regResult, nResultCol); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); if( eDest==SRT_DistQueue ){ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } for(i=0; ia[i].u.x.iOrderByCol - 1, r2+i); } sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempRange(pParse, r2, nKey+2); break; } #endif /* SQLITE_OMIT_CTE */ #if !defined(SQLITE_OMIT_TRIGGER) /* Discard the results. This is used for SELECT statements inside ** the body of a TRIGGER. The purpose of such selects is to call ** user-defined functions that have side effects. We do not care ** about the actual results of the select. */ default: { assert( eDest==SRT_Discard ); break; } #endif } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pSort==0 && p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } } /* ** Allocate a KeyInfo object sufficient for an index of N key columns and ** X extra columns. */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); if( p ){ p->aSortFlags = (u8*)&p->aColl[N+X]; p->nKeyField = (u16)N; p->nAllField = (u16)(N+X); p->enc = ENC(db); p->db = db; p->nRef = 1; memset(&p[1], 0, nExtra); }else{ return (KeyInfo*)sqlite3OomFault(db); } return p; } /* ** Deallocate a KeyInfo object */ SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){ if( p ){ assert( p->db!=0 ); assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p); } } /* ** Make a new pointer to a KeyInfo object */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ if( p ){ assert( p->nRef>0 ); p->nRef++; } return p; } #ifdef SQLITE_DEBUG /* ** Return TRUE if a KeyInfo object can be change. The KeyInfo object ** can only be changed if this is just a single reference to the object. ** ** This routine is used only inside of assert() statements. */ SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } #endif /* SQLITE_DEBUG */ /* ** Given an expression list, generate a KeyInfo structure that records ** the collating sequence for each expression in that expression list. ** ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting ** KeyInfo structure is appropriate for initializing a virtual index to ** implement that clause. If the ExprList is the result set of a SELECT ** then the KeyInfo structure is appropriate for initializing a virtual ** index to implement a DISTINCT test. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for seeing that this structure is eventually ** freed. */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* Form the KeyInfo object from this ExprList */ int iStart, /* Begin with this column of pList */ int nExtra /* Add this many extra columns to the end */ ){ int nExpr; KeyInfo *pInfo; struct ExprList_item *pItem; sqlite3 *db = pParse->db; int i; nExpr = pList->nExpr; pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); if( pInfo ){ assert( sqlite3KeyInfoIsWriteable(pInfo) ); for(i=iStart, pItem=pList->a+iStart; iaColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; } } return pInfo; } /* ** Name of the connection operator, used for error messages. */ SQLITE_PRIVATE const char *sqlite3SelectOpName(int id){ char *z; switch( id ){ case TK_ALL: z = "UNION ALL"; break; case TK_INTERSECT: z = "INTERSECT"; break; case TK_EXCEPT: z = "EXCEPT"; break; default: z = "UNION"; break; } return z; } #ifndef SQLITE_OMIT_EXPLAIN /* ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function ** is a no-op. Otherwise, it adds a single row of output to the EQP result, ** where the caption is of the form: ** ** "USE TEMP B-TREE FOR xxx" ** ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which ** is determined by the zUsage argument. */ static void explainTempTable(Parse *pParse, const char *zUsage){ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); } /* ** Assign expression b to lvalue a. A second, no-op, version of this macro ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code ** in sqlite3Select() to assign values to structure member variables that ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the ** code with #ifndef directives. */ # define explainSetInteger(a, b) a = b #else /* No-op versions of the explainXXX() functions and macros. */ # define explainTempTable(y,z) # define explainSetInteger(y,z) #endif /* ** If the inner loop was generated using a non-null pOrderBy argument, ** then the results were placed in a sorter. After the loop is terminated ** we need to run the sorter and output the results. The following ** routine generates the code needed to do that. */ static void generateSortTail( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ SortCtx *pSort, /* Information on the ORDER BY clause */ int nColumn, /* Number of columns of data */ SelectDest *pDest /* Write the sorted results here */ ){ Vdbe *v = pParse->pVdbe; /* The prepared statement */ int addrBreak = pSort->labelDone; /* Jump here to exit loop */ int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ int addr; /* Top of output loop. Jump for Next. */ int addrOnce = 0; int iTab; ExprList *pOrderBy = pSort->pOrderBy; int eDest = pDest->eDest; int iParm = pDest->iSDParm; int regRow; int regRowid; int iCol; int nKey; /* Number of key columns in sorter record */ int iSortTab; /* Sorter cursor to read from */ int i; int bSeq; /* True if sorter record includes seq. no. */ int nRefKey = 0; struct ExprList_item *aOutEx = p->pEList->a; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; /* Address of OP_Explain instruction */ #endif ExplainQueryPlan2(addrExplain, (pParse, 0, "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat>0?"RIGHT PART OF ":"") ); sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd); sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush); assert( addrBreak<0 ); if( pSort->labelBkOut ){ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeGoto(v, addrBreak); sqlite3VdbeResolveLabel(v, pSort->labelBkOut); } #ifdef SQLITE_ENABLE_SORTER_REFERENCES /* Open any cursors needed for sorter-reference expressions */ for(i=0; inDefer; i++){ Table *pTab = pSort->aDefer[i].pTab; int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); } #endif iTab = pSort->iECursor; if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ if( eDest==SRT_Mem && p->iOffset ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); } regRowid = 0; regRow = pDest->iSdst; }else{ regRowid = sqlite3GetTempReg(pParse); if( eDest==SRT_EphemTab || eDest==SRT_Table ){ regRow = sqlite3GetTempReg(pParse); nColumn = 0; }else{ regRow = sqlite3GetTempRange(pParse, nColumn); } } nKey = pOrderBy->nExpr - pSort->nOBSat; if( pSort->sortFlags & SORTFLAG_UseSorter ){ int regSortOut = ++pParse->nMem; iSortTab = pParse->nTab++; if( pSort->labelBkOut ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nColumn+nRefKey); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); assert( p->iLimit==0 && p->iOffset==0 ); sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); bSeq = 0; }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); iSortTab = iTab; bSeq = 1; if( p->iOffset>0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); } } for(i=0, iCol=nKey+bSeq-1; inDefer ){ int iKey = iCol+1; int regKey = sqlite3GetTempRange(pParse, nRefKey); for(i=0; inDefer; i++){ int iCsr = pSort->aDefer[i].iCsr; Table *pTab = pSort->aDefer[i].pTab; int nKey = pSort->aDefer[i].nKey; sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, sqlite3VdbeCurrentAddr(v)+1, regKey); }else{ int k; int iJmp; assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); for(k=0; k=0; i--){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( aOutEx[i].fg.bSorterRef ){ sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); }else #endif { int iRead; if( aOutEx[i].u.x.iOrderByCol ){ iRead = aOutEx[i].u.x.iOrderByCol-1; }else{ iRead = iCol--; } sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); VdbeComment((v, "%s", aOutEx[i].zEName)); } } sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); switch( eDest ){ case SRT_Table: case SRT_EphemTab: { sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); break; } #ifndef SQLITE_OMIT_SUBQUERY case SRT_Set: { assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, pDest->zAffSdst, nColumn); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); break; } case SRT_Mem: { /* The LIMIT clause will terminate the loop for us */ break; } #endif case SRT_Upfrom: { int i2 = pDest->iSDParm2; int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); if( i2<0 ){ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); }else{ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); } break; } default: { assert( eDest==SRT_Output || eDest==SRT_Coroutine ); testcase( eDest==SRT_Output ); testcase( eDest==SRT_Coroutine ); if( eDest==SRT_Output ){ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); }else{ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); } break; } } if( regRowid ){ if( eDest==SRT_Set ){ sqlite3ReleaseTempRange(pParse, regRow, nColumn); }else{ sqlite3ReleaseTempReg(pParse, regRow); } sqlite3ReleaseTempReg(pParse, regRowid); } /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, addrContinue); if( pSort->sortFlags & SORTFLAG_UseSorter ){ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); } sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1); if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); sqlite3VdbeResolveLabel(v, addrBreak); } /* ** Return a pointer to a string containing the 'declaration type' of the ** expression pExpr. The string may be treated as static by the caller. ** ** The declaration type is the exact datatype definition extracted from the ** original CREATE TABLE statement if the expression is a column. The ** declaration type for a ROWID field is INTEGER. Exactly when an expression ** is considered a column can be complex in the presence of subqueries. The ** result-set expression in all of the following SELECT statements is ** considered a column by this function. ** ** SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl; ** SELECT (SELECT col FROM tbl); ** SELECT abc FROM (SELECT col AS abc FROM tbl); ** ** The declaration type for any expression other than a column is NULL. ** ** This routine has either 3 or 6 parameters depending on whether or not ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ # define columnType(A,B,C,D,E) columnTypeImpl(A,B) #endif static const char *columnTypeImpl( NameContext *pNC, #ifndef SQLITE_ENABLE_COLUMN_METADATA Expr *pExpr #else Expr *pExpr, const char **pzOrigDb, const char **pzOrigTab, const char **pzOrigCol #endif ){ char const *zType = 0; int j; #ifdef SQLITE_ENABLE_COLUMN_METADATA char const *zOrigDb = 0; char const *zOrigTab = 0; char const *zOrigCol = 0; #endif assert( pExpr!=0 ); assert( pNC->pSrcList!=0 ); switch( pExpr->op ){ case TK_COLUMN: { /* The expression is a column. Locate the table the column is being ** extracted from in NameContext.pSrcList. This table may be real ** database table or a subquery. */ Table *pTab = 0; /* Table structure column is extracted from */ Select *pS = 0; /* Select the column is extracted from */ int iCol = pExpr->iColumn; /* Index of column in pTab */ while( pNC && !pTab ){ SrcList *pTabList = pNC->pSrcList; for(j=0;jnSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); if( jnSrc ){ pTab = pTabList->a[j].pTab; pS = pTabList->a[j].pSelect; }else{ pNC = pNC->pNext; } } if( pTab==0 ){ /* At one time, code such as "SELECT new.x" within a trigger would ** cause this condition to run. Since then, we have restructured how ** trigger code is generated and so this condition is no longer ** possible. However, it can still be true for statements like ** the following: ** ** CREATE TABLE t1(col INTEGER); ** SELECT (SELECT t1.col) FROM FROM t1; ** ** when columnType() is called on the expression "t1.col" in the ** sub-select. In this case, set the column type to NULL, even ** though it should really be "INTEGER". ** ** This is not a problem, as the column type of "t1.col" is never ** used. When columnType() is called on the expression ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT ** branch below. */ break; } assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iColpEList->nExpr && (!ViewCanHaveRowid || iCol>=0) ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); } }else{ /* A real table or a CTE table */ assert( !pS ); #ifdef SQLITE_ENABLE_COLUMN_METADATA if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==XN_ROWID || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zType = "INTEGER"; zOrigCol = "rowid"; }else{ zOrigCol = pTab->aCol[iCol].zCnName; zType = sqlite3ColumnType(&pTab->aCol[iCol],0); } zOrigTab = pTab->zName; if( pNC->pParse && pTab->pSchema ){ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; } #else assert( iCol==XN_ROWID || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zType = "INTEGER"; }else{ zType = sqlite3ColumnType(&pTab->aCol[iCol],0); } #endif } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: { /* The expression is a sub-select. Return the declaration type and ** origin info for the single column in the result set of the SELECT ** statement. */ NameContext sNC; Select *pS; Expr *p; assert( ExprUseXSelect(pExpr) ); pS = pExpr->x.pSelect; p = pS->pEList->a[0].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); break; } #endif } #ifdef SQLITE_ENABLE_COLUMN_METADATA if( pzOrigDb ){ assert( pzOrigTab && pzOrigCol ); *pzOrigDb = zOrigDb; *pzOrigTab = zOrigTab; *pzOrigCol = zOrigCol; } #endif return zType; } /* ** Generate code that will tell the VDBE the declaration types of columns ** in the result set. */ static void generateColumnTypes( Parse *pParse, /* Parser context */ SrcList *pTabList, /* List of tables */ ExprList *pEList /* Expressions defining the result set */ ){ #ifndef SQLITE_OMIT_DECLTYPE Vdbe *v = pParse->pVdbe; int i; NameContext sNC; sNC.pSrcList = pTabList; sNC.pParse = pParse; sNC.pNext = 0; for(i=0; inExpr; i++){ Expr *p = pEList->a[i].pExpr; const char *zType; #ifdef SQLITE_ENABLE_COLUMN_METADATA const char *zOrigDb = 0; const char *zOrigTab = 0; const char *zOrigCol = 0; zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); /* The vdbe must make its own copy of the column-type and other ** column specific strings, in case the schema is reset before this ** virtual machine is deleted. */ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); #else zType = columnType(&sNC, p, 0, 0, 0); #endif sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); } #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ } /* ** Compute the column names for a SELECT statement. ** ** The only guarantee that SQLite makes about column names is that if the ** column has an AS clause assigning it a name, that will be the name used. ** That is the only documented guarantee. However, countless applications ** developed over the years have made baseless assumptions about column names ** and will break if those assumptions changes. Hence, use extreme caution ** when modifying this routine to avoid breaking legacy. ** ** See Also: sqlite3ColumnsFromExprList() ** ** The PRAGMA short_column_names and PRAGMA full_column_names settings are ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all ** applications should operate this way. Nevertheless, we need to support the ** other modes for legacy: ** ** short=OFF, full=OFF: Column name is the text of the expression has it ** originally appears in the SELECT statement. In ** other words, the zSpan of the result expression. ** ** short=ON, full=OFF: (This is the default setting). If the result ** refers directly to a table column, then the ** result column name is just the table column ** name: COLUMN. Otherwise use zSpan. ** ** full=ON, short=ANY: If the result refers directly to a table column, ** then the result column name with the table name ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. */ SQLITE_PRIVATE void sqlite3GenerateColumnNames( Parse *pParse, /* Parser context */ Select *pSelect /* Generate column names for this SELECT statement */ ){ Vdbe *v = pParse->pVdbe; int i; Table *pTab; SrcList *pTabList; ExprList *pEList; sqlite3 *db = pParse->db; int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ if( pParse->colNamesSet ) return; /* Column names are determined by the left-most term of a compound select */ while( pSelect->pPrior ) pSelect = pSelect->pPrior; TREETRACE(0x80,pParse,pSelect,("generating column names\n")); pTabList = pSelect->pSrc; pEList = pSelect->pEList; assert( v!=0 ); assert( pTabList!=0 ); pParse->colNamesSet = 1; fullName = (db->flags & SQLITE_FullColNames)!=0; srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; inExpr; i++){ Expr *p = pEList->a[i].pExpr; assert( p!=0 ); assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ assert( p->op!=TK_COLUMN || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ /* An AS clause always takes first priority */ char *zName = pEList->a[i].zEName; sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); }else if( srcName && p->op==TK_COLUMN ){ char *zCol; int iCol = p->iColumn; pTab = p->y.pTab; assert( pTab!=0 ); if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==-1 || (iCol>=0 && iColnCol) ); if( iCol<0 ){ zCol = "rowid"; }else{ zCol = pTab->aCol[iCol].zCnName; } if( fullName ){ char *zName = 0; zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); }else{ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); } }else{ const char *z = pEList->a[i].zEName; z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); } } generateColumnTypes(pParse, pTabList, pEList); } /* ** Given an expression list (which is really the list of expressions ** that form the result set of a SELECT statement) compute appropriate ** column names for a table that would hold the expression list. ** ** All column names will be unique. ** ** Only the column names are computed. Column.zType, Column.zColl, ** and other fields of Column are zeroed. ** ** Return SQLITE_OK on success. If a memory allocation error occurs, ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. ** ** The only guarantee that SQLite makes about column names is that if the ** column has an AS clause assigning it a name, that will be the name used. ** That is the only documented guarantee. However, countless applications ** developed over the years have made baseless assumptions about column names ** and will break if those assumptions changes. Hence, use extreme caution ** when modifying this routine to avoid breaking legacy. ** ** See Also: sqlite3GenerateColumnNames() */ SQLITE_PRIVATE int sqlite3ColumnsFromExprList( Parse *pParse, /* Parsing context */ ExprList *pEList, /* Expr list from which to derive column names */ i16 *pnCol, /* Write the number of columns here */ Column **paCol /* Write the new column list here */ ){ sqlite3 *db = pParse->db; /* Database connection */ int i, j; /* Loop counters */ u32 cnt; /* Index added to make the name unique */ Column *aCol, *pCol; /* For looping over result columns */ int nCol; /* Number of columns in the result set */ char *zName; /* Column name */ int nName; /* Size of name in zName[] */ Hash ht; /* Hash table of column names */ Table *pTab; sqlite3HashInit(&ht); if( pEList ){ nCol = pEList->nExpr; aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); testcase( aCol==0 ); if( NEVER(nCol>32767) ) nCol = 32767; }else{ nCol = 0; aCol = 0; } assert( nCol==(i16)nCol ); *pnCol = nCol; *paCol = aCol; for(i=0, pCol=aCol; inErr; i++, pCol++){ struct ExprList_item *pX = &pEList->a[i]; struct ExprList_item *pCollide; /* Get an appropriate name for the column */ if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ /* If the column contains an "AS " phrase, use as the name */ }else{ Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ pColExpr = pColExpr->pRight; assert( pColExpr!=0 ); } if( pColExpr->op==TK_COLUMN && ALWAYS( ExprUseYTab(pColExpr) ) && ALWAYS( pColExpr->y.pTab!=0 ) ){ /* For columns use the column name name */ int iCol = pColExpr->iColumn; pTab = pColExpr->y.pTab; if( iCol<0 ) iCol = pTab->iPKey; zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; }else if( pColExpr->op==TK_ID ){ assert( !ExprHasProperty(pColExpr, EP_IntValue) ); zName = pColExpr->u.zToken; }else{ /* Use the original text of the column expression as its name */ assert( zName==pX->zEName ); /* pointer comparison intended */ } } if( zName && !sqlite3IsTrueOrFalse(zName) ){ zName = sqlite3DbStrDup(db, zName); }else{ zName = sqlite3MPrintf(db,"column%d",i+1); } /* Make sure the column name is unique. If the name is not unique, ** append an integer to the name so that it becomes unique. */ cnt = 0; while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ if( pCollide->fg.bUsingTerm ){ pCol->colFlags |= COLFLAG_NOEXPAND; } nName = sqlite3Strlen30(zName); if( nName>0 ){ for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} if( zName[j]==':' ) nName = j; } zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); sqlite3ProgressCheck(pParse); if( cnt>3 ){ sqlite3_randomness(sizeof(cnt), &cnt); } } pCol->zCnName = zName; pCol->hName = sqlite3StrIHash(zName); if( pX->fg.bNoExpand ){ pCol->colFlags |= COLFLAG_NOEXPAND; } sqlite3ColumnPropertiesFromName(0, pCol); if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ sqlite3OomFault(db); } } sqlite3HashClear(&ht); if( pParse->nErr ){ for(j=0; jrc; } return SQLITE_OK; } /* ** pTab is a transient Table object that represents a subquery of some ** kind (maybe a parenthesized subquery in the FROM clause of a larger ** query, or a VIEW, or a CTE). This routine computes type information ** for that Table object based on the Select object that implements the ** subquery. For the purposes of this routine, "type information" means: ** ** * The datatype name, as it might appear in a CREATE TABLE statement ** * Which collating sequence to use for the column ** * The affinity of the column */ SQLITE_PRIVATE void sqlite3SubqueryColumnTypes( Parse *pParse, /* Parsing contexts */ Table *pTab, /* Add column type information to this table */ Select *pSelect, /* SELECT used to determine types and collations */ char aff /* Default affinity. */ ){ sqlite3 *db = pParse->db; Column *pCol; CollSeq *pColl; int i,j; Expr *p; struct ExprList_item *a; NameContext sNC; assert( pSelect!=0 ); testcase( (pSelect->selFlags & SF_Resolved)==0 ); assert( (pSelect->selFlags & SF_Resolved)!=0 || IN_RENAME_OBJECT ); assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 ); assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB ); if( db->mallocFailed || IN_RENAME_OBJECT ) return; while( pSelect->pPrior ) pSelect = pSelect->pPrior; a = pSelect->pEList->a; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; for(i=0, pCol=pTab->aCol; inCol; i++, pCol++){ const char *zType; i64 n; pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); p = a[i].pExpr; /* pCol->szEst = ... // Column size est for SELECT tables never used */ pCol->affinity = sqlite3ExprAffinity(p); if( pCol->affinity<=SQLITE_AFF_NONE ){ pCol->affinity = aff; } if( pCol->affinity>=SQLITE_AFF_TEXT && pSelect->pNext ){ int m = 0; Select *pS2; for(m=0, pS2=pSelect->pNext; pS2; pS2=pS2->pNext){ m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr); } if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){ pCol->affinity = SQLITE_AFF_BLOB; }else if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){ pCol->affinity = SQLITE_AFF_BLOB; } if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){ pCol->affinity = SQLITE_AFF_FLEXNUM; } } zType = columnType(&sNC, p, 0, 0, 0); if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){ if( pCol->affinity==SQLITE_AFF_NUMERIC || pCol->affinity==SQLITE_AFF_FLEXNUM ){ zType = "NUM"; }else{ zType = 0; for(j=1; jaffinity ){ zType = sqlite3StdType[j]; break; } } } } if( zType ){ i64 m = sqlite3Strlen30(zType); n = sqlite3Strlen30(pCol->zCnName); pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); if( pCol->zCnName ){ memcpy(&pCol->zCnName[n+1], zType, m+1); pCol->colFlags |= COLFLAG_HASTYPE; } } pColl = sqlite3ExprCollSeq(pParse, p); if( pColl ){ assert( pTab->pIndex==0 ); sqlite3ColumnSetColl(db, pCol, pColl->zName); } } pTab->szTabRow = 1; /* Any non-zero value works */ } /* ** Given a SELECT statement, generate a Table structure that describes ** the result set of that SELECT. */ SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ Table *pTab; sqlite3 *db = pParse->db; u64 savedFlags; savedFlags = db->flags; db->flags &= ~(u64)SQLITE_FullColNames; db->flags |= SQLITE_ShortColNames; sqlite3SelectPrep(pParse, pSelect, 0); db->flags = savedFlags; if( pParse->nErr ) return 0; while( pSelect->pPrior ) pSelect = pSelect->pPrior; pTab = sqlite3DbMallocZero(db, sizeof(Table) ); if( pTab==0 ){ return 0; } pTab->nTabRef = 1; pTab->zName = 0; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff); pTab->iPKey = -1; if( db->mallocFailed ){ sqlite3DeleteTable(db, pTab); return 0; } return pTab; } /* ** Get a VDBE for the given parser context. Create a new one if necessary. ** If an error occurs, return NULL and leave a message in pParse. */ SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){ if( pParse->pVdbe ){ return pParse->pVdbe; } if( pParse->pToplevel==0 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) ){ pParse->okConstFactor = 1; } return sqlite3VdbeCreate(pParse); } /* ** Compute the iLimit and iOffset fields of the SELECT based on the ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions ** that appear in the original SQL statement after the LIMIT and OFFSET ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset ** are the integer memory register numbers for counters used to compute ** the limit and offset. If there is no limit and/or offset, then ** iLimit and iOffset are negative. ** ** This routine changes the values of iLimit and iOffset only if ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit ** and iOffset should have been preset to appropriate default values (zero) ** prior to calling this routine. ** ** The iOffset register (if it exists) is initialized to the value ** of the OFFSET. The iLimit register is initialized to LIMIT. Register ** iOffset+1 is initialized to LIMIT+OFFSET. ** ** Only if pLimit->pLeft!=0 do the limit registers get ** redefined. The UNION ALL operator uses this property to force ** the reuse of the same limit and offset registers across multiple ** SELECT statements. */ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ Vdbe *v = 0; int iLimit = 0; int iOffset; int n; Expr *pLimit = p->pLimit; if( p->iLimit ) return; /* ** "LIMIT -1" always shows all rows. There is some ** controversy about what the correct behavior should be. ** The current implementation interprets "LIMIT 0" to mean ** no rows. */ if( pLimit ){ assert( pLimit->op==TK_LIMIT ); assert( pLimit->pLeft!=0 ); p->iLimit = iLimit = ++pParse->nMem; v = sqlite3GetVdbe(pParse); assert( v!=0 ); if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); VdbeComment((v, "LIMIT counter")); if( n==0 ){ sqlite3VdbeGoto(v, iBreak); }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ p->nSelectRow = sqlite3LogEst((u64)n); p->selFlags |= SF_FixedLimit; } }else{ sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); } if( pLimit->pRight ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, pLimit->pRight, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); VdbeComment((v, "LIMIT+OFFSET")); } } } #ifndef SQLITE_OMIT_COMPOUND_SELECT /* ** Return the appropriate collating sequence for the iCol-th column of ** the result set for the compound-select statement "p". Return NULL if ** the column has no default collating sequence. ** ** The collating sequence for the compound select is taken from the ** left-most term of the select that has a collating sequence. */ static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ CollSeq *pRet; if( p->pPrior ){ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); }else{ pRet = 0; } assert( iCol>=0 ); /* iCol must be less than p->pEList->nExpr. Otherwise an error would ** have been thrown during name resolution and we would not have gotten ** this far */ if( pRet==0 && ALWAYS(iColpEList->nExpr) ){ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); } return pRet; } /* ** The select statement passed as the second parameter is a compound SELECT ** with an ORDER BY clause. This function allocates and returns a KeyInfo ** structure suitable for implementing the ORDER BY. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for ensuring that this structure is eventually ** freed. */ static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ ExprList *pOrderBy = p->pOrderBy; int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; sqlite3 *db = pParse->db; KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); if( pRet ){ int i; for(i=0; ia[i]; Expr *pTerm = pItem->pExpr; CollSeq *pColl; if( pTerm->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pTerm); }else{ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); if( pColl==0 ) pColl = db->pDfltColl; pOrderBy->a[i].pExpr = sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); } assert( sqlite3KeyInfoIsWriteable(pRet) ); pRet->aColl[i] = pColl; pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; } } return pRet; } #ifndef SQLITE_OMIT_CTE /* ** This routine generates VDBE code to compute the content of a WITH RECURSIVE ** query of the form: ** ** AS ( UNION [ALL] ) ** \___________/ \_______________/ ** p->pPrior p ** ** ** There is exactly one reference to the recursive-table in the FROM clause ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. ** ** The setup-query runs once to generate an initial set of rows that go ** into a Queue table. Rows are extracted from the Queue table one by ** one. Each row extracted from Queue is output to pDest. Then the single ** extracted row (now in the iCurrent table) becomes the content of the ** recursive-table for a recursive-query run. The output of the recursive-query ** is added back into the Queue table. Then another row is extracted from Queue ** and the iteration continues until the Queue table is empty. ** ** If the compound query operator is UNION then no duplicate rows are ever ** inserted into the Queue table. The iDistinct table keeps a copy of all rows ** that have ever been inserted into Queue and causes duplicates to be ** discarded. If the operator is UNION ALL, then duplicates are allowed. ** ** If the query has an ORDER BY, then entries in the Queue table are kept in ** ORDER BY order and the first entry is extracted for each cycle. Without ** an ORDER BY, the Queue table is just a FIFO. ** ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows ** have been output to pDest. A LIMIT of zero means to output no rows and a ** negative LIMIT means to output all rows. If there is also an OFFSET clause ** with a positive value, then the first OFFSET outputs are discarded rather ** than being sent to pDest. The LIMIT count does not begin until after OFFSET ** rows have been skipped. */ static void generateWithRecursiveQuery( Parse *pParse, /* Parsing context */ Select *p, /* The recursive SELECT to be coded */ SelectDest *pDest /* What to do with query results */ ){ SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ Select *pSetup; /* The setup query */ Select *pFirstRec; /* Left-most recursive term */ int addrTop; /* Top of the loop */ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ int iCurrent = 0; /* The Current table */ int regCurrent; /* Register holding Current table */ int iQueue; /* The Queue table */ int iDistinct = 0; /* To ensure unique results if UNION */ int eDest = SRT_Fifo; /* How to write to Queue */ SelectDest destQueue; /* SelectDest targeting the Queue table */ int i; /* Loop counter */ int rc; /* Result code */ ExprList *pOrderBy; /* The ORDER BY clause */ Expr *pLimit; /* Saved LIMIT and OFFSET */ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ){ sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); return; } #endif /* Obtain authorization to do a recursive query */ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; /* Process the LIMIT and OFFSET clauses, if they exist */ addrBreak = sqlite3VdbeMakeLabel(pParse); p->nSelectRow = 320; /* 4 billion rows */ computeLimitRegisters(pParse, p, addrBreak); pLimit = p->pLimit; regLimit = p->iLimit; regOffset = p->iOffset; p->pLimit = 0; p->iLimit = p->iOffset = 0; pOrderBy = p->pOrderBy; /* Locate the cursor number of the Current table */ for(i=0; ALWAYS(inSrc); i++){ if( pSrc->a[i].fg.isRecursive ){ iCurrent = pSrc->a[i].iCursor; break; } } /* Allocate cursors numbers for Queue and Distinct. The cursor number for ** the Distinct table must be exactly one greater than Queue in order ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ iQueue = pParse->nTab++; if( p->op==TK_UNION ){ eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; iDistinct = pParse->nTab++; }else{ eDest = pOrderBy ? SRT_Queue : SRT_Fifo; } sqlite3SelectDestInit(&destQueue, eDest, iQueue); /* Allocate cursors for Current, Queue, and Distinct. */ regCurrent = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); if( pOrderBy ){ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, (char*)pKeyInfo, P4_KEYINFO); destQueue.pOrderBy = pOrderBy; }else{ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); } VdbeComment((v, "Queue table")); if( iDistinct ){ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); p->selFlags |= SF_UsesEphemeral; } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Figure out how many elements of the compound SELECT are part of the ** recursive query. Make sure no recursive elements use aggregate ** functions. Mark the recursive elements as UNION ALL even if they ** are really UNION because the distinctness will be enforced by the ** iDistinct table. pFirstRec is left pointing to the left-most ** recursive term of the CTE. */ for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ if( pFirstRec->selFlags & SF_Aggregate ){ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); goto end_of_recursive_query; } pFirstRec->op = TK_ALL; if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; } /* Store the results of the setup-query in Queue. */ pSetup = pFirstRec->pPrior; pSetup->pNext = 0; ExplainQueryPlan((pParse, 1, "SETUP")); rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); /* Transfer the next row in Queue over to Current */ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ if( pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); }else{ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); } sqlite3VdbeAddOp1(v, OP_Delete, iQueue); /* Output the single row in Current */ addrCont = sqlite3VdbeMakeLabel(pParse); codeOffset(v, regOffset, addrCont); selectInnerLoop(pParse, p, iCurrent, 0, 0, pDest, addrCont, addrBreak); if( regLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrCont); /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ pFirstRec->pPrior = 0; ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); sqlite3Select(pParse, p, &destQueue); assert( pFirstRec->pPrior==0 ); pFirstRec->pPrior = pSetup; /* Keep running the loop until the Queue is empty */ sqlite3VdbeGoto(v, addrTop); sqlite3VdbeResolveLabel(v, addrBreak); end_of_recursive_query: sqlite3ExprListDelete(pParse->db, p->pOrderBy); p->pOrderBy = pOrderBy; p->pLimit = pLimit; return; } #endif /* SQLITE_OMIT_CTE */ /* Forward references */ static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ); /* ** Handle the special case of a compound-select that originates from a ** VALUES clause. By handling this as a special case, we avoid deep ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT ** on a VALUES clause. ** ** Because the Select object originates from a VALUES clause: ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 ** (2) All terms are UNION ALL ** (3) There is no ORDER BY clause ** ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. */ static int multiSelectValues( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int nRow = 1; int rc = 0; int bShowAll = p->pLimit==0; assert( p->selFlags & SF_MultiValue ); do{ assert( p->selFlags & SF_Values ); assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ) return -1; #endif if( p->pPrior==0 ) break; assert( p->pPrior->pNext==p ); p = p->pPrior; nRow += bShowAll; }while(1); ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, nRow==1 ? "" : "S")); while( p ){ selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); if( !bShowAll ) break; p->nSelectRow = nRow; p = p->pNext; } return rc; } /* ** Return true if the SELECT statement which is known to be the recursive ** part of a recursive CTE still has its anchor terms attached. If the ** anchor terms have already been removed, then return false. */ static int hasAnchor(Select *p){ while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } return p!=0; } /* ** This routine is called to process a compound query form from ** two or more separate queries using UNION, UNION ALL, EXCEPT, or ** INTERSECT ** ** "p" points to the right-most of the two queries. the query on the ** left is p->pPrior. The left query could also be a compound query ** in which case this routine will be called recursively. ** ** The results of the total query are to be written into a destination ** of type eDest with parameter iParm. ** ** Example 1: Consider a three-way compound SQL statement. ** ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 ** ** This statement is parsed up as follows: ** ** SELECT c FROM t3 ** | ** `-----> SELECT b FROM t2 ** | ** `------> SELECT a FROM t1 ** ** The arrows in the diagram above represent the Select.pPrior pointer. ** So if this routine is called with p equal to the t3 query, then ** pPrior will be the t2 query. p->op will be TK_UNION in this case. ** ** Notice that because of the way SQLite parses compound SELECTs, the ** individual selects always group from left to right. */ static int multiSelect( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int rc = SQLITE_OK; /* Success code from a subroutine */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ SelectDest dest; /* Alternative data destination */ Select *pDelete = 0; /* Chain of simple selects to delete */ sqlite3 *db; /* Database connection */ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. */ assert( p && p->pPrior ); /* Calling function guarantees this much */ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); assert( p->selFlags & SF_Compound ); db = pParse->db; pPrior = p->pPrior; dest = *pDest; assert( pPrior->pOrderBy==0 ); assert( pPrior->pLimit==0 ); v = sqlite3GetVdbe(pParse); assert( v!=0 ); /* The VDBE already created by calling function */ /* Create the destination temporary table if necessary */ if( dest.eDest==SRT_EphemTab ){ assert( p->pEList ); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); dest.eDest = SRT_Table; } /* Special handling for a compound-select that originates as a VALUES clause. */ if( p->selFlags & SF_MultiValue ){ rc = multiSelectValues(pParse, p, &dest); if( rc>=0 ) goto multi_select_end; rc = SQLITE_OK; } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ assert( p->pEList && pPrior->pEList ); assert( p->pEList->nExpr==pPrior->pEList->nExpr ); #ifndef SQLITE_OMIT_CTE if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ generateWithRecursiveQuery(pParse, p, &dest); }else #endif /* Compound SELECTs that have an ORDER BY clause are handled separately. */ if( p->pOrderBy ){ return multiSelectOrderBy(pParse, p, pDest); }else{ #ifndef SQLITE_OMIT_EXPLAIN if( pPrior->pPrior==0 ){ ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); } #endif /* Generate code for the left and right SELECT statements. */ switch( p->op ){ case TK_ALL: { int addr = 0; int nLimit = 0; /* Initialize to suppress harmless compiler warning */ assert( !pPrior->pLimit ); pPrior->iLimit = p->iLimit; pPrior->iOffset = p->iOffset; pPrior->pLimit = p->pLimit; TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n")); rc = sqlite3Select(pParse, pPrior, &dest); pPrior->pLimit = 0; if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); if( p->iOffset ){ sqlite3VdbeAddOp3(v, OP_OffsetLimit, p->iLimit, p->iOffset+1, p->iOffset); } } ExplainQueryPlan((pParse, 1, "UNION ALL")); TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n")); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); if( p->pLimit && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) ){ p->nSelectRow = sqlite3LogEst((u64)nLimit); } if( addr ){ sqlite3VdbeJumpHere(v, addr); } break; } case TK_EXCEPT: case TK_UNION: { int unionTab; /* Cursor number of the temp table holding result */ u8 op = 0; /* One of the SRT_ operations to apply to self */ int priorOp; /* The SRT_ operation to apply to prior selects */ Expr *pLimit; /* Saved values of p->nLimit */ int addr; SelectDest uniondest; testcase( p->op==TK_EXCEPT ); testcase( p->op==TK_UNION ); priorOp = SRT_Union; if( dest.eDest==priorOp ){ /* We can reuse a temporary table generated by a SELECT to our ** right. */ assert( p->pLimit==0 ); /* Not allowed on leftward elements */ unionTab = dest.iSDParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); } /* Code the SELECT statements to our left */ assert( !pPrior->pOrderBy ); sqlite3SelectDestInit(&uniondest, priorOp, unionTab); TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); rc = sqlite3Select(pParse, pPrior, &uniondest); if( rc ){ goto multi_select_end; } /* Code the current SELECT statement */ if( p->op==TK_EXCEPT ){ op = SRT_Except; }else{ assert( p->op==TK_UNION ); op = SRT_Union; } p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; uniondest.eDest = op; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", sqlite3SelectOpName(p->op))); TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); rc = sqlite3Select(pParse, p, &uniondest); testcase( rc!=SQLITE_OK ); assert( p->pOrderBy==0 ); pDelete = p->pPrior; p->pPrior = pPrior; p->pOrderBy = 0; if( p->op==TK_UNION ){ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; p->iLimit = 0; p->iOffset = 0; /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); assert( p->pEList || db->mallocFailed ); if( dest.eDest!=priorOp && db->mallocFailed==0 ){ int iCont, iBreak, iStart; iBreak = sqlite3VdbeMakeLabel(pParse); iCont = sqlite3VdbeMakeLabel(pParse); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); iStart = sqlite3VdbeCurrentAddr(v); selectInnerLoop(pParse, p, unionTab, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); } break; } default: assert( p->op==TK_INTERSECT ); { int tab1, tab2; int iCont, iBreak, iStart; Expr *pLimit; int addr; SelectDest intersectdest; int r1; /* INTERSECT is different from the others since it requires ** two temporary tables. Hence it has its own case. Begin ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; assert( p->pOrderBy==0 ); addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); assert( p->addrOpenEphm[0] == -1 ); p->addrOpenEphm[0] = addr; findRightmost(p)->selFlags |= SF_UsesEphemeral; assert( p->pEList ); /* Code the SELECTs to our left into temporary table "tab1". */ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n")); rc = sqlite3Select(pParse, pPrior, &intersectdest); if( rc ){ goto multi_select_end; } /* Code the current SELECT into temporary table "tab2" */ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); assert( p->addrOpenEphm[1] == -1 ); p->addrOpenEphm[1] = addr; p->pPrior = 0; pLimit = p->pLimit; p->pLimit = 0; intersectdest.iSDParm = tab2; ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", sqlite3SelectOpName(p->op))); TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n")); rc = sqlite3Select(pParse, p, &intersectdest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; if( p->nSelectRow>pPrior->nSelectRow ){ p->nSelectRow = pPrior->nSelectRow; } sqlite3ExprDelete(db, p->pLimit); p->pLimit = pLimit; /* Generate code to take the intersection of the two temporary ** tables. */ if( rc ) break; assert( p->pEList ); iBreak = sqlite3VdbeMakeLabel(pParse); iCont = sqlite3VdbeMakeLabel(pParse); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, tab1, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); break; } } #ifndef SQLITE_OMIT_EXPLAIN if( p->pNext==0 ){ ExplainQueryPlanPop(pParse); } #endif } if( pParse->nErr ) goto multi_select_end; /* Compute collating sequences used by ** temporary tables needed to implement the compound select. ** Attach the KeyInfo structure to all temporary tables. ** ** This section is run by the right-most SELECT statement only. ** SELECT statements to the left always skip this part. The right-most ** SELECT might also skip this part if it has no ORDER BY clause and ** no temp tables are required. */ if( p->selFlags & SF_UsesEphemeral ){ int i; /* Loop counter */ KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ int nCol; /* Number of columns in result set */ assert( p->pNext==0 ); assert( p->pEList!=0 ); nCol = p->pEList->nExpr; pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); if( !pKeyInfo ){ rc = SQLITE_NOMEM_BKPT; goto multi_select_end; } for(i=0, apColl=pKeyInfo->aColl; ipDfltColl; } } for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ for(i=0; i<2; i++){ int addr = pLoop->addrOpenEphm[i]; if( addr<0 ){ /* If [0] is unused then [1] is also unused. So we can ** always safely abort as soon as the first unused slot is found */ assert( pLoop->addrOpenEphm[1]<0 ); break; } sqlite3VdbeChangeP2(v, addr, nCol); sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); pLoop->addrOpenEphm[i] = -1; } } sqlite3KeyInfoUnref(pKeyInfo); } multi_select_end: pDest->iSdst = dest.iSdst; pDest->nSdst = dest.nSdst; if( pDelete ){ sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pDelete); } return rc; } #endif /* SQLITE_OMIT_COMPOUND_SELECT */ /* ** Error message for when two or more terms of a compound select have different ** size result sets. */ SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ if( p->selFlags & SF_Values ){ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); }else{ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" " do not have the same number of result columns", sqlite3SelectOpName(p->op)); } } /* ** Code an output subroutine for a coroutine implementation of a ** SELECT statement. ** ** The data to be output is contained in pIn->iSdst. There are ** pIn->nSdst columns to be output. pDest is where the output should ** be sent. ** ** regReturn is the number of the register holding the subroutine ** return address. ** ** If regPrev>0 then it is the first register in a vector that ** records the previous output. mem[regPrev] is a flag that is false ** if there has been no previous output. If regPrev>0 then code is ** generated to suppress duplicates. pKeyInfo is used for comparing ** keys. ** ** If the LIMIT found in p->iLimit is reached, jump immediately to ** iBreak. */ static int generateOutputSubroutine( Parse *pParse, /* Parsing context */ Select *p, /* The SELECT statement */ SelectDest *pIn, /* Coroutine supplying data */ SelectDest *pDest, /* Where to send the data */ int regReturn, /* The return address register */ int regPrev, /* Previous result register. No uniqueness if 0 */ KeyInfo *pKeyInfo, /* For comparing with previous entry */ int iBreak /* Jump here if we hit the LIMIT */ ){ Vdbe *v = pParse->pVdbe; int iContinue; int addr; addr = sqlite3VdbeCurrentAddr(v); iContinue = sqlite3VdbeMakeLabel(pParse); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int addr1, addr2; addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); } if( pParse->db->mallocFailed ) return 0; /* Suppress the first OFFSET entries if there is an OFFSET clause */ codeOffset(v, p->iOffset, iContinue); assert( pDest->eDest!=SRT_Exists ); assert( pDest->eDest!=SRT_Table ); switch( pDest->eDest ){ /* Store the result as data using a unique key. */ case SRT_EphemTab: { int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3ReleaseTempReg(pParse, r2); sqlite3ReleaseTempReg(pParse, r1); break; } #ifndef SQLITE_OMIT_SUBQUERY /* If we are creating a set for an "expr IN (SELECT ...)". */ case SRT_Set: { int r1; testcase( pIn->nSdst>1 ); r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1, pDest->zAffSdst, pIn->nSdst); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, pIn->iSdst, pIn->nSdst); sqlite3ReleaseTempReg(pParse, r1); break; } /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. Note that the select might return multiple columns ** if it is the RHS of a row-value IN operator. */ case SRT_Mem: { testcase( pIn->nSdst>1 ); sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); /* The LIMIT clause will jump out of the loop for us */ break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ /* The results are stored in a sequence of registers ** starting at pDest->iSdst. Then the co-routine yields. */ case SRT_Coroutine: { if( pDest->iSdst==0 ){ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); pDest->nSdst = pIn->nSdst; } sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); break; } /* If none of the above, then the result destination must be ** SRT_Output. This routine is never called with any other ** destination other than the ones handled above or SRT_Output. ** ** For SRT_Output, results are stored in a sequence of registers. ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to ** return the next row of result. */ default: { assert( pDest->eDest==SRT_Output ); sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } /* Generate the subroutine return */ sqlite3VdbeResolveLabel(v, iContinue); sqlite3VdbeAddOp1(v, OP_Return, regReturn); return addr; } /* ** Alternative compound select code generator for cases when there ** is an ORDER BY clause. ** ** We assume a query of the following form: ** ** ORDER BY ** ** is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea ** is to code both and with the ORDER BY clause as ** co-routines. Then run the co-routines in parallel and merge the results ** into the output. In addition to the two coroutines (called selectA and ** selectB) there are 7 subroutines: ** ** outA: Move the output of the selectA coroutine into the output ** of the compound query. ** ** outB: Move the output of the selectB coroutine into the output ** of the compound query. (Only generated for UNION and ** UNION ALL. EXCEPT and INSERTSECT never output a row that ** appears only in B.) ** ** AltB: Called when there is data from both coroutines and AB. ** ** EofA: Called when data is exhausted from selectA. ** ** EofB: Called when data is exhausted from selectB. ** ** The implementation of the latter five subroutines depend on which ** is used: ** ** ** UNION ALL UNION EXCEPT INTERSECT ** ------------- ----------------- -------------- ----------------- ** AltB: outA, nextA outA, nextA outA, nextA nextA ** ** AeqB: outA, nextA nextA nextA outA, nextA ** ** AgtB: outB, nextB outB, nextB nextB nextB ** ** EofA: outB, nextB outB, nextB halt halt ** ** EofB: outA, nextA outA, nextA outA, nextA halt ** ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA ** causes an immediate jump to EofA and an EOF on B following nextB causes ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or ** following nextX causes a jump to the end of the select processing. ** ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled ** within the output subroutine. The regPrev register set holds the previously ** output value. A comparison is made against this value and the output ** is skipped if the next results would be the same as the previous. ** ** The implementation plan is to implement the two coroutines and seven ** subroutines first, then put the control logic at the bottom. Like this: ** ** goto Init ** coA: coroutine for left query (A) ** coB: coroutine for right query (B) ** outA: output one row of A ** outB: output one row of B (UNION and UNION ALL only) ** EofA: ... ** EofB: ... ** AltB: ... ** AeqB: ... ** AgtB: ... ** Init: initialize coroutine registers ** yield coA ** if eof(A) goto EofA ** yield coB ** if eof(B) goto EofB ** Cmpr: Compare A, B ** Jump AltB, AeqB, AgtB ** End: ... ** ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not ** actually called using Gosub and they do not Return. EofA and EofB loop ** until all data is exhausted then jump to the "end" label. AltB, AeqB, ** and AgtB jump to either L2 or to one of EofA or EofB. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ int i, j; /* Loop counters */ Select *pPrior; /* Another SELECT immediately to our left */ Select *pSplit; /* Left-most SELECT in the right-hand group */ int nSelect; /* Number of SELECT statements in the compound */ Vdbe *v; /* Generate code to this VDBE */ SelectDest destA; /* Destination for coroutine A */ SelectDest destB; /* Destination for coroutine B */ int regAddrA; /* Address register for select-A coroutine */ int regAddrB; /* Address register for select-B coroutine */ int addrSelectA; /* Address of the select-A coroutine */ int addrSelectB; /* Address of the select-B coroutine */ int regOutA; /* Address register for the output-A subroutine */ int regOutB; /* Address register for the output-B subroutine */ int addrOutA; /* Address of the output-A subroutine */ int addrOutB = 0; /* Address of the output-B subroutine */ int addrEofA; /* Address of the select-A-exhausted subroutine */ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ int addrEofB; /* Address of the select-B-exhausted subroutine */ int addrAltB; /* Address of the AB subroutine */ int regLimitA; /* Limit register for select-A */ int regLimitB; /* Limit register for select-A */ int regPrev; /* A range of registers to hold previous output */ int savedLimit; /* Saved value of p->iLimit */ int savedOffset; /* Saved value of p->iOffset */ int labelCmpr; /* Label for the start of the merge algorithm */ int labelEnd; /* Label for the end of the overall SELECT stmt */ int addr1; /* Jump instructions that get retargeted */ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ KeyInfo *pKeyMerge; /* Comparison information for merging rows */ sqlite3 *db; /* Database connection */ ExprList *pOrderBy; /* The ORDER BY clause */ int nOrderBy; /* Number of terms in the ORDER BY clause */ u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ assert( p->pOrderBy!=0 ); assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ db = pParse->db; v = pParse->pVdbe; assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ labelEnd = sqlite3VdbeMakeLabel(pParse); labelCmpr = sqlite3VdbeMakeLabel(pParse); /* Patch up the ORDER BY clause */ op = p->op; assert( p->pPrior->pOrderBy==0 ); pOrderBy = p->pOrderBy; assert( pOrderBy ); nOrderBy = pOrderBy->nExpr; /* For operators other than UNION ALL we have to make sure that ** the ORDER BY clause covers every term of the result set. Add ** terms to the ORDER BY clause as necessary. */ if( op!=TK_ALL ){ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ struct ExprList_item *pItem; for(j=0, pItem=pOrderBy->a; ju.x.iOrderByCol>0 ); if( pItem->u.x.iOrderByCol==i ) break; } if( j==nOrderBy ){ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return SQLITE_NOMEM_BKPT; pNew->flags |= EP_IntValue; pNew->u.iValue = i; p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; } } } /* Compute the comparison permutation and keyinfo that is used with ** the permutation used to determine if the next ** row of results comes from selectA or selectB. Also add explicit ** collations to the ORDER BY clause terms so that when the subqueries ** to the right and the left are evaluated, they use the correct ** collation. */ aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); if( aPermute ){ struct ExprList_item *pItem; aPermute[0] = nOrderBy; for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ assert( pItem!=0 ); assert( pItem->u.x.iOrderByCol>0 ); assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); }else{ pKeyMerge = 0; } /* Allocate a range of temporary registers and the KeyInfo needed ** for the logic that removes duplicate result rows when the ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). */ if( op==TK_ALL ){ regPrev = 0; }else{ int nExpr = p->pEList->nExpr; assert( nOrderBy>=nExpr || db->mallocFailed ); regPrev = pParse->nMem+1; pParse->nMem += nExpr+1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); if( pKeyDup ){ assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); for(i=0; iaColl[i] = multiSelectCollSeq(pParse, p, i); pKeyDup->aSortFlags[i] = 0; } } } /* Separate the left and the right query from one another */ nSelect = 1; if( (op==TK_ALL || op==TK_UNION) && OptimizationEnabled(db, SQLITE_BalancedMerge) ){ for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ nSelect++; assert( pSplit->pPrior->pNext==pSplit ); } } if( nSelect<=3 ){ pSplit = p; }else{ pSplit = p; for(i=2; ipPrior; } } pPrior = pSplit->pPrior; assert( pPrior!=0 ); pSplit->pPrior = 0; pPrior->pNext = 0; assert( p->pOrderBy == pOrderBy ); assert( pOrderBy!=0 || db->mallocFailed ); pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); /* Compute the limit registers */ computeLimitRegisters(pParse, p, labelEnd); if( p->iLimit && op==TK_ALL ){ regLimitA = ++pParse->nMem; regLimitB = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, regLimitA); sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); }else{ regLimitA = regLimitB = 0; } sqlite3ExprDelete(db, p->pLimit); p->pLimit = 0; regAddrA = ++pParse->nMem; regAddrB = ++pParse->nMem; regOutA = ++pParse->nMem; regOutB = ++pParse->nMem; sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); /* Generate a coroutine to evaluate the SELECT statement to the ** left of the compound operator - the "A" select. */ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); VdbeComment((v, "left SELECT")); pPrior->iLimit = regLimitA; ExplainQueryPlan((pParse, 1, "LEFT")); sqlite3Select(pParse, pPrior, &destA); sqlite3VdbeEndCoroutine(v, regAddrA); sqlite3VdbeJumpHere(v, addr1); /* Generate a coroutine to evaluate the SELECT statement on ** the right - the "B" select */ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); VdbeComment((v, "right SELECT")); savedLimit = p->iLimit; savedOffset = p->iOffset; p->iLimit = regLimitB; p->iOffset = 0; ExplainQueryPlan((pParse, 1, "RIGHT")); sqlite3Select(pParse, p, &destB); p->iLimit = savedLimit; p->iOffset = savedOffset; sqlite3VdbeEndCoroutine(v, regAddrB); /* Generate a subroutine that outputs the current row of the A ** select as the next output row of the compound select. */ VdbeNoopComment((v, "Output routine for A")); addrOutA = generateOutputSubroutine(pParse, p, &destA, pDest, regOutA, regPrev, pKeyDup, labelEnd); /* Generate a subroutine that outputs the current row of the B ** select as the next output row of the compound select. */ if( op==TK_ALL || op==TK_UNION ){ VdbeNoopComment((v, "Output routine for B")); addrOutB = generateOutputSubroutine(pParse, p, &destB, pDest, regOutB, regPrev, pKeyDup, labelEnd); } sqlite3KeyInfoUnref(pKeyDup); /* Generate a subroutine to run when the results from select A ** are exhausted and only data in select B remains. */ if( op==TK_EXCEPT || op==TK_INTERSECT ){ addrEofA_noB = addrEofA = labelEnd; }else{ VdbeNoopComment((v, "eof-A subroutine")); addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); VdbeCoverage(v); sqlite3VdbeGoto(v, addrEofA); p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); } /* Generate a subroutine to run when the results from select B ** are exhausted and only data in select A remains. */ if( op==TK_INTERSECT ){ addrEofB = addrEofA; if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; }else{ VdbeNoopComment((v, "eof-B subroutine")); addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); sqlite3VdbeGoto(v, addrEofB); } /* Generate code to handle the case of AB */ VdbeNoopComment((v, "A-gt-B subroutine")); addrAgtB = sqlite3VdbeCurrentAddr(v); if( op==TK_ALL || op==TK_UNION ){ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); } sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); sqlite3VdbeGoto(v, labelCmpr); /* This code runs once to initialize everything. */ sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); /* Jump to the this point in order to terminate the query. */ sqlite3VdbeResolveLabel(v, labelEnd); /* Make arrangements to free the 2nd and subsequent arms of the compound ** after the parse has finished */ if( pSplit->pPrior ){ sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pSplit->pPrior); } pSplit->pPrior = pPrior; pPrior->pNext = pSplit; sqlite3ExprListDelete(db, pPrior->pOrderBy); pPrior->pOrderBy = 0; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ ExplainQueryPlanPop(pParse); return pParse->nErr!=0; } #endif #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* An instance of the SubstContext object describes an substitution edit ** to be performed on a parse tree. ** ** All references to columns in table iTable are to be replaced by corresponding ** expressions in pEList. ** ** ## About "isOuterJoin": ** ** The isOuterJoin column indicates that the replacement will occur into a ** position in the parent that NULL-able due to an OUTER JOIN. Either the ** target slot in the parent is the right operand of a LEFT JOIN, or one of ** the left operands of a RIGHT JOIN. In either case, we need to potentially ** bypass the substituted expression with OP_IfNullRow. ** ** Suppose the original expression is an integer constant. Even though the table ** has the nullRow flag set, because the expression is an integer constant, ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode ** that checks to see if the nullRow flag is set on the table. If the nullRow ** flag is set, then the value in the register is set to NULL and the original ** expression is bypassed. If the nullRow flag is not set, then the original ** expression runs to populate the register. ** ** Example where this is needed: ** ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); ** CREATE TABLE t2(x INT UNIQUE); ** ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; ** ** When the subquery on the right side of the LEFT JOIN is flattened, we ** have to add OP_IfNullRow in front of the OP_Integer that implements the ** "m" value of the subquery so that a NULL will be loaded instead of 59 ** when processing a non-matched row of the left. */ typedef struct SubstContext { Parse *pParse; /* The parsing context */ int iTable; /* Replace references to this table */ int iNewTable; /* New table number */ int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ ExprList *pEList; /* Replacement expressions */ ExprList *pCList; /* Collation sequences for replacement expr */ } SubstContext; /* Forward Declarations */ static void substExprList(SubstContext*, ExprList*); static void substSelect(SubstContext*, Select*, int); /* ** Scan through the expression pExpr. Replace every reference to ** a column in table number iTable with a copy of the iColumn-th ** entry in pEList. (But leave references to the ROWID column ** unchanged.) ** ** This routine is part of the flattening procedure. A subquery ** whose result set is defined by pEList appears as entry in the ** FROM clause of a SELECT such that the VDBE cursor assigned to that ** FORM clause entry is iTable. This routine makes the necessary ** changes to pExpr so that it refers directly to the source table ** of the subquery rather the result set of the subquery. */ static Expr *substExpr( SubstContext *pSubst, /* Description of the substitution */ Expr *pExpr /* Expr in which substitution occurs */ ){ if( pExpr==0 ) return 0; if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) && pExpr->w.iJoin==pSubst->iTable ){ testcase( ExprHasProperty(pExpr, EP_InnerON) ); pExpr->w.iJoin = pSubst->iNewTable; } if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable && !ExprHasProperty(pExpr, EP_FixedCol) ){ #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else #endif { Expr *pNew; int iColumn; Expr *pCopy; Expr ifNullRow; iColumn = pExpr->iColumn; assert( iColumn>=0 ); assert( pSubst->pEList!=0 && iColumnpEList->nExpr ); assert( pExpr->pRight==0 ); pCopy = pSubst->pEList->a[iColumn].pExpr; if( sqlite3ExprIsVector(pCopy) ){ sqlite3VectorErrorMsg(pSubst->pParse, pCopy); }else{ sqlite3 *db = pSubst->pParse->db; if( pSubst->isOuterJoin && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable) ){ memset(&ifNullRow, 0, sizeof(ifNullRow)); ifNullRow.op = TK_IF_NULL_ROW; ifNullRow.pLeft = pCopy; ifNullRow.iTable = pSubst->iNewTable; ifNullRow.iColumn = -99; ifNullRow.flags = EP_IfNullRow; pCopy = &ifNullRow; } testcase( ExprHasProperty(pCopy, EP_Subquery) ); pNew = sqlite3ExprDup(db, pCopy, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pNew); return pExpr; } if( pSubst->isOuterJoin ){ ExprSetProperty(pNew, EP_CanBeNull); } if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, pExpr->flags & (EP_OuterON|EP_InnerON)); } sqlite3ExprDelete(db, pExpr); pExpr = pNew; if( pExpr->op==TK_TRUEFALSE ){ pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); pExpr->op = TK_INTEGER; ExprSetProperty(pExpr, EP_IntValue); } /* Ensure that the expression now has an implicit collation sequence, ** just as it did when it was a column of a view or sub-query. */ { CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr); CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pSubst->pCList->a[iColumn].pExpr ); if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){ pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, (pColl ? pColl->zName : "BINARY") ); } } ExprClearProperty(pExpr, EP_Collate); } } }else{ if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ pExpr->iTable = pSubst->iNewTable; } pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); pExpr->pRight = substExpr(pSubst, pExpr->pRight); if( ExprUseXSelect(pExpr) ){ substSelect(pSubst, pExpr->x.pSelect, 1); }else{ substExprList(pSubst, pExpr->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ Window *pWin = pExpr->y.pWin; pWin->pFilter = substExpr(pSubst, pWin->pFilter); substExprList(pSubst, pWin->pPartition); substExprList(pSubst, pWin->pOrderBy); } #endif } return pExpr; } static void substExprList( SubstContext *pSubst, /* Description of the substitution */ ExprList *pList /* List to scan and in which to make substitutes */ ){ int i; if( pList==0 ) return; for(i=0; inExpr; i++){ pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); } } static void substSelect( SubstContext *pSubst, /* Description of the substitution */ Select *p, /* SELECT statement in which to make substitutions */ int doPrior /* Do substitutes on p->pPrior too */ ){ SrcList *pSrc; SrcItem *pItem; int i; if( !p ) return; do{ substExprList(pSubst, p->pEList); substExprList(pSubst, p->pGroupBy); substExprList(pSubst, p->pOrderBy); p->pHaving = substExpr(pSubst, p->pHaving); p->pWhere = substExpr(pSubst, p->pWhere); pSrc = p->pSrc; assert( pSrc!=0 ); for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ substSelect(pSubst, pItem->pSelect, 1); if( pItem->fg.isTabFunc ){ substExprList(pSubst, pItem->u1.pFuncArg); } } }while( doPrior && (p = p->pPrior)!=0 ); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** pSelect is a SELECT statement and pSrcItem is one item in the FROM ** clause of that SELECT. ** ** This routine scans the entire SELECT statement and recomputes the ** pSrcItem->colUsed mask. */ static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ SrcItem *pItem; if( pExpr->op!=TK_COLUMN ) return WRC_Continue; pItem = pWalker->u.pSrcItem; if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; if( pExpr->iColumn<0 ) return WRC_Continue; pItem->colUsed |= sqlite3ExprColUsed(pExpr); return WRC_Continue; } static void recomputeColumnsUsed( Select *pSelect, /* The complete SELECT statement */ SrcItem *pSrcItem /* Which FROM clause item to recompute */ ){ Walker w; if( NEVER(pSrcItem->pTab==0) ) return; memset(&w, 0, sizeof(w)); w.xExprCallback = recomputeColumnsUsedExpr; w.xSelectCallback = sqlite3SelectWalkNoop; w.u.pSrcItem = pSrcItem; pSrcItem->colUsed = 0; sqlite3WalkSelect(&w, pSelect); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** Assign new cursor numbers to each of the items in pSrc. For each ** new cursor number assigned, set an entry in the aCsrMap[] array ** to map the old cursor number to the new: ** ** aCsrMap[iOld+1] = iNew; ** ** The array is guaranteed by the caller to be large enough for all ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. ** ** If pSrc contains any sub-selects, call this routine recursively ** on the FROM clause of each such sub-select, with iExcept set to -1. */ static void srclistRenumberCursors( Parse *pParse, /* Parse context */ int *aCsrMap, /* Array to store cursor mappings in */ SrcList *pSrc, /* FROM clause to renumber */ int iExcept /* FROM clause item to skip */ ){ int i; SrcItem *pItem; for(i=0, pItem=pSrc->a; inSrc; i++, pItem++){ if( i!=iExcept ){ Select *p; assert( pItem->iCursor < aCsrMap[0] ); if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ aCsrMap[pItem->iCursor+1] = pParse->nTab++; } pItem->iCursor = aCsrMap[pItem->iCursor+1]; for(p=pItem->pSelect; p; p=p->pPrior){ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); } } } } /* ** *piCursor is a cursor number. Change it if it needs to be mapped. */ static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ int *aCsrMap = pWalker->u.aiCol; int iCsr = *piCursor; if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ *piCursor = aCsrMap[iCsr+1]; } } /* ** Expression walker callback used by renumberCursors() to update ** Expr objects to match newly assigned cursor numbers. */ static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ int op = pExpr->op; if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ renumberCursorDoMapping(pWalker, &pExpr->iTable); } if( ExprHasProperty(pExpr, EP_OuterON) ){ renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); } return WRC_Continue; } /* ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) ** of the SELECT statement passed as the second argument, and to each ** cursor in the FROM clause of any FROM clause sub-selects, recursively. ** Except, do not assign a new cursor number to the iExcept'th element in ** the FROM clause of (*p). Update all expressions and other references ** to refer to the new cursor numbers. ** ** Argument aCsrMap is an array that may be used for temporary working ** space. Two guarantees are made by the caller: ** ** * the array is larger than the largest cursor number used within the ** select statement passed as an argument, and ** ** * the array entries for all cursor numbers that do *not* appear in ** FROM clauses of the select statement as described above are ** initialized to zero. */ static void renumberCursors( Parse *pParse, /* Parse context */ Select *p, /* Select to renumber cursors within */ int iExcept, /* FROM clause item to skip */ int *aCsrMap /* Working space */ ){ Walker w; srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); memset(&w, 0, sizeof(w)); w.u.aiCol = aCsrMap; w.xExprCallback = renumberCursorsCb; w.xSelectCallback = sqlite3SelectWalkNoop; sqlite3WalkSelect(&w, p); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** If pSel is not part of a compound SELECT, return a pointer to its ** expression list. Otherwise, return a pointer to the expression list ** of the leftmost SELECT in the compound. */ static ExprList *findLeftmostExprlist(Select *pSel){ while( pSel->pPrior ){ pSel = pSel->pPrior; } return pSel->pEList; } /* ** Return true if any of the result-set columns in the compound query ** have incompatible affinities on one or more arms of the compound. */ static int compoundHasDifferentAffinities(Select *p){ int ii; ExprList *pList; assert( p!=0 ); assert( p->pEList!=0 ); assert( p->pPrior!=0 ); pList = p->pEList; for(ii=0; iinExpr; ii++){ char aff; Select *pSub1; assert( pList->a[ii].pExpr!=0 ); aff = sqlite3ExprAffinity(pList->a[ii].pExpr); for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){ assert( pSub1->pEList!=0 ); assert( pSub1->pEList->nExpr>ii ); assert( pSub1->pEList->a[ii].pExpr!=0 ); if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){ return 1; } } } return 0; } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** This routine attempts to flatten subqueries as a performance optimization. ** This routine returns 1 if it makes changes and 0 if no flattening occurs. ** ** To understand the concept of flattening, consider the following ** query: ** ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 ** ** The default way of implementing this query is to execute the ** subquery first and store the results in a temporary table, then ** run the outer query on that temporary table. This requires two ** passes over the data. Furthermore, because the temporary table ** has no indices, the WHERE clause on the outer query cannot be ** optimized. ** ** This routine attempts to rewrite queries such as the above into ** a single flat select, like this: ** ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 ** ** The code generated for this simplification gives the same result ** but only has to scan the data once. And because indices might ** exist on the table t1, a complete scan of the data might be ** avoided. ** ** Flattening is subject to the following constraints: ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** The subquery and the outer query cannot both be aggregates. ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** (2) If the subquery is an aggregate then ** (2a) the outer query must not be a join and ** (2b) the outer query must not use subqueries ** other than the one FROM-clause subquery that is a candidate ** for flattening. (This is due to ticket [2f7170d73bf9abf80] ** from 2015-02-09.) ** ** (3) If the subquery is the right operand of a LEFT JOIN then ** (3a) the subquery may not be a join and ** (3b) the FROM clause of the subquery may not contain a virtual ** table and ** (**) Was: "The outer query may not have a GROUP BY." This case ** is now managed correctly ** (3d) the outer query may not be DISTINCT. ** See also (26) for restrictions on RIGHT JOIN. ** ** (4) The subquery can not be DISTINCT. ** ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT ** sub-queries that were excluded from this optimization. Restriction ** (4) has since been expanded to exclude all DISTINCT subqueries. ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** If the subquery is aggregate, the outer query may not be DISTINCT. ** ** (7) The subquery must have a FROM clause. TODO: For subqueries without ** A FROM clause, consider adding a FROM clause with the special ** table sqlite_once that consists of a single row containing a ** single NULL. ** ** (8) If the subquery uses LIMIT then the outer query may not be a join. ** ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidentally carried the comment forward until 2014-09-15. Original ** constraint: "If the subquery is aggregate then the outer query ** may not use LIMIT." ** ** (11) The subquery and the outer query may not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query may not both use LIMIT. ** ** (14) The subquery may not use OFFSET. ** ** (15) If the outer query is part of a compound select, then the ** subquery may not use LIMIT. ** (See ticket #2339 and ticket [02a8e81d44]). ** ** (16) If the outer query is aggregate, then the subquery may not ** use ORDER BY. (Ticket #2942) This used to not matter ** until we introduced the group_concat() function. ** ** (17) If the subquery is a compound select, then ** (17a) all compound operators must be a UNION ALL, and ** (17b) no terms within the subquery compound may be aggregate ** or DISTINCT, and ** (17c) every term within the subquery compound must have a FROM clause ** (17d) the outer query may not be ** (17d1) aggregate, or ** (17d2) DISTINCT ** (17e) the subquery may not contain window functions, and ** (17f) the subquery must not be the RHS of a LEFT JOIN. ** (17g) either the subquery is the first element of the outer ** query or there are no RIGHT or FULL JOINs in any arm ** of the subquery. (This is a duplicate of condition (27b).) ** (17h) The corresponding result set expressions in all arms of the ** compound must have the same affinity. ** ** The parent and sub-query may contain WHERE clauses. Subject to ** rules (11), (13) and (14), they may also contain ORDER BY, ** LIMIT and OFFSET clauses. The subquery cannot use any compound ** operator other than UNION ALL because all the other compound ** operators have an implied DISTINCT which is disallowed by ** restriction (4). ** ** Also, each component of the sub-query must return the same number ** of result columns. This is actually a requirement for any compound ** SELECT statement, but all the code here does is make sure that no ** such (illegal) sub-query is flattened. The caller will detect the ** syntax error and return a detailed message. ** ** (18) If the sub-query is a compound select, then all terms of the ** ORDER BY clause of the parent must be copies of a term returned ** by the parent query. ** ** (19) If the subquery uses LIMIT then the outer query may not ** have a WHERE clause. ** ** (20) If the sub-query is a compound select, then it must not use ** an ORDER BY clause. Ticket #3773. We could relax this constraint ** somewhat by saying that the terms of the ORDER BY clause must ** appear as unmodified result columns in the outer query. But we ** have other optimizations in mind to deal with that case. ** ** (21) If the subquery uses LIMIT then the outer query may not be ** DISTINCT. (See ticket [752e1646fc]). ** ** (22) The subquery may not be a recursive CTE. ** ** (23) If the outer query is a recursive CTE, then the sub-query may not be ** a compound query. This restriction is because transforming the ** parent to a compound query confuses the code that handles ** recursive queries in multiSelect(). ** ** (**) We no longer attempt to flatten aggregate subqueries. Was: ** The subquery may not be an aggregate that uses the built-in min() or ** or max() functions. (Without this restriction, a query like: ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily ** return the value X for which Y was maximal.) ** ** (25) If either the subquery or the parent query contains a window ** function in the select list or ORDER BY clause, flattening ** is not attempted. ** ** (26) The subquery may not be the right operand of a RIGHT JOIN. ** See also (3) for restrictions on LEFT JOIN. ** ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it ** is the first element of the parent query. Two subcases: ** (27a) the subquery is not a compound query. ** (27b) the subquery is a compound query and the RIGHT JOIN occurs ** in any arm of the compound query. (See also (17g).) ** ** (28) The subquery is not a MATERIALIZED CTE. (This is handled ** in the caller before ever reaching this routine.) ** ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. ** ** All of the expression analysis must occur on both the outer query and ** the subquery before this routine runs. */ static int flattenSubquery( Parse *pParse, /* Parsing context */ Select *p, /* The parent or outer SELECT statement */ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ int isAgg /* True if outer SELECT uses aggregate functions */ ){ const char *zSavedAuthContext = pParse->zAuthContext; Select *pParent; /* Current UNION ALL term of the other query */ Select *pSub; /* The inner query or "subquery" */ Select *pSub1; /* Pointer to the rightmost select in sub-query */ SrcList *pSrc; /* The FROM clause of the outer query */ SrcList *pSubSrc; /* The FROM clause of the subquery */ int iParent; /* VDBE cursor number of the pSub result set temp table */ int iNewParent = -1;/* Replacement table for iParent */ int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ int i; /* Loop counter */ Expr *pWhere; /* The WHERE clause */ SrcItem *pSubitem; /* The subquery */ sqlite3 *db = pParse->db; Walker w; /* Walker to persist agginfo data */ int *aCsrMap = 0; /* Check to see if flattening is permitted. Return 0 if not. */ assert( p!=0 ); assert( p->pPrior==0 ); if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; pSrc = p->pSrc; assert( pSrc && iFrom>=0 && iFromnSrc ); pSubitem = &pSrc->a[iFrom]; iParent = pSubitem->iCursor; pSub = pSubitem->pSelect; assert( pSub!=0 ); #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ #endif pSubSrc = pSub->pSrc; assert( pSubSrc ); /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ return 0; /* Restriction (15) */ } if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ return 0; /* Restrictions (8)(9) */ } if( p->pOrderBy && pSub->pOrderBy ){ return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ return 0; /* Restriction (21) */ } if( pSub->selFlags & (SF_Recursive) ){ return 0; /* Restrictions (22) */ } /* ** If the subquery is the right operand of a LEFT JOIN, then the ** subquery may not be a join itself (3a). Example of why this is not ** allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) ** ** If we flatten the above, we would get ** ** (t1 LEFT OUTER JOIN t2) JOIN t3 ** ** which is not at all the same thing. ** ** See also tickets #306, #350, and #3300. */ if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ if( pSubSrc->nSrc>1 /* (3a) */ || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */ || (p->selFlags & SF_Distinct)!=0 /* (3d) */ || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ ){ return 0; } isOuterJoin = 1; } assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* Restriction (27a) */ } /* Condition (28) is blocked by the caller */ assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes ); /* Restriction (17): If the sub-query is a compound SELECT, then it must ** use only the UNION ALL operator. And none of the simple select queries ** that make up the compound SELECT are allowed to be aggregate or distinct ** queries. */ if( pSub->pPrior ){ int ii; if( pSub->pOrderBy ){ return 0; /* Restriction (20) */ } if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ return 0; /* (17d1), (17d2), or (17f) */ } for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); assert( pSub->pSrc!=0 ); assert( (pSub->selFlags & SF_Recursive)==0 ); assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ || pSub1->pSrc->nSrc<1 /* (17c) */ #ifndef SQLITE_OMIT_WINDOWFUNC || pSub1->pWin /* (17e) */ #endif ){ return 0; } if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* Without this restriction, the JT_LTORJ flag would end up being ** omitted on left-hand tables of the right join that is being ** flattened. */ return 0; /* Restrictions (17g), (27b) */ } testcase( pSub1->pSrc->nSrc>1 ); } /* Restriction (18). */ if( p->pOrderBy ){ for(ii=0; iipOrderBy->nExpr; ii++){ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; } } /* Restriction (23) */ if( (p->selFlags & SF_Recursive) ) return 0; /* Restriction (17h) */ if( compoundHasDifferentAffinities(pSub) ) return 0; if( pSrc->nSrc>1 ){ if( pParse->nSelect>500 ) return 0; if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); if( aCsrMap ) aCsrMap[0] = pParse->nTab; } } /***** If we reach this point, flattening is permitted. *****/ TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n", pSub->selId, pSub, iFrom)); /* Authorize the subquery */ pParse->zAuthContext = pSubitem->zName; TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); testcase( i==SQLITE_DENY ); pParse->zAuthContext = zSavedAuthContext; /* Delete the transient structures associated with the subquery */ pSub1 = pSubitem->pSelect; sqlite3DbFree(db, pSubitem->zDatabase); sqlite3DbFree(db, pSubitem->zName); sqlite3DbFree(db, pSubitem->zAlias); pSubitem->zDatabase = 0; pSubitem->zName = 0; pSubitem->zAlias = 0; pSubitem->pSelect = 0; assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); /* If the sub-query is a compound SELECT statement, then (by restrictions ** 17 and 18 above) it must be a UNION ALL and the parent query must ** be of the form: ** ** SELECT FROM () ** ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or ** OFFSET clauses and joins them to the left-hand-side of the original ** using UNION ALL operators. In this case N is the number of simple ** select statements in the compound sub-query. ** ** Example: ** ** SELECT a+1 FROM ( ** SELECT x FROM tab ** UNION ALL ** SELECT y FROM tab ** UNION ALL ** SELECT abs(z*2) FROM tab2 ** ) WHERE a!=5 ORDER BY 1 ** ** Transformed into: ** ** SELECT x+1 FROM tab WHERE x+1!=5 ** UNION ALL ** SELECT y+1 FROM tab WHERE y+1!=5 ** UNION ALL ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 ** ORDER BY 1 ** ** We call this the "compound-subquery flattening". */ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ Select *pNew; ExprList *pOrderBy = p->pOrderBy; Expr *pLimit = p->pLimit; Select *pPrior = p->pPrior; Table *pItemTab = pSubitem->pTab; pSubitem->pTab = 0; p->pOrderBy = 0; p->pPrior = 0; p->pLimit = 0; pNew = sqlite3SelectDup(db, p, 0); p->pLimit = pLimit; p->pOrderBy = pOrderBy; p->op = TK_ALL; pSubitem->pTab = pItemTab; if( pNew==0 ){ p->pPrior = pPrior; }else{ pNew->selId = ++pParse->nSelect; if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ renumberCursors(pParse, pNew, iFrom, aCsrMap); } pNew->pPrior = pPrior; if( pPrior ) pPrior->pNext = pNew; pNew->pNext = p; p->pPrior = pNew; TREETRACE(0x4,pParse,p,("compound-subquery flattener" " creates %u as peer\n",pNew->selId)); } assert( pSubitem->pSelect==0 ); } sqlite3DbFree(db, aCsrMap); if( db->mallocFailed ){ pSubitem->pSelect = pSub1; return 1; } /* Defer deleting the Table object associated with the ** subquery until code generation is ** complete, since there may still exist Expr.pTab entries that ** refer to the subquery even after flattening. Ticket #3346. ** ** pSubitem->pTab is always non-NULL by test restrictions and tests above. */ if( ALWAYS(pSubitem->pTab!=0) ){ Table *pTabToDel = pSubitem->pTab; if( pTabToDel->nTabRef==1 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3ParserAddCleanup(pToplevel, sqlite3DeleteTableGeneric, pTabToDel); testcase( pToplevel->earlyCleanup ); }else{ pTabToDel->nTabRef--; } pSubitem->pTab = 0; } /* The following loop runs once for each term in a compound-subquery ** flattening (as described above). If we are doing a different kind ** of flattening - a flattening other than a compound-subquery flattening - ** then this loop only runs once. ** ** This loop moves all of the FROM elements of the subquery into the ** the FROM clause of the outer query. Before doing this, remember ** the cursor number for the original outer query FROM element in ** iParent. The iParent cursor will never be used. Subsequent code ** will scan expressions looking for iParent references and replace ** those references with expressions that resolve to the subquery FROM ** elements we are now copying in. */ pSub = pSub1; for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ int nSubSrc; u8 jointype = 0; u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; assert( pSub!=0 ); pSubSrc = pSub->pSrc; /* FROM clause of subquery */ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ pSrc = pParent->pSrc; /* FROM clause of the outer query */ if( pParent==p ){ jointype = pSubitem->fg.jointype; /* First time through the loop */ } /* The subquery uses a single slot of the FROM clause of the outer ** query. If the subquery has more than one element in its FROM clause, ** then expand the outer query to make space for it to hold all elements ** of the subquery. ** ** Example: ** ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; ** ** The outer query has 3 slots in its FROM clause. One slot of the ** outer query (the middle slot) is used by the subquery. The next ** block of code will expand the outer query FROM clause to 4 slots. ** The middle slot is expanded to two slots in order to make space ** for the two elements in the FROM clause of the subquery. */ if( nSubSrc>1 ){ pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); if( pSrc==0 ) break; pParent->pSrc = pSrc; } /* Transfer the FROM clause terms from the subquery into the ** outer query. */ for(i=0; ia[i+iFrom]; if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); assert( pItem->fg.isTabFunc==0 ); *pItem = pSubSrc->a[i]; pItem->fg.jointype |= ltorj; iNewParent = pSubSrc->a[i].iCursor; memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); } pSrc->a[iFrom].fg.jointype &= JT_LTORJ; pSrc->a[iFrom].fg.jointype |= jointype | ltorj; /* Now begin substituting subquery result set expressions for ** references to the iParent in the outer query. ** ** Example: ** ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; ** \ \_____________ subquery __________/ / ** \_____________________ outer query ______________________________/ ** ** We look at every expression in the outer query and every place we see ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". */ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ /* At this point, any non-zero iOrderByCol values indicate that the ** ORDER BY column expression is identical to the iOrderByCol'th ** expression returned by SELECT statement pSub. Since these values ** do not necessarily correspond to columns in SELECT statement pParent, ** zero them before transferring the ORDER BY clause. ** ** Not doing this may cause an error if a subsequent call to this ** function attempts to flatten a compound sub-query into pParent ** (the only way this can happen is if the compound sub-query is ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ ExprList *pOrderBy = pSub->pOrderBy; for(i=0; inExpr; i++){ pOrderBy->a[i].u.x.iOrderByCol = 0; } assert( pParent->pOrderBy==0 ); pParent->pOrderBy = pOrderBy; pSub->pOrderBy = 0; } pWhere = pSub->pWhere; pSub->pWhere = 0; if( isOuterJoin>0 ){ sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); } if( pWhere ){ if( pParent->pWhere ){ pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); }else{ pParent->pWhere = pWhere; } } if( db->mallocFailed==0 ){ SubstContext x; x.pParse = pParse; x.iTable = iParent; x.iNewTable = iNewParent; x.isOuterJoin = isOuterJoin; x.pEList = pSub->pEList; x.pCList = findLeftmostExprlist(pSub); substSelect(&x, pParent, 0); } /* The flattened query is a compound if either the inner or the ** outer query is a compound. */ pParent->selFlags |= pSub->selFlags & SF_Compound; assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ /* ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; ** ** One is tempted to try to add a and b to combine the limits. But this ** does not work if either limit is negative. */ if( pSub->pLimit ){ pParent->pLimit = pSub->pLimit; pSub->pLimit = 0; } /* Recompute the SrcItem.colUsed masks for the flattened ** tables. */ for(i=0; ia[i+iFrom]); } } /* Finally, delete what is left of the subquery and return success. */ sqlite3AggInfoPersistWalkerInit(&w, pParse); sqlite3WalkSelect(&w,pSub1); sqlite3SelectDelete(db, pSub1); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4 ){ TREETRACE(0x4,pParse,p,("After flattening:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return 1; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** A structure to keep track of all of the column values that are fixed to ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. */ typedef struct WhereConst WhereConst; struct WhereConst { Parse *pParse; /* Parsing context */ u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ int nConst; /* Number for COLUMN=CONSTANT terms */ int nChng; /* Number of times a constant is propagated */ int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ u32 mExcludeOn; /* Which ON expressions to exclude from considertion. ** Either EP_OuterON or EP_InnerON|EP_OuterON */ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ }; /* ** Add a new entry to the pConst object. Except, do not add duplicate ** pColumn entries. Also, do not add if doing so would not be appropriate. ** ** The caller guarantees the pColumn is a column and pValue is a constant. ** This routine has to do some additional checks before completing the ** insert. */ static void constInsert( WhereConst *pConst, /* The WhereConst into which we are inserting */ Expr *pColumn, /* The COLUMN part of the constraint */ Expr *pValue, /* The VALUE part of the constraint */ Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ ){ int i; assert( pColumn->op==TK_COLUMN ); assert( sqlite3ExprIsConstant(pValue) ); if( ExprHasProperty(pColumn, EP_FixedCol) ) return; if( sqlite3ExprAffinity(pValue)!=0 ) return; if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ return; } /* 2018-10-25 ticket [cf5ed20f] ** Make sure the same pColumn is not inserted more than once */ for(i=0; inConst; i++){ const Expr *pE2 = pConst->apExpr[i*2]; assert( pE2->op==TK_COLUMN ); if( pE2->iTable==pColumn->iTable && pE2->iColumn==pColumn->iColumn ){ return; /* Already present. Return without doing anything. */ } } if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ pConst->bHasAffBlob = 1; } pConst->nConst++; pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, pConst->nConst*2*sizeof(Expr*)); if( pConst->apExpr==0 ){ pConst->nConst = 0; }else{ pConst->apExpr[pConst->nConst*2-2] = pColumn; pConst->apExpr[pConst->nConst*2-1] = pValue; } } /* ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE ** is a constant expression and where the term must be true because it ** is part of the AND-connected terms of the expression. For each term ** found, add it to the pConst structure. */ static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ Expr *pRight, *pLeft; if( NEVER(pExpr==0) ) return; if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ testcase( ExprHasProperty(pExpr, EP_OuterON) ); testcase( ExprHasProperty(pExpr, EP_InnerON) ); return; } if( pExpr->op==TK_AND ){ findConstInWhere(pConst, pExpr->pRight); findConstInWhere(pConst, pExpr->pLeft); return; } if( pExpr->op!=TK_EQ ) return; pRight = pExpr->pRight; pLeft = pExpr->pLeft; assert( pRight!=0 ); assert( pLeft!=0 ); if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ constInsert(pConst,pRight,pLeft,pExpr); } if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ constInsert(pConst,pLeft,pRight,pExpr); } } /* ** This is a helper function for Walker callback propagateConstantExprRewrite(). ** ** Argument pExpr is a candidate expression to be replaced by a value. If ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, ** then overwrite it with the corresponding value. Except, do not do so ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr ** is SQLITE_AFF_BLOB. */ static int propagateConstantExprRewriteOne( WhereConst *pConst, Expr *pExpr, int bIgnoreAffBlob ){ int i; if( pConst->pOomFault[0] ) return WRC_Prune; if( pExpr->op!=TK_COLUMN ) return WRC_Continue; if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ testcase( ExprHasProperty(pExpr, EP_FixedCol) ); testcase( ExprHasProperty(pExpr, EP_OuterON) ); testcase( ExprHasProperty(pExpr, EP_InnerON) ); return WRC_Continue; } for(i=0; inConst; i++){ Expr *pColumn = pConst->apExpr[i*2]; if( pColumn==pExpr ) continue; if( pColumn->iTable!=pExpr->iTable ) continue; if( pColumn->iColumn!=pExpr->iColumn ) continue; if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ break; } /* A match is found. Add the EP_FixedCol property */ pConst->nChng++; ExprClearProperty(pExpr, EP_Leaf); ExprSetProperty(pExpr, EP_FixedCol); assert( pExpr->pLeft==0 ); pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); if( pConst->pParse->db->mallocFailed ) return WRC_Prune; break; } return WRC_Prune; } /* ** This is a Walker expression callback. pExpr is a node from the WHERE ** clause of a SELECT statement. This function examines pExpr to see if ** any substitutions based on the contents of pWalker->u.pConst should ** be made to pExpr or its immediate children. ** ** A substitution is made if: ** ** + pExpr is a column with an affinity other than BLOB that matches ** one of the columns in pWalker->u.pConst, or ** ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that ** uses an affinity other than TEXT and one of its immediate ** children is a column that matches one of the columns in ** pWalker->u.pConst. */ static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ WhereConst *pConst = pWalker->u.pConst; assert( TK_GT==TK_EQ+1 ); assert( TK_LE==TK_EQ+2 ); assert( TK_LT==TK_EQ+3 ); assert( TK_GE==TK_EQ+4 ); if( pConst->bHasAffBlob ){ if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) || pExpr->op==TK_IS ){ propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); if( pConst->pOomFault[0] ) return WRC_Prune; if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); } } } return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); } /* ** The WHERE-clause constant propagation optimization. ** ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or ** CONSTANT=COLUMN that are top-level AND-connected terms that are not ** part of a ON clause from a LEFT JOIN, then throughout the query ** replace all other occurrences of COLUMN with CONSTANT. ** ** For example, the query: ** ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b ** ** Is transformed into ** ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 ** ** Return true if any transformations where made and false if not. ** ** Implementation note: Constant propagation is tricky due to affinity ** and collating sequence interactions. Consider this example: ** ** CREATE TABLE t1(a INT,b TEXT); ** INSERT INTO t1 VALUES(123,'0123'); ** SELECT * FROM t1 WHERE a=123 AND b=a; ** SELECT * FROM t1 WHERE a=123 AND b=123; ** ** The two SELECT statements above should return different answers. b=a ** is always true because the comparison uses numeric affinity, but b=123 ** is false because it uses text affinity and '0123' is not the same as '123'. ** To work around this, the expression tree is not actually changed from ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol ** and the "123" value is hung off of the pLeft pointer. Code generator ** routines know to generate the constant "123" instead of looking up the ** column value. Also, to avoid collation problems, this optimization is ** only attempted if the "a=123" term uses the default BINARY collation. ** ** 2021-05-25 forum post 6a06202608: Another troublesome case is... ** ** CREATE TABLE t1(x); ** INSERT INTO t1 VALUES(10.0); ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; ** ** The query should return no rows, because the t1.x value is '10.0' not '10' ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", ** resulting in a false positive. To avoid this, constant propagation for ** columns with BLOB affinity is only allowed if the constant is used with ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct ** type conversions to occur. See logic associated with the bHasAffBlob flag ** for details. */ static int propagateConstants( Parse *pParse, /* The parsing context */ Select *p /* The query in which to propagate constants */ ){ WhereConst x; Walker w; int nChng = 0; x.pParse = pParse; x.pOomFault = &pParse->db->mallocFailed; do{ x.nConst = 0; x.nChng = 0; x.apExpr = 0; x.bHasAffBlob = 0; if( ALWAYS(p->pSrc!=0) && p->pSrc->nSrc>0 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ /* Do not propagate constants on any ON clause if there is a ** RIGHT JOIN anywhere in the query */ x.mExcludeOn = EP_InnerON | EP_OuterON; }else{ /* Do not propagate constants through the ON clause of a LEFT JOIN */ x.mExcludeOn = EP_OuterON; } findConstInWhere(&x, p->pWhere); if( x.nConst ){ memset(&w, 0, sizeof(w)); w.pParse = pParse; w.xExprCallback = propagateConstantExprRewrite; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = 0; w.walkerDepth = 0; w.u.pConst = &x; sqlite3WalkExpr(&w, p->pWhere); sqlite3DbFree(x.pParse->db, x.apExpr); nChng += x.nChng; } }while( x.nChng ); return nChng; } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) # if !defined(SQLITE_OMIT_WINDOWFUNC) /* ** This function is called to determine whether or not it is safe to ** push WHERE clause expression pExpr down to FROM clause sub-query ** pSubq, which contains at least one window function. Return 1 ** if it is safe and the expression should be pushed down, or 0 ** otherwise. ** ** It is only safe to push the expression down if it consists only ** of constants and copies of expressions that appear in the PARTITION ** BY clause of all window function used by the sub-query. It is safe ** to filter out entire partitions, but not rows within partitions, as ** this may change the results of the window functions. ** ** At the time this function is called it is guaranteed that ** ** * the sub-query uses only one distinct window frame, and ** * that the window frame has a PARTITION BY clause. */ static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ assert( pSubq->pWin->pPartition ); assert( (pSubq->selFlags & SF_MultiPart)==0 ); assert( pSubq->pPrior==0 ); return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); } # endif /* SQLITE_OMIT_WINDOWFUNC */ #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** Make copies of relevant WHERE clause terms of the outer query into ** the WHERE clause of subquery. Example: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; ** ** Transformed into: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) ** WHERE x=5 AND y=10; ** ** The hope is that the terms added to the inner query will make it more ** efficient. ** ** Do not attempt this optimization if: ** ** (1) (** This restriction was removed on 2017-09-29. We used to ** disallow this optimization for aggregate subqueries, but now ** it is allowed by putting the extra terms on the HAVING clause. ** The added HAVING clause is pointless if the subquery lacks ** a GROUP BY clause. But such a HAVING clause is also harmless ** so there does not appear to be any reason to add extra logic ** to suppress it. **) ** ** (2) The inner query is the recursive part of a common table expression. ** ** (3) The inner query has a LIMIT clause (since the changes to the WHERE ** clause would change the meaning of the LIMIT). ** ** (4) The inner query is the right operand of a LEFT JOIN and the ** expression to be pushed down does not come from the ON clause ** on that LEFT JOIN. ** ** (5) The WHERE clause expression originates in the ON or USING clause ** of a LEFT JOIN where iCursor is not the right-hand table of that ** left join. An example: ** ** SELECT * ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); ** ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). ** But if the (b2=2) term were to be pushed down into the bb subquery, ** then the (1,1,NULL) row would be suppressed. ** ** (6) Window functions make things tricky as changes to the WHERE clause ** of the inner query could change the window over which window ** functions are calculated. Therefore, do not attempt the optimization ** if: ** ** (6a) The inner query uses multiple incompatible window partitions. ** ** (6b) The inner query is a compound and uses window-functions. ** ** (6c) The WHERE clause does not consist entirely of constants and ** copies of expressions found in the PARTITION BY clause of ** all window-functions used by the sub-query. It is safe to ** filter out entire partitions, as this does not change the ** window over which any window-function is calculated. ** ** (7) The inner query is a Common Table Expression (CTE) that should ** be materialized. (This restriction is implemented in the calling ** routine.) ** ** (8) If the subquery is a compound that uses UNION, INTERSECT, ** or EXCEPT, then all of the result set columns for all arms of ** the compound must use the BINARY collating sequence. ** ** (9) All three of the following are true: ** ** (9a) The WHERE clause expression originates in the ON or USING clause ** of a join (either an INNER or an OUTER join), and ** ** (9b) The subquery is to the right of the ON/USING clause ** ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING ** clause and the subquery. ** ** Without this restriction, the push-down optimization might move ** the ON/USING filter expression from the left side of a RIGHT JOIN ** over to the right side, which leads to incorrect answers. See ** also restriction (6) in sqlite3ExprIsSingleTableConstraint(). ** ** (10) The inner query is not the right-hand table of a RIGHT JOIN. ** ** (11) The subquery is not a VALUES clause ** ** (12) The WHERE clause is not "rowid ISNULL" or the equivalent. This ** case only comes up if SQLite is compiled using ** SQLITE_ALLOW_ROWID_IN_VIEW. ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( Parse *pParse, /* Parse context (for malloc() and error reporting) */ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ Expr *pWhere, /* The WHERE clause of the outer query */ SrcList *pSrcList, /* The complete from clause of the outer query */ int iSrc /* Which FROM clause term to try to push into */ ){ Expr *pNew; SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */ int nChng = 0; pSrc = &pSrcList->a[iSrc]; if( pWhere==0 ) return 0; if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){ return 0; /* restrictions (2) and (11) */ } if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){ return 0; /* restrictions (10) */ } if( pSubq->pPrior ){ Select *pSel; int notUnionAll = 0; for(pSel=pSubq; pSel; pSel=pSel->pPrior){ u8 op = pSel->op; assert( op==TK_ALL || op==TK_SELECT || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT ); if( op!=TK_ALL && op!=TK_SELECT ){ notUnionAll = 1; } #ifndef SQLITE_OMIT_WINDOWFUNC if( pSel->pWin ) return 0; /* restriction (6b) */ #endif } if( notUnionAll ){ /* If any of the compound arms are connected using UNION, INTERSECT, ** or EXCEPT, then we must ensure that none of the columns use a ** non-BINARY collating sequence. */ for(pSel=pSubq; pSel; pSel=pSel->pPrior){ int ii; const ExprList *pList = pSel->pEList; assert( pList!=0 ); for(ii=0; iinExpr; ii++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr); if( !sqlite3IsBinary(pColl) ){ return 0; /* Restriction (8) */ } } } } }else{ #ifndef SQLITE_OMIT_WINDOWFUNC if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; #endif } #ifdef SQLITE_DEBUG /* Only the first term of a compound can have a WITH clause. But make ** sure no other terms are marked SF_Recursive in case something changes ** in the future. */ { Select *pX; for(pX=pSubq; pX; pX=pX->pPrior){ assert( (pX->selFlags & (SF_Recursive))==0 ); } } #endif if( pSubq->pLimit!=0 ){ return 0; /* restriction (3) */ } while( pWhere->op==TK_AND ){ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc); pWhere = pWhere->pLeft; } #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */ if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */ ){ int jj; for(jj=0; jjw.iJoin==pSrcList->a[jj].iCursor ){ /* If we reach this point, both (9a) and (9b) are satisfied. ** The following loop checks (9c): */ for(jj++; jja[jj].fg.jointype & JT_RIGHT)!=0 ){ return 0; /* restriction (9) */ } } } } } if( isLeftJoin && (ExprHasProperty(pWhere,EP_OuterON)==0 || pWhere->w.iJoin!=iCursor) ){ return 0; /* restriction (4) */ } if( ExprHasProperty(pWhere,EP_OuterON) && pWhere->w.iJoin!=iCursor ){ return 0; /* restriction (5) */ } #endif #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( ViewCanHaveRowid && (pWhere->op==TK_ISNULL || pWhere->op==TK_NOTNULL) ){ Expr *pLeft = pWhere->pLeft; if( ALWAYS(pLeft) && pLeft->op==TK_COLUMN && pLeft->iColumn < 0 ){ return 0; /* Restriction (12) */ } } #endif if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc) ){ nChng++; pSubq->selFlags |= SF_PushDown; while( pSubq ){ SubstContext x; pNew = sqlite3ExprDup(pParse->db, pWhere, 0); unsetJoinExpr(pNew, -1, 1); x.pParse = pParse; x.iTable = pSrc->iCursor; x.iNewTable = pSrc->iCursor; x.isOuterJoin = 0; x.pEList = pSubq->pEList; x.pCList = findLeftmostExprlist(pSubq); pNew = substExpr(&x, pNew); #ifndef SQLITE_OMIT_WINDOWFUNC if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ /* Restriction 6c has prevented push-down in this case */ sqlite3ExprDelete(pParse->db, pNew); nChng--; break; } #endif if( pSubq->selFlags & SF_Aggregate ){ pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); }else{ pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); } pSubq = pSubq->pPrior; } } return nChng; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** Check to see if a subquery contains result-set columns that are ** never used. If it does, change the value of those result-set columns ** to NULL so that they do not cause unnecessary work to compute. ** ** Return the number of column that were changed to NULL. */ static int disableUnusedSubqueryResultColumns(SrcItem *pItem){ int nCol; Select *pSub; /* The subquery to be simplified */ Select *pX; /* For looping over compound elements of pSub */ Table *pTab; /* The table that describes the subquery */ int j; /* Column number */ int nChng = 0; /* Number of columns converted to NULL */ Bitmask colUsed; /* Columns that may not be NULLed out */ assert( pItem!=0 ); if( pItem->fg.isCorrelated || pItem->fg.isCte ){ return 0; } assert( pItem->pTab!=0 ); pTab = pItem->pTab; assert( pItem->pSelect!=0 ); pSub = pItem->pSelect; assert( pSub->pEList->nExpr==pTab->nCol ); for(pX=pSub; pX; pX=pX->pPrior){ if( (pX->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){ testcase( pX->selFlags & SF_Distinct ); testcase( pX->selFlags & SF_Aggregate ); return 0; } if( pX->pPrior && pX->op!=TK_ALL ){ /* This optimization does not work for compound subqueries that ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */ return 0; } #ifndef SQLITE_OMIT_WINDOWFUNC if( pX->pWin ){ /* This optimization does not work for subqueries that use window ** functions. */ return 0; } #endif } colUsed = pItem->colUsed; if( pSub->pOrderBy ){ ExprList *pList = pSub->pOrderBy; for(j=0; jnExpr; j++){ u16 iCol = pList->a[j].u.x.iOrderByCol; if( iCol>0 ){ iCol--; colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } } } nCol = pTab->nCol; for(j=0; jpPrior) { Expr *pY = pX->pEList->a[j].pExpr; if( pY->op==TK_NULL ) continue; pY->op = TK_NULL; ExprClearProperty(pY, EP_Skip|EP_Unlikely); pX->selFlags |= SF_PushDown; nChng++; } } return nChng; } /* ** The pFunc is the only aggregate function in the query. Check to see ** if the query is a candidate for the min/max optimization. ** ** If the query is a candidate for the min/max optimization, then set ** *ppMinMax to be an ORDER BY clause to be used for the optimization ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on ** whether pFunc is a min() or max() function. ** ** If the query is not a candidate for the min/max optimization, return ** WHERE_ORDERBY_NORMAL (which must be zero). ** ** This routine must be called after aggregate functions have been ** located but before their arguments have been subjected to aggregate ** analysis. */ static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ ExprList *pEList; /* Arguments to agg function */ const char *zFunc; /* Name of aggregate function pFunc */ ExprList *pOrderBy; u8 sortFlags = 0; assert( *ppMinMax==0 ); assert( pFunc->op==TK_AGG_FUNCTION ); assert( !IsWindowFunc(pFunc) ); assert( ExprUseXList(pFunc) ); pEList = pFunc->x.pList; if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) || OptimizationDisabled(db, SQLITE_MinMaxOpt) ){ return eRet; } assert( !ExprHasProperty(pFunc, EP_IntValue) ); zFunc = pFunc->u.zToken; if( sqlite3StrICmp(zFunc, "min")==0 ){ eRet = WHERE_ORDERBY_MIN; if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ sortFlags = KEYINFO_ORDER_BIGNULL; } }else if( sqlite3StrICmp(zFunc, "max")==0 ){ eRet = WHERE_ORDERBY_MAX; sortFlags = KEYINFO_ORDER_DESC; }else{ return eRet; } *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); assert( pOrderBy!=0 || db->mallocFailed ); if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; return eRet; } /* ** The select statement passed as the first argument is an aggregate query. ** The second argument is the associated aggregate-info object. This ** function tests if the SELECT is of the form: ** ** SELECT count(*) FROM ** ** where table is a database table, not a sub-select or view. If the query ** does match this pattern, then a pointer to the Table object representing ** is returned. Otherwise, NULL is returned. ** ** This routine checks to see if it is safe to use the count optimization. ** A correct answer is still obtained (though perhaps more slowly) if ** this routine returns NULL when it could have returned a table pointer. ** But returning the pointer when NULL should have been returned can ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. */ static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ Table *pTab; Expr *pExpr; assert( !p->pGroupBy ); if( p->pWhere || p->pEList->nExpr!=1 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect || pAggInfo->nFunc!=1 || p->pHaving ){ return 0; } pTab = p->pSrc->a[0].pTab; assert( pTab!=0 ); assert( !IsView(pTab) ); if( !IsOrdinaryTable(pTab) ) return 0; pExpr = p->pEList->a[0].pExpr; assert( pExpr!=0 ); if( pExpr->op!=TK_AGG_FUNCTION ) return 0; if( pExpr->pAggInfo!=pAggInfo ) return 0; if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; assert( pAggInfo->aFunc[0].pFExpr==pExpr ); testcase( ExprHasProperty(pExpr, EP_Distinct) ); testcase( ExprHasProperty(pExpr, EP_WinFunc) ); if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; return pTab; } /* ** If the source-list item passed as an argument was augmented with an ** INDEXED BY clause, then try to locate the specified index. If there ** was such a clause and the named index cannot be found, return ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate ** pFrom->pIndex and return SQLITE_OK. */ SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ Table *pTab = pFrom->pTab; char *zIndexedBy = pFrom->u1.zIndexedBy; Index *pIdx; assert( pTab!=0 ); assert( pFrom->fg.isIndexedBy!=0 ); for(pIdx=pTab->pIndex; pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); pIdx=pIdx->pNext ); if( !pIdx ){ sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); pParse->checkSchema = 1; return SQLITE_ERROR; } assert( pFrom->fg.isCte==0 ); pFrom->u2.pIBIndex = pIdx; return SQLITE_OK; } /* ** Detect compound SELECT statements that use an ORDER BY clause with ** an alternative collating sequence. ** ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... ** ** These are rewritten as a subquery: ** ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) ** ORDER BY ... COLLATE ... ** ** This transformation is necessary because the multiSelectOrderBy() routine ** above that generates the code for a compound SELECT with an ORDER BY clause ** uses a merge algorithm that requires the same collating sequence on the ** result columns as on the ORDER BY clause. See ticket ** http://www.sqlite.org/src/info/6709574d2a ** ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. ** The UNION ALL operator works fine with multiSelectOrderBy() even when ** there are COLLATE terms in the ORDER BY. */ static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ int i; Select *pNew; Select *pX; sqlite3 *db; struct ExprList_item *a; SrcList *pNewSrc; Parse *pParse; Token dummy; if( p->pPrior==0 ) return WRC_Continue; if( p->pOrderBy==0 ) return WRC_Continue; for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} if( pX==0 ) return WRC_Continue; a = p->pOrderBy->a; #ifndef SQLITE_OMIT_WINDOWFUNC /* If iOrderByCol is already non-zero, then it has already been matched ** to a result column of the SELECT statement. This occurs when the ** SELECT is rewritten for window-functions processing and then passed ** to sqlite3SelectPrep() and similar a second time. The rewriting done ** by this function is not required in this case. */ if( a[0].u.x.iOrderByCol ) return WRC_Continue; #endif for(i=p->pOrderBy->nExpr-1; i>=0; i--){ if( a[i].pExpr->flags & EP_Collate ) break; } if( i<0 ) return WRC_Continue; /* If we reach this point, that means the transformation is required. */ pParse = pWalker->pParse; db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); if( pNew==0 ) return WRC_Abort; memset(&dummy, 0, sizeof(dummy)); pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); if( pNewSrc==0 ) return WRC_Abort; *pNew = *p; p->pSrc = pNewSrc; p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); p->op = TK_SELECT; p->pWhere = 0; pNew->pGroupBy = 0; pNew->pHaving = 0; pNew->pOrderBy = 0; p->pPrior = 0; p->pNext = 0; p->pWith = 0; #ifndef SQLITE_OMIT_WINDOWFUNC p->pWinDefn = 0; #endif p->selFlags &= ~SF_Compound; assert( (p->selFlags & SF_Converted)==0 ); p->selFlags |= SF_Converted; assert( pNew->pPrior!=0 ); pNew->pPrior->pNext = pNew; pNew->pLimit = 0; return WRC_Continue; } /* ** Check to see if the FROM clause term pFrom has table-valued function ** arguments. If it does, leave an error message in pParse and return ** non-zero, since pFrom is not allowed to be a table-valued function. */ static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ if( pFrom->fg.isTabFunc ){ sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); return 1; } return 0; } #ifndef SQLITE_OMIT_CTE /* ** Argument pWith (which may be NULL) points to a linked list of nested ** WITH contexts, from inner to outermost. If the table identified by ** FROM clause element pItem is really a common-table-expression (CTE) ** then return a pointer to the CTE definition for that table. Otherwise ** return NULL. ** ** If a non-NULL value is returned, set *ppContext to point to the With ** object that the returned CTE belongs to. */ static struct Cte *searchWith( With *pWith, /* Current innermost WITH clause */ SrcItem *pItem, /* FROM clause element to resolve */ With **ppContext /* OUT: WITH clause return value belongs to */ ){ const char *zName = pItem->zName; With *p; assert( pItem->zDatabase==0 ); assert( zName!=0 ); for(p=pWith; p; p=p->pOuter){ int i; for(i=0; inCte; i++){ if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ *ppContext = p; return &p->a[i]; } } if( p->bView ) break; } return 0; } /* The code generator maintains a stack of active WITH clauses ** with the inner-most WITH clause being at the top of the stack. ** ** This routine pushes the WITH clause passed as the second argument ** onto the top of the stack. If argument bFree is true, then this ** WITH clause will never be popped from the stack but should instead ** be freed along with the Parse object. In other cases, when ** bFree==0, the With object will be freed along with the SELECT ** statement with which it is associated. ** ** This routine returns a copy of pWith. Or, if bFree is true and ** the pWith object is destroyed immediately due to an OOM condition, ** then this routine return NULL. ** ** If bFree is true, do not continue to use the pWith pointer after ** calling this routine, Instead, use only the return value. */ SQLITE_PRIVATE With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ if( pWith ){ if( bFree ){ pWith = (With*)sqlite3ParserAddCleanup(pParse, sqlite3WithDeleteGeneric, pWith); if( pWith==0 ) return 0; } if( pParse->nErr==0 ){ assert( pParse->pWith!=pWith ); pWith->pOuter = pParse->pWith; pParse->pWith = pWith; } } return pWith; } /* ** This function checks if argument pFrom refers to a CTE declared by ** a WITH clause on the stack currently maintained by the parser (on the ** pParse->pWith linked list). And if currently processing a CTE ** CTE expression, through routine checks to see if the reference is ** a recursive reference to the CTE. ** ** If pFrom matches a CTE according to either of these two above, pFrom->pTab ** and other fields are populated accordingly. ** ** Return 0 if no match is found. ** Return 1 if a match is found. ** Return 2 if an error condition is detected. */ static int resolveFromTermToCte( Parse *pParse, /* The parsing context */ Walker *pWalker, /* Current tree walker */ SrcItem *pFrom /* The FROM clause term to check */ ){ Cte *pCte; /* Matched CTE (or NULL if no match) */ With *pWith; /* The matching WITH */ assert( pFrom->pTab==0 ); if( pParse->pWith==0 ){ /* There are no WITH clauses in the stack. No match is possible */ return 0; } if( pParse->nErr ){ /* Prior errors might have left pParse->pWith in a goofy state, so ** go no further. */ return 0; } if( pFrom->zDatabase!=0 ){ /* The FROM term contains a schema qualifier (ex: main.t1) and so ** it cannot possibly be a CTE reference. */ return 0; } if( pFrom->fg.notCte ){ /* The FROM term is specifically excluded from matching a CTE. ** (1) It is part of a trigger that used to have zDatabase but had ** zDatabase removed by sqlite3FixTriggerStep(). ** (2) This is the first term in the FROM clause of an UPDATE. */ return 0; } pCte = searchWith(pParse->pWith, pFrom, &pWith); if( pCte ){ sqlite3 *db = pParse->db; Table *pTab; ExprList *pEList; Select *pSel; Select *pLeft; /* Left-most SELECT statement */ Select *pRecTerm; /* Left-most recursive term */ int bMayRecursive; /* True if compound joined by UNION [ALL] */ With *pSavedWith; /* Initial value of pParse->pWith */ int iRecTab = -1; /* Cursor for recursive table */ CteUse *pCteUse; /* If pCte->zCteErr is non-NULL at this point, then this is an illegal ** recursive reference to CTE pCte. Leave an error in pParse and return ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. ** In this case, proceed. */ if( pCte->zCteErr ){ sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); return 2; } if( cannotBeFunction(pParse, pFrom) ) return 2; assert( pFrom->pTab==0 ); pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return 2; pCteUse = pCte->pUse; if( pCteUse==0 ){ pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); if( pCteUse==0 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 ){ sqlite3DbFree(db, pTab); return 2; } pCteUse->eM10d = pCte->eM10d; } pFrom->pTab = pTab; pTab->nTabRef = 1; pTab->zName = sqlite3DbStrDup(db, pCte->zName); pTab->iPKey = -1; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); if( db->mallocFailed ) return 2; pFrom->pSelect->selFlags |= SF_CopyCte; assert( pFrom->pSelect ); if( pFrom->fg.isIndexedBy ){ sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); return 2; } pFrom->fg.isCte = 1; pFrom->u2.pCteUse = pCteUse; pCteUse->nUse++; /* Check if this is a recursive CTE. */ pRecTerm = pSel = pFrom->pSelect; bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); while( bMayRecursive && pRecTerm->op==pSel->op ){ int i; SrcList *pSrc = pRecTerm->pSrc; assert( pRecTerm->pPrior!=0 ); for(i=0; inSrc; i++){ SrcItem *pItem = &pSrc->a[i]; if( pItem->zDatabase==0 && pItem->zName!=0 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) ){ pItem->pTab = pTab; pTab->nTabRef++; pItem->fg.isRecursive = 1; if( pRecTerm->selFlags & SF_Recursive ){ sqlite3ErrorMsg(pParse, "multiple references to recursive table: %s", pCte->zName ); return 2; } pRecTerm->selFlags |= SF_Recursive; if( iRecTab<0 ) iRecTab = pParse->nTab++; pItem->iCursor = iRecTab; } } if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; pRecTerm = pRecTerm->pPrior; } pCte->zCteErr = "circular reference: %s"; pSavedWith = pParse->pWith; pParse->pWith = pWith; if( pSel->selFlags & SF_Recursive ){ int rc; assert( pRecTerm!=0 ); assert( (pRecTerm->selFlags & SF_Recursive)==0 ); assert( pRecTerm->pNext!=0 ); assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); assert( pRecTerm->pWith==0 ); pRecTerm->pWith = pSel->pWith; rc = sqlite3WalkSelect(pWalker, pRecTerm); pRecTerm->pWith = 0; if( rc ){ pParse->pWith = pSavedWith; return 2; } }else{ if( sqlite3WalkSelect(pWalker, pSel) ){ pParse->pWith = pSavedWith; return 2; } } pParse->pWith = pWith; for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); pEList = pLeft->pEList; if( pCte->pCols ){ if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", pCte->zName, pEList->nExpr, pCte->pCols->nExpr ); pParse->pWith = pSavedWith; return 2; } pEList = pCte->pCols; } sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); if( bMayRecursive ){ if( pSel->selFlags & SF_Recursive ){ pCte->zCteErr = "multiple recursive references: %s"; }else{ pCte->zCteErr = "recursive reference in a subquery: %s"; } sqlite3WalkSelect(pWalker, pSel); } pCte->zCteErr = 0; pParse->pWith = pSavedWith; return 1; /* Success */ } return 0; /* No match */ } #endif #ifndef SQLITE_OMIT_CTE /* ** If the SELECT passed as the second argument has an associated WITH ** clause, pop it from the stack stored as part of the Parse object. ** ** This function is used as the xSelectCallback2() callback by ** sqlite3SelectExpand() when walking a SELECT tree to resolve table ** names and other FROM clause elements. */ SQLITE_PRIVATE void sqlite3SelectPopWith(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ With *pWith = findRightmost(p)->pWith; if( pWith!=0 ){ assert( pParse->pWith==pWith || pParse->nErr ); pParse->pWith = pWith->pOuter; } } } #endif /* ** The SrcItem structure passed as the second argument represents a ** sub-query in the FROM clause of a SELECT statement. This function ** allocates and populates the SrcItem.pTab object. If successful, ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, ** SQLITE_NOMEM. */ SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ Select *pSel = pFrom->pSelect; Table *pTab; assert( pSel ); pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); if( pTab==0 ) return SQLITE_NOMEM; pTab->nTabRef = 1; if( pFrom->zAlias ){ pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); }else{ pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); } while( pSel->pPrior ){ pSel = pSel->pPrior; } sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); pTab->iPKey = -1; pTab->eTabType = TABTYP_VIEW; pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); #ifndef SQLITE_ALLOW_ROWID_IN_VIEW /* The usual case - do not allow ROWID on a subquery */ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; #else /* Legacy compatibility mode */ pTab->tabFlags |= TF_Ephemeral | sqlite3Config.mNoVisibleRowid; #endif return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; } /* ** Check the N SrcItem objects to the right of pBase. (N might be zero!) ** If any of those SrcItem objects have a USING clause containing zName ** then return true. ** ** If N is zero, or none of the N SrcItem objects to the right of pBase ** contains a USING clause, or if none of the USING clauses contain zName, ** then return false. */ static int inAnyUsingClause( const char *zName, /* Name we are looking for */ SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ int N /* How many SrcItems to check */ ){ while( N>0 ){ N--; pBase++; if( pBase->fg.isUsing==0 ) continue; if( NEVER(pBase->u3.pUsing==0) ) continue; if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; } return 0; } /* ** This routine is a Walker callback for "expanding" a SELECT statement. ** "Expanding" means to do the following: ** ** (1) Make sure VDBE cursor numbers have been assigned to every ** element of the FROM clause. ** ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that ** defines FROM clause. When views appear in the FROM clause, ** fill pTabList->a[].pSelect with a copy of the SELECT statement ** that implements the view. A copy is made of the view's SELECT ** statement so that we can freely modify or delete that statement ** without worrying about messing up the persistent representation ** of the view. ** ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword ** on joins and the ON and USING clause of joins. ** ** (4) Scan the list of columns in the result set (pEList) looking ** for instances of the "*" operator or the TABLE.* operator. ** If found, expand each "*" to be every column in every table ** and TABLE.* to be every column in TABLE. ** */ static int selectExpander(Walker *pWalker, Select *p){ Parse *pParse = pWalker->pParse; int i, j, k, rc; SrcList *pTabList; ExprList *pEList; SrcItem *pFrom; sqlite3 *db = pParse->db; Expr *pE, *pRight, *pExpr; u16 selFlags = p->selFlags; u32 elistFlags = 0; p->selFlags |= SF_Expanded; if( db->mallocFailed ){ return WRC_Abort; } assert( p->pSrc!=0 ); if( (selFlags & SF_Expanded)!=0 ){ return WRC_Prune; } if( pWalker->eCode ){ /* Renumber selId because it has been copied from a view */ p->selId = ++pParse->nSelect; } pTabList = p->pSrc; pEList = p->pEList; if( pParse->pWith && (p->selFlags & SF_View) ){ if( p->pWith==0 ){ p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); if( p->pWith==0 ){ return WRC_Abort; } } p->pWith->bView = 1; } sqlite3WithPush(pParse, p->pWith, 0); /* Make sure cursor numbers have been assigned to all entries in ** the FROM clause of the SELECT statement. */ sqlite3SrcListAssignCursors(pParse, pTabList); /* Look up every table named in the FROM clause of the select. If ** an entry of the FROM clause is a subquery instead of a table or view, ** then create a transient table structure to describe the subquery. */ for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab; assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); if( pFrom->pTab ) continue; assert( pFrom->fg.isRecursive==0 ); if( pFrom->zName==0 ){ #ifndef SQLITE_OMIT_SUBQUERY Select *pSel = pFrom->pSelect; /* A sub-query in the FROM clause of a SELECT */ assert( pSel!=0 ); assert( pFrom->pTab==0 ); if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; #endif #ifndef SQLITE_OMIT_CTE }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ if( rc>1 ) return WRC_Abort; pTab = pFrom->pTab; assert( pTab!=0 ); #endif }else{ /* An ordinary table or view name in the FROM clause */ assert( pFrom->pTab==0 ); pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); if( pTab==0 ) return WRC_Abort; if( pTab->nTabRef>=0xffff ){ sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", pTab->zName); pFrom->pTab = 0; return WRC_Abort; } pTab->nTabRef++; if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ return WRC_Abort; } #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) if( !IsOrdinaryTable(pTab) ){ i16 nCol; u8 eCodeOrig = pWalker->eCode; if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; assert( pFrom->pSelect==0 ); if( IsView(pTab) ){ if( (db->flags & SQLITE_EnableView)==0 && pTab->pSchema!=db->aDb[1].pSchema ){ sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", pTab->zName); } pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( ALWAYS(IsVirtual(pTab)) && pFrom->fg.fromDDL && ALWAYS(pTab->u.vtab.p!=0) && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) ){ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", pTab->zName); } assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); #endif nCol = pTab->nCol; pTab->nCol = -1; pWalker->eCode = 1; /* Turn on Select.selId renumbering */ sqlite3WalkSelect(pWalker, pFrom->pSelect); pWalker->eCode = eCodeOrig; pTab->nCol = nCol; } #endif } /* Locate the index named by the INDEXED BY clause, if any. */ if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ return WRC_Abort; } } /* Process NATURAL keywords, and ON and USING clauses of joins. */ assert( db->mallocFailed==0 || pParse->nErr!=0 ); if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ return WRC_Abort; } /* For every "*" that occurs in the column list, insert the names of ** all columns in all tables. And for every TABLE.* insert the names ** of all columns in TABLE. The parser inserted a special expression ** with the TK_ASTERISK operator for each "*" that it found in the column ** list. The following code just has to locate the TK_ASTERISK ** expressions and expand each one to the list of all columns in ** all tables. ** ** The first loop just checks to see if there are any "*" operators ** that need expanding. */ for(k=0; knExpr; k++){ pE = pEList->a[k].pExpr; if( pE->op==TK_ASTERISK ) break; assert( pE->op!=TK_DOT || pE->pRight!=0 ); assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; elistFlags |= pE->flags; } if( knExpr ){ /* ** If we get here it means the result set contains one or more "*" ** operators that need to be expanded. Loop through each expression ** in the result set and expand them one by one. */ struct ExprList_item *a = pEList->a; ExprList *pNew = 0; int flags = pParse->db->flags; int longNames = (flags & SQLITE_FullColNames)!=0 && (flags & SQLITE_ShortColNames)==0; for(k=0; knExpr; k++){ pE = a[k].pExpr; elistFlags |= pE->flags; pRight = pE->pRight; assert( pE->op!=TK_DOT || pRight!=0 ); if( pE->op!=TK_ASTERISK && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) ){ /* This particular expression does not need to be expanded. */ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); if( pNew ){ pNew->a[pNew->nExpr-1].zEName = a[k].zEName; pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; a[k].zEName = 0; } a[k].pExpr = 0; }else{ /* This expression is a "*" or a "TABLE.*" and needs to be ** expanded. */ int tableSeen = 0; /* Set to 1 when TABLE matches */ char *zTName = 0; /* text of name of TABLE */ int iErrOfst; if( pE->op==TK_DOT ){ assert( (selFlags & SF_NestedFrom)==0 ); assert( pE->pLeft!=0 ); assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); zTName = pE->pLeft->u.zToken; assert( ExprUseWOfst(pE->pLeft) ); iErrOfst = pE->pRight->w.iOfst; }else{ assert( ExprUseWOfst(pE) ); iErrOfst = pE->w.iOfst; } for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ int nAdd; /* Number of cols including rowid */ Table *pTab = pFrom->pTab; /* Table for this data source */ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ char *zTabName; /* AS name for this data source */ const char *zSchemaName = 0; /* Schema name for this data source */ int iDb; /* Schema index for this data src */ IdList *pUsing; /* USING clause for pFrom[1] */ if( (zTabName = pFrom->zAlias)==0 ){ zTabName = pTab->zName; } if( db->mallocFailed ) break; assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); if( pFrom->fg.isNestedFrom ){ assert( pFrom->pSelect!=0 ); pNestedFrom = pFrom->pSelect->pEList; assert( pNestedFrom!=0 ); assert( pNestedFrom->nExpr==pTab->nCol ); assert( VisibleRowid(pTab)==0 || ViewCanHaveRowid ); }else{ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ continue; } pNestedFrom = 0; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; } if( i+1nSrc && pFrom[1].fg.isUsing && (selFlags & SF_NestedFrom)!=0 ){ int ii; pUsing = pFrom[1].u3.pUsing; for(ii=0; iinId; ii++){ const char *zUName = pUsing->a[ii].zName; pRight = sqlite3Expr(db, TK_ID, zUName); sqlite3ExprSetErrorOffset(pRight, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pRight); if( pNew ){ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); pX->zEName = sqlite3MPrintf(db,"..%s", zUName); pX->fg.eEName = ENAME_TAB; pX->fg.bUsingTerm = 1; } } }else{ pUsing = 0; } nAdd = pTab->nCol; if( VisibleRowid(pTab) && (selFlags & SF_NestedFrom)!=0 ) nAdd++; for(j=0; jnCol ){ zName = sqlite3RowidAlias(pTab); if( zName==0 ) continue; }else{ zName = pTab->aCol[j].zCnName; /* If pTab is actually an SF_NestedFrom sub-select, do not ** expand any ENAME_ROWID columns. */ if( pNestedFrom && pNestedFrom->a[j].fg.eEName==ENAME_ROWID ){ continue; } if( zTName && pNestedFrom && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0, 0)==0 ){ continue; } /* If a column is marked as 'hidden', omit it from the expanded ** result-set list unless the SELECT has the SF_IncludeHidden ** bit set. */ if( (p->selFlags & SF_IncludeHidden)==0 && IsHiddenColumn(&pTab->aCol[j]) ){ continue; } if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 && zTName==0 && (selFlags & (SF_NestedFrom))==0 ){ continue; } } assert( zName ); tableSeen = 1; if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ if( pFrom->fg.isUsing && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 ){ /* In a join with a USING clause, omit columns in the ** using clause from the table on the right. */ continue; } } pRight = sqlite3Expr(db, TK_ID, zName); if( (pTabList->nSrc>1 && ( (pFrom->fg.jointype & JT_LTORJ)==0 || (selFlags & SF_NestedFrom)!=0 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) ) ) || IN_RENAME_OBJECT ){ Expr *pLeft; pLeft = sqlite3Expr(db, TK_ID, zTabName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); if( IN_RENAME_OBJECT && pE->pLeft ){ sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); } if( zSchemaName ){ pLeft = sqlite3Expr(db, TK_ID, zSchemaName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); } }else{ pExpr = pRight; } sqlite3ExprSetErrorOffset(pExpr, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); if( pNew==0 ){ break; /* OOM */ } pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ if( pNestedFrom && (!ViewCanHaveRowid || jnExpr) ){ assert( jnExpr ); pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); testcase( pX->zEName==0 ); }else{ pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", zSchemaName, zTabName, zName); testcase( pX->zEName==0 ); } pX->fg.eEName = (j==pTab->nCol ? ENAME_ROWID : ENAME_TAB); if( (pFrom->fg.isUsing && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) || (jnCol && (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)) ){ pX->fg.bNoExpand = 1; } }else if( longNames ){ pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); pX->fg.eEName = ENAME_NAME; }else{ pX->zEName = sqlite3DbStrDup(db, zName); pX->fg.eEName = ENAME_NAME; } } } if( !tableSeen ){ if( zTName ){ sqlite3ErrorMsg(pParse, "no such table: %s", zTName); }else{ sqlite3ErrorMsg(pParse, "no tables specified"); } } } } sqlite3ExprListDelete(db, pEList); p->pEList = pNew; } if( p->pEList ){ if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns in result set"); return WRC_Abort; } if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ p->selFlags |= SF_ComplexResult; } } #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x8 ){ TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return WRC_Continue; } #if SQLITE_DEBUG /* ** Always assert. This xSelectCallback2 implementation proves that the ** xSelectCallback2 is never invoked. */ SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ UNUSED_PARAMETER2(NotUsed, NotUsed2); assert( 0 ); } #endif /* ** This routine "expands" a SELECT statement and all of its subqueries. ** For additional information on what it means to "expand" a SELECT ** statement, see the comment on the selectExpand worker callback above. ** ** Expanding a SELECT statement is the first step in processing a ** SELECT statement. The SELECT statement must be expanded before ** name resolution is performed. ** ** If anything goes wrong, an error message is written into pParse. ** The calling function can detect the problem by looking at pParse->nErr ** and/or pParse->db->mallocFailed. */ static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ Walker w; w.xExprCallback = sqlite3ExprWalkNoop; w.pParse = pParse; if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ w.xSelectCallback = convertCompoundSelectToSubquery; w.xSelectCallback2 = 0; sqlite3WalkSelect(&w, pSelect); } w.xSelectCallback = selectExpander; w.xSelectCallback2 = sqlite3SelectPopWith; w.eCode = 0; sqlite3WalkSelect(&w, pSelect); } #ifndef SQLITE_OMIT_SUBQUERY /* ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() ** interface. ** ** For each FROM-clause subquery, add Column.zType, Column.zColl, and ** Column.affinity information to the Table structure that represents ** the result set of that subquery. ** ** The Table structure that represents the result set was constructed ** by selectExpander() but the type and collation and affinity information ** was omitted at that point because identifiers had not yet been resolved. ** This routine is called after identifier resolution. */ static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ Parse *pParse; int i; SrcList *pTabList; SrcItem *pFrom; if( p->selFlags & SF_HasTypeInfo ) return; p->selFlags |= SF_HasTypeInfo; pParse = pWalker->pParse; testcase( (p->selFlags & SF_Resolved)==0 ); assert( (p->selFlags & SF_Resolved) || IN_RENAME_OBJECT ); pTabList = p->pSrc; for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; assert( pTab!=0 ); if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ /* A sub-query in the FROM clause of a SELECT */ Select *pSel = pFrom->pSelect; if( pSel ){ sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE); } } } } #endif /* ** This routine adds datatype and collating sequence information to ** the Table structures of all FROM-clause subqueries in a ** SELECT statement. ** ** Use this routine after name resolution. */ static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ #ifndef SQLITE_OMIT_SUBQUERY Walker w; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = selectAddSubqueryTypeInfo; w.xExprCallback = sqlite3ExprWalkNoop; w.pParse = pParse; sqlite3WalkSelect(&w, pSelect); #endif } /* ** This routine sets up a SELECT statement for processing. The ** following is accomplished: ** ** * VDBE Cursor numbers are assigned to all FROM-clause terms. ** * Ephemeral Table objects are created for all FROM-clause subqueries. ** * ON and USING clauses are shifted into WHERE statements ** * Wildcards "*" and "TABLE.*" in result sets are expanded. ** * Identifiers in expression are matched to tables. ** ** This routine acts recursively on all subqueries within the SELECT. */ SQLITE_PRIVATE void sqlite3SelectPrep( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ NameContext *pOuterNC /* Name context for container */ ){ assert( p!=0 || pParse->db->mallocFailed ); assert( pParse->db->pParse==pParse ); if( pParse->db->mallocFailed ) return; if( p->selFlags & SF_HasTypeInfo ) return; sqlite3SelectExpand(pParse, p); if( pParse->nErr ) return; sqlite3ResolveSelectNames(pParse, p, pOuterNC); if( pParse->nErr ) return; sqlite3SelectAddTypeInfo(pParse, p); } #if TREETRACE_ENABLED /* ** Display all information about an AggInfo object */ static void printAggInfo(AggInfo *pAggInfo){ int ii; for(ii=0; iinColumn; ii++){ struct AggInfo_col *pCol = &pAggInfo->aCol[ii]; sqlite3DebugPrintf( "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d" " iSorterColumn=%d %s\n", ii, pCol->pTab ? pCol->pTab->zName : "NULL", pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii, pCol->iSorterColumn, ii>=pAggInfo->nAccumulator ? "" : " Accumulator"); sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); } for(ii=0; iinFunc; ii++){ sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii); sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); } } #endif /* TREETRACE_ENABLED */ /* ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[] ** entries for columns that are arguments to aggregate functions but which ** are not otherwise used. ** ** The aCol[] entries in AggInfo prior to nAccumulator are columns that ** are referenced outside of aggregate functions. These might be columns ** that are part of the GROUP by clause, for example. Other database engines ** would throw an error if there is a column reference that is not in the ** GROUP BY clause and that is not part of an aggregate function argument. ** But SQLite allows this. ** ** The aCol[] entries beginning with the aCol[nAccumulator] and following ** are column references that are used exclusively as arguments to ** aggregate functions. This routine is responsible for computing ** (or recomputing) those aCol[] entries. */ static void analyzeAggFuncArgs( AggInfo *pAggInfo, NameContext *pNC ){ int i; assert( pAggInfo!=0 ); assert( pAggInfo->iFirstReg==0 ); pNC->ncFlags |= NC_InAggFunc; for(i=0; inFunc; i++){ Expr *pExpr = pAggInfo->aFunc[i].pFExpr; assert( pExpr->op==TK_FUNCTION || pExpr->op==TK_AGG_FUNCTION ); assert( ExprUseXList(pExpr) ); sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList); if( pExpr->pLeft ){ assert( pExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pExpr->pLeft) ); sqlite3ExprAnalyzeAggList(pNC, pExpr->pLeft->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC assert( !IsWindowFunc(pExpr) ); if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter); } #endif } pNC->ncFlags &= ~NC_InAggFunc; } /* ** An index on expressions is being used in the inner loop of an ** aggregate query with a GROUP BY clause. This routine attempts ** to adjust the AggInfo object to take advantage of index and to ** perhaps use the index as a covering index. ** */ static void optimizeAggregateUseOfIndexedExpr( Parse *pParse, /* Parsing context */ Select *pSelect, /* The SELECT statement being processed */ AggInfo *pAggInfo, /* The aggregate info */ NameContext *pNC /* Name context used to resolve agg-func args */ ){ assert( pAggInfo->iFirstReg==0 ); assert( pSelect!=0 ); assert( pSelect->pGroupBy!=0 ); pAggInfo->nColumn = pAggInfo->nAccumulator; if( ALWAYS(pAggInfo->nSortingColumn>0) ){ int mx = pSelect->pGroupBy->nExpr - 1; int j, k; for(j=0; jnColumn; j++){ k = pAggInfo->aCol[j].iSorterColumn; if( k>mx ) mx = k; } pAggInfo->nSortingColumn = mx+1; } analyzeAggFuncArgs(pAggInfo, pNC); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ IndexedExpr *pIEpr; TREETRACE(0x20, pParse, pSelect, ("AggInfo (possibly) adjusted for Indexed Exprs\n")); sqlite3TreeViewSelect(0, pSelect, 0); for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ printf("data-cursor=%d index={%d,%d}\n", pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol); sqlite3TreeViewExpr(0, pIEpr->pExpr, 0); } printAggInfo(pAggInfo); } #else UNUSED_PARAMETER(pSelect); UNUSED_PARAMETER(pParse); #endif } /* ** Walker callback for aggregateConvertIndexedExprRefToColumn(). */ static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){ AggInfo *pAggInfo; struct AggInfo_col *pCol; UNUSED_PARAMETER(pWalker); if( pExpr->pAggInfo==0 ) return WRC_Continue; if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue; if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue; if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue; pAggInfo = pExpr->pAggInfo; if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue; assert( pExpr->iAgg>=0 ); pCol = &pAggInfo->aCol[pExpr->iAgg]; pExpr->op = TK_AGG_COLUMN; pExpr->iTable = pCol->iTable; pExpr->iColumn = pCol->iColumn; ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely); return WRC_Prune; } /* ** Convert every pAggInfo->aFunc[].pExpr such that any node within ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN ** opcode. */ static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){ int i; Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = aggregateIdxEprRefToColCallback; for(i=0; inFunc; i++){ sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr); } } /* ** Allocate a block of registers so that there is one register for each ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first ** register in this block is stored in pAggInfo->iFirstReg. ** ** This routine may only be called once for each AggInfo object. Prior ** to calling this routine: ** ** * The aCol[] and aFunc[] arrays may be modified ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used ** ** After calling this routine: ** ** * The aCol[] and aFunc[] arrays are fixed ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used ** */ static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){ assert( pAggInfo!=0 ); assert( pAggInfo->iFirstReg==0 ); pAggInfo->iFirstReg = pParse->nMem + 1; pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc; } /* ** Reset the aggregate accumulator. ** ** The aggregate accumulator is a set of memory cells that hold ** intermediate results while calculating an aggregate. This ** routine generates code that stores NULLs in all of those memory ** cells. */ static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pFunc; int nReg = pAggInfo->nFunc + pAggInfo->nColumn; assert( pAggInfo->iFirstReg>0 ); assert( pParse->db->pParse==pParse ); assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); if( nReg==0 ) return; if( pParse->nErr ) return; sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg, pAggInfo->iFirstReg+nReg-1); for(pFunc=pAggInfo->aFunc, i=0; inFunc; i++, pFunc++){ if( pFunc->iDistinct>=0 ){ Expr *pE = pFunc->pFExpr; assert( ExprUseXList(pE) ); if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " "argument"); pFunc->iDistinct = -1; }else{ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", pFunc->pFunc->zName)); } } if( pFunc->iOBTab>=0 ){ ExprList *pOBList; KeyInfo *pKeyInfo; int nExtra = 0; assert( pFunc->pFExpr->pLeft!=0 ); assert( pFunc->pFExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pFunc->pFExpr->pLeft) ); assert( pFunc->pFunc!=0 ); pOBList = pFunc->pFExpr->pLeft->x.pList; if( !pFunc->bOBUnique ){ nExtra++; /* One extra column for the OP_Sequence */ } if( pFunc->bOBPayload ){ /* extra columns for the function arguments */ assert( ExprUseXList(pFunc->pFExpr) ); nExtra += pFunc->pFExpr->x.pList->nExpr; } if( pFunc->bUseSubtype ){ nExtra += pFunc->pFExpr->x.pList->nExpr; } pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOBList, 0, nExtra); if( !pFunc->bOBUnique && pParse->nErr==0 ){ pKeyInfo->nKeyField++; } sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iOBTab, pOBList->nExpr+nExtra, 0, (char*)pKeyInfo, P4_KEYINFO); ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(ORDER BY)", pFunc->pFunc->zName)); } } } /* ** Invoke the OP_AggFinalize opcode for every aggregate function ** in the AggInfo structure. */ static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pF; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ ExprList *pList; assert( ExprUseXList(pF->pFExpr) ); pList = pF->pFExpr->x.pList; if( pF->iOBTab>=0 ){ /* For an ORDER BY aggregate, calls to OP_AggStep were deferred. Inputs ** were stored in emphermal table pF->iOBTab. Here, we extract those ** inputs (in ORDER BY order) and make all calls to OP_AggStep ** before doing the OP_AggFinal call. */ int iTop; /* Start of loop for extracting columns */ int nArg; /* Number of columns to extract */ int nKey; /* Key columns to be skipped */ int regAgg; /* Extract into this array */ int j; /* Loop counter */ assert( pF->pFunc!=0 ); nArg = pList->nExpr; regAgg = sqlite3GetTempRange(pParse, nArg); if( pF->bOBPayload==0 ){ nKey = 0; }else{ assert( pF->pFExpr->pLeft!=0 ); assert( ExprUseXList(pF->pFExpr->pLeft) ); assert( pF->pFExpr->pLeft->x.pList!=0 ); nKey = pF->pFExpr->pLeft->x.pList->nExpr; if( ALWAYS(!pF->bOBUnique) ) nKey++; } iTop = sqlite3VdbeAddOp1(v, OP_Rewind, pF->iOBTab); VdbeCoverage(v); for(j=nArg-1; j>=0; j--){ sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, nKey+j, regAgg+j); } if( pF->bUseSubtype ){ int regSubtype = sqlite3GetTempReg(pParse); int iBaseCol = nKey + nArg + (pF->bOBPayload==0 && pF->bOBUnique==0); for(j=nArg-1; j>=0; j--){ sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, iBaseCol+j, regSubtype); sqlite3VdbeAddOp2(v, OP_SetSubtype, regSubtype, regAgg+j); } sqlite3ReleaseTempReg(pParse, regSubtype); } sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i)); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3VdbeAddOp2(v, OP_Next, pF->iOBTab, iTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, iTop); sqlite3ReleaseTempRange(pParse, regAgg, nArg); } sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i), pList ? pList->nExpr : 0); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); } } /* ** Generate code that will update the accumulator memory cells for an ** aggregate based on the current cursor position. ** ** If regAcc is non-zero and there are no min() or max() aggregates ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator ** registers if register regAcc contains 0. The caller will take care ** of setting and clearing regAcc. ** ** For an ORDER BY aggregate, the actual accumulator memory cell update ** is deferred until after all input rows have been received, so that they ** can be run in the requested order. In that case, instead of invoking ** OP_AggStep to update the accumulator, just add the arguments that would ** have been passed into OP_AggStep into the sorting ephemeral table ** (along with the appropriate sort key). */ static void updateAccumulator( Parse *pParse, int regAcc, AggInfo *pAggInfo, int eDistinctType ){ Vdbe *v = pParse->pVdbe; int i; int regHit = 0; int addrHitTest = 0; struct AggInfo_func *pF; struct AggInfo_col *pC; assert( pAggInfo->iFirstReg>0 ); if( pParse->nErr ) return; pAggInfo->directMode = 1; for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ int nArg; int addrNext = 0; int regAgg; int regAggSz = 0; int regDistinct = 0; ExprList *pList; assert( ExprUseXList(pF->pFExpr) ); assert( !IsWindowFunc(pF->pFExpr) ); assert( pF->pFunc!=0 ); pList = pF->pFExpr->x.pList; if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ Expr *pFilter = pF->pFExpr->y.pWin->pFilter; if( pAggInfo->nAccumulator && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) && regAcc ){ /* If regAcc==0, there there exists some min() or max() function ** without a FILTER clause that will ensure the magnet registers ** are populated. */ if( regHit==0 ) regHit = ++pParse->nMem; /* If this is the first row of the group (regAcc contains 0), clear the ** "magnet" register regHit so that the accumulator registers ** are populated if the FILTER clause jumps over the the ** invocation of min() or max() altogether. Or, if this is not ** the first row (regAcc contains 1), set the magnet register so that ** the accumulators are not populated unless the min()/max() is invoked ** and indicates that they should be. */ sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); } addrNext = sqlite3VdbeMakeLabel(pParse); sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); } if( pF->iOBTab>=0 ){ /* Instead of invoking AggStep, we must push the arguments that would ** have been passed to AggStep onto the sorting table. */ int jj; /* Registered used so far in building the record */ ExprList *pOBList; /* The ORDER BY clause */ assert( pList!=0 ); nArg = pList->nExpr; assert( nArg>0 ); assert( pF->pFExpr->pLeft!=0 ); assert( pF->pFExpr->pLeft->op==TK_ORDER ); assert( ExprUseXList(pF->pFExpr->pLeft) ); pOBList = pF->pFExpr->pLeft->x.pList; assert( pOBList!=0 ); assert( pOBList->nExpr>0 ); regAggSz = pOBList->nExpr; if( !pF->bOBUnique ){ regAggSz++; /* One register for OP_Sequence */ } if( pF->bOBPayload ){ regAggSz += nArg; } if( pF->bUseSubtype ){ regAggSz += nArg; } regAggSz++; /* One extra register to hold result of MakeRecord */ regAgg = sqlite3GetTempRange(pParse, regAggSz); regDistinct = regAgg; sqlite3ExprCodeExprList(pParse, pOBList, regAgg, 0, SQLITE_ECEL_DUP); jj = pOBList->nExpr; if( !pF->bOBUnique ){ sqlite3VdbeAddOp2(v, OP_Sequence, pF->iOBTab, regAgg+jj); jj++; } if( pF->bOBPayload ){ regDistinct = regAgg+jj; sqlite3ExprCodeExprList(pParse, pList, regDistinct, 0, SQLITE_ECEL_DUP); jj += nArg; } if( pF->bUseSubtype ){ int kk; int regBase = pF->bOBPayload ? regDistinct : regAgg; for(kk=0; kknExpr; regAgg = sqlite3GetTempRange(pParse, nArg); regDistinct = regAgg; sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 && pList ){ if( addrNext==0 ){ addrNext = sqlite3VdbeMakeLabel(pParse); } pF->iDistinct = codeDistinct(pParse, eDistinctType, pF->iDistinct, addrNext, pList, regDistinct); } if( pF->iOBTab>=0 ){ /* Insert a new record into the ORDER BY table */ sqlite3VdbeAddOp3(v, OP_MakeRecord, regAgg, regAggSz-1, regAgg+regAggSz-1); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pF->iOBTab, regAgg+regAggSz-1, regAgg, regAggSz-1); sqlite3ReleaseTempRange(pParse, regAgg, regAggSz); }else{ /* Invoke the AggStep function */ if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl = 0; struct ExprList_item *pItem; int j; assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ for(j=0, pItem=pList->a; !pColl && jpExpr); } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i)); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); } if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); } } if( regHit==0 && pAggInfo->nAccumulator ){ regHit = regAcc; } if( regHit ){ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); } for(i=0, pC=pAggInfo->aCol; inAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i)); } pAggInfo->directMode = 0; if( addrHitTest ){ sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); } } /* ** Add a single OP_Explain instruction to the VDBE to explain a simple ** count(*) query ("SELECT count(*) FROM pTab"). */ #ifndef SQLITE_OMIT_EXPLAIN static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", pTab->zName, bCover ? " USING COVERING INDEX " : "", bCover ? pIdx->zName : "" ); } } #else # define explainSimpleCount(a,b,c) #endif /* ** sqlite3WalkExpr() callback used by havingToWhere(). ** ** If the node passed to the callback is a TK_AND node, return ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. ** ** Otherwise, return WRC_Prune. In this case, also check if the ** sub-expression matches the criteria for being moved to the WHERE ** clause. If so, add it to the WHERE clause and replace the sub-expression ** within the HAVING expression with a constant "1". */ static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ if( pExpr->op!=TK_AND ){ Select *pS = pWalker->u.pSelect; /* This routine is called before the HAVING clause of the current ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set ** here, it indicates that the expression is a correlated reference to a ** column from an outer aggregate query, or an aggregate function that ** belongs to an outer query. Do not move the expression to the WHERE ** clause in this obscure case, as doing so may corrupt the outer Select ** statements AggInfo structure. */ if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) && ExprAlwaysFalse(pExpr)==0 && pExpr->pAggInfo==0 ){ sqlite3 *db = pWalker->pParse->db; Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); if( pNew ){ Expr *pWhere = pS->pWhere; SWAP(Expr, *pNew, *pExpr); pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); pS->pWhere = pNew; pWalker->eCode = 1; } } return WRC_Prune; } return WRC_Continue; } /* ** Transfer eligible terms from the HAVING clause of a query, which is ** processed after grouping, to the WHERE clause, which is processed before ** grouping. For example, the query: ** ** SELECT * FROM WHERE a=? GROUP BY b HAVING b=? AND c=? ** ** can be rewritten as: ** ** SELECT * FROM WHERE a=? AND b=? GROUP BY b HAVING c=? ** ** A term of the HAVING expression is eligible for transfer if it consists ** entirely of constants and expressions that are also GROUP BY terms that ** use the "BINARY" collation sequence. */ static void havingToWhere(Parse *pParse, Select *p){ Walker sWalker; memset(&sWalker, 0, sizeof(sWalker)); sWalker.pParse = pParse; sWalker.xExprCallback = havingToWhereExprCb; sWalker.u.pSelect = p; sqlite3WalkExpr(&sWalker, p->pHaving); #if TREETRACE_ENABLED if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* ** Check to see if the pThis entry of pTabList is a self-join of another view. ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst ** but stopping before iEnd. ** ** If pThis is a self-join, then return the SrcItem for the first other ** instance of that view found. If pThis is not a self-join then return 0. */ static SrcItem *isSelfJoinView( SrcList *pTabList, /* Search for self-joins in this FROM clause */ SrcItem *pThis, /* Search for prior reference to this subquery */ int iFirst, int iEnd /* Range of FROM-clause entries to search. */ ){ SrcItem *pItem; assert( pThis->pSelect!=0 ); if( pThis->pSelect->selFlags & SF_PushDown ) return 0; while( iFirsta[iFirst++]; if( pItem->pSelect==0 ) continue; if( pItem->fg.viaCoroutine ) continue; if( pItem->zName==0 ) continue; assert( pItem->pTab!=0 ); assert( pThis->pTab!=0 ); if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; pS1 = pItem->pSelect; if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ /* The query flattener left two different CTE tables with identical ** names in the same FROM clause. */ continue; } if( pItem->pSelect->selFlags & SF_PushDown ){ /* The view was modified by some other optimization such as ** pushDownWhereTerms() */ continue; } return pItem; } return 0; } /* ** Deallocate a single AggInfo object */ static void agginfoFree(sqlite3 *db, void *pArg){ AggInfo *p = (AggInfo*)pArg; sqlite3DbFree(db, p->aCol); sqlite3DbFree(db, p->aFunc); sqlite3DbFreeNN(db, p); } /* ** Attempt to transform a query of the form ** ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) ** ** Into this: ** ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) ** ** The transformation only works if all of the following are true: ** ** * The subquery is a UNION ALL of two or more terms ** * The subquery does not have a LIMIT clause ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries ** * The outer query is a simple count(*) with no WHERE clause or other ** extraneous syntax. ** ** Return TRUE if the optimization is undertaken. */ static int countOfViewOptimization(Parse *pParse, Select *p){ Select *pSub, *pPrior; Expr *pExpr; Expr *pCount; sqlite3 *db; if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ if( p->pWhere ) return 0; if( p->pHaving ) return 0; if( p->pGroupBy ) return 0; if( p->pOrderBy ) return 0; pExpr = p->pEList->a[0].pExpr; if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ assert( ExprUseUToken(pExpr) ); if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ assert( ExprUseXList(pExpr) ); if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */ pSub = p->pSrc->a[0].pSelect; if( pSub==0 ) return 0; /* The FROM is a subquery */ if( pSub->pPrior==0 ) return 0; /* Must be a compound */ if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */ do{ if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ if( pSub->pWhere ) return 0; /* No WHERE clause */ if( pSub->pLimit ) return 0; /* No LIMIT clause */ if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ assert( pSub->pHaving==0 ); /* Due to the previous */ pSub = pSub->pPrior; /* Repeat over compound */ }while( pSub ); /* If we reach this point then it is OK to perform the transformation */ db = pParse->db; pCount = pExpr; pExpr = 0; pSub = p->pSrc->a[0].pSelect; p->pSrc->a[0].pSelect = 0; sqlite3SrcListDelete(db, p->pSrc); p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); while( pSub ){ Expr *pTerm; pPrior = pSub->pPrior; pSub->pPrior = 0; pSub->pNext = 0; pSub->selFlags |= SF_Aggregate; pSub->selFlags &= ~SF_Compound; pSub->nSelectRow = 0; sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pEList); pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); sqlite3PExprAddSelect(pParse, pTerm, pSub); if( pExpr==0 ){ pExpr = pTerm; }else{ pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); } pSub = pPrior; } p->pEList->a[0].pExpr = pExpr; p->selFlags &= ~SF_Aggregate; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x200 ){ TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return 1; } /* ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same ** as pSrcItem but has the same alias as p0, then return true. ** Otherwise return false. */ static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ int i; for(i=0; inSrc; i++){ SrcItem *p1 = &pSrc->a[i]; if( p1==p0 ) continue; if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ return 1; } if( p1->pSelect && (p1->pSelect->selFlags & SF_NestedFrom)!=0 && sameSrcAlias(p0, p1->pSelect->pSrc) ){ return 1; } } return 0; } /* ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can ** be implemented as a co-routine. The i-th entry is guaranteed to be ** a subquery. ** ** The subquery is implemented as a co-routine if all of the following are ** true: ** ** (1) The subquery will likely be implemented in the outer loop of ** the query. This will be the case if any one of the following ** conditions hold: ** (a) The subquery is the only term in the FROM clause ** (b) The subquery is the left-most term and a CROSS JOIN or similar ** requires it to be the outer loop ** (c) All of the following are true: ** (i) The subquery is the left-most subquery in the FROM clause ** (ii) There is nothing that would prevent the subquery from ** being used as the outer loop if the sqlite3WhereBegin() ** routine nominates it to that position. ** (iii) The query is not a UPDATE ... FROM ** (2) The subquery is not a CTE that should be materialized because ** (a) the AS MATERIALIZED keyword is used, or ** (b) the CTE is used multiple times and does not have the ** NOT MATERIALIZED keyword ** (3) The subquery is not part of a left operand for a RIGHT JOIN ** (4) The SQLITE_Coroutine optimization disable flag is not set ** (5) The subquery is not self-joined */ static int fromClauseTermCanBeCoroutine( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* FROM clause */ int i, /* Which term of the FROM clause holds the subquery */ int selFlags /* Flags on the SELECT statement */ ){ SrcItem *pItem = &pTabList->a[i]; if( pItem->fg.isCte ){ const CteUse *pCteUse = pItem->u2.pCteUse; if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */ if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */ } if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */ if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */ if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){ return 0; /* (5) */ } if( i==0 ){ if( pTabList->nSrc==1 ) return 1; /* (1a) */ if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */ if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ return 1; } if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ while( 1 /*exit-by-break*/ ){ if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */ if( i==0 ) break; i--; pItem--; if( pItem->pSelect!=0 ) return 0; /* (1c-i) */ } return 1; } /* ** Generate code for the SELECT statement given in the p argument. ** ** The results are returned according to the SelectDest structure. ** See comments in sqliteInt.h for further information. ** ** This routine returns the number of errors. If any errors are ** encountered, then an appropriate error message is left in ** pParse->zErrMsg. ** ** This routine does NOT free the Select structure passed in. The ** calling function needs to do that. */ SQLITE_PRIVATE int sqlite3Select( Parse *pParse, /* The parser context */ Select *p, /* The SELECT statement being coded. */ SelectDest *pDest /* What to do with the query results */ ){ int i, j; /* Loop counters */ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ Vdbe *v; /* The virtual machine under construction */ int isAgg; /* True for select lists like "count(*)" */ ExprList *pEList = 0; /* List of columns to extract. */ SrcList *pTabList; /* List of tables to select from */ Expr *pWhere; /* The WHERE clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ AggInfo *pAggInfo = 0; /* Aggregate information */ int rc = 1; /* Value to return from this function */ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ SortCtx sSort; /* Info on how to code the ORDER BY clause */ int iEnd; /* Address of the end of the query */ sqlite3 *db; /* The database connection */ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ u8 minMaxFlag; /* Flag for min/max queries */ db = pParse->db; assert( pParse==db->pParse ); v = sqlite3GetVdbe(pParse); if( p==0 || pParse->nErr ){ return 1; } assert( db->mallocFailed==0 ); if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; #if TREETRACE_ENABLED TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain)); if( sqlite3TreeTrace & 0x10000 ){ if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", __FILE__, __LINE__); } sqlite3ShowSelect(p); } #endif assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); if( IgnorableDistinct(pDest) ){ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); /* All of these destinations are also able to ignore the ORDER BY clause */ if( p->pOrderBy ){ #if TREETRACE_ENABLED TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n")); if( sqlite3TreeTrace & 0x800 ){ sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); } #endif sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, p->pOrderBy); testcase( pParse->earlyCleanup ); p->pOrderBy = 0; } p->selFlags &= ~SF_Distinct; p->selFlags |= SF_NoopOrderBy; } sqlite3SelectPrep(pParse, p, 0); if( pParse->nErr ){ goto select_end; } assert( db->mallocFailed==0 ); assert( p->pEList!=0 ); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10 ){ TREETRACE(0x10,pParse,p, ("after name resolution:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the SF_UFSrcCheck flag is set, then this function is being called ** as part of populating the temp table for an UPDATE...FROM statement. ** In this case, it is an error if the target object (pSrc->a[0]) name ** or alias is duplicated within FROM clause (pSrc->a[1..n]). ** ** Postgres disallows this case too. The reason is that some other ** systems handle this case differently, and not all the same way, ** which is just confusing. To avoid this, we follow PG's lead and ** disallow it altogether. */ if( p->selFlags & SF_UFSrcCheck ){ SrcItem *p0 = &p->pSrc->a[0]; if( sameSrcAlias(p0, p->pSrc) ){ sqlite3ErrorMsg(pParse, "target object/alias may not appear in FROM clause: %s", p0->zAlias ? p0->zAlias : p0->pTab->zName ); goto select_end; } /* Clear the SF_UFSrcCheck flag. The check has already been performed, ** and leaving this flag set can cause errors if a compound sub-query ** in p->pSrc is flattened into this query and this function called ** again as part of compound SELECT processing. */ p->selFlags &= ~SF_UFSrcCheck; } if( pDest->eDest==SRT_Output ){ sqlite3GenerateColumnNames(pParse, p); } #ifndef SQLITE_OMIT_WINDOWFUNC if( sqlite3WindowRewrite(pParse, p) ){ assert( pParse->nErr ); goto select_end; } #if TREETRACE_ENABLED if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){ TREETRACE(0x40,pParse,p, ("after window rewrite:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif #endif /* SQLITE_OMIT_WINDOWFUNC */ pTabList = p->pSrc; isAgg = (p->selFlags & SF_Aggregate)!=0; memset(&sSort, 0, sizeof(sSort)); sSort.pOrderBy = p->pOrderBy; /* Try to do various optimizations (flattening subqueries, and strength ** reduction of join operators) in the FROM clause up into the main query */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; !p->pPrior && inSrc; i++){ SrcItem *pItem = &pTabList->a[i]; Select *pSub = pItem->pSelect; Table *pTab = pItem->pTab; /* The expander should have already created transient Table objects ** even for FROM clause elements such as subqueries that do not correspond ** to a real table */ assert( pTab!=0 ); /* Try to simplify joins: ** ** LEFT JOIN -> JOIN ** RIGHT JOIN -> JOIN ** FULL JOIN -> RIGHT JOIN ** ** If terms of the i-th table are used in the WHERE clause in such a ** way that the i-th table cannot be the NULL row of a join, then ** perform the appropriate simplification. This is called ** "OUTER JOIN strength reduction" in the SQLite documentation. */ if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor, pItem->fg.jointype & JT_LTORJ) && OptimizationEnabled(db, SQLITE_SimplifyJoin) ){ if( pItem->fg.jointype & JT_LEFT ){ if( pItem->fg.jointype & JT_RIGHT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i)); pItem->fg.jointype &= ~JT_LEFT; }else{ TREETRACE(0x1000,pParse,p, ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); unsetJoinExpr(p->pWhere, pItem->iCursor, 0); } } if( pItem->fg.jointype & JT_LTORJ ){ for(j=i+1; jnSrc; j++){ SrcItem *pI2 = &pTabList->a[j]; if( pI2->fg.jointype & JT_RIGHT ){ if( pI2->fg.jointype & JT_LEFT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j)); pI2->fg.jointype &= ~JT_RIGHT; }else{ TREETRACE(0x1000,pParse,p, ("RIGHT-JOIN simplifies to JOIN on term %d\n",j)); pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER); unsetJoinExpr(p->pWhere, pI2->iCursor, 1); } } } for(j=pTabList->nSrc-1; j>=0; j--){ pTabList->a[j].fg.jointype &= ~JT_LTORJ; if( pTabList->a[j].fg.jointype & JT_RIGHT ) break; } } } /* No further action if this term of the FROM clause is not a subquery */ if( pSub==0 ) continue; /* Catch mismatch in the declared columns of a view and the number of ** columns in the SELECT on the RHS */ if( pTab->nCol!=pSub->pEList->nExpr ){ sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", pTab->nCol, pTab->zName, pSub->pEList->nExpr); goto select_end; } /* Do not attempt the usual optimizations (flattening and ORDER BY ** elimination) on a MATERIALIZED common table expression because ** a MATERIALIZED common table expression is an optimization fence. */ if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){ continue; } /* Do not try to flatten an aggregate subquery. ** ** Flattening an aggregate subquery is only possible if the outer query ** is not a join. But if the outer query is not a join, then the subquery ** will be implemented as a co-routine and there is no advantage to ** flattening in that case. */ if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; assert( pSub->pGroupBy==0 ); /* If a FROM-clause subquery has an ORDER BY clause that is not ** really doing anything, then delete it now so that it does not ** interfere with query flattening. See the discussion at ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a ** ** Beware of these cases where the ORDER BY clause may not be safely ** omitted: ** ** (1) There is also a LIMIT clause ** (2) The subquery was added to help with window-function ** processing ** (3) The subquery is in the FROM clause of an UPDATE ** (4) The outer query uses an aggregate function other than ** the built-in count(), min(), or max(). ** (5) The ORDER BY isn't going to accomplish anything because ** one of: ** (a) The outer query has a different ORDER BY clause ** (b) The subquery is part of a join ** See forum post 062d576715d277c8 ** ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled. */ if( pSub->pOrderBy!=0 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ && pSub->pLimit==0 /* Condition (1) */ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ && OptimizationEnabled(db, SQLITE_OmitOrderBy) ){ TREETRACE(0x800,pParse,p, ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pOrderBy); pSub->pOrderBy = 0; } /* If the outer query contains a "complex" result set (that is, ** if the result set of the outer query uses functions or subqueries) ** and if the subquery contains an ORDER BY clause and if ** it will be implemented as a co-routine, then do not flatten. This ** restriction allows SQL constructs like this: ** ** SELECT expensive_function(x) ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); ** ** The expensive_function() is only computed on the 10 rows that ** are output, rather than every row of the table. ** ** The requirement that the outer query have a complex result set ** means that flattening does occur on simpler SQL constraints without ** the expensive_function() like: ** ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); */ if( pSub->pOrderBy!=0 && i==0 && (p->selFlags & SF_ComplexResult)!=0 && (pTabList->nSrc==1 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) ){ continue; } if( flattenSubquery(pParse, p, i, isAgg) ){ if( pParse->nErr ) goto select_end; /* This subquery can be absorbed into its parent. */ i = -1; } pTabList = p->pSrc; if( db->mallocFailed ) goto select_end; if( !IgnorableOrderby(pDest) ){ sSort.pOrderBy = p->pOrderBy; } } #endif #ifndef SQLITE_OMIT_COMPOUND_SELECT /* Handle compound SELECT statements using the separate multiSelect() ** procedure. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); #if TREETRACE_ENABLED TREETRACE(0x400,pParse,p,("end compound-select processing\n")); if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif if( p->pNext==0 ) ExplainQueryPlanPop(pParse); return rc; } #endif /* Do the WHERE-clause constant propagation optimization if this is ** a join. No need to speed time on this operation for non-join queries ** as the equivalent optimization will be handled by query planner in ** sqlite3WhereBegin(). */ if( p->pWhere!=0 && p->pWhere->op==TK_AND && OptimizationEnabled(db, SQLITE_PropagateConst) && propagateConstants(pParse, p) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x2000 ){ TREETRACE(0x2000,pParse,p,("After constant propagation:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif }else{ TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n")); } if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) && countOfViewOptimization(pParse, p) ){ if( db->mallocFailed ) goto select_end; pTabList = p->pSrc; } /* For each term in the FROM clause, do two things: ** (1) Authorized unreferenced tables ** (2) Generate code for all sub-queries */ for(i=0; inSrc; i++){ SrcItem *pItem = &pTabList->a[i]; SrcItem *pPrior; SelectDest dest; Select *pSub; #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) const char *zSavedAuthContext; #endif /* Issue SQLITE_READ authorizations with a fake column name for any ** tables that are referenced but from which no values are extracted. ** Examples of where these kinds of null SQLITE_READ authorizations ** would occur: ** ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" ** ** The fake column name is an empty string. It is possible for a table to ** have a column named by the empty string, in which case there is no way to ** distinguish between an unreferenced table and an actual reference to the ** "" column. The original design was for the fake column name to be a NULL, ** which would be unambiguous. But legacy authorization callbacks might ** assume the column name is non-NULL and segfault. The use of an empty ** string for the fake column name seems safer. */ if( pItem->colUsed==0 && pItem->zName!=0 ){ sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); } #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* Generate code for all sub-queries in the FROM clause */ pSub = pItem->pSelect; if( pSub==0 ) continue; /* The code for a subquery should only be generated once. */ assert( pItem->addrFillSub==0 ); /* Increment Parse.nHeight by the height of the largest expression ** tree referred to by this, the parent select. The child select ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( OptimizationEnabled(db, SQLITE_PushDown) && (pItem->fg.isCte==0 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4000 ){ TREETRACE(0x4000,pParse,p, ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); sqlite3TreeViewSelect(0, p, 0); } #endif assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); }else{ TREETRACE(0x4000,pParse,p,("Push-down not possible\n")); } /* Convert unused result columns of the subquery into simple NULL ** expressions, to avoid unneeded searching and computation. */ if( OptimizationEnabled(db, SQLITE_NullUnusedCols) && disableUnusedSubqueryResultColumns(pItem) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4000 ){ TREETRACE(0x4000,pParse,p, ("Change unused result columns to NULL for subquery %d:\n", pSub->selId)); sqlite3TreeViewSelect(0, p, 0); } #endif } zSavedAuthContext = pParse->zAuthContext; pParse->zAuthContext = pItem->zName; /* Generate code to implement the subquery */ if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){ /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); VdbeComment((v, "%!S", pItem)); pItem->addrFillSub = addrTop; sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = pSub->nSelectRow; pItem->fg.viaCoroutine = 1; pItem->regResult = dest.iSdst; sqlite3VdbeEndCoroutine(v, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ /* This is a CTE for which materialization code has already been ** generated. Invoke the subroutine to compute the materialization, ** the make the pItem->iCursor be a copy of the ephemeral table that ** holds the result of the materialization. */ CteUse *pCteUse = pItem->u2.pCteUse; sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); if( pItem->iCursor!=pCteUse->iCur ){ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); VdbeComment((v, "%!S", pItem)); } pSub->nSelectRow = pCteUse->nRowEst; }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){ /* This view has already been materialized by a prior entry in ** this same FROM clause. Reuse it. */ if( pPrior->addrFillSub ){ sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); } sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); pSub->nSelectRow = pPrior->pSelect->nSelectRow; }else{ /* Materialize the view. If the view is not correlated, generate a ** subroutine to do the materialization so that subsequent uses of ** the same view can reuse the materialization. */ int topAddr; int onceAddr = 0; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExplain; #endif pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp0(v, OP_Goto); pItem->addrFillSub = topAddr+1; pItem->fg.isMaterialized = 1; if( pItem->fg.isCorrelated==0 ){ /* If the subquery is not correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); VdbeComment((v, "materialize %!S", pItem)); }else{ VdbeNoopComment((v, "materialize %!S", pItem)); } sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem)); sqlite3Select(pParse, pSub, &dest); pItem->pTab->nRowLogEst = pSub->nSelectRow; if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); VdbeComment((v, "end %!S", pItem)); sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); sqlite3VdbeJumpHere(v, topAddr); sqlite3ClearTempRegCache(pParse); if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ CteUse *pCteUse = pItem->u2.pCteUse; pCteUse->addrM9e = pItem->addrFillSub; pCteUse->regRtn = pItem->regReturn; pCteUse->iCur = pItem->iCursor; pCteUse->nRowEst = pSub->nSelectRow; } } if( db->mallocFailed ) goto select_end; pParse->nHeight -= sqlite3SelectExprHeight(p); pParse->zAuthContext = zSavedAuthContext; #endif } /* Various elements of the SELECT copied into local variables for ** convenience */ pEList = p->pEList; pWhere = p->pWhere; pGroupBy = p->pGroupBy; pHaving = p->pHaving; sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x8000 ){ TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and ** if the select-list is the same as the ORDER BY list, then this query ** can be rewritten as a GROUP BY. In other words, this: ** ** SELECT DISTINCT xyz FROM ... ORDER BY xyz ** ** is transformed to: ** ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally ** written the query must use a temp-table for at least one of the ORDER ** BY and DISTINCT, and an index or separate temp-table for the other. */ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 #ifndef SQLITE_OMIT_WINDOWFUNC && p->pWin==0 #endif ){ p->selFlags &= ~SF_Distinct; pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); p->selFlags |= SF_Aggregate; /* Notice that even thought SF_Distinct has been cleared from p->selFlags, ** the sDistinct.isTnct is still set. Hence, isTnct represents the ** original setting of the SF_Distinct flag, not the current setting */ assert( sDistinct.isTnct ); sDistinct.isTnct = 2; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20000 ){ TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* If there is an ORDER BY clause, then create an ephemeral index to ** do the sorting. But this sorting ephemeral index might end up ** being unused if the data can be extracted in pre-sorted order. ** If that is the case, then the OP_OpenEphemeral instruction will be ** changed to an OP_Noop once we figure out that the sorting index is ** not needed. The sSort.addrSortIndex variable is used to facilitate ** that change. */ if( sSort.pOrderBy ){ KeyInfo *pKeyInfo; pKeyInfo = sqlite3KeyInfoFromExprList( pParse, sSort.pOrderBy, 0, pEList->nExpr); sSort.iECursor = pParse->nTab++; sSort.addrSortIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, (char*)pKeyInfo, P4_KEYINFO ); }else{ sSort.addrSortIndex = -1; } /* If the output is destined for a temporary table, open that table. */ if( pDest->eDest==SRT_EphemTab ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); if( p->selFlags & SF_NestedFrom ){ /* Delete or NULL-out result columns that will never be used */ int ii; for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ sqlite3ExprDelete(db, pEList->a[ii].pExpr); sqlite3DbFree(db, pEList->a[ii].zEName); pEList->nExpr--; } for(ii=0; iinExpr; ii++){ if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; } } } /* Set the limiter. */ iEnd = sqlite3VdbeMakeLabel(pParse); if( (p->selFlags & SF_FixedLimit)==0 ){ p->nSelectRow = 320; /* 4 billion rows */ } if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); sSort.sortFlags |= SORTFLAG_UseSorter; } /* Open an ephemeral index to use for the distinct set. */ if( p->selFlags & SF_Distinct ){ sDistinct.tabTnct = pParse->nTab++; sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sDistinct.tabTnct, 0, 0, (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), P4_KEYINFO); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; }else{ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; } if( !isAgg && pGroupBy==0 ){ /* No aggregate functions and no GROUP BY clause */ u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) | (p->selFlags & SF_FixedLimit); #ifndef SQLITE_OMIT_WINDOWFUNC Window *pWin = p->pWin; /* Main window object (or NULL) */ if( pWin ){ sqlite3WindowCodeInit(pParse, p); } #endif assert( WHERE_USE_LIMIT==SF_FixedLimit ); /* Begin the database scan. */ TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, p->pEList, p, wctrlFlags, p->nSelectRow); if( pWInfo==0 ) goto select_end; if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); } if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); } if( sSort.pOrderBy ){ sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ sSort.pOrderBy = 0; } } TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); /* If sorting index that was created by a prior OP_OpenEphemeral ** instruction ended up not being needed, then change the OP_OpenEphemeral ** into an OP_Noop. */ if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); } assert( p->pEList==pEList ); #ifndef SQLITE_OMIT_WINDOWFUNC if( pWin ){ int addrGosub = sqlite3VdbeMakeLabel(pParse); int iCont = sqlite3VdbeMakeLabel(pParse); int iBreak = sqlite3VdbeMakeLabel(pParse); int regGosub = ++pParse->nMem; sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); sqlite3VdbeResolveLabel(v, addrGosub); VdbeNoopComment((v, "inner-loop subroutine")); sSort.labelOBLopt = 0; selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp1(v, OP_Return, regGosub); VdbeComment((v, "end inner-loop subroutine")); sqlite3VdbeResolveLabel(v, iBreak); }else #endif /* SQLITE_OMIT_WINDOWFUNC */ { /* Use the standard inner loop. */ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, sqlite3WhereContinueLabel(pWInfo), sqlite3WhereBreakLabel(pWInfo)); /* End the database scan loop. */ TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); } }else{ /* This case when there exist aggregate functions or a GROUP BY clause ** or both */ NameContext sNC; /* Name context for processing aggregate information */ int iAMem; /* First Mem address for storing current GROUP BY */ int iBMem; /* First Mem address for previous GROUP BY */ int iUseFlag; /* Mem address holding flag indicating that at least ** one row of the input to the aggregator has been ** processed */ int iAbortFlag; /* Mem address which causes query abort if positive */ int groupBySort; /* Rows come from source in GROUP BY order */ int addrEnd; /* End of processing for this SELECT */ int sortPTab = 0; /* Pseudotable used to decode sorting results */ int sortOut = 0; /* Output register from the sorter */ int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ /* Remove any and all aliases between the result set and the ** GROUP BY clause. */ if( pGroupBy ){ int k; /* Loop counter */ struct ExprList_item *pItem; /* For looping over expression in a list */ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ pItem->u.x.iAlias = 0; } assert( 66==sqlite3LogEst(100) ); if( p->nSelectRow>66 ) p->nSelectRow = 66; /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then it may be possible to disable the ORDER BY clause ** on the grounds that the GROUP BY will cause elements to come out ** in the correct order. It also may not - the GROUP BY might use a ** database index that causes rows to be grouped together as required ** but not actually sorted. Either way, record the fact that the ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp ** variable. */ if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ int ii; /* The GROUP BY processing doesn't care whether rows are delivered in ** ASC or DESC order - only that each group is returned contiguously. ** So set the ASC/DESC flags in the GROUP BY to match those in the ** ORDER BY to maximize the chances of rows being delivered in an ** order that makes the ORDER BY redundant. */ for(ii=0; iinExpr; ii++){ u8 sortFlags; sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; pGroupBy->a[ii].fg.sortFlags = sortFlags; } if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ orderByGrp = 1; } } }else{ assert( 0==sqlite3LogEst(1) ); p->nSelectRow = 0; } /* Create a label to jump to when we want to abort the query */ addrEnd = sqlite3VdbeMakeLabel(pParse); /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the ** SELECT statement. */ pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); if( pAggInfo ){ sqlite3ParserAddCleanup(pParse, agginfoFree, pAggInfo); testcase( pParse->earlyCleanup ); } if( db->mallocFailed ){ goto select_end; } pAggInfo->selId = p->selId; #ifdef SQLITE_DEBUG pAggInfo->pSelect = p; #endif memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.uNC.pAggInfo = pAggInfo; VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; pAggInfo->pGroupBy = pGroupBy; sqlite3ExprAnalyzeAggList(&sNC, pEList); sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); if( pHaving ){ if( pGroupBy ){ assert( pWhere==p->pWhere ); assert( pHaving==p->pHaving ); assert( pGroupBy==p->pGroupBy ); havingToWhere(pParse, p); pWhere = p->pWhere; } sqlite3ExprAnalyzeAggregates(&sNC, pHaving); } pAggInfo->nAccumulator = pAggInfo->nColumn; if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); }else{ minMaxFlag = WHERE_ORDERBY_NORMAL; } analyzeAggFuncArgs(pAggInfo, &sNC); if( db->mallocFailed ) goto select_end; #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); sqlite3TreeViewSelect(0, p, 0); if( minMaxFlag ){ sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); } printAggInfo(pAggInfo); } #endif /* Processing for aggregates with GROUP BY is very different and ** much more complex than aggregates without a GROUP BY. */ if( pGroupBy ){ KeyInfo *pKeyInfo; /* Keying information for the group by clause */ int addr1; /* A-vs-B comparison jump */ int addrOutputRow; /* Start of subroutine that outputs a result row */ int regOutputRow; /* Return address register for output subroutine */ int addrSetAbort; /* Set the abort flag and return */ int addrTopOfLoop; /* Top of the input loop */ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ int addrReset; /* Subroutine for resetting the accumulator */ int regReset; /* Return address register for reset subroutine */ ExprList *pDistinct = 0; u16 distFlag = 0; int eDist = WHERE_DISTINCT_NOOP; if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) && pAggInfo->aFunc[0].pFExpr->x.pList!=0 ){ Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; pExpr = sqlite3ExprDup(db, pExpr, 0); pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; } /* If there is a GROUP BY clause we might need a sorting index to ** implement it. Allocate that sorting index now. If it turns out ** that we do not need it after all, the OP_SorterOpen instruction ** will be converted into a Noop. */ pAggInfo->sortingIdx = pParse->nTab++; pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 0, pAggInfo->nColumn); addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 0, (char*)pKeyInfo, P4_KEYINFO); /* Initialize memory locations used by GROUP BY aggregate processing */ iUseFlag = ++pParse->nMem; iAbortFlag = ++pParse->nMem; regOutputRow = ++pParse->nMem; addrOutputRow = sqlite3VdbeMakeLabel(pParse); regReset = ++pParse->nMem; addrReset = sqlite3VdbeMakeLabel(pParse); iAMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 ); if( pWInfo==0 ){ sqlite3ExprListDelete(db, pDistinct); goto select_end; } if( pParse->pIdxEpr ){ optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC); } assignAggregateRegisters(pParse, pAggInfo); eDist = sqlite3WhereIsDistinct(pWInfo); TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ /* The optimizer is able to deliver rows in group by order so ** we do not have to sort. The OP_OpenEphemeral table will be ** cancelled later because we still need to use the pKeyInfo */ groupBySort = 0; }else{ /* Rows are coming out in undetermined order. We have to push ** each row into a sorting index, terminate the first loop, ** then loop over the sorting index in order to get the output ** in sorted order */ int regBase; int regRecord; int nCol; int nGroupBy; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExp; /* Address of OP_Explain instruction */ #endif ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s", (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? "DISTINCT" : "GROUP BY" )); groupBySort = 1; nGroupBy = pGroupBy->nExpr; nCol = nGroupBy; j = nGroupBy; for(i=0; inColumn; i++){ if( pAggInfo->aCol[i].iSorterColumn>=j ){ nCol++; j++; } } regBase = sqlite3GetTempRange(pParse, nCol); sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); j = nGroupBy; pAggInfo->directMode = 1; for(i=0; inColumn; i++){ struct AggInfo_col *pCol = &pAggInfo->aCol[i]; if( pCol->iSorterColumn>=j ){ sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); j++; } } pAggInfo->directMode = 0; regRecord = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); pAggInfo->useSortingIdx = 1; sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab); sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx); } /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions ** that are indexed (and that were previously identified and tagged ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions ** must now be converted into a TK_AGG_COLUMN node so that the value ** is correctly pulled from the index rather than being recomputed. */ if( pParse->pIdxEpr ){ aggregateConvertIndexedExprRefToColumn(pAggInfo); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x20 ){ TREETRACE(0x20, pParse, p, ("AggInfo function expressions converted to reference index\n")); sqlite3TreeViewSelect(0, p, 0); printAggInfo(pAggInfo); } #endif } /* If the index or temporary table used by the GROUP BY sort ** will naturally deliver rows in the order required by the ORDER BY ** clause, cancel the ephemeral table open coded earlier. ** ** This is an optimization - the correct answer should result regardless. ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to ** disable this optimization for testing purposes. */ if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) && (groupBySort || sqlite3WhereIsSorted(pWInfo)) ){ sSort.pOrderBy = 0; sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); } /* Evaluate the current GROUP BY terms and store in b0, b1, b2... ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, sortOut, sortPTab); } for(j=0; jnExpr; j++){ if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); }else{ pAggInfo->directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); addr1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); /* Generate code that runs whenever the GROUP BY changes. ** Changes in the GROUP BY are detected by the previous code ** block. If there were no changes, this block is skipped. ** ** This code copies current group by terms in b0,b1,b2,... ** over to a0,a1,a2. It then calls the output subroutine ** and resets the aggregate accumulator registers in preparation ** for the next GROUP BY batch. */ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output one row")); sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); VdbeComment((v, "check abort flag")); sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeJumpHere(v, addr1); updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); VdbeComment((v, "indicate data in accumulator")); /* End of the loop */ if( groupBySort ){ sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); VdbeCoverage(v); }else{ TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); sqlite3VdbeChangeToNoop(v, addrSortingIdx); } sqlite3ExprListDelete(db, pDistinct); /* Output the final row of result */ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output final row")); /* Jump over the subroutines */ sqlite3VdbeGoto(v, addrEnd); /* Generate a subroutine that outputs a single row of the result ** set. This subroutine first looks at the iUseFlag. If iUseFlag ** is less than or equal to zero, the subroutine is a no-op. If ** the processing calls for the query to abort, this subroutine ** increments the iAbortFlag memory location before returning in ** order to signal the caller to abort. */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); finalizeAggFunctions(pParse, pAggInfo); sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, addrOutputRow+1, addrSetAbort); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); VdbeComment((v, "end groupby result generator")); /* Generate a subroutine that will reset the group-by accumulator */ sqlite3VdbeResolveLabel(v, addrReset); resetAccumulator(pParse, pAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); VdbeComment((v, "indicate accumulator empty")); sqlite3VdbeAddOp1(v, OP_Return, regReset); if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ struct AggInfo_func *pF = &pAggInfo->aFunc[0]; fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); } } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ else { Table *pTab; if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ /* If isSimpleCount() returns a pointer to a Table structure, then ** the SQL statement is of the form: ** ** SELECT count(*) FROM ** ** where the Table structure returned represents table . ** ** This statement is so common that it is optimized specially. The ** OP_Count instruction is executed either on the intkey table that ** contains the data for table or on one of its indexes. It ** is better to execute the op on an index, as indexes are almost ** always spread across less pages than their corresponding tables. */ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ Index *pIdx; /* Iterator variable */ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ Index *pBest = 0; /* Best index found so far */ Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ sqlite3CodeVerifySchema(pParse, iDb); sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); /* Search for the index that has the lowest scan cost. ** ** (2011-04-15) Do not do a full scan of an unordered index. ** ** (2013-10-03) Do not count the entries in a partial index. ** ** In practice the KeyInfo structure will not be used. It is only ** passed to keep OP_OpenRead happy. */ if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); if( !p->pSrc->a[0].fg.notIndexed ){ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->bUnordered==0 && pIdx->szIdxRowszTabRow && pIdx->pPartIdxWhere==0 && (!pBest || pIdx->szIdxRowszIdxRow) ){ pBest = pIdx; } } } if( pBest ){ iRoot = pBest->tnum; pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); } /* Open a read-only cursor, execute the OP_Count, close the cursor. */ sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); if( pKeyInfo ){ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); } assignAggregateRegisters(pParse, pAggInfo); sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0)); sqlite3VdbeAddOp1(v, OP_Close, iCsr); explainSimpleCount(pParse, pTab, pBest); }else{ int regAcc = 0; /* "populate accumulators" flag */ ExprList *pDistinct = 0; u16 distFlag = 0; int eDist; /* If there are accumulator registers but no min() or max() functions ** without FILTER clauses, allocate register regAcc. Register regAcc ** will contain 0 the first time the inner loop runs, and 1 thereafter. ** The code generated by updateAccumulator() uses this to ensure ** that the accumulator registers are (a) updated only once if ** there are no min() or max functions or (b) always updated for the ** first row visited by the aggregate, so that they are updated at ** least once even if the FILTER clause means the min() or max() ** function visits zero rows. */ if( pAggInfo->nAccumulator ){ for(i=0; inFunc; i++){ if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ continue; } if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ break; } } if( i==pAggInfo->nFunc ){ regAcc = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); } }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; } assignAggregateRegisters(pParse, pAggInfo); /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ assert( p->pGroupBy==0 ); resetAccumulator(pParse, pAggInfo); /* If this query is a candidate for the min/max optimization, then ** minMaxFlag will have been previously set to either ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will ** be an appropriate ORDER BY expression for the optimization. */ assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); TREETRACE(0x2,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, pDistinct, p, minMaxFlag|distFlag, 0); if( pWInfo==0 ){ goto select_end; } TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); eDist = sqlite3WhereIsDistinct(pWInfo); updateAccumulator(pParse, regAcc, pAggInfo, eDist); if( eDist!=WHERE_DISTINCT_NOOP ){ struct AggInfo_func *pF = pAggInfo->aFunc; if( pF ){ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); } } if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); if( minMaxFlag ){ sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); } TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); finalizeAggFunctions(pParse, pAggInfo); } sSort.pOrderBy = 0; sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, -1, 0, 0, pDest, addrEnd, addrEnd); } sqlite3VdbeResolveLabel(v, addrEnd); } /* endif aggregate query */ if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ explainTempTable(pParse, "DISTINCT"); } /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ assert( p->pEList==pEList ); generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); /* The SELECT has been coded. If there is an error in the Parse structure, ** set the return code to 1. Otherwise 0. */ rc = (pParse->nErr>0); /* Control jumps to here if an error is encountered above, or upon ** successful coding of the SELECT. */ select_end: assert( db->mallocFailed==0 || db->mallocFailed==1 ); assert( db->mallocFailed==0 || pParse->nErr!=0 ); sqlite3ExprListDelete(db, pMinMaxOrderBy); #ifdef SQLITE_DEBUG if( pAggInfo && !db->mallocFailed ){ for(i=0; inColumn; i++){ Expr *pExpr = pAggInfo->aCol[i].pCExpr; if( pExpr==0 ) continue; assert( pExpr->pAggInfo==pAggInfo ); assert( pExpr->iAgg==i ); } for(i=0; inFunc; i++){ Expr *pExpr = pAggInfo->aFunc[i].pFExpr; assert( pExpr!=0 ); assert( pExpr->pAggInfo==pAggInfo ); assert( pExpr->iAgg==i ); } } #endif #if TREETRACE_ENABLED TREETRACE(0x1,pParse,p,("end processing\n")); if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ sqlite3TreeViewSelect(0, p, 0); } #endif ExplainQueryPlanPop(pParse); return rc; } /************** End of select.c **********************************************/ /************** Begin file table.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the sqlite3_get_table() and sqlite3_free_table() ** interface routines. These are just wrappers around the main ** interface routine of sqlite3_exec(). ** ** These routines are in a separate files so that they will not be linked ** if they are not used. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_GET_TABLE /* ** This structure is used to pass data from sqlite3_get_table() through ** to the callback function is uses to build the result. */ typedef struct TabResult { char **azResult; /* Accumulated output */ char *zErrMsg; /* Error message text, if an error occurs */ u32 nAlloc; /* Slots allocated for azResult[] */ u32 nRow; /* Number of rows in the result */ u32 nColumn; /* Number of columns in the result */ u32 nData; /* Slots used in azResult[]. (nRow+1)*nColumn */ int rc; /* Return code from sqlite3_exec() */ } TabResult; /* ** This routine is called once for each row in the result table. Its job ** is to fill in the TabResult structure appropriately, allocating new ** memory as necessary. */ static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){ TabResult *p = (TabResult*)pArg; /* Result accumulator */ int need; /* Slots needed in p->azResult[] */ int i; /* Loop counter */ char *z; /* A single column of result */ /* Make sure there is enough space in p->azResult to hold everything ** we need to remember from this invocation of the callback. */ if( p->nRow==0 && argv!=0 ){ need = nCol*2; }else{ need = nCol; } if( p->nData + need > p->nAlloc ){ char **azNew; p->nAlloc = p->nAlloc*2 + need; azNew = sqlite3Realloc( p->azResult, sizeof(char*)*p->nAlloc ); if( azNew==0 ) goto malloc_failed; p->azResult = azNew; } /* If this is the first row, then generate an extra row containing ** the names of all columns. */ if( p->nRow==0 ){ p->nColumn = nCol; for(i=0; iazResult[p->nData++] = z; } }else if( (int)p->nColumn!=nCol ){ sqlite3_free(p->zErrMsg); p->zErrMsg = sqlite3_mprintf( "sqlite3_get_table() called with two or more incompatible queries" ); p->rc = SQLITE_ERROR; return 1; } /* Copy over the row data */ if( argv!=0 ){ for(i=0; iazResult[p->nData++] = z; } p->nRow++; } return 0; malloc_failed: p->rc = SQLITE_NOMEM_BKPT; return 1; } /* ** Query the database. But instead of invoking a callback for each row, ** malloc() for space to hold the result and return the entire results ** at the conclusion of the call. ** ** The result that is written to ***pazResult is held in memory obtained ** from malloc(). But the caller cannot free this memory directly. ** Instead, the entire table should be passed to sqlite3_free_table() when ** the calling procedure is finished using it. */ SQLITE_API int sqlite3_get_table( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ char ***pazResult, /* Write the result table here */ int *pnRow, /* Write the number of rows in the result here */ int *pnColumn, /* Write the number of columns of result here */ char **pzErrMsg /* Write error messages here */ ){ int rc; TabResult res; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || pazResult==0 ) return SQLITE_MISUSE_BKPT; #endif *pazResult = 0; if( pnColumn ) *pnColumn = 0; if( pnRow ) *pnRow = 0; if( pzErrMsg ) *pzErrMsg = 0; res.zErrMsg = 0; res.nRow = 0; res.nColumn = 0; res.nData = 1; res.nAlloc = 20; res.rc = SQLITE_OK; res.azResult = sqlite3_malloc64(sizeof(char*)*res.nAlloc ); if( res.azResult==0 ){ db->errCode = SQLITE_NOMEM; return SQLITE_NOMEM_BKPT; } res.azResult[0] = 0; rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg); assert( sizeof(res.azResult[0])>= sizeof(res.nData) ); res.azResult[0] = SQLITE_INT_TO_PTR(res.nData); if( (rc&0xff)==SQLITE_ABORT ){ sqlite3_free_table(&res.azResult[1]); if( res.zErrMsg ){ if( pzErrMsg ){ sqlite3_free(*pzErrMsg); *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg); } sqlite3_free(res.zErrMsg); } db->errCode = res.rc; /* Assume 32-bit assignment is atomic */ return res.rc; } sqlite3_free(res.zErrMsg); if( rc!=SQLITE_OK ){ sqlite3_free_table(&res.azResult[1]); return rc; } if( res.nAlloc>res.nData ){ char **azNew; azNew = sqlite3Realloc( res.azResult, sizeof(char*)*res.nData ); if( azNew==0 ){ sqlite3_free_table(&res.azResult[1]); db->errCode = SQLITE_NOMEM; return SQLITE_NOMEM_BKPT; } res.azResult = azNew; } *pazResult = &res.azResult[1]; if( pnColumn ) *pnColumn = res.nColumn; if( pnRow ) *pnRow = res.nRow; return rc; } /* ** This routine frees the space the sqlite3_get_table() malloced. */ SQLITE_API void sqlite3_free_table( char **azResult /* Result returned from sqlite3_get_table() */ ){ if( azResult ){ int i, n; azResult--; assert( azResult!=0 ); n = SQLITE_PTR_TO_INT(azResult[0]); for(i=1; ipNext; sqlite3ExprDelete(db, pTmp->pWhere); sqlite3ExprListDelete(db, pTmp->pExprList); sqlite3SelectDelete(db, pTmp->pSelect); sqlite3IdListDelete(db, pTmp->pIdList); sqlite3UpsertDelete(db, pTmp->pUpsert); sqlite3SrcListDelete(db, pTmp->pFrom); sqlite3DbFree(db, pTmp->zSpan); sqlite3DbFree(db, pTmp); } } /* ** Given table pTab, return a list of all the triggers attached to ** the table. The list is connected by Trigger.pNext pointers. ** ** All of the triggers on pTab that are in the same database as pTab ** are already attached to pTab->pTrigger. But there might be additional ** triggers on pTab in the TEMP schema. This routine prepends all ** TEMP triggers on pTab to the beginning of the pTab->pTrigger list ** and returns the combined list. ** ** To state it another way: This routine returns a list of all triggers ** that fire off of pTab. The list will include any TEMP triggers on ** pTab as well as the triggers lised in pTab->pTrigger. */ SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){ Schema *pTmpSchema; /* Schema of the pTab table */ Trigger *pList; /* List of triggers to return */ HashElem *p; /* Loop variable for TEMP triggers */ assert( pParse->disableTriggers==0 ); pTmpSchema = pParse->db->aDb[1].pSchema; p = sqliteHashFirst(&pTmpSchema->trigHash); pList = pTab->pTrigger; while( p ){ Trigger *pTrig = (Trigger *)sqliteHashData(p); if( pTrig->pTabSchema==pTab->pSchema && pTrig->table && 0==sqlite3StrICmp(pTrig->table, pTab->zName) && (pTrig->pTabSchema!=pTmpSchema || pTrig->bReturning) ){ pTrig->pNext = pList; pList = pTrig; }else if( pTrig->op==TK_RETURNING ){ #ifndef SQLITE_OMIT_VIRTUALTABLE assert( pParse->db->pVtabCtx==0 ); #endif assert( pParse->bReturning ); assert( &(pParse->u1.pReturning->retTrig) == pTrig ); pTrig->table = pTab->zName; pTrig->pTabSchema = pTab->pSchema; pTrig->pNext = pList; pList = pTrig; } p = sqliteHashNext(p); } #if 0 if( pList ){ Trigger *pX; printf("Triggers for %s:", pTab->zName); for(pX=pList; pX; pX=pX->pNext){ printf(" %s", pX->zName); } printf("\n"); fflush(stdout); } #endif return pList; } /* ** This is called by the parser when it sees a CREATE TRIGGER statement ** up to the point of the BEGIN before the trigger actions. A Trigger ** structure is generated based on the information available and stored ** in pParse->pNewTrigger. After the trigger actions have been parsed, the ** sqlite3FinishTrigger() function is called to complete the trigger ** construction process. */ SQLITE_PRIVATE void sqlite3BeginTrigger( Parse *pParse, /* The parse context of the CREATE TRIGGER statement */ Token *pName1, /* The name of the trigger */ Token *pName2, /* The name of the trigger */ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */ IdList *pColumns, /* column list if this is an UPDATE OF trigger */ SrcList *pTableName,/* The name of the table/view the trigger applies to */ Expr *pWhen, /* WHEN clause */ int isTemp, /* True if the TEMPORARY keyword is present */ int noErr /* Suppress errors if the trigger already exists */ ){ Trigger *pTrigger = 0; /* The new trigger */ Table *pTab; /* Table that the trigger fires off of */ char *zName = 0; /* Name of the trigger */ sqlite3 *db = pParse->db; /* The database connection */ int iDb; /* The database to store the trigger in */ Token *pName; /* The unqualified db name */ DbFixer sFix; /* State vector for the DB fixer */ assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */ assert( pName2!=0 ); assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE ); assert( op>0 && op<0xff ); if( isTemp ){ /* If TEMP was specified, then the trigger name may not be qualified. */ if( pName2->n>0 ){ sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name"); goto trigger_cleanup; } iDb = 1; pName = pName1; }else{ /* Figure out the db that the trigger will be created in */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ){ goto trigger_cleanup; } } if( !pTableName || db->mallocFailed ){ goto trigger_cleanup; } /* A long-standing parser bug is that this syntax was allowed: ** ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab .... ** ^^^^^^^^ ** ** To maintain backwards compatibility, ignore the database ** name on pTableName if we are reparsing out of the schema table */ if( db->init.busy && iDb!=1 ){ sqlite3DbFree(db, pTableName->a[0].zDatabase); pTableName->a[0].zDatabase = 0; } /* If the trigger name was unqualified, and the table is a temp table, ** then set iDb to 1 to create the trigger in the temporary database. ** If sqlite3SrcListLookup() returns 0, indicating the table does not ** exist, the error is caught by the block below. */ pTab = sqlite3SrcListLookup(pParse, pTableName); if( db->init.busy==0 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } /* Ensure the table name matches database name and that the table exists */ if( db->mallocFailed ) goto trigger_cleanup; assert( pTableName->nSrc==1 ); sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName); if( sqlite3FixSrcList(&sFix, pTableName) ){ goto trigger_cleanup; } pTab = sqlite3SrcListLookup(pParse, pTableName); if( !pTab ){ /* The table does not exist. */ goto trigger_orphan_error; } if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables"); goto trigger_orphan_error; } if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ sqlite3ErrorMsg(pParse, "cannot create triggers on shadow tables"); goto trigger_orphan_error; } /* Check that the trigger name is not reserved and that no trigger of the ** specified name exists */ zName = sqlite3NameFromToken(db, pName); if( zName==0 ){ assert( db->mallocFailed ); goto trigger_cleanup; } if( sqlite3CheckObjectName(pParse, zName, "trigger", pTab->zName) ){ goto trigger_cleanup; } assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( !IN_RENAME_OBJECT ){ if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),zName) ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); VVA_ONLY( pParse->ifNotExists = 1; ) } goto trigger_cleanup; } } /* Do not create a trigger on a system table */ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); goto trigger_cleanup; } /* INSTEAD of triggers are only for views and views only support INSTEAD ** of triggers. */ if( IsView(pTab) && tr_tm!=TK_INSTEAD ){ sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S", (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName->a); goto trigger_orphan_error; } if( !IsView(pTab) && tr_tm==TK_INSTEAD ){ sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF" " trigger on table: %S", pTableName->a); goto trigger_orphan_error; } #ifndef SQLITE_OMIT_AUTHORIZATION if( !IN_RENAME_OBJECT ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); int code = SQLITE_CREATE_TRIGGER; const char *zDb = db->aDb[iTabDb].zDbSName; const char *zDbTrig = isTemp ? db->aDb[1].zDbSName : zDb; if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER; if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){ goto trigger_cleanup; } if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){ goto trigger_cleanup; } } #endif /* INSTEAD OF triggers can only appear on views and BEFORE triggers ** cannot appear on views. So we might as well translate every ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code ** elsewhere. */ if (tr_tm == TK_INSTEAD){ tr_tm = TK_BEFORE; } /* Build the Trigger object */ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger)); if( pTrigger==0 ) goto trigger_cleanup; pTrigger->zName = zName; zName = 0; pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName); pTrigger->pSchema = db->aDb[iDb].pSchema; pTrigger->pTabSchema = pTab->pSchema; pTrigger->op = (u8)op; pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, pTrigger->table, pTableName->a[0].zName); pTrigger->pWhen = pWhen; pWhen = 0; }else{ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); } pTrigger->pColumns = pColumns; pColumns = 0; assert( pParse->pNewTrigger==0 ); pParse->pNewTrigger = pTrigger; trigger_cleanup: sqlite3DbFree(db, zName); sqlite3SrcListDelete(db, pTableName); sqlite3IdListDelete(db, pColumns); sqlite3ExprDelete(db, pWhen); if( !pParse->pNewTrigger ){ sqlite3DeleteTrigger(db, pTrigger); }else{ assert( pParse->pNewTrigger==pTrigger ); } return; trigger_orphan_error: if( db->init.iDb==1 ){ /* Ticket #3810. ** Normally, whenever a table is dropped, all associated triggers are ** dropped too. But if a TEMP trigger is created on a non-TEMP table ** and the table is dropped by a different database connection, the ** trigger is not visible to the database connection that does the ** drop so the trigger cannot be dropped. This results in an ** "orphaned trigger" - a trigger whose associated table is missing. ** ** 2020-11-05 see also https://sqlite.org/forum/forumpost/157dc791df */ db->init.orphanTrigger = 1; } goto trigger_cleanup; } /* ** This routine is called after all of the trigger actions have been parsed ** in order to complete the process of building the trigger. */ SQLITE_PRIVATE void sqlite3FinishTrigger( Parse *pParse, /* Parser context */ TriggerStep *pStepList, /* The triggered program */ Token *pAll /* Token that describes the complete CREATE TRIGGER */ ){ Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */ char *zName; /* Name of trigger */ sqlite3 *db = pParse->db; /* The database */ DbFixer sFix; /* Fixer object */ int iDb; /* Database containing the trigger */ Token nameToken; /* Trigger name for error reporting */ pParse->pNewTrigger = 0; if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup; zName = pTrig->zName; iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); pTrig->step_list = pStepList; while( pStepList ){ pStepList->pTrig = pTrig; pStepList = pStepList->pNext; } sqlite3TokenInit(&nameToken, pTrig->zName); sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken); if( sqlite3FixTriggerStep(&sFix, pTrig->step_list) || sqlite3FixExpr(&sFix, pTrig->pWhen) ){ goto triggerfinish_cleanup; } #ifndef SQLITE_OMIT_ALTERTABLE if( IN_RENAME_OBJECT ){ assert( !db->init.busy ); pParse->pNewTrigger = pTrig; pTrig = 0; }else #endif /* if we are not initializing, ** build the sqlite_schema entry */ if( !db->init.busy ){ Vdbe *v; char *z; /* If this is a new CREATE TABLE statement, and if shadow tables ** are read-only, and the trigger makes a change to a shadow table, ** then raise an error - do not allow the trigger to be created. */ if( sqlite3ReadOnlyShadowTables(db) ){ TriggerStep *pStep; for(pStep=pTrig->step_list; pStep; pStep=pStep->pNext){ if( pStep->zTarget!=0 && sqlite3ShadowTableName(db, pStep->zTarget) ){ sqlite3ErrorMsg(pParse, "trigger \"%s\" may not write to shadow table \"%s\"", pTrig->zName, pStep->zTarget); goto triggerfinish_cleanup; } } } /* Make an entry in the sqlite_schema table */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto triggerfinish_cleanup; sqlite3BeginWriteOperation(pParse, 0, iDb); z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n); testcase( z==0 ); sqlite3NestedParse(pParse, "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')", db->aDb[iDb].zDbSName, zName, pTrig->table, z); sqlite3DbFree(db, z); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName), 0); } if( db->init.busy ){ Trigger *pLink = pTrig; Hash *pHash = &db->aDb[iDb].pSchema->trigHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); assert( pLink!=0 ); pTrig = sqlite3HashInsert(pHash, zName, pTrig); if( pTrig ){ sqlite3OomFault(db); }else if( pLink->pSchema==pLink->pTabSchema ){ Table *pTab; pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table); assert( pTab!=0 ); pLink->pNext = pTab->pTrigger; pTab->pTrigger = pLink; } } triggerfinish_cleanup: sqlite3DeleteTrigger(db, pTrig); assert( IN_RENAME_OBJECT || !pParse->pNewTrigger ); sqlite3DeleteTriggerStep(db, pStepList); } /* ** Duplicate a range of text from an SQL statement, then convert all ** whitespace characters into ordinary space characters. */ static char *triggerSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ char *z = sqlite3DbSpanDup(db, zStart, zEnd); int i; if( z ) for(i=0; z[i]; i++) if( sqlite3Isspace(z[i]) ) z[i] = ' '; return z; } /* ** Turn a SELECT statement (that the pSelect parameter points to) into ** a trigger step. Return a pointer to a TriggerStep structure. ** ** The parser calls this routine when it finds a SELECT statement in ** body of a TRIGGER. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep( sqlite3 *db, /* Database connection */ Select *pSelect, /* The SELECT statement */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep)); if( pTriggerStep==0 ) { sqlite3SelectDelete(db, pSelect); return 0; } pTriggerStep->op = TK_SELECT; pTriggerStep->pSelect = pSelect; pTriggerStep->orconf = OE_Default; pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd); return pTriggerStep; } /* ** Allocate space to hold a new trigger step. The allocated space ** holds both the TriggerStep object and the TriggerStep.target.z string. ** ** If an OOM error occurs, NULL is returned and db->mallocFailed is set. */ static TriggerStep *triggerStepAllocate( Parse *pParse, /* Parser context */ u8 op, /* Trigger opcode */ Token *pName, /* The target name */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; if( pParse->nErr ) return 0; pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n + 1); if( pTriggerStep ){ char *z = (char*)&pTriggerStep[1]; memcpy(z, pName->z, pName->n); sqlite3Dequote(z); pTriggerStep->zTarget = z; pTriggerStep->op = op; pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, pTriggerStep->zTarget, pName); } } return pTriggerStep; } /* ** Build a trigger step out of an INSERT statement. Return a pointer ** to the new trigger step. ** ** The parser calls this routine when it sees an INSERT inside the ** body of a trigger. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep( Parse *pParse, /* Parser */ Token *pTableName, /* Name of the table into which we insert */ IdList *pColumn, /* List of columns in pTableName to insert into */ Select *pSelect, /* A SELECT statement that supplies values */ u8 orconf, /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ Upsert *pUpsert, /* ON CONFLICT clauses for upsert */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; assert(pSelect != 0 || db->mallocFailed); pTriggerStep = triggerStepAllocate(pParse, TK_INSERT, pTableName,zStart,zEnd); if( pTriggerStep ){ if( IN_RENAME_OBJECT ){ pTriggerStep->pSelect = pSelect; pSelect = 0; }else{ pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); } pTriggerStep->pIdList = pColumn; pTriggerStep->pUpsert = pUpsert; pTriggerStep->orconf = orconf; if( pUpsert ){ sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget); } }else{ testcase( pColumn ); sqlite3IdListDelete(db, pColumn); testcase( pUpsert ); sqlite3UpsertDelete(db, pUpsert); } sqlite3SelectDelete(db, pSelect); return pTriggerStep; } /* ** Construct a trigger step that implements an UPDATE statement and return ** a pointer to that trigger step. The parser calls this routine when it ** sees an UPDATE statement inside the body of a CREATE TRIGGER. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep( Parse *pParse, /* Parser */ Token *pTableName, /* Name of the table to be updated */ SrcList *pFrom, /* FROM clause for an UPDATE-FROM, or NULL */ ExprList *pEList, /* The SET clause: list of column and new values */ Expr *pWhere, /* The WHERE clause */ u8 orconf, /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; pTriggerStep = triggerStepAllocate(pParse, TK_UPDATE, pTableName,zStart,zEnd); if( pTriggerStep ){ if( IN_RENAME_OBJECT ){ pTriggerStep->pExprList = pEList; pTriggerStep->pWhere = pWhere; pTriggerStep->pFrom = pFrom; pEList = 0; pWhere = 0; pFrom = 0; }else{ pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE); pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); pTriggerStep->pFrom = sqlite3SrcListDup(db, pFrom, EXPRDUP_REDUCE); } pTriggerStep->orconf = orconf; } sqlite3ExprListDelete(db, pEList); sqlite3ExprDelete(db, pWhere); sqlite3SrcListDelete(db, pFrom); return pTriggerStep; } /* ** Construct a trigger step that implements a DELETE statement and return ** a pointer to that trigger step. The parser calls this routine when it ** sees a DELETE statement inside the body of a CREATE TRIGGER. */ SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep( Parse *pParse, /* Parser */ Token *pTableName, /* The table from which rows are deleted */ Expr *pWhere, /* The WHERE clause */ const char *zStart, /* Start of SQL text */ const char *zEnd /* End of SQL text */ ){ sqlite3 *db = pParse->db; TriggerStep *pTriggerStep; pTriggerStep = triggerStepAllocate(pParse, TK_DELETE, pTableName,zStart,zEnd); if( pTriggerStep ){ if( IN_RENAME_OBJECT ){ pTriggerStep->pWhere = pWhere; pWhere = 0; }else{ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); } pTriggerStep->orconf = OE_Default; } sqlite3ExprDelete(db, pWhere); return pTriggerStep; } /* ** Recursively delete a Trigger structure */ SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){ if( pTrigger==0 || pTrigger->bReturning ) return; sqlite3DeleteTriggerStep(db, pTrigger->step_list); sqlite3DbFree(db, pTrigger->zName); sqlite3DbFree(db, pTrigger->table); sqlite3ExprDelete(db, pTrigger->pWhen); sqlite3IdListDelete(db, pTrigger->pColumns); sqlite3DbFree(db, pTrigger); } /* ** This function is called to drop a trigger from the database schema. ** ** This may be called directly from the parser and therefore identifies ** the trigger by name. The sqlite3DropTriggerPtr() routine does the ** same job as this routine except it takes a pointer to the trigger ** instead of the trigger name. **/ SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){ Trigger *pTrigger = 0; int i; const char *zDb; const char *zName; sqlite3 *db = pParse->db; if( db->mallocFailed ) goto drop_trigger_cleanup; if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto drop_trigger_cleanup; } assert( pName->nSrc==1 ); zDb = pName->a[0].zDatabase; zName = pName->a[0].zName; assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName); if( pTrigger ) break; } if( !pTrigger ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName->a); }else{ sqlite3CodeVerifyNamedSchema(pParse, zDb); } pParse->checkSchema = 1; goto drop_trigger_cleanup; } sqlite3DropTriggerPtr(pParse, pTrigger); drop_trigger_cleanup: sqlite3SrcListDelete(db, pName); } /* ** Return a pointer to the Table structure for the table that a trigger ** is set on. */ static Table *tableOfTrigger(Trigger *pTrigger){ return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table); } /* ** Drop a trigger given a pointer to that trigger. */ SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){ Table *pTable; Vdbe *v; sqlite3 *db = pParse->db; int iDb; iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema); assert( iDb>=0 && iDbnDb ); pTable = tableOfTrigger(pTrigger); assert( (pTable && pTable->pSchema==pTrigger->pSchema) || iDb==1 ); #ifndef SQLITE_OMIT_AUTHORIZATION if( pTable ){ int code = SQLITE_DROP_TRIGGER; const char *zDb = db->aDb[iDb].zDbSName; const char *zTab = SCHEMA_TABLE(iDb); if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) || sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ return; } } #endif /* Generate code to destroy the database record of the trigger. */ if( (v = sqlite3GetVdbe(pParse))!=0 ){ sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='trigger'", db->aDb[iDb].zDbSName, pTrigger->zName ); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0); } } /* ** Remove a trigger from the hash tables of the sqlite* pointer. */ SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ Trigger *pTrigger; Hash *pHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pHash = &(db->aDb[iDb].pSchema->trigHash); pTrigger = sqlite3HashInsert(pHash, zName, 0); if( ALWAYS(pTrigger) ){ if( pTrigger->pSchema==pTrigger->pTabSchema ){ Table *pTab = tableOfTrigger(pTrigger); if( pTab ){ Trigger **pp; for(pp=&pTab->pTrigger; *pp; pp=&((*pp)->pNext)){ if( *pp==pTrigger ){ *pp = (*pp)->pNext; break; } } } } sqlite3DeleteTrigger(db, pTrigger); db->mDbFlags |= DBFLAG_SchemaChange; } } /* ** pEList is the SET clause of an UPDATE statement. Each entry ** in pEList is of the format =. If any of the entries ** in pEList have an which matches an identifier in pIdList, ** then return TRUE. If pIdList==NULL, then it is considered a ** wildcard that matches anything. Likewise if pEList==NULL then ** it matches anything so always return true. Return false only ** if there is no match. */ static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){ int e; if( pIdList==0 || NEVER(pEList==0) ) return 1; for(e=0; enExpr; e++){ if( sqlite3IdListIndex(pIdList, pEList->a[e].zEName)>=0 ) return 1; } return 0; } /* ** Return true if any TEMP triggers exist */ static int tempTriggersExist(sqlite3 *db){ if( NEVER(db->aDb[1].pSchema==0) ) return 0; if( sqliteHashFirst(&db->aDb[1].pSchema->trigHash)==0 ) return 0; return 1; } /* ** Return a list of all triggers on table pTab if there exists at least ** one trigger that must be fired when an operation of type 'op' is ** performed on the table, and, if that operation is an UPDATE, if at ** least one of the columns in pChanges is being modified. */ static SQLITE_NOINLINE Trigger *triggersReallyExist( Parse *pParse, /* Parse context */ Table *pTab, /* The table the contains the triggers */ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ ExprList *pChanges, /* Columns that change in an UPDATE statement */ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ ){ int mask = 0; Trigger *pList = 0; Trigger *p; pList = sqlite3TriggerList(pParse, pTab); assert( pList==0 || IsVirtual(pTab)==0 || (pList->bReturning && pList->pNext==0) ); if( pList!=0 ){ p = pList; if( (pParse->db->flags & SQLITE_EnableTrigger)==0 && pTab->pTrigger!=0 ){ /* The SQLITE_DBCONFIG_ENABLE_TRIGGER setting is off. That means that ** only TEMP triggers are allowed. Truncate the pList so that it ** includes only TEMP triggers */ if( pList==pTab->pTrigger ){ pList = 0; goto exit_triggers_exist; } while( ALWAYS(p->pNext) && p->pNext!=pTab->pTrigger ) p = p->pNext; p->pNext = 0; p = pList; } do{ if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){ mask |= p->tr_tm; }else if( p->op==TK_RETURNING ){ /* The first time a RETURNING trigger is seen, the "op" value tells ** us what time of trigger it should be. */ assert( sqlite3IsToplevel(pParse) ); p->op = op; if( IsVirtual(pTab) ){ if( op!=TK_INSERT ){ sqlite3ErrorMsg(pParse, "%s RETURNING is not available on virtual tables", op==TK_DELETE ? "DELETE" : "UPDATE"); } p->tr_tm = TRIGGER_BEFORE; }else{ p->tr_tm = TRIGGER_AFTER; } mask |= p->tr_tm; }else if( p->bReturning && p->op==TK_INSERT && op==TK_UPDATE && sqlite3IsToplevel(pParse) ){ /* Also fire a RETURNING trigger for an UPSERT */ mask |= p->tr_tm; } p = p->pNext; }while( p ); } exit_triggers_exist: if( pMask ){ *pMask = mask; } return (mask ? pList : 0); } SQLITE_PRIVATE Trigger *sqlite3TriggersExist( Parse *pParse, /* Parse context */ Table *pTab, /* The table the contains the triggers */ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ ExprList *pChanges, /* Columns that change in an UPDATE statement */ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ ){ assert( pTab!=0 ); if( (pTab->pTrigger==0 && !tempTriggersExist(pParse->db)) || pParse->disableTriggers ){ if( pMask ) *pMask = 0; return 0; } return triggersReallyExist(pParse,pTab,op,pChanges,pMask); } /* ** Convert the pStep->zTarget string into a SrcList and return a pointer ** to that SrcList. ** ** This routine adds a specific database name, if needed, to the target when ** forming the SrcList. This prevents a trigger in one database from ** referring to a target in another database. An exception is when the ** trigger is in TEMP in which case it can refer to any other database it ** wants. */ SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc( Parse *pParse, /* The parsing context */ TriggerStep *pStep /* The trigger containing the target token */ ){ sqlite3 *db = pParse->db; SrcList *pSrc; /* SrcList to be returned */ char *zName = sqlite3DbStrDup(db, pStep->zTarget); pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); assert( pSrc==0 || pSrc->nSrc==1 ); assert( zName || pSrc==0 ); if( pSrc ){ Schema *pSchema = pStep->pTrig->pSchema; pSrc->a[0].zName = zName; if( pSchema!=db->aDb[1].pSchema ){ pSrc->a[0].pSchema = pSchema; } if( pStep->pFrom ){ SrcList *pDup = sqlite3SrcListDup(db, pStep->pFrom, 0); if( pDup && pDup->nSrc>1 && !IN_RENAME_OBJECT ){ Select *pSubquery; Token as; pSubquery = sqlite3SelectNew(pParse,0,pDup,0,0,0,0,SF_NestedFrom,0); as.n = 0; as.z = 0; pDup = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0); } pSrc = sqlite3SrcListAppendList(pParse, pSrc, pDup); } }else{ sqlite3DbFree(db, zName); } return pSrc; } /* ** Return true if the pExpr term from the RETURNING clause argument ** list is of the form "*". Raise an error if the terms if of the ** form "table.*". */ static int isAsteriskTerm( Parse *pParse, /* Parsing context */ Expr *pTerm /* A term in the RETURNING clause */ ){ assert( pTerm!=0 ); if( pTerm->op==TK_ASTERISK ) return 1; if( pTerm->op!=TK_DOT ) return 0; assert( pTerm->pRight!=0 ); assert( pTerm->pLeft!=0 ); if( pTerm->pRight->op!=TK_ASTERISK ) return 0; sqlite3ErrorMsg(pParse, "RETURNING may not use \"TABLE.*\" wildcards"); return 1; } /* The input list pList is the list of result set terms from a RETURNING ** clause. The table that we are returning from is pTab. ** ** This routine makes a copy of the pList, and at the same time expands ** any "*" wildcards to be the complete set of columns from pTab. */ static ExprList *sqlite3ExpandReturning( Parse *pParse, /* Parsing context */ ExprList *pList, /* The arguments to RETURNING */ Table *pTab /* The table being updated */ ){ ExprList *pNew = 0; sqlite3 *db = pParse->db; int i; for(i=0; inExpr; i++){ Expr *pOldExpr = pList->a[i].pExpr; if( NEVER(pOldExpr==0) ) continue; if( isAsteriskTerm(pParse, pOldExpr) ){ int jj; for(jj=0; jjnCol; jj++){ Expr *pNewExpr; if( IsHiddenColumn(pTab->aCol+jj) ) continue; pNewExpr = sqlite3Expr(db, TK_ID, pTab->aCol[jj].zCnName); pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr); if( !db->mallocFailed ){ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1]; pItem->zEName = sqlite3DbStrDup(db, pTab->aCol[jj].zCnName); pItem->fg.eEName = ENAME_NAME; } } }else{ Expr *pNewExpr = sqlite3ExprDup(db, pOldExpr, 0); pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr); if( !db->mallocFailed && ALWAYS(pList->a[i].zEName!=0) ){ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1]; pItem->zEName = sqlite3DbStrDup(db, pList->a[i].zEName); pItem->fg.eEName = pList->a[i].fg.eEName; } } } return pNew; } /* ** Generate code for the RETURNING trigger. Unlike other triggers ** that invoke a subprogram in the bytecode, the code for RETURNING ** is generated in-line. */ static void codeReturningTrigger( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* The trigger step that defines the RETURNING */ Table *pTab, /* The table to code triggers from */ int regIn /* The first in an array of registers */ ){ Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; ExprList *pNew; Returning *pReturning; Select sSelect; SrcList sFrom; assert( v!=0 ); if( !pParse->bReturning ){ /* This RETURNING trigger must be for a different statement as ** this statement lacks a RETURNING clause. */ return; } assert( db->pParse==pParse ); pReturning = pParse->u1.pReturning; if( pTrigger != &(pReturning->retTrig) ){ /* This RETURNING trigger is for a different statement */ return; } memset(&sSelect, 0, sizeof(sSelect)); memset(&sFrom, 0, sizeof(sFrom)); sSelect.pEList = sqlite3ExprListDup(db, pReturning->pReturnEL, 0); sSelect.pSrc = &sFrom; sFrom.nSrc = 1; sFrom.a[0].pTab = pTab; sFrom.a[0].iCursor = -1; sqlite3SelectPrep(pParse, &sSelect, 0); if( pParse->nErr==0 ){ assert( db->mallocFailed==0 ); sqlite3GenerateColumnNames(pParse, &sSelect); } sqlite3ExprListDelete(db, sSelect.pEList); pNew = sqlite3ExpandReturning(pParse, pReturning->pReturnEL, pTab); if( pParse->nErr==0 ){ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); if( pReturning->nRetCol==0 ){ pReturning->nRetCol = pNew->nExpr; pReturning->iRetCur = pParse->nTab++; } sNC.pParse = pParse; sNC.uNC.iBaseReg = regIn; sNC.ncFlags = NC_UBaseReg; pParse->eTriggerOp = pTrigger->op; pParse->pTriggerTab = pTab; if( sqlite3ResolveExprListNames(&sNC, pNew)==SQLITE_OK && ALWAYS(!db->mallocFailed) ){ int i; int nCol = pNew->nExpr; int reg = pParse->nMem+1; pParse->nMem += nCol+2; pReturning->iRetReg = reg; for(i=0; ia[i].pExpr; assert( pCol!=0 ); /* Due to !db->mallocFailed ~9 lines above */ sqlite3ExprCodeFactorable(pParse, pCol, reg+i); if( sqlite3ExprAffinity(pCol)==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, reg+i); } } sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, i, reg+i); sqlite3VdbeAddOp2(v, OP_NewRowid, pReturning->iRetCur, reg+i+1); sqlite3VdbeAddOp3(v, OP_Insert, pReturning->iRetCur, reg+i, reg+i+1); } } sqlite3ExprListDelete(db, pNew); pParse->eTriggerOp = 0; pParse->pTriggerTab = 0; } /* ** Generate VDBE code for the statements inside the body of a single ** trigger. */ static int codeTriggerProgram( Parse *pParse, /* The parser context */ TriggerStep *pStepList, /* List of statements inside the trigger body */ int orconf /* Conflict algorithm. (OE_Abort, etc) */ ){ TriggerStep *pStep; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( pParse->pTriggerTab && pParse->pToplevel ); assert( pStepList ); assert( v!=0 ); for(pStep=pStepList; pStep; pStep=pStep->pNext){ /* Figure out the ON CONFLICT policy that will be used for this step ** of the trigger program. If the statement that caused this trigger ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use ** the ON CONFLICT policy that was specified as part of the trigger ** step statement. Example: ** ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN; ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); ** END; ** ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy */ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; assert( pParse->okConstFactor==0 ); #ifndef SQLITE_OMIT_TRACE if( pStep->zSpan ){ sqlite3VdbeAddOp4(v, OP_Trace, 0x7fffffff, 1, 0, sqlite3MPrintf(db, "-- %s", pStep->zSpan), P4_DYNAMIC); } #endif switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, sqlite3TriggerStepSrc(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), pParse->eOrconf, 0, 0, 0 ); sqlite3VdbeAddOp0(v, OP_ResetCount); break; } case TK_INSERT: { sqlite3Insert(pParse, sqlite3TriggerStepSrc(pParse, pStep), sqlite3SelectDup(db, pStep->pSelect, 0), sqlite3IdListDup(db, pStep->pIdList), pParse->eOrconf, sqlite3UpsertDup(db, pStep->pUpsert) ); sqlite3VdbeAddOp0(v, OP_ResetCount); break; } case TK_DELETE: { sqlite3DeleteFrom(pParse, sqlite3TriggerStepSrc(pParse, pStep), sqlite3ExprDup(db, pStep->pWhere, 0), 0, 0 ); sqlite3VdbeAddOp0(v, OP_ResetCount); break; } default: assert( pStep->op==TK_SELECT ); { SelectDest sDest; Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0); sqlite3SelectDestInit(&sDest, SRT_Discard, 0); sqlite3Select(pParse, pSelect, &sDest); sqlite3SelectDelete(db, pSelect); break; } } } return 0; } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** This function is used to add VdbeComment() annotations to a VDBE ** program. It is not used in production code, only for debugging. */ static const char *onErrorText(int onError){ switch( onError ){ case OE_Abort: return "abort"; case OE_Rollback: return "rollback"; case OE_Fail: return "fail"; case OE_Replace: return "replace"; case OE_Ignore: return "ignore"; case OE_Default: return "default"; } return "n/a"; } #endif /* ** Parse context structure pFrom has just been used to create a sub-vdbe ** (trigger program). If an error has occurred, transfer error information ** from pFrom to pTo. */ static void transferParseError(Parse *pTo, Parse *pFrom){ assert( pFrom->zErrMsg==0 || pFrom->nErr ); assert( pTo->zErrMsg==0 || pTo->nErr ); if( pTo->nErr==0 ){ pTo->zErrMsg = pFrom->zErrMsg; pTo->nErr = pFrom->nErr; pTo->rc = pFrom->rc; }else{ sqlite3DbFree(pFrom->db, pFrom->zErrMsg); } } /* ** Create and populate a new TriggerPrg object with a sub-program ** implementing trigger pTrigger with ON CONFLICT policy orconf. */ static TriggerPrg *codeRowTrigger( Parse *pParse, /* Current parse context */ Trigger *pTrigger, /* Trigger to code */ Table *pTab, /* The table pTrigger is attached to */ int orconf /* ON CONFLICT policy to code trigger program with */ ){ Parse *pTop = sqlite3ParseToplevel(pParse); sqlite3 *db = pParse->db; /* Database handle */ TriggerPrg *pPrg; /* Value to return */ Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */ Vdbe *v; /* Temporary VM */ NameContext sNC; /* Name context for sub-vdbe */ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */ int iEndTrigger = 0; /* Label to jump to if WHEN is false */ Parse sSubParse; /* Parse context for sub-vdbe */ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); assert( pTop->pVdbe ); /* Allocate the TriggerPrg and SubProgram objects. To ensure that they ** are freed if an error occurs, link them into the Parse.pTriggerPrg ** list of the top-level Parse object sooner rather than later. */ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg)); if( !pPrg ) return 0; pPrg->pNext = pTop->pTriggerPrg; pTop->pTriggerPrg = pPrg; pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram)); if( !pProgram ) return 0; sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram); pPrg->pTrigger = pTrigger; pPrg->orconf = orconf; pPrg->aColmask[0] = 0xffffffff; pPrg->aColmask[1] = 0xffffffff; /* Allocate and populate a new Parse context to use for coding the ** trigger sub-program. */ sqlite3ParseObjectInit(&sSubParse, db); memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sSubParse; sSubParse.pTriggerTab = pTab; sSubParse.pToplevel = pTop; sSubParse.zAuthContext = pTrigger->zName; sSubParse.eTriggerOp = pTrigger->op; sSubParse.nQueryLoop = pParse->nQueryLoop; sSubParse.prepFlags = pParse->prepFlags; v = sqlite3GetVdbe(&sSubParse); if( v ){ VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)", pTrigger->zName, onErrorText(orconf), (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"), (pTrigger->op==TK_UPDATE ? "UPDATE" : ""), (pTrigger->op==TK_INSERT ? "INSERT" : ""), (pTrigger->op==TK_DELETE ? "DELETE" : ""), pTab->zName )); #ifndef SQLITE_OMIT_TRACE if( pTrigger->zName ){ sqlite3VdbeChangeP4(v, -1, sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC ); } #endif /* If one was specified, code the WHEN clause. If it evaluates to false ** (or NULL) the sub-vdbe is immediately halted by jumping to the ** OP_Halt inserted at the end of the program. */ if( pTrigger->pWhen ){ pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0); if( db->mallocFailed==0 && SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen) ){ iEndTrigger = sqlite3VdbeMakeLabel(&sSubParse); sqlite3ExprIfFalse(&sSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL); } sqlite3ExprDelete(db, pWhen); } /* Code the trigger program into the sub-vdbe. */ codeTriggerProgram(&sSubParse, pTrigger->step_list, orconf); /* Insert an OP_Halt at the end of the sub-program. */ if( iEndTrigger ){ sqlite3VdbeResolveLabel(v, iEndTrigger); } sqlite3VdbeAddOp0(v, OP_Halt); VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf))); transferParseError(pParse, &sSubParse); if( pParse->nErr==0 ){ assert( db->mallocFailed==0 ); pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg); } pProgram->nMem = sSubParse.nMem; pProgram->nCsr = sSubParse.nTab; pProgram->token = (void *)pTrigger; pPrg->aColmask[0] = sSubParse.oldmask; pPrg->aColmask[1] = sSubParse.newmask; sqlite3VdbeDelete(v); }else{ transferParseError(pParse, &sSubParse); } assert( !sSubParse.pTriggerPrg && !sSubParse.nMaxArg ); sqlite3ParseObjectReset(&sSubParse); return pPrg; } /* ** Return a pointer to a TriggerPrg object containing the sub-program for ** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such ** TriggerPrg object exists, a new object is allocated and populated before ** being returned. */ static TriggerPrg *getRowTrigger( Parse *pParse, /* Current parse context */ Trigger *pTrigger, /* Trigger to code */ Table *pTab, /* The table trigger pTrigger is attached to */ int orconf /* ON CONFLICT algorithm. */ ){ Parse *pRoot = sqlite3ParseToplevel(pParse); TriggerPrg *pPrg; assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) ); /* It may be that this trigger has already been coded (or is in the ** process of being coded). If this is the case, then an entry with ** a matching TriggerPrg.pTrigger field will be present somewhere ** in the Parse.pTriggerPrg list. Search for such an entry. */ for(pPrg=pRoot->pTriggerPrg; pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf); pPrg=pPrg->pNext ); /* If an existing TriggerPrg could not be located, create a new one. */ if( !pPrg ){ pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf); pParse->db->errByteOffset = -1; } return pPrg; } /* ** Generate code for the trigger program associated with trigger p on ** table pTab. The reg, orconf and ignoreJump parameters passed to this ** function are the same as those described in the header function for ** sqlite3CodeRowTrigger() */ SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect( Parse *pParse, /* Parse context */ Trigger *p, /* Trigger to code */ Table *pTab, /* The table to code triggers from */ int reg, /* Reg array containing OLD.* and NEW.* values */ int orconf, /* ON CONFLICT policy */ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ ){ Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */ TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); assert( pPrg || pParse->nErr ); /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program ** is a pointer to the sub-vdbe containing the trigger program. */ if( pPrg ){ int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers)); sqlite3VdbeAddOp4(v, OP_Program, reg, ignoreJump, ++pParse->nMem, (const char *)pPrg->pProgram, P4_SUBPROGRAM); VdbeComment( (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf))); /* Set the P5 operand of the OP_Program instruction to non-zero if ** recursive invocation of this trigger program is disallowed. Recursive ** invocation is disallowed if (a) the sub-program is really a trigger, ** not a foreign key action, and (b) the flag to enable recursive triggers ** is clear. */ sqlite3VdbeChangeP5(v, (u8)bRecursive); } } /* ** This is called to code the required FOR EACH ROW triggers for an operation ** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE) ** is given by the op parameter. The tr_tm parameter determines whether the ** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then ** parameter pChanges is passed the list of columns being modified. ** ** If there are no triggers that fire at the specified time for the specified ** operation on pTab, this function is a no-op. ** ** The reg argument is the address of the first in an array of registers ** that contain the values substituted for the new.* and old.* references ** in the trigger program. If N is the number of columns in table pTab ** (a copy of pTab->nCol), then registers are populated as follows: ** ** Register Contains ** ------------------------------------------------------ ** reg+0 OLD.rowid ** reg+1 OLD.* value of left-most column of pTab ** ... ... ** reg+N OLD.* value of right-most column of pTab ** reg+N+1 NEW.rowid ** reg+N+2 NEW.* value of left-most column of pTab ** ... ... ** reg+N+N+1 NEW.* value of right-most column of pTab ** ** For ON DELETE triggers, the registers containing the NEW.* values will ** never be accessed by the trigger program, so they are not allocated or ** populated by the caller (there is no data to populate them with anyway). ** Similarly, for ON INSERT triggers the values stored in the OLD.* registers ** are never accessed, and so are not allocated by the caller. So, for an ** ON INSERT trigger, the value passed to this function as parameter reg ** is not a readable register, although registers (reg+N) through ** (reg+N+N+1) are. ** ** Parameter orconf is the default conflict resolution algorithm for the ** trigger program to use (REPLACE, IGNORE etc.). Parameter ignoreJump ** is the instruction that control should jump to if a trigger program ** raises an IGNORE exception. */ SQLITE_PRIVATE void sqlite3CodeRowTrigger( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* List of triggers on table pTab */ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ Table *pTab, /* The table to code triggers from */ int reg, /* The first in an array of registers (see above) */ int orconf, /* ON CONFLICT policy */ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */ ){ Trigger *p; /* Used to iterate through pTrigger list */ assert( op==TK_UPDATE || op==TK_INSERT || op==TK_DELETE ); assert( tr_tm==TRIGGER_BEFORE || tr_tm==TRIGGER_AFTER ); assert( (op==TK_UPDATE)==(pChanges!=0) ); for(p=pTrigger; p; p=p->pNext){ /* Sanity checking: The schema for the trigger and for the table are ** always defined. The trigger must be in the same schema as the table ** or else it must be a TEMP trigger. */ assert( p->pSchema!=0 ); assert( p->pTabSchema!=0 ); assert( p->pSchema==p->pTabSchema || p->pSchema==pParse->db->aDb[1].pSchema ); /* Determine whether we should code this trigger. One of two choices: ** 1. The trigger is an exact match to the current DML statement ** 2. This is a RETURNING trigger for INSERT but we are currently ** doing the UPDATE part of an UPSERT. */ if( (p->op==op || (p->bReturning && p->op==TK_INSERT && op==TK_UPDATE)) && p->tr_tm==tr_tm && checkColumnOverlap(p->pColumns, pChanges) ){ if( !p->bReturning ){ sqlite3CodeRowTriggerDirect(pParse, p, pTab, reg, orconf, ignoreJump); }else if( sqlite3IsToplevel(pParse) ){ codeReturningTrigger(pParse, p, pTab, reg); } } } } /* ** Triggers may access values stored in the old.* or new.* pseudo-table. ** This function returns a 32-bit bitmask indicating which columns of the ** old.* or new.* tables actually are used by triggers. This information ** may be used by the caller, for example, to avoid having to load the entire ** old.* record into memory when executing an UPDATE or DELETE command. ** ** Bit 0 of the returned mask is set if the left-most column of the ** table may be accessed using an [old|new].reference. Bit 1 is set if ** the second leftmost column value is required, and so on. If there ** are more than 32 columns in the table, and at least one of the columns ** with an index greater than 32 may be accessed, 0xffffffff is returned. ** ** It is not possible to determine if the old.rowid or new.rowid column is ** accessed by triggers. The caller must always assume that it is. ** ** Parameter isNew must be either 1 or 0. If it is 0, then the mask returned ** applies to the old.* table. If 1, the new.* table. ** ** Parameter tr_tm must be a mask with one or both of the TRIGGER_BEFORE ** and TRIGGER_AFTER bits set. Values accessed by BEFORE triggers are only ** included in the returned mask if the TRIGGER_BEFORE bit is set in the ** tr_tm parameter. Similarly, values accessed by AFTER triggers are only ** included in the returned mask if the TRIGGER_AFTER bit is set in tr_tm. */ SQLITE_PRIVATE u32 sqlite3TriggerColmask( Parse *pParse, /* Parse context */ Trigger *pTrigger, /* List of triggers on table pTab */ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ int isNew, /* 1 for new.* ref mask, 0 for old.* ref mask */ int tr_tm, /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ Table *pTab, /* The table to code triggers from */ int orconf /* Default ON CONFLICT policy for trigger steps */ ){ const int op = pChanges ? TK_UPDATE : TK_DELETE; u32 mask = 0; Trigger *p; assert( isNew==1 || isNew==0 ); if( IsView(pTab) ){ return 0xffffffff; } for(p=pTrigger; p; p=p->pNext){ if( p->op==op && (tr_tm&p->tr_tm) && checkColumnOverlap(p->pColumns,pChanges) ){ if( p->bReturning ){ mask = 0xffffffff; }else{ TriggerPrg *pPrg; pPrg = getRowTrigger(pParse, p, pTab, orconf); if( pPrg ){ mask |= pPrg->aColmask[isNew]; } } } } return mask; } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /************** End of trigger.c *********************************************/ /************** Begin file update.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Forward declaration */ static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowidExpr, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ Expr *pWhere, /* WHERE clause of the UPDATE statement */ int onError /* ON CONFLICT strategy */ ); #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** The most recently coded instruction was an OP_Column to retrieve the ** i-th column of table pTab. This routine sets the P4 parameter of the ** OP_Column to the default value, if any. ** ** The default value of a column is specified by a DEFAULT clause in the ** column definition. This was either supplied by the user when the table ** was created, or added later to the table definition by an ALTER TABLE ** command. If the latter, then the row-records in the table btree on disk ** may not contain a value for the column and the default value, taken ** from the P4 parameter of the OP_Column instruction, is returned instead. ** If the former, then all row-records are guaranteed to include a value ** for the column and the P4 value is not required. ** ** Column definitions created by an ALTER TABLE command may only have ** literal default values specified: a number, null or a string. (If a more ** complicated default expression value was provided, it is evaluated ** when the ALTER TABLE is executed and one of the literal values written ** into the sqlite_schema table.) ** ** Therefore, the P4 parameter is only required if the default value for ** the column is a literal number, string or null. The sqlite3ValueFromExpr() ** function is capable of transforming these types of expressions into ** sqlite3_value objects. ** ** If column as REAL affinity and the table is an ordinary b-tree table ** (not a virtual table) then the value might have been stored as an ** integer. In that case, add an OP_RealAffinity opcode to make sure ** it has been converted into REAL. */ SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){ Column *pCol; assert( pTab!=0 ); assert( pTab->nCol>i ); pCol = &pTab->aCol[i]; if( pCol->iDflt ){ sqlite3_value *pValue = 0; u8 enc = ENC(sqlite3VdbeDb(v)); assert( !IsView(pTab) ); VdbeComment((v, "%s.%s", pTab->zName, pCol->zCnName)); assert( inCol ); sqlite3ValueFromExpr(sqlite3VdbeDb(v), sqlite3ColumnExpr(pTab,pCol), enc, pCol->affinity, &pValue); if( pValue ){ sqlite3VdbeAppendP4(v, pValue, P4_MEM); } } #ifndef SQLITE_OMIT_FLOATING_POINT if( pCol->affinity==SQLITE_AFF_REAL && !IsVirtual(pTab) ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); } #endif } /* ** Check to see if column iCol of index pIdx references any of the ** columns defined by aXRef and chngRowid. Return true if it does ** and false if not. This is an optimization. False-positives are a ** performance degradation, but false-negatives can result in a corrupt ** index and incorrect answers. ** ** aXRef[j] will be non-negative if column j of the original table is ** being updated. chngRowid will be true if the rowid of the table is ** being updated. */ static int indexColumnIsBeingUpdated( Index *pIdx, /* The index to check */ int iCol, /* Which column of the index to check */ int *aXRef, /* aXRef[j]>=0 if column j is being updated */ int chngRowid /* true if the rowid is being updated */ ){ i16 iIdxCol = pIdx->aiColumn[iCol]; assert( iIdxCol!=XN_ROWID ); /* Cannot index rowid */ if( iIdxCol>=0 ){ return aXRef[iIdxCol]>=0; } assert( iIdxCol==XN_EXPR ); assert( pIdx->aColExpr!=0 ); assert( pIdx->aColExpr->a[iCol].pExpr!=0 ); return sqlite3ExprReferencesUpdatedColumn(pIdx->aColExpr->a[iCol].pExpr, aXRef,chngRowid); } /* ** Check to see if index pIdx is a partial index whose conditional ** expression might change values due to an UPDATE. Return true if ** the index is subject to change and false if the index is guaranteed ** to be unchanged. This is an optimization. False-positives are a ** performance degradation, but false-negatives can result in a corrupt ** index and incorrect answers. ** ** aXRef[j] will be non-negative if column j of the original table is ** being updated. chngRowid will be true if the rowid of the table is ** being updated. */ static int indexWhereClauseMightChange( Index *pIdx, /* The index to check */ int *aXRef, /* aXRef[j]>=0 if column j is being updated */ int chngRowid /* true if the rowid is being updated */ ){ if( pIdx->pPartIdxWhere==0 ) return 0; return sqlite3ExprReferencesUpdatedColumn(pIdx->pPartIdxWhere, aXRef, chngRowid); } /* ** Allocate and return a pointer to an expression of type TK_ROW with ** Expr.iColumn set to value (iCol+1). The resolver will modify the ** expression to be a TK_COLUMN reading column iCol of the first ** table in the source-list (pSrc->a[0]). */ static Expr *exprRowColumn(Parse *pParse, int iCol){ Expr *pRet = sqlite3PExpr(pParse, TK_ROW, 0, 0); if( pRet ) pRet->iColumn = iCol+1; return pRet; } /* ** Assuming both the pLimit and pOrderBy parameters are NULL, this function ** generates VM code to run the query: ** ** SELECT , pChanges FROM pTabList WHERE pWhere ** ** and write the results to the ephemeral table already opened as cursor ** iEph. None of pChanges, pTabList or pWhere are modified or consumed by ** this function, they must be deleted by the caller. ** ** Or, if pLimit and pOrderBy are not NULL, and pTab is not a view: ** ** SELECT , pChanges FROM pTabList ** WHERE pWhere ** GROUP BY ** ORDER BY pOrderBy LIMIT pLimit ** ** If pTab is a view, the GROUP BY clause is omitted. ** ** Exactly how results are written to table iEph, and exactly what ** the in the query above are is determined by the type ** of table pTabList->a[0].pTab. ** ** If the table is a WITHOUT ROWID table, then argument pPk must be its ** PRIMARY KEY. In this case are the primary key columns ** of the table, in order. The results of the query are written to ephemeral ** table iEph as index keys, using OP_IdxInsert. ** ** If the table is actually a view, then are all columns of ** the view. The results are written to the ephemeral table iEph as records ** with automatically assigned integer keys. ** ** If the table is a virtual or ordinary intkey table, then ** is its rowid. For a virtual table, the results are written to iEph as ** records with automatically assigned integer keys For intkey tables, the ** rowid value in is used as the integer key, and the ** remaining fields make up the table record. */ static void updateFromSelect( Parse *pParse, /* Parse context */ int iEph, /* Cursor for open eph. table */ Index *pPk, /* PK if table 0 is WITHOUT ROWID */ ExprList *pChanges, /* List of expressions to return */ SrcList *pTabList, /* List of tables to select from */ Expr *pWhere, /* WHERE clause for query */ ExprList *pOrderBy, /* ORDER BY clause */ Expr *pLimit /* LIMIT clause */ ){ int i; SelectDest dest; Select *pSelect = 0; ExprList *pList = 0; ExprList *pGrp = 0; Expr *pLimit2 = 0; ExprList *pOrderBy2 = 0; sqlite3 *db = pParse->db; Table *pTab = pTabList->a[0].pTab; SrcList *pSrc; Expr *pWhere2; int eDest; #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( pOrderBy && pLimit==0 ) { sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on UPDATE"); return; } pOrderBy2 = sqlite3ExprListDup(db, pOrderBy, 0); pLimit2 = sqlite3ExprDup(db, pLimit, 0); #else UNUSED_PARAMETER(pOrderBy); UNUSED_PARAMETER(pLimit); #endif pSrc = sqlite3SrcListDup(db, pTabList, 0); pWhere2 = sqlite3ExprDup(db, pWhere, 0); assert( pTabList->nSrc>1 ); if( pSrc ){ assert( pSrc->a[0].fg.notCte ); pSrc->a[0].iCursor = -1; pSrc->a[0].pTab->nTabRef--; pSrc->a[0].pTab = 0; } if( pPk ){ for(i=0; inKeyCol; i++){ Expr *pNew = exprRowColumn(pParse, pPk->aiColumn[i]); #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( pLimit ){ pGrp = sqlite3ExprListAppend(pParse, pGrp, sqlite3ExprDup(db, pNew, 0)); } #endif pList = sqlite3ExprListAppend(pParse, pList, pNew); } eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom; }else if( IsView(pTab) ){ for(i=0; inCol; i++){ pList = sqlite3ExprListAppend(pParse, pList, exprRowColumn(pParse, i)); } eDest = SRT_Table; }else{ eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom; pList = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0)); #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( pLimit ){ pGrp = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0)); } #endif } assert( pChanges!=0 || pParse->db->mallocFailed ); if( pChanges ){ for(i=0; inExpr; i++){ pList = sqlite3ExprListAppend(pParse, pList, sqlite3ExprDup(db, pChanges->a[i].pExpr, 0) ); } } pSelect = sqlite3SelectNew(pParse, pList, pSrc, pWhere2, pGrp, 0, pOrderBy2, SF_UFSrcCheck|SF_IncludeHidden|SF_UpdateFrom, pLimit2 ); if( pSelect ) pSelect->selFlags |= SF_OrderByReqd; sqlite3SelectDestInit(&dest, eDest, iEph); dest.iSDParm2 = (pPk ? pPk->nKeyCol : -1); sqlite3Select(pParse, pSelect, &dest); sqlite3SelectDelete(db, pSelect); } /* ** Process an UPDATE statement. ** ** UPDATE OR IGNORE tbl SET a=b, c=d FROM tbl2... WHERE e<5 AND f NOT NULL; ** \_______/ \_/ \______/ \_____/ \________________/ ** onError | pChanges | pWhere ** \_______________________/ ** pTabList */ SQLITE_PRIVATE void sqlite3Update( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table in which we should change things */ ExprList *pChanges, /* Things to be changed */ Expr *pWhere, /* The WHERE clause. May be null */ int onError, /* How to handle constraint errors */ ExprList *pOrderBy, /* ORDER BY clause. May be null */ Expr *pLimit, /* LIMIT clause. May be null */ Upsert *pUpsert /* ON CONFLICT clause, or null */ ){ int i, j, k; /* Loop counters */ Table *pTab; /* The table to be updated */ int addrTop = 0; /* VDBE instruction address of the start of the loop */ WhereInfo *pWInfo = 0; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ Index *pPk; /* The PRIMARY KEY index for WITHOUT ROWID tables */ int nIdx; /* Number of indices that need updating */ int nAllIdx; /* Total number of indexes */ int iBaseCur; /* Base cursor number */ int iDataCur; /* Cursor for the canonical data btree */ int iIdxCur; /* Cursor for the first index */ sqlite3 *db; /* The database structure */ int *aRegIdx = 0; /* Registers for to each index and the main table */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ u8 *aToOpen; /* 1 for tables and indices to be opened */ u8 chngPk; /* PRIMARY KEY changed in a WITHOUT ROWID table */ u8 chngRowid; /* Rowid changed in a normal table */ u8 chngKey; /* Either chngPk or chngRowid */ Expr *pRowidExpr = 0; /* Expression defining the new record number */ int iRowidExpr = -1; /* Index of "rowid=" (or IPK) assignment in pChanges */ AuthContext sContext; /* The authorization context */ NameContext sNC; /* The name-context to resolve expressions in */ int iDb; /* Database containing the table being updated */ int eOnePass; /* ONEPASS_XXX value from where.c */ int hasFK; /* True if foreign key processing is required */ int labelBreak; /* Jump here to break out of UPDATE loop */ int labelContinue; /* Jump here to continue next step of UPDATE loop */ int flags; /* Flags for sqlite3WhereBegin() */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True when updating a view (INSTEAD OF trigger) */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ #endif int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ int iEph = 0; /* Ephemeral table holding all primary key values */ int nKey = 0; /* Number of elements in regKey for WITHOUT ROWID */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ int addrOpen = 0; /* Address of OP_OpenEphemeral */ int iPk = 0; /* First of nPk cells holding PRIMARY KEY value */ i16 nPk = 0; /* Number of components of the PRIMARY KEY */ int bReplace = 0; /* True if REPLACE conflict resolution might happen */ int bFinishSeek = 1; /* The OP_FinishSeek opcode is needed */ int nChangeFrom = 0; /* If there is a FROM, pChanges->nExpr, else 0 */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid = 0; /* The old rowid */ int regNewRowid = 0; /* The new rowid */ int regNew = 0; /* Content of the NEW.* table in triggers */ int regOld = 0; /* Content of OLD.* table in triggers */ int regRowSet = 0; /* Rowset of rows to be updated */ int regKey = 0; /* composite PRIMARY KEY value */ memset(&sContext, 0, sizeof(sContext)); db = pParse->db; assert( db->pParse==pParse ); if( pParse->nErr ){ goto update_cleanup; } assert( db->mallocFailed==0 ); /* Locate the table which we want to update. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto update_cleanup; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); /* Figure out if we have any triggers and if the table being ** updated is a view. */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask); isView = IsView(pTab); assert( pTrigger || tmask==0 ); #else # define pTrigger 0 # define isView 0 # define tmask 0 #endif #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x10000 ){ sqlite3TreeViewLine(0, "In sqlite3Update() at %s:%d", __FILE__, __LINE__); sqlite3TreeViewUpdate(pParse->pWith, pTabList, pChanges, pWhere, onError, pOrderBy, pLimit, pUpsert, pTrigger); } #endif /* If there was a FROM clause, set nChangeFrom to the number of expressions ** in the change-list. Otherwise, set it to 0. There cannot be a FROM ** clause if this function is being called to generate code for part of ** an UPSERT statement. */ nChangeFrom = (pTabList->nSrc>1) ? pChanges->nExpr : 0; assert( nChangeFrom==0 || pUpsert==0 ); #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT if( !isView && nChangeFrom==0 ){ pWhere = sqlite3LimitWhere( pParse, pTabList, pWhere, pOrderBy, pLimit, "UPDATE" ); pOrderBy = 0; pLimit = 0; } #endif if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto update_cleanup; } if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ goto update_cleanup; } /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ iBaseCur = iDataCur = pParse->nTab++; iIdxCur = iDataCur+1; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); testcase( pPk!=0 && pPk!=pTab->pIndex ); for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ if( pPk==pIdx ){ iDataCur = pParse->nTab; } pParse->nTab++; } if( pUpsert ){ /* On an UPSERT, reuse the same cursors already opened by INSERT */ iDataCur = pUpsert->iDataCur; iIdxCur = pUpsert->iIdxCur; pParse->nTab = iBaseCur; } pTabList->a[0].iCursor = iDataCur; /* Allocate space for aXRef[], aRegIdx[], and aToOpen[]. ** Initialize aXRef[] and aToOpen[] to their default values. */ aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx+1) + nIdx+2 ); if( aXRef==0 ) goto update_cleanup; aRegIdx = aXRef+pTab->nCol; aToOpen = (u8*)(aRegIdx+nIdx+1); memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; for(i=0; inCol; i++) aXRef[i] = -1; /* Initialize the name-context */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; sNC.uNC.pUpsert = pUpsert; sNC.ncFlags = NC_UUpsert; /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; /* Resolve the column names in all the expressions of the ** of the UPDATE statement. Also find the column index ** for each column to be updated in the pChanges array. For each ** column to be updated, make sure we have authorization to change ** that column. */ chngRowid = chngPk = 0; for(i=0; inExpr; i++){ u8 hCol = sqlite3StrIHash(pChanges->a[i].zEName); /* If this is an UPDATE with a FROM clause, do not resolve expressions ** here. The call to sqlite3Select() below will do that. */ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){ goto update_cleanup; } for(j=0; jnCol; j++){ if( pTab->aCol[j].hName==hCol && sqlite3StrICmp(pTab->aCol[j].zCnName, pChanges->a[i].zEName)==0 ){ if( j==pTab->iPKey ){ chngRowid = 1; pRowidExpr = pChanges->a[i].pExpr; iRowidExpr = i; }else if( pPk && (pTab->aCol[j].colFlags & COLFLAG_PRIMKEY)!=0 ){ chngPk = 1; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS else if( pTab->aCol[j].colFlags & COLFLAG_GENERATED ){ testcase( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ); testcase( pTab->aCol[j].colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "cannot UPDATE generated column \"%s\"", pTab->aCol[j].zCnName); goto update_cleanup; } #endif aXRef[j] = i; break; } } if( j>=pTab->nCol ){ if( pPk==0 && sqlite3IsRowid(pChanges->a[i].zEName) ){ j = -1; chngRowid = 1; pRowidExpr = pChanges->a[i].pExpr; iRowidExpr = i; }else{ sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zEName); pParse->checkSchema = 1; goto update_cleanup; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int rc; rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, j<0 ? "ROWID" : pTab->aCol[j].zCnName, db->aDb[iDb].zDbSName); if( rc==SQLITE_DENY ){ goto update_cleanup; }else if( rc==SQLITE_IGNORE ){ aXRef[j] = -1; } } #endif } assert( (chngRowid & chngPk)==0 ); assert( chngRowid==0 || chngRowid==1 ); assert( chngPk==0 || chngPk==1 ); chngKey = chngRowid + chngPk; #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Mark generated columns as changing if their generator expressions ** reference any changing column. The actual aXRef[] value for ** generated expressions is not used, other than to check to see that it ** is non-negative, so the value of aXRef[] for generated columns can be ** set to any non-negative number. We use 99999 so that the value is ** obvious when looking at aXRef[] in a symbolic debugger. */ if( pTab->tabFlags & TF_HasGenerated ){ int bProgress; testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); do{ bProgress = 0; for(i=0; inCol; i++){ if( aXRef[i]>=0 ) continue; if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ) continue; if( sqlite3ExprReferencesUpdatedColumn( sqlite3ColumnExpr(pTab, &pTab->aCol[i]), aXRef, chngRowid) ){ aXRef[i] = 99999; bProgress = 1; } } }while( bProgress ); } #endif /* The SET expressions are not actually used inside the WHERE loop. ** So reset the colUsed mask. Unless this is a virtual table. In that ** case, set all bits of the colUsed mask (to ensure that the virtual ** table implementation makes all columns available). */ pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0; hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey); /* There is one entry in the aRegIdx[] array for each index on the table ** being updated. Fill in aRegIdx[] with a register number that will hold ** the key for accessing each index. */ if( onError==OE_Replace ) bReplace = 1; for(nAllIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nAllIdx++){ int reg; if( chngKey || hasFK>1 || pIdx==pPk || indexWhereClauseMightChange(pIdx,aXRef,chngRowid) ){ reg = ++pParse->nMem; pParse->nMem += pIdx->nColumn; }else{ reg = 0; for(i=0; inKeyCol; i++){ if( indexColumnIsBeingUpdated(pIdx, i, aXRef, chngRowid) ){ reg = ++pParse->nMem; pParse->nMem += pIdx->nColumn; if( onError==OE_Default && pIdx->onError==OE_Replace ){ bReplace = 1; } break; } } } if( reg==0 ) aToOpen[nAllIdx+1] = 0; aRegIdx[nAllIdx] = reg; } aRegIdx[nAllIdx] = ++pParse->nMem; /* Register storing the table record */ if( bReplace ){ /* If REPLACE conflict resolution might be invoked, open cursors on all ** indexes in case they are needed to delete records. */ memset(aToOpen, 1, nIdx+1); } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pTrigger || hasFK, iDb); /* Allocate required registers. */ if( !IsVirtual(pTab) ){ /* For now, regRowSet and aRegIdx[nAllIdx] share the same register. ** If regRowSet turns out to be needed, then aRegIdx[nAllIdx] will be ** reallocated. aRegIdx[nAllIdx] is the register in which the main ** table record is written. regRowSet holds the RowSet for the ** two-pass update algorithm. */ assert( aRegIdx[nAllIdx]==pParse->nMem ); regRowSet = aRegIdx[nAllIdx]; regOldRowid = regNewRowid = ++pParse->nMem; if( chngPk || pTrigger || hasFK ){ regOld = pParse->nMem + 1; pParse->nMem += pTab->nCol; } if( chngKey || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; } regNew = pParse->nMem + 1; pParse->nMem += pTab->nCol; } /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If we are trying to update a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( nChangeFrom==0 && isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, pOrderBy, pLimit, iDataCur ); pOrderBy = 0; pLimit = 0; } #endif /* Resolve the column names in all the expressions in the ** WHERE clause. */ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Virtual tables must be handled separately */ if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere, onError); goto update_cleanup; } #endif /* Jump to labelBreak to abandon further processing of this UPDATE */ labelContinue = labelBreak = sqlite3VdbeMakeLabel(pParse); /* Not an UPSERT. Normal processing. Begin by ** initialize the count of updated rows */ if( (db->flags&SQLITE_CountRows)!=0 && !pParse->pTriggerTab && !pParse->nested && !pParse->bReturning && pUpsert==0 ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } if( nChangeFrom==0 && HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); iEph = pParse->nTab++; addrOpen = sqlite3VdbeAddOp3(v, OP_OpenEphemeral, iEph, 0, regRowSet); }else{ assert( pPk!=0 || HasRowid(pTab) ); nPk = pPk ? pPk->nKeyCol : 0; iPk = pParse->nMem+1; pParse->nMem += nPk; pParse->nMem += nChangeFrom; regKey = ++pParse->nMem; if( pUpsert==0 ){ int nEphCol = nPk + nChangeFrom + (isView ? pTab->nCol : 0); iEph = pParse->nTab++; if( pPk ) sqlite3VdbeAddOp3(v, OP_Null, 0, iPk, iPk+nPk-1); addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nEphCol); if( pPk ){ KeyInfo *pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pPk); if( pKeyInfo ){ pKeyInfo->nAllField = nEphCol; sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); } } if( nChangeFrom ){ updateFromSelect( pParse, iEph, pPk, pChanges, pTabList, pWhere, pOrderBy, pLimit ); #ifndef SQLITE_OMIT_SUBQUERY if( isView ) iDataCur = iEph; #endif } } } if( nChangeFrom ){ sqlite3MultiWrite(pParse); eOnePass = ONEPASS_OFF; nKey = nPk; regKey = iPk; }else{ if( pUpsert ){ /* If this is an UPSERT, then all cursors have already been opened by ** the outer INSERT and the data cursor should be pointing at the row ** that is to be updated. So bypass the code that searches for the ** row(s) to be updated. */ pWInfo = 0; eOnePass = ONEPASS_SINGLE; sqlite3ExprIfFalse(pParse, pWhere, labelBreak, SQLITE_JUMPIFNULL); bFinishSeek = 0; }else{ /* Begin the database scan. ** ** Do not consider a single-pass strategy for a multi-row update if ** there is anything that might disrupt the cursor being used to do ** the UPDATE: ** (1) This is a nested UPDATE ** (2) There are triggers ** (3) There are FOREIGN KEY constraints ** (4) There are REPLACE conflict handlers ** (5) There are subqueries in the WHERE clause */ flags = WHERE_ONEPASS_DESIRED; if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace && (pWhere==0 || !ExprHasProperty(pWhere, EP_Subquery)) ){ flags |= WHERE_ONEPASS_MULTIROW; } pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,0,0,flags,iIdxCur); if( pWInfo==0 ) goto update_cleanup; /* A one-pass strategy that might update more than one row may not ** be used if any column of the index used for the scan is being ** updated. Otherwise, if there is an index on "b", statements like ** the following could create an infinite loop: ** ** UPDATE t1 SET b=b+1 WHERE b>? ** ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI ** strategy that uses an index for which one or more columns are being ** updated. */ eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); bFinishSeek = sqlite3WhereUsesDeferredSeek(pWInfo); if( eOnePass!=ONEPASS_SINGLE ){ sqlite3MultiWrite(pParse); if( eOnePass==ONEPASS_MULTI ){ int iCur = aiCurOnePass[1]; if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){ eOnePass = ONEPASS_OFF; } assert( iCur!=iDataCur || !HasRowid(pTab) ); } } } if( HasRowid(pTab) ){ /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF ** mode, write the rowid into the FIFO. In either of the one-pass modes, ** leave it in register regOldRowid. */ sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid); if( eOnePass==ONEPASS_OFF ){ aRegIdx[nAllIdx] = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_Insert, iEph, regRowSet, regOldRowid); }else{ if( ALWAYS(addrOpen) ) sqlite3VdbeChangeToNoop(v, addrOpen); } }else{ /* Read the PK of the current row into an array of registers. In ** ONEPASS_OFF mode, serialize the array into a record and store it in ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table ** is not required) and leave the PK fields in the array of registers. */ for(i=0; iaiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, pPk->aiColumn[i], iPk+i); } if( eOnePass ){ if( addrOpen ) sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, sqlite3IndexAffinityStr(db, pPk), nPk); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk); } } } if( pUpsert==0 ){ if( nChangeFrom==0 && eOnePass!=ONEPASS_MULTI ){ sqlite3WhereEnd(pWInfo); } if( !isView ){ int addrOnce = 0; int iNotUsed1 = 0; int iNotUsed2 = 0; /* Open every index that needs updating. */ if( eOnePass!=ONEPASS_OFF ){ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0; } if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen, &iNotUsed1, &iNotUsed2); if( addrOnce ){ sqlite3VdbeJumpHereOrPopInst(v, addrOnce); } } /* Top of the update loop */ if( eOnePass!=ONEPASS_OFF ){ if( aiCurOnePass[0]!=iDataCur && aiCurOnePass[1]!=iDataCur #ifdef SQLITE_ALLOW_ROWID_IN_VIEW && !isView #endif ){ assert( pPk ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey,nKey); VdbeCoverage(v); } if( eOnePass!=ONEPASS_SINGLE ){ labelContinue = sqlite3VdbeMakeLabel(pParse); } sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); }else if( pPk || nChangeFrom ){ labelContinue = sqlite3VdbeMakeLabel(pParse); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeCurrentAddr(v); if( nChangeFrom ){ if( !isView ){ if( pPk ){ for(i=0; i=0 ); if( nChangeFrom==0 ){ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); }else{ sqlite3VdbeAddOp3(v, OP_Column, iEph, iRowidExpr, regNewRowid); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v); } /* Compute the old pre-UPDATE content of the row being changed, if that ** information is needed */ if( chngPk || hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError ); for(i=0; inCol; i++){ u32 colFlags = pTab->aCol[i].colFlags; k = sqlite3TableColumnToStorage(pTab, i) + regOld; if( oldmask==0xffffffff || (i<32 && (oldmask & MASKBIT32(i))!=0) || (colFlags & COLFLAG_PRIMKEY)!=0 ){ testcase( oldmask!=0xffffffff && i==31 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, k); } } if( chngRowid==0 && pPk==0 ){ #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( isView ) sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid); #endif sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); } } /* Populate the array of registers beginning at regNew with the new ** row data. This array is used to check constants, create the new ** table and index records, and as the values for any new.* references ** made by triggers. ** ** If there are one or more BEFORE triggers, then do not populate the ** registers associated with columns that are (a) not modified by ** this UPDATE statement and (b) not accessed by new.* references. The ** values for registers not modified by the UPDATE must be reloaded from ** the database after the BEFORE triggers are fired anyway (as the trigger ** may have modified them). So not loading those that are not going to ** be used eliminates some redundant opcodes. */ newmask = sqlite3TriggerColmask( pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError ); for(i=0, k=regNew; inCol; i++, k++){ if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, k); }else if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)!=0 ){ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--; }else{ j = aXRef[i]; if( j>=0 ){ if( nChangeFrom ){ int nOff = (isView ? pTab->nCol : nPk); assert( eOnePass==ONEPASS_OFF ); sqlite3VdbeAddOp3(v, OP_Column, iEph, nOff+j, k); }else{ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, k); } }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){ /* This branch loads the value of a column that will not be changed ** into a register. This is done if there are no BEFORE triggers, or ** if there are one or more BEFORE triggers that use this value via ** a new.* reference in a trigger program. */ testcase( i==31 ); testcase( i==32 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k); bFinishSeek = 0; }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, k); } } } #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pTab->tabFlags & TF_HasGenerated ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); sqlite3ComputeGeneratedColumns(pParse, regNew, pTab); } #endif /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( tmask&TRIGGER_BEFORE ){ sqlite3TableAffinity(v, pTab, regNew); sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue); if( !isView ){ /* The row-trigger may have deleted the row being updated. In this ** case, jump to the next row. No updates or AFTER triggers are ** required. This behavior - what happens when the row being updated ** is deleted or renamed by a BEFORE trigger - is left undefined in the ** documentation. */ if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid); VdbeCoverage(v); } /* After-BEFORE-trigger-reload-loop: ** If it did not delete it, the BEFORE trigger may still have modified ** some of the columns of the row being updated. Load the values for ** all columns not modified by the update statement into their registers ** in case this has happened. Only unmodified columns are reloaded. ** The values computed for modified columns use the values before the ** BEFORE trigger runs. See test case trigger1-18.0 (added 2018-04-26) ** for an example. */ for(i=0, k=regNew; inCol; i++, k++){ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--; }else if( aXRef[i]<0 && i!=pTab->iPKey ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k); } } #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pTab->tabFlags & TF_HasGenerated ){ testcase( pTab->tabFlags & TF_HasVirtual ); testcase( pTab->tabFlags & TF_HasStored ); sqlite3ComputeGeneratedColumns(pParse, regNew, pTab); } #endif } } if( !isView ){ /* Do constraint checks. */ assert( regOldRowid>0 ); sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace, aXRef, 0); /* If REPLACE conflict handling may have been used, or if the PK of the ** row is changing, then the GenerateConstraintChecks() above may have ** moved cursor iDataCur. Reseek it. */ if( bReplace || chngKey ){ if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid); } VdbeCoverage(v); } /* Do FK constraint checks. */ if( hasFK ){ sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey); } /* Delete the index entries associated with the current record. */ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx, -1); /* We must run the OP_FinishSeek opcode to resolve a prior ** OP_DeferredSeek if there is any possibility that there have been ** no OP_Column opcodes since the OP_DeferredSeek was issued. But ** we want to avoid the OP_FinishSeek if possible, as running it ** costs CPU cycles. */ if( bFinishSeek ){ sqlite3VdbeAddOp1(v, OP_FinishSeek, iDataCur); } /* If changing the rowid value, or if there are foreign key constraints ** to process, delete the old record. Otherwise, add a noop OP_Delete ** to invoke the pre-update hook. ** ** That (regNew==regnewRowid+1) is true is also important for the ** pre-update hook. If the caller invokes preupdate_new(), the returned ** value is copied from memory cell (regNewRowid+1+iCol), where iCol ** is the column index supplied by the user. */ assert( regNew==regNewRowid+1 ); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeAddOp3(v, OP_Delete, iDataCur, OPFLAG_ISUPDATE | ((hasFK>1 || chngKey) ? 0 : OPFLAG_ISNOOP), regNewRowid ); if( eOnePass==ONEPASS_MULTI ){ assert( hasFK==0 && chngKey==0 ); sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); } if( !pParse->nested ){ sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } #else if( hasFK>1 || chngKey ){ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0); } #endif if( hasFK ){ sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey); } /* Insert the new index entries and the new record. */ sqlite3CompleteInsertion( pParse, pTab, iDataCur, iIdxCur, regNewRowid, aRegIdx, OPFLAG_ISUPDATE | (eOnePass==ONEPASS_MULTI ? OPFLAG_SAVEPOSITION : 0), 0, 0 ); /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just updated. */ if( hasFK ){ sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey); } } /* Increment the row counter */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue); } /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( eOnePass==ONEPASS_SINGLE ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( eOnePass==ONEPASS_MULTI ){ sqlite3VdbeResolveLabel(v, labelContinue); sqlite3WhereEnd(pWInfo); }else{ sqlite3VdbeResolveLabel(v, labelContinue); sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, labelBreak); /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 && pUpsert==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows that were changed, if we are tracking ** that information. */ if( regRowCount ){ sqlite3CodeChangeCount(v, regRowCount, "rows updated"); } update_cleanup: sqlite3AuthContextPop(&sContext); sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */ sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pChanges); sqlite3ExprDelete(db, pWhere); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) sqlite3ExprListDelete(db, pOrderBy); sqlite3ExprDelete(db, pLimit); #endif return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Generate code for an UPDATE of a virtual table. ** ** There are two possible strategies - the default and the special ** "onepass" strategy. Onepass is only used if the virtual table ** implementation indicates that pWhere may match at most one row. ** ** The default strategy is to create an ephemeral table that contains ** for each row to be changed: ** ** (A) The original rowid of that row. ** (B) The revised rowid for the row. ** (C) The content of every column in the row. ** ** Then loop through the contents of this ephemeral table executing a ** VUpdate for each row. When finished, drop the ephemeral table. ** ** The "onepass" strategy does not use an ephemeral table. Instead, it ** stores the same values (A, B and C above) in a register array and ** makes a single invocation of VUpdate. */ static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowid, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ Expr *pWhere, /* WHERE clause of the UPDATE statement */ int onError /* ON CONFLICT strategy */ ){ Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */ int ephemTab; /* Table holding the result of the SELECT */ int i; /* Loop counter */ sqlite3 *db = pParse->db; /* Database connection */ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab); WhereInfo *pWInfo = 0; int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */ int regArg; /* First register in VUpdate arg array */ int regRec; /* Register in which to assemble record */ int regRowid; /* Register for ephemeral table rowid */ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */ int eOnePass; /* True to use onepass strategy */ int addr; /* Address of OP_OpenEphemeral */ /* Allocate nArg registers in which to gather the arguments for VUpdate. Then ** create and open the ephemeral table in which the records created from ** these arguments will be temporarily stored. */ assert( v ); ephemTab = pParse->nTab++; addr= sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, nArg); regArg = pParse->nMem + 1; pParse->nMem += nArg; if( pSrc->nSrc>1 ){ Index *pPk = 0; Expr *pRow; ExprList *pList; if( HasRowid(pTab) ){ if( pRowid ){ pRow = sqlite3ExprDup(db, pRowid, 0); }else{ pRow = sqlite3PExpr(pParse, TK_ROW, 0, 0); } }else{ i16 iPk; /* PRIMARY KEY column */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->nKeyCol==1 ); iPk = pPk->aiColumn[0]; if( aXRef[iPk]>=0 ){ pRow = sqlite3ExprDup(db, pChanges->a[aXRef[iPk]].pExpr, 0); }else{ pRow = exprRowColumn(pParse, iPk); } } pList = sqlite3ExprListAppend(pParse, 0, pRow); for(i=0; inCol; i++){ if( aXRef[i]>=0 ){ pList = sqlite3ExprListAppend(pParse, pList, sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0) ); }else{ Expr *pRowExpr = exprRowColumn(pParse, i); if( pRowExpr ) pRowExpr->op2 = OPFLAG_NOCHNG; pList = sqlite3ExprListAppend(pParse, pList, pRowExpr); } } updateFromSelect(pParse, ephemTab, pPk, pList, pSrc, pWhere, 0, 0); sqlite3ExprListDelete(db, pList); eOnePass = ONEPASS_OFF; }else{ regRec = ++pParse->nMem; regRowid = ++pParse->nMem; /* Start scanning the virtual table */ pWInfo = sqlite3WhereBegin( pParse, pSrc, pWhere, 0, 0, 0, WHERE_ONEPASS_DESIRED, 0 ); if( pWInfo==0 ) return; /* Populate the argument registers. */ for(i=0; inCol; i++){ assert( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ); if( aXRef[i]>=0 ){ sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i); }else{ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i); sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG);/* For sqlite3_vtab_nochange() */ } } if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg); if( pRowid ){ sqlite3ExprCode(pParse, pRowid, regArg+1); }else{ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg+1); } }else{ Index *pPk; /* PRIMARY KEY index */ i16 iPk; /* PRIMARY KEY column */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->nKeyCol==1 ); iPk = pPk->aiColumn[0]; sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg); sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1); } eOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy); /* There is no ONEPASS_MULTI on virtual tables */ assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE ); if( eOnePass ){ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded ** above. */ sqlite3VdbeChangeToNoop(v, addr); sqlite3VdbeAddOp1(v, OP_Close, iCsr); }else{ /* Create a record from the argument register contents and insert it into ** the ephemeral table. */ sqlite3MultiWrite(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec); #if defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_NULL_TRIM) /* Signal an assert() within OP_MakeRecord that it is allowed to ** accept no-change records with serial_type 10 */ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); #endif sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid); } } if( eOnePass==ONEPASS_OFF ){ /* End the virtual table scan */ if( pSrc->nSrc==1 ){ sqlite3WhereEnd(pWInfo); } /* Begin scanning through the ephemeral table. */ addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v); /* Extract arguments from the current row of the ephemeral table and ** invoke the VUpdate method. */ for(i=0; ipNextUpsert; sqlite3ExprListDelete(db, p->pUpsertTarget); sqlite3ExprDelete(db, p->pUpsertTargetWhere); sqlite3ExprListDelete(db, p->pUpsertSet); sqlite3ExprDelete(db, p->pUpsertWhere); sqlite3DbFree(db, p->pToFree); sqlite3DbFree(db, p); p = pNext; }while( p ); } SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){ if( p ) upsertDelete(db, p); } /* ** Duplicate an Upsert object. */ SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){ if( p==0 ) return 0; return sqlite3UpsertNew(db, sqlite3ExprListDup(db, p->pUpsertTarget, 0), sqlite3ExprDup(db, p->pUpsertTargetWhere, 0), sqlite3ExprListDup(db, p->pUpsertSet, 0), sqlite3ExprDup(db, p->pUpsertWhere, 0), sqlite3UpsertDup(db, p->pNextUpsert) ); } /* ** Create a new Upsert object. */ SQLITE_PRIVATE Upsert *sqlite3UpsertNew( sqlite3 *db, /* Determines which memory allocator to use */ ExprList *pTarget, /* Target argument to ON CONFLICT, or NULL */ Expr *pTargetWhere, /* Optional WHERE clause on the target */ ExprList *pSet, /* UPDATE columns, or NULL for a DO NOTHING */ Expr *pWhere, /* WHERE clause for the ON CONFLICT UPDATE */ Upsert *pNext /* Next ON CONFLICT clause in the list */ ){ Upsert *pNew; pNew = sqlite3DbMallocZero(db, sizeof(Upsert)); if( pNew==0 ){ sqlite3ExprListDelete(db, pTarget); sqlite3ExprDelete(db, pTargetWhere); sqlite3ExprListDelete(db, pSet); sqlite3ExprDelete(db, pWhere); sqlite3UpsertDelete(db, pNext); return 0; }else{ pNew->pUpsertTarget = pTarget; pNew->pUpsertTargetWhere = pTargetWhere; pNew->pUpsertSet = pSet; pNew->pUpsertWhere = pWhere; pNew->isDoUpdate = pSet!=0; pNew->pNextUpsert = pNext; } return pNew; } /* ** Analyze the ON CONFLICT clause described by pUpsert. Resolve all ** symbols in the conflict-target. ** ** Return SQLITE_OK if everything works, or an error code is something ** is wrong. */ SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget( Parse *pParse, /* The parsing context */ SrcList *pTabList, /* Table into which we are inserting */ Upsert *pUpsert, /* The ON CONFLICT clauses */ Upsert *pAll /* Complete list of all ON CONFLICT clauses */ ){ Table *pTab; /* That table into which we are inserting */ int rc; /* Result code */ int iCursor; /* Cursor used by pTab */ Index *pIdx; /* One of the indexes of pTab */ ExprList *pTarget; /* The conflict-target clause */ Expr *pTerm; /* One term of the conflict-target clause */ NameContext sNC; /* Context for resolving symbolic names */ Expr sCol[2]; /* Index column converted into an Expr */ int nClause = 0; /* Counter of ON CONFLICT clauses */ assert( pTabList->nSrc==1 ); assert( pTabList->a[0].pTab!=0 ); assert( pUpsert!=0 ); assert( pUpsert->pUpsertTarget!=0 ); /* Resolve all symbolic names in the conflict-target clause, which ** includes both the list of columns and the optional partial-index ** WHERE clause. */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; for(; pUpsert && pUpsert->pUpsertTarget; pUpsert=pUpsert->pNextUpsert, nClause++){ rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget); if( rc ) return rc; rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere); if( rc ) return rc; /* Check to see if the conflict target matches the rowid. */ pTab = pTabList->a[0].pTab; pTarget = pUpsert->pUpsertTarget; iCursor = pTabList->a[0].iCursor; if( HasRowid(pTab) && pTarget->nExpr==1 && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN && pTerm->iColumn==XN_ROWID ){ /* The conflict-target is the rowid of the primary table */ assert( pUpsert->pUpsertIdx==0 ); continue; } /* Initialize sCol[0..1] to be an expression parse tree for a ** single column of an index. The sCol[0] node will be the TK_COLLATE ** operator and sCol[1] will be the TK_COLUMN operator. Code below ** will populate the specific collation and column number values ** prior to comparing against the conflict-target expression. */ memset(sCol, 0, sizeof(sCol)); sCol[0].op = TK_COLLATE; sCol[0].pLeft = &sCol[1]; sCol[1].op = TK_COLUMN; sCol[1].iTable = pTabList->a[0].iCursor; /* Check for matches against other indexes */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int ii, jj, nn; if( !IsUniqueIndex(pIdx) ) continue; if( pTarget->nExpr!=pIdx->nKeyCol ) continue; if( pIdx->pPartIdxWhere ){ if( pUpsert->pUpsertTargetWhere==0 ) continue; if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere, pIdx->pPartIdxWhere, iCursor)!=0 ){ continue; } } nn = pIdx->nKeyCol; for(ii=0; iiazColl[ii]; if( pIdx->aiColumn[ii]==XN_EXPR ){ assert( pIdx->aColExpr!=0 ); assert( pIdx->aColExpr->nExpr>ii ); assert( pIdx->bHasExpr ); pExpr = pIdx->aColExpr->a[ii].pExpr; if( pExpr->op!=TK_COLLATE ){ sCol[0].pLeft = pExpr; pExpr = &sCol[0]; } }else{ sCol[0].pLeft = &sCol[1]; sCol[1].iColumn = pIdx->aiColumn[ii]; pExpr = &sCol[0]; } for(jj=0; jja[jj].pExpr,pExpr,iCursor)<2 ){ break; /* Column ii of the index matches column jj of target */ } } if( jj>=nn ){ /* The target contains no match for column jj of the index */ break; } } if( iipUpsertIdx = pIdx; if( sqlite3UpsertOfIndex(pAll,pIdx)!=pUpsert ){ /* Really this should be an error. The isDup ON CONFLICT clause will ** never fire. But this problem was not discovered until three years ** after multi-CONFLICT upsert was added, and so we silently ignore ** the problem to prevent breaking applications that might actually ** have redundant ON CONFLICT clauses. */ pUpsert->isDup = 1; } break; } if( pUpsert->pUpsertIdx==0 ){ char zWhich[16]; if( nClause==0 && pUpsert->pNextUpsert==0 ){ zWhich[0] = 0; }else{ sqlite3_snprintf(sizeof(zWhich),zWhich,"%r ", nClause+1); } sqlite3ErrorMsg(pParse, "%sON CONFLICT clause does not match any " "PRIMARY KEY or UNIQUE constraint", zWhich); return SQLITE_ERROR; } } return SQLITE_OK; } /* ** Return true if pUpsert is the last ON CONFLICT clause with a ** conflict target, or if pUpsert is followed by another ON CONFLICT ** clause that targets the INTEGER PRIMARY KEY. */ SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert *pUpsert){ Upsert *pNext; if( NEVER(pUpsert==0) ) return 0; pNext = pUpsert->pNextUpsert; while( 1 /*exit-by-return*/ ){ if( pNext==0 ) return 1; if( pNext->pUpsertTarget==0 ) return 1; if( pNext->pUpsertIdx==0 ) return 1; if( !pNext->isDup ) return 0; pNext = pNext->pNextUpsert; } return 0; } /* ** Given the list of ON CONFLICT clauses described by pUpsert, and ** a particular index pIdx, return a pointer to the particular ON CONFLICT ** clause that applies to the index. Or, if the index is not subject to ** any ON CONFLICT clause, return NULL. */ SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert *pUpsert, Index *pIdx){ while( pUpsert && pUpsert->pUpsertTarget!=0 && pUpsert->pUpsertIdx!=pIdx ){ pUpsert = pUpsert->pNextUpsert; } return pUpsert; } /* ** Generate bytecode that does an UPDATE as part of an upsert. ** ** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK. ** In this case parameter iCur is a cursor open on the table b-tree that ** currently points to the conflicting table row. Otherwise, if pIdx ** is not NULL, then pIdx is the constraint that failed and iCur is a ** cursor points to the conflicting row. */ SQLITE_PRIVATE void sqlite3UpsertDoUpdate( Parse *pParse, /* The parsing and code-generating context */ Upsert *pUpsert, /* The ON CONFLICT clause for the upsert */ Table *pTab, /* The table being updated */ Index *pIdx, /* The UNIQUE constraint that failed */ int iCur /* Cursor for pIdx (or pTab if pIdx==NULL) */ ){ Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; SrcList *pSrc; /* FROM clause for the UPDATE */ int iDataCur; int i; Upsert *pTop = pUpsert; assert( v!=0 ); assert( pUpsert!=0 ); iDataCur = pUpsert->iDataCur; pUpsert = sqlite3UpsertOfIndex(pTop, pIdx); VdbeNoopComment((v, "Begin DO UPDATE of UPSERT")); if( pIdx && iCur!=iDataCur ){ if( HasRowid(pTab) ){ int regRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid); sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regRowid); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); int nPk = pPk->nKeyCol; int iPk = pParse->nMem+1; pParse->nMem += nPk; for(i=0; iaiColumn[i]>=0 ); k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i); VdbeComment((v, "%s.%s", pIdx->zName, pTab->aCol[pPk->aiColumn[i]].zCnName)); } sqlite3VdbeVerifyAbortable(v, OE_Abort); i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, "corrupt database", P4_STATIC); sqlite3MayAbort(pParse); sqlite3VdbeJumpHere(v, i); } } /* pUpsert does not own pTop->pUpsertSrc - the outer INSERT statement does. ** So we have to make a copy before passing it down into sqlite3Update() */ pSrc = sqlite3SrcListDup(db, pTop->pUpsertSrc, 0); /* excluded.* columns of type REAL need to be converted to a hard real */ for(i=0; inCol; i++){ if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, pTop->regData+i); } } sqlite3Update(pParse, pSrc, sqlite3ExprListDup(db,pUpsert->pUpsertSet,0), sqlite3ExprDup(db,pUpsert->pUpsertWhere,0), OE_Abort, 0, 0, pUpsert); VdbeNoopComment((v, "End DO UPDATE of UPSERT")); } #endif /* SQLITE_OMIT_UPSERT */ /************** End of upsert.c **********************************************/ /************** Begin file vacuum.c ******************************************/ /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the VACUUM command. ** ** Most of the code in this file may be omitted by defining the ** SQLITE_OMIT_VACUUM macro. */ /* #include "sqliteInt.h" */ /* #include "vdbeInt.h" */ #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* ** Execute zSql on database db. ** ** If zSql returns rows, then each row will have exactly one ** column. (This will only happen if zSql begins with "SELECT".) ** Take each row of result and call execSql() again recursively. ** ** The execSqlF() routine does the same thing, except it accepts ** a format string as its third argument */ static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ sqlite3_stmt *pStmt; int rc; /* printf("SQL: [%s]\n", zSql); fflush(stdout); */ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0); assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 ); /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX, ** or INSERT. Historically there have been attacks that first ** corrupt the sqlite_schema.sql field with other kinds of statements ** then run VACUUM to get those statements to execute at inappropriate ** times. */ if( zSubSql && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0) ){ rc = execSql(db, pzErrMsg, zSubSql); if( rc!=SQLITE_OK ) break; } } assert( rc!=SQLITE_ROW ); if( rc==SQLITE_DONE ) rc = SQLITE_OK; if( rc ){ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); } (void)sqlite3_finalize(pStmt); return rc; } static int execSqlF(sqlite3 *db, char **pzErrMsg, const char *zSql, ...){ char *z; va_list ap; int rc; va_start(ap, zSql); z = sqlite3VMPrintf(db, zSql, ap); va_end(ap); if( z==0 ) return SQLITE_NOMEM; rc = execSql(db, pzErrMsg, z); sqlite3DbFree(db, z); return rc; } /* ** The VACUUM command is used to clean up the database, ** collapse free space, etc. It is modelled after the VACUUM command ** in PostgreSQL. The VACUUM command works as follows: ** ** (1) Create a new transient database file ** (2) Copy all content from the database being vacuumed into ** the new transient database file ** (3) Copy content from the transient database back into the ** original database. ** ** The transient database requires temporary disk space approximately ** equal to the size of the original database. The copy operation of ** step (3) requires additional temporary disk space approximately equal ** to the size of the original database for the rollback journal. ** Hence, temporary disk space that is approximately 2x the size of the ** original database is required. Every page of the database is written ** approximately 3 times: Once for step (2) and twice for step (3). ** Two writes per page are required in step (3) because the original ** database content must be written into the rollback journal prior to ** overwriting the database with the vacuumed content. ** ** Only 1x temporary space and only 1x writes would be required if ** the copy of step (3) were replaced by deleting the original database ** and renaming the transient database as the original. But that will ** not work if other processes are attached to the original database. ** And a power loss in between deleting the original and renaming the ** transient would cause the database file to appear to be deleted ** following reboot. */ SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse, Token *pNm, Expr *pInto){ Vdbe *v = sqlite3GetVdbe(pParse); int iDb = 0; if( v==0 ) goto build_vacuum_end; if( pParse->nErr ) goto build_vacuum_end; if( pNm ){ #ifndef SQLITE_BUG_COMPATIBLE_20160819 /* Default behavior: Report an error if the argument to VACUUM is ** not recognized */ iDb = sqlite3TwoPartName(pParse, pNm, pNm, &pNm); if( iDb<0 ) goto build_vacuum_end; #else /* When SQLITE_BUG_COMPATIBLE_20160819 is defined, unrecognized arguments ** to VACUUM are silently ignored. This is a back-out of a bug fix that ** occurred on 2016-08-19 (https://www.sqlite.org/src/info/083f9e6270). ** The buggy behavior is required for binary compatibility with some ** legacy applications. */ iDb = sqlite3FindDb(pParse->db, pNm); if( iDb<0 ) iDb = 0; #endif } if( iDb!=1 ){ int iIntoReg = 0; if( pInto && sqlite3ResolveSelfReference(pParse,0,0,pInto,0)==0 ){ iIntoReg = ++pParse->nMem; sqlite3ExprCode(pParse, pInto, iIntoReg); } sqlite3VdbeAddOp2(v, OP_Vacuum, iDb, iIntoReg); sqlite3VdbeUsesBtree(v, iDb); } build_vacuum_end: sqlite3ExprDelete(pParse->db, pInto); return; } /* ** This routine implements the OP_Vacuum opcode of the VDBE. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3RunVacuum( char **pzErrMsg, /* Write error message here */ sqlite3 *db, /* Database connection */ int iDb, /* Which attached DB to vacuum */ sqlite3_value *pOut /* Write results here, if not NULL. VACUUM INTO */ ){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ u32 saved_mDbFlags; /* Saved value of db->mDbFlags */ u64 saved_flags; /* Saved value of db->flags */ i64 saved_nChange; /* Saved value of db->nChange */ i64 saved_nTotalChange; /* Saved value of db->nTotalChange */ u32 saved_openFlags; /* Saved value of db->openFlags */ u8 saved_mTrace; /* Saved trace settings */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True if vacuuming a :memory: database */ int nRes; /* Bytes of reserved space at the end of each page */ int nDb; /* Number of attached databases */ const char *zDbMain; /* Schema name of database to vacuum */ const char *zOut; /* Name of output file */ u32 pgflags = PAGER_SYNCHRONOUS_OFF; /* sync flags for output db */ if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; /* IMP: R-12218-18073 */ } if( db->nVdbeActive>1 ){ sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress"); return SQLITE_ERROR; /* IMP: R-15610-35227 */ } saved_openFlags = db->openFlags; if( pOut ){ if( sqlite3_value_type(pOut)!=SQLITE_TEXT ){ sqlite3SetString(pzErrMsg, db, "non-text filename"); return SQLITE_ERROR; } zOut = (const char*)sqlite3_value_text(pOut); db->openFlags &= ~SQLITE_OPEN_READONLY; db->openFlags |= SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE; }else{ zOut = ""; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_mDbFlags = db->mDbFlags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_mTrace = db->mTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; db->flags &= ~(u64)(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_Defensive | SQLITE_CountRows); db->mTrace = 0; zDbMain = db->aDb[iDb].zDbSName; pMain = db->aDb[iDb].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimization would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ nDb = db->nDb; rc = execSqlF(db, pzErrMsg, "ATTACH %Q AS vacuum_db", zOut); db->openFlags = saved_openFlags; if( rc!=SQLITE_OK ) goto end_of_vacuum; assert( (db->nDb-1)==nDb ); pDb = &db->aDb[nDb]; assert( strcmp(pDb->zDbSName,"vacuum_db")==0 ); pTemp = pDb->pBt; if( pOut ){ sqlite3_file *id = sqlite3PagerFile(sqlite3BtreePager(pTemp)); i64 sz = 0; if( id->pMethods!=0 && (sqlite3OsFileSize(id, &sz)!=SQLITE_OK || sz>0) ){ rc = SQLITE_ERROR; sqlite3SetString(pzErrMsg, db, "output file already exists"); goto end_of_vacuum; } db->mDbFlags |= DBFLAG_VacuumInto; /* For a VACUUM INTO, the pager-flags are set to the same values as ** they are for the database being vacuumed, except that PAGER_CACHESPILL ** is always set. */ pgflags = db->aDb[iDb].safety_level | (db->flags & PAGER_FLAGS_MASK); } nRes = sqlite3BtreeGetRequestedReserve(pMain); /* A VACUUM cannot change the pagesize of an encrypted database. */ /* BEGIN SQLCIPHER */ #ifdef SQLITE_HAS_CODEC if( db->nextPagesize ){ extern void sqlcipherCodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; sqlcipherCodecGetKey(db, iDb, (void**)&zKey, &nKey); if( nKey ) db->nextPagesize = 0; } #endif /* END SQLCIPHER */ sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size); sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain,0)); sqlite3BtreeSetPagerFlags(pTemp, pgflags|PAGER_CACHESPILL); /* Begin a transaction and take an exclusive lock on the main database ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, ** to ensure that we do not try to change the page-size on a WAL database. */ rc = execSql(db, pzErrMsg, "BEGIN"); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeBeginTrans(pMain, pOut==0 ? 2 : 0, 0); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Do not attempt to change the page size for a WAL database */ if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) ==PAGER_JOURNALMODE_WAL && pOut==0 ){ db->nextPagesize = 0; } if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0) || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0)) || NEVER(db->mallocFailed) ){ rc = SQLITE_NOMEM_BKPT; goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */ rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_schema" " WHERE type='table'AND name<>'sqlite_sequence'" " AND coalesce(rootpage,1)>0", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_schema" " WHERE type='index'", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; db->init.iDb = 0; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ rc = execSqlF(db, pzErrMsg, "SELECT'INSERT INTO vacuum_db.'||quote(name)" "||' SELECT*FROM\"%w\".'||quote(name)" "FROM vacuum_db.sqlite_schema " "WHERE type='table'AND coalesce(rootpage,1)>0", zDbMain ); assert( (db->mDbFlags & DBFLAG_Vacuum)!=0 ); db->mDbFlags &= ~DBFLAG_Vacuum; if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the schema table. */ rc = execSqlF(db, pzErrMsg, "INSERT INTO vacuum_db.sqlite_schema" " SELECT*FROM \"%w\".sqlite_schema" " WHERE type IN('view','trigger')" " OR(type='table'AND rootpage=0)", zDbMain ); if( rc ) goto end_of_vacuum; /* At this point, there is a write transaction open on both the ** vacuum database and the main database. Assuming no error occurs, ** both transactions are closed by this block - the main database ** transaction by sqlite3BtreeCopyFile() and the other by an explicit ** call to sqlite3BtreeCommit(). */ { u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ BTREE_USER_VERSION, 0, /* Preserve the user version */ BTREE_APPLICATION_ID, 0, /* Preserve the application id */ }; assert( SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pTemp) ); assert( pOut!=0 || SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pMain) ); /* Copy Btree meta values */ for(i=0; iflags */ db->init.iDb = 0; db->mDbFlags = saved_mDbFlags; db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->mTrace = saved_mTrace; sqlite3BtreeSetPageSize(pMain, -1, 0, 1); /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } /* This both clears the schemas and reduces the size of the db->aDb[] ** array. */ sqlite3ResetAllSchemasOfConnection(db); return rc; } #endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */ /************** End of vacuum.c **********************************************/ /************** Begin file vtab.c ********************************************/ /* ** 2006 June 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to help implement virtual tables. */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* #include "sqliteInt.h" */ /* ** Before a virtual table xCreate() or xConnect() method is invoked, the ** sqlite3.pVtabCtx member variable is set to point to an instance of ** this struct allocated on the stack. It is used by the implementation of ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which ** are invoked only from within xCreate and xConnect methods. */ struct VtabCtx { VTable *pVTable; /* The virtual table being constructed */ Table *pTab; /* The Table object to which the virtual table belongs */ VtabCtx *pPrior; /* Parent context (if any) */ int bDeclared; /* True after sqlite3_declare_vtab() is called */ }; /* ** Construct and install a Module object for a virtual table. When this ** routine is called, it is guaranteed that all appropriate locks are held ** and the module is not already part of the connection. ** ** If there already exists a module with zName, replace it with the new one. ** If pModule==0, then delete the module zName if it exists. */ SQLITE_PRIVATE Module *sqlite3VtabCreateModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ Module *pMod; Module *pDel; char *zCopy; if( pModule==0 ){ zCopy = (char*)zName; pMod = 0; }else{ int nName = sqlite3Strlen30(zName); pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1); if( pMod==0 ){ sqlite3OomFault(db); return 0; } zCopy = (char *)(&pMod[1]); memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pMod->pEpoTab = 0; pMod->nRefModule = 1; } pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); if( pDel ){ if( pDel==pMod ){ sqlite3OomFault(db); sqlite3DbFree(db, pDel); pMod = 0; }else{ sqlite3VtabEponymousTableClear(db, pDel); sqlite3VtabModuleUnref(db, pDel); } } return pMod; } /* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ static int createModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ int rc = SQLITE_OK; sqlite3_mutex_enter(db->mutex); (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); sqlite3_mutex_leave(db->mutex); return rc; } /* ** External API function used to create a new virtual-table module. */ SQLITE_API int sqlite3_create_module( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux /* Context pointer for xCreate/xConnect */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, 0); } /* ** External API function used to create a new virtual-table module. */ SQLITE_API int sqlite3_create_module_v2( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, xDestroy); } /* ** External API to drop all virtual-table modules, except those named ** on the azNames list. */ SQLITE_API int sqlite3_drop_modules(sqlite3 *db, const char** azNames){ HashElem *pThis, *pNext; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){ Module *pMod = (Module*)sqliteHashData(pThis); pNext = sqliteHashNext(pThis); if( azNames ){ int ii; for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){} if( azNames[ii]!=0 ) continue; } createModule(db, pMod->zName, 0, 0, 0); } return SQLITE_OK; } /* ** Decrement the reference count on a Module object. Destroy the ** module when the reference count reaches zero. */ SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){ assert( pMod->nRefModule>0 ); pMod->nRefModule--; if( pMod->nRefModule==0 ){ if( pMod->xDestroy ){ pMod->xDestroy(pMod->pAux); } assert( pMod->pEpoTab==0 ); sqlite3DbFree(db, pMod); } } /* ** Lock the virtual table so that it cannot be disconnected. ** Locks nest. Every lock should have a corresponding unlock. ** If an unlock is omitted, resources leaks will occur. ** ** If a disconnect is attempted while a virtual table is locked, ** the disconnect is deferred until all locks have been removed. */ SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){ pVTab->nRef++; } /* ** pTab is a pointer to a Table structure representing a virtual-table. ** Return a pointer to the VTable object used by connection db to access ** this virtual-table, if one has been created, or NULL otherwise. */ SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ VTable *pVtab; assert( IsVirtual(pTab) ); for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); return pVtab; } /* ** Decrement the ref-count on a virtual table object. When the ref-count ** reaches zero, call the xDisconnect() method to delete the object. */ SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){ sqlite3 *db = pVTab->db; assert( db ); assert( pVTab->nRef>0 ); assert( db->eOpenState==SQLITE_STATE_OPEN || db->eOpenState==SQLITE_STATE_ZOMBIE ); pVTab->nRef--; if( pVTab->nRef==0 ){ sqlite3_vtab *p = pVTab->pVtab; if( p ){ p->pModule->xDisconnect(p); } sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod); sqlite3DbFree(db, pVTab); } } /* ** Table p is a virtual table. This function moves all elements in the ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated ** database connections to be disconnected at the next opportunity. ** Except, if argument db is not NULL, then the entry associated with ** connection db is left in the p->u.vtab.p list. */ static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ VTable *pRet = 0; VTable *pVTable; assert( IsVirtual(p) ); pVTable = p->u.vtab.p; p->u.vtab.p = 0; /* Assert that the mutex (if any) associated with the BtShared database ** that contains table p is held by the caller. See header comments ** above function sqlite3VtabUnlockList() for an explanation of why ** this makes it safe to access the sqlite3.pDisconnect list of any ** database connection that may have an entry in the p->u.vtab.p list. */ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); while( pVTable ){ sqlite3 *db2 = pVTable->db; VTable *pNext = pVTable->pNext; assert( db2 ); if( db2==db ){ pRet = pVTable; p->u.vtab.p = pRet; pRet->pNext = 0; }else{ pVTable->pNext = db2->pDisconnect; db2->pDisconnect = pVTable; } pVTable = pNext; } assert( !db || pRet ); return pRet; } /* ** Table *p is a virtual table. This function removes the VTable object ** for table *p associated with database connection db from the linked ** list in p->pVTab. It also decrements the VTable ref count. This is ** used when closing database connection db to free all of its VTable ** objects without disturbing the rest of the Schema object (which may ** be being used by other shared-cache connections). */ SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ VTable **ppVTab; assert( IsVirtual(p) ); assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3_mutex_held(db->mutex) ); for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){ if( (*ppVTab)->db==db ){ VTable *pVTab = *ppVTab; *ppVTab = pVTab->pNext; sqlite3VtabUnlock(pVTab); break; } } } /* ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. ** ** This function may only be called when the mutexes associated with all ** shared b-tree databases opened using connection db are held by the ** caller. This is done to protect the sqlite3.pDisconnect list. The ** sqlite3.pDisconnect list is accessed only as follows: ** ** 1) By this function. In this case, all BtShared mutexes and the mutex ** associated with the database handle itself must be held. ** ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to ** the sqlite3.pDisconnect list. In this case either the BtShared mutex ** associated with the database the virtual table is stored in is held ** or, if the virtual table is stored in a non-sharable database, then ** the database handle mutex is held. ** ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously ** by multiple threads. It is thread-safe. */ SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){ VTable *p = db->pDisconnect; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3_mutex_held(db->mutex) ); if( p ){ db->pDisconnect = 0; do { VTable *pNext = p->pNext; sqlite3VtabUnlock(p); p = pNext; }while( p ); } } /* ** Clear any and all virtual-table information from the Table record. ** This routine is called, for example, just before deleting the Table ** record. ** ** Since it is a virtual-table, the Table structure contains a pointer ** to the head of a linked list of VTable structures. Each VTable ** structure is associated with a single sqlite3* user of the schema. ** The reference count of the VTable structure associated with database ** connection db is decremented immediately (which may lead to the ** structure being xDisconnected and free). Any other VTable structures ** in the list are moved to the sqlite3.pDisconnect list of the associated ** database connection. */ SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){ assert( IsVirtual(p) ); assert( db!=0 ); if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); if( p->u.vtab.azArg ){ int i; for(i=0; iu.vtab.nArg; i++){ if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]); } sqlite3DbFree(db, p->u.vtab.azArg); } } /* ** Add a new module argument to pTable->u.vtab.azArg[]. ** The string is not copied - the pointer is stored. The ** string will be freed automatically when the table is ** deleted. */ static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){ sqlite3_int64 nBytes; char **azModuleArg; sqlite3 *db = pParse->db; assert( IsVirtual(pTable) ); nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg); if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName); } azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes); if( azModuleArg==0 ){ sqlite3DbFree(db, zArg); }else{ int i = pTable->u.vtab.nArg++; azModuleArg[i] = zArg; azModuleArg[i+1] = 0; pTable->u.vtab.azArg = azModuleArg; } } /* ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE ** statement. The module name has been parsed, but the optional list ** of parameters that follow the module name are still pending. */ SQLITE_PRIVATE void sqlite3VtabBeginParse( Parse *pParse, /* Parsing context */ Token *pName1, /* Name of new table, or database name */ Token *pName2, /* Name of new table or NULL */ Token *pModuleName, /* Name of the module for the virtual table */ int ifNotExists /* No error if the table already exists */ ){ Table *pTable; /* The new virtual table */ sqlite3 *db; /* Database connection */ sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); pTable = pParse->pNewTable; if( pTable==0 ) return; assert( 0==pTable->pIndex ); pTable->eTabType = TABTYP_VTAB; db = pParse->db; assert( pTable->u.vtab.nArg==0 ); addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName)); addModuleArgument(pParse, pTable, 0); addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName)); assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) || (pParse->sNameToken.z==pName1->z && pName2->z==0) ); pParse->sNameToken.n = (int)( &pModuleName->z[pModuleName->n] - pParse->sNameToken.z ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Creating a virtual table invokes the authorization callback twice. ** The first invocation, to obtain permission to INSERT a row into the ** sqlite_schema table, has already been made by sqlite3StartTable(). ** The second call, to obtain permission to create the table, is made now. */ if( pTable->u.vtab.azArg ){ int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); assert( iDb>=0 ); /* The database the table is being created in */ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName); } #endif } /* ** This routine takes the module argument that has been accumulating ** in pParse->zArg[] and appends it to the list of arguments on the ** virtual table currently under construction in pParse->pTable. */ static void addArgumentToVtab(Parse *pParse){ if( pParse->sArg.z && pParse->pNewTable ){ const char *z = (const char*)pParse->sArg.z; int n = pParse->sArg.n; sqlite3 *db = pParse->db; addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); } } /* ** The parser calls this routine after the CREATE VIRTUAL TABLE statement ** has been completely parsed. */ SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ Table *pTab = pParse->pNewTable; /* The table being constructed */ sqlite3 *db = pParse->db; /* The database connection */ if( pTab==0 ) return; assert( IsVirtual(pTab) ); addArgumentToVtab(pParse); pParse->sArg.z = 0; if( pTab->u.vtab.nArg<1 ) return; /* If the CREATE VIRTUAL TABLE statement is being entered for the ** first time (in other words if the virtual table is actually being ** created now instead of just being read out of sqlite_schema) then ** do additional initialization work and store the statement text ** in the sqlite_schema table. */ if( !db->init.busy ){ char *zStmt; char *zWhere; int iDb; int iReg; Vdbe *v; sqlite3MayAbort(pParse); /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ if( pEnd ){ pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; } zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); /* A slot for the record has already been allocated in the ** schema table. We just need to update that slot with all ** the information we've collected. ** ** The VM register number pParse->regRowid holds the rowid of an ** entry in the sqlite_schema table that was created for this vtab ** by sqlite3StartTable(). */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " " "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " "WHERE rowid=#%d", db->aDb[iDb].zDbSName, pTab->zName, pTab->zName, zStmt, pParse->regRowid ); v = sqlite3GetVdbe(pParse); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp0(v, OP_Expire); zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt); sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0); sqlite3DbFree(db, zStmt); iReg = ++pParse->nMem; sqlite3VdbeLoadString(v, iReg, pTab->zName); sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); }else{ /* If we are rereading the sqlite_schema table create the in-memory ** record of the table. */ Table *pOld; Schema *pSchema = pTab->pSchema; const char *zName = pTab->zName; assert( zName!=0 ); sqlite3MarkAllShadowTablesOf(db, pTab); pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); if( pOld ){ sqlite3OomFault(db); assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ return; } pParse->pNewTable = 0; } } /* ** The parser calls this routine when it sees the first token ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. */ SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){ addArgumentToVtab(pParse); pParse->sArg.z = 0; pParse->sArg.n = 0; } /* ** The parser calls this routine for each token after the first token ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. */ SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){ Token *pArg = &pParse->sArg; if( pArg->z==0 ){ pArg->z = p->z; pArg->n = p->n; }else{ assert(pArg->z <= p->z); pArg->n = (int)(&p->z[p->n] - pArg->z); } } /* ** Invoke a virtual table constructor (either xCreate or xConnect). The ** pointer to the function to invoke is passed as the fourth parameter ** to this procedure. */ static int vtabCallConstructor( sqlite3 *db, Table *pTab, Module *pMod, int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), char **pzErr ){ VtabCtx sCtx; VTable *pVTable; int rc; const char *const*azArg; int nArg = pTab->u.vtab.nArg; char *zErr = 0; char *zModuleName; int iDb; VtabCtx *pCtx; assert( IsVirtual(pTab) ); azArg = (const char *const*)pTab->u.vtab.azArg; /* Check that the virtual-table is not already being initialized */ for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ if( pCtx->pTab==pTab ){ *pzErr = sqlite3MPrintf(db, "vtable constructor called recursively: %s", pTab->zName ); return SQLITE_LOCKED; } } zModuleName = sqlite3DbStrDup(db, pTab->zName); if( !zModuleName ){ return SQLITE_NOMEM_BKPT; } pVTable = sqlite3MallocZero(sizeof(VTable)); if( !pVTable ){ sqlite3OomFault(db); sqlite3DbFree(db, zModuleName); return SQLITE_NOMEM_BKPT; } pVTable->db = db; pVTable->pMod = pMod; pVTable->eVtabRisk = SQLITE_VTABRISK_Normal; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName; /* Invoke the virtual table constructor */ assert( &db->pVtabCtx ); assert( xConstruct ); sCtx.pTab = pTab; sCtx.pVTable = pVTable; sCtx.pPrior = db->pVtabCtx; sCtx.bDeclared = 0; db->pVtabCtx = &sCtx; pTab->nTabRef++; rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); sqlite3DeleteTable(db, pTab); db->pVtabCtx = sCtx.pPrior; if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); assert( sCtx.pTab==pTab ); if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); sqlite3_free(zErr); } sqlite3DbFree(db, pVTable); }else if( ALWAYS(pVTable->pVtab) ){ /* Justification of ALWAYS(): A correct vtab constructor must allocate ** the sqlite3_vtab object if successful. */ memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); pVTable->pVtab->pModule = pMod->pModule; pMod->nRefModule++; pVTable->nRef = 1; if( sCtx.bDeclared==0 ){ const char *zFormat = "vtable constructor did not declare schema: %s"; *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); sqlite3VtabUnlock(pVTable); rc = SQLITE_ERROR; }else{ int iCol; u16 oooHidden = 0; /* If everything went according to plan, link the new VTable structure ** into the linked list headed by pTab->u.vtab.p. Then loop through the ** columns of the table to see if any of them contain the token "hidden". ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from ** the type string. */ pVTable->pNext = pTab->u.vtab.p; pTab->u.vtab.p = pVTable; for(iCol=0; iColnCol; iCol++){ char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); int nType; int i = 0; nType = sqlite3Strlen30(zType); for(i=0; i0 ){ assert(zType[i-1]==' '); zType[i-1] = '\0'; } pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; pTab->tabFlags |= TF_HasHidden; oooHidden = TF_OOOHidden; }else{ pTab->tabFlags |= oooHidden; } } } } sqlite3DbFree(db, zModuleName); return rc; } /* ** This function is invoked by the parser to call the xConnect() method ** of the virtual table pTab. If an error occurs, an error code is returned ** and an error left in pParse. ** ** This call is a no-op if table pTab is not a virtual table. */ SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ sqlite3 *db = pParse->db; const char *zMod; Module *pMod; int rc; assert( pTab ); assert( IsVirtual(pTab) ); if( sqlite3GetVTable(db, pTab) ){ return SQLITE_OK; } /* Locate the required virtual table module */ zMod = pTab->u.vtab.azArg[0]; pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); if( !pMod ){ const char *zModule = pTab->u.vtab.azArg[0]; sqlite3ErrorMsg(pParse, "no such module: %s", zModule); rc = SQLITE_ERROR; }else{ char *zErr = 0; rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "%s", zErr); pParse->rc = rc; } sqlite3DbFree(db, zErr); } return rc; } /* ** Grow the db->aVTrans[] array so that there is room for at least one ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. */ static int growVTrans(sqlite3 *db){ const int ARRAY_INCR = 5; /* Grow the sqlite3.aVTrans array if required */ if( (db->nVTrans%ARRAY_INCR)==0 ){ VTable **aVTrans; sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)* ((sqlite3_int64)db->nVTrans + ARRAY_INCR); aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); if( !aVTrans ){ return SQLITE_NOMEM_BKPT; } memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); db->aVTrans = aVTrans; } return SQLITE_OK; } /* ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should ** have already been reserved using growVTrans(). */ static void addToVTrans(sqlite3 *db, VTable *pVTab){ /* Add pVtab to the end of sqlite3.aVTrans */ db->aVTrans[db->nVTrans++] = pVTab; sqlite3VtabLock(pVTab); } /* ** This function is invoked by the vdbe to call the xCreate method ** of the virtual table named zTab in database iDb. ** ** If an error occurs, *pzErr is set to point to an English language ** description of the error and an SQLITE_XXX error code is returned. ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. */ SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ int rc = SQLITE_OK; Table *pTab; Module *pMod; const char *zMod; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p ); /* Locate the required virtual table module */ zMod = pTab->u.vtab.azArg[0]; pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); /* If the module has been registered and includes a Create method, ** invoke it now. If the module has not been registered, return an ** error. Otherwise, do nothing. */ if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); rc = SQLITE_ERROR; }else{ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); } /* Justification of ALWAYS(): The xConstructor method is required to ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ rc = growVTrans(db); if( rc==SQLITE_OK ){ addToVTrans(db, sqlite3GetVTable(db, pTab)); } } return rc; } /* ** This function is used to set the schema of a virtual table. It is only ** valid to call this function from within the xCreate() or xConnect() of a ** virtual table module. */ SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ VtabCtx *pCtx; int rc = SQLITE_OK; Table *pTab; Parse sParse; int initBusy; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); pCtx = db->pVtabCtx; if( !pCtx || pCtx->bDeclared ){ sqlite3Error(db, SQLITE_MISUSE_BKPT); sqlite3_mutex_leave(db->mutex); return SQLITE_MISUSE_BKPT; } pTab = pCtx->pTab; assert( IsVirtual(pTab) ); sqlite3ParseObjectInit(&sParse, db); sParse.eParseMode = PARSE_MODE_DECLARE_VTAB; sParse.disableTriggers = 1; /* We should never be able to reach this point while loading the ** schema. Nevertheless, defend against that (turn off db->init.busy) ** in case a bug arises. */ assert( db->init.busy==0 ); initBusy = db->init.busy; db->init.busy = 0; sParse.nQueryLoop = 1; if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable) && ALWAYS(sParse.pNewTable!=0) && ALWAYS(!db->mallocFailed) && IsOrdinaryTable(sParse.pNewTable) ){ assert( sParse.zErrMsg==0 ); if( !pTab->aCol ){ Table *pNew = sParse.pNewTable; Index *pIdx; pTab->aCol = pNew->aCol; sqlite3ExprListDelete(db, pNew->u.tab.pDfltList); pTab->nNVCol = pTab->nCol = pNew->nCol; pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); pNew->nCol = 0; pNew->aCol = 0; assert( pTab->pIndex==0 ); assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 ); if( !HasRowid(pNew) && pCtx->pVTable->pMod->pModule->xUpdate!=0 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1 ){ /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0) ** or else must have a single-column PRIMARY KEY */ rc = SQLITE_ERROR; } pIdx = pNew->pIndex; if( pIdx ){ assert( pIdx->pNext==0 ); pTab->pIndex = pIdx; pNew->pIndex = 0; pIdx->pTable = pTab; } } pCtx->bDeclared = 1; }else{ sqlite3ErrorWithMsg(db, SQLITE_ERROR, (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg); sqlite3DbFree(db, sParse.zErrMsg); rc = SQLITE_ERROR; } sParse.eParseMode = PARSE_MODE_NORMAL; if( sParse.pVdbe ){ sqlite3VdbeFinalize(sParse.pVdbe); } sqlite3DeleteTable(db, sParse.pNewTable); sqlite3ParseObjectReset(&sParse); db->init.busy = initBusy; assert( (rc&0xff)==rc ); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** This function is invoked by the vdbe to call the xDestroy method ** of the virtual table named zTab in database iDb. This occurs ** when a DROP TABLE is mentioned. ** ** This call is a no-op if zTab is not a virtual table. */ SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ int rc = SQLITE_OK; Table *pTab; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); if( ALWAYS(pTab!=0) && ALWAYS(IsVirtual(pTab)) && ALWAYS(pTab->u.vtab.p!=0) ){ VTable *p; int (*xDestroy)(sqlite3_vtab *); for(p=pTab->u.vtab.p; p; p=p->pNext){ assert( p->pVtab ); if( p->pVtab->nRef>0 ){ return SQLITE_LOCKED; } } p = vtabDisconnectAll(db, pTab); xDestroy = p->pMod->pModule->xDestroy; if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect; assert( xDestroy!=0 ); pTab->nTabRef++; rc = xDestroy(p->pVtab); /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ if( rc==SQLITE_OK ){ assert( pTab->u.vtab.p==p && p->pNext==0 ); p->pVtab = 0; pTab->u.vtab.p = 0; sqlite3VtabUnlock(p); } sqlite3DeleteTable(db, pTab); } return rc; } /* ** This function invokes either the xRollback or xCommit method ** of each of the virtual tables in the sqlite3.aVTrans array. The method ** called is identified by the second argument, "offset", which is ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; inVTrans; i++){ VTable *pVTab = aVTrans[i]; sqlite3_vtab *p = pVTab->pVtab; if( p ){ int (*x)(sqlite3_vtab *); x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); if( x ) x(p); } pVTab->iSavepoint = 0; sqlite3VtabUnlock(pVTab); } sqlite3DbFree(db, aVTrans); db->nVTrans = 0; } } /* ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans ** array. Return the error code for the first error that occurs, or ** SQLITE_OK if all xSync operations are successful. ** ** If an error message is available, leave it in p->zErrMsg. */ SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ int i; int rc = SQLITE_OK; VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; rc==SQLITE_OK && inVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3VtabImportErrmsg(p, pVtab); } } db->aVTrans = aVTrans; return rc; } /* ** Invoke the xRollback method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){ callFinaliser(db, offsetof(sqlite3_module,xRollback)); return SQLITE_OK; } /* ** Invoke the xCommit method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){ callFinaliser(db, offsetof(sqlite3_module,xCommit)); return SQLITE_OK; } /* ** If the virtual table pVtab supports the transaction interface ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is ** not currently open, invoke the xBegin method now. ** ** If the xBegin call is successful, place the sqlite3_vtab pointer ** in the sqlite3.aVTrans array. */ SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ int rc = SQLITE_OK; const sqlite3_module *pModule; /* Special case: If db->aVTrans is NULL and db->nVTrans is greater ** than zero, then this function is being called from within a ** virtual module xSync() callback. It is illegal to write to ** virtual module tables in this case, so return SQLITE_LOCKED. */ if( sqlite3VtabInSync(db) ){ return SQLITE_LOCKED; } if( !pVTab ){ return SQLITE_OK; } pModule = pVTab->pVtab->pModule; if( pModule->xBegin ){ int i; /* If pVtab is already in the aVTrans array, return early */ for(i=0; inVTrans; i++){ if( db->aVTrans[i]==pVTab ){ return SQLITE_OK; } } /* Invoke the xBegin method. If successful, add the vtab to the ** sqlite3.aVTrans[] array. */ rc = growVTrans(db); if( rc==SQLITE_OK ){ rc = pModule->xBegin(pVTab->pVtab); if( rc==SQLITE_OK ){ int iSvpt = db->nStatement + db->nSavepoint; addToVTrans(db, pVTab); if( iSvpt && pModule->xSavepoint ){ pVTab->iSavepoint = iSvpt; rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); } } } } return rc; } /* ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all ** virtual tables that currently have an open transaction. Pass iSavepoint ** as the second argument to the virtual table method invoked. ** ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with ** an open transaction is invoked. ** ** If any virtual table method returns an error code other than SQLITE_OK, ** processing is abandoned and the error returned to the caller of this ** function immediately. If all calls to virtual table methods are successful, ** SQLITE_OK is returned. */ SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ int rc = SQLITE_OK; assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); assert( iSavepoint>=-1 ); if( db->aVTrans ){ int i; for(i=0; rc==SQLITE_OK && inVTrans; i++){ VTable *pVTab = db->aVTrans[i]; const sqlite3_module *pMod = pVTab->pMod->pModule; if( pVTab->pVtab && pMod->iVersion>=2 ){ int (*xMethod)(sqlite3_vtab *, int); sqlite3VtabLock(pVTab); switch( op ){ case SAVEPOINT_BEGIN: xMethod = pMod->xSavepoint; pVTab->iSavepoint = iSavepoint+1; break; case SAVEPOINT_ROLLBACK: xMethod = pMod->xRollbackTo; break; default: xMethod = pMod->xRelease; break; } if( xMethod && pVTab->iSavepoint>iSavepoint ){ u64 savedFlags = (db->flags & SQLITE_Defensive); db->flags &= ~(u64)SQLITE_Defensive; rc = xMethod(pVTab->pVtab, iSavepoint); db->flags |= savedFlags; } sqlite3VtabUnlock(pVTab); } } } return rc; } /* ** The first parameter (pDef) is a function implementation. The ** second parameter (pExpr) is the first argument to this function. ** If pExpr is a column in a virtual table, then let the virtual ** table implementation have an opportunity to overload the function. ** ** This routine is used to allow virtual table implementations to ** overload MATCH, LIKE, GLOB, and REGEXP operators. ** ** Return either the pDef argument (indicating no change) or a ** new FuncDef structure that is marked as ephemeral using the ** SQLITE_FUNC_EPHEM flag. */ SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction( sqlite3 *db, /* Database connection for reporting malloc problems */ FuncDef *pDef, /* Function to possibly overload */ int nArg, /* Number of arguments to the function */ Expr *pExpr /* First argument to the function */ ){ Table *pTab; sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; void *pArg = 0; FuncDef *pNew; int rc = 0; /* Check to see the left operand is a column in a virtual table */ if( NEVER(pExpr==0) ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; assert( ExprUseYTab(pExpr) ); pTab = pExpr->y.pTab; if( NEVER(pTab==0) ) return pDef; if( !IsVirtual(pTab) ) return pDef; pVtab = sqlite3GetVTable(db, pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction==0 ) return pDef; /* Call the xFindFunction method on the virtual table implementation ** to see if the implementation wants to overload this function. ** ** Though undocumented, we have historically always invoked xFindFunction ** with an all lower-case function name. Continue in this tradition to ** avoid any chance of an incompatibility. */ #ifdef SQLITE_DEBUG { int i; for(i=0; pDef->zName[i]; i++){ unsigned char x = (unsigned char)pDef->zName[i]; assert( x==sqlite3UpperToLower[x] ); } } #endif rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); if( rc==0 ){ return pDef; } /* Create a new ephemeral function definition for the overloaded ** function */ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + sqlite3Strlen30(pDef->zName) + 1); if( pNew==0 ){ return pDef; } *pNew = *pDef; pNew->zName = (const char*)&pNew[1]; memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); pNew->xSFunc = xSFunc; pNew->pUserData = pArg; pNew->funcFlags |= SQLITE_FUNC_EPHEM; return pNew; } /* ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] ** array so that an OP_VBegin will get generated for it. Add pTab to the ** array if it is missing. If pTab is already in the array, this routine ** is a no-op. */ SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ Parse *pToplevel = sqlite3ParseToplevel(pParse); int i, n; Table **apVtabLock; assert( IsVirtual(pTab) ); for(i=0; inVtabLock; i++){ if( pTab==pToplevel->apVtabLock[i] ) return; } n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n); if( apVtabLock ){ pToplevel->apVtabLock = apVtabLock; pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; }else{ sqlite3OomFault(pToplevel->db); } } /* ** Check to see if virtual table module pMod can be have an eponymous ** virtual table instance. If it can, create one if one does not already ** exist. Return non-zero if either the eponymous virtual table instance ** exists when this routine returns or if an attempt to create it failed ** and an error message was left in pParse. ** ** An eponymous virtual table instance is one that is named after its ** module, and more importantly, does not require a CREATE VIRTUAL TABLE ** statement in order to come into existence. Eponymous virtual table ** instances always exist. They cannot be DROP-ed. ** ** Any virtual table module for which xConnect and xCreate are the same ** method can have an eponymous virtual table instance. */ SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ const sqlite3_module *pModule = pMod->pModule; Table *pTab; char *zErr = 0; int rc; sqlite3 *db = pParse->db; if( pMod->pEpoTab ) return 1; if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ) return 0; pTab->zName = sqlite3DbStrDup(db, pMod->zName); if( pTab->zName==0 ){ sqlite3DbFree(db, pTab); return 0; } pMod->pEpoTab = pTab; pTab->nTabRef = 1; pTab->eTabType = TABTYP_VTAB; pTab->pSchema = db->aDb[0].pSchema; assert( pTab->u.vtab.nArg==0 ); pTab->iPKey = -1; pTab->tabFlags |= TF_Eponymous; addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); addModuleArgument(pParse, pTab, 0); addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName)); rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); if( rc ){ sqlite3ErrorMsg(pParse, "%s", zErr); sqlite3DbFree(db, zErr); sqlite3VtabEponymousTableClear(db, pMod); } return 1; } /* ** Erase the eponymous virtual table instance associated with ** virtual table module pMod, if it exists. */ SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ Table *pTab = pMod->pEpoTab; if( pTab!=0 ){ /* Mark the table as Ephemeral prior to deleting it, so that the ** sqlite3DeleteTable() routine will know that it is not stored in ** the schema. */ pTab->tabFlags |= TF_Ephemeral; sqlite3DeleteTable(db, pTab); pMod->pEpoTab = 0; } } /* ** Return the ON CONFLICT resolution mode in effect for the virtual ** table update operation currently in progress. ** ** The results of this routine are undefined unless it is called from ** within an xUpdate method. */ SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){ static const unsigned char aMap[] = { SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE }; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); assert( OE_Ignore==4 && OE_Replace==5 ); assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); return (int)aMap[db->vtabOnConflict-1]; } /* ** Call from within the xCreate() or xConnect() methods to provide ** the SQLite core with additional information about the behavior ** of the virtual table being implemented. */ SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){ va_list ap; int rc = SQLITE_OK; VtabCtx *p; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); p = db->pVtabCtx; if( !p ){ rc = SQLITE_MISUSE_BKPT; }else{ assert( p->pTab==0 || IsVirtual(p->pTab) ); va_start(ap, op); switch( op ){ case SQLITE_VTAB_CONSTRAINT_SUPPORT: { p->pVTable->bConstraint = (u8)va_arg(ap, int); break; } case SQLITE_VTAB_INNOCUOUS: { p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low; break; } case SQLITE_VTAB_DIRECTONLY: { p->pVTable->eVtabRisk = SQLITE_VTABRISK_High; break; } case SQLITE_VTAB_USES_ALL_SCHEMAS: { p->pVTable->bAllSchemas = 1; break; } default: { rc = SQLITE_MISUSE_BKPT; break; } } va_end(ap); } if( rc!=SQLITE_OK ) sqlite3Error(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /************** End of vtab.c ************************************************/ /************** Begin file wherecode.c ***************************************/ /* ** 2015-06-06 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was split off from where.c on 2015-06-06 in order to reduce the ** size of where.c and make it easier to edit. This file contains the routines ** that actually generate the bulk of the WHERE loop code. The original where.c ** file retains the code that does query planning and analysis. */ /* #include "sqliteInt.h" */ /************** Include whereInt.h in the middle of wherecode.c **************/ /************** Begin file whereInt.h ****************************************/ /* ** 2013-11-12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains structure and macro definitions for the query ** planner logic in "where.c". These definitions are broken out into ** a separate source file for easier editing. */ #ifndef SQLITE_WHEREINT_H #define SQLITE_WHEREINT_H /* Forward references */ typedef struct WhereClause WhereClause; typedef struct WhereMaskSet WhereMaskSet; typedef struct WhereOrInfo WhereOrInfo; typedef struct WhereAndInfo WhereAndInfo; typedef struct WhereLevel WhereLevel; typedef struct WhereLoop WhereLoop; typedef struct WherePath WherePath; typedef struct WhereTerm WhereTerm; typedef struct WhereLoopBuilder WhereLoopBuilder; typedef struct WhereScan WhereScan; typedef struct WhereOrCost WhereOrCost; typedef struct WhereOrSet WhereOrSet; typedef struct WhereMemBlock WhereMemBlock; typedef struct WhereRightJoin WhereRightJoin; /* ** This object is a header on a block of allocated memory that will be ** automatically freed when its WInfo object is destructed. */ struct WhereMemBlock { WhereMemBlock *pNext; /* Next block in the chain */ u64 sz; /* Bytes of space */ }; /* ** Extra information attached to a WhereLevel that is a RIGHT JOIN. */ struct WhereRightJoin { int iMatch; /* Cursor used to determine prior matched rows */ int regBloom; /* Bloom filter for iRJMatch */ int regReturn; /* Return register for the interior subroutine */ int addrSubrtn; /* Starting address for the interior subroutine */ int endSubrtn; /* The last opcode in the interior subroutine */ }; /* ** This object contains information needed to implement a single nested ** loop in WHERE clause. ** ** Contrast this object with WhereLoop. This object describes the ** implementation of the loop. WhereLoop describes the algorithm. ** This object contains a pointer to the WhereLoop algorithm as one of ** its elements. ** ** The WhereInfo object contains a single instance of this object for ** each term in the FROM clause (which is to say, for each of the ** nested loops as implemented). The order of WhereLevel objects determines ** the loop nested order, with WhereInfo.a[0] being the outer loop and ** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop. */ struct WhereLevel { int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int iTabCur; /* The VDBE cursor used to access the table */ int iIdxCur; /* The VDBE cursor used to access pIdx */ int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrSkip; /* Jump here for next iteration of skip-scan */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ int regBignull; /* big-null flag reg. True if a NULL-scan is needed */ int addrBignull; /* Jump here for next part of big-null scan */ #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS u32 iLikeRepCntr; /* LIKE range processing counter register (times 2) */ int addrLikeRep; /* LIKE range processing address */ #endif int regFilter; /* Bloom filter */ WhereRightJoin *pRJ; /* Extra information for RIGHT JOIN */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to end the loop */ union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ int iBase; /* Base register of multi-key index record */ int nPrefix; /* Number of prior entries in the key */ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ } *aInLoop; /* Information about each nested IN operator */ } in; /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */ Index *pCoveringIdx; /* Possible covering index for WHERE_MULTI_OR */ } u; struct WhereLoop *pWLoop; /* The selected WhereLoop object */ Bitmask notReady; /* FROM entries not usable at this level */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrVisit; /* Address at which row is visited */ #endif }; /* ** Each instance of this object represents an algorithm for evaluating one ** term of a join. Every term of the FROM clause will have at least ** one corresponding WhereLoop object (unless INDEXED BY constraints ** prevent a query solution - which is an error) and many terms of the ** FROM clause will have multiple WhereLoop objects, each describing a ** potential way of implementing that FROM-clause term, together with ** dependencies and cost estimates for using the chosen algorithm. ** ** Query planning consists of building up a collection of these WhereLoop ** objects, then computing a particular sequence of WhereLoop objects, with ** one WhereLoop object per FROM clause term, that satisfy all dependencies ** and that minimize the overall cost. */ struct WhereLoop { Bitmask prereq; /* Bitmask of other loops that must run first */ Bitmask maskSelf; /* Bitmask identifying table iTab */ #ifdef SQLITE_DEBUG char cId; /* Symbolic ID of this loop for debugging use */ #endif u8 iTab; /* Position in FROM clause of table for this loop */ u8 iSortIdx; /* Sorting index number. 0==None */ LogEst rSetup; /* One-time setup cost (ex: create transient index) */ LogEst rRun; /* Cost of running each loop */ LogEst nOut; /* Estimated number of output rows */ union { struct { /* Information for internal btree tables */ u16 nEq; /* Number of equality constraints */ u16 nBtm; /* Size of BTM vector */ u16 nTop; /* Size of TOP vector */ u16 nDistinctCol; /* Index columns used to sort for DISTINCT */ Index *pIndex; /* Index used, or NULL */ } btree; struct { /* Information for virtual tables */ int idxNum; /* Index number */ u32 needFree : 1; /* True if sqlite3_free(idxStr) is needed */ u32 bOmitOffset : 1; /* True to let virtual table handle offset */ i8 isOrdered; /* True if satisfies ORDER BY */ u16 omitMask; /* Terms that may be omitted */ char *idxStr; /* Index identifier string */ u32 mHandleIn; /* Terms to handle as IN(...) instead of == */ } vtab; } u; u32 wsFlags; /* WHERE_* flags describing the plan */ u16 nLTerm; /* Number of entries in aLTerm[] */ u16 nSkip; /* Number of NULL aLTerm[] entries */ /**** whereLoopXfer() copies fields above ***********************/ # define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot) u16 nLSlot; /* Number of slots allocated for aLTerm[] */ WhereTerm **aLTerm; /* WhereTerms used */ WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */ WhereTerm *aLTermSpace[3]; /* Initial aLTerm[] space */ }; /* This object holds the prerequisites and the cost of running a ** subquery on one operand of an OR operator in the WHERE clause. ** See WhereOrSet for additional information */ struct WhereOrCost { Bitmask prereq; /* Prerequisites */ LogEst rRun; /* Cost of running this subquery */ LogEst nOut; /* Number of outputs for this subquery */ }; /* The WhereOrSet object holds a set of possible WhereOrCosts that ** correspond to the subquery(s) of OR-clause processing. Only the ** best N_OR_COST elements are retained. */ #define N_OR_COST 3 struct WhereOrSet { u16 n; /* Number of valid a[] entries */ WhereOrCost a[N_OR_COST]; /* Set of best costs */ }; /* ** Each instance of this object holds a sequence of WhereLoop objects ** that implement some or all of a query plan. ** ** Think of each WhereLoop object as a node in a graph with arcs ** showing dependencies and costs for travelling between nodes. (That is ** not a completely accurate description because WhereLoop costs are a ** vector, not a scalar, and because dependencies are many-to-one, not ** one-to-one as are graph nodes. But it is a useful visualization aid.) ** Then a WherePath object is a path through the graph that visits some ** or all of the WhereLoop objects once. ** ** The "solver" works by creating the N best WherePath objects of length ** 1. Then using those as a basis to compute the N best WherePath objects ** of length 2. And so forth until the length of WherePaths equals the ** number of nodes in the FROM clause. The best (lowest cost) WherePath ** at the end is the chosen query plan. */ struct WherePath { Bitmask maskLoop; /* Bitmask of all WhereLoop objects in this path */ Bitmask revLoop; /* aLoop[]s that should be reversed for ORDER BY */ LogEst nRow; /* Estimated number of rows generated by this path */ LogEst rCost; /* Total cost of this path */ LogEst rUnsorted; /* Total cost of this path ignoring sorting costs */ i8 isOrdered; /* No. of ORDER BY terms satisfied. -1 for unknown */ WhereLoop **aLoop; /* Array of WhereLoop objects implementing this path */ }; /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by AND operators, ** usually, or sometimes subexpressions separated by OR. ** ** All WhereTerms are collected into a single WhereClause structure. ** The following identity holds: ** ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm ** ** When a term is of the form: ** ** X ** ** where X is a column name and is one of certain operators, ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the ** cursor number and column number for X. WhereTerm.eOperator records ** the using a bitmask encoding defined by WO_xxx below. The ** use of a bitmask encoding for the operator allows us to search ** quickly for terms that match any of several different operators. ** ** A WhereTerm might also be two or more subterms connected by OR: ** ** (t1.X ) OR (t1.Y ) OR .... ** ** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR ** and the WhereTerm.u.pOrInfo field points to auxiliary information that ** is collected about the OR clause. ** ** If a term in the WHERE clause does not match either of the two previous ** categories, then eOperator==0. The WhereTerm.pExpr field is still set ** to the original subexpression content and wtFlags is set up appropriately ** but no other fields in the WhereTerm object are meaningful. ** ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, ** but they do so indirectly. A single WhereMaskSet structure translates ** cursor number into bits and the translated bit is stored in the prereq ** fields. The translation is used in order to maximize the number of ** bits that will fit in a Bitmask. The VDBE cursor numbers might be ** spread out over the non-negative integers. For example, the cursor ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet ** translates these sparse cursor numbers into consecutive integers ** beginning with 0 in order to make the best possible use of the available ** bits in the Bitmask. So, in the example above, the cursor numbers ** would be mapped into integers 0 through 7. ** ** The number of terms in a join is limited by the number of bits ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite ** is only able to process joins with 64 or fewer tables. */ struct WhereTerm { Expr *pExpr; /* Pointer to the subexpression that is this term */ WhereClause *pWC; /* The clause this term is part of */ LogEst truthProb; /* Probability of truth for this expression */ u16 wtFlags; /* TERM_xxx bit flags. See below */ u16 eOperator; /* A WO_xx value describing */ u8 nChild; /* Number of children that must disable us */ u8 eMatchOp; /* Op for vtab MATCH/LIKE/GLOB/REGEXP terms */ int iParent; /* Disable pWC->a[iParent] when this term disabled */ int leftCursor; /* Cursor number of X in "X " */ union { struct { int leftColumn; /* Column number of X in "X " */ int iField; /* Field in (?,?,?) IN (SELECT...) vector */ } x; /* Opcode other than OP_OR or OP_AND */ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */ } u; Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ }; /* ** Allowed values of WhereTerm.wtFlags */ #define TERM_DYNAMIC 0x0001 /* Need to call sqlite3ExprDelete(db, pExpr) */ #define TERM_VIRTUAL 0x0002 /* Added by the optimizer. Do not code */ #define TERM_CODED 0x0004 /* This term is already coded */ #define TERM_COPIED 0x0008 /* Has a child */ #define TERM_ORINFO 0x0010 /* Need to free the WhereTerm.u.pOrInfo object */ #define TERM_ANDINFO 0x0020 /* Need to free the WhereTerm.u.pAndInfo obj */ #define TERM_OK 0x0040 /* Used during OR-clause processing */ #define TERM_VNULL 0x0080 /* Manufactured x>NULL or x<=NULL term */ #define TERM_LIKEOPT 0x0100 /* Virtual terms from the LIKE optimization */ #define TERM_LIKECOND 0x0200 /* Conditionally this LIKE operator term */ #define TERM_LIKE 0x0400 /* The original LIKE operator */ #define TERM_IS 0x0800 /* Term.pExpr is an IS operator */ #define TERM_VARSELECT 0x1000 /* Term.pExpr contains a correlated sub-query */ #define TERM_HEURTRUTH 0x2000 /* Heuristic truthProb used */ #ifdef SQLITE_ENABLE_STAT4 # define TERM_HIGHTRUTH 0x4000 /* Term excludes few rows */ #else # define TERM_HIGHTRUTH 0 /* Only used with STAT4 */ #endif #define TERM_SLICE 0x8000 /* One slice of a row-value/vector comparison */ /* ** An instance of the WhereScan object is used as an iterator for locating ** terms in the WHERE clause that are useful to the query planner. */ struct WhereScan { WhereClause *pOrigWC; /* Original, innermost WhereClause */ WhereClause *pWC; /* WhereClause currently being scanned */ const char *zCollName; /* Required collating sequence, if not NULL */ Expr *pIdxExpr; /* Search for this index expression */ int k; /* Resume scanning at this->pWC->a[this->k] */ u32 opMask; /* Acceptable operators */ char idxaff; /* Must match this affinity, if zCollName!=NULL */ unsigned char iEquiv; /* Current slot in aiCur[] and aiColumn[] */ unsigned char nEquiv; /* Number of entries in aiCur[] and aiColumn[] */ int aiCur[11]; /* Cursors in the equivalence class */ i16 aiColumn[11]; /* Corresponding column number in the eq-class */ }; /* ** An instance of the following structure holds all information about a ** WHERE clause. Mostly this is a container for one or more WhereTerms. ** ** Explanation of pOuter: For a WHERE clause of the form ** ** a AND ((b AND c) OR (d AND e)) AND f ** ** There are separate WhereClause objects for the whole clause and for ** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the ** subclauses points to the WhereClause object for the whole clause. */ struct WhereClause { WhereInfo *pWInfo; /* WHERE clause processing context */ WhereClause *pOuter; /* Outer conjunction */ u8 op; /* Split operator. TK_AND or TK_OR */ u8 hasOr; /* True if any a[].eOperator is WO_OR */ int nTerm; /* Number of terms */ int nSlot; /* Number of entries in a[] */ int nBase; /* Number of terms through the last non-Virtual */ WhereTerm *a; /* Each a[] describes a term of the WHERE clause */ #if defined(SQLITE_SMALL_STACK) WhereTerm aStatic[1]; /* Initial static space for a[] */ #else WhereTerm aStatic[8]; /* Initial static space for a[] */ #endif }; /* ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to ** a dynamically allocated instance of the following structure. */ struct WhereOrInfo { WhereClause wc; /* Decomposition into subterms */ Bitmask indexable; /* Bitmask of all indexable tables in the clause */ }; /* ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to ** a dynamically allocated instance of the following structure. */ struct WhereAndInfo { WhereClause wc; /* The subexpression broken out */ }; /* ** An instance of the following structure keeps track of a mapping ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. ** ** The VDBE cursor numbers are small integers contained in ** SrcItem.iCursor and Expr.iTable fields. For any given WHERE ** clause, the cursor numbers might not begin with 0 and they might ** contain gaps in the numbering sequence. But we want to make maximum ** use of the bits in our bitmasks. This structure provides a mapping ** from the sparse cursor numbers into consecutive integers beginning ** with 0. ** ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<3, 5->1, 8->2, 29->0, ** 57->5, 73->4. Or one of 719 other combinations might be used. It ** does not really matter. What is important is that sparse cursor ** numbers all get mapped into bit numbers that begin with 0 and contain ** no gaps. */ struct WhereMaskSet { int bVarSelect; /* Used by sqlite3WhereExprUsage() */ int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* ** This object is a convenience wrapper holding all information needed ** to construct WhereLoop objects for a particular query. */ struct WhereLoopBuilder { WhereInfo *pWInfo; /* Information about this WHERE */ WhereClause *pWC; /* WHERE clause terms */ WhereLoop *pNew; /* Template WhereLoop */ WhereOrSet *pOrSet; /* Record best loops here, if not NULL */ #ifdef SQLITE_ENABLE_STAT4 UnpackedRecord *pRec; /* Probe for stat4 (if required) */ int nRecValid; /* Number of valid fields currently in pRec */ #endif unsigned char bldFlags1; /* First set of SQLITE_BLDF_* flags */ unsigned char bldFlags2; /* Second set of SQLITE_BLDF_* flags */ unsigned int iPlanLimit; /* Search limiter */ }; /* Allowed values for WhereLoopBuider.bldFlags */ #define SQLITE_BLDF1_INDEXED 0x0001 /* An index is used */ #define SQLITE_BLDF1_UNIQUE 0x0002 /* All keys of a UNIQUE index used */ #define SQLITE_BLDF2_2NDPASS 0x0004 /* Second builder pass needed */ /* The WhereLoopBuilder.iPlanLimit is used to limit the number of ** index+constraint combinations the query planner will consider for a ** particular query. If this parameter is unlimited, then certain ** pathological queries can spend excess time in the sqlite3WhereBegin() ** routine. The limit is high enough that is should not impact real-world ** queries. ** ** SQLITE_QUERY_PLANNER_LIMIT is the baseline limit. The limit is ** increased by SQLITE_QUERY_PLANNER_LIMIT_INCR before each term of the FROM ** clause is processed, so that every table in a join is guaranteed to be ** able to propose a some index+constraint combinations even if the initial ** baseline limit was exhausted by prior tables of the join. */ #ifndef SQLITE_QUERY_PLANNER_LIMIT # define SQLITE_QUERY_PLANNER_LIMIT 20000 #endif #ifndef SQLITE_QUERY_PLANNER_LIMIT_INCR # define SQLITE_QUERY_PLANNER_LIMIT_INCR 1000 #endif /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of ** this structure is returned by the first half and passed ** into the second half to give some continuity. ** ** An instance of this object holds the complete state of the query ** planner. */ struct WhereInfo { Parse *pParse; /* Parsing and code generating context */ SrcList *pTabList; /* List of tables in the join */ ExprList *pOrderBy; /* The ORDER BY clause or NULL */ ExprList *pResultSet; /* Result set of the query */ #if WHERETRACE_ENABLED Expr *pWhere; /* The complete WHERE clause */ #endif Select *pSelect; /* The entire SELECT statement containing WHERE */ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */ int iContinue; /* Jump here to continue with next record */ int iBreak; /* Jump here to break out of the loop */ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ LogEst iLimit; /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */ u8 nLevel; /* Number of nested loop */ i8 nOBSat; /* Number of ORDER BY terms satisfied by indices */ u8 eOnePass; /* ONEPASS_OFF, or _SINGLE, or _MULTI */ u8 eDistinct; /* One of the WHERE_DISTINCT_* values */ unsigned bDeferredSeek :1; /* Uses OP_DeferredSeek */ unsigned untestedTerms :1; /* Not all WHERE terms resolved by outer loop */ unsigned bOrderedInnerLoop:1;/* True if only the inner-most loop is ordered */ unsigned sorted :1; /* True if really sorted (not just grouped) */ LogEst nRowOut; /* Estimated number of output rows */ int iTop; /* The very beginning of the WHERE loop */ int iEndWhere; /* End of the WHERE clause itself */ WhereLoop *pLoops; /* List of all WhereLoop objects */ WhereMemBlock *pMemToFree;/* Memory to free when this object destroyed */ Bitmask revMask; /* Mask of ORDER BY terms that need reversing */ WhereClause sWC; /* Decomposition of the WHERE clause */ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* ** Private interfaces - callable only by other where.c routines. ** ** where.c: */ SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet*,int); #ifdef WHERETRACE_ENABLED SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC); SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm); SQLITE_PRIVATE void sqlite3WhereLoopPrint(const WhereLoop *p, const WhereClause *pWC); #endif SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ); SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte); SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte); /* wherecode.c: */ #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ); SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter( const Parse *pParse, /* Parse context */ const WhereInfo *pWInfo, /* WHERE clause */ const WhereLevel *pLevel /* Bloom filter on this level */ ); #else # define sqlite3WhereExplainOneScan(u,v,w,x) 0 # define sqlite3WhereExplainBloomFilter(u,v,w) 0 #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS SQLITE_PRIVATE void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ); #else # define sqlite3WhereAddScanStatus(a, b, c, d) ((void)d) #endif SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart( Parse *pParse, /* Parsing context */ Vdbe *v, /* Prepared statement under construction */ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ WhereLevel *pLevel, /* The current level pointer */ Bitmask notReady /* Which tables are currently available */ ); SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( WhereInfo *pWInfo, int iLevel, WhereLevel *pLevel ); /* whereexpr.c: */ SQLITE_PRIVATE void sqlite3WhereClauseInit(WhereClause*,WhereInfo*); SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause*); SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause*,Expr*,u8); SQLITE_PRIVATE void sqlite3WhereAddLimit(WhereClause*, Select*); SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet*, Expr*); SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet*, Expr*); SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet*, ExprList*); SQLITE_PRIVATE void sqlite3WhereExprAnalyze(SrcList*, WhereClause*); SQLITE_PRIVATE void sqlite3WhereTabFuncArgs(Parse*, SrcItem*, WhereClause*); /* ** Bitmasks for the operators on WhereTerm objects. These are all ** operators that are of interest to the query planner. An ** OR-ed combination of these values can be used when searching for ** particular WhereTerms within a WhereClause. ** ** Value constraints: ** WO_EQ == SQLITE_INDEX_CONSTRAINT_EQ ** WO_LT == SQLITE_INDEX_CONSTRAINT_LT ** WO_LE == SQLITE_INDEX_CONSTRAINT_LE ** WO_GT == SQLITE_INDEX_CONSTRAINT_GT ** WO_GE == SQLITE_INDEX_CONSTRAINT_GE */ #define WO_IN 0x0001 #define WO_EQ 0x0002 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) #define WO_AUX 0x0040 /* Op useful to virtual tables only */ #define WO_IS 0x0080 #define WO_ISNULL 0x0100 #define WO_OR 0x0200 /* Two or more OR-connected terms */ #define WO_AND 0x0400 /* Two or more AND-connected terms */ #define WO_EQUIV 0x0800 /* Of the form A==B, both columns */ #define WO_NOOP 0x1000 /* This term does not restrict search space */ #define WO_ROWVAL 0x2000 /* A row-value term */ #define WO_ALL 0x3fff /* Mask of all possible WO_* values */ #define WO_SINGLE 0x01ff /* Mask of all non-compound WO_* values */ /* ** These are definitions of bits in the WhereLoop.wsFlags field. ** The particular combination of bits in each WhereLoop help to ** determine the algorithm that WhereLoop represents. */ #define WHERE_COLUMN_EQ 0x00000001 /* x=EXPR */ #define WHERE_COLUMN_RANGE 0x00000002 /* xEXPR */ #define WHERE_COLUMN_IN 0x00000004 /* x IN (...) */ #define WHERE_COLUMN_NULL 0x00000008 /* x IS NULL */ #define WHERE_CONSTRAINT 0x0000000f /* Any of the WHERE_COLUMN_xxx values */ #define WHERE_TOP_LIMIT 0x00000010 /* xEXPR or x>=EXPR constraint */ #define WHERE_BOTH_LIMIT 0x00000030 /* Both x>EXPR and xaiColumn[i]; if( i==XN_EXPR ) return ""; if( i==XN_ROWID ) return "rowid"; return pIdx->pTable->aCol[i].zCnName; } /* ** This routine is a helper for explainIndexRange() below ** ** pStr holds the text of an expression that we are building up one term ** at a time. This routine adds a new term to the end of the expression. ** Terms are separated by AND so add the "AND" text for second and subsequent ** terms only. */ static void explainAppendTerm( StrAccum *pStr, /* The text expression being built */ Index *pIdx, /* Index to read column names from */ int nTerm, /* Number of terms */ int iTerm, /* Zero-based index of first term. */ int bAnd, /* Non-zero to append " AND " */ const char *zOp /* Name of the operator */ ){ int i; assert( nTerm>=1 ); if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); for(i=0; i1 ) sqlite3_str_append(pStr, ")", 1); sqlite3_str_append(pStr, zOp, 1); if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); for(i=0; i1 ) sqlite3_str_append(pStr, ")", 1); } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function appends text to pStr that describes the subset of table ** rows scanned by the strategy in the form of an SQL expression. ** ** For example, if the query: ** ** SELECT * FROM t1 WHERE a=1 AND b>2; ** ** is run and there is an index on (a, b), then this function returns a ** string similar to: ** ** "a=? AND b>?" */ static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->nSkip; int i, j; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; sqlite3_str_append(pStr, " (", 2); for(i=0; i=nSkip ? "%s=?" : "ANY(%s)", z); } j = i; if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); i = 1; } if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); } sqlite3_str_append(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command, or if stmt_scanstatus_v2() stats are enabled, or if SQLITE_DEBUG ** was defined at compile-time. If it is not a no-op, a single OP_Explain ** opcode is added to the output to describe the table scan strategy in pLevel. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ int ret = 0; #if !defined(SQLITE_DEBUG) if( sqlite3ParseToplevel(pParse)->explain==2 || IS_STMT_SCANSTATUS(pParse->db) ) #endif { SrcItem *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ int isSearch; /* True for a SEARCH. False for SCAN. */ WhereLoop *pLoop; /* The controlling WhereLoop object */ u32 flags; /* Flags that describe this loop */ char *zMsg; /* Text to add to EQP output */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ pLoop = pLevel->pWLoop; flags = pLoop->wsFlags; if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); str.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ const char *zFmt = 0; Index *pIdx; assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ if( isSearch ){ zFmt = "PRIMARY KEY"; } }else if( flags & WHERE_PARTIALIDX ){ zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; }else if( flags & WHERE_AUTO_INDEX ){ zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } if( zFmt ){ sqlite3_str_append(&str, " USING ", 7); sqlite3_str_appendf(&str, zFmt, pIdx->zName); explainIndexRange(&str, pLoop); } }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ char cRangeOp; #if 0 /* Better output, but breaks many tests */ const Table *pTab = pItem->pTab; const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: "rowid"; #else const char *zRowid = "rowid"; #endif sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ cRangeOp = '='; }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ sqlite3_str_appendf(&str, ">? AND %s", zRowid); cRangeOp = '<'; }else if( flags&WHERE_BTM_LIMIT ){ cRangeOp = '>'; }else{ assert( flags&WHERE_TOP_LIMIT); cRangeOp = '<'; } sqlite3_str_appendf(&str, "%c?)", cRangeOp); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); } #endif if( pItem->fg.jointype & JT_LEFT ){ sqlite3_str_appendf(&str, " LEFT-JOIN"); } #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS if( pLoop->nOut>=10 ){ sqlite3_str_appendf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3_str_append(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); sqlite3ExplainBreakpoint("",zMsg); ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), pParse->addrExplain, 0, zMsg,P4_DYNAMIC); } return ret; } /* ** Add a single OP_Explain opcode that describes a Bloom filter. ** ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not ** required and this routine is a no-op. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter( const Parse *pParse, /* Parse context */ const WhereInfo *pWInfo, /* WHERE clause */ const WhereLevel *pLevel /* Bloom filter on this level */ ){ int ret = 0; SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ char *zMsg; /* Text to add to EQP output */ int i; /* Loop counter */ WhereLoop *pLoop; /* The where loop */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); str.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); pLoop = pLevel->pWLoop; if( pLoop->wsFlags & WHERE_IPK ){ const Table *pTab = pItem->pTab; if( pTab->iPKey>=0 ){ sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); }else{ sqlite3_str_appendf(&str, "rowid=?"); } }else{ for(i=pLoop->nSkip; iu.btree.nEq; i++){ const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); sqlite3_str_appendf(&str, "%s=?", z); } } sqlite3_str_append(&str, ")", 1); zMsg = sqlite3StrAccumFinish(&str); ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), pParse->addrExplain, 0, zMsg,P4_DYNAMIC); sqlite3VdbeScanStatus(v, sqlite3VdbeCurrentAddr(v)-1, 0, 0, 0, 0); return ret; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Configure the VM passed as the first argument with an ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to ** implement level pLvl. Argument pSrclist is a pointer to the FROM ** clause that the scan reads data from. ** ** If argument addrExplain is not 0, it must be the address of an ** OP_Explain instruction that describes the same loop. */ SQLITE_PRIVATE void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ){ if( IS_STMT_SCANSTATUS( sqlite3VdbeDb(v) ) ){ const char *zObj = 0; WhereLoop *pLoop = pLvl->pWLoop; int wsFlags = pLoop->wsFlags; int viaCoroutine = 0; if( (wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ zObj = pLoop->u.btree.pIndex->zName; }else{ zObj = pSrclist->a[pLvl->iFrom].zName; viaCoroutine = pSrclist->a[pLvl->iFrom].fg.viaCoroutine; } sqlite3VdbeScanStatus( v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj ); if( viaCoroutine==0 ){ if( (wsFlags & (WHERE_MULTI_OR|WHERE_AUTO_INDEX))==0 ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iTabCur); } if( wsFlags & WHERE_INDEXED ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iIdxCur); } }else{ int addr = pSrclist->a[pLvl->iFrom].addrFillSub; VdbeOp *pOp = sqlite3VdbeGetOp(v, addr-1); assert( sqlite3VdbeDb(v)->mallocFailed || pOp->opcode==OP_InitCoroutine ); assert( sqlite3VdbeDb(v)->mallocFailed || pOp->p2>addr ); sqlite3VdbeScanStatusRange(v, addrExplain, addr, pOp->p2-1); } } } #endif /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. ** ** Consider the term t2.z='ok' in the following queries: ** ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get ** the wrong answer. See ticket #813. ** ** If all the children of a term are disabled, then that term is also ** automatically disabled. In this way, terms get disabled if derived ** virtual terms are tested first. For example: ** ** x GLOB 'abc*' AND x>='abc' AND x<'acd' ** \___________/ \______/ \_____/ ** parent child1 child2 ** ** Only the parent term was in the original WHERE clause. The child1 ** and child2 terms were added by the LIKE optimization. If both of ** the virtual child terms are valid, then testing of the parent can be ** skipped. ** ** Usually the parent term is marked as TERM_CODED. But if the parent ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. ** The TERM_LIKECOND marking indicates that the term should be coded inside ** a conditional such that is only evaluated on the second pass of a ** LIKE-optimization loop, when scanning BLOBs instead of strings. */ static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ int nLoop = 0; assert( pTerm!=0 ); while( (pTerm->wtFlags & TERM_CODED)==0 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON)) && (pLevel->notReady & pTerm->prereqAll)==0 ){ if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ pTerm->wtFlags |= TERM_LIKECOND; }else{ pTerm->wtFlags |= TERM_CODED; } #ifdef WHERETRACE_ENABLED if( (sqlite3WhereTrace & 0x4001)==0x4001 ){ sqlite3DebugPrintf("DISABLE-"); sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); } #endif if( pTerm->iParent<0 ) break; pTerm = &pTerm->pWC->a[pTerm->iParent]; assert( pTerm!=0 ); pTerm->nChild--; if( pTerm->nChild!=0 ) break; nLoop++; } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which ** are no-ops) at the beginning and end of zAff are ignored. If all entries ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. ** ** This routine makes its own copy of zAff so that the caller is free ** to modify zAff after this routine returns. */ static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ Vdbe *v = pParse->pVdbe; if( zAff==0 ){ assert( pParse->db->mallocFailed ); return; } assert( v!=0 ); /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE ** entries at the beginning and end of the affinity string. */ assert( SQLITE_AFF_NONE0 && zAff[0]<=SQLITE_AFF_BLOB ){ n--; base++; zAff++; } while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ n--; } /* Code the OP_Affinity opcode if there is anything left to do. */ if( n>0 ){ sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); } } /* ** Expression pRight, which is the RHS of a comparison operation, is ** either a vector of n elements or, if n==1, a scalar expression. ** Before the comparison operation, affinity zAff is to be applied ** to the pRight values. This function modifies characters within the ** affinity string to SQLITE_AFF_BLOB if either: ** ** * the comparison will be performed with no affinity, or ** * the affinity change in zAff is guaranteed not to change the value. */ static void updateRangeAffinityStr( Expr *pRight, /* RHS of comparison */ int n, /* Number of vector elements in comparison */ char *zAff /* Affinity string to modify */ ){ int i; for(i=0; idb; Select *pSelect; /* Pointer to the SELECT on the RHS */ Expr *pNew; pNew = sqlite3ExprDup(db, pX, 0); if( db->mallocFailed==0 ){ for(pSelect=pNew->x.pSelect; pSelect; pSelect=pSelect->pPrior){ ExprList *pOrigRhs; /* Original unmodified RHS */ ExprList *pOrigLhs = 0; /* Original unmodified LHS */ ExprList *pRhs = 0; /* New RHS after modifications */ ExprList *pLhs = 0; /* New LHS after mods */ int i; /* Loop counter */ assert( ExprUseXSelect(pNew) ); pOrigRhs = pSelect->pEList; assert( pNew->pLeft!=0 ); assert( ExprUseXList(pNew->pLeft) ); if( pSelect==pNew->x.pSelect ){ pOrigLhs = pNew->pLeft->x.pList; } for(i=iEq; inLTerm; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ int iField; assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); iField = pLoop->aLTerm[i]->u.x.iField - 1; if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); pOrigRhs->a[iField].pExpr = 0; if( pOrigLhs ){ assert( pOrigLhs->a[iField].pExpr!=0 ); pLhs = sqlite3ExprListAppend(pParse,pLhs,pOrigLhs->a[iField].pExpr); pOrigLhs->a[iField].pExpr = 0; } } } sqlite3ExprListDelete(db, pOrigRhs); if( pOrigLhs ){ sqlite3ExprListDelete(db, pOrigLhs); pNew->pLeft->x.pList = pLhs; } pSelect->pEList = pRhs; if( pLhs && pLhs->nExpr==1 ){ /* Take care here not to generate a TK_VECTOR containing only a ** single value. Since the parser never creates such a vector, some ** of the subroutines do not handle this case. */ Expr *p = pLhs->a[0].pExpr; pLhs->a[0].pExpr = 0; sqlite3ExprDelete(db, pNew->pLeft); pNew->pLeft = p; } if( pSelect->pOrderBy ){ /* If the SELECT statement has an ORDER BY clause, zero the ** iOrderByCol variables. These are set to non-zero when an ** ORDER BY term exactly matches one of the terms of the ** result-set. Since the result-set of the SELECT statement may ** have been modified or reordered, these variables are no longer ** set correctly. Since setting them is just an optimization, ** it's easiest just to zero them here. */ ExprList *pOrderBy = pSelect->pOrderBy; for(i=0; inExpr; i++){ pOrderBy->a[i].u.x.iOrderByCol = 0; } } #if 0 printf("For indexing, change the IN expr:\n"); sqlite3TreeViewExpr(0, pX, 0); printf("Into:\n"); sqlite3TreeViewExpr(0, pNew, 0); #endif } } return pNew; } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. ** ** The current value for the constraint is left in a register, the index ** of which is returned. An attempt is made store the result in iTarget but ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the ** constraint is a TK_EQ or TK_IS, then the current value might be left in ** some other register and it is the caller's responsibility to compensate. ** ** For a constraint of the form X=expr, the expression is evaluated in ** straight-line code. For constraints of the form X IN (...) ** this routine sets up a loop that will iterate over all values of X. */ static int codeEqualityTerm( Parse *pParse, /* The parsing context */ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ int iEq, /* Index of the equality term within this level */ int bRev, /* True for reverse-order IN operations */ int iTarget /* Attempt to leave results in this register */ ){ Expr *pX = pTerm->pExpr; Vdbe *v = pParse->pVdbe; int iReg; /* Register holding results */ assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); assert( iTarget>0 ); if( pX->op==TK_EQ || pX->op==TK_IS ){ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); }else if( pX->op==TK_ISNULL ){ iReg = iTarget; sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); #ifndef SQLITE_OMIT_SUBQUERY }else{ int eType = IN_INDEX_NOOP; int iTab; struct InLoop *pIn; WhereLoop *pLoop = pLevel->pWLoop; int i; int nEq = 0; int *aiMap = 0; if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 && pLoop->u.btree.pIndex->aSortOrder[iEq] ){ testcase( iEq==0 ); testcase( bRev ); bRev = !bRev; } assert( pX->op==TK_IN ); iReg = iTarget; for(i=0; iaLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ disableTerm(pLevel, pTerm); return iTarget; } } for(i=iEq;inLTerm; i++){ assert( pLoop->aLTerm[i]!=0 ); if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; } iTab = 0; if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); }else{ Expr *pExpr = pTerm->pExpr; if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){ sqlite3 *db = pParse->db; pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); if( !db->mallocFailed ){ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab); pExpr->iTable = iTab; } sqlite3ExprDelete(db, pX); }else{ int n = sqlite3ExprVectorSize(pX->pLeft); aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n)); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); } pX = pExpr; } if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); VdbeCoverageIf(v, bRev); VdbeCoverageIf(v, !bRev); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); } if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ pLoop->wsFlags |= WHERE_IN_EARLYOUT; } i = pLevel->u.in.nIn; pLevel->u.in.nIn += nEq; pLevel->u.in.aInLoop = sqlite3WhereRealloc(pTerm->pWC->pWInfo, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ int iMap = 0; /* Index in aiMap[] */ pIn += i; for(i=iEq;inLTerm; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ int iOut = iReg + i - iEq; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); }else{ int iCol = aiMap ? aiMap[iMap++] : 0; pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); } sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); if( i==iEq ){ pIn->iCur = iTab; pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; if( iEq>0 ){ pIn->iBase = iReg - i; pIn->nPrefix = i; }else{ pIn->nPrefix = 0; } }else{ pIn->eEndLoopOp = OP_Noop; } pIn++; } } testcase( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); if( iEq>0 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 ){ sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); } }else{ pLevel->u.in.nIn = 0; } sqlite3DbFree(pParse->db, aiMap); #endif } /* As an optimization, try to disable the WHERE clause term that is ** driving the index as it will always be true. The correct answer is ** obtained regardless, but we might get the answer with fewer CPU cycles ** by omitting the term. ** ** But do not disable the term unless we are certain that the term is ** not a transitive constraint. For an example of where that does not ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) */ if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 || (pTerm->eOperator & WO_EQUIV)==0 ){ disableTerm(pLevel, pTerm); } return iReg; } /* ** Generate code that will evaluate all == and IN constraints for an ** index scan. ** ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 ** The index has as many as three equality constraints, but in this ** example, the third "c" value is an inequality. So only two ** constraints are coded. This routine will generate code to evaluate ** a==5 and b IN (1,2,3). The current values for a and b will be stored ** in consecutive registers and the index of the first register is returned. ** ** In the example above nEq==2. But this subroutine works for any value ** of nEq including 0. If nEq==0, this routine is nearly a no-op. ** The only thing it does is allocate the pLevel->iMem memory cell and ** compute the affinity string. ** ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that ** occurs after the nEq quality constraints. ** ** This routine allocates a range of nEq+nExtraReg memory cells and returns ** the index of the first memory cell in that range. The code that ** calls this routine will use that memory range to store keys for ** start and termination conditions of the loop. ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated ** with equality constraints that use BLOB or NONE affinity are set to ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: ** ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; ** ** In the example above, the index on t1(a) has TEXT affinity. But since ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_BLOB. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ int bRev, /* Reverse the order of IN operators */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ u16 nEq; /* The number of == or IN constraints to code */ u16 nSkip; /* Number of left-most columns to skip */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ WhereTerm *pTerm; /* A single constraint term */ WhereLoop *pLoop; /* The WhereLoop object */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ pLoop = pLevel->pWLoop; assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); nEq = pLoop->u.btree.nEq; nSkip = pLoop->nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); assert( zAff!=0 || pParse->db->mallocFailed ); if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); assert( pLevel->addrSkip==0 ); pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; jaiColumn[j]==XN_EXPR ); VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); } } /* Evaluate the equality constraints */ assert( zAff==0 || (int)strlen(zAff)>=nEq ); for(j=nSkip; jaLTerm[j]; assert( pTerm!=0 ); /* The following testcase is true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); } } if( pTerm->eOperator & WO_IN ){ if( pTerm->pExpr->flags & EP_xIsSelect ){ /* No affinity ever needs to be (or should be) applied to a value ** from the RHS of an "? IN (SELECT ...)" expression. The ** sqlite3FindInIndex() routine has already ensured that the ** affinity of the comparison has been applied to the value. */ if( zAff ) zAff[j] = SQLITE_AFF_BLOB; } }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ Expr *pRight = pTerm->pExpr->pRight; if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); VdbeCoverage(v); } if( pParse->nErr==0 ){ assert( pParse->db->mallocFailed==0 ); if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ zAff[j] = SQLITE_AFF_BLOB; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ zAff[j] = SQLITE_AFF_BLOB; } } } } *pzAff = zAff; return regBase; } #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS /* ** If the most recently coded instruction is a constant range constraint ** (a string literal) that originated from the LIKE optimization, then ** set P3 and P5 on the OP_String opcode so that the string will be cast ** to a BLOB at appropriate times. ** ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range ** expression: "x>='ABC' AND x<'abd'". But this requires that the range ** scan loop run twice, once for strings and a second time for BLOBs. ** The OP_String opcodes on the second pass convert the upper and lower ** bound string constants to blobs. This routine makes the necessary changes ** to the OP_String opcodes for that to happen. ** ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then ** only the one pass through the string space is required, so this routine ** becomes a no-op. */ static void whereLikeOptimizationStringFixup( Vdbe *v, /* prepared statement under construction */ WhereLevel *pLevel, /* The loop that contains the LIKE operator */ WhereTerm *pTerm /* The upper or lower bound just coded */ ){ if( pTerm->wtFlags & TERM_LIKEOPT ){ VdbeOp *pOp; assert( pLevel->iLikeRepCntr>0 ); pOp = sqlite3VdbeGetLastOp(v); assert( pOp!=0 ); assert( pOp->opcode==OP_String8 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ } } #else # define whereLikeOptimizationStringFixup(A,B,C) #endif #ifdef SQLITE_ENABLE_CURSOR_HINTS /* ** Information is passed from codeCursorHint() down to individual nodes of ** the expression tree (by sqlite3WalkExpr()) using an instance of this ** structure. */ struct CCurHint { int iTabCur; /* Cursor for the main table */ int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ Index *pIdx; /* The index used to access the table */ }; /* ** This function is called for every node of an expression that is a candidate ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference ** the table CCurHint.iTabCur, verify that the same column can be ** accessed through the index. If it cannot, then set pWalker->eCode to 1. */ static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ struct CCurHint *pHint = pWalker->u.pCCurHint; assert( pHint->pIdx!=0 ); if( pExpr->op==TK_COLUMN && pExpr->iTable==pHint->iTabCur && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 ){ pWalker->eCode = 1; } return WRC_Continue; } /* ** Test whether or not expression pExpr, which was part of a WHERE clause, ** should be included in the cursor-hint for a table that is on the rhs ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the ** expression is not suitable. ** ** An expression is unsuitable if it might evaluate to non NULL even if ** a TK_COLUMN node that does affect the value of the expression is set ** to NULL. For example: ** ** col IS NULL ** col IS NOT NULL ** coalesce(col, 1) ** CASE WHEN col THEN 0 ELSE 1 END */ static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_IS || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE ){ pWalker->eCode = 1; }else if( pExpr->op==TK_FUNCTION ){ int d1; char d2[4]; if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ pWalker->eCode = 1; } } return WRC_Continue; } /* ** This function is called on every node of an expression tree used as an ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN ** that accesses any table other than the one identified by ** CCurHint.iTabCur, then do the following: ** ** 1) allocate a register and code an OP_Column instruction to read ** the specified column into the new register, and ** ** 2) transform the expression node to a TK_REGISTER node that reads ** from the newly populated register. ** ** Also, if the node is a TK_COLUMN that does access the table identified ** by pCCurHint.iTabCur, and an index is being used (which we will ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into ** an access of the index rather than the original table. */ static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ int rc = WRC_Continue; int reg; struct CCurHint *pHint = pWalker->u.pCCurHint; if( pExpr->op==TK_COLUMN ){ if( pExpr->iTable!=pHint->iTabCur ){ reg = ++pWalker->pParse->nMem; /* Register for column value */ reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg); pExpr->op = TK_REGISTER; pExpr->iTable = reg; }else if( pHint->pIdx!=0 ){ pExpr->iTable = pHint->iIdxCur; pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); assert( pExpr->iColumn>=0 ); } }else if( pExpr->pAggInfo ){ rc = WRC_Prune; reg = ++pWalker->pParse->nMem; /* Register for column value */ reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg); pExpr->op = TK_REGISTER; pExpr->iTable = reg; }else if( pExpr->op==TK_TRUEFALSE ){ /* Do not walk disabled expressions. tag-20230504-1 */ return WRC_Prune; } return rc; } /* ** Insert an OP_CursorHint instruction if it is appropriate to do so. */ static void codeCursorHint( SrcItem *pTabItem, /* FROM clause item */ WhereInfo *pWInfo, /* The where clause */ WhereLevel *pLevel, /* Which loop to provide hints for */ WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ ){ Parse *pParse = pWInfo->pParse; sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; Expr *pExpr = 0; WhereLoop *pLoop = pLevel->pWLoop; int iCur; WhereClause *pWC; WhereTerm *pTerm; int i, j; struct CCurHint sHint; Walker sWalker; if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; iCur = pLevel->iTabCur; assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); sHint.iTabCur = iCur; sHint.iIdxCur = pLevel->iIdxCur; sHint.pIdx = pLoop->u.btree.pIndex; memset(&sWalker, 0, sizeof(sWalker)); sWalker.pParse = pParse; sWalker.u.pCCurHint = &sHint; pWC = &pWInfo->sWC; for(i=0; inBase; i++){ pTerm = &pWC->a[i]; if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( pTerm->prereqAll & pLevel->notReady ) continue; /* Any terms specified as part of the ON(...) clause for any LEFT ** JOIN for which the current table is not the rhs are omitted ** from the cursor-hint. ** ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms ** that were specified as part of the WHERE clause must be excluded. ** This is to address the following: ** ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; ** ** Say there is a single row in t2 that matches (t1.a=t2.b), but its ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is ** pushed down to the cursor, this row is filtered out, causing ** SQLite to synthesize a row of NULL values. Which does match the ** WHERE clause, and so the query returns a row. Which is incorrect. ** ** For the same reason, WHERE terms such as: ** ** WHERE 1 = (t2.c IS NULL) ** ** are also excluded. See codeCursorHintIsOrFunction() for details. */ if( pTabItem->fg.jointype & JT_LEFT ){ Expr *pExpr = pTerm->pExpr; if( !ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin!=pTabItem->iCursor ){ sWalker.eCode = 0; sWalker.xExprCallback = codeCursorHintIsOrFunction; sqlite3WalkExpr(&sWalker, pTerm->pExpr); if( sWalker.eCode ) continue; } }else{ if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue; } /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize ** the cursor. These terms are not needed as hints for a pure range ** scan (that has no == terms) so omit them. */ if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ for(j=0; jnLTerm && pLoop->aLTerm[j]!=pTerm; j++){} if( jnLTerm ) continue; } /* No subqueries or non-deterministic functions allowed */ if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; /* For an index scan, make sure referenced columns are actually in ** the index. */ if( sHint.pIdx!=0 ){ sWalker.eCode = 0; sWalker.xExprCallback = codeCursorHintCheckExpr; sqlite3WalkExpr(&sWalker, pTerm->pExpr); if( sWalker.eCode ) continue; } /* If we survive all prior tests, that means this term is worth hinting */ pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); } if( pExpr!=0 ){ sWalker.xExprCallback = codeCursorHintFixExpr; if( pParse->nErr==0 ) sqlite3WalkExpr(&sWalker, pExpr); sqlite3VdbeAddOp4(v, OP_CursorHint, (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, (const char*)pExpr, P4_EXPR); } } #else # define codeCursorHint(A,B,C,D) /* No-op */ #endif /* SQLITE_ENABLE_CURSOR_HINTS */ /* ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains ** a rowid value just read from cursor iIdxCur, open on index pIdx. This ** function generates code to do a deferred seek of cursor iCur to the ** rowid stored in register iRowid. ** ** Normally, this is just: ** ** OP_DeferredSeek $iCur $iRowid ** ** Which causes a seek on $iCur to the row with rowid $iRowid. ** ** However, if the scan currently being coded is a branch of an OR-loop and ** the statement currently being coded is a SELECT, then additional information ** is added that might allow OP_Column to omit the seek and instead do its ** lookup on the index, thus avoiding an expensive seek operation. To ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur ** and P4 is set to an array of integers containing one entry for each column ** in the table. For each table column, if the column is the i'th ** column of the index, then the corresponding array entry is set to (i+1). ** If the column does not appear in the index at all, the array entry is set ** to 0. The OP_Column opcode can check this array to see if the column it ** wants is in the index and if it is, it will substitute the index cursor ** and column number and continue with those new values, rather than seeking ** the table cursor. */ static void codeDeferredSeek( WhereInfo *pWInfo, /* Where clause context */ Index *pIdx, /* Index scan is using */ int iCur, /* Cursor for IPK b-tree */ int iIdxCur /* Index cursor */ ){ Parse *pParse = pWInfo->pParse; /* Parse context */ Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ assert( iIdxCur>0 ); assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); pWInfo->bDeferredSeek = 1; sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) ){ int i; Table *pTab = pIdx->pTable; u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); if( ai ){ ai[0] = pTab->nCol; for(i=0; inColumn-1; i++){ int x1, x2; assert( pIdx->aiColumn[i]nCol ); x1 = pIdx->aiColumn[i]; x2 = sqlite3TableColumnToStorage(pTab, x1); testcase( x1!=x2 ); if( x1>=0 ) ai[x2+1] = i+1; } sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); } } } /* ** If the expression passed as the second argument is a vector, generate ** code to write the first nReg elements of the vector into an array ** of registers starting with iReg. ** ** If the expression is not a vector, then nReg must be passed 1. In ** this case, generate code to evaluate the expression and leave the ** result in register iReg. */ static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ assert( nReg>0 ); if( p && sqlite3ExprIsVector(p) ){ #ifndef SQLITE_OMIT_SUBQUERY if( ExprUseXSelect(p) ){ Vdbe *v = pParse->pVdbe; int iSelect; assert( p->op==TK_SELECT ); iSelect = sqlite3CodeSubselect(pParse, p); sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); }else #endif { int i; const ExprList *pList; assert( ExprUseXList(p) ); pList = p->x.pList; assert( nReg<=pList->nExpr ); for(i=0; ia[i].pExpr, iReg+i); } } }else{ assert( nReg==1 || pParse->nErr ); sqlite3ExprCode(pParse, p, iReg); } } /* ** The pTruth expression is always true because it is the WHERE clause ** a partial index that is driving a query loop. Look through all of the ** WHERE clause terms on the query, and if any of those terms must be ** true because pTruth is true, then mark those WHERE clause terms as ** coded. */ static void whereApplyPartialIndexConstraints( Expr *pTruth, int iTabCur, WhereClause *pWC ){ int i; WhereTerm *pTerm; while( pTruth->op==TK_AND ){ whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); pTruth = pTruth->pRight; } for(i=0, pTerm=pWC->a; inTerm; i++, pTerm++){ Expr *pExpr; if( pTerm->wtFlags & TERM_CODED ) continue; pExpr = pTerm->pExpr; if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ pTerm->wtFlags |= TERM_CODED; } } } /* ** This routine is called right after An OP_Filter has been generated and ** before the corresponding index search has been performed. This routine ** checks to see if there are additional Bloom filters in inner loops that ** can be checked prior to doing the index lookup. If there are available ** inner-loop Bloom filters, then evaluate those filters now, before the ** index lookup. The idea is that a Bloom filter check is way faster than ** an index lookup, and the Bloom filter might return false, meaning that ** the index lookup can be skipped. ** ** We know that an inner loop uses a Bloom filter because it has the ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, ** then clear the WhereLevel.regFilter value to prevent the Bloom filter ** from being checked a second time when the inner loop is evaluated. */ static SQLITE_NOINLINE void filterPullDown( Parse *pParse, /* Parsing context */ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ int addrNxt, /* Jump here to bypass inner loops */ Bitmask notReady /* Loops that are not ready */ ){ while( ++iLevel < pWInfo->nLevel ){ WhereLevel *pLevel = &pWInfo->a[iLevel]; WhereLoop *pLoop = pLevel->pWLoop; if( pLevel->regFilter==0 ) continue; if( pLevel->pWLoop->nSkip ) continue; /* ,--- Because sqlite3ConstructBloomFilter() has will not have set ** vvvvv--' pLevel->regFilter if this were true. */ if( NEVER(pLoop->prereq & notReady) ) continue; assert( pLevel->addrBrk==0 ); pLevel->addrBrk = addrNxt; if( pLoop->wsFlags & WHERE_IPK ){ WhereTerm *pTerm = pLoop->aLTerm[0]; int regRowid; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); regRowid = sqlite3GetTempReg(pParse); regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt); VdbeCoverage(pParse->pVdbe); sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, addrNxt, regRowid, 1); VdbeCoverage(pParse->pVdbe); }else{ u16 nEq = pLoop->u.btree.nEq; int r1; char *zStartAff; assert( pLoop->wsFlags & WHERE_INDEXED ); assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); codeApplyAffinity(pParse, r1, nEq, zStartAff); sqlite3DbFree(pParse->db, zStartAff); sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, addrNxt, r1, nEq); VdbeCoverage(pParse->pVdbe); } pLevel->regFilter = 0; pLevel->addrBrk = 0; } } /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart( Parse *pParse, /* Parsing context */ Vdbe *v, /* Prepared statement under construction */ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ WhereLevel *pLevel, /* The current level pointer */ Bitmask notReady /* Which tables are currently available */ ){ int j, k; /* Loop counters */ int iCur; /* The VDBE cursor for the table */ int addrNxt; /* Where to jump to continue with the next IN case */ int bRev; /* True if we need to scan in reverse order */ WhereLoop *pLoop; /* The WhereLoop object being coded */ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ WhereTerm *pTerm; /* A WHERE clause term */ sqlite3 *db; /* Database connection */ SrcItem *pTabItem; /* FROM clause term being coded */ int addrBrk; /* Jump here to break out of the loop */ int addrHalt; /* addrBrk for the outermost loop */ int addrCont; /* Jump here to continue with next cycle */ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ int iReleaseReg = 0; /* Temp register to free before returning */ Index *pIdx = 0; /* Index used by loop (if any) */ int iLoop; /* Iteration of constraint generator loop */ pWC = &pWInfo->sWC; db = pParse->db; pLoop = pLevel->pWLoop; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); bRev = (pWInfo->revMask>>iLevel)&1; VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); #if WHERETRACE_ENABLED /* 0x4001 */ if( sqlite3WhereTrace & 0x1 ){ sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); if( sqlite3WhereTrace & 0x1000 ){ sqlite3WhereLoopPrint(pLoop, pWC); } } if( (sqlite3WhereTrace & 0x4001)==0x4001 ){ if( iLevel==0 ){ sqlite3DebugPrintf("WHERE clause being coded:\n"); sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); } sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); sqlite3WhereClausePrint(pWC); } #endif /* Create labels for the "break" and "continue" instructions ** for the current loop. Jump to addrBrk to break out of a loop. ** Jump to cont to go immediately to the next iteration of the ** loop. ** ** When there is an IN operator, we also have a "addrNxt" label that ** means to continue with the next IN value combination. When ** there are no IN operators in the constraints, the "addrNxt" label ** is the same as "addrBrk". */ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 ); if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ pLevel->iLeftJoin = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Compute a safe address to jump to if we discover that the table for ** this loop is empty and can never contribute content. */ for(j=iLevel; j>0; j--){ if( pWInfo->a[j].iLeftJoin ) break; if( pWInfo->a[j].pRJ ) break; } addrHalt = pWInfo->a[j].addrBrk; /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->fg.viaCoroutine ){ int regYield = pTabItem->regReturn; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); VdbeCoverage(v); VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 1: The table is a virtual-table. Use the VFilter and VNext ** to access the data. */ int iReg; /* P3 Value for OP_VFilter */ int addrNotFound; int nConstraint = pLoop->nLTerm; iReg = sqlite3GetTempRange(pParse, nConstraint+2); addrNotFound = pLevel->addrBrk; for(j=0; jaLTerm[j]; if( NEVER(pTerm==0) ) continue; if( pTerm->eOperator & WO_IN ){ if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ int iTab = pParse->nTab++; int iCache = ++pParse->nMem; sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); }else{ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); addrNotFound = pLevel->addrNxt; } }else{ Expr *pRight = pTerm->pExpr->pRight; codeExprOrVector(pParse, pRight, iTarget, 1); if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET && pLoop->u.vtab.bOmitOffset ){ assert( pTerm->eOperator==WO_AUX ); assert( pWInfo->pSelect!=0 ); assert( pWInfo->pSelect->iOffset>0 ); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pSelect->iOffset); VdbeComment((v,"Zero OFFSET counter")); } } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); VdbeCoverage(v); pLoop->u.vtab.needFree = 0; /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; pLevel->p1 = iCur; pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; pLevel->p2 = sqlite3VdbeCurrentAddr(v); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); for(j=0; jaLTerm[j]; if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pTerm); continue; } if( (pTerm->eOperator & WO_IN)!=0 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 && !db->mallocFailed ){ Expr *pCompare; /* The comparison operator */ Expr *pRight; /* RHS of the comparison */ VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ int iIn; /* IN loop corresponding to the j-th constraint */ /* Reload the constraint value into reg[iReg+j+2]. The same value ** was loaded into the same register prior to the OP_VFilter, but ** the xFilter implementation might have changed the datatype or ** encoding of the value in the register, so it *must* be reloaded. */ for(iIn=0; ALWAYS(iInu.in.nIn); iIn++){ pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) ){ testcase( pOp->opcode==OP_Rowid ); sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); break; } } /* Generate code that will continue to the next row if ** the IN constraint is not satisfied */ pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); if( !db->mallocFailed ){ int iFld = pTerm->u.x.iField; Expr *pLeft = pTerm->pExpr->pLeft; assert( pLeft!=0 ); if( iFld>0 ){ assert( pLeft->op==TK_VECTOR ); assert( ExprUseXList(pLeft) ); assert( iFld<=pLeft->x.pList->nExpr ); pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; }else{ pCompare->pLeft = pLeft; } pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); if( pRight ){ pRight->iTable = iReg+j+2; sqlite3ExprIfFalse( pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL ); } pCompare->pLeft = 0; } sqlite3ExprDelete(db, pCompare); } } /* These registers need to be preserved in case there is an IN operator ** loop. So we could deallocate the registers here (and potentially ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems ** simpler and safer to simply not reuse the registers. ** ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); */ }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); iReleaseReg = ++pParse->nMem; iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); addrNxt = pLevel->addrNxt; if( pLevel->regFilter ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, iRowidReg, 1); VdbeCoverage(v); filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); } sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); VdbeCoverage(v); pLevel->op = OP_Noop; }else if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 ){ /* Case 3: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int memEndValue = 0; WhereTerm *pStart, *pEnd; j = 0; pStart = pEnd = 0; if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; assert( pStart!=0 || pEnd!=0 ); if( bRev ){ pTerm = pStart; pStart = pEnd; pEnd = pTerm; } codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); if( pStart ){ Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ int op; /* Cursor seek operation */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correct. */ assert( (pStart->wtFlags & TERM_VNULL)==0 ); testcase( pStart->wtFlags & TERM_VIRTUAL ); pX = pStart->pExpr; assert( pX!=0 ); testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ if( sqlite3ExprIsVector(pX->pRight) ){ r1 = rTemp = sqlite3GetTempReg(pParse); codeExprOrVector(pParse, pX->pRight, r1, 1); testcase( pX->op==TK_GT ); testcase( pX->op==TK_GE ); testcase( pX->op==TK_LT ); testcase( pX->op==TK_LE ); op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; assert( pX->op!=TK_GT || op==OP_SeekGE ); assert( pX->op!=TK_GE || op==OP_SeekGE ); assert( pX->op!=TK_LT || op==OP_SeekLE ); assert( pX->op!=TK_LE || op==OP_SeekLE ); }else{ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); disableTerm(pLevel, pStart); op = aMoveOp[(pX->op - TK_GT)]; } sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); VdbeComment((v, "pk")); VdbeCoverageIf(v, pX->op==TK_GT); VdbeCoverageIf(v, pX->op==TK_LE); VdbeCoverageIf(v, pX->op==TK_LT); VdbeCoverageIf(v, pX->op==TK_GE); sqlite3ReleaseTempReg(pParse, rTemp); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( (pEnd->wtFlags & TERM_VNULL)==0 ); testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ testcase( pEnd->wtFlags & TERM_VIRTUAL ); memEndValue = ++pParse->nMem; codeExprOrVector(pParse, pX->pRight, memEndValue, 1); if( 0==sqlite3ExprIsVector(pX->pRight) && (pX->op==TK_LT || pX->op==TK_GT) ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } if( 0==sqlite3ExprIsVector(pX->pRight) ){ disableTerm(pLevel, pEnd); } } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); VdbeCoverageIf(v, testOp==OP_Le); VdbeCoverageIf(v, testOp==OP_Lt); VdbeCoverageIf(v, testOp==OP_Ge); VdbeCoverageIf(v, testOp==OP_Gt); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } }else if( pLoop->wsFlags & WHERE_INDEXED ){ /* Case 4: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N ** left-most columns of the index. It may also contain ** inequality constraints (>, <, >= or <=) on the indexed ** column that immediately follows the N equalities. Only ** the right-most column can be an inequality - the rest must ** use the "==" and "IN" operators. For example, if the ** index is on (x,y,z), then the following clauses are all ** optimized: ** ** x=5 ** x=5 AND y=10 ** x=5 AND y<10 ** x=5 AND y>5 AND y<10 ** x=5 AND y=5 AND z<=10 ** ** The z<10 term of the following cannot be used, only ** the x=5 term: ** ** x=5 AND z<10 ** ** N may be zero if there are inequality constraints. ** If there are no inequality constraints, then N is at ** least one. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ int regBase; /* Base register holding constraint values */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char *zEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ int omitTable; /* True if we use the index only */ int regBignull = 0; /* big-null flag register */ int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->nSkip ); /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); /* Like optimization range constraints always occur in pairs */ assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ assert( pRangeStart!=0 ); /* LIKE opt constraints */ assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ pLevel->iLikeRepCntr = (u32)++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); VdbeComment((v, "LIKE loop counter")); pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); /* iLikeRepCntr actually stores 2x the counter register number. The ** bottom bit indicates whether the search order is ASC or DESC. */ testcase( bRev ); testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); assert( (bRev & ~1)==0 ); pLevel->iLikeRepCntr <<=1; pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); } #endif if( pRangeStart==0 ){ j = pIdx->aiColumn[nEq]; if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ bSeekPastNull = 1; } } } assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS ** FIRST). In both cases separate ordered scans are made of those ** index entries for which the column is null and for those for which ** it is not. For an ASC sort, the non-NULL entries are scanned first. ** For DESC, NULL entries are scanned first. */ if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 ){ assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); assert( pRangeEnd==0 && pRangeStart==0 ); testcase( pLoop->nSkip>0 ); nExtraReg = 1; bSeekPastNull = 1; pLevel->regBignull = regBignull = ++pParse->nMem; if( pLevel->iLeftJoin ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); } pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); } /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEqnColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); SWAP(u8, bSeekPastNull, bStopAtNull); SWAP(u8, nBtm, nTop); } if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ /* In case OP_SeekScan is used, ensure that the index cursor does not ** point to a valid row for the first iteration of this loop. */ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); if( zStartAff && nTop ){ zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); } addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); } nConstraint += nBtm; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); if( sqlite3ExprIsVector(pRight)==0 ){ disableTerm(pLevel, pRangeStart); }else{ startEq = 1; } bSeekPastNull = 0; }else if( bSeekPastNull ){ startEq = 0; sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); start_constraints = 1; nConstraint++; }else if( regBignull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); start_constraints = 1; nConstraint++; } codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ /* The skip-scan logic inside the call to codeAllEqualityConstraints() ** above has already left the cursor sitting on the correct row, ** so no further seeking is needed */ }else{ if( regBignull ){ sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); VdbeComment((v, "NULL-scan pass ctr")); } if( pLevel->regFilter ){ sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, regBase, nEq); VdbeCoverage(v); filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); } op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ assert( regBignull==0 ); /* TUNING: The OP_SeekScan opcode seeks to reduce the number ** of expensive seek operations by replacing a single seek with ** 1 or more step operations. The question is, how many steps ** should we try before giving up and going with a seek. The cost ** of a seek is proportional to the logarithm of the of the number ** of entries in the tree, so basing the number of steps to try ** on the estimated number of rows in the btree seems like a good ** guess. */ addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, (pIdx->aiRowLogEst[0]+9)/10); if( pRangeStart || pRangeEnd ){ sqlite3VdbeChangeP5(v, 1); sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1); addrSeekScan = 0; } VdbeCoverage(v); } sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); assert( bSeekPastNull==0 || bStopAtNull==0 ); if( regBignull ){ assert( bSeekPastNull==1 || bStopAtNull==1 ); assert( bSeekPastNull==!bStopAtNull ); assert( bStopAtNull==startEq ); sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint-startEq); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); } } /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; assert( pLevel->p2==0 ); if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; assert( addrSeekScan==0 ); codeExprOrVector(pParse, pRight, regBase+nEq, nTop); whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zEndAff ){ updateRangeAffinityStr(pRight, nTop, zEndAff); codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); }else{ assert( pParse->db->mallocFailed ); } nConstraint += nTop; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); if( sqlite3ExprIsVector(pRight)==0 ){ disableTerm(pLevel, pRangeEnd); }else{ endEq = 1; } }else if( bStopAtNull ){ if( regBignull==0 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; } nConstraint++; } if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff); if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ if( nConstraint ){ if( regBignull ){ /* Except, skip the end-of-range check while doing the NULL-scan */ sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); VdbeComment((v, "If NULL-scan 2nd pass")); VdbeCoverage(v); } op = aEndOp[bRev*2 + endEq]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); } if( regBignull ){ /* During a NULL-scan, check to see if we have reached the end of ** the NULLs */ assert( bSeekPastNull==!bStopAtNull ); assert( bSeekPastNull+bStopAtNull==1 ); assert( nConstraint+bSeekPastNull>0 ); sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); VdbeComment((v, "If NULL-scan 1st pass")); VdbeCoverage(v); op = aEndOp[bRev*2 + bSeekPastNull]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint+bSeekPastNull); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); } if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); } /* Seek the table cursor, if required */ omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0; if( omitTable ){ /* pIdx is a covering index. No need to access the main table. */ }else if( HasRowid(pIdx->pTable) ){ codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); }else if( iCur!=iIdxCur ){ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; jnKeyCol; j++){ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); } sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } if( pLevel->iLeftJoin==0 ){ /* If a partial index is driving the loop, try to eliminate WHERE clause ** terms from the query that must be true due to the WHERE clause of ** the partial index. ** ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work ** for a LEFT JOIN. */ if( pIdx->pPartIdxWhere ){ whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); } }else{ testcase( pIdx->pPartIdxWhere ); /* The following assert() is not a requirement, merely an observation: ** The OR-optimization doesn't work for the right hand table of ** a LEFT JOIN: */ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ); } /* Record the instruction used to terminate the loop. */ if( pLoop->wsFlags & WHERE_ONEROW ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); } if( omitTable ) pIdx = 0; }else #ifndef SQLITE_OMIT_OR_OPTIMIZATION if( pLoop->wsFlags & WHERE_MULTI_OR ){ /* Case 5: Two or more separately indexed terms connected by OR ** ** Example: ** ** CREATE TABLE t1(a,b,c,d); ** CREATE INDEX i1 ON t1(a); ** CREATE INDEX i2 ON t1(b); ** CREATE INDEX i3 ON t1(c); ** ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) ** ** In the example, there are three indexed terms connected by OR. ** The top of the loop looks like this: ** ** Null 1 # Zero the rowset in reg 1 ** ** Then, for each indexed term, the following. The arguments to ** RowSetTest are such that the rowid of the current row is inserted ** into the RowSet. If it is already present, control skips the ** Gosub opcode and jumps straight to the code generated by WhereEnd(). ** ** sqlite3WhereBegin() ** RowSetTest # Insert rowid into rowset ** Gosub 2 A ** sqlite3WhereEnd() ** ** Following the above, code to terminate the loop. Label A, the target ** of the Gosub above, jumps to the instruction right after the Goto. ** ** Null 1 # Zero the rowset in reg 1 ** Goto B # The loop is finished. ** ** A: # Return data, whatever. ** ** Return 2 # Jump back to the Gosub ** ** B: ** ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then ** use an ephemeral index instead of a RowSet to record the primary ** keys of the rows we have already seen. ** */ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ Index *pCov = 0; /* Potential covering index (or NULL) */ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ int regRowset = 0; /* Register for RowSet object */ int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ Table *pTab = pTabItem->pTab; pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->eOperator & WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); pOrWc = &pTerm->u.pOrInfo->wc; pLevel->op = OP_Return; pLevel->p1 = regReturn; /* Set up a new SrcList in pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). */ if( pWInfo->nLevel>1 ){ int nNotReady; /* The number of notReady tables */ SrcItem *origSrc; /* Original list of tables */ nNotReady = pWInfo->nLevel - iLevel - 1; pOrTab = sqlite3DbMallocRawNN(db, sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); if( pOrTab==0 ) return notReady; pOrTab->nAlloc = (u8)(nNotReady + 1); pOrTab->nSrc = pOrTab->nAlloc; memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); origSrc = pWInfo->pTabList->a; for(k=1; k<=nNotReady; k++){ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ pOrTab = pWInfo->pTabList; } /* Initialize the rowset register to contain NULL. An SQL NULL is ** equivalent to an empty rowset. Or, create an ephemeral index ** capable of holding primary keys in the case of a WITHOUT ROWID. ** ** Also initialize regReturn to contain the address of the instruction ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to ** fall through to the next instruction, just as an OP_Next does if ** called on an uninitialized cursor. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ if( HasRowid(pTab) ){ regRowset = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); regRowset = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } regRowid = ++pParse->nMem; } iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y ** Then for every term xN, evaluate as the subexpression: xN AND y ** That way, terms in y that are factored into the disjunction will ** be picked up by the recursive calls to sqlite3WhereBegin() below. ** ** Actually, each subexpression is converted to "xN AND w" where w is ** the "interesting" terms of z - terms that did not originate in the ** ON or USING clause of a LEFT JOIN, and terms that are usable as ** indices. ** ** This optimization also only applies if the (x1 OR x2 OR ...) term ** is not contained in the ON clause of a LEFT JOIN. ** See ticket http://www.sqlite.org/src/info/f2369304e4 ** ** 2022-02-04: Do not push down slices of a row-value comparison. ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, ** the initialization of the right-hand operand of the vector comparison ** might not occur, or might occur only in an OR branch that is not ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. ** ** 2022-03-03: Do not push down expressions that involve subqueries. ** The subquery might get coded as a subroutine. Any table-references ** in the subquery might be resolved to index-references for the index on ** the OR branch in which the subroutine is coded. But if the subroutine ** is invoked from a different OR branch that uses a different index, such ** index-references will not work. tag-20220303a ** https://sqlite.org/forum/forumpost/36937b197273d403 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTermnTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; if( &pWC->a[iTerm] == pTerm ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ continue; } if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); } if( pAndExpr ){ /* The extra 0x10000 bit on the opcode is masked off and does not ** become part of the new Expr.op. However, it does make the ** op==TK_AND comparison inside of sqlite3PExpr() false, and this ** prevents sqlite3PExpr() from applying the AND short-circuit ** optimization, which we do not want here. */ pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); } } /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); for(ii=0; iinTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ Expr *pDelete; /* Local copy of OR clause term */ int jmp1 = 0; /* Address of jump operation */ testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 && !ExprHasProperty(pOrExpr, EP_OuterON) ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDelete); continue; } if( pAndExpr ){ pAndExpr->pLeft = pOrExpr; pOrExpr = pAndExpr; } /* Loop through table entries that match term pOrTerm. */ ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); WHERETRACE(0xffffffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, WHERE_OR_SUBCLAUSE, iCovCur); assert( pSubWInfo || pParse->nErr ); if( pSubWInfo ){ WhereLoop *pSubLoop; int addrExplain = sqlite3WhereExplainOneScan( pParse, pOrTab, &pSubWInfo->a[0], 0 ); sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); /* This is the sub-WHERE clause body. First skip over ** duplicate rows from prior sub-WHERE clauses, and record the ** rowid (or PRIMARY KEY) for the current row so that the same ** row will be skipped in subsequent sub-WHERE clauses. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); if( HasRowid(pTab) ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, regRowid, iSet); VdbeCoverage(v); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); int nPk = pPk->nKeyCol; int iPk; int r; /* Read the PK into an array of temp registers. */ r = sqlite3GetTempRange(pParse, nPk); for(iPk=0; iPkaiColumn[iPk]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); } /* Check if the temp table already contains this key. If so, ** the row has already been included in the result set and ** can be ignored (by jumping past the Gosub below). Otherwise, ** insert the key into the temp table and proceed with processing ** the row. ** ** Use some of the same optimizations as OP_RowSetTest: If iSet ** is zero, assume that the key cannot already be present in ** the temp table. And if iSet is -1, assume that there is no ** need to insert the key into the temp table, as it will never ** be tested for. */ if( iSet ){ jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); VdbeCoverage(v); } if( iSet>=0 ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, r, nPk); if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } /* Release the array of temp registers */ sqlite3ReleaseTempRange(pParse, r, nPk); } } /* Invoke the main loop body as a subroutine */ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* Jump here (skipping the main loop body subroutine) if the ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. */ if( pSubWInfo->untestedTerms ) untestedTerms = 1; /* If all of the OR-connected terms are optimized using the same ** index, and the index is opened using the same cursor number ** by each call to sqlite3WhereBegin() made by this loop, it may ** be possible to use that index as a covering index. ** ** If the call to sqlite3WhereBegin() above resulted in a scan that ** uses an index, and this is either the first OR-connected term ** processed or the index is the same as that used by all previous ** terms, set pCov to the candidate covering index. Otherwise, set ** pCov to NULL to indicate that no candidate covering index will ** be available. */ pSubLoop = pSubWInfo->a[0].pWLoop; assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) ){ assert( pSubWInfo->a[0].iIdxCur==iCovCur ); pCov = pSubLoop->u.btree.pIndex; }else{ pCov = 0; } if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ pWInfo->bDeferredSeek = 1; } /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd(pSubWInfo); ExplainQueryPlanPop(pParse); } sqlite3ExprDelete(db, pDelete); } } ExplainQueryPlanPop(pParse); assert( pLevel->pWLoop==pLoop ); assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); pLevel->u.pCoveringIdx = pCov; if( pCov ) pLevel->iIdxCur = iCovCur; if( pAndExpr ){ pAndExpr->pLeft = 0; sqlite3ExprDelete(db, pAndExpr); } sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeGoto(v, pLevel->addrBrk); sqlite3VdbeResolveLabel(v, iLoopBody); /* Set the P2 operand of the OP_Return opcode that will end the current ** loop to point to this spot, which is the top of the next containing ** loop. The byte-code formatter will use that P2 value as a hint to ** indent everything in between the this point and the final OP_Return. ** See tag-20220407a in vdbe.c and shell.c */ assert( pLevel->op==OP_Return ); pLevel->p2 = sqlite3VdbeCurrentAddr(v); if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); } if( !untestedTerms ) disableTerm(pLevel, pTerm); }else #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ { /* Case 6: There is no usable index. We must do a complete ** scan of the entire table. */ static const u8 aStep[] = { OP_Next, OP_Prev }; static const u8 aStart[] = { OP_Rewind, OP_Last }; assert( bRev==0 || bRev==1 ); if( pTabItem->fg.isRecursive ){ /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ codeCursorHint(pTabItem, pWInfo, pLevel, 0); pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); #endif /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. ** ** This loop may run between one and three times, depending on the ** constraints to be generated. The value of stack variable iLoop ** determines the constraints coded by each iteration, as follows: ** ** iLoop==1: Code only expressions that are entirely covered by pIdx. ** iLoop==2: Code remaining expressions that do not contain correlated ** sub-queries. ** iLoop==3: Code all remaining expressions. ** ** An effort is made to skip unnecessary iterations of the loop. */ iLoop = (pIdx ? 1 : 2); do{ int iNext = 0; /* Next value for iLoop */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; int skipLikeAddr = 0; testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){ if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){ /* Defer processing WHERE clause constraints until after outer ** join processing. tag-20220513a */ continue; }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT && !ExprHasProperty(pE,EP_OuterON) ){ continue; }else{ Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin); if( m & pLevel->notReady ){ /* An ON clause that is not ripe */ continue; } } } if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ iNext = 2; continue; } if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ if( iNext==0 ) iNext = 3; continue; } if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ /* If the TERM_LIKECOND flag is set, that means that the range search ** is sufficient to guarantee that the LIKE operator is true, so we ** can skip the call to the like(A,B) function. But this only works ** for strings. So do not skip the call to the function on the pass ** that compares BLOBs. */ #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS continue; #else u32 x = pLevel->iLikeRepCntr; if( x>0 ){ skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); VdbeCoverageIf(v, (x&1)==1); VdbeCoverageIf(v, (x&1)==0); } #endif } #ifdef WHERETRACE_ENABLED /* 0xffffffff */ if( sqlite3WhereTrace ){ VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", pWC->nTerm-j, pTerm, iLoop)); } if( sqlite3WhereTrace & 0x4000 ){ sqlite3DebugPrintf("Coding auxiliary constraint:\n"); sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); } #endif sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); pTerm->wtFlags |= TERM_CODED; } iLoop = iNext; }while( iLoop>0 ); /* Insert code to test for implied constraints based on transitivity ** of the "==" operator. ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" ** and we are coding the t1 loop and the t2 loop has not yet coded, ** then we cannot use the "t1.a=t2.b" constraint, but we can code ** the implied "t1.a=123" constraint. */ for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ Expr *pE, sEAlt; WhereTerm *pAlt; if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; if( pTerm->leftCursor!=iCur ) continue; if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue; pE = pTerm->pExpr; #ifdef WHERETRACE_ENABLED /* 0x4001 */ if( (sqlite3WhereTrace & 0x4001)==0x4001 ){ sqlite3DebugPrintf("Coding transitive constraint:\n"); sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); } #endif assert( !ExprHasProperty(pE, EP_OuterON) ); assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, WO_EQ|WO_IN|WO_IS, 0); if( pAlt==0 ) continue; if( pAlt->wtFlags & (TERM_CODED) ) continue; if( (pAlt->eOperator & WO_IN) && ExprUseXSelect(pAlt->pExpr) && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) ){ continue; } testcase( pAlt->eOperator & WO_EQ ); testcase( pAlt->eOperator & WO_IS ); testcase( pAlt->eOperator & WO_IN ); VdbeModuleComment((v, "begin transitive constraint")); sEAlt = *pAlt->pExpr; sEAlt.pLeft = pE->pLeft; sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); pAlt->wtFlags |= TERM_CODED; } /* For a RIGHT OUTER JOIN, record the fact that the current row has ** been matched at least once. */ if( pLevel->pRJ ){ Table *pTab; int nPk; int r; int jmp1 = 0; WhereRightJoin *pRJ = pLevel->pRJ; /* pTab is the right-hand table of the RIGHT JOIN. Generate code that ** will record that the current row of that table has been matched at ** least once. This is accomplished by storing the PK for the row in ** both the iMatch index and the regBloom Bloom filter. */ pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab; if( HasRowid(pTab) ){ r = sqlite3GetTempRange(pParse, 2); sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1); nPk = 1; }else{ int iPk; Index *pPk = sqlite3PrimaryKeyIndex(pTab); nPk = pPk->nKeyCol; r = sqlite3GetTempRange(pParse, nPk+1); for(iPk=0; iPkaiColumn[iPk]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk); } } jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk); VdbeCoverage(v); VdbeComment((v, "match against %s", pTab->zName)); sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk); sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3VdbeJumpHere(v, jmp1); sqlite3ReleaseTempRange(pParse, r, nPk+1); } /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); VdbeComment((v, "record LEFT JOIN hit")); if( pLevel->pRJ==0 ){ goto code_outer_join_constraints; /* WHERE clause constraints */ } } if( pLevel->pRJ ){ /* Create a subroutine used to process all interior loops and code ** of the RIGHT JOIN. During normal operation, the subroutine will ** be in-line with the rest of the code. But at the end, a separate ** loop will run that invokes this subroutine for unmatched rows ** of pTab, with all tables to left begin set to NULL. */ WhereRightJoin *pRJ = pLevel->pRJ; sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn); pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v); assert( pParse->withinRJSubrtn < 255 ); pParse->withinRJSubrtn++; /* WHERE clause constraints must be deferred until after outer join ** row elimination has completed, since WHERE clause constraints apply ** to the results of the OUTER JOIN. The following loop generates the ** appropriate WHERE clause constraint checks. tag-20220513a. */ code_outer_join_constraints: for(pTerm=pWC->a, j=0; jnBase; j++, pTerm++){ testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ assert( pWInfo->untestedTerms ); continue; } if( pTabItem->fg.jointype & JT_LTORJ ) continue; assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } #if WHERETRACE_ENABLED /* 0x4001 */ if( sqlite3WhereTrace & 0x4000 ){ sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", iLevel); sqlite3WhereClausePrint(pWC); } if( sqlite3WhereTrace & 0x1 ){ sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", iLevel, (u64)pLevel->notReady); } #endif return pLevel->notReady; } /* ** Generate the code for the loop that finds all non-matched terms ** for a RIGHT JOIN. */ SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( WhereInfo *pWInfo, int iLevel, WhereLevel *pLevel ){ Parse *pParse = pWInfo->pParse; Vdbe *v = pParse->pVdbe; WhereRightJoin *pRJ = pLevel->pRJ; Expr *pSubWhere = 0; WhereClause *pWC = &pWInfo->sWC; WhereInfo *pSubWInfo; WhereLoop *pLoop = pLevel->pWLoop; SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; SrcList sFrom; Bitmask mAll = 0; int k; ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName)); sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn, pRJ->regReturn); for(k=0; ka[k].pWLoop->maskSelf; sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur); iIdxCur = pWInfo->a[k].iIdxCur; if( iIdxCur ){ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); } } if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){ mAll |= pLoop->maskSelf; for(k=0; knTerm; k++){ WhereTerm *pTerm = &pWC->a[k]; if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0 && pTerm->eOperator!=WO_ROWVAL ){ break; } if( pTerm->prereqAll & ~mAll ) continue; if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue; pSubWhere = sqlite3ExprAnd(pParse, pSubWhere, sqlite3ExprDup(pParse->db, pTerm->pExpr, 0)); } } sFrom.nSrc = 1; sFrom.nAlloc = 1; memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem)); sFrom.a[0].fg.jointype = 0; assert( pParse->withinRJSubrtn < 100 ); pParse->withinRJSubrtn++; pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0, WHERE_RIGHT_JOIN, 0); if( pSubWInfo ){ int iCur = pLevel->iTabCur; int r = ++pParse->nMem; int nPk; int jmp; int addrCont = sqlite3WhereContinueLabel(pSubWInfo); Table *pTab = pTabItem->pTab; if( HasRowid(pTab) ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r); nPk = 1; }else{ int iPk; Index *pPk = sqlite3PrimaryKeyIndex(pTab); nPk = pPk->nKeyCol; pParse->nMem += nPk - 1; for(iPk=0; iPkaiColumn[iPk]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); } } jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk); VdbeCoverage(v); sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk); VdbeCoverage(v); sqlite3VdbeJumpHere(v, jmp); sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn); sqlite3WhereEnd(pSubWInfo); } sqlite3ExprDelete(pParse->db, pSubWhere); ExplainQueryPlanPop(pParse); assert( pParse->withinRJSubrtn>0 ); pParse->withinRJSubrtn--; } /************** End of wherecode.c *******************************************/ /************** Begin file whereexpr.c ***************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was originally part of where.c but was split out to improve ** readability and editability. This file contains utility routines for ** analyzing Expr objects in the WHERE clause. */ /* #include "sqliteInt.h" */ /* #include "whereInt.h" */ /* Forward declarations */ static void exprAnalyze(SrcList*, WhereClause*, int); /* ** Deallocate all memory associated with a WhereOrInfo object. */ static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Deallocate all memory associated with a WhereAndInfo object. */ static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Add a single new WhereTerm entry to the WhereClause object pWC. ** The new WhereTerm object is constructed from Expr p and with wtFlags. ** The index in pWC->a[] of the new WhereTerm is returned on success. ** 0 is returned if the new WhereTerm could not be added due to a memory ** allocation error. The memory allocation failure will be recorded in ** the db->mallocFailed flag so that higher-level functions can detect it. ** ** This routine will increase the size of the pWC->a[] array as necessary. ** ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility ** for freeing the expression p is assumed by the WhereClause object pWC. ** This is true even if this routine fails to allocate a new WhereTerm. ** ** WARNING: This routine might reallocate the space used to store ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ WhereTerm *pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pWInfo->pParse->db; pWC->a = sqlite3WhereMalloc(pWC->pWInfo, sizeof(pWC->a[0])*pWC->nSlot*2 ); if( pWC->a==0 ){ if( wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, p); } pWC->a = pOld; return 0; } memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); pWC->nSlot = pWC->nSlot*2; } pTerm = &pWC->a[idx = pWC->nTerm++]; if( (wtFlags & TERM_VIRTUAL)==0 ) pWC->nBase = pWC->nTerm; if( p && ExprHasProperty(p, EP_Unlikely) ){ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; }else{ pTerm->truthProb = 1; } pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; memset(&pTerm->eOperator, 0, sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); return idx; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" */ static int allowedOp(int op){ assert( TK_GT>TK_EQ && TK_GTTK_EQ && TK_LTTK_EQ && TK_LE=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; } /* ** Commute a comparison operator. Expressions of the form "X op Y" ** are converted into "Y op X". */ static u16 exprCommute(Parse *pParse, Expr *pExpr){ if( pExpr->pLeft->op==TK_VECTOR || pExpr->pRight->op==TK_VECTOR || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) != sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft) ){ pExpr->flags ^= EP_Commuted; } SWAP(Expr*,pExpr->pRight,pExpr->pLeft); if( pExpr->op>=TK_GT ){ assert( TK_LT==TK_GT+2 ); assert( TK_GE==TK_LE+2 ); assert( TK_GT>TK_EQ ); assert( TK_GTop>=TK_GT && pExpr->op<=TK_GE ); pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; } return 0; } /* ** Translate from TK_xx operator to WO_xx bitmask. */ static u16 operatorMask(int op){ u16 c; assert( allowedOp(op) ); if( op==TK_IN ){ c = WO_IN; }else if( op==TK_ISNULL ){ c = WO_ISNULL; }else if( op==TK_IS ){ c = WO_IS; }else{ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); c = (u16)(WO_EQ<<(op-TK_EQ)); } assert( op!=TK_ISNULL || c==WO_ISNULL ); assert( op!=TK_IN || c==WO_IN ); assert( op!=TK_EQ || c==WO_EQ ); assert( op!=TK_LT || c==WO_LT ); assert( op!=TK_LE || c==WO_LE ); assert( op!=TK_GT || c==WO_GT ); assert( op!=TK_GE || c==WO_GE ); assert( op!=TK_IS || c==WO_IS ); return c; } #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* ** Check to see if the given expression is a LIKE or GLOB operator that ** can be optimized using inequality constraints. Return TRUE if it is ** so and false if not. ** ** In order for the operator to be optimizible, the RHS must be a string ** literal that does not begin with a wildcard. The LHS must be a column ** that may only be NULL, a string, or a BLOB, never a number. (This means ** that virtual tables cannot participate in the LIKE optimization.) The ** collating sequence for the column on the LHS must be appropriate for ** the operator. */ static int isLikeOrGlob( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* Test this expression */ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ int *pisComplete, /* True if the only wildcard is % in the last character */ int *pnoCase /* True if uppercase is equivalent to lowercase */ ){ const u8 *z = 0; /* String on RHS of LIKE operator */ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ ExprList *pList; /* List of operands to the LIKE operator */ u8 c; /* One character in z[] */ int cnt; /* Number of non-wildcard prefix characters */ u8 wc[4]; /* Wildcard characters */ sqlite3 *db = pParse->db; /* Database connection */ sqlite3_value *pVal = 0; int op; /* Opcode of pRight */ int rc; /* Result code to return */ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){ return 0; } #ifdef SQLITE_EBCDIC if( *pnoCase ) return 0; #endif assert( ExprUseXList(pExpr) ); pList = pExpr->x.pList; pLeft = pList->a[1].pExpr; pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); op = pRight->op; if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ z = sqlite3_value_text(pVal); } sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); }else if( op==TK_STRING ){ assert( !ExprHasProperty(pRight, EP_IntValue) ); z = (u8*)pRight->u.zToken; } if( z ){ /* Count the number of prefix characters prior to the first wildcard */ cnt = 0; while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; if( c==wc[3] && z[cnt]!=0 ) cnt++; } /* The optimization is possible only if (1) the pattern does not begin ** with a wildcard and if (2) the non-wildcard prefix does not end with ** an (illegal 0xff) character, or (3) the pattern does not consist of ** a single escape character. The second condition is necessary so ** that we can increment the prefix key to find an upper bound for the ** range search. The third is because the caller assumes that the pattern ** consists of at least one character after all escapes have been ** removed. */ if( (cnt>1 || (cnt>0 && z[0]!=wc[3])) && 255!=(u8)z[cnt-1] ){ Expr *pPrefix; /* A "complete" match if the pattern ends with "*" or "%" */ *pisComplete = c==wc[0] && z[cnt+1]==0; /* Get the pattern prefix. Remove all escapes from the prefix. */ pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); if( pPrefix ){ int iFrom, iTo; char *zNew; assert( !ExprHasProperty(pPrefix, EP_IntValue) ); zNew = pPrefix->u.zToken; zNew[cnt] = 0; for(iFrom=iTo=0; iFrom0 ); /* If the LHS is not an ordinary column with TEXT affinity, then the ** pattern prefix boundaries (both the start and end boundaries) must ** not look like a number. Otherwise the pattern might be treated as ** a number, which will invalidate the LIKE optimization. ** ** Getting this right has been a persistent source of bugs in the ** LIKE optimization. See, for example: ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975 ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a */ if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT || (ALWAYS( ExprUseYTab(pLeft) ) && ALWAYS(pLeft->y.pTab) && IsVirtual(pLeft->y.pTab)) /* Might be numeric */ ){ int isNum; double rDummy; isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); if( isNum<=0 ){ if( iTo==1 && zNew[0]=='-' ){ isNum = +1; }else{ zNew[iTo-1]++; isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); zNew[iTo-1]--; } } if( isNum>0 ){ sqlite3ExprDelete(db, pPrefix); sqlite3ValueFree(pVal); return 0; } } } *ppPrefix = pPrefix; /* If the RHS pattern is a bound parameter, make arrangements to ** reprepare the statement when that parameter is rebound */ if( op==TK_VARIABLE ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeSetVarmask(v, pRight->iColumn); assert( !ExprHasProperty(pRight, EP_IntValue) ); if( *pisComplete && pRight->u.zToken[1] ){ /* If the rhs of the LIKE expression is a variable, and the current ** value of the variable means there is no need to invoke the LIKE ** function, then no OP_Variable will be added to the program. ** This causes problems for the sqlite3_bind_parameter_name() ** API. To work around them, add a dummy OP_Variable here. */ int r1 = sqlite3GetTempReg(pParse); sqlite3ExprCodeTarget(pParse, pRight, r1); sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); sqlite3ReleaseTempReg(pParse, r1); } } }else{ z = 0; } } rc = (z!=0); sqlite3ValueFree(pVal); return rc; } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Check to see if the pExpr expression is a form that needs to be passed ** to the xBestIndex method of virtual tables. Forms of interest include: ** ** Expression Virtual Table Operator ** ----------------------- --------------------------------- ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL ** ** In every case, "column" must be a column of a virtual table. If there ** is a match, set *ppLeft to the "column" expression, set *ppRight to the ** "expr" expression (even though in forms (6) and (8) the column is on the ** right and the expression is on the left). Also set *peOp2 to the ** appropriate virtual table operator. The return value is 1 or 2 if there ** is a match. The usual return is 1, but if the RHS is also a column ** of virtual table in forms (5) or (7) then return 2. ** ** If the expression matches none of the patterns above, return 0. */ static int isAuxiliaryVtabOperator( sqlite3 *db, /* Parsing context */ Expr *pExpr, /* Test this expression */ unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */ Expr **ppLeft, /* Column expression to left of MATCH/op2 */ Expr **ppRight /* Expression to left of MATCH/op2 */ ){ if( pExpr->op==TK_FUNCTION ){ static const struct Op2 { const char *zOp; unsigned char eOp2; } aOp[] = { { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } }; ExprList *pList; Expr *pCol; /* Column reference */ int i; assert( ExprUseXList(pExpr) ); pList = pExpr->x.pList; if( pList==0 || pList->nExpr!=2 ){ return 0; } /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a ** virtual table on their second argument, which is the same as ** the left-hand side operand in their in-fix form. ** ** vtab_column MATCH expression ** MATCH(expression,vtab_column) */ pCol = pList->a[1].pExpr; assert( pCol->op!=TK_COLUMN || (ExprUseYTab(pCol) && pCol->y.pTab!=0) ); if( ExprIsVtab(pCol) ){ for(i=0; iu.zToken, aOp[i].zOp)==0 ){ *peOp2 = aOp[i].eOp2; *ppRight = pList->a[0].pExpr; *ppLeft = pCol; return 1; } } } /* We can also match against the first column of overloaded ** functions where xFindFunction returns a value of at least ** SQLITE_INDEX_CONSTRAINT_FUNCTION. ** ** OVERLOADED(vtab_column,expression) ** ** Historically, xFindFunction expected to see lower-case function ** names. But for this use case, xFindFunction is expected to deal ** with function names in an arbitrary case. */ pCol = pList->a[0].pExpr; assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) ); assert( pCol->op!=TK_COLUMN || (ExprUseYTab(pCol) && pCol->y.pTab!=0) ); if( ExprIsVtab(pCol) ){ sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**); void *pNotUsed; pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction!=0 ){ i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed); if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ *peOp2 = i; *ppRight = pList->a[1].pExpr; *ppLeft = pCol; return 1; } } } }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ int res = 0; Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pRight; assert( pLeft->op!=TK_COLUMN || (ExprUseYTab(pLeft) && pLeft->y.pTab!=0) ); if( ExprIsVtab(pLeft) ){ res++; } assert( pRight==0 || pRight->op!=TK_COLUMN || (ExprUseYTab(pRight) && pRight->y.pTab!=0) ); if( pRight && ExprIsVtab(pRight) ){ res++; SWAP(Expr*, pLeft, pRight); } *ppLeft = pLeft; *ppRight = pRight; if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL; return res; } return 0; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** If the pBase expression originated in the ON or USING clause of ** a join, then transfer the appropriate markings over to derived. */ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ if( pDerived && ExprHasProperty(pBase, EP_OuterON|EP_InnerON) ){ pDerived->flags |= pBase->flags & (EP_OuterON|EP_InnerON); pDerived->w.iJoin = pBase->w.iJoin; } } /* ** Mark term iChild as being a child of term iParent */ static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ pWC->a[iChild].iParent = iParent; pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; pWC->a[iParent].nChild++; } /* ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not ** a conjunction, then return just pTerm when N==0. If N is exceeds ** the number of available subterms, return NULL. */ static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ if( pTerm->eOperator!=WO_AND ){ return N==0 ? pTerm : 0; } if( Nu.pAndInfo->wc.nTerm ){ return &pTerm->u.pAndInfo->wc.a[N]; } return 0; } /* ** Subterms pOne and pTwo are contained within WHERE clause pWC. The ** two subterms are in disjunction - they are OR-ed together. ** ** If these two terms are both of the form: "A op B" with the same ** A and B values but different operators and if the operators are ** compatible (if one is = and the other is <, for example) then ** add a new virtual AND term to pWC that is the combination of the ** two. ** ** Some examples: ** ** x x<=y ** x=y OR x=y --> x=y ** x<=y OR x x<=y ** ** The following is NOT generated: ** ** xy --> x!=y */ static void whereCombineDisjuncts( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* The complete WHERE clause */ WhereTerm *pOne, /* First disjunct */ WhereTerm *pTwo /* Second disjunct */ ){ u16 eOp = pOne->eOperator | pTwo->eOperator; sqlite3 *db; /* Database connection (for malloc) */ Expr *pNew; /* New virtual expression */ int op; /* Operator for the combined expression */ int idxNew; /* Index in pWC of the next virtual term */ if( (pOne->wtFlags | pTwo->wtFlags) & TERM_VNULL ) return; if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; /* If we reach this point, it means the two subterms can be combined */ if( (eOp & (eOp-1))!=0 ){ if( eOp & (WO_LT|WO_LE) ){ eOp = WO_LE; }else{ assert( eOp & (WO_GT|WO_GE) ); eOp = WO_GE; } } db = pWC->pWInfo->pParse->db; pNew = sqlite3ExprDup(db, pOne->pExpr, 0); if( pNew==0 ) return; for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( opop = op; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); exprAnalyze(pSrc, pWC, idxNew); } #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) ** ^^^^^^^^^^^^^^^^^^^^ ** ** This routine analyzes terms such as the middle term in the above example. ** A WhereOrTerm object is computed and attached to the term under ** analysis, regardless of the outcome of the analysis. Hence: ** ** WhereTerm.wtFlags |= TERM_ORINFO ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object ** ** The term being analyzed must have two or more of OR-connected subterms. ** A single subterm might be a set of AND-connected sub-subterms. ** Examples of terms under analysis: ** ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 ** (B) x=expr1 OR expr2=x OR x=expr3 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) ** (F) x>A OR (x=A AND y>=B) ** ** CASE 1: ** ** If all subterms are of the form T.C=expr for some single column of C and ** a single table T (as shown in example B above) then create a new virtual ** term that is an equivalent IN expression. In other words, if the term ** being analyzed is: ** ** x = expr1 OR expr2 = x OR x = expr3 ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** ** If there are exactly two disjuncts and one side has x>A and the other side ** has x=A (for the same x and A) then add a new virtual conjunct term to the ** WHERE clause of the form "x>=A". Example: ** ** x>A OR (x=A AND y>B) adds: x>=A ** ** The added conjunct can sometimes be helpful in query planning. ** ** CASE 3: ** ** If all subterms are indexable by a single table T, then set ** ** WhereTerm.eOperator = WO_OR ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T ** ** A subterm is "indexable" if it is of the form ** "T.C " where C is any column of table T and ** is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". ** A subterm is also indexable if it is an AND of two or more ** subsubterms at least one of which is indexable. Indexable AND ** subterms have their eOperator set to WO_AND and they have ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is decided elsewhere. This analysis only looks at whether subterms ** appropriate for indexing exist. ** ** All examples A through E above satisfy case 3. But if a term ** also satisfies case 1 (such as B) we know that the optimizer will ** always prefer case 1, so in that case we pretend that case 3 is not ** satisfied. ** ** It might be the case that multiple tables are indexable. For example, ** (E) above is indexable on tables P, Q, and R. ** ** Terms that satisfy case 3 are candidates for lookup by using ** separate indices to find rowids for each subterm and composing ** the union of all rowids using a RowSet object. This is similar ** to "bitmap indices" in other database engines. ** ** OTHERWISE: ** ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to ** zero. This term is not useful for search. */ static void exprAnalyzeOrTerm( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the complete WHERE clause */ int idxTerm /* Index of the OR-term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ Parse *pParse = pWInfo->pParse; /* Parser context */ sqlite3 *db = pParse->db; /* Database connection */ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ Expr *pExpr = pTerm->pExpr; /* The expression of the term */ int i; /* Loop counters */ WhereClause *pOrWc; /* Breakup of pTerm into subterms */ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ Bitmask chngToIN; /* Tables that might satisfy case 1 */ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ /* ** Break the OR clause into its separate subterms. The subterms are ** stored in a WhereClause structure containing within the WhereOrInfo ** object that is attached to the original OR clause term. */ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); assert( pExpr->op==TK_OR ); pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); if( pOrInfo==0 ) return; pTerm->wtFlags |= TERM_ORINFO; pOrWc = &pOrInfo->wc; memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); sqlite3WhereClauseInit(pOrWc, pWInfo); sqlite3WhereSplit(pOrWc, pExpr, TK_OR); sqlite3WhereExprAnalyze(pSrc, pOrWc); if( db->mallocFailed ) return; assert( pOrWc->nTerm>=2 ); /* ** Compute the set of tables that might satisfy cases 1 or 3. */ indexable = ~(Bitmask)0; chngToIN = ~(Bitmask)0; for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ WhereAndInfo *pAndInfo; assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); chngToIN = 0; pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); if( pAndInfo ){ WhereClause *pAndWC; WhereTerm *pAndTerm; int j; Bitmask b = 0; pOrTerm->u.pAndInfo = pAndInfo; pOrTerm->wtFlags |= TERM_ANDINFO; pOrTerm->eOperator = WO_AND; pOrTerm->leftCursor = -1; pAndWC = &pAndInfo->wc; memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); sqlite3WhereExprAnalyze(pSrc, pAndWC); pAndWC->pOuter = pWC; if( !db->mallocFailed ){ for(j=0, pAndTerm=pAndWC->a; jnTerm; j++, pAndTerm++){ assert( pAndTerm->pExpr ); if( allowedOp(pAndTerm->pExpr->op) || pAndTerm->eOperator==WO_AUX ){ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); } } } indexable &= b; } }else if( pOrTerm->wtFlags & TERM_COPIED ){ /* Skip this term for now. We revisit it when we process the ** corresponding TERM_VIRTUAL term */ }else{ Bitmask b; b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); if( pOrTerm->wtFlags & TERM_VIRTUAL ){ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); } indexable &= b; if( (pOrTerm->eOperator & WO_EQ)==0 ){ chngToIN = 0; }else{ chngToIN &= b; } } } /* ** Record the set of tables that satisfy case 3. The set might be ** empty. */ pOrInfo->indexable = indexable; pTerm->eOperator = WO_OR; pTerm->leftCursor = -1; if( indexable ){ pWC->hasOr = 1; } /* For a two-way OR, attempt to implementation case 2. */ if( indexable && pOrWc->nTerm==2 ){ int iOne = 0; WhereTerm *pOne; while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ int iTwo = 0; WhereTerm *pTwo; while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); } } } /* ** chngToIN holds a set of tables that *might* satisfy case 1. But ** we have to do some additional checking to see if case 1 really ** is satisfied. ** ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means ** that there is no possibility of transforming the OR clause into an ** IN operator because one or more terms in the OR clause contain ** something other than == on a column in the single table. The 1-bit ** case means that every term of the OR clause is of the form ** "table.column=expr" for some single table. The one bit that is set ** will correspond to the common table. We still need to check to make ** sure the same column is used on all terms. The 2-bit case is when ** the all terms are of the form "table1.column=table2.column". It ** might be possible to form an IN operator with either table1.column ** or table2.column as the LHS if either is common to every term of ** the OR clause. ** ** Note that terms of the form "table.column1=table.column2" (the ** same table on both sizes of the ==) cannot be optimized. */ if( chngToIN ){ int okToChngToIN = 0; /* True if the conversion to IN is valid */ int iColumn = -1; /* Column index on lhs of IN operator */ int iCursor = -1; /* Table cursor common to all terms */ int j = 0; /* Loop counter */ /* Search for a table and column that appears on one side or the ** other of the == operator in every subterm. That table and column ** will be recorded in iCursor and iColumn. There might not be any ** such table and column. Set okToChngToIN if an appropriate table ** and column is found but leave okToChngToIN false if not found. */ for(j=0; j<2 && !okToChngToIN; j++){ Expr *pLeft = 0; pOrTerm = pOrWc->a; for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); pOrTerm->wtFlags &= ~TERM_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceded ** or followed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm->wtFlags & TERM_COPIED ); testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); continue; } assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); iColumn = pOrTerm->u.x.leftColumn; iCursor = pOrTerm->leftCursor; pLeft = pOrTerm->pExpr->pLeft; break; } if( i<0 ){ /* No candidate table+column was found. This can only occur ** on the second iteration */ assert( j==1 ); assert( IsPowerOfTwo(chngToIN) ); assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); break; } testcase( j==1 ); /* We have found a candidate table and column. Check to see if that ** table and column is common to every term in the OR clause */ okToChngToIN = 1; for(; i>=0 && okToChngToIN; i--, pOrTerm++){ assert( pOrTerm->eOperator & WO_EQ ); assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); if( pOrTerm->leftCursor!=iCursor ){ pOrTerm->wtFlags &= ~TERM_OK; }else if( pOrTerm->u.x.leftColumn!=iColumn || (iColumn==XN_EXPR && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1) )){ okToChngToIN = 0; }else{ int affLeft, affRight; /* If the right-hand side is also a column, then the affinities ** of both right and left sides must be such that no type ** conversions are required on the right. (Ticket #2249) */ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); if( affRight!=0 && affRight!=affLeft ){ okToChngToIN = 0; }else{ pOrTerm->wtFlags |= TERM_OK; } } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. */ if( okToChngToIN ){ Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ if( (pOrTerm->wtFlags & TERM_OK)==0 ) continue; assert( pOrTerm->eOperator & WO_EQ ); assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); assert( pOrTerm->leftCursor==iCursor ); assert( pOrTerm->u.x.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); pLeft = pOrTerm->pExpr->pLeft; } assert( pLeft!=0 ); pDup = sqlite3ExprDup(db, pLeft, 0); pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); if( pNew ){ int idxNew; transferJoinMarkings(pNew, pExpr); assert( ExprUseXList(pNew) ); pNew->x.pList = pList; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */ markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* ** We already know that pExpr is a binary operator where both operands are ** column references. This routine checks to see if pExpr is an equivalence ** relation: ** 1. The SQLITE_Transitive optimization must be enabled ** 2. Must be either an == or an IS operator ** 3. Not originating in the ON clause of an OUTER JOIN ** 4. The affinities of A and B must be compatible ** 5a. Both operands use the same collating sequence OR ** 5b. The overall collating sequence is BINARY ** If this routine returns TRUE, that means that the RHS can be substituted ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. ** This is an optimization. No harm comes from returning 0. But if 1 is ** returned when it should not be, then incorrect answers might result. */ static int termIsEquivalence(Parse *pParse, Expr *pExpr){ char aff1, aff2; CollSeq *pColl; if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; aff1 = sqlite3ExprAffinity(pExpr->pLeft); aff2 = sqlite3ExprAffinity(pExpr->pRight); if( aff1!=aff2 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) ){ return 0; } pColl = sqlite3ExprCompareCollSeq(pParse, pExpr); if( sqlite3IsBinary(pColl) ) return 1; return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight); } /* ** Recursively walk the expressions of a SELECT statement and generate ** a bitmask indicating which tables are used in that expression ** tree. */ static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ Bitmask mask = 0; while( pS ){ SrcList *pSrc = pS->pSrc; mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); if( ALWAYS(pSrc!=0) ){ int i; for(i=0; inSrc; i++){ mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); if( pSrc->a[i].fg.isUsing==0 ){ mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].u3.pOn); } if( pSrc->a[i].fg.isTabFunc ){ mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg); } } } pS = pS->pPrior; } return mask; } /* ** Expression pExpr is one operand of a comparison operator that might ** be useful for indexing. This routine checks to see if pExpr appears ** in any index. Return TRUE (1) if pExpr is an indexed term and return ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor ** number of the table that is indexed and aiCurCol[1] to the column number ** of the column that is indexed, or XN_EXPR (-2) if an expression is being ** indexed. ** ** If pExpr is a TK_COLUMN column reference, then this routine always returns ** true even if that particular column is not indexed, because the column ** might be added to an automatic index later. */ static SQLITE_NOINLINE int exprMightBeIndexed2( SrcList *pFrom, /* The FROM clause */ int *aiCurCol, /* Write the referenced table cursor and column here */ Expr *pExpr, /* An operand of a comparison operator */ int j /* Start looking with the j-th pFrom entry */ ){ Index *pIdx; int i; int iCur; do{ iCur = pFrom->a[j].iCursor; for(pIdx=pFrom->a[j].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->aColExpr==0 ) continue; for(i=0; inKeyCol; i++){ if( pIdx->aiColumn[i]!=XN_EXPR ) continue; assert( pIdx->bHasExpr ); if( sqlite3ExprCompareSkip(pExpr,pIdx->aColExpr->a[i].pExpr,iCur)==0 && pExpr->op!=TK_STRING ){ aiCurCol[0] = iCur; aiCurCol[1] = XN_EXPR; return 1; } } } }while( ++j < pFrom->nSrc ); return 0; } static int exprMightBeIndexed( SrcList *pFrom, /* The FROM clause */ int *aiCurCol, /* Write the referenced table cursor & column here */ Expr *pExpr, /* An operand of a comparison operator */ int op /* The specific comparison operator */ ){ int i; /* If this expression is a vector to the left or right of a ** inequality constraint (>, <, >= or <=), perform the processing ** on the first element of the vector. */ assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); assert( TK_ISop==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ assert( ExprUseXList(pExpr) ); pExpr = pExpr->x.pList->a[0].pExpr; } if( pExpr->op==TK_COLUMN ){ aiCurCol[0] = pExpr->iTable; aiCurCol[1] = pExpr->iColumn; return 1; } for(i=0; inSrc; i++){ Index *pIdx; for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->aColExpr ){ return exprMightBeIndexed2(pFrom,aiCurCol,pExpr,i); } } } return 0; } /* ** The input to this routine is an WhereTerm structure with only the ** "pExpr" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the WhereTerm ** structure. ** ** If the expression is of the form " X" it gets commuted ** to the standard form of "X ". ** ** If the expression is of the form "X Y" where both X and Y are ** columns, then the original expression is unchanged and a new virtual ** term of the form "Y X" is added to the WHERE clause and ** analyzed separately. The original term is marked with TERM_COPIED ** and the new term is marked with TERM_DYNAMIC (because it's pExpr ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it ** is a commuted copy of a prior term.) The original term has nChild=1 ** and the copy has idxParent set to the index of the original term. */ static void exprAnalyze( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequisites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequisites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ int noCase = 0; /* uppercase equivalent to lowercase */ int op; /* Top-level operator. pExpr->op */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection */ unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */ int nLeft; /* Number of elements on left side vector */ if( db->mallocFailed ){ return; } assert( pWC->nTerm > idxTerm ); pTerm = &pWC->a[idxTerm]; pMaskSet = &pWInfo->sMaskSet; pExpr = pTerm->pExpr; assert( pExpr!=0 ); /* Because malloc() has not failed */ assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); pMaskSet->bVarSelect = 0; prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); op = pExpr->op; if( op==TK_IN ){ assert( pExpr->pRight==0 ); if( sqlite3ExprCheckIN(pParse, pExpr) ) return; if( ExprUseXSelect(pExpr) ){ pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); }else{ pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); } prereqAll = prereqLeft | pTerm->prereqRight; }else{ pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); if( pExpr->pLeft==0 || ExprHasProperty(pExpr, EP_xIsSelect|EP_IfNullRow) || pExpr->x.pList!=0 ){ prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr); }else{ prereqAll = prereqLeft | pTerm->prereqRight; } } if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; #ifdef SQLITE_DEBUG if( prereqAll!=sqlite3WhereExprUsageNN(pMaskSet, pExpr) ){ printf("\n*** Incorrect prereqAll computed for:\n"); sqlite3TreeViewExpr(0,pExpr,0); assert( 0 ); } #endif if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) ){ Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->w.iJoin); if( ExprHasProperty(pExpr, EP_OuterON) ){ prereqAll |= x; extraRight = x-1; /* ON clause terms may not be used with an index ** on left table of a LEFT JOIN. Ticket #3015 */ if( (prereqAll>>1)>=x ){ sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); return; } }else if( (prereqAll>>1)>=x ){ /* The ON clause of an INNER JOIN references a table to its right. ** Most other SQL database engines raise an error. But SQLite versions ** 3.0 through 3.38 just put the ON clause constraint into the WHERE ** clause and carried on. Beginning with 3.39, raise an error only ** if there is a RIGHT or FULL JOIN in the query. This makes SQLite ** more like other systems, and also preserves legacy. */ if( ALWAYS(pSrc->nSrc>0) && (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); return; } ExprClearProperty(pExpr, EP_InnerON); } } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; pTerm->eOperator = 0; if( allowedOp(op) ){ int aiCurCol[2]; Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; if( pTerm->u.x.iField>0 ){ assert( op==TK_IN ); assert( pLeft->op==TK_VECTOR ); assert( ExprUseXList(pLeft) ); pLeft = pLeft->x.pList->a[pTerm->u.x.iField-1].pExpr; } if( exprMightBeIndexed(pSrc, aiCurCol, pLeft, op) ){ pTerm->leftCursor = aiCurCol[0]; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); pTerm->u.x.leftColumn = aiCurCol[1]; pTerm->eOperator = operatorMask(op) & opMask; } if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; if( pRight && exprMightBeIndexed(pSrc, aiCurCol, pRight, op) && !ExprHasProperty(pRight, EP_FixedCol) ){ WhereTerm *pNew; Expr *pDup; u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ assert( pTerm->u.x.iField==0 ); if( pTerm->leftCursor>=0 ){ int idxNew; pDup = sqlite3ExprDup(db, pExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); return; } idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); if( idxNew==0 ) return; pNew = &pWC->a[idxNew]; markTermAsChild(pWC, idxNew, idxTerm); if( op==TK_IS ) pNew->wtFlags |= TERM_IS; pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; if( termIsEquivalence(pParse, pDup) ){ pTerm->eOperator |= WO_EQUIV; eExtraOp = WO_EQUIV; } }else{ pDup = pExpr; pNew = pTerm; } pNew->wtFlags |= exprCommute(pParse, pDup); pNew->leftCursor = aiCurCol[0]; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); pNew->u.x.leftColumn = aiCurCol[1]; testcase( (prereqLeft | extraRight) != prereqLeft ); pNew->prereqRight = prereqLeft | extraRight; pNew->prereqAll = prereqAll; pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; }else if( op==TK_ISNULL && !ExprHasProperty(pExpr,EP_OuterON) && 0==sqlite3ExprCanBeNull(pLeft) ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); pExpr->op = TK_TRUEFALSE; /* See tag-20230504-1 */ pExpr->u.zToken = "false"; ExprSetProperty(pExpr, EP_IsFalse); pTerm->prereqAll = 0; pTerm->eOperator = 0; } } #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION /* If a term is the BETWEEN operator, create two new virtual terms ** that define the range that the BETWEEN implements. For example: ** ** a BETWEEN b AND c ** ** is converted into: ** ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) ** ** The two new terms are added onto the end of the WhereClause object. ** The new terms are "dynamic" and are children of the original BETWEEN ** term. That means that if the BETWEEN term is coded, the children are ** skipped. Or, if the children are satisfied by an index, the original ** BETWEEN term is skipped. */ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ ExprList *pList; int i; static const u8 ops[] = {TK_GE, TK_LE}; assert( ExprUseXList(pExpr) ); pList = pExpr->x.pList; assert( pList!=0 ); assert( pList->nExpr==2 ); for(i=0; i<2; i++){ Expr *pNewExpr; int idxNew; pNewExpr = sqlite3PExpr(pParse, ops[i], sqlite3ExprDup(db, pExpr->pLeft, 0), sqlite3ExprDup(db, pList->a[i].pExpr, 0)); transferJoinMarkings(pNewExpr, pExpr); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); } } #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* Analyze a term that is composed of two or more subterms connected by ** an OR operator. */ else if( pExpr->op==TK_OR ){ assert( pWC->op==TK_AND ); exprAnalyzeOrTerm(pSrc, pWC, idxTerm); pTerm = &pWC->a[idxTerm]; } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a ** virtual term of that form. ** ** The virtual term must be tagged with TERM_VNULL. */ else if( pExpr->op==TK_NOTNULL ){ if( pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 && !ExprHasProperty(pExpr, EP_OuterON) ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, sqlite3ExprDup(db, pLeft, 0), sqlite3ExprAlloc(db, TK_NULL, 0, 0)); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); if( idxNew ){ pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = 0; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.x.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_GT; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } } #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* Add constraints to reduce the search space on a LIKE or GLOB ** operator. ** ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints ** ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' ** ** The last character of the prefix "abc" is incremented to form the ** termination condition "abd". If case is not significant (the default ** for LIKE) then the lower-bound is made all uppercase and the upper- ** bound is made all lowercase so that the bounds also work when comparing ** BLOBs. */ else if( pExpr->op==TK_FUNCTION && pWC->op==TK_AND && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; const char *zCollSeqName; /* Name of collating sequence */ const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; assert( ExprUseXList(pExpr) ); pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); assert( pStr1==0 || !ExprHasProperty(pStr1, EP_IntValue) ); assert( pStr2==0 || !ExprHasProperty(pStr2, EP_IntValue) ); /* Convert the lower bound to upper-case and the upper bound to ** lower-case (upper-case is less than lower-case in ASCII) so that ** the range constraints also work for BLOBs */ if( noCase && !pParse->db->mallocFailed ){ int i; char c; pTerm->wtFlags |= TERM_LIKE; for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ pStr1->u.zToken[i] = sqlite3Toupper(c); pStr2->u.zToken[i] = sqlite3Tolower(c); } } if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ if( c=='A'-1 ) isComplete = 0; c = sqlite3UpperToLower[c]; } *pC = c + 1; } zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), pStr1); transferJoinMarkings(pNewExpr1, pExpr); idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); testcase( idxNew1==0 ); pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), pStr2); transferJoinMarkings(pNewExpr2, pExpr); idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew1); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ markTermAsChild(pWC, idxNew1, idxTerm); markTermAsChild(pWC, idxNew2, idxTerm); } } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create ** new terms for each component comparison - "a = ?" and "b = ?". The ** new terms completely replace the original vector comparison, which is ** no longer used. ** ** This is only required if at least one side of the comparison operation ** is not a sub-select. ** ** tag-20220128a */ if( (pExpr->op==TK_EQ || pExpr->op==TK_IS) && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 || (pExpr->pRight->flags & EP_xIsSelect)==0) && pWC->op==TK_AND ){ int i; for(i=0; ipLeft, i, nLeft); Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i, nLeft); pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); transferJoinMarkings(pNew, pExpr); idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_SLICE); exprAnalyze(pSrc, pWC, idxNew); } pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */ pTerm->eOperator = WO_ROWVAL; } /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create ** a virtual term for each vector component. The expression object ** used by each such virtual term is pExpr (the full vector IN(...) ** expression). The WhereTerm.u.x.iField variable identifies the index within ** the vector on the LHS that the virtual term represents. ** ** This only works if the RHS is a simple SELECT (not a compound) that does ** not use window functions. */ else if( pExpr->op==TK_IN && pTerm->u.x.iField==0 && pExpr->pLeft->op==TK_VECTOR && ALWAYS( ExprUseXSelect(pExpr) ) && (pExpr->x.pSelect->pPrior==0 || (pExpr->x.pSelect->selFlags & SF_Values)) #ifndef SQLITE_OMIT_WINDOWFUNC && pExpr->x.pSelect->pWin==0 #endif && pWC->op==TK_AND ){ int i; for(i=0; ipLeft); i++){ int idxNew; idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL|TERM_SLICE); pWC->a[idxNew].u.x.iField = i+1; exprAnalyze(pSrc, pWC, idxNew); markTermAsChild(pWC, idxNew, idxTerm); } } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Add a WO_AUX auxiliary term to the constraint set if the ** current expression is of the form "column OP expr" where OP ** is an operator that gets passed into virtual tables but which is ** not normally optimized for ordinary tables. In other words, OP ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL. ** This information is used by the xBestIndex methods of ** virtual tables. The native query optimizer does not attempt ** to do anything with MATCH functions. */ else if( pWC->op==TK_AND ){ Expr *pRight = 0, *pLeft = 0; int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight); while( res-- > 0 ){ int idxNew; WhereTerm *pNewTerm; Bitmask prereqColumn, prereqExpr; prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); if( (prereqExpr & prereqColumn)==0 ){ Expr *pNewExpr; pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 0, sqlite3ExprDup(db, pRight, 0)); if( ExprHasProperty(pExpr, EP_OuterON) && pNewExpr ){ ExprSetProperty(pNewExpr, EP_OuterON); pNewExpr->w.iJoin = pExpr->w.iJoin; } idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = prereqExpr; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.x.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_AUX; pNewTerm->eMatchOp = eOp2; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } SWAP(Expr*, pLeft, pRight); } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ testcase( pTerm!=&pWC->a[idxTerm] ); pTerm = &pWC->a[idxTerm]; pTerm->prereqRight |= extraRight; } /*************************************************************************** ** Routines with file scope above. Interface to the rest of the where.c ** subsystem follows. ***************************************************************************/ /* ** This routine identifies subexpressions in the WHERE clause where ** each subexpression is separated by the AND operator or some other ** operator specified in the op parameter. The WhereClause structure ** is filled with pointers to subexpressions. For example: ** ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) ** \________/ \_______________/ \________________/ ** slot[0] slot[1] slot[2] ** ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr); pWC->op = op; assert( pE2!=0 || pExpr==0 ); if( pE2==0 ) return; if( pE2->op!=op ){ whereClauseInsert(pWC, pExpr, 0); }else{ sqlite3WhereSplit(pWC, pE2->pLeft, op); sqlite3WhereSplit(pWC, pE2->pRight, op); } } /* ** Add either a LIMIT (if eMatchOp==SQLITE_INDEX_CONSTRAINT_LIMIT) or ** OFFSET (if eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET) term to the ** where-clause passed as the first argument. The value for the term ** is found in register iReg. ** ** In the common case where the value is a simple integer ** (example: "LIMIT 5 OFFSET 10") then the expression codes as a ** TK_INTEGER so that it will be available to sqlite3_vtab_rhs_value(). ** If not, then it codes as a TK_REGISTER expression. */ static void whereAddLimitExpr( WhereClause *pWC, /* Add the constraint to this WHERE clause */ int iReg, /* Register that will hold value of the limit/offset */ Expr *pExpr, /* Expression that defines the limit/offset */ int iCsr, /* Cursor to which the constraint applies */ int eMatchOp /* SQLITE_INDEX_CONSTRAINT_LIMIT or _OFFSET */ ){ Parse *pParse = pWC->pWInfo->pParse; sqlite3 *db = pParse->db; Expr *pNew; int iVal = 0; if( sqlite3ExprIsInteger(pExpr, &iVal) && iVal>=0 ){ Expr *pVal = sqlite3Expr(db, TK_INTEGER, 0); if( pVal==0 ) return; ExprSetProperty(pVal, EP_IntValue); pVal->u.iValue = iVal; pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal); }else{ Expr *pVal = sqlite3Expr(db, TK_REGISTER, 0); if( pVal==0 ) return; pVal->iTable = iReg; pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal); } if( pNew ){ WhereTerm *pTerm; int idx; idx = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_VIRTUAL); pTerm = &pWC->a[idx]; pTerm->leftCursor = iCsr; pTerm->eOperator = WO_AUX; pTerm->eMatchOp = eMatchOp; } } /* ** Possibly add terms corresponding to the LIMIT and OFFSET clauses of the ** SELECT statement passed as the second argument. These terms are only ** added if: ** ** 1. The SELECT statement has a LIMIT clause, and ** 2. The SELECT statement is not an aggregate or DISTINCT query, and ** 3. The SELECT statement has exactly one object in its from clause, and ** that object is a virtual table, and ** 4. There are no terms in the WHERE clause that will not be passed ** to the virtual table xBestIndex method. ** 5. The ORDER BY clause, if any, will be made available to the xBestIndex ** method. ** ** LIMIT and OFFSET terms are ignored by most of the planner code. They ** exist only so that they may be passed to the xBestIndex method of the ** single virtual table in the FROM clause of the SELECT. */ SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3WhereAddLimit(WhereClause *pWC, Select *p){ assert( p!=0 && p->pLimit!=0 ); /* 1 -- checked by caller */ if( p->pGroupBy==0 && (p->selFlags & (SF_Distinct|SF_Aggregate))==0 /* 2 */ && (p->pSrc->nSrc==1 && IsVirtual(p->pSrc->a[0].pTab)) /* 3 */ ){ ExprList *pOrderBy = p->pOrderBy; int iCsr = p->pSrc->a[0].iCursor; int ii; /* Check condition (4). Return early if it is not met. */ for(ii=0; iinTerm; ii++){ if( pWC->a[ii].wtFlags & TERM_CODED ){ /* This term is a vector operation that has been decomposed into ** other, subsequent terms. It can be ignored. See tag-20220128a */ assert( pWC->a[ii].wtFlags & TERM_VIRTUAL ); assert( pWC->a[ii].eOperator==WO_ROWVAL ); continue; } if( pWC->a[ii].nChild ){ /* If this term has child terms, then they are also part of the ** pWC->a[] array. So this term can be ignored, as a LIMIT clause ** will only be added if each of the child terms passes the ** (leftCursor==iCsr) test below. */ continue; } if( pWC->a[ii].leftCursor!=iCsr ) return; } /* Check condition (5). Return early if it is not met. */ if( pOrderBy ){ for(ii=0; iinExpr; ii++){ Expr *pExpr = pOrderBy->a[ii].pExpr; if( pExpr->op!=TK_COLUMN ) return; if( pExpr->iTable!=iCsr ) return; if( pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) return; } } /* All conditions are met. Add the terms to the where-clause object. */ assert( p->pLimit->op==TK_LIMIT ); whereAddLimitExpr(pWC, p->iLimit, p->pLimit->pLeft, iCsr, SQLITE_INDEX_CONSTRAINT_LIMIT); if( p->iOffset>0 ){ whereAddLimitExpr(pWC, p->iOffset, p->pLimit->pRight, iCsr, SQLITE_INDEX_CONSTRAINT_OFFSET); } } } /* ** Initialize a preallocated WhereClause structure. */ SQLITE_PRIVATE void sqlite3WhereClauseInit( WhereClause *pWC, /* The WhereClause to be initialized */ WhereInfo *pWInfo /* The WHERE processing context */ ){ pWC->pWInfo = pWInfo; pWC->hasOr = 0; pWC->pOuter = 0; pWC->nTerm = 0; pWC->nBase = 0; pWC->nSlot = ArraySize(pWC->aStatic); pWC->a = pWC->aStatic; } /* ** Deallocate a WhereClause structure. The WhereClause structure ** itself is not freed. This routine is the inverse of ** sqlite3WhereClauseInit(). */ SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause *pWC){ sqlite3 *db = pWC->pWInfo->pParse->db; assert( pWC->nTerm>=pWC->nBase ); if( pWC->nTerm>0 ){ WhereTerm *a = pWC->a; WhereTerm *aLast = &pWC->a[pWC->nTerm-1]; #ifdef SQLITE_DEBUG int i; /* Verify that every term past pWC->nBase is virtual */ for(i=pWC->nBase; inTerm; i++){ assert( (pWC->a[i].wtFlags & TERM_VIRTUAL)!=0 ); } #endif while(1){ assert( a->eMatchOp==0 || a->eOperator==WO_AUX ); if( a->wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, a->pExpr); } if( a->wtFlags & (TERM_ORINFO|TERM_ANDINFO) ){ if( a->wtFlags & TERM_ORINFO ){ assert( (a->wtFlags & TERM_ANDINFO)==0 ); whereOrInfoDelete(db, a->u.pOrInfo); }else{ assert( (a->wtFlags & TERM_ANDINFO)!=0 ); whereAndInfoDelete(db, a->u.pAndInfo); } } if( a==aLast ) break; a++; } } } /* ** These routines walk (recursively) an expression tree and generate ** a bitmask indicating which tables are used in that expression ** tree. ** ** sqlite3WhereExprUsage(MaskSet, Expr) -> ** ** Return a Bitmask of all tables referenced by Expr. Expr can be ** be NULL, in which case 0 is returned. ** ** sqlite3WhereExprUsageNN(MaskSet, Expr) -> ** ** Same as sqlite3WhereExprUsage() except that Expr must not be ** NULL. The "NN" suffix on the name stands for "Not Null". ** ** sqlite3WhereExprListUsage(MaskSet, ExprList) -> ** ** Return a Bitmask of all tables referenced by every expression ** in the expression list ExprList. ExprList can be NULL, in which ** case 0 is returned. ** ** sqlite3WhereExprUsageFull(MaskSet, ExprList) -> ** ** Internal use only. Called only by sqlite3WhereExprUsageNN() for ** complex expressions that require pushing register values onto ** the stack. Many calls to sqlite3WhereExprUsageNN() do not need ** the more complex analysis done by this routine. Hence, the ** computations done by this routine are broken out into a separate ** "no-inline" function to avoid the stack push overhead in the ** common case where it is not needed. */ static SQLITE_NOINLINE Bitmask sqlite3WhereExprUsageFull( WhereMaskSet *pMaskSet, Expr *p ){ Bitmask mask; mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft); if( p->pRight ){ mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight); assert( p->x.pList==0 ); }else if( ExprUseXSelect(p) ){ if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; mask |= exprSelectUsage(pMaskSet, p->x.pSelect); }else if( p->x.pList ){ mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); } #ifndef SQLITE_OMIT_WINDOWFUNC if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && ExprUseYWin(p) ){ assert( p->y.pWin!=0 ); mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition); mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy); mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter); } #endif return mask; } SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){ if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ return sqlite3WhereGetMask(pMaskSet, p->iTable); }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ assert( p->op!=TK_IF_NULL_ROW ); return 0; } return sqlite3WhereExprUsageFull(pMaskSet, p); } SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0; } SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ int i; Bitmask mask = 0; if( pList ){ for(i=0; inExpr; i++){ mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); } } return mask; } /* ** Call exprAnalyze on all terms in a WHERE clause. ** ** Note that exprAnalyze() might add new virtual terms onto the ** end of the WHERE clause. We do not want to analyze these new ** virtual terms, so start analyzing at the end and work forward ** so that the added virtual terms are never processed. */ SQLITE_PRIVATE void sqlite3WhereExprAnalyze( SrcList *pTabList, /* the FROM clause */ WhereClause *pWC /* the WHERE clause to be analyzed */ ){ int i; for(i=pWC->nTerm-1; i>=0; i--){ exprAnalyze(pTabList, pWC, i); } } /* ** For table-valued-functions, transform the function arguments into ** new WHERE clause terms. ** ** Each function argument translates into an equality constraint against ** a HIDDEN column in the table. */ SQLITE_PRIVATE void sqlite3WhereTabFuncArgs( Parse *pParse, /* Parsing context */ SrcItem *pItem, /* The FROM clause term to process */ WhereClause *pWC /* Xfer function arguments to here */ ){ Table *pTab; int j, k; ExprList *pArgs; Expr *pColRef; Expr *pTerm; if( pItem->fg.isTabFunc==0 ) return; pTab = pItem->pTab; assert( pTab!=0 ); pArgs = pItem->u1.pFuncArg; if( pArgs==0 ) return; for(j=k=0; jnExpr; j++){ Expr *pRhs; u32 joinType; while( knCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} if( k>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", pTab->zName, j); return; } pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); if( pColRef==0 ) return; pColRef->iTable = pItem->iCursor; pColRef->iColumn = k++; assert( ExprUseYTab(pColRef) ); pColRef->y.pTab = pTab; pItem->colUsed |= sqlite3ExprColUsed(pColRef); pRhs = sqlite3PExpr(pParse, TK_UPLUS, sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs); if( pItem->fg.jointype & (JT_LEFT|JT_RIGHT) ){ testcase( pItem->fg.jointype & JT_LEFT ); /* testtag-20230227a */ testcase( pItem->fg.jointype & JT_RIGHT ); /* testtag-20230227b */ joinType = EP_OuterON; }else{ testcase( pItem->fg.jointype & JT_LTORJ ); /* testtag-20230227c */ joinType = EP_InnerON; } sqlite3SetJoinExpr(pTerm, pItem->iCursor, joinType); whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); } } /************** End of whereexpr.c *******************************************/ /************** Begin file where.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is responsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ /* #include "sqliteInt.h" */ /* #include "whereInt.h" */ /* ** Extra information appended to the end of sqlite3_index_info but not ** visible to the xBestIndex function, at least not directly. The ** sqlite3_vtab_collation() interface knows how to reach it, however. ** ** This object is not an API and can be changed from one release to the ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() ** agree on the structure, all will be well. */ typedef struct HiddenIndexInfo HiddenIndexInfo; struct HiddenIndexInfo { WhereClause *pWC; /* The Where clause being analyzed */ Parse *pParse; /* The parsing context */ int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ u32 mIn; /* Mask of terms that are IN (...) */ u32 mHandleIn; /* Terms that vtab will handle as IN (...) */ sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST ** because extra space is allocated to hold up ** to nTerm such values */ }; /* Forward declaration of methods */ static int whereLoopResize(sqlite3*, WhereLoop*, int); /* ** Return the estimated number of output rows from a WHERE clause */ SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ return pWInfo->nRowOut; } /* ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this ** WHERE clause returns outputs for DISTINCT processing. */ SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ return pWInfo->eDistinct; } /* ** Return the number of ORDER BY terms that are satisfied by the ** WHERE clause. A return of 0 means that the output must be ** completely sorted. A return equal to the number of ORDER BY ** terms means that no sorting is needed at all. A return that ** is positive but less than the number of ORDER BY terms means that ** block sorting is required. */ SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ return pWInfo->nOBSat<0 ? 0 : pWInfo->nOBSat; } /* ** In the ORDER BY LIMIT optimization, if the inner-most loop is known ** to emit rows in increasing order, and if the last row emitted by the ** inner-most loop did not fit within the sorter, then we can skip all ** subsequent rows for the current iteration of the inner loop (because they ** will not fit in the sorter either) and continue with the second inner ** loop - the loop immediately outside the inner-most. ** ** When a row does not fit in the sorter (because the sorter already ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the ** label returned by this function. ** ** If the ORDER BY LIMIT optimization applies, the jump destination should ** be the continuation for the second-inner-most loop. If the ORDER BY ** LIMIT optimization does not apply, then the jump destination should ** be the continuation for the inner-most loop. ** ** It is always safe for this routine to return the continuation of the ** inner-most loop, in the sense that a correct answer will result. ** Returning the continuation the second inner loop is an optimization ** that might make the code run a little faster, but should not change ** the final answer. */ SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ WhereLevel *pInner; if( !pWInfo->bOrderedInnerLoop ){ /* The ORDER BY LIMIT optimization does not apply. Jump to the ** continuation of the inner-most loop. */ return pWInfo->iContinue; } pInner = &pWInfo->a[pWInfo->nLevel-1]; assert( pInner->addrNxt!=0 ); return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; } /* ** While generating code for the min/max optimization, after handling ** the aggregate-step call to min() or max(), check to see if any ** additional looping is required. If the output order is such that ** we are certain that the correct answer has already been found, then ** code an OP_Goto to by pass subsequent processing. ** ** Any extra OP_Goto that is coded here is an optimization. The ** correct answer should be obtained regardless. This OP_Goto just ** makes the answer appear faster. */ SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ WhereLevel *pInner; int i; if( !pWInfo->bOrderedInnerLoop ) return; if( pWInfo->nOBSat==0 ) return; for(i=pWInfo->nLevel-1; i>=0; i--){ pInner = &pWInfo->a[i]; if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ sqlite3VdbeGoto(v, pInner->addrNxt); return; } } sqlite3VdbeGoto(v, pWInfo->iBreak); } /* ** Return the VDBE address or label to jump to in order to continue ** immediately with the next row of a WHERE clause. */ SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ assert( pWInfo->iContinue!=0 ); return pWInfo->iContinue; } /* ** Return the VDBE address or label to jump to in order to break ** out of a WHERE loop. */ SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ return pWInfo->iBreak; } /* ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to ** operate directly on the rowids returned by a WHERE clause. Return ** ONEPASS_SINGLE (1) if the statement can operation directly because only ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass ** optimization can be used on multiple ** ** If the ONEPASS optimization is used (if this routine returns true) ** then also write the indices of open cursors used by ONEPASS ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data ** table and iaCur[1] gets the cursor used by an auxiliary index. ** Either value may be -1, indicating that cursor is not used. ** Any cursors returned will have been opened for writing. ** ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is ** unable to use the ONEPASS optimization. */ SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ sqlite3DebugPrintf("%s cursors: %d %d\n", pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", aiCur[0], aiCur[1]); } #endif return pWInfo->eOnePass; } /* ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move ** the data cursor to the row selected by the index cursor. */ SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ return pWInfo->bDeferredSeek; } /* ** Move the content of pSrc into pDest */ static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ pDest->n = pSrc->n; memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); } /* ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. ** ** The new entry might overwrite an existing entry, or it might be ** appended, or it might be discarded. Do whatever is the right thing ** so that pSet keeps the N_OR_COST best entries seen so far. */ static int whereOrInsert( WhereOrSet *pSet, /* The WhereOrSet to be updated */ Bitmask prereq, /* Prerequisites of the new entry */ LogEst rRun, /* Run-cost of the new entry */ LogEst nOut /* Number of outputs for the new entry */ ){ u16 i; WhereOrCost *p; for(i=pSet->n, p=pSet->a; i>0; i--, p++){ if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ goto whereOrInsert_done; } if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ return 0; } } if( pSet->na[pSet->n++]; p->nOut = nOut; }else{ p = pSet->a; for(i=1; in; i++){ if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; } if( p->rRun<=rRun ) return 0; } whereOrInsert_done: p->prereq = prereq; p->rRun = rRun; if( p->nOut>nOut ) p->nOut = nOut; return 1; } /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ int i; assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); assert( iCursor>=-1 ); if( pMaskSet->ix[0]==iCursor ){ return 1; } for(i=1; in; i++){ if( pMaskSet->ix[i]==iCursor ){ return MASKBIT(i); } } return 0; } /* Allocate memory that is automatically freed when pWInfo is freed. */ SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ WhereMemBlock *pBlock; pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); if( pBlock ){ pBlock->pNext = pWInfo->pMemToFree; pBlock->sz = nByte; pWInfo->pMemToFree = pBlock; pBlock++; } return (void*)pBlock; } SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ void *pNew = sqlite3WhereMalloc(pWInfo, nByte); if( pNew && pOld ){ WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; pOldBlk--; assert( pOldBlk->szsz); } return pNew; } /* ** Create a new mask for cursor iCursor. ** ** There is one cursor per table in the FROM clause. The number of ** tables in the FROM clause is limited by a test early in the ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] ** array will never overflow. */ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); pMaskSet->ix[pMaskSet->n++] = iCursor; } /* ** If the right-hand branch of the expression is a TK_COLUMN, then return ** a pointer to the right-hand branch. Otherwise, return NULL. */ static Expr *whereRightSubexprIsColumn(Expr *p){ p = sqlite3ExprSkipCollateAndLikely(p->pRight); if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ return p; } return 0; } /* ** Advance to the next WhereTerm that matches according to the criteria ** established when the pScan object was initialized by whereScanInit(). ** Return NULL if there are no more matching WhereTerms. */ static WhereTerm *whereScanNext(WhereScan *pScan){ int iCur; /* The cursor on the LHS of the term */ i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ Expr *pX; /* An expression being tested */ WhereClause *pWC; /* Shorthand for pScan->pWC */ WhereTerm *pTerm; /* The term being tested */ int k = pScan->k; /* Where to start scanning */ assert( pScan->iEquiv<=pScan->nEquiv ); pWC = pScan->pWC; while(1){ iColumn = pScan->aiColumn[pScan->iEquiv-1]; iCur = pScan->aiCur[pScan->iEquiv-1]; assert( pWC!=0 ); assert( iCur>=0 ); do{ for(pTerm=pWC->a+k; knTerm; k++, pTerm++){ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); if( pTerm->leftCursor==iCur && pTerm->u.x.leftColumn==iColumn && (iColumn!=XN_EXPR || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, pScan->pIdxExpr,iCur)==0) && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) ){ if( (pTerm->eOperator & WO_EQUIV)!=0 && pScan->nEquivaiCur) && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 ){ int j; for(j=0; jnEquiv; j++){ if( pScan->aiCur[j]==pX->iTable && pScan->aiColumn[j]==pX->iColumn ){ break; } } if( j==pScan->nEquiv ){ pScan->aiCur[j] = pX->iTable; pScan->aiColumn[j] = pX->iColumn; pScan->nEquiv++; } } if( (pTerm->eOperator & pScan->opMask)!=0 ){ /* Verify the affinity and collating sequence match */ if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ CollSeq *pColl; Parse *pParse = pWC->pWInfo->pParse; pX = pTerm->pExpr; if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ continue; } assert(pX->pLeft); pColl = sqlite3ExprCompareCollSeq(pParse, pX); if( pColl==0 ) pColl = pParse->db->pDfltColl; if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ continue; } } if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) && pX->op==TK_COLUMN && pX->iTable==pScan->aiCur[0] && pX->iColumn==pScan->aiColumn[0] ){ testcase( pTerm->eOperator & WO_IS ); continue; } pScan->pWC = pWC; pScan->k = k+1; #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x20000 ){ int ii; sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", pTerm, pScan->nEquiv); for(ii=0; iinEquiv; ii++){ sqlite3DebugPrintf(" {%d:%d}", pScan->aiCur[ii], pScan->aiColumn[ii]); } sqlite3DebugPrintf("\n"); } #endif return pTerm; } } } pWC = pWC->pOuter; k = 0; }while( pWC!=0 ); if( pScan->iEquiv>=pScan->nEquiv ) break; pWC = pScan->pOrigWC; k = 0; pScan->iEquiv++; } return 0; } /* ** This is whereScanInit() for the case of an index on an expression. ** It is factored out into a separate tail-recursion subroutine so that ** the normal whereScanInit() routine, which is a high-runner, does not ** need to push registers onto the stack as part of its prologue. */ static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); return whereScanNext(pScan); } /* ** Initialize a WHERE clause scanner object. Return a pointer to the ** first match. Return NULL if there are no matches. ** ** The scanner will be searching the WHERE clause pWC. It will look ** for terms of the form "X " where X is column iColumn of table ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx ** must be one of the indexes of table iCur. ** ** The must be one of the operators described by opMask. ** ** If the search is for X and the WHERE clause contains terms of the ** form X=Y then this routine might also return terms of the form ** "Y ". The number of levels of transitivity is limited, ** but is enough to handle most commonly occurring SQL statements. ** ** If X is not the INTEGER PRIMARY KEY then X must be compatible with ** index pIdx. */ static WhereTerm *whereScanInit( WhereScan *pScan, /* The WhereScan object being initialized */ WhereClause *pWC, /* The WHERE clause to be scanned */ int iCur, /* Cursor to scan for */ int iColumn, /* Column to scan for */ u32 opMask, /* Operator(s) to scan for */ Index *pIdx /* Must be compatible with this index */ ){ pScan->pOrigWC = pWC; pScan->pWC = pWC; pScan->pIdxExpr = 0; pScan->idxaff = 0; pScan->zCollName = 0; pScan->opMask = opMask; pScan->k = 0; pScan->aiCur[0] = iCur; pScan->nEquiv = 1; pScan->iEquiv = 1; if( pIdx ){ int j = iColumn; iColumn = pIdx->aiColumn[j]; if( iColumn==pIdx->pTable->iPKey ){ iColumn = XN_ROWID; }else if( iColumn>=0 ){ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; pScan->zCollName = pIdx->azColl[j]; }else if( iColumn==XN_EXPR ){ pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; pScan->zCollName = pIdx->azColl[j]; pScan->aiColumn[0] = XN_EXPR; return whereScanInitIndexExpr(pScan); } }else if( iColumn==XN_EXPR ){ return 0; } pScan->aiColumn[0] = iColumn; return whereScanNext(pScan); } /* ** Search for a term in the WHERE clause that is of the form "X " ** where X is a reference to the iColumn of table iCur or of index pIdx ** if pIdx!=0 and is one of the WO_xx operator codes specified by ** the op parameter. Return a pointer to the term. Return 0 if not found. ** ** If pIdx!=0 then it must be one of the indexes of table iCur. ** Search for terms matching the iColumn-th column of pIdx ** rather than the iColumn-th column of table iCur. ** ** The term returned might by Y= if there is another constraint in ** the WHERE clause that specifies that X=Y. Any such constraints will be ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 ** other equivalent values. Hence a search for X will return if X=A1 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=. ** ** If there are multiple terms in the WHERE clause of the form "X " ** then try for the one with no dependencies on - in other words where ** is a constant expression of some kind. Only return entries of ** the form "X Y" where Y is a column in another table if no terms of ** the form "X " exist. If no terms with a constant RHS ** exist, try to return a term that does not use WO_EQUIV. */ SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ WhereTerm *pResult = 0; WhereTerm *p; WhereScan scan; p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); op &= WO_EQ|WO_IS; while( p ){ if( (p->prereqRight & notReady)==0 ){ if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ testcase( p->eOperator & WO_IS ); return p; } if( pResult==0 ) pResult = p; } p = whereScanNext(&scan); } return pResult; } /* ** This function searches pList for an entry that matches the iCol-th column ** of index pIdx. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. */ static int findIndexCol( Parse *pParse, /* Parse context */ ExprList *pList, /* Expression list to search */ int iBase, /* Cursor for table associated with pIdx */ Index *pIdx, /* Index to match column of */ int iCol /* Column of index to match */ ){ int i; const char *zColl = pIdx->azColl[iCol]; for(i=0; inExpr; i++){ Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); if( ALWAYS(p!=0) && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && p->iColumn==pIdx->aiColumn[iCol] && p->iTable==iBase ){ CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ return i; } } } return -1; } /* ** Return TRUE if the iCol-th column of index pIdx is NOT NULL */ static int indexColumnNotNull(Index *pIdx, int iCol){ int j; assert( pIdx!=0 ); assert( iCol>=0 && iColnColumn ); j = pIdx->aiColumn[iCol]; if( j>=0 ){ return pIdx->pTable->aCol[j].notNull; }else if( j==(-1) ){ return 1; }else{ assert( j==(-2) ); return 0; /* Assume an indexed expression can always yield a NULL */ } } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. ** ** A DISTINCT list is redundant if any subset of the columns in the ** DISTINCT list are collectively unique and individually non-null. */ static int isDistinctRedundant( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* The FROM clause */ WhereClause *pWC, /* The WHERE clause */ ExprList *pDistinct /* The result set that needs to be DISTINCT */ ){ Table *pTab; Index *pIdx; int i; int iBase; /* If there is more than one table or sub-select in the FROM clause of ** this query, then it will not be possible to show that the DISTINCT ** clause is redundant. */ if( pTabList->nSrc!=1 ) return 0; iBase = pTabList->a[0].iCursor; pTab = pTabList->a[0].pTab; /* If any of the expressions is an IPK column on table iBase, then return ** true. Note: The (p->iTable==iBase) part of this test may be false if the ** current SELECT is a correlated sub-query. */ for(i=0; inExpr; i++){ Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); if( NEVER(p==0) ) continue; if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; if( p->iTable==iBase && p->iColumn<0 ) return 1; } /* Loop through all indices on the table, checking each to see if it makes ** the DISTINCT qualifier redundant. It does so if: ** ** 1. The index is itself UNIQUE, and ** ** 2. All of the columns in the index are either part of the pDistinct ** list, or else the WHERE clause contains a term of the form "col=X", ** where X is a constant value. The collation sequences of the ** comparison and select-list expressions must match those of the index. ** ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !IsUniqueIndex(pIdx) ) continue; if( pIdx->pPartIdxWhere ) continue; for(i=0; inKeyCol; i++){ if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; if( indexColumnNotNull(pIdx, i)==0 ) break; } } if( i==pIdx->nKeyCol ){ /* This index implies that the DISTINCT qualifier is redundant. */ return 1; } } return 0; } /* ** Estimate the logarithm of the input value to base 2. */ static LogEst estLog(LogEst N){ return N<=10 ? 0 : sqlite3LogEst(N) - 33; } /* ** Convert OP_Column opcodes to OP_Copy in previously generated code. ** ** This routine runs over generated VDBE code and translates OP_Column ** opcodes into OP_Copy when the table is being accessed via co-routine ** instead of via table lookup. ** ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on ** cursor iTabCur are transformed into OP_Sequence opcode for the ** iAutoidxCur cursor, in order to generate unique rowids for the ** automatic index being generated. */ static void translateColumnToCopy( Parse *pParse, /* Parsing context */ int iStart, /* Translate from this opcode to the end */ int iTabCur, /* OP_Column/OP_Rowid references to this table */ int iRegister, /* The first column is in this register */ int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ ){ Vdbe *v = pParse->pVdbe; VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); int iEnd = sqlite3VdbeCurrentAddr(v); if( pParse->db->mallocFailed ) return; for(; iStartp1!=iTabCur ) continue; if( pOp->opcode==OP_Column ){ #ifdef SQLITE_DEBUG if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ printf("TRANSLATE OP_Column to OP_Copy at %d\n", iStart); } #endif pOp->opcode = OP_Copy; pOp->p1 = pOp->p2 + iRegister; pOp->p2 = pOp->p3; pOp->p3 = 0; pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */ }else if( pOp->opcode==OP_Rowid ){ #ifdef SQLITE_DEBUG if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ printf("TRANSLATE OP_Rowid to OP_Sequence at %d\n", iStart); } #endif pOp->opcode = OP_Sequence; pOp->p1 = iAutoidxCur; #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( iAutoidxCur==0 ){ pOp->opcode = OP_Null; pOp->p3 = 0; } #endif } } } /* ** Two routines for printing the content of an sqlite3_index_info ** structure. Used for testing and debugging only. If neither ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines ** are no-ops. */ #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ int i; if( (sqlite3WhereTrace & 0x10)==0 ) return; for(i=0; inConstraint; i++){ sqlite3DebugPrintf( " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", i, p->aConstraint[i].iColumn, p->aConstraint[i].iTermOffset, p->aConstraint[i].op, p->aConstraint[i].usable, sqlite3_vtab_collation(p,i)); } for(i=0; inOrderBy; i++){ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", i, p->aOrderBy[i].iColumn, p->aOrderBy[i].desc); } } static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ int i; if( (sqlite3WhereTrace & 0x10)==0 ) return; for(i=0; inConstraint; i++){ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", i, p->aConstraintUsage[i].argvIndex, p->aConstraintUsage[i].omit); } sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); } #else #define whereTraceIndexInfoInputs(A) #define whereTraceIndexInfoOutputs(A) #endif /* ** We know that pSrc is an operand of an outer join. Return true if ** pTerm is a constraint that is compatible with that join. ** ** pTerm must be EP_OuterON if pSrc is the right operand of an ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc ** is the left operand of a RIGHT join. ** ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f ** for an example of a WHERE clause constraints that may not be used on ** the right table of a RIGHT JOIN because the constraint implies a ** not-NULL condition on the left table of the RIGHT JOIN. */ static int constraintCompatibleWithOuterJoin( const WhereTerm *pTerm, /* WHERE clause term to check */ const SrcItem *pSrc /* Table we are trying to access */ ){ assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) || pTerm->pExpr->w.iJoin != pSrc->iCursor ){ return 0; } if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0 && ExprHasProperty(pTerm->pExpr, EP_InnerON) ){ return 0; } return 1; } #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Return TRUE if the WHERE clause term pTerm is of a form where it ** could be used with an index to access pSrc, assuming an appropriate ** index existed. */ static int termCanDriveIndex( const WhereTerm *pTerm, /* WHERE clause term to check */ const SrcItem *pSrc, /* Table we are trying to access */ const Bitmask notReady /* Tables in outer loops of the join */ ){ char aff; if( pTerm->leftCursor!=pSrc->iCursor ) return 0; if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; assert( (pSrc->fg.jointype & JT_RIGHT)==0 ); if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) ){ return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */ } if( (pTerm->prereqRight & notReady)!=0 ) return 0; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); if( pTerm->u.x.leftColumn<0 ) return 0; aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; testcase( pTerm->pExpr->op==TK_IS ); return 1; } #endif #ifndef SQLITE_OMIT_AUTOMATIC_INDEX #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Argument pIdx represents an automatic index that the current statement ** will create and populate. Add an OP_Explain with text of the form: ** ** CREATE AUTOMATIC INDEX ON
    () [WHERE ] ** ** This is only required if sqlite3_stmt_scanstatus() is enabled, to ** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP ** values with. In order to avoid breaking legacy code and test cases, ** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command. */ static void explainAutomaticIndex( Parse *pParse, Index *pIdx, /* Automatic index to explain */ int bPartial, /* True if pIdx is a partial index */ int *pAddrExplain /* OUT: Address of OP_Explain */ ){ if( IS_STMT_SCANSTATUS(pParse->db) && pParse->explain!=2 ){ Table *pTab = pIdx->pTable; const char *zSep = ""; char *zText = 0; int ii = 0; sqlite3_str *pStr = sqlite3_str_new(pParse->db); sqlite3_str_appendf(pStr,"CREATE AUTOMATIC INDEX ON %s(", pTab->zName); assert( pIdx->nColumn>1 ); assert( pIdx->aiColumn[pIdx->nColumn-1]==XN_ROWID ); for(ii=0; ii<(pIdx->nColumn-1); ii++){ const char *zName = 0; int iCol = pIdx->aiColumn[ii]; zName = pTab->aCol[iCol].zCnName; sqlite3_str_appendf(pStr, "%s%s", zSep, zName); zSep = ", "; } zText = sqlite3_str_finish(pStr); if( zText==0 ){ sqlite3OomFault(pParse->db); }else{ *pAddrExplain = sqlite3VdbeExplain( pParse, 0, "%s)%s", zText, (bPartial ? " WHERE " : "") ); sqlite3_free(zText); } } } #else # define explainAutomaticIndex(a,b,c,d) #endif /* ** Generate code to construct the Index object for an automatic index ** and to set up the WhereLevel object pLevel so that the code generator ** makes use of the automatic index. */ static SQLITE_NOINLINE void constructAutomaticIndex( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ const Bitmask notReady, /* Mask of cursors that are not available */ WhereLevel *pLevel /* Write new index here */ ){ int nKeyCol; /* Number of columns in the constructed index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ Index *pIdx; /* Object describing the transient index */ Vdbe *v; /* Prepared statement under construction */ int addrInit; /* Address of the initialization bypass jump */ Table *pTable; /* The table being indexed */ int addrTop; /* Top of the index fill loop */ int regRecord; /* Register holding an index record */ int n; /* Column counter */ int i; /* Loop counter */ int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ WhereLoop *pLoop; /* The Loop object */ char *zNotUsed; /* Extra space on the end of pIdx */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warning has been issued */ u8 useBloomFilter = 0; /* True to also add a Bloom filter */ Expr *pPartial = 0; /* Partial Index Expression */ int iContinue = 0; /* Jump here to skip excluded rows */ SrcList *pTabList; /* The complete FROM clause */ SrcItem *pSrc; /* The FROM clause term to get the next index */ int addrCounter = 0; /* Address where integer counter is initialized */ int regBase; /* Array of registers where record is assembled */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExp = 0; /* Address of OP_Explain */ #endif /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTabList = pWC->pWInfo->pTabList; pSrc = &pTabList->a[pLevel->iFrom]; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; idxCols = 0; for(pTerm=pWC->a; pTermpExpr; /* Make the automatic index a partial index if there are terms in the ** WHERE clause (or the ON clause of a LEFT join) that constrain which ** rows of the target table (pSrc) that can be used. */ if( (pTerm->wtFlags & TERM_VIRTUAL)==0 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, pLevel->iFrom) ){ pPartial = sqlite3ExprAnd(pParse, pPartial, sqlite3ExprDup(pParse->db, pExpr, 0)); } if( termCanDriveIndex(pTerm, pSrc, notReady) ){ int iCol; Bitmask cMask; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); iCol = pTerm->u.x.leftColumn; cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS ); testcase( iCol==BMS-1 ); if( !sentWarning ){ sqlite3_log(SQLITE_WARNING_AUTOINDEX, "automatic index on %s(%s)", pTable->zName, pTable->aCol[iCol].zCnName); sentWarning = 1; } if( (idxCols & cMask)==0 ){ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ goto end_auto_index_create; } pLoop->aLTerm[nKeyCol++] = pTerm; idxCols |= cMask; } } } assert( nKeyCol>0 || pParse->db->mallocFailed ); pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED | WHERE_AUTO_INDEX; /* Count the number of additional columns needed to create a ** covering index. A "covering index" is an index that contains all ** columns that are needed by the query. With a covering index, the ** original table never needs to be accessed. Automatic indices must ** be a covering index because the index will not be updated if the ** original table changes and the index and table cannot both be used ** if they go out of sync. */ if( IsView(pTable) ){ extraCols = ALLBITS; }else{ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); } mxBitCol = MIN(BMS-1,pTable->nCol); testcase( pTable->nCol==BMS-1 ); testcase( pTable->nCol==BMS-2 ); for(i=0; icolUsed & MASKBIT(BMS-1) ){ nKeyCol += pTable->nCol - BMS + 1; } /* Construct the Index object to describe this index */ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); if( pIdx==0 ) goto end_auto_index_create; pLoop->u.btree.pIndex = pIdx; pIdx->zName = "auto-index"; pIdx->pTable = pTable; n = 0; idxCols = 0; for(pTerm=pWC->a; pTermeOperator & (WO_OR|WO_AND))==0 ); iCol = pTerm->u.x.leftColumn; cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS-1 ); testcase( iCol==BMS ); if( (idxCols & cMask)==0 ){ Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.x.leftColumn; pColl = sqlite3ExprCompareCollSeq(pParse, pX); assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; n++; if( ALWAYS(pX->pLeft!=0) && sqlite3ExprAffinity(pX->pLeft)!=SQLITE_AFF_TEXT ){ /* TUNING: only use a Bloom filter on an automatic index ** if one or more key columns has the ability to hold numeric ** values, since strings all have the same hash in the Bloom ** filter implementation and hence a Bloom filter on a text column ** is not usually helpful. */ useBloomFilter = 1; } } } } assert( (u32)n==pLoop->u.btree.nEq ); /* Add additional columns needed to make the automatic index into ** a covering index */ for(i=0; iaiColumn[n] = i; pIdx->azColl[n] = sqlite3StrBINARY; n++; } } if( pSrc->colUsed & MASKBIT(BMS-1) ){ for(i=BMS-1; inCol; i++){ pIdx->aiColumn[n] = i; pIdx->azColl[n] = sqlite3StrBINARY; n++; } } assert( n==nKeyCol ); pIdx->aiColumn[n] = XN_ROWID; pIdx->azColl[n] = sqlite3StrBINARY; /* Create the automatic index */ explainAutomaticIndex(pParse, pIdx, pPartial!=0, &addrExp); assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){ sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel); pLevel->regFilter = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); } /* Fill the automatic index with content */ assert( pSrc == &pWC->pWInfo->pTabList->a[pLevel->iFrom] ); if( pSrc->fg.viaCoroutine ){ int regYield = pSrc->regReturn; addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pSrc->addrFillSub); addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); VdbeCoverage(v); VdbeComment((v, "next row of %s", pSrc->pTab->zName)); }else{ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); } if( pPartial ){ iContinue = sqlite3VdbeMakeLabel(pParse); sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); pLoop->wsFlags |= WHERE_PARTIALIDX; } regRecord = sqlite3GetTempReg(pParse); regBase = sqlite3GenerateIndexKey( pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 ); if( pLevel->regFilter ){ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, regBase, pLoop->u.btree.nEq); } sqlite3VdbeScanStatusCounters(v, addrExp, addrExp, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); if( pSrc->fg.viaCoroutine ){ sqlite3VdbeChangeP2(v, addrCounter, regBase+n); testcase( pParse->db->mallocFailed ); assert( pLevel->iIdxCur>0 ); translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, pSrc->regResult, pLevel->iIdxCur); sqlite3VdbeGoto(v, addrTop); pSrc->fg.viaCoroutine = 0; }else{ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); } sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); sqlite3VdbeScanStatusRange(v, addrExp, addrExp, -1); end_auto_index_create: sqlite3ExprDelete(pParse->db, pPartial); } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ /* ** Generate bytecode that will initialize a Bloom filter that is appropriate ** for pLevel. ** ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER ** flag set, initialize a Bloomfilter for them as well. Except don't do ** this recursive initialization if the SQLITE_BloomPulldown optimization has ** been turned off. ** ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared ** from the loop, but the regFilter value is set to a register that implements ** the Bloom filter. When regFilter is positive, the ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter ** and skip the subsequence B-Tree seek if the Bloom filter indicates that ** no matching rows exist. ** ** This routine may only be called if it has previously been determined that ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit ** is set. */ static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( WhereInfo *pWInfo, /* The WHERE clause */ int iLevel, /* Index in pWInfo->a[] that is pLevel */ WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ Bitmask notReady /* Loops that are not ready */ ){ int addrOnce; /* Address of opening OP_Once */ int addrTop; /* Address of OP_Rewind */ int addrCont; /* Jump here to skip a row */ const WhereTerm *pTerm; /* For looping over WHERE clause terms */ const WhereTerm *pWCEnd; /* Last WHERE clause term */ Parse *pParse = pWInfo->pParse; /* Parsing context */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ int iCur; /* Cursor for table getting the filter */ IndexedExpr *saved_pIdxEpr; /* saved copy of Parse.pIdxEpr */ IndexedExpr *saved_pIdxPartExpr; /* saved copy of Parse.pIdxPartExpr */ saved_pIdxEpr = pParse->pIdxEpr; saved_pIdxPartExpr = pParse->pIdxPartExpr; pParse->pIdxEpr = 0; pParse->pIdxPartExpr = 0; assert( pLoop!=0 ); assert( v!=0 ); assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ); addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); do{ const SrcList *pTabList; const SrcItem *pItem; const Table *pTab; u64 sz; int iSrc; sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); addrCont = sqlite3VdbeMakeLabel(pParse); iCur = pLevel->iTabCur; pLevel->regFilter = ++pParse->nMem; /* The Bloom filter is a Blob held in a register. Initialize it ** to zero-filled blob of at least 80K bits, but maybe more if the ** estimated size of the table is larger. We could actually ** measure the size of the table at run-time using OP_Count with ** P3==1 and use that value to initialize the blob. But that makes ** testing complicated. By basing the blob size on the value in the ** sqlite_stat1 table, testing is much easier. */ pTabList = pWInfo->pTabList; iSrc = pLevel->iFrom; pItem = &pTabList->a[iSrc]; assert( pItem!=0 ); pTab = pItem->pTab; assert( pTab!=0 ); sz = sqlite3LogEstToInt(pTab->nRowLogEst); if( sz<10000 ){ sz = 10000; }else if( sz>10000000 ){ sz = 10000000; } sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; for(pTerm=pWInfo->sWC.a; pTermpExpr; if( (pTerm->wtFlags & TERM_VIRTUAL)==0 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, iSrc) ){ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); } } if( pLoop->wsFlags & WHERE_IPK ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); sqlite3ReleaseTempReg(pParse, r1); }else{ Index *pIdx = pLoop->u.btree.pIndex; int n = pLoop->u.btree.nEq; int r1 = sqlite3GetTempRange(pParse, n); int jj; for(jj=0; jjpTable==pItem->pTab ); sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iCur, jj, r1+jj); } sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); sqlite3ReleaseTempRange(pParse, r1, n); } sqlite3VdbeResolveLabel(v, addrCont); sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrTop); pLoop->wsFlags &= ~WHERE_BLOOMFILTER; if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; while( ++iLevel < pWInfo->nLevel ){ const SrcItem *pTabItem; pLevel = &pWInfo->a[iLevel]; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; pLoop = pLevel->pWLoop; if( NEVER(pLoop==0) ) continue; if( pLoop->prereq & notReady ) continue; if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) ==WHERE_BLOOMFILTER ){ /* This is a candidate for bloom-filter pull-down (early evaluation). ** The test that WHERE_COLUMN_IN is omitted is important, as we are ** not able to do early evaluation of bloom filters that make use of ** the IN operator */ break; } } }while( iLevel < pWInfo->nLevel ); sqlite3VdbeJumpHere(v, addrOnce); pParse->pIdxEpr = saved_pIdxEpr; pParse->pIdxPartExpr = saved_pIdxPartExpr; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure ** by passing the pointer returned by this function to freeIndexInfo(). */ static sqlite3_index_info *allocateIndexInfo( WhereInfo *pWInfo, /* The WHERE clause */ WhereClause *pWC, /* The WHERE clause being analyzed */ Bitmask mUnusable, /* Ignore terms with these prereqs */ SrcItem *pSrc, /* The FROM clause term that is the vtab */ u16 *pmNoOmit /* Mask of terms not to omit */ ){ int i, j; int nTerm; Parse *pParse = pWInfo->pParse; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_orderby *pIdxOrderBy; struct sqlite3_index_constraint_usage *pUsage; struct HiddenIndexInfo *pHidden; WhereTerm *pTerm; int nOrderBy; sqlite3_index_info *pIdxInfo; u16 mNoOmit = 0; const Table *pTab; int eDistinct = 0; ExprList *pOrderBy = pWInfo->pOrderBy; assert( pSrc!=0 ); pTab = pSrc->pTab; assert( pTab!=0 ); assert( IsVirtual(pTab) ); /* Find all WHERE clause constraints referring to this virtual table. ** Mark each term with the TERM_OK flag. Set nTerm to the number of ** terms found. */ for(i=nTerm=0, pTerm=pWC->a; inTerm; i++, pTerm++){ pTerm->wtFlags &= ~TERM_OK; if( pTerm->leftCursor != pSrc->iCursor ) continue; if( pTerm->prereqRight & mUnusable ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ALL ); if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); assert( pTerm->u.x.leftColumn>=XN_ROWID ); assert( pTerm->u.x.leftColumnnCol ); if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) ){ continue; } nTerm++; pTerm->wtFlags |= TERM_OK; } /* If the ORDER BY clause contains only columns in the current ** virtual table then allocate space for the aOrderBy part of ** the sqlite3_index_info structure. */ nOrderBy = 0; if( pOrderBy ){ int n = pOrderBy->nExpr; for(i=0; ia[i].pExpr; Expr *pE2; /* Skip over constant terms in the ORDER BY clause */ if( sqlite3ExprIsConstant(pExpr) ){ continue; } /* Virtual tables are unable to deal with NULLS FIRST */ if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; /* First case - a direct column references without a COLLATE operator */ if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumnnCol ); continue; } /* 2nd case - a column reference with a COLLATE operator. Only match ** of the COLLATE operator matches the collation of the column. */ if( pExpr->op==TK_COLLATE && (pE2 = pExpr->pLeft)->op==TK_COLUMN && pE2->iTable==pSrc->iCursor ){ const char *zColl; /* The collating sequence name */ assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pE2->iColumn>=XN_ROWID && pE2->iColumnnCol ); pExpr->iColumn = pE2->iColumn; if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); if( zColl==0 ) zColl = sqlite3StrBINARY; if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; } /* No matches cause a break out of the loop */ break; } if( i==n ){ nOrderBy = n; if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){ eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ eDistinct = 1; } } } /* Allocate the sqlite3_index_info structure */ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) + sizeof(sqlite3_value*)*nTerm ); if( pIdxInfo==0 ){ sqlite3ErrorMsg(pParse, "out of memory"); return 0; } pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; pIdxInfo->aConstraint = pIdxCons; pIdxInfo->aOrderBy = pIdxOrderBy; pIdxInfo->aConstraintUsage = pUsage; pHidden->pWC = pWC; pHidden->pParse = pParse; pHidden->eDistinct = eDistinct; pHidden->mIn = 0; for(i=j=0, pTerm=pWC->a; inTerm; i++, pTerm++){ u16 op; if( (pTerm->wtFlags & TERM_OK)==0 ) continue; pIdxCons[j].iColumn = pTerm->u.x.leftColumn; pIdxCons[j].iTermOffset = i; op = pTerm->eOperator & WO_ALL; if( op==WO_IN ){ if( (pTerm->wtFlags & TERM_SLICE)==0 ){ pHidden->mIn |= SMASKBIT32(j); } op = WO_EQ; } if( op==WO_AUX ){ pIdxCons[j].op = pTerm->eMatchOp; }else if( op & (WO_ISNULL|WO_IS) ){ if( op==WO_ISNULL ){ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; }else{ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; } }else{ pIdxCons[j].op = (u8)op; /* The direct assignment in the previous line is possible only because ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The ** following asserts verify this fact. */ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); if( op & (WO_LT|WO_LE|WO_GT|WO_GE) && sqlite3ExprIsVector(pTerm->pExpr->pRight) ){ testcase( j!=i ); if( j<16 ) mNoOmit |= (1 << j); if( op==WO_LT ) pIdxCons[j].op = WO_LE; if( op==WO_GT ) pIdxCons[j].op = WO_GE; } } j++; } assert( j==nTerm ); pIdxInfo->nConstraint = j; for(i=j=0; ia[i].pExpr; if( sqlite3ExprIsConstant(pExpr) ) continue; assert( pExpr->op==TK_COLUMN || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN && pExpr->iColumn==pExpr->pLeft->iColumn) ); pIdxOrderBy[j].iColumn = pExpr->iColumn; pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; j++; } pIdxInfo->nOrderBy = j; *pmNoOmit = mNoOmit; return pIdxInfo; } /* ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() ** and possibly modified by xBestIndex methods. */ static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ HiddenIndexInfo *pHidden; int i; assert( pIdxInfo!=0 ); pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; assert( pHidden->pParse!=0 ); assert( pHidden->pParse->db==db ); for(i=0; inConstraint; i++){ sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ pHidden->aRhs[i] = 0; } sqlite3DbFree(db, pIdxInfo); } /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() ** method of the virtual table with the sqlite3_index_info object that ** comes in as the 3rd argument to this function. ** ** If an error occurs, pParse is populated with an error message and an ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that ** the current configuration of "unusable" flags in sqlite3_index_info can ** not result in a valid plan. ** ** Whether or not an error is returned, it is the responsibility of the ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates ** that this is required. */ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; int rc; whereTraceIndexInfoInputs(p); pParse->db->nSchemaLock++; rc = pVtab->pModule->xBestIndex(pVtab, p); pParse->db->nSchemaLock--; whereTraceIndexInfoOutputs(p); if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ if( rc==SQLITE_NOMEM ){ sqlite3OomFault(pParse->db); }else if( !pVtab->zErrMsg ){ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); }else{ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } if( pTab->u.vtab.p->bAllSchemas ){ sqlite3VtabUsesAllSchemas(pParse); } sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; return rc; } #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: ** ** aStat[0] Est. number of rows less than pRec ** aStat[1] Est. number of rows equal to pRec ** ** Return the index of the sample that is the smallest sample that ** is greater than or equal to pRec. Note that this index is not an index ** into the aSample[] array - it is an index into a virtual set of samples ** based on the contents of aSample[] and the number of fields in record ** pRec. */ static int whereKeyStats( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ UnpackedRecord *pRec, /* Vector of values to consider */ int roundUp, /* Round up if true. Round down if false */ tRowcnt *aStat /* OUT: stats written here */ ){ IndexSample *aSample = pIdx->aSample; int iCol; /* Index of required stats in anEq[] etc. */ int i; /* Index of first sample >= pRec */ int iSample; /* Smallest sample larger than or equal to pRec */ int iMin = 0; /* Smallest sample not yet tested */ int iTest; /* Next sample to test */ int res; /* Result of comparison operation */ int nField; /* Number of fields in pRec */ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ #ifndef SQLITE_DEBUG UNUSED_PARAMETER( pParse ); #endif assert( pRec!=0 ); assert( pIdx->nSample>0 ); assert( pRec->nField>0 ); /* Do a binary search to find the first sample greater than or equal ** to pRec. If pRec contains a single field, the set of samples to search ** is simply the aSample[] array. If the samples in aSample[] contain more ** than one fields, all fields following the first are ignored. ** ** If pRec contains N fields, where N is more than one, then as well as the ** samples in aSample[] (truncated to N fields), the search also has to ** consider prefixes of those samples. For example, if the set of samples ** in aSample is: ** ** aSample[0] = (a, 5) ** aSample[1] = (a, 10) ** aSample[2] = (b, 5) ** aSample[3] = (c, 100) ** aSample[4] = (c, 105) ** ** Then the search space should ideally be the samples above and the ** unique prefixes [a], [b] and [c]. But since that is hard to organize, ** the code actually searches this set: ** ** 0: (a) ** 1: (a, 5) ** 2: (a, 10) ** 3: (a, 10) ** 4: (b) ** 5: (b, 5) ** 6: (c) ** 7: (c, 100) ** 8: (c, 105) ** 9: (c, 105) ** ** For each sample in the aSample[] array, N samples are present in the ** effective sample array. In the above, samples 0 and 1 are based on ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. ** ** Often, sample i of each block of N effective samples has (i+1) fields. ** Except, each sample may be extended to ensure that it is greater than or ** equal to the previous sample in the array. For example, in the above, ** sample 2 is the first sample of a block of N samples, so at first it ** appears that it should be 1 field in size. However, that would make it ** smaller than sample 1, so the binary search would not work. As a result, ** it is extended to two fields. The duplicates that this creates do not ** cause any problems. */ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ nField = pIdx->nKeyCol; }else{ nField = pIdx->nColumn; } nField = MIN(pRec->nField, nField); iCol = 0; iSample = pIdx->nSample * nField; do{ int iSamp; /* Index in aSample[] of test sample */ int n; /* Number of fields in test sample */ iTest = (iMin+iSample)/2; iSamp = iTest / nField; if( iSamp>0 ){ /* The proposed effective sample is a prefix of sample aSample[iSamp]. ** Specifically, the shortest prefix of at least (1 + iTest%nField) ** fields that is greater than the previous effective sample. */ for(n=(iTest % nField) + 1; nnField = n; res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); if( res<0 ){ iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; iMin = iTest+1; }else if( res==0 && ndb->mallocFailed==0 ){ if( res==0 ){ /* If (res==0) is true, then pRec must be equal to sample i. */ assert( inSample ); assert( iCol==nField-1 ); pRec->nField = nField; assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) || pParse->db->mallocFailed ); }else{ /* Unless i==pIdx->nSample, indicating that pRec is larger than ** all samples in the aSample[] array, pRec must be smaller than the ** (iCol+1) field prefix of sample i. */ assert( i<=pIdx->nSample && i>=0 ); pRec->nField = iCol+1; assert( i==pIdx->nSample || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 || pParse->db->mallocFailed ); /* if i==0 and iCol==0, then record pRec is smaller than all samples ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must ** be greater than or equal to the (iCol) field prefix of sample i. ** If (i>0), then pRec must also be greater than sample (i-1). */ if( iCol>0 ){ pRec->nField = iCol; assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 || pParse->db->mallocFailed || CORRUPT_DB ); } if( i>0 ){ pRec->nField = nField; assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 || pParse->db->mallocFailed || CORRUPT_DB ); } } } #endif /* ifdef SQLITE_DEBUG */ if( res==0 ){ /* Record pRec is equal to sample i */ assert( iCol==nField-1 ); aStat[0] = aSample[i].anLt[iCol]; aStat[1] = aSample[i].anEq[iCol]; }else{ /* At this point, the (iCol+1) field prefix of aSample[i] is the first ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec ** is larger than all samples in the array. */ tRowcnt iUpper, iGap; if( i>=pIdx->nSample ){ iUpper = pIdx->nRowEst0; }else{ iUpper = aSample[i].anLt[iCol]; } if( iLower>=iUpper ){ iGap = 0; }else{ iGap = iUpper - iLower; } if( roundUp ){ iGap = (iGap*2)/3; }else{ iGap = iGap/3; } aStat[0] = iLower + iGap; aStat[1] = pIdx->aAvgEq[nField-1]; } /* Restore the pRec->nField value before returning. */ pRec->nField = nField; return i; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** If it is not NULL, pTerm is a term that provides an upper or lower ** bound on a range scan. Without considering pTerm, it is estimated ** that the scan will visit nNew rows. This function returns the number ** estimated to be visited after taking pTerm into account. ** ** If the user explicitly specified a likelihood() value for this term, ** then the return value is the likelihood multiplied by the number of ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term ** has a likelihood of 0.50, and any other term a likelihood of 0.25. */ static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ LogEst nRet = nNew; if( pTerm ){ if( pTerm->truthProb<=0 ){ nRet += pTerm->truthProb; }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ nRet -= 20; assert( 20==sqlite3LogEst(4) ); } } return nRet; } #ifdef SQLITE_ENABLE_STAT4 /* ** Return the affinity for a single column of an index. */ SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ assert( iCol>=0 && iColnColumn ); if( !pIdx->zColAff ){ if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; } assert( pIdx->zColAff[iCol]!=0 ); return pIdx->zColAff[iCol]; } #endif #ifdef SQLITE_ENABLE_STAT4 /* ** This function is called to estimate the number of rows visited by a ** range-scan on a skip-scan index. For example: ** ** CREATE INDEX i1 ON t1(a, b, c); ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; ** ** Value pLoop->nOut is currently set to the estimated number of rows ** visited for scanning (a=? AND b=?). This function reduces that estimate ** by some factor to account for the (c BETWEEN ? AND ?) expression based ** on the stat4 data for the index. this scan will be performed multiple ** times (once for each (a,b) combination that matches a=?) is dealt with ** by the caller. ** ** It does this by scanning through all stat4 samples, comparing values ** extracted from pLower and pUpper with the corresponding column in each ** sample. If L and U are the number of samples found to be less than or ** equal to the values extracted from pLower and pUpper respectively, and ** N is the total number of samples, the pLoop->nOut value is adjusted ** as follows: ** ** nOut = nOut * ( min(U - L, 1) / N ) ** ** If pLower is NULL, or a value cannot be extracted from the term, L is ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, ** U is set to N. ** ** Normally, this function sets *pbDone to 1 before returning. However, ** if no value can be extracted from either pLower or pUpper (and so the ** estimate of the number of rows delivered remains unchanged), *pbDone ** is left as is. ** ** If an error occurs, an SQLite error code is returned. Otherwise, ** SQLITE_OK. */ static int whereRangeSkipScanEst( Parse *pParse, /* Parsing & code generating context */ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ WhereLoop *pLoop, /* Update the .nOut value of this loop */ int *pbDone /* Set to true if at least one expr. value extracted */ ){ Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; sqlite3 *db = pParse->db; int nLower = -1; int nUpper = p->nSample+1; int rc = SQLITE_OK; u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); CollSeq *pColl; sqlite3_value *p1 = 0; /* Value extracted from pLower */ sqlite3_value *p2 = 0; /* Value extracted from pUpper */ sqlite3_value *pVal = 0; /* Value extracted from record */ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); if( pLower ){ rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); nLower = 0; } if( pUpper && rc==SQLITE_OK ){ rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); nUpper = p2 ? 0 : p->nSample; } if( p1 || p2 ){ int i; int nDiff; for(i=0; rc==SQLITE_OK && inSample; i++){ rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); if( rc==SQLITE_OK && p1 ){ int res = sqlite3MemCompare(p1, pVal, pColl); if( res>=0 ) nLower++; } if( rc==SQLITE_OK && p2 ){ int res = sqlite3MemCompare(p2, pVal, pColl); if( res>=0 ) nUpper++; } } nDiff = (nUpper - nLower); if( nDiff<=0 ) nDiff = 1; /* If there is both an upper and lower bound specified, and the ** comparisons indicate that they are close together, use the fallback ** method (assume that the scan visits 1/64 of the rows) for estimating ** the number of rows visited. Otherwise, estimate the number of rows ** using the method described in the header comment for this function. */ if( nDiff!=1 || pUpper==0 || pLower==0 ){ int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); pLoop->nOut -= nAdjust; *pbDone = 1; WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", nLower, nUpper, nAdjust*-1, pLoop->nOut)); } }else{ assert( *pbDone==0 ); } sqlite3ValueFree(p1); sqlite3ValueFree(p2); sqlite3ValueFree(pVal); return rc; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** |_____| |_____| ** | | ** pLower pUpper ** ** If either of the upper or lower bound is not present, then NULL is passed in ** place of the corresponding WhereTerm. ** ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index ** column subject to the range constraint. Or, equivalently, the number of ** equality constraints optimized by the proposed index scan. For example, ** assuming index p is on t1(a, b), and the SQL query is: ** ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... ** ** then nEq is set to 1 (as the range restricted column, b, is the second ** left-most column of the index). Or, if the query is: ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** ** then nEq is set to 0. ** ** When this function is called, *pnOut is set to the sqlite3LogEst() of the ** number of rows that the index scan is expected to visit without ** considering the range constraints. If nEq is 0, then *pnOut is the number of ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) ** to account for the range constraints pLower and pUpper. ** ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be ** used, a single range inequality reduces the search space by a factor of 4. ** and a pair of constraints (x>? AND x123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ ){ int rc = SQLITE_OK; int nOut = pLoop->nOut; LogEst nNew; #ifdef SQLITE_ENABLE_STAT4 Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; if( p->nSample>0 && ALWAYS(nEqnSampleCol) && OptimizationEnabled(pParse->db, SQLITE_Stat4) ){ if( nEq==pBuilder->nRecValid ){ UnpackedRecord *pRec = pBuilder->pRec; tRowcnt a[2]; int nBtm = pLoop->u.btree.nBtm; int nTop = pLoop->u.btree.nTop; /* Variable iLower will be set to the estimate of the number of rows in ** the index that are less than the lower bound of the range query. The ** lower bound being the concatenation of $P and $L, where $P is the ** key-prefix formed by the nEq values matched against the nEq left-most ** columns of the index, and $L is the value in pLower. ** ** Or, if pLower is NULL or $L cannot be extracted from it (because it ** is not a simple variable or literal value), the lower bound of the ** range is $P. Due to a quirk in the way whereKeyStats() works, even ** if $L is available, whereKeyStats() is called for both ($P) and ** ($P:$L) and the larger of the two returned values is used. ** ** Similarly, iUpper is to be set to the estimate of the number of rows ** less than the upper bound of the range query. Where the upper bound ** is either ($P) or ($P:$U). Again, even if $U is available, both values ** of iUpper are requested of whereKeyStats() and the smaller used. ** ** The number of rows between the two bounds is then just iUpper-iLower. */ tRowcnt iLower; /* Rows less than the lower bound */ tRowcnt iUpper; /* Rows less than the upper bound */ int iLwrIdx = -2; /* aSample[] for the lower bound */ int iUprIdx = -1; /* aSample[] for the upper bound */ if( pRec ){ testcase( pRec->nField!=pBuilder->nRecValid ); pRec->nField = pBuilder->nRecValid; } /* Determine iLower and iUpper using ($P) only. */ if( nEq==0 ){ iLower = 0; iUpper = p->nRowEst0; }else{ /* Note: this call could be optimized away - since the same values must ** have been requested when testing key $P in whereEqualScanEst(). */ whereKeyStats(pParse, p, pRec, 0, a); iLower = a[0]; iUpper = a[0] + a[1]; } assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); assert( p->aSortOrder!=0 ); if( p->aSortOrder[nEq] ){ /* The roles of pLower and pUpper are swapped for a DESC index */ SWAP(WhereTerm*, pLower, pUpper); SWAP(int, nBtm, nTop); } /* If possible, improve on the iLower estimate using ($P:$L). */ if( pLower ){ int n; /* Values extracted from pExpr */ Expr *pExpr = pLower->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); if( rc==SQLITE_OK && n ){ tRowcnt iNew; u16 mask = WO_GT|WO_LE; if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); if( iNew>iLower ) iLower = iNew; nOut--; pLower = 0; } } /* If possible, improve on the iUpper estimate using ($P:$U). */ if( pUpper ){ int n; /* Values extracted from pExpr */ Expr *pExpr = pUpper->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); if( rc==SQLITE_OK && n ){ tRowcnt iNew; u16 mask = WO_GT|WO_LE; if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); if( iNewpRec = pRec; if( rc==SQLITE_OK ){ if( iUpper>iLower ){ nNew = sqlite3LogEst(iUpper - iLower); /* TUNING: If both iUpper and iLower are derived from the same ** sample, then assume they are 4x more selective. This brings ** the estimated selectivity more in line with what it would be ** if estimated without the use of STAT4 tables. */ if( iLwrIdx==iUprIdx ){ nNew -= 20; } assert( 20==sqlite3LogEst(4) ); }else{ nNew = 10; assert( 10==sqlite3LogEst(2) ); } if( nNewwtFlags & TERM_VNULL)==0 || pParse->nErr>0 ); nNew = whereRangeAdjust(pLower, nOut); nNew = whereRangeAdjust(pUpper, nNew); /* TUNING: If there is both an upper and lower limit and neither limit ** has an application-defined likelihood(), assume the range is ** reduced by an additional 75%. This means that, by default, an open-ended ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to ** match 1/64 of the index. */ if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ nNew -= 20; } nOut -= (pLower!=0) + (pUpper!=0); if( nNew<10 ) nNew = 10; if( nNewnOut>nOut ){ WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n", pLoop->nOut, nOut)); } #endif pLoop->nOut = (LogEst)nOut; return rc; } #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the number of rows that will be returned based on ** an equality constraint x=VALUE and where that VALUE occurs in ** the histogram data. This only works when x is the left-most ** column of an index and sqlite_stat4 histogram data is available ** for that index. When pExpr==NULL that means the constraint is ** "x IS NULL" instead of "x=VALUE". ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereEqualScanEst( Parse *pParse, /* Parsing & code generating context */ WhereLoopBuilder *pBuilder, Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ tRowcnt *pnRow /* Write the revised row estimate here */ ){ Index *p = pBuilder->pNew->u.btree.pIndex; int nEq = pBuilder->pNew->u.btree.nEq; UnpackedRecord *pRec = pBuilder->pRec; int rc; /* Subfunction return code */ tRowcnt a[2]; /* Statistics */ int bOk; assert( nEq>=1 ); assert( nEq<=p->nColumn ); assert( p->aSample!=0 ); assert( p->nSample>0 ); assert( pBuilder->nRecValidnRecValid<(nEq-1) ){ return SQLITE_NOTFOUND; } /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() ** below would return the same value. */ if( nEq>=p->nColumn ){ *pnRow = 1; return SQLITE_OK; } rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); pBuilder->pRec = pRec; if( rc!=SQLITE_OK ) return rc; if( bOk==0 ) return SQLITE_NOTFOUND; pBuilder->nRecValid = nEq; whereKeyStats(pParse, p, pRec, 0, a); WHERETRACE(0x20,("equality scan regions %s(%d): %d\n", p->zName, nEq-1, (int)a[1])); *pnRow = a[1]; return rc; } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the number of rows that will be returned based on ** an IN constraint where the right-hand side of the IN operator ** is a list of values. Example: ** ** WHERE x IN (1,2,3,4) ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereInScanEst( Parse *pParse, /* Parsing & code generating context */ WhereLoopBuilder *pBuilder, ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ tRowcnt *pnRow /* Write the revised row estimate here */ ){ Index *p = pBuilder->pNew->u.btree.pIndex; i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); int nRecValid = pBuilder->nRecValid; int rc = SQLITE_OK; /* Subfunction return code */ tRowcnt nEst; /* Number of rows for a single term */ tRowcnt nRowEst = 0; /* New estimate of the number of rows */ int i; /* Loop counter */ assert( p->aSample!=0 ); for(i=0; rc==SQLITE_OK && inExpr; i++){ nEst = nRow0; rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); nRowEst += nEst; pBuilder->nRecValid = nRecValid; } if( rc==SQLITE_OK ){ if( nRowEst > (tRowcnt)nRow0 ) nRowEst = nRow0; *pnRow = nRowEst; WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef WHERETRACE_ENABLED /* ** Print the content of a WhereTerm object */ SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ if( pTerm==0 ){ sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); }else{ char zType[8]; char zLeft[50]; memcpy(zType, "....", 5); if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; if( pTerm->eOperator & WO_SINGLE ){ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", pTerm->leftCursor, pTerm->u.x.leftColumn); }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", pTerm->u.pOrInfo->indexable); }else{ sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); } sqlite3DebugPrintf( "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); /* The 0x10000 .wheretrace flag causes extra information to be ** shown about each Term */ if( sqlite3WhereTrace & 0x10000 ){ sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); } if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); } if( pTerm->iParent>=0 ){ sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); } sqlite3DebugPrintf("\n"); sqlite3TreeViewExpr(0, pTerm->pExpr, 0); } } #endif #ifdef WHERETRACE_ENABLED /* ** Show the complete content of a WhereClause */ SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC){ int i; for(i=0; inTerm; i++){ sqlite3WhereTermPrint(&pWC->a[i], i); } } #endif #ifdef WHERETRACE_ENABLED /* ** Print a WhereLoop object for debugging purposes ** ** Format example: ** ** .--- Position in WHERE clause rSetup, rRun, nOut ---. ** | | ** | .--- selfMask nTerm ------. | ** | | | | ** | | .-- prereq Idx wsFlags----. | | ** | | | Name | | | ** | | | __|__ nEq ---. ___|__ | __|__ ** | / \ / \ / \ | / \ / \ / \ ** 1.002.001 t2.t2xy 2 f 010241 N 2 cost 0,56,31 */ SQLITE_PRIVATE void sqlite3WhereLoopPrint(const WhereLoop *p, const WhereClause *pWC){ if( pWC ){ WhereInfo *pWInfo = pWC->pWInfo; int nb = 1+(pWInfo->pTabList->nSrc+3)/4; SrcItem *pItem = pWInfo->pTabList->a + p->iTab; Table *pTab = pItem->pTab; Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); sqlite3DebugPrintf(" %12s", pItem->zAlias ? pItem->zAlias : pTab->zName); }else{ sqlite3DebugPrintf("%c%2d.%03llx.%03llx %c%d", p->cId, p->iTab, p->maskSelf, p->prereq & 0xfff, p->cId, p->iTab); } if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ const char *zName; if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ int i = sqlite3Strlen30(zName) - 1; while( zName[i]!='_' ) i--; zName += i; } sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); }else{ sqlite3DebugPrintf("%20s",""); } }else{ char *z; if( p->u.vtab.idxStr ){ z = sqlite3_mprintf("(%d,\"%s\",%#x)", p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); }else{ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); } sqlite3DebugPrintf(" %-19s", z); sqlite3_free(z); } if( p->wsFlags & WHERE_SKIPSCAN ){ sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); }else{ sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); } sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); if( p->nLTerm && (sqlite3WhereTrace & 0x4000)!=0 ){ int i; for(i=0; inLTerm; i++){ sqlite3WhereTermPrint(p->aLTerm[i], i); } } } SQLITE_PRIVATE void sqlite3ShowWhereLoop(const WhereLoop *p){ if( p ) sqlite3WhereLoopPrint(p, 0); } SQLITE_PRIVATE void sqlite3ShowWhereLoopList(const WhereLoop *p){ while( p ){ sqlite3ShowWhereLoop(p); p = p->pNextLoop; } } #endif /* ** Convert bulk memory into a valid WhereLoop that can be passed ** to whereLoopClear harmlessly. */ static void whereLoopInit(WhereLoop *p){ p->aLTerm = p->aLTermSpace; p->nLTerm = 0; p->nLSlot = ArraySize(p->aLTermSpace); p->wsFlags = 0; } /* ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. */ static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ sqlite3_free(p->u.vtab.idxStr); p->u.vtab.needFree = 0; p->u.vtab.idxStr = 0; }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ sqlite3DbFree(db, p->u.btree.pIndex->zColAff); sqlite3DbFreeNN(db, p->u.btree.pIndex); p->u.btree.pIndex = 0; } } } /* ** Deallocate internal memory used by a WhereLoop object. Leave the ** object in an initialized state, as if it had been newly allocated. */ static void whereLoopClear(sqlite3 *db, WhereLoop *p){ if( p->aLTerm!=p->aLTermSpace ){ sqlite3DbFreeNN(db, p->aLTerm); p->aLTerm = p->aLTermSpace; p->nLSlot = ArraySize(p->aLTermSpace); } whereLoopClearUnion(db, p); p->nLTerm = 0; p->wsFlags = 0; } /* ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. */ static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ WhereTerm **paNew; if( p->nLSlot>=n ) return SQLITE_OK; n = (n+7)&~7; paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); if( paNew==0 ) return SQLITE_NOMEM_BKPT; memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); p->aLTerm = paNew; p->nLSlot = n; return SQLITE_OK; } /* ** Transfer content from the second pLoop into the first. */ static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ whereLoopClearUnion(db, pTo); if( pFrom->nLTerm > pTo->nLSlot && whereLoopResize(db, pTo, pFrom->nLTerm) ){ memset(pTo, 0, WHERE_LOOP_XFER_SZ); return SQLITE_NOMEM_BKPT; } memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ pFrom->u.vtab.needFree = 0; }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ pFrom->u.btree.pIndex = 0; } return SQLITE_OK; } /* ** Delete a WhereLoop object */ static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ assert( db!=0 ); whereLoopClear(db, p); sqlite3DbNNFreeNN(db, p); } /* ** Free a WhereInfo structure */ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ assert( pWInfo!=0 ); assert( db!=0 ); sqlite3WhereClauseClear(&pWInfo->sWC); while( pWInfo->pLoops ){ WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } while( pWInfo->pMemToFree ){ WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; sqlite3DbNNFreeNN(db, pWInfo->pMemToFree); pWInfo->pMemToFree = pNext; } sqlite3DbNNFreeNN(db, pWInfo); } /* ** Return TRUE if X is a proper subset of Y but is of equal or less cost. ** In other words, return true if all constraints of X are also part of Y ** and Y has additional constraints that might speed the search that X lacks ** but the cost of running X is not more than the cost of running Y. ** ** In other words, return true if the cost relationwship between X and Y ** is inverted and needs to be adjusted. ** ** Case 1: ** ** (1a) X and Y use the same index. ** (1b) X has fewer == terms than Y ** (1c) Neither X nor Y use skip-scan ** (1d) X does not have a a greater cost than Y ** ** Case 2: ** ** (2a) X has the same or lower cost, or returns the same or fewer rows, ** than Y. ** (2b) X uses fewer WHERE clause terms than Y ** (2c) Every WHERE clause term used by X is also used by Y ** (2d) X skips at least as many columns as Y ** (2e) If X is a covering index, than Y is too */ static int whereLoopCheaperProperSubset( const WhereLoop *pX, /* First WhereLoop to compare */ const WhereLoop *pY /* Compare against this WhereLoop */ ){ int i, j; if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; /* (1d) and (2a) */ assert( (pX->wsFlags & WHERE_VIRTUALTABLE)==0 ); assert( (pY->wsFlags & WHERE_VIRTUALTABLE)==0 ); if( pX->u.btree.nEq < pY->u.btree.nEq /* (1b) */ && pX->u.btree.pIndex==pY->u.btree.pIndex /* (1a) */ && pX->nSkip==0 && pY->nSkip==0 /* (1c) */ ){ return 1; /* Case 1 is true */ } if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ return 0; /* (2b) */ } if( pY->nSkip > pX->nSkip ) return 0; /* (2d) */ for(i=pX->nLTerm-1; i>=0; i--){ if( pX->aLTerm[i]==0 ) continue; for(j=pY->nLTerm-1; j>=0; j--){ if( pY->aLTerm[j]==pX->aLTerm[i] ) break; } if( j<0 ) return 0; /* (2c) */ } if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ return 0; /* (2e) */ } return 1; /* Case 2 is true */ } /* ** Try to adjust the cost and number of output rows of WhereLoop pTemplate ** upwards or downwards so that: ** ** (1) pTemplate costs less than any other WhereLoops that are a proper ** subset of pTemplate ** ** (2) pTemplate costs more than any other WhereLoops for which pTemplate ** is a proper subset. ** ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer ** WHERE clause terms than Y and that every WHERE clause term used by X is ** also used by Y. */ static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; for(; p; p=p->pNextLoop){ if( p->iTab!=pTemplate->iTab ) continue; if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; if( whereLoopCheaperProperSubset(p, pTemplate) ){ /* Adjust pTemplate cost downward so that it is cheaper than its ** subset p. */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, MIN(p->rRun, pTemplate->rRun), MIN(p->nOut - 1, pTemplate->nOut))); pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ /* Adjust pTemplate cost upward so that it is costlier than p since ** pTemplate is a proper subset of p */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, MAX(p->rRun, pTemplate->rRun), MAX(p->nOut + 1, pTemplate->nOut))); pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); } } } /* ** Search the list of WhereLoops in *ppPrev looking for one that can be ** replaced by pTemplate. ** ** Return NULL if pTemplate does not belong on the WhereLoop list. ** In other words if pTemplate ought to be dropped from further consideration. ** ** If pX is a WhereLoop that pTemplate can replace, then return the ** link that points to pX. ** ** If pTemplate cannot replace any existing element of the list but needs ** to be added to the list as a new entry, then return a pointer to the ** tail of the list. */ static WhereLoop **whereLoopFindLesser( WhereLoop **ppPrev, const WhereLoop *pTemplate ){ WhereLoop *p; for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ /* If either the iTab or iSortIdx values for two WhereLoop are different ** then those WhereLoops need to be considered separately. Neither is ** a candidate to replace the other. */ continue; } /* In the current implementation, the rSetup value is either zero ** or the cost of building an automatic index (NlogN) and the NlogN ** is the same for compatible WhereLoops. */ assert( p->rSetup==0 || pTemplate->rSetup==0 || p->rSetup==pTemplate->rSetup ); /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); /* Any loop using an application-defined index (or PRIMARY KEY or ** UNIQUE constraint) with one or more == constraints is better ** than an automatic index. Unless it is a skip-scan. */ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && (pTemplate->nSkip)==0 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 && (p->prereq & pTemplate->prereq)==pTemplate->prereq ){ break; } /* If existing WhereLoop p is better than pTemplate, pTemplate can be ** discarded. WhereLoop p is better if: ** (1) p has no more dependencies than pTemplate, and ** (2) p has an equal or lower cost than pTemplate */ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ && p->rSetup<=pTemplate->rSetup /* (2a) */ && p->rRun<=pTemplate->rRun /* (2b) */ && p->nOut<=pTemplate->nOut /* (2c) */ ){ return 0; /* Discard pTemplate */ } /* If pTemplate is always better than p, then cause p to be overwritten ** with pTemplate. pTemplate is better than p if: ** (1) pTemplate has no more dependencies than p, and ** (2) pTemplate has an equal or lower cost than p. */ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ && p->rRun>=pTemplate->rRun /* (2a) */ && p->nOut>=pTemplate->nOut /* (2b) */ ){ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ break; /* Cause p to be overwritten by pTemplate */ } } return ppPrev; } /* ** Insert or replace a WhereLoop entry using the template supplied. ** ** An existing WhereLoop entry might be overwritten if the new template ** is better and has fewer dependencies. Or the template will be ignored ** and no insert will occur if an existing WhereLoop is faster and has ** fewer dependencies than the template. Otherwise a new WhereLoop is ** added based on the template. ** ** If pBuilder->pOrSet is not NULL then we care about only the ** prerequisites and rRun and nOut costs of the N best loops. That ** information is gathered in the pBuilder->pOrSet object. This special ** processing mode is used only for OR clause processing. ** ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we ** still might overwrite similar loops with the new template if the ** new template is better. Loops may be overwritten if the following ** conditions are met: ** ** (1) They have the same iTab. ** (2) They have the same iSortIdx. ** (3) The template has same or fewer dependencies than the current loop ** (4) The template has the same or lower cost than the current loop */ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ WhereLoop **ppPrev, *p; WhereInfo *pWInfo = pBuilder->pWInfo; sqlite3 *db = pWInfo->pParse->db; int rc; /* Stop the search once we hit the query planner search limit */ if( pBuilder->iPlanLimit==0 ){ WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; return SQLITE_DONE; } pBuilder->iPlanLimit--; whereLoopAdjustCost(pWInfo->pLoops, pTemplate); /* If pBuilder->pOrSet is defined, then only keep track of the costs ** and prereqs. */ if( pBuilder->pOrSet!=0 ){ if( pTemplate->nLTerm ){ #if WHERETRACE_ENABLED u16 n = pBuilder->pOrSet->n; int x = #endif whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, pTemplate->nOut); #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); } #endif } return SQLITE_OK; } /* Look for an existing WhereLoop to replace with pTemplate */ ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); if( ppPrev==0 ){ /* There already exists a WhereLoop on the list that is better ** than pTemplate, so just ignore pTemplate */ #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf(" skip: "); sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); } #endif return SQLITE_OK; }else{ p = *ppPrev; } /* If we reach this point it means that either p[] should be overwritten ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new ** WhereLoop and insert it. */ #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ if( p!=0 ){ sqlite3DebugPrintf("replace: "); sqlite3WhereLoopPrint(p, pBuilder->pWC); sqlite3DebugPrintf(" with: "); }else{ sqlite3DebugPrintf(" add: "); } sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); } #endif if( p==0 ){ /* Allocate a new WhereLoop to add to the end of the list */ *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); if( p==0 ) return SQLITE_NOMEM_BKPT; whereLoopInit(p); p->pNextLoop = 0; }else{ /* We will be overwriting WhereLoop p[]. But before we do, first ** go through the rest of the list and delete any other entries besides ** p[] that are also supplanted by pTemplate */ WhereLoop **ppTail = &p->pNextLoop; WhereLoop *pToDel; while( *ppTail ){ ppTail = whereLoopFindLesser(ppTail, pTemplate); if( ppTail==0 ) break; pToDel = *ppTail; if( pToDel==0 ) break; *ppTail = pToDel->pNextLoop; #if WHERETRACE_ENABLED /* 0x8 */ if( sqlite3WhereTrace & 0x8 ){ sqlite3DebugPrintf(" delete: "); sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); } #endif whereLoopDelete(db, pToDel); } } rc = whereLoopXfer(db, p, pTemplate); if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ Index *pIndex = p->u.btree.pIndex; if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ p->u.btree.pIndex = 0; } } return rc; } /* ** Adjust the WhereLoop.nOut value downward to account for terms of the ** WHERE clause that reference the loop but which are not used by an ** index. * ** For every WHERE clause term that is not used by the index ** and which has a truth probability assigned by one of the likelihood(), ** likely(), or unlikely() SQL functions, reduce the estimated number ** of output rows by the probability specified. ** ** TUNING: For every WHERE clause term that is not used by the index ** and which does not have an assigned truth probability, heuristics ** described below are used to try to estimate the truth probability. ** TODO --> Perhaps this is something that could be improved by better ** table statistics. ** ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% ** value corresponds to -1 in LogEst notation, so this means decrement ** the WhereLoop.nOut field for every such WHERE clause term. ** ** Heuristic 2: If there exists one or more WHERE clause terms of the ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the ** final output row estimate is no greater than 1/4 of the total number ** of rows in the table. In other words, assume that x==EXPR will filter ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the ** "x" column is boolean or else -1 or 0 or 1 is a common default value ** on the "x" column and so in that case only cap the output row estimate ** at 1/2 instead of 1/4. */ static void whereLoopOutputAdjust( WhereClause *pWC, /* The WHERE clause */ WhereLoop *pLoop, /* The loop to adjust downward */ LogEst nRow /* Number of rows in the entire table */ ){ WhereTerm *pTerm, *pX; Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); int i, j; LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ assert( pTerm!=0 ); if( (pTerm->prereqAll & notAllowed)!=0 ) continue; if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; for(j=pLoop->nLTerm-1; j>=0; j--){ pX = pLoop->aLTerm[j]; if( pX==0 ) continue; if( pX==pTerm ) break; if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; } if( j<0 ){ sqlite3ProgressCheck(pWC->pWInfo->pParse); if( pLoop->maskSelf==pTerm->prereqAll ){ /* If there are extra terms in the WHERE clause not used by an index ** that depend only on the table being scanned, and that will tend to ** cause many rows to be omitted, then mark that table as ** "self-culling". ** ** 2022-03-24: Self-culling only applies if either the extra terms ** are straight comparison operators that are non-true with NULL ** operand, or if the loop is not an OUTER JOIN. */ if( (pTerm->eOperator & 0x3f)!=0 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype & (JT_LEFT|JT_LTORJ))==0 ){ pLoop->wsFlags |= WHERE_SELFCULL; } } if( pTerm->truthProb<=0 ){ /* If a truth probability is specified using the likelihood() hints, ** then use the probability provided by the application. */ pLoop->nOut += pTerm->truthProb; }else{ /* In the absence of explicit truth probabilities, use heuristics to ** guess a reasonable truth probability. */ pLoop->nOut--; if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ ){ Expr *pRight = pTerm->pExpr->pRight; int k = 0; testcase( pTerm->pExpr->op==TK_IS ); if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ k = 10; }else{ k = 20; } if( iReducewtFlags |= TERM_HEURTRUTH; iReduce = k; } } } } } if( pLoop->nOut > nRow-iReduce ){ pLoop->nOut = nRow - iReduce; } } /* ** Term pTerm is a vector range comparison operation. The first comparison ** in the vector can be optimized using column nEq of the index. This ** function returns the total number of vector elements that can be used ** as part of the range comparison. ** ** For example, if the query is: ** ** WHERE a = ? AND (b, c, d) > (?, ?, ?) ** ** and the index: ** ** CREATE INDEX ... ON (a, b, c, d, e) ** ** then this function would be invoked with nEq=1. The value returned in ** this case is 3. */ static int whereRangeVectorLen( Parse *pParse, /* Parsing context */ int iCur, /* Cursor open on pIdx */ Index *pIdx, /* The index to be used for a inequality constraint */ int nEq, /* Number of prior equality constraints on same index */ WhereTerm *pTerm /* The vector inequality constraint */ ){ int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); int i; nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); for(i=1; ipExpr->pLeft) ); pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; pRhs = pTerm->pExpr->pRight; if( ExprUseXSelect(pRhs) ){ pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; }else{ pRhs = pRhs->x.pList->a[i].pExpr; } /* Check that the LHS of the comparison is a column reference to ** the right column of the right source table. And that the sort ** order of the index column is the same as the sort order of the ** leftmost index column. */ if( pLhs->op!=TK_COLUMN || pLhs->iTable!=iCur || pLhs->iColumn!=pIdx->aiColumn[i+nEq] || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] ){ break; } testcase( pLhs->iColumn==XN_ROWID ); aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); if( aff!=idxaff ) break; pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); if( pColl==0 ) break; if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; } return i; } /* ** Adjust the cost C by the costMult factor T. This only occurs if ** compiled with -DSQLITE_ENABLE_COSTMULT */ #ifdef SQLITE_ENABLE_COSTMULT # define ApplyCostMultiplier(C,T) C += T #else # define ApplyCostMultiplier(C,T) #endif /* ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the ** index pIndex. Try to match one more. ** ** When this function is called, pBuilder->pNew->nOut contains the ** number of rows expected to be visited by filtering using the nEq ** terms only. If it is modified, this value is restored before this ** function returns. ** ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is ** a fake index used for the INTEGER PRIMARY KEY. */ static int whereLoopAddBtreeIndex( WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ SrcItem *pSrc, /* FROM clause term being analyzed */ Index *pProbe, /* An index on pSrc */ LogEst nInMul /* log(Number of iterations due to IN) */ ){ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyze context */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection malloc context */ WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ u16 saved_nSkip; /* Original value of pNew->nSkip */ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ LogEst saved_nOut; /* Original value of pNew->nOut */ int rc = SQLITE_OK; /* Return code */ LogEst rSize; /* Number of rows in the table */ LogEst rLogSize; /* Logarithm of table size */ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ pNew = pBuilder->pNew; assert( db->mallocFailed==0 || pParse->nErr>0 ); if( pParse->nErr ){ return pParse->rc; } WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); if( pNew->wsFlags & WHERE_BTM_LIMIT ){ opMask = WO_LT|WO_LE; }else{ assert( pNew->u.btree.nBtm==0 ); opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; } if( pProbe->bUnordered || pProbe->bLowQual ){ if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); if( pProbe->bLowQual ) opMask &= ~(WO_EQ|WO_IN|WO_IS); } assert( pNew->u.btree.nEqnColumn ); assert( pNew->u.btree.nEqnKeyCol || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); saved_nEq = pNew->u.btree.nEq; saved_nBtm = pNew->u.btree.nBtm; saved_nTop = pNew->u.btree.nTop; saved_nSkip = pNew->nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, opMask, pProbe); pNew->rSetup = 0; rSize = pProbe->aiRowLogEst[0]; rLogSize = estLog(rSize); for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ LogEst rCostIdx; LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ int nIn = 0; #ifdef SQLITE_ENABLE_STAT4 int nRecValid = pBuilder->nRecValid; #endif if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) && indexColumnNotNull(pProbe, saved_nEq) ){ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ } if( pTerm->prereqRight & pNew->maskSelf ) continue; /* Do not allow the upper bound of a LIKE optimization range constraint ** to mix with a lower range bound from some other source */ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) ){ continue; } if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; }else{ pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; } pNew->wsFlags = saved_wsFlags; pNew->u.btree.nEq = saved_nEq; pNew->u.btree.nBtm = saved_nBtm; pNew->u.btree.nTop = saved_nTop; pNew->nLTerm = saved_nLTerm; if( pNew->nLTerm>=pNew->nLSlot && whereLoopResize(db, pNew, pNew->nLTerm+1) ){ break; /* OOM while trying to enlarge the pNew->aLTerm array */ } pNew->aLTerm[pNew->nLTerm++] = pTerm; pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; assert( nInMul==0 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 ); if( eOp & WO_IN ){ Expr *pExpr = pTerm->pExpr; if( ExprUseXSelect(pExpr) ){ /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ int i; nIn = 46; assert( 46==sqlite3LogEst(25) ); /* The expression may actually be of the form (x, y) IN (SELECT...). ** In this case there is a separate term for each of (x) and (y). ** However, the nIn multiplier should only be applied once, not once ** for each such term. The following loop checks that pTerm is the ** first such term in use, and sets nIn back to 0 if it is not. */ for(i=0; inLTerm-1; i++){ if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; } }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ /* "x IN (value, value, ...)" */ nIn = sqlite3LogEst(pExpr->x.pList->nExpr); } if( pProbe->hasStat1 && rLogSize>=10 ){ LogEst M, logK, x; /* Let: ** N = the total number of rows in the table ** K = the number of entries on the RHS of the IN operator ** M = the number of rows in the table that match terms to the ** to the left in the same index. If the IN operator is on ** the left-most index column, M==N. ** ** Given the definitions above, it is better to omit the IN operator ** from the index lookup and instead do a scan of the M elements, ** testing each scanned row against the IN operator separately, if: ** ** M*log(K) < K*log(N) ** ** Our estimates for M, K, and N might be inaccurate, so we build in ** a safety margin of 2 (LogEst: 10) that favors using the IN operator ** with the index, as using an index has better worst-case behavior. ** If we do not have real sqlite_stat1 data, always prefer to use ** the index. Do not bother with this optimization on very small ** tables (less than 2 rows) as it is pointless in that case. */ M = pProbe->aiRowLogEst[saved_nEq]; logK = estLog(nIn); /* TUNING v----- 10 to bias toward indexed IN */ x = M + logK + 10 - (nIn + rLogSize); if( x>=0 ){ WHERETRACE(0x40, ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " "prefers indexed lookup\n", saved_nEq, M, logK, nIn, rLogSize, x)); }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ WHERETRACE(0x40, ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" " nInMul=%d) prefers skip-scan\n", saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); pNew->wsFlags |= WHERE_IN_SEEKSCAN; }else{ WHERETRACE(0x40, ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" " nInMul=%d) prefers normal scan\n", saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); continue; } } pNew->wsFlags |= WHERE_COLUMN_IN; }else if( eOp & (WO_EQ|WO_IS) ){ int iCol = pProbe->aiColumn[saved_nEq]; pNew->wsFlags |= WHERE_COLUMN_EQ; assert( saved_nEq==pNew->u.btree.nEq ); if( iCol==XN_ROWID || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) ){ if( iCol==XN_ROWID || pProbe->uniqNotNull || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) ){ pNew->wsFlags |= WHERE_ONEROW; }else{ pNew->wsFlags |= WHERE_UNQ_WANTED; } } if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; }else if( eOp & WO_ISNULL ){ pNew->wsFlags |= WHERE_COLUMN_NULL; }else{ int nVecLen = whereRangeVectorLen( pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm ); if( eOp & (WO_GT|WO_GE) ){ testcase( eOp & WO_GT ); testcase( eOp & WO_GE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; pNew->u.btree.nBtm = nVecLen; pBtm = pTerm; pTop = 0; if( pTerm->wtFlags & TERM_LIKEOPT ){ /* Range constraints that come from the LIKE optimization are ** always used in pairs. */ pTop = &pTerm[1]; assert( (pTop-(pTerm->pWC->a))pWC->nTerm ); assert( pTop->wtFlags & TERM_LIKEOPT ); assert( pTop->eOperator==WO_LT ); if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ pNew->aLTerm[pNew->nLTerm++] = pTop; pNew->wsFlags |= WHERE_TOP_LIMIT; pNew->u.btree.nTop = 1; } }else{ assert( eOp & (WO_LT|WO_LE) ); testcase( eOp & WO_LT ); testcase( eOp & WO_LE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; pNew->u.btree.nTop = nVecLen; pTop = pTerm; pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? pNew->aLTerm[pNew->nLTerm-2] : 0; } } /* At this point pNew->nOut is set to the number of rows expected to ** be visited by the index scan before considering term pTerm, or the ** values of nIn and nInMul. In other words, assuming that all ** "x IN(...)" terms are replaced with "x = ?". This block updates ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ assert( pNew->nOut==saved_nOut ); if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ /* Adjust nOut using stat4 data. Or, if there is no stat4 ** data, using some other estimate. */ whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); }else{ int nEq = ++pNew->u.btree.nEq; assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); assert( pNew->nOut==saved_nOut ); if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ assert( (eOp & WO_IN) || nIn==0 ); testcase( eOp & WO_IN ); pNew->nOut += pTerm->truthProb; pNew->nOut -= nIn; }else{ #ifdef SQLITE_ENABLE_STAT4 tRowcnt nOut = 0; if( nInMul==0 && pProbe->nSample && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) && OptimizationEnabled(db, SQLITE_Stat4) ){ Expr *pExpr = pTerm->pExpr; if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ testcase( eOp & WO_EQ ); testcase( eOp & WO_IS ); testcase( eOp & WO_ISNULL ); rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); }else{ rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); } if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ if( nOut ){ pNew->nOut = sqlite3LogEst(nOut); if( nEq==1 /* TUNING: Mark terms as "low selectivity" if they seem likely ** to be true for half or more of the rows in the table. ** See tag-202002240-1 */ && pNew->nOut+10 > pProbe->aiRowLogEst[0] ){ #if WHERETRACE_ENABLED /* 0x01 */ if( sqlite3WhereTrace & 0x20 ){ sqlite3DebugPrintf( "STAT4 determines term has low selectivity:\n"); sqlite3WhereTermPrint(pTerm, 999); } #endif pTerm->wtFlags |= TERM_HIGHTRUTH; if( pTerm->wtFlags & TERM_HEURTRUTH ){ /* If the term has previously been used with an assumption of ** higher selectivity, then set the flag to rerun the ** loop computations. */ pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; } } if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; pNew->nOut -= nIn; } } if( nOut==0 ) #endif { pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); if( eOp & WO_ISNULL ){ /* TUNING: If there is no likelihood() value, assume that a ** "col IS NULL" expression matches twice as many rows ** as (col=?). */ pNew->nOut += 10; } } } } /* Set rCostIdx to the cost of visiting selected rows in index. Add ** it to pNew->rRun, which is currently set to the cost of the index ** seek only. Then, if this is a non-covering index, add the cost of ** visiting the rows in the main table. */ assert( pSrc->pTab->szTabRow>0 ); if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ /* The pProbe->szIdxRow is low for an IPK table since the interior ** pages are small. Thus szIdxRow gives a good estimate of seek cost. ** But the leaf pages are full-size, so pProbe->szIdxRow would badly ** under-estimate the scanning cost. */ rCostIdx = pNew->nOut + 16; }else{ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; } pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK|WHERE_EXPRIDX))==0 ){ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); } ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); nOutUnadjusted = pNew->nOut; pNew->rRun += nInMul + nIn; pNew->nOut += nInMul + nIn; whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ pNew->nOut = saved_nOut; }else{ pNew->nOut = nOutUnadjusted; } if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 && pNew->u.btree.nEqnColumn && (pNew->u.btree.nEqnKeyCol || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) ){ if( pNew->u.btree.nEq>3 ){ sqlite3ProgressCheck(pParse); } whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); } pNew->nOut = saved_nOut; #ifdef SQLITE_ENABLE_STAT4 pBuilder->nRecValid = nRecValid; #endif } pNew->prereq = saved_prereq; pNew->u.btree.nEq = saved_nEq; pNew->u.btree.nBtm = saved_nBtm; pNew->u.btree.nTop = saved_nTop; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; pNew->nOut = saved_nOut; pNew->nLTerm = saved_nLTerm; /* Consider using a skip-scan if there are no WHERE clause constraints ** available for the left-most terms of the index, and if the average ** number of repeats in the left-most terms is at least 18. ** ** The magic number 18 is selected on the basis that scanning 17 rows ** is almost always quicker than an index seek (even though if the index ** contains fewer than 2^17 rows we assume otherwise in other parts of ** the code). And, even if it is not, it should not be too much slower. ** On the other hand, the extra seeks could end up being significantly ** more expensive. */ assert( 42==sqlite3LogEst(18) ); if( saved_nEq==saved_nSkip && saved_nEq+1nKeyCol && saved_nEq==pNew->nLTerm && pProbe->noSkipScan==0 && pProbe->hasStat1!=0 && OptimizationEnabled(db, SQLITE_SkipScan) && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK ){ LogEst nIter; pNew->u.btree.nEq++; pNew->nSkip++; pNew->aLTerm[pNew->nLTerm++] = 0; pNew->wsFlags |= WHERE_SKIPSCAN; nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; pNew->nOut -= nIter; /* TUNING: Because uncertainties in the estimates for skip-scan queries, ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ nIter += 5; whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); pNew->nOut = saved_nOut; pNew->u.btree.nEq = saved_nEq; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; } WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); return rc; } /* ** Return True if it is possible that pIndex might be useful in ** implementing the ORDER BY clause in pBuilder. ** ** Return False if pBuilder does not contain an ORDER BY clause or ** if there is no way for pIndex to be useful in implementing that ** ORDER BY clause. */ static int indexMightHelpWithOrderBy( WhereLoopBuilder *pBuilder, Index *pIndex, int iCursor ){ ExprList *pOB; ExprList *aColExpr; int ii, jj; if( pIndex->bUnordered ) return 0; if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; for(ii=0; iinExpr; ii++){ Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); if( NEVER(pExpr==0) ) continue; if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ if( pExpr->iColumn<0 ) return 1; for(jj=0; jjnKeyCol; jj++){ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; } }else if( (aColExpr = pIndex->aColExpr)!=0 ){ for(jj=0; jjnKeyCol; jj++){ if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ return 1; } } } } return 0; } /* Check to see if a partial index with pPartIndexWhere can be used ** in the current query. Return true if it can be and false if not. */ static int whereUsablePartialIndex( int iTab, /* The table for which we want an index */ u8 jointype, /* The JT_* flags on the join */ WhereClause *pWC, /* The WHERE clause of the query */ Expr *pWhere /* The WHERE clause from the partial index */ ){ int i; WhereTerm *pTerm; Parse *pParse; if( jointype & JT_LTORJ ) return 0; pParse = pWC->pWInfo->pParse; while( pWhere->op==TK_AND ){ if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0; pWhere = pWhere->pRight; } if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; for(i=0, pTerm=pWC->a; inTerm; i++, pTerm++){ Expr *pExpr; pExpr = pTerm->pExpr; if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON)) && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) && (pTerm->wtFlags & TERM_VNULL)==0 ){ return 1; } } return 0; } /* ** pIdx is an index containing expressions. Check it see if any of the ** expressions in the index match the pExpr expression. */ static int exprIsCoveredByIndex( const Expr *pExpr, const Index *pIdx, int iTabCur ){ int i; for(i=0; inColumn; i++){ if( pIdx->aiColumn[i]==XN_EXPR && sqlite3ExprCompare(0, pExpr, pIdx->aColExpr->a[i].pExpr, iTabCur)==0 ){ return 1; } } return 0; } /* ** Structure passed to the whereIsCoveringIndex Walker callback. */ typedef struct CoveringIndexCheck CoveringIndexCheck; struct CoveringIndexCheck { Index *pIdx; /* The index */ int iTabCur; /* Cursor number for the corresponding table */ u8 bExpr; /* Uses an indexed expression */ u8 bUnidx; /* Uses an unindexed column not within an indexed expr */ }; /* ** Information passed in is pWalk->u.pCovIdxCk. Call it pCk. ** ** If the Expr node references the table with cursor pCk->iTabCur, then ** make sure that column is covered by the index pCk->pIdx. We know that ** all columns less than 63 (really BMS-1) are covered, so we don't need ** to check them. But we do need to check any column at 63 or greater. ** ** If the index does not cover the column, then set pWalk->eCode to ** non-zero and return WRC_Abort to stop the search. ** ** If this node does not disprove that the index can be a covering index, ** then just return WRC_Continue, to continue the search. ** ** If pCk->pIdx contains indexed expressions and one of those expressions ** matches pExpr, then prune the search. */ static int whereIsCoveringIndexWalkCallback(Walker *pWalk, Expr *pExpr){ int i; /* Loop counter */ const Index *pIdx; /* The index of interest */ const i16 *aiColumn; /* Columns contained in the index */ u16 nColumn; /* Number of columns in the index */ CoveringIndexCheck *pCk; /* Info about this search */ pCk = pWalk->u.pCovIdxCk; pIdx = pCk->pIdx; if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN) ){ /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/ if( pExpr->iTable!=pCk->iTabCur ) return WRC_Continue; pIdx = pWalk->u.pCovIdxCk->pIdx; aiColumn = pIdx->aiColumn; nColumn = pIdx->nColumn; for(i=0; iiColumn ) return WRC_Continue; } pCk->bUnidx = 1; return WRC_Abort; }else if( pIdx->bHasExpr && exprIsCoveredByIndex(pExpr, pIdx, pWalk->u.pCovIdxCk->iTabCur) ){ pCk->bExpr = 1; return WRC_Prune; } return WRC_Continue; } /* ** pIdx is an index that covers all of the low-number columns used by ** pWInfo->pSelect (columns from 0 through 62) or an index that has ** expressions terms. Hence, we cannot determine whether or not it is ** a covering index by using the colUsed bitmasks. We have to do a search ** to see if the index is covering. This routine does that search. ** ** The return value is one of these: ** ** 0 The index is definitely not a covering index ** ** WHERE_IDX_ONLY The index is definitely a covering index ** ** WHERE_EXPRIDX The index is likely a covering index, but it is ** difficult to determine precisely because of the ** expressions that are indexed. Score it as a ** covering index, but still keep the main table open ** just in case we need it. ** ** This routine is an optimization. It is always safe to return zero. ** But returning one of the other two values when zero should have been ** returned can lead to incorrect bytecode and assertion faults. */ static SQLITE_NOINLINE u32 whereIsCoveringIndex( WhereInfo *pWInfo, /* The WHERE clause context */ Index *pIdx, /* Index that is being tested */ int iTabCur /* Cursor for the table being indexed */ ){ int i, rc; struct CoveringIndexCheck ck; Walker w; if( pWInfo->pSelect==0 ){ /* We don't have access to the full query, so we cannot check to see ** if pIdx is covering. Assume it is not. */ return 0; } if( pIdx->bHasExpr==0 ){ for(i=0; inColumn; i++){ if( pIdx->aiColumn[i]>=BMS-1 ) break; } if( i>=pIdx->nColumn ){ /* pIdx does not index any columns greater than 62, but we know from ** colMask that columns greater than 62 are used, so this is not a ** covering index */ return 0; } } ck.pIdx = pIdx; ck.iTabCur = iTabCur; ck.bExpr = 0; ck.bUnidx = 0; memset(&w, 0, sizeof(w)); w.xExprCallback = whereIsCoveringIndexWalkCallback; w.xSelectCallback = sqlite3SelectWalkNoop; w.u.pCovIdxCk = &ck; sqlite3WalkSelect(&w, pWInfo->pSelect); if( ck.bUnidx ){ rc = 0; }else if( ck.bExpr ){ rc = WHERE_EXPRIDX; }else{ rc = WHERE_IDX_ONLY; } return rc; } /* ** This is an sqlite3ParserAddCleanup() callback that is invoked to ** free the Parse->pIdxEpr list when the Parse object is destroyed. */ static void whereIndexedExprCleanup(sqlite3 *db, void *pObject){ IndexedExpr **pp = (IndexedExpr**)pObject; while( *pp!=0 ){ IndexedExpr *p = *pp; *pp = p->pIENext; sqlite3ExprDelete(db, p->pExpr); sqlite3DbFreeNN(db, p); } } /* ** This function is called for a partial index - one with a WHERE clause - in ** two scenarios. In both cases, it determines whether or not the WHERE ** clause on the index implies that a column of the table may be safely ** replaced by a constant expression. For example, in the following ** SELECT: ** ** CREATE INDEX i1 ON t1(b, c) WHERE a=; ** SELECT a, b, c FROM t1 WHERE a= AND b=?; ** ** The "a" in the select-list may be replaced by , iff: ** ** (a) is a constant expression, and ** (b) The (a=) comparison uses the BINARY collation sequence, and ** (c) Column "a" has an affinity other than NONE or BLOB. ** ** If argument pItem is NULL, then pMask must not be NULL. In this case this ** function is being called as part of determining whether or not pIdx ** is a covering index. This function clears any bits in (*pMask) ** corresponding to columns that may be replaced by constants as described ** above. ** ** Otherwise, if pItem is not NULL, then this function is being called ** as part of coding a loop that uses index pIdx. In this case, add entries ** to the Parse.pIdxPartExpr list for each column that can be replaced ** by a constant. */ static void wherePartIdxExpr( Parse *pParse, /* Parse context */ Index *pIdx, /* Partial index being processed */ Expr *pPart, /* WHERE clause being processed */ Bitmask *pMask, /* Mask to clear bits in */ int iIdxCur, /* Cursor number for index */ SrcItem *pItem /* The FROM clause entry for the table */ ){ assert( pItem==0 || (pItem->fg.jointype & JT_RIGHT)==0 ); assert( (pItem==0 || pMask==0) && (pMask!=0 || pItem!=0) ); if( pPart->op==TK_AND ){ wherePartIdxExpr(pParse, pIdx, pPart->pRight, pMask, iIdxCur, pItem); pPart = pPart->pLeft; } if( (pPart->op==TK_EQ || pPart->op==TK_IS) ){ Expr *pLeft = pPart->pLeft; Expr *pRight = pPart->pRight; u8 aff; if( pLeft->op!=TK_COLUMN ) return; if( !sqlite3ExprIsConstant(pRight) ) return; if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pParse, pPart)) ) return; if( pLeft->iColumn<0 ) return; aff = pIdx->pTable->aCol[pLeft->iColumn].affinity; if( aff>=SQLITE_AFF_TEXT ){ if( pItem ){ sqlite3 *db = pParse->db; IndexedExpr *p = (IndexedExpr*)sqlite3DbMallocRaw(db, sizeof(*p)); if( p ){ int bNullRow = (pItem->fg.jointype&(JT_LEFT|JT_LTORJ))!=0; p->pExpr = sqlite3ExprDup(db, pRight, 0); p->iDataCur = pItem->iCursor; p->iIdxCur = iIdxCur; p->iIdxCol = pLeft->iColumn; p->bMaybeNullRow = bNullRow; p->pIENext = pParse->pIdxPartExpr; p->aff = aff; pParse->pIdxPartExpr = p; if( p->pIENext==0 ){ void *pArg = (void*)&pParse->pIdxPartExpr; sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg); } } }else if( pLeft->iColumn<(BMS-1) ){ *pMask &= ~((Bitmask)1 << pLeft->iColumn); } } } } /* ** Add all WhereLoop objects for a single table of the join where the table ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be ** a b-tree table, not a virtual table. ** ** The costs (WhereLoop.rRun) of the b-tree loops added by this function ** are calculated as follows: ** ** For a full scan, assuming the table (or index) contains nRow rows: ** ** cost = nRow * 3.0 // full-table scan ** cost = nRow * K // scan of covering index ** cost = nRow * (K+3.0) // scan of non-covering index ** ** where K is a value between 1.1 and 3.0 set based on the relative ** estimated average size of the index and table records. ** ** For an index scan, where nVisit is the number of index rows visited ** by the scan, and nSeek is the number of seek operations required on ** the index b-tree: ** ** cost = nSeek * (log(nRow) + K * nVisit) // covering index ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index ** ** Normally, nSeek is 1. nSeek values greater than 1 come about if the ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. ** ** The estimated values (nRow, nVisit, nSeek) often contain a large amount ** of uncertainty. For this reason, scoring is designed to pick plans that ** "do the least harm" if the estimates are inaccurate. For example, a ** log(nRow) factor is omitted from a non-covering index scan in order to ** bias the scoring in favor of using an index, since the worst-case ** performance of using an index is far better than the worst-case performance ** of a full table scan. */ static int whereLoopAddBtree( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mPrereq /* Extra prerequisites for using this table */ ){ WhereInfo *pWInfo; /* WHERE analysis context */ Index *pProbe; /* An index we are evaluating */ Index sPk; /* A fake index object for the primary key */ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ SrcList *pTabList; /* The FROM clause */ SrcItem *pSrc; /* The FROM clause btree term to add */ WhereLoop *pNew; /* Template WhereLoop object */ int rc = SQLITE_OK; /* Return code */ int iSortIdx = 1; /* Index number */ int b; /* A boolean value */ LogEst rSize; /* number of rows in the table */ WhereClause *pWC; /* The parsed WHERE clause */ Table *pTab; /* Table being queried */ pNew = pBuilder->pNew; pWInfo = pBuilder->pWInfo; pTabList = pWInfo->pTabList; pSrc = pTabList->a + pNew->iTab; pTab = pSrc->pTab; pWC = pBuilder->pWC; assert( !IsVirtual(pSrc->pTab) ); if( pSrc->fg.isIndexedBy ){ assert( pSrc->fg.isCte==0 ); /* An INDEXED BY clause specifies a particular index to use */ pProbe = pSrc->u2.pIBIndex; }else if( !HasRowid(pTab) ){ pProbe = pTab->pIndex; }else{ /* There is no INDEXED BY clause. Create a fake Index object in local ** variable sPk to represent the rowid primary key index. Make this ** fake index the first in a chain of Index objects with all of the real ** indices to follow */ Index *pFirst; /* First of real indices on the table */ memset(&sPk, 0, sizeof(Index)); sPk.nKeyCol = 1; sPk.nColumn = 1; sPk.aiColumn = &aiColumnPk; sPk.aiRowLogEst = aiRowEstPk; sPk.onError = OE_Replace; sPk.pTable = pTab; sPk.szIdxRow = 3; /* TUNING: Interior rows of IPK table are very small */ sPk.idxType = SQLITE_IDXTYPE_IPK; aiRowEstPk[0] = pTab->nRowLogEst; aiRowEstPk[1] = 0; pFirst = pSrc->pTab->pIndex; if( pSrc->fg.notIndexed==0 ){ /* The real indices of the table are only considered if the ** NOT INDEXED qualifier is omitted from the FROM clause */ sPk.pNext = pFirst; } pProbe = &sPk; } rSize = pTab->nRowLogEst; #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* Automatic indexes */ if( !pBuilder->pOrSet /* Not part of an OR optimization */ && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ && !pSrc->fg.isCorrelated /* Not a correlated subquery */ && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ ){ /* Generate auto-index WhereLoops */ LogEst rLogSize; /* Logarithm of the number of rows in the table */ WhereTerm *pTerm; WhereTerm *pWCEnd = pWC->a + pWC->nTerm; rLogSize = estLog(rSize); for(pTerm=pWC->a; rc==SQLITE_OK && pTermprereqRight & pNew->maskSelf ) continue; if( termCanDriveIndex(pTerm, pSrc, 0) ){ pNew->u.btree.nEq = 1; pNew->nSkip = 0; pNew->u.btree.pIndex = 0; pNew->nLTerm = 1; pNew->aLTerm[0] = pTerm; /* TUNING: One-time cost for computing the automatic index is ** estimated to be X*N*log2(N) where N is the number of rows in ** the table being indexed and where X is 7 (LogEst=28) for normal ** tables or 0.5 (LogEst=-10) for views and subqueries. The value ** of X is smaller for views and subqueries so that the query planner ** will be more aggressive about generating automatic indexes for ** those objects, since there is no opportunity to add schema ** indexes on subqueries and views. */ pNew->rSetup = rLogSize + rSize; if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ pNew->rSetup += 28; }else{ pNew->rSetup -= 25; /* Greatly reduced setup cost for auto indexes ** on ephemeral materializations of views */ } ApplyCostMultiplier(pNew->rSetup, pTab->costMult); if( pNew->rSetup<0 ) pNew->rSetup = 0; /* TUNING: Each index lookup yields 20 rows in the table. This ** is more than the usual guess of 10 rows, since we have no way ** of knowing how selective the index will ultimately be. It would ** not be unreasonable to make this value much larger. */ pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); pNew->wsFlags = WHERE_AUTO_INDEX; pNew->prereq = mPrereq | pTerm->prereqRight; rc = whereLoopInsert(pBuilder, pNew); } } } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ /* Loop over all indices. If there was an INDEXED BY clause, then only ** consider index pProbe. */ for(; rc==SQLITE_OK && pProbe; pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ ){ if( pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC, pProbe->pPartIdxWhere) ){ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ continue; /* Partial index inappropriate for this query */ } if( pProbe->bNoQuery ) continue; rSize = pProbe->aiRowLogEst[0]; pNew->u.btree.nEq = 0; pNew->u.btree.nBtm = 0; pNew->u.btree.nTop = 0; pNew->nSkip = 0; pNew->nLTerm = 0; pNew->iSortIdx = 0; pNew->rSetup = 0; pNew->prereq = mPrereq; pNew->nOut = rSize; pNew->u.btree.pIndex = pProbe; b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ /* Integer primary key index */ pNew->wsFlags = WHERE_IPK; /* Full table scan */ pNew->iSortIdx = b ? iSortIdx : 0; /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an ** extra cost designed to discourage the use of full table scans, ** since index lookups have better worst-case performance if our ** stat guesses are wrong. Reduce the 3.0 penalty slightly ** (to 2.75) if we have valid STAT4 information for the table. ** At 2.75, a full table scan is preferred over using an index on ** a column with just two distinct values where each value has about ** an equal number of appearances. Without STAT4 data, we still want ** to use an index in that case, since the constraint might be for ** the scarcer of the two values, and in that case an index lookup is ** better. */ #ifdef SQLITE_ENABLE_STAT4 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); #else pNew->rRun = rSize + 16; #endif ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); pNew->nOut = rSize; if( rc ) break; }else{ Bitmask m; if( pProbe->isCovering ){ m = 0; pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; }else{ m = pSrc->colUsed & pProbe->colNotIdxed; if( pProbe->pPartIdxWhere ){ wherePartIdxExpr( pWInfo->pParse, pProbe, pProbe->pPartIdxWhere, &m, 0, 0 ); } pNew->wsFlags = WHERE_INDEXED; if( m==TOPBIT || (pProbe->bHasExpr && !pProbe->bHasVCol && m!=0) ){ u32 isCov = whereIsCoveringIndex(pWInfo, pProbe, pSrc->iCursor); if( isCov==0 ){ WHERETRACE(0x200, ("-> %s is not a covering index" " according to whereIsCoveringIndex()\n", pProbe->zName)); assert( m!=0 ); }else{ m = 0; pNew->wsFlags |= isCov; if( isCov & WHERE_IDX_ONLY ){ WHERETRACE(0x200, ("-> %s is a covering expression index" " according to whereIsCoveringIndex()\n", pProbe->zName)); }else{ assert( isCov==WHERE_EXPRIDX ); WHERETRACE(0x200, ("-> %s might be a covering expression index" " according to whereIsCoveringIndex()\n", pProbe->zName)); } } }else if( m==0 ){ WHERETRACE(0x200, ("-> %s a covering index according to bitmasks\n", pProbe->zName, m==0 ? "is" : "is not")); pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; } } /* Full scan via index */ if( b || !HasRowid(pTab) || pProbe->pPartIdxWhere!=0 || pSrc->fg.isIndexedBy || ( m==0 && pProbe->bUnordered==0 && (pProbe->szIdxRowszTabRow) && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 && sqlite3GlobalConfig.bUseCis && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) ) ){ pNew->iSortIdx = b ? iSortIdx : 0; /* The cost of visiting the index rows is N*K, where K is ** between 1.1 and 3.0, depending on the relative sizes of the ** index and table rows. */ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; if( m!=0 ){ /* If this is a non-covering index scan, add in the cost of ** doing table lookups. The cost will be 3x the number of ** lookups. Take into account WHERE clause terms that can be ** satisfied using just the index, and that do not require a ** table lookup. */ LogEst nLookup = rSize + 16; /* Base cost: N*3 */ int ii; int iCur = pSrc->iCursor; WhereClause *pWC2 = &pWInfo->sWC; for(ii=0; iinTerm; ii++){ WhereTerm *pTerm = &pWC2->a[ii]; if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ break; } /* pTerm can be evaluated using just the index. So reduce ** the expected number of table lookups accordingly */ if( pTerm->truthProb<=0 ){ nLookup += pTerm->truthProb; }else{ nLookup--; if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; } } pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); } ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN ** because the cursor used to access the index might not be ** positioned to the correct row during the right-join no-match ** loop. */ }else{ rc = whereLoopInsert(pBuilder, pNew); } pNew->nOut = rSize; if( rc ) break; } } pBuilder->bldFlags1 = 0; rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ /* If a non-unique index is used, or if a prefix of the key for ** unique index is used (making the index functionally non-unique) ** then the sqlite_stat1 data becomes important for scoring the ** plan */ pTab->tabFlags |= TF_StatsUsed; } #ifdef SQLITE_ENABLE_STAT4 sqlite3Stat4ProbeFree(pBuilder->pRec); pBuilder->nRecValid = 0; pBuilder->pRec = 0; #endif } return rc; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if pTerm is a virtual table LIMIT or OFFSET term. */ static int isLimitTerm(WhereTerm *pTerm){ assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; } /* ** Argument pIdxInfo is already populated with all constraints that may ** be used by the virtual table identified by pBuilder->pNew->iTab. This ** function marks a subset of those constraints usable, invokes the ** xBestIndex method and adds the returned plan to pBuilder. ** ** A constraint is marked usable if: ** ** * Argument mUsable indicates that its prerequisites are available, and ** ** * It is not one of the operators specified in the mExclude mask passed ** as the fourth argument (which in practice is either WO_IN or 0). ** ** Argument mPrereq is a mask of tables that must be scanned before the ** virtual table in question. These are added to the plans prerequisites ** before it is added to pBuilder. ** ** Output parameter *pbIn is set to true if the plan added to pBuilder ** uses one or more WO_IN terms, or false otherwise. */ static int whereLoopAddVirtualOne( WhereLoopBuilder *pBuilder, Bitmask mPrereq, /* Mask of tables that must be used. */ Bitmask mUsable, /* Mask of usable tables */ u16 mExclude, /* Exclude terms using these operators */ sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ u16 mNoOmit, /* Do not omit these constraints */ int *pbIn, /* OUT: True if plan uses an IN(...) op */ int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ ){ WhereClause *pWC = pBuilder->pWC; HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; int i; int mxTerm; int rc = SQLITE_OK; WhereLoop *pNew = pBuilder->pNew; Parse *pParse = pBuilder->pWInfo->pParse; SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; int nConstraint = pIdxInfo->nConstraint; assert( (mUsable & mPrereq)==mPrereq ); *pbIn = 0; pNew->prereq = mPrereq; /* Set the usable flag on the subset of constraints identified by ** arguments mUsable and mExclude. */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; ia[pIdxCons->iTermOffset]; pIdxCons->usable = 0; if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight && (pTerm->eOperator & mExclude)==0 && (pbRetryLimit || !isLimitTerm(pTerm)) ){ pIdxCons->usable = 1; } } /* Initialize the output fields of the sqlite3_index_info structure */ memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); assert( pIdxInfo->needToFreeIdxStr==0 ); pIdxInfo->idxStr = 0; pIdxInfo->idxNum = 0; pIdxInfo->orderByConsumed = 0; pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; pIdxInfo->estimatedRows = 25; pIdxInfo->idxFlags = 0; pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; pHidden->mHandleIn = 0; /* Invoke the virtual table xBestIndex() method */ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); if( rc ){ if( rc==SQLITE_CONSTRAINT ){ /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means ** that the particular combination of parameters provided is unusable. ** Make no entries in the loop table. */ WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n")); return SQLITE_OK; } return rc; } mxTerm = -1; assert( pNew->nLSlot>=nConstraint ); memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; i=0 ){ WhereTerm *pTerm; int j = pIdxCons->iTermOffset; if( iTerm>=nConstraint || j<0 || j>=pWC->nTerm || pNew->aLTerm[iTerm]!=0 || pIdxCons->usable==0 ){ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); testcase( pIdxInfo->needToFreeIdxStr ); return SQLITE_ERROR; } testcase( iTerm==nConstraint-1 ); testcase( j==0 ); testcase( j==pWC->nTerm-1 ); pTerm = &pWC->a[j]; pNew->prereq |= pTerm->prereqRight; assert( iTermnLSlot ); pNew->aLTerm[iTerm] = pTerm; if( iTerm>mxTerm ) mxTerm = iTerm; testcase( iTerm==15 ); testcase( iTerm==16 ); if( pUsage[i].omit ){ if( i<16 && ((1<u.vtab.omitMask |= 1<eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ pNew->u.vtab.bOmitOffset = 1; } } if( SMASKBIT32(i) & pHidden->mHandleIn ){ pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); }else if( (pTerm->eOperator & WO_IN)!=0 ){ /* A virtual table that is constrained by an IN clause may not ** consume the ORDER BY clause because (1) the order of IN terms ** is not necessarily related to the order of output terms and ** (2) Multiple outputs from a single IN value will not merge ** together. */ pIdxInfo->orderByConsumed = 0; pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; *pbIn = 1; assert( (mExclude & WO_IN)==0 ); } assert( pbRetryLimit || !isLimitTerm(pTerm) ); if( isLimitTerm(pTerm) && *pbIn ){ /* If there is an IN(...) term handled as an == (separate call to ** xFilter for each value on the RHS of the IN) and a LIMIT or ** OFFSET term handled as well, the plan is unusable. Set output ** variable *pbRetryLimit to true to tell the caller to retry with ** LIMIT and OFFSET disabled. */ if( pIdxInfo->needToFreeIdxStr ){ sqlite3_free(pIdxInfo->idxStr); pIdxInfo->idxStr = 0; pIdxInfo->needToFreeIdxStr = 0; } *pbRetryLimit = 1; return SQLITE_OK; } } } pNew->nLTerm = mxTerm+1; for(i=0; i<=mxTerm; i++){ if( pNew->aLTerm[i]==0 ){ /* The non-zero argvIdx values must be contiguous. Raise an ** error if they are not */ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); testcase( pIdxInfo->needToFreeIdxStr ); return SQLITE_ERROR; } } assert( pNew->nLTerm<=pNew->nLSlot ); pNew->u.vtab.idxNum = pIdxInfo->idxNum; pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; pIdxInfo->needToFreeIdxStr = 0; pNew->u.vtab.idxStr = pIdxInfo->idxStr; pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? pIdxInfo->nOrderBy : 0); pNew->rSetup = 0; pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated ** that the scan will visit at most one row. Clear it otherwise. */ if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ pNew->wsFlags |= WHERE_ONEROW; }else{ pNew->wsFlags &= ~WHERE_ONEROW; } rc = whereLoopInsert(pBuilder, pNew); if( pNew->u.vtab.needFree ){ sqlite3_free(pNew->u.vtab.idxStr); pNew->u.vtab.needFree = 0; } WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", *pbIn, (sqlite3_uint64)mPrereq, (sqlite3_uint64)(pNew->prereq & ~mPrereq))); return rc; } /* ** Return the collating sequence for a constraint passed into xBestIndex. ** ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. ** This routine depends on there being a HiddenIndexInfo structure immediately ** following the sqlite3_index_info structure. ** ** Return a pointer to the collation name: ** ** 1. If there is an explicit COLLATE operator on the constraint, return it. ** ** 2. Else, if the column has an alternative collation, return that. ** ** 3. Otherwise, return "BINARY". */ SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; const char *zRet = 0; if( iCons>=0 && iConsnConstraint ){ CollSeq *pC = 0; int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; Expr *pX = pHidden->pWC->a[iTerm].pExpr; if( pX->pLeft ){ pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); } zRet = (pC ? pC->zName : sqlite3StrBINARY); } return zRet; } /* ** Return true if constraint iCons is really an IN(...) constraint, or ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) ** or clear (if bHandle==0) the flag to handle it using an iterator. */ SQLITE_API int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; u32 m = SMASKBIT32(iCons); if( m & pHidden->mIn ){ if( bHandle==0 ){ pHidden->mHandleIn &= ~m; }else if( bHandle>0 ){ pHidden->mHandleIn |= m; } return 1; } return 0; } /* ** This interface is callable from within the xBestIndex callback only. ** ** If possible, set (*ppVal) to point to an object containing the value ** on the right-hand-side of constraint iCons. */ SQLITE_API int sqlite3_vtab_rhs_value( sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ int iCons, /* Constraint for which RHS is wanted */ sqlite3_value **ppVal /* Write value extracted here */ ){ HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; sqlite3_value *pVal = 0; int rc = SQLITE_OK; if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ rc = SQLITE_MISUSE_BKPT; /* EV: R-30545-25046 */ }else{ if( pH->aRhs[iCons]==0 ){ WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; rc = sqlite3ValueFromExpr( pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), SQLITE_AFF_BLOB, &pH->aRhs[iCons] ); testcase( rc!=SQLITE_OK ); } pVal = pH->aRhs[iCons]; } *ppVal = pVal; if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ } return rc; } /* ** Return true if ORDER BY clause may be handled as DISTINCT. */ SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); return pHidden->eDistinct; } /* ** Cause the prepared statement that is associated with a call to ** xBestIndex to potentially use all schemas. If the statement being ** prepared is read-only, then just start read transactions on all ** schemas. But if this is a write operation, start writes on all ** schemas. ** ** This is used by the (built-in) sqlite_dbpage virtual table. */ SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(Parse *pParse){ int nDb = pParse->db->nDb; int i; for(i=0; iwriteMask) ){ for(i=0; ipNew->iTab. That table is guaranteed to be a virtual table. ** ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause ** entries that occur before the virtual table in the FROM clause and are ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the ** mUnusable mask contains all FROM clause entries that occur after the ** virtual table and are separated from it by at least one LEFT or ** CROSS JOIN. ** ** For example, if the query were: ** ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; ** ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). ** ** All the tables in mPrereq must be scanned before the current virtual ** table. So any terms for which all prerequisites are satisfied by ** mPrereq may be specified as "usable" in all calls to xBestIndex. ** Conversely, all tables in mUnusable must be scanned after the current ** virtual table, so any terms for which the prerequisites overlap with ** mUnusable should always be configured as "not-usable" for xBestIndex. */ static int whereLoopAddVirtual( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mPrereq, /* Tables that must be scanned before this one */ Bitmask mUnusable /* Tables that must be scanned after this one */ ){ int rc = SQLITE_OK; /* Return code */ WhereInfo *pWInfo; /* WHERE analysis context */ Parse *pParse; /* The parsing context */ WhereClause *pWC; /* The WHERE clause */ SrcItem *pSrc; /* The FROM clause term to search */ sqlite3_index_info *p; /* Object to pass to xBestIndex() */ int nConstraint; /* Number of constraints in p */ int bIn; /* True if plan uses IN(...) operator */ WhereLoop *pNew; Bitmask mBest; /* Tables used by best possible plan */ u16 mNoOmit; int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ assert( (mPrereq & mUnusable)==0 ); pWInfo = pBuilder->pWInfo; pParse = pWInfo->pParse; pWC = pBuilder->pWC; pNew = pBuilder->pNew; pSrc = &pWInfo->pTabList->a[pNew->iTab]; assert( IsVirtual(pSrc->pTab) ); p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); if( p==0 ) return SQLITE_NOMEM_BKPT; pNew->rSetup = 0; pNew->wsFlags = WHERE_VIRTUALTABLE; pNew->nLTerm = 0; pNew->u.vtab.needFree = 0; nConstraint = p->nConstraint; if( whereLoopResize(pParse->db, pNew, nConstraint) ){ freeIndexInfo(pParse->db, p); return SQLITE_NOMEM_BKPT; } /* First call xBestIndex() with all constraints usable. */ WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); WHERETRACE(0x800, (" VirtualOne: all usable\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry ); if( bRetry ){ assert( rc==SQLITE_OK ); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 ); } /* If the call to xBestIndex() with all terms enabled produced a plan ** that does not require any source tables (IOW: a plan with mBest==0) ** and does not use an IN(...) operator, then there is no point in making ** any further calls to xBestIndex() since they will all return the same ** result (if the xBestIndex() implementation is sane). */ if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ int seenZero = 0; /* True if a plan with no prereqs seen */ int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ Bitmask mPrev = 0; Bitmask mBestNoIn = 0; /* If the plan produced by the earlier call uses an IN(...) term, call ** xBestIndex again, this time with IN(...) terms disabled. */ if( bIn ){ WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); assert( bIn==0 ); mBestNoIn = pNew->prereq & ~mPrereq; if( mBestNoIn==0 ){ seenZero = 1; seenZeroNoIN = 1; } } /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) ** in the set of terms that apply to the current virtual table. */ while( rc==SQLITE_OK ){ int i; Bitmask mNext = ALLBITS; assert( mNext>0 ); for(i=0; ia[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq ); if( mThis>mPrev && mThisprereq==mPrereq ){ seenZero = 1; if( bIn==0 ) seenZeroNoIN = 1; } } /* If the calls to xBestIndex() in the above loop did not find a plan ** that requires no source tables at all (i.e. one guaranteed to be ** usable), make a call here with all source tables disabled */ if( rc==SQLITE_OK && seenZero==0 ){ WHERETRACE(0x800, (" VirtualOne: all disabled\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); if( bIn==0 ) seenZeroNoIN = 1; } /* If the calls to xBestIndex() have so far failed to find a plan ** that requires no source tables at all and does not use an IN(...) ** operator, make a final call to obtain one here. */ if( rc==SQLITE_OK && seenZeroNoIN==0 ){ WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); } } if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); freeIndexInfo(pParse->db, p); WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Add WhereLoop entries to handle OR terms. This works for either ** btrees or virtual tables. */ static int whereLoopAddOr( WhereLoopBuilder *pBuilder, Bitmask mPrereq, Bitmask mUnusable ){ WhereInfo *pWInfo = pBuilder->pWInfo; WhereClause *pWC; WhereLoop *pNew; WhereTerm *pTerm, *pWCEnd; int rc = SQLITE_OK; int iCur; WhereClause tempWC; WhereLoopBuilder sSubBuild; WhereOrSet sSum, sCur; SrcItem *pItem; pWC = pBuilder->pWC; pWCEnd = pWC->a + pWC->nTerm; pNew = pBuilder->pNew; memset(&sSum, 0, sizeof(sSum)); pItem = pWInfo->pTabList->a + pNew->iTab; iCur = pItem->iCursor; /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; for(pTerm=pWC->a; pTermeOperator & WO_OR)!=0 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 ){ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; WhereTerm *pOrTerm; int once = 1; int i, j; sSubBuild = *pBuilder; sSubBuild.pOrSet = &sCur; WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm)); for(pOrTerm=pOrWC->a; pOrTermeOperator & WO_AND)!=0 ){ sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; }else if( pOrTerm->leftCursor==iCur ){ tempWC.pWInfo = pWC->pWInfo; tempWC.pOuter = pWC; tempWC.op = TK_AND; tempWC.nTerm = 1; tempWC.nBase = 1; tempWC.a = pOrTerm; sSubBuild.pWC = &tempWC; }else{ continue; } sCur.n = 0; #ifdef WHERETRACE_ENABLED WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n", (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); if( sqlite3WhereTrace & 0x20000 ){ sqlite3WhereClausePrint(sSubBuild.pWC); } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pItem->pTab) ){ rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); }else #endif { rc = whereLoopAddBtree(&sSubBuild, mPrereq); } if( rc==SQLITE_OK ){ rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); } testcase( rc==SQLITE_NOMEM && sCur.n>0 ); testcase( rc==SQLITE_DONE ); if( sCur.n==0 ){ sSum.n = 0; break; }else if( once ){ whereOrMove(&sSum, &sCur); once = 0; }else{ WhereOrSet sPrev; whereOrMove(&sPrev, &sSum); sSum.n = 0; for(i=0; inLTerm = 1; pNew->aLTerm[0] = pTerm; pNew->wsFlags = WHERE_MULTI_OR; pNew->rSetup = 0; pNew->iSortIdx = 0; memset(&pNew->u, 0, sizeof(pNew->u)); for(i=0; rc==SQLITE_OK && irRun = sSum.a[i].rRun + 1; pNew->nOut = sSum.a[i].nOut; pNew->prereq = sSum.a[i].prereq; rc = whereLoopInsert(pBuilder, pNew); } WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm)); } } return rc; } /* ** Add all WhereLoop objects for all tables */ static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo = pBuilder->pWInfo; Bitmask mPrereq = 0; Bitmask mPrior = 0; int iTab; SrcList *pTabList = pWInfo->pTabList; SrcItem *pItem; SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; sqlite3 *db = pWInfo->pParse->db; int rc = SQLITE_OK; int bFirstPastRJ = 0; int hasRightJoin = 0; WhereLoop *pNew; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; /* Verify that pNew has already been initialized */ assert( pNew->nLTerm==0 ); assert( pNew->wsFlags==0 ); assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) ); assert( pNew->aLTerm!=0 ); pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; for(iTab=0, pItem=pTabList->a; pItemiTab = iTab; pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); if( bFirstPastRJ || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0 ){ /* Add prerequisites to prevent reordering of FROM clause terms ** across CROSS joins and outer joins. The bFirstPastRJ boolean ** prevents the right operand of a RIGHT JOIN from being swapped with ** other elements even further to the right. ** ** The JT_LTORJ case and the hasRightJoin flag work together to ** prevent FROM-clause terms from moving from the right side of ** a LEFT JOIN over to the left side of that join if the LEFT JOIN ** is itself on the left side of a RIGHT JOIN. */ if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1; mPrereq |= mPrior; bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; }else if( !hasRightJoin ){ mPrereq = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pItem->pTab) ){ SrcItem *p; for(p=&pItem[1]; pfg.jointype & (JT_OUTER|JT_CROSS)) ){ mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); } } rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ { rc = whereLoopAddBtree(pBuilder, mPrereq); } if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); } mPrior |= pNew->maskSelf; if( rc || db->mallocFailed ){ if( rc==SQLITE_DONE ){ /* We hit the query planner search limit set by iPlanLimit */ sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); rc = SQLITE_OK; }else{ break; } } } whereLoopClear(db, pNew); return rc; } /* ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th ** parameters) to see if it outputs rows in the requested ORDER BY ** (or GROUP BY) without requiring a separate sort operation. Return N: ** ** N>0: N terms of the ORDER BY clause are satisfied ** N==0: No terms of the ORDER BY clause are satisfied ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. ** ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as ** strict. With GROUP BY and DISTINCT the only requirement is that ** equivalent rows appear immediately adjacent to one another. GROUP BY ** and DISTINCT do not require rows to appear in any particular order as long ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT ** the pOrderBy terms can be matched in any order. With ORDER BY, the ** pOrderBy terms must be matched in strict left-to-right order. */ static i8 wherePathSatisfiesOrderBy( WhereInfo *pWInfo, /* The WHERE clause */ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ WherePath *pPath, /* The WherePath to check */ u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ u16 nLoop, /* Number of entries in pPath->aLoop[] */ WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ ){ u8 revSet; /* True if rev is known */ u8 rev; /* Composite sort order */ u8 revIdx; /* Index sort order */ u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ u16 eqOpMask; /* Allowed equality operators */ u16 nKeyCol; /* Number of key columns in pIndex */ u16 nColumn; /* Total number of ordered columns in the index */ u16 nOrderBy; /* Number terms in the ORDER BY clause */ int iLoop; /* Index of WhereLoop in pPath being processed */ int i, j; /* Loop counters */ int iCur; /* Cursor number for current WhereLoop */ int iColumn; /* A column number within table iCur */ WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ WhereTerm *pTerm; /* A single term of the WHERE clause */ Expr *pOBExpr; /* An expression from the ORDER BY clause */ CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ Index *pIndex; /* The index associated with pLoop */ sqlite3 *db = pWInfo->pParse->db; /* Database connection */ Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ Bitmask obDone; /* Mask of all ORDER BY terms */ Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ Bitmask ready; /* Mask of inner loops */ /* ** We say the WhereLoop is "one-row" if it generates no more than one ** row of output. A WhereLoop is one-row if all of the following are true: ** (a) All index columns match with WHERE_COLUMN_EQ. ** (b) The index is unique ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. ** ** We say the WhereLoop is "order-distinct" if the set of columns from ** that WhereLoop that are in the ORDER BY clause are different for every ** row of the WhereLoop. Every one-row WhereLoop is automatically ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause ** is not order-distinct. To be order-distinct is not quite the same as being ** UNIQUE since a UNIQUE column or index can have multiple rows that ** are NULL and NULL values are equivalent for the purpose of order-distinct. ** To be order-distinct, the columns must be UNIQUE and NOT NULL. ** ** The rowid for a table is always UNIQUE and NOT NULL so whenever the ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is ** automatically order-distinct. */ assert( pOrderBy!=0 ); if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; nOrderBy = pOrderBy->nExpr; testcase( nOrderBy==BMS-1 ); if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ isOrderDistinct = 1; obDone = MASKBIT(nOrderBy)-1; orderDistinctMask = 0; ready = 0; eqOpMask = WO_EQ | WO_IS | WO_ISNULL; if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ eqOpMask |= WO_IN; } for(iLoop=0; isOrderDistinct && obSat0 ) ready |= pLoop->maskSelf; if( iLoopaLoop[iLoop]; if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; }else{ pLoop = pLast; } if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ if( pLoop->u.vtab.isOrdered && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) ){ obSat = obDone; } break; }else if( wctrlFlags & WHERE_DISTINCTBY ){ pLoop->u.btree.nDistinctCol = 0; } iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; /* Mark off any ORDER BY term X that is a column in the table of ** the current loop for which there is term in the WHERE ** clause of the form X IS NULL or X=? that reference only outer ** loops. */ for(i=0; ia[i].pExpr); if( NEVER(pOBExpr==0) ) continue; if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, ~ready, eqOpMask, 0); if( pTerm==0 ) continue; if( pTerm->eOperator==WO_IN ){ /* IN terms are only valid for sorting in the ORDER BY LIMIT ** optimization, and then only if they are actually used ** by the query plan */ assert( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); for(j=0; jnLTerm && pTerm!=pLoop->aLTerm[j]; j++){} if( j>=pLoop->nLTerm ) continue; } if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ Parse *pParse = pWInfo->pParse; CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); assert( pColl1 ); if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ continue; } testcase( pTerm->pExpr->op==TK_IS ); } obSat |= MASKBIT(i); } if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ if( pLoop->wsFlags & WHERE_IPK ){ pIndex = 0; nKeyCol = 0; nColumn = 1; }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ return 0; }else{ nKeyCol = pIndex->nKeyCol; nColumn = pIndex->nColumn; assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); assert( pIndex->aiColumn[nColumn-1]==XN_ROWID || !HasRowid(pIndex->pTable)); /* All relevant terms of the index must also be non-NULL in order ** for isOrderDistinct to be true. So the isOrderDistint value ** computed here might be a false positive. Corrections will be ** made at tag-20210426-1 below */ isOrderDistinct = IsUniqueIndex(pIndex) && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; } /* Loop through all columns of the index and deal with the ones ** that are not constrained by == or IN. */ rev = revSet = 0; distinctColumns = 0; for(j=0; j=pLoop->u.btree.nEq || (pLoop->aLTerm[j]==0)==(jnSkip) ); if( ju.btree.nEq && j>=pLoop->nSkip ){ u16 eOp = pLoop->aLTerm[j]->eOperator; /* Skip over == and IS and ISNULL terms. (Also skip IN terms when ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL ** terms imply that the index is not UNIQUE NOT NULL in which case ** the loop need to be marked as not order-distinct because it can ** have repeated NULL rows. ** ** If the current term is a column of an ((?,?) IN (SELECT...)) ** expression for which the SELECT returns more than one column, ** check that it is the only column used by this loop. Otherwise, ** if it is one of two or more, none of the columns can be ** considered to match an ORDER BY term. */ if( (eOp & eqOpMask)!=0 ){ if( eOp & (WO_ISNULL|WO_IS) ){ testcase( eOp & WO_ISNULL ); testcase( eOp & WO_IS ); testcase( isOrderDistinct ); isOrderDistinct = 0; } continue; }else if( ALWAYS(eOp & WO_IN) ){ /* ALWAYS() justification: eOp is an equality operator due to the ** ju.btree.nEq constraint above. Any equality other ** than WO_IN is captured by the previous "if". So this one ** always has to be WO_IN. */ Expr *pX = pLoop->aLTerm[j]->pExpr; for(i=j+1; iu.btree.nEq; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); bOnce = 0; break; } } } } /* Get the column number in the table (iColumn) and sort order ** (revIdx) for the j-th column of the index. */ if( pIndex ){ iColumn = pIndex->aiColumn[j]; revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; }else{ iColumn = XN_ROWID; revIdx = 0; } /* An unconstrained column that might be NULL means that this ** WhereLoop is not well-ordered. tag-20210426-1 */ if( isOrderDistinct ){ if( iColumn>=0 && j>=pLoop->u.btree.nEq && pIndex->pTable->aCol[iColumn].notNull==0 ){ isOrderDistinct = 0; } if( iColumn==XN_EXPR ){ isOrderDistinct = 0; } } /* Find the ORDER BY term that corresponds to the j-th column ** of the index and mark that ORDER BY term off */ isMatch = 0; for(i=0; bOnce && ia[i].pExpr); testcase( wctrlFlags & WHERE_GROUPBY ); testcase( wctrlFlags & WHERE_DISTINCTBY ); if( NEVER(pOBExpr==0) ) continue; if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; if( iColumn>=XN_ROWID ){ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; if( pOBExpr->iColumn!=iColumn ) continue; }else{ Expr *pIxExpr = pIndex->aColExpr->a[j].pExpr; if( sqlite3ExprCompareSkip(pOBExpr, pIxExpr, iCur) ){ continue; } } if( iColumn!=XN_ROWID ){ pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; } if( wctrlFlags & WHERE_DISTINCTBY ){ pLoop->u.btree.nDistinctCol = j+1; } isMatch = 1; break; } if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ /* Make sure the sort order is compatible in an ORDER BY clause. ** Sort order is irrelevant for a GROUP BY clause. */ if( revSet ){ if( (rev ^ revIdx) != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) ){ isMatch = 0; } }else{ rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); if( rev ) *pRevMask |= MASKBIT(iLoop); revSet = 1; } } if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ if( j==pLoop->u.btree.nEq ){ pLoop->wsFlags |= WHERE_BIGNULL_SORT; }else{ isMatch = 0; } } if( isMatch ){ if( iColumn==XN_ROWID ){ testcase( distinctColumns==0 ); distinctColumns = 1; } obSat |= MASKBIT(i); }else{ /* No match found */ if( j==0 || jmaskSelf; for(i=0; ia[i].pExpr; mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; if( (mTerm&~orderDistinctMask)==0 ){ obSat |= MASKBIT(i); } } } } /* End the loop over all WhereLoops from outer-most down to inner-most */ if( obSat==obDone ) return (i8)nOrderBy; if( !isOrderDistinct ){ for(i=nOrderBy-1; i>0; i--){ Bitmask m = ALWAYS(iwctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); return pWInfo->sorted; } #ifdef WHERETRACE_ENABLED /* For debugging use only: */ static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ static char zName[65]; int i; for(i=0; iaLoop[i]->cId; } if( pLast ) zName[i++] = pLast->cId; zName[i] = 0; return zName; } #endif /* ** Return the cost of sorting nRow rows, assuming that the keys have ** nOrderby columns and that the first nSorted columns are already in ** order. */ static LogEst whereSortingCost( WhereInfo *pWInfo, /* Query planning context */ LogEst nRow, /* Estimated number of rows to sort */ int nOrderBy, /* Number of ORDER BY clause terms */ int nSorted /* Number of initial ORDER BY terms naturally in order */ ){ /* Estimated cost of a full external sort, where N is ** the number of rows to sort is: ** ** cost = (K * N * log(N)). ** ** Or, if the order-by clause has X terms but only the last Y ** terms are out of order, then block-sorting will reduce the ** sorting cost to: ** ** cost = (K * N * log(N)) * (Y/X) ** ** The constant K is at least 2.0 but will be larger if there are a ** large number of columns to be sorted, as the sorting time is ** proportional to the amount of content to be sorted. The algorithm ** does not currently distinguish between fat columns (BLOBs and TEXTs) ** and skinny columns (INTs). It just uses the number of columns as ** an approximation for the row width. ** ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert. */ LogEst rSortCost, nCol; assert( pWInfo->pSelect!=0 ); assert( pWInfo->pSelect->pEList!=0 ); /* TUNING: sorting cost proportional to the number of output columns: */ nCol = sqlite3LogEst((pWInfo->pSelect->pEList->nExpr+59)/30); rSortCost = nRow + nCol; if( nSorted>0 ){ /* Scale the result by (Y/X) */ rSortCost += sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; } /* Multiple by log(M) where M is the number of output rows. ** Use the LIMIT for M if it is smaller. Or if this sort is for ** a DISTINCT operator, M will be the number of distinct output ** rows, so fudge it downwards a bit. */ if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 ){ rSortCost += 10; /* TUNING: Extra 2.0x if using LIMIT */ if( nSorted!=0 ){ rSortCost += 6; /* TUNING: Extra 1.5x if also using partial sort */ } if( pWInfo->iLimitiLimit; } }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT ** reduces the number of output rows by a factor of 2 */ if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } } rSortCost += estLog(nRow); return rSortCost; } /* ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine ** attempts to find the lowest cost path that visits each WhereLoop ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. ** ** Assume that the total number of output rows that will need to be sorted ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting ** costs if nRowEst==0. ** ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation ** error occurs. */ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ int mxChoice; /* Maximum number of simultaneous paths tracked */ int nLoop; /* Number of terms in the join */ Parse *pParse; /* Parsing context */ int iLoop; /* Loop counter over the terms of the join */ int ii, jj; /* Loop counters */ int mxI = 0; /* Index of next entry to replace */ int nOrderBy; /* Number of ORDER BY clause terms */ LogEst mxCost = 0; /* Maximum cost of a set of paths */ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ WherePath *aFrom; /* All nFrom paths at the previous level */ WherePath *aTo; /* The nTo best paths at the current level */ WherePath *pFrom; /* An element of aFrom[] that we are working on */ WherePath *pTo; /* An element of aTo[] that we are working on */ WhereLoop *pWLoop; /* One of the WhereLoop objects */ WhereLoop **pX; /* Used to divy up the pSpace memory */ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ char *pSpace; /* Temporary memory used by this routine */ int nSpace; /* Bytes of space allocated at pSpace */ pParse = pWInfo->pParse; nLoop = pWInfo->nLevel; /* TUNING: For simple queries, only the best path is tracked. ** For 2-way joins, the 5 best paths are followed. ** For joins of 3 or more tables, track the 10 best paths */ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); assert( nLoop<=pWInfo->pTabList->nSrc ); WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n", nRowEst, pParse->nQueryLoop)); /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this ** case the purpose of this call is to estimate the number of rows returned ** by the overall query. Once this estimate has been obtained, the caller ** will invoke this function a second time, passing the estimate as the ** nRowEst parameter. */ if( pWInfo->pOrderBy==0 || nRowEst==0 ){ nOrderBy = 0; }else{ nOrderBy = pWInfo->pOrderBy->nExpr; } /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; nSpace += sizeof(LogEst) * nOrderBy; pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace); if( pSpace==0 ) return SQLITE_NOMEM_BKPT; aTo = (WherePath*)pSpace; aFrom = aTo+mxChoice; memset(aFrom, 0, sizeof(aFrom[0])); pX = (WhereLoop**)(aFrom+mxChoice); for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ pFrom->aLoop = pX; } if( nOrderBy ){ /* If there is an ORDER BY clause and it is not being ignored, set up ** space for the aSortCost[] array. Each element of the aSortCost array ** is either zero - meaning it has not yet been initialized - or the ** cost of sorting nRowEst rows of data where the first X terms of ** the ORDER BY clause are already in order, where X is the array ** index. */ aSortCost = (LogEst*)pX; memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); } assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); /* Seed the search with a single WherePath containing zero WhereLoops. ** ** TUNING: Do not let the number of iterations go above 28. If the cost ** of computing an automatic index is not paid back within the first 28 ** rows, then do not use the automatic index. */ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); nFrom = 1; assert( aFrom[0].isOrdered==0 ); if( nOrderBy ){ /* If nLoop is zero, then there are no FROM terms in the query. Since ** in this case the query may return a maximum of one row, the results ** are already in the requested order. Set isOrdered to nOrderBy to ** indicate this. Or, if nLoop is greater than zero, set isOrdered to ** -1, indicating that the result set may or may not be ordered, ** depending on the loops added to the current plan. */ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; } /* Compute successively longer WherePaths using the previous generation ** of WherePaths as the basis for the next. Keep track of the mxChoice ** best paths at each generation */ for(iLoop=0; iLooppLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ LogEst rCost; /* Cost of path (pFrom+pWLoop) */ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */ Bitmask maskNew; /* Mask of src visited by (..) */ Bitmask revMask; /* Mask of rev-order loops for (..) */ if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ /* Do not use an automatic index if the this loop is expected ** to run less than 1.25 times. It is tempting to also exclude ** automatic index usage on an outer loop, but sometimes an automatic ** index is useful in the outer loop of a correlated subquery. */ assert( 10==sqlite3LogEst(2) ); continue; } /* At this point, pWLoop is a candidate to be the next loop. ** Compute its cost */ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); nOut = pFrom->nRow + pWLoop->nOut; maskNew = pFrom->maskLoop | pWLoop->maskSelf; isOrdered = pFrom->isOrdered; if( isOrdered<0 ){ revMask = 0; isOrdered = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, iLoop, pWLoop, &revMask); }else{ revMask = pFrom->revLoop; } if( isOrdered>=0 && isOrderedisOrdered^isOrdered)&0x80)==0" is equivalent ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range ** of legal values for isOrdered, -1..64. */ for(jj=0, pTo=aTo; jjmaskLoop==maskNew && ((pTo->isOrdered^isOrdered)&0x80)==0 ){ testcase( jj==nTo-1 ); break; } } if( jj>=nTo ){ /* None of the existing best-so-far paths match the candidate. */ if( nTo>=mxChoice && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) ){ /* The current candidate is no better than any of the mxChoice ** paths currently in the best-so-far buffer. So discard ** this candidate as not viable. */ #ifdef WHERETRACE_ENABLED /* 0x4 */ if( sqlite3WhereTrace&0x4 ){ sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); } #endif continue; } /* If we reach this points it means that the new candidate path ** needs to be added to the set of best-so-far paths. */ if( nTo=0 ? isOrdered+'0' : '?'); } #endif }else{ /* Control reaches here if best-so-far path pTo=aTo[jj] covers the ** same set of loops and has the same isOrdered setting as the ** candidate path. Check to see if the candidate should replace ** pTo or if the candidate should be skipped. ** ** The conditional is an expanded vector comparison equivalent to: ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) */ if( pTo->rCostrCost==rCost && (pTo->nRownRow==nOut && pTo->rUnsorted<=rUnsorted) ) ) ){ #ifdef WHERETRACE_ENABLED /* 0x4 */ if( sqlite3WhereTrace&0x4 ){ sqlite3DebugPrintf( "Skip %s cost=%-3d,%3d,%3d order=%c", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); } #endif /* Discard the candidate path from further consideration */ testcase( pTo->rCost==rCost ); continue; } testcase( pTo->rCost==rCost+1 ); /* Control reaches here if the candidate path is better than the ** pTo path. Replace pTo with the candidate. */ #ifdef WHERETRACE_ENABLED /* 0x4 */ if( sqlite3WhereTrace&0x4 ){ sqlite3DebugPrintf( "Update %s cost=%-3d,%3d,%3d order=%c", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); } #endif } /* pWLoop is a winner. Add it to the set of best so far */ pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; pTo->revLoop = revMask; pTo->nRow = nOut; pTo->rCost = rCost; pTo->rUnsorted = rUnsorted; pTo->isOrdered = isOrdered; memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); pTo->aLoop[iLoop] = pWLoop; if( nTo>=mxChoice ){ mxI = 0; mxCost = aTo[0].rCost; mxUnsorted = aTo[0].nRow; for(jj=1, pTo=&aTo[1]; jjrCost>mxCost || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) ){ mxCost = pTo->rCost; mxUnsorted = pTo->rUnsorted; mxI = jj; } } } } } #ifdef WHERETRACE_ENABLED /* >=2 */ if( sqlite3WhereTrace & 0x02 ){ sqlite3DebugPrintf("---- after round %d ----\n", iLoop); for(ii=0, pTo=aTo; iirCost, pTo->nRow, pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); if( pTo->isOrdered>0 ){ sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); }else{ sqlite3DebugPrintf("\n"); } } } #endif /* Swap the roles of aFrom and aTo for the next generation */ pFrom = aTo; aTo = aFrom; aFrom = pFrom; nFrom = nTo; } if( nFrom==0 ){ sqlite3ErrorMsg(pParse, "no query solution"); sqlite3StackFreeNN(pParse->db, pSpace); return SQLITE_ERROR; } /* Find the lowest cost path. pFrom will be left pointing to that path */ pFrom = aFrom; for(ii=1; iirCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; } assert( pWInfo->nLevel==nLoop ); /* Load the lowest cost path into pWInfo */ for(iLoop=0; iLoopa + iLoop; pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; pLevel->iFrom = pWLoop->iTab; pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; } if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP && nRowEst ){ Bitmask notUsed; int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); if( rc==pWInfo->pResultSet->nExpr ){ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } } pWInfo->bOrderedInnerLoop = 0; if( pWInfo->pOrderBy ){ pWInfo->nOBSat = pFrom->isOrdered; if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } if( pWInfo->pSelect->pOrderBy && pWInfo->nOBSat > pWInfo->pSelect->pOrderBy->nExpr ){ pWInfo->nOBSat = pWInfo->pSelect->pOrderBy->nExpr; } }else{ pWInfo->revMask = pFrom->revLoop; if( pWInfo->nOBSat<=0 ){ pWInfo->nOBSat = 0; if( nLoop>0 ){ u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; if( (wsFlags & WHERE_ONEROW)==0 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) ){ Bitmask m = 0; int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); testcase( wsFlags & WHERE_IPK ); testcase( wsFlags & WHERE_COLUMN_IN ); if( rc==pWInfo->pOrderBy->nExpr ){ pWInfo->bOrderedInnerLoop = 1; pWInfo->revMask = m; } } } }else if( nLoop && pWInfo->nOBSat==1 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 ){ pWInfo->bOrderedInnerLoop = 1; } } if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 ){ Bitmask revMask = 0; int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask ); assert( pWInfo->sorted==0 ); if( nOrder==pWInfo->pOrderBy->nExpr ){ pWInfo->sorted = 1; pWInfo->revMask = revMask; } } } pWInfo->nRowOut = pFrom->nRow; /* Free temporary memory and return success */ sqlite3StackFreeNN(pParse->db, pSpace); return SQLITE_OK; } /* ** Most queries use only a single table (they are not joins) and have ** simple == constraints against indexed fields. This routine attempts ** to plan those simple cases using much less ceremony than the ** general-purpose query planner, and thereby yield faster sqlite3_prepare() ** times for the common case. ** ** Return non-zero on success, if this query can be handled by this ** no-frills query planner. Return zero if this query needs the ** general-purpose query planner. */ static int whereShortCut(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo; SrcItem *pItem; WhereClause *pWC; WhereTerm *pTerm; WhereLoop *pLoop; int iCur; int j; Table *pTab; Index *pIdx; WhereScan scan; pWInfo = pBuilder->pWInfo; if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; assert( pWInfo->pTabList->nSrc>=1 ); pItem = pWInfo->pTabList->a; pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){ testcase( pItem->fg.isIndexedBy ); testcase( pItem->fg.notIndexed ); return 0; } iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->nSkip = 0; pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); if( pTerm ){ testcase( pTerm->eOperator & WO_IS ); pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int opMask; assert( pLoop->aLTermSpace==pLoop->aLTerm ); if( !IsUniqueIndex(pIdx) || pIdx->pPartIdxWhere!=0 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) ) continue; opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; for(j=0; jnKeyCol; j++){ pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); if( pTerm==0 ) break; testcase( pTerm->eOperator & WO_IS ); pLoop->aLTerm[j] = pTerm; } if( j!=pIdx->nKeyCol ) continue; pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ pLoop->wsFlags |= WHERE_IDX_ONLY; } pLoop->nLTerm = j; pLoop->u.btree.nEq = j; pLoop->u.btree.pIndex = pIdx; /* TUNING: Cost of a unique index lookup is 15 */ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ break; } } if( pLoop->wsFlags ){ pLoop->nOut = (LogEst)1; pWInfo->a[0].pWLoop = pLoop; assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ pWInfo->a[0].iTabCur = iCur; pWInfo->nRowOut = 1; if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; #ifdef SQLITE_DEBUG pLoop->cId = '0'; #endif #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x02 ){ sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); } #endif return 1; } return 0; } /* ** Helper function for exprIsDeterministic(). */ static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ pWalker->eCode = 0; return WRC_Abort; } return WRC_Continue; } /* ** Return true if the expression contains no non-deterministic SQL ** functions. Do not consider non-deterministic SQL functions that are ** part of sub-select statements. */ static int exprIsDeterministic(Expr *p){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = 1; w.xExprCallback = exprNodeIsDeterministic; w.xSelectCallback = sqlite3SelectWalkFail; sqlite3WalkExpr(&w, p); return w.eCode; } #ifdef WHERETRACE_ENABLED /* ** Display all WhereLoops in pWInfo */ static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ WhereLoop *p; int i; static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ p->cId = zLabel[i%(sizeof(zLabel)-1)]; sqlite3WhereLoopPrint(p, pWC); } } } # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) #else # define WHERETRACE_ALL_LOOPS(W,C) #endif /* Attempt to omit tables from a join that do not affect the result. ** For a table to not affect the result, the following must be true: ** ** 1) The query must not be an aggregate. ** 2) The table must be the RHS of a LEFT JOIN. ** 3) Either the query must be DISTINCT, or else the ON or USING clause ** must contain a constraint that limits the scan of the table to ** at most a single row. ** 4) The table must not be referenced by any part of the query apart ** from its own USING or ON clause. ** 5) The table must not have an inner-join ON or USING clause if there is ** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause ** might move from the right side to the left side of the RIGHT JOIN. ** Note: Due to (2), this condition can only arise if the table is ** the right-most table of a subquery that was flattened into the ** main query and that subquery was the right-hand operand of an ** inner join that held an ON or USING clause. ** ** For example, given: ** ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); ** ** then table t2 can be omitted from the following: ** ** SELECT v1, v3 FROM t1 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) ** ** or from: ** ** SELECT DISTINCT v1, v3 FROM t1 ** LEFT JOIN t2 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) */ static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( WhereInfo *pWInfo, Bitmask notReady ){ int i; Bitmask tabUsed; int hasRightJoin; /* Preconditions checked by the caller */ assert( pWInfo->nLevel>=2 ); assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); /* These two preconditions checked by the caller combine to guarantee ** condition (1) of the header comment */ assert( pWInfo->pResultSet!=0 ); assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); if( pWInfo->pOrderBy ){ tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); } hasRightJoin = (pWInfo->pTabList->a[0].fg.jointype & JT_LTORJ)!=0; for(i=pWInfo->nLevel-1; i>=1; i--){ WhereTerm *pTerm, *pEnd; SrcItem *pItem; WhereLoop *pLoop; pLoop = pWInfo->a[i].pWLoop; pItem = &pWInfo->pTabList->a[pLoop->iTab]; if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 && (pLoop->wsFlags & WHERE_ONEROW)==0 ){ continue; } if( (tabUsed & pLoop->maskSelf)!=0 ) continue; pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; for(pTerm=pWInfo->sWC.a; pTermprereqAll & pLoop->maskSelf)!=0 ){ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) || pTerm->pExpr->w.iJoin!=pItem->iCursor ){ break; } } if( hasRightJoin && ExprHasProperty(pTerm->pExpr, EP_InnerON) && pTerm->pExpr->w.iJoin==pItem->iCursor ){ break; /* restriction (5) */ } } if( pTerm drop loop %c not used\n", pLoop->cId)); notReady &= ~pLoop->maskSelf; for(pTerm=pWInfo->sWC.a; pTermprereqAll & pLoop->maskSelf)!=0 ){ pTerm->wtFlags |= TERM_CODED; } } if( i!=pWInfo->nLevel-1 ){ int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); } pWInfo->nLevel--; assert( pWInfo->nLevel>0 ); } return notReady; } /* ** Check to see if there are any SEARCH loops that might benefit from ** using a Bloom filter. Consider a Bloom filter if: ** ** (1) The SEARCH happens more than N times where N is the number ** of rows in the table that is being considered for the Bloom ** filter. ** (2) Some searches are expected to find zero rows. (This is determined ** by the WHERE_SELFCULL flag on the term.) ** (3) Bloom-filter processing is not disabled. (Checked by the ** caller.) ** (4) The size of the table being searched is known by ANALYZE. ** ** This block of code merely checks to see if a Bloom filter would be ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the ** WhereLoop. The implementation of the Bloom filter comes further ** down where the code for each WhereLoop is generated. */ static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( const WhereInfo *pWInfo ){ int i; LogEst nSearch = 0; assert( pWInfo->nLevel>=2 ); assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); for(i=0; inLevel; i++){ WhereLoop *pLoop = pWInfo->a[i].pWLoop; const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; Table *pTab = pItem->pTab; if( (pTab->tabFlags & TF_HasStat1)==0 ) break; pTab->tabFlags |= TF_StatsUsed; if( i>=1 && (pLoop->wsFlags & reqFlags)==reqFlags /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) ){ if( nSearch > pTab->nRowLogEst ){ testcase( pItem->fg.jointype & JT_LEFT ); pLoop->wsFlags |= WHERE_BLOOMFILTER; pLoop->wsFlags &= ~WHERE_IDX_ONLY; WHERETRACE(0xffffffff, ( "-> use Bloom-filter on loop %c because there are ~%.1e " "lookups into %s which has only ~%.1e rows\n", pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, (double)sqlite3LogEstToInt(pTab->nRowLogEst))); } } nSearch += pLoop->nOut; } } /* ** The index pIdx is used by a query and contains one or more expressions. ** In other words pIdx is an index on an expression. iIdxCur is the cursor ** number for the index and iDataCur is the cursor number for the corresponding ** table. ** ** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for ** each of the expressions in the index so that the expression code generator ** will know to replace occurrences of the indexed expression with ** references to the corresponding column of the index. */ static SQLITE_NOINLINE void whereAddIndexedExpr( Parse *pParse, /* Add IndexedExpr entries to pParse->pIdxEpr */ Index *pIdx, /* The index-on-expression that contains the expressions */ int iIdxCur, /* Cursor number for pIdx */ SrcItem *pTabItem /* The FROM clause entry for the table */ ){ int i; IndexedExpr *p; Table *pTab; assert( pIdx->bHasExpr ); pTab = pIdx->pTable; for(i=0; inColumn; i++){ Expr *pExpr; int j = pIdx->aiColumn[i]; if( j==XN_EXPR ){ pExpr = pIdx->aColExpr->a[i].pExpr; }else if( j>=0 && (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)!=0 ){ pExpr = sqlite3ColumnExpr(pTab, &pTab->aCol[j]); }else{ continue; } if( sqlite3ExprIsConstant(pExpr) ) continue; if( pExpr->op==TK_FUNCTION ){ /* Functions that might set a subtype should not be replaced by the ** value taken from an expression index since the index omits the ** subtype. https://sqlite.org/forum/forumpost/68d284c86b082c3e */ int n; FuncDef *pDef; sqlite3 *db = pParse->db; assert( ExprUseXList(pExpr) ); n = pExpr->x.pList ? pExpr->x.pList->nExpr : 0; pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0); if( pDef==0 || (pDef->funcFlags & SQLITE_RESULT_SUBTYPE)!=0 ){ continue; } } p = sqlite3DbMallocRaw(pParse->db, sizeof(IndexedExpr)); if( p==0 ) break; p->pIENext = pParse->pIdxEpr; #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x200 ){ sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur, i); if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(pExpr); } #endif p->pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); p->iDataCur = pTabItem->iCursor; p->iIdxCur = iIdxCur; p->iIdxCol = i; p->bMaybeNullRow = (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0; if( sqlite3IndexAffinityStr(pParse->db, pIdx) ){ p->aff = pIdx->zColAff[i]; } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS p->zIdxName = pIdx->zName; #endif pParse->pIdxEpr = p; if( p->pIENext==0 ){ void *pArg = (void*)&pParse->pIdxEpr; sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg); } } } /* ** Set the reverse-scan order mask to one for all tables in the query ** with the exception of MATERIALIZED common table expressions that have ** their own internal ORDER BY clauses. ** ** This implements the PRAGMA reverse_unordered_selects=ON setting. ** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER). */ static SQLITE_NOINLINE void whereReverseScanOrder(WhereInfo *pWInfo){ int ii; for(ii=0; iipTabList->nSrc; ii++){ SrcItem *pItem = &pWInfo->pTabList->a[ii]; if( !pItem->fg.isCte || pItem->u2.pCteUse->eM10d!=M10d_Yes || NEVER(pItem->pSelect==0) || pItem->pSelect->pOrderBy==0 ){ pWInfo->revMask |= MASKBIT(ii); } } } /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. ** ** If an error occurs, this routine returns NULL. ** ** The basic idea is to do a nested loop, one loop for each table in ** the FROM clause of a select. (INSERT and UPDATE statements are the ** same as a SELECT with only a single table in the FROM clause.) For ** example, if the SQL is this: ** ** SELECT * FROM t1, t2, t3 WHERE ...; ** ** Then the code generated is conceptually like the following: ** ** foreach row1 in t1 do \ Code generated ** foreach row2 in t2 do |-- by sqlite3WhereBegin() ** foreach row3 in t3 do / ** ... ** end \ Code generated ** end |-- by sqlite3WhereEnd() ** end / ** ** Note that the loops might not be nested in the order in which they ** appear in the FROM clause if a different order is better able to make ** use of indices. Note also that when the IN operator appears in ** the WHERE clause, it might result in additional nested loops for ** scanning through all values on the right-hand side of the IN. ** ** There are Btree cursors associated with each table. t1 uses cursor ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. ** And so forth. This routine generates code to open those VDBE cursors ** and sqlite3WhereEnd() generates the code to close them. ** ** The code that sqlite3WhereBegin() generates leaves the cursors named ** in pTabList pointing at their appropriate entries. The [...] code ** can use OP_Column and OP_Rowid opcodes on these cursors to extract ** data from the various tables of the loop. ** ** If the WHERE clause is empty, the foreach loops must each scan their ** entire tables. Thus a three-way join is an O(N^3) operation. But if ** the tables have indices and there are terms in the WHERE clause that ** refer to those indices, a complete table scan can be avoided and the ** code will run much faster. Most of the work of this routine is checking ** to see if there are indices that can be used to speed up the loop. ** ** Terms of the WHERE clause are also used to limit which rows actually ** make it to the "..." in the middle of the loop. After each "foreach", ** terms of the WHERE clause that use only terms in that loop and outer ** loops are evaluated and if false a jump is made around all subsequent ** inner loops (or around the "..." if the test occurs within the inner- ** most loop) ** ** OUTER JOINS ** ** An outer join of tables t1 and t2 is conceptually coded as follows: ** ** foreach row1 in t1 do ** flag = 0 ** foreach row2 in t2 do ** start: ** ... ** flag = 1 ** end ** if flag==0 then ** move the row2 cursor to a null row ** goto start ** fi ** end ** ** ORDER BY CLAUSE PROCESSING ** ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement ** if there is one. If there is no ORDER BY clause or if this routine ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. ** ** The iIdxCur parameter is the cursor number of an index. If ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index ** to use for OR clause processing. The WHERE clause should use this ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is ** the first cursor in an array of cursors for all indices. iIdxCur should ** be used to compute the appropriate cursor depending on which index is ** used. */ SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin( Parse *pParse, /* The parser context */ SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ Expr *pWhere, /* The WHERE clause */ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ Select *pSelect, /* The entire SELECT statement */ u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number ** If WHERE_USE_LIMIT, then the limit amount */ ){ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ int nTabList; /* Number of elements in pTabList */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ Bitmask notReady; /* Cursors that are not yet positioned */ WhereLoopBuilder sWLB; /* The WhereLoop builder */ WhereMaskSet *pMaskSet; /* The expression mask set */ WhereLevel *pLevel; /* A single level in pWInfo->a[] */ WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ int ii; /* Loop counter */ sqlite3 *db; /* Database connection */ int rc; /* Return code */ u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 )); /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); /* Variable initialization */ db = pParse->db; memset(&sWLB, 0, sizeof(sWLB)); /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); if( pOrderBy && pOrderBy->nExpr>=BMS ){ pOrderBy = 0; wctrlFlags &= ~WHERE_WANT_DISTINCT; } /* The number of tables in the FROM clause is limited by the number of ** bits in a Bitmask */ testcase( pTabList->nSrc==BMS ); if( pTabList->nSrc>BMS ){ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); return 0; } /* This function normally generates a nested loop for all tables in ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should ** only generate code for the first table in pTabList and assume that ** any cursors associated with subsequent tables are uninitialized. */ nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; /* Allocate and initialize the WhereInfo structure that will become the ** return value. A single allocation is used to store the WhereInfo ** struct, the contents of WhereInfo.a[], the WhereClause structure ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte ** field (type Bitmask) it must be aligned on an 8-byte boundary on ** some architectures. Hence the ROUND8() below. */ nByteWInfo = ROUND8P(sizeof(WhereInfo)); if( nTabList>1 ){ nByteWInfo = ROUND8P(nByteWInfo + (nTabList-1)*sizeof(WhereLevel)); } pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); if( db->mallocFailed ){ sqlite3DbFree(db, pWInfo); pWInfo = 0; goto whereBeginError; } pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; pWInfo->pOrderBy = pOrderBy; #if WHERETRACE_ENABLED pWInfo->pWhere = pWhere; #endif pWInfo->pResultSet = pResultSet; pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; pWInfo->nLevel = nTabList; pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); pWInfo->wctrlFlags = wctrlFlags; pWInfo->iLimit = iAuxArg; pWInfo->savedNQueryLoop = pParse->nQueryLoop; pWInfo->pSelect = pSelect; memset(&pWInfo->nOBSat, 0, offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ pMaskSet = &pWInfo->sMaskSet; pMaskSet->n = 0; pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be ** a valid cursor number, to avoid an initial ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ sWLB.pWInfo = pWInfo; sWLB.pWC = &pWInfo->sWC; sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); whereLoopInit(sWLB.pNew); #ifdef SQLITE_DEBUG sWLB.pNew->cId = '*'; #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); /* Special case: No FROM clause */ if( nTabList==0 ){ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 && OptimizationEnabled(db, SQLITE_DistinctOpt) ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); }else{ /* Assign a bit from the bitmask to every term in the FROM clause. ** ** The N-th term of the FROM clause is assigned a bitmask of 1<nSrc tables in ** pTabList, not just the first nTabList tables. nTabList is normally ** equal to pTabList->nSrc but might be shortened to 1 if the ** WHERE_OR_SUBCLAUSE flag is set. */ ii = 0; do{ createMask(pMaskSet, pTabList->a[ii].iCursor); sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); }while( (++ii)nSrc ); #ifdef SQLITE_DEBUG { Bitmask mx = 0; for(ii=0; iinSrc; ii++){ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); assert( m>=mx ); mx = m; } } #endif } /* Analyze all of the subexpressions. */ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); if( pSelect && pSelect->pLimit ){ sqlite3WhereAddLimit(&pWInfo->sWC, pSelect); } if( pParse->nErr ) goto whereBeginError; /* The False-WHERE-Term-Bypass optimization: ** ** If there are WHERE terms that are false, then no rows will be output, ** so skip over all of the code generated here. ** ** Conditions: ** ** (1) The WHERE term must not refer to any tables in the join. ** (2) The term must not come from an ON clause on the ** right-hand side of a LEFT or FULL JOIN. ** (3) The term must not come from an ON clause, or there must be ** no RIGHT or FULL OUTER joins in pTabList. ** (4) If the expression contains non-deterministic functions ** that are not within a sub-select. This is not required ** for correctness but rather to preserves SQLite's legacy ** behaviour in the following two cases: ** ** WHERE random()>0; -- eval random() once per row ** WHERE (SELECT random())>0; -- eval random() just once overall ** ** Note that the Where term need not be a constant in order for this ** optimization to apply, though it does need to be constant relative to ** the current subquery (condition 1). The term might include variables ** from outer queries so that the value of the term changes from one ** invocation of the current subquery to the next. */ for(ii=0; iinBase; ii++){ WhereTerm *pT = &sWLB.pWC->a[ii]; /* A term of the WHERE clause */ Expr *pX; /* The expression of pT */ if( pT->wtFlags & TERM_VIRTUAL ) continue; pX = pT->pExpr; assert( pX!=0 ); assert( pT->prereqAll!=0 || !ExprHasProperty(pX, EP_OuterON) ); if( pT->prereqAll==0 /* Conditions (1) and (2) */ && (nTabList==0 || exprIsDeterministic(pX)) /* Condition (4) */ && !(ExprHasProperty(pX, EP_InnerON) /* Condition (3) */ && (pTabList->a[0].fg.jointype & JT_LTORJ)!=0 ) ){ sqlite3ExprIfFalse(pParse, pX, pWInfo->iBreak, SQLITE_JUMPIFNULL); pT->wtFlags |= TERM_CODED; } } if( wctrlFlags & WHERE_WANT_DISTINCT ){ if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ wctrlFlags &= ~WHERE_WANT_DISTINCT; pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ /* The DISTINCT marking is pointless. Ignore it. */ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; }else if( pOrderBy==0 ){ /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; pWInfo->pOrderBy = pResultSet; } } /* Construct the WhereLoop objects */ #if defined(WHERETRACE_ENABLED) if( sqlite3WhereTrace & 0xffffffff ){ sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); if( wctrlFlags & WHERE_USE_LIMIT ){ sqlite3DebugPrintf(", limit: %d", iAuxArg); } sqlite3DebugPrintf(")\n"); if( sqlite3WhereTrace & 0x8000 ){ Select sSelect; memset(&sSelect, 0, sizeof(sSelect)); sSelect.selFlags = SF_WhereBegin; sSelect.pSrc = pTabList; sSelect.pWhere = pWhere; sSelect.pOrderBy = pOrderBy; sSelect.pEList = pResultSet; sqlite3TreeViewSelect(0, &sSelect, 0); } if( sqlite3WhereTrace & 0x4000 ){ /* Display all WHERE clause terms */ sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); sqlite3WhereClausePrint(sWLB.pWC); } } #endif if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ rc = whereLoopAddAll(&sWLB); if( rc ) goto whereBeginError; #ifdef SQLITE_ENABLE_STAT4 /* If one or more WhereTerm.truthProb values were used in estimating ** loop parameters, but then those truthProb values were subsequently ** changed based on STAT4 information while computing subsequent loops, ** then we need to rerun the whole loop building process so that all ** loops will be built using the revised truthProb values. */ if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); WHERETRACE(0xffffffff, ("**** Redo all loop computations due to" " TERM_HIGHTRUTH changes ****\n")); while( pWInfo->pLoops ){ WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } rc = whereLoopAddAll(&sWLB); if( rc ) goto whereBeginError; } #endif WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); wherePathSolver(pWInfo, 0); if( db->mallocFailed ) goto whereBeginError; if( pWInfo->pOrderBy ){ wherePathSolver(pWInfo, pWInfo->nRowOut+1); if( db->mallocFailed ) goto whereBeginError; } /* TUNING: Assume that a DISTINCT clause on a subquery reduces ** the output size by a factor of 8 (LogEst -30). */ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 ){ WHERETRACE(0x0080,("nRowOut reduced from %d to %d due to DISTINCT\n", pWInfo->nRowOut, pWInfo->nRowOut-30)); pWInfo->nRowOut -= 30; } } assert( pWInfo->pTabList!=0 ); if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ whereReverseScanOrder(pWInfo); } if( pParse->nErr ){ goto whereBeginError; } assert( db->mallocFailed==0 ); #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace ){ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); if( pWInfo->nOBSat>0 ){ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); } switch( pWInfo->eDistinct ){ case WHERE_DISTINCT_UNIQUE: { sqlite3DebugPrintf(" DISTINCT=unique"); break; } case WHERE_DISTINCT_ORDERED: { sqlite3DebugPrintf(" DISTINCT=ordered"); break; } case WHERE_DISTINCT_UNORDERED: { sqlite3DebugPrintf(" DISTINCT=unordered"); break; } } sqlite3DebugPrintf("\n"); for(ii=0; iinLevel; ii++){ sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); } } #endif /* Attempt to omit tables from a join that do not affect the result. ** See the comment on whereOmitNoopJoin() for further information. ** ** This query optimization is factored out into a separate "no-inline" ** procedure to keep the sqlite3WhereBegin() procedure from becoming ** too large. If sqlite3WhereBegin() becomes too large, that prevents ** some C-compiler optimizers from in-lining the ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. */ notReady = ~(Bitmask)0; if( pWInfo->nLevel>=2 && pResultSet!=0 /* these two combine to guarantee */ && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ){ notReady = whereOmitNoopJoin(pWInfo, notReady); nTabList = pWInfo->nLevel; assert( nTabList>0 ); } /* Check to see if there are any SEARCH loops that might benefit from ** using a Bloom filter. */ if( pWInfo->nLevel>=2 && OptimizationEnabled(db, SQLITE_BloomFilter) ){ whereCheckIfBloomFilterIsUseful(pWInfo); } #if defined(WHERETRACE_ENABLED) if( sqlite3WhereTrace & 0x4000 ){ /* Display all terms of the WHERE clause */ sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); sqlite3WhereClausePrint(sWLB.pWC); } WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n")); #endif pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** ** A one-pass approach can be used if the caller has requested one ** and either (a) the scan visits at most one row or (b) each ** of the following are true: ** ** * the caller has indicated that a one-pass approach can be used ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and ** * the table is not a virtual table, and ** * either the scan does not use the OR optimization or the caller ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified ** for DELETE). ** ** The last qualification is because an UPDATE statement uses ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can ** use a one-pass approach, and this is not set accurately for scans ** that use the OR optimization. */ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ int wsFlags = pWInfo->a[0].pWLoop->wsFlags; int bOnerow = (wsFlags & WHERE_ONEROW)!=0; assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); if( bOnerow || ( 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) && !IsVirtual(pTabList->a[0].pTab) && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) && OptimizationEnabled(db, SQLITE_OnePass) )){ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ bFordelete = OPFLAG_FORDELETE; } pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); } } } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ for(ii=0, pLevel=pWInfo->a; iia[pLevel->iFrom]; pTab = pTabItem->pTab; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); pLoop = pLevel->pWLoop; if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ /* Do nothing */ }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); int iCur = pTabItem->iCursor; sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); }else if( IsVirtual(pTab) ){ /* noop */ }else #endif if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 ){ int op = OP_OpenRead; if( pWInfo->eOnePass!=ONEPASS_OFF ){ op = OP_OpenWrite; pWInfo->aiCurOnePass[0] = pTabItem->iCursor; }; sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); assert( pTabItem->iCursor==pLevel->iTabCur ); testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nColtabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 ){ /* If we know that only a prefix of the record will be used, ** it is advantageous to reduce the "column count" field in ** the P4 operand of the OP_OpenRead/Write opcode. */ Bitmask b = pTabItem->colUsed; int n = 0; for(; b; b=b>>1, n++){} sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); assert( n<=pTab->nCol ); } #ifdef SQLITE_ENABLE_CURSOR_HINTS if( pLoop->u.btree.pIndex!=0 && (pTab->tabFlags & TF_WithoutRowid)==0 ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); }else #endif { sqlite3VdbeChangeP5(v, bFordelete); } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, (const u8*)&pTabItem->colUsed, P4_INT64); #endif }else{ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); } if( pLoop->wsFlags & WHERE_INDEXED ){ Index *pIx = pLoop->u.btree.pIndex; int iIndexCur; int op = OP_OpenRead; /* iAuxArg is always set to a positive value if ONEPASS is possible */ assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ /* This is one term of an OR-optimization using the PRIMARY KEY of a ** WITHOUT ROWID table. No need for a separate index */ iIndexCur = pLevel->iTabCur; op = 0; }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ Index *pJ = pTabItem->pTab->pIndex; iIndexCur = iAuxArg; assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); while( ALWAYS(pJ) && pJ!=pIx ){ iIndexCur++; pJ = pJ->pNext; } op = OP_OpenWrite; pWInfo->aiCurOnePass[1] = iIndexCur; }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ iIndexCur = iAuxArg; op = OP_ReopenIdx; }else{ iIndexCur = pParse->nTab++; if( pIx->bHasExpr && OptimizationEnabled(db, SQLITE_IndexedExpr) ){ whereAddIndexedExpr(pParse, pIx, iIndexCur, pTabItem); } if( pIx->pPartIdxWhere && (pTabItem->fg.jointype & JT_RIGHT)==0 ){ wherePartIdxExpr( pParse, pIx, pIx->pPartIdxWhere, 0, iIndexCur, pTabItem ); } } pLevel->iIdxCur = iIndexCur; assert( pIx!=0 ); assert( pIx->pSchema==pTab->pSchema ); assert( iIndexCur>=0 ); if( op ){ sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIx); if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); } VdbeComment((v, "%s", pIx->zName)); #ifdef SQLITE_ENABLE_COLUMN_USED_MASK { u64 colUsed = 0; int ii, jj; for(ii=0; iinColumn; ii++){ jj = pIx->aiColumn[ii]; if( jj<0 ) continue; if( jj>63 ) jj = 63; if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; colUsed |= ((u64)1)<<(ii<63 ? ii : 63); } sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, (u8*)&colUsed, P4_INT64); } #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ } } if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); if( (pTabItem->fg.jointype & JT_RIGHT)!=0 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 ){ WhereRightJoin *pRJ = pLevel->pRJ; pRJ->iMatch = pParse->nTab++; pRJ->regBloom = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); pRJ->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); assert( pTab==pTabItem->pTab ); if( HasRowid(pTab) ){ KeyInfo *pInfo; sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); if( pInfo ){ pInfo->aColl[0] = 0; pInfo->aSortFlags[0] = 0; sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); } }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } pLoop->wsFlags &= ~WHERE_IDX_ONLY; /* The nature of RIGHT JOIN processing is such that it messes up ** the output order. So omit any ORDER BY/GROUP BY elimination ** optimizations. We need to do an actual sort for RIGHT JOIN. */ pWInfo->nOBSat = 0; pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; } } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ for(ii=0; iinErr ) goto whereBeginError; pLevel = &pWInfo->a[ii]; wsFlags = pLevel->pWLoop->wsFlags; pSrc = &pTabList->a[pLevel->iFrom]; if( pSrc->fg.isMaterialized ){ if( pSrc->fg.isCorrelated ){ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); }else{ int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); sqlite3VdbeJumpHere(v, iOnce); } } assert( pTabList == pWInfo->pTabList ); if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ #ifndef SQLITE_OMIT_AUTOMATIC_INDEX constructAutomaticIndex(pParse, &pWInfo->sWC, notReady, pLevel); #endif }else{ sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); } if( db->mallocFailed ) goto whereBeginError; } addrExplain = sqlite3WhereExplainOneScan( pParse, pTabList, pLevel, wctrlFlags ); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); pWInfo->iContinue = pLevel->addrCont; if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); } } /* Done. */ VdbeModuleComment((v, "Begin WHERE-core")); pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); return pWInfo; /* Jump here if malloc fails */ whereBeginError: if( pWInfo ){ pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); } #ifdef WHERETRACE_ENABLED /* Prevent harmless compiler warnings about debugging routines ** being declared but never used */ sqlite3ShowWhereLoopList(0); #endif /* WHERETRACE_ENABLED */ return 0; } /* ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the ** index rather than the main table. In SQLITE_DEBUG mode, we want ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine ** does that. */ #ifndef SQLITE_DEBUG # define OpcodeRewriteTrace(D,K,P) /* no-op */ #else # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) static void sqlite3WhereOpcodeRewriteTrace( sqlite3 *db, int pc, VdbeOp *pOp ){ if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; sqlite3VdbePrintOp(0, pc, pOp); } #endif #ifdef SQLITE_DEBUG /* ** Return true if cursor iCur is opened by instruction k of the ** bytecode. Used inside of assert() only. */ static int cursorIsOpen(Vdbe *v, int iCur, int k){ while( k>=0 ){ VdbeOp *pOp = sqlite3VdbeGetOp(v,k--); if( pOp->p1!=iCur ) continue; if( pOp->opcode==OP_Close ) return 0; if( pOp->opcode==OP_OpenRead ) return 1; if( pOp->opcode==OP_OpenWrite ) return 1; if( pOp->opcode==OP_OpenDup ) return 1; if( pOp->opcode==OP_OpenAutoindex ) return 1; if( pOp->opcode==OP_OpenEphemeral ) return 1; } return 0; } #endif /* SQLITE_DEBUG */ /* ** Generate the end of the WHERE loop. See comments on ** sqlite3WhereBegin() for additional information. */ SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){ Parse *pParse = pWInfo->pParse; Vdbe *v = pParse->pVdbe; int i; WhereLevel *pLevel; WhereLoop *pLoop; SrcList *pTabList = pWInfo->pTabList; sqlite3 *db = pParse->db; int iEnd = sqlite3VdbeCurrentAddr(v); int nRJ = 0; /* Generate loop termination code. */ VdbeModuleComment((v, "End WHERE-core")); for(i=pWInfo->nLevel-1; i>=0; i--){ int addr; pLevel = &pWInfo->a[i]; if( pLevel->pRJ ){ /* Terminate the subroutine that forms the interior of the loop of ** the RIGHT JOIN table */ WhereRightJoin *pRJ = pLevel->pRJ; sqlite3VdbeResolveLabel(v, pLevel->addrCont); pLevel->addrCont = 0; pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); VdbeCoverage(v); nRJ++; } pLoop = pLevel->pWLoop; if( pLevel->op!=OP_Noop ){ #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT int addrSeek = 0; Index *pIdx; int n; if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ && (pLoop->wsFlags & WHERE_INDEXED)!=0 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 && (n = pLoop->u.btree.nDistinctCol)>0 && pIdx->aiRowLogEst[n]>=36 ){ int r1 = pParse->nMem+1; int j, op; for(j=0; jiIdxCur, j, r1+j); } pParse->nMem += n+1; op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); VdbeCoverageIf(v, op==OP_SeekLT); VdbeCoverageIf(v, op==OP_SeekGT); sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); } #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ /* The common case: Advance to the next row */ if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); sqlite3VdbeChangeP5(v, pLevel->p5); VdbeCoverage(v); VdbeCoverageIf(v, pLevel->op==OP_Next); VdbeCoverageIf(v, pLevel->op==OP_Prev); VdbeCoverageIf(v, pLevel->op==OP_VNext); if( pLevel->regBignull ){ sqlite3VdbeResolveLabel(v, pLevel->addrBignull); sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); VdbeCoverage(v); } #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); #endif }else if( pLevel->addrCont ){ sqlite3VdbeResolveLabel(v, pLevel->addrCont); } if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull || pParse->db->mallocFailed ); sqlite3VdbeJumpHere(v, pIn->addrInTop+1); if( pIn->eEndLoopOp!=OP_Noop ){ if( pIn->nPrefix ){ int bEarlyOut = (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; if( pLevel->iLeftJoin ){ /* For LEFT JOIN queries, cursor pIn->iCur may not have been ** opened yet. This occurs for WHERE clauses such as ** "a = ? AND b IN (...)", where the index is on (a, b). If ** the RHS of the (a=?) is NULL, then the "b IN (...)" may ** never have been coded, but the body of the loop run to ** return the null-row. So, if the cursor is not open yet, ** jump over the OP_Next or OP_Prev instruction about to ** be coded. */ sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); VdbeCoverage(v); } if( bEarlyOut ){ sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, sqlite3VdbeCurrentAddr(v)+2, pIn->iBase, pIn->nPrefix); VdbeCoverage(v); /* Retarget the OP_IsNull against the left operand of IN so ** it jumps past the OP_IfNoHope. This is because the ** OP_IsNull also bypasses the OP_Affinity opcode that is ** required by OP_IfNoHope. */ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); } } sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); VdbeCoverage(v); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); } sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->pRJ ){ sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); VdbeCoverage(v); } if( pLevel->addrSkip ){ sqlite3VdbeGoto(v, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if( pLevel->addrLikeRep ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), pLevel->addrLikeRep); VdbeCoverage(v); } #endif if( pLevel->iLeftJoin ){ int ws = pLoop->wsFlags; addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); if( (ws & WHERE_IDX_ONLY)==0 ){ assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); } if( (ws & WHERE_INDEXED) || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) ){ if( ws & WHERE_MULTI_OR ){ Index *pIx = pLevel->u.pCoveringIdx; int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIx); } sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); } if( pLevel->op==OP_Return ){ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); }else{ sqlite3VdbeGoto(v, pLevel->addrFirst); } sqlite3VdbeJumpHere(v, addr); } VdbeModuleComment((v, "End WHERE-loop%d: %s", i, pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); } assert( pWInfo->nLevel<=pTabList->nSrc ); for(i=0, pLevel=pWInfo->a; inLevel; i++, pLevel++){ int k, last; VdbeOp *pOp, *pLastOp; Index *pIdx = 0; SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; Table *pTab = pTabItem->pTab; assert( pTab!=0 ); pLoop = pLevel->pWLoop; /* Do RIGHT JOIN processing. Generate code that will output the ** unmatched rows of the right operand of the RIGHT JOIN with ** all of the columns of the left operand set to NULL. */ if( pLevel->pRJ ){ sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); continue; } /* For a co-routine, change all OP_Column references to the table of ** the co-routine into OP_Copy of result contained in a register. ** OP_Rowid becomes OP_Null. */ if( pTabItem->fg.viaCoroutine ){ testcase( pParse->db->mallocFailed ); translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, pTabItem->regResult, 0); continue; } /* If this scan uses an index, make VDBE code substitutions to read data ** from the index instead of from the table where possible. In some cases ** this optimization prevents the table from ever being read, which can ** yield a significant performance boost. ** ** Calls to the code generator in between sqlite3WhereBegin and ** sqlite3WhereEnd will have created code that references the table ** directly. This loop scans all that code looking for opcodes ** that reference the table and converts them into opcodes that ** reference the index. */ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ pIdx = pLoop->u.btree.pIndex; }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ pIdx = pLevel->u.pCoveringIdx; } if( pIdx && !db->mallocFailed ){ if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ last = iEnd; }else{ last = pWInfo->iEndWhere; } if( pIdx->bHasExpr ){ IndexedExpr *p = pParse->pIdxEpr; while( p ){ if( p->iIdxCur==pLevel->iIdxCur ){ #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace & 0x200 ){ sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n", p->iIdxCur, p->iIdxCol); if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(p->pExpr); } #endif p->iDataCur = -1; p->iIdxCur = -1; } p = p->pIENext; } } k = pLevel->addrBody + 1; #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeAddopTrace ){ printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n", pLevel->iTabCur, pLevel->iIdxCur, k, last-1); } /* Proof that the "+1" on the k value above is safe */ pOp = sqlite3VdbeGetOp(v, k - 1); assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); #endif pOp = sqlite3VdbeGetOp(v, k); pLastOp = pOp + (last - k); assert( pOp<=pLastOp ); do{ if( pOp->p1!=pLevel->iTabCur ){ /* no-op */ }else if( pOp->opcode==OP_Column #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC || pOp->opcode==OP_Offset #endif ){ int x = pOp->p2; assert( pIdx->pTable==pTab ); #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC if( pOp->opcode==OP_Offset ){ /* Do not need to translate the column number */ }else #endif if( !HasRowid(pTab) ){ Index *pPk = sqlite3PrimaryKeyIndex(pTab); x = pPk->aiColumn[x]; assert( x>=0 ); }else{ testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); x = sqlite3StorageColumnToTable(pTab,x); } x = sqlite3TableColumnToIndex(pIdx, x); if( x>=0 ){ pOp->p2 = x; pOp->p1 = pLevel->iIdxCur; OpcodeRewriteTrace(db, k, pOp); }else{ /* Unable to translate the table reference into an index ** reference. Verify that this is harmless - that the ** table being referenced really is open. */ #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || cursorIsOpen(v,pOp->p1,k) || pOp->opcode==OP_Offset ); #else assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || cursorIsOpen(v,pOp->p1,k) ); #endif } }else if( pOp->opcode==OP_Rowid ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRowid; OpcodeRewriteTrace(db, k, pOp); }else if( pOp->opcode==OP_IfNullRow ){ pOp->p1 = pLevel->iIdxCur; OpcodeRewriteTrace(db, k, pOp); } #ifdef SQLITE_DEBUG k++; #endif }while( (++pOp)flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); #endif } } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); /* Final cleanup */ pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); pParse->withinRJSubrtn -= nRJ; return; } /************** End of where.c ***********************************************/ /************** Begin file window.c ******************************************/ /* ** 2018 May 08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_WINDOWFUNC /* ** SELECT REWRITING ** ** Any SELECT statement that contains one or more window functions in ** either the select list or ORDER BY clause (the only two places window ** functions may be used) is transformed by function sqlite3WindowRewrite() ** in order to support window function processing. For example, with the ** schema: ** ** CREATE TABLE t1(a, b, c, d, e, f, g); ** ** the statement: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; ** ** is transformed to: ** ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d ** ) ORDER BY e; ** ** The flattening optimization is disabled when processing this transformed ** SELECT statement. This allows the implementation of the window function ** (in this case max()) to process rows sorted in order of (c, d), which ** makes things easier for obvious reasons. More generally: ** ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to ** the sub-query. ** ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. ** ** * Terminals from each of the expression trees that make up the ** select-list and ORDER BY expressions in the parent query are ** selected by the sub-query. For the purposes of the transformation, ** terminals are column references and aggregate functions. ** ** If there is more than one window function in the SELECT that uses ** the same window declaration (the OVER bit), then a single scan may ** be used to process more than one window function. For example: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY c ORDER BY d) ** FROM t1; ** ** is transformed in the same way as the example above. However: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), ** min(e) OVER (PARTITION BY a ORDER BY b) ** FROM t1; ** ** Must be transformed to: ** ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b ** ) ORDER BY c, d ** ) ORDER BY e; ** ** so that both min() and max() may process rows in the order defined by ** their respective window declarations. ** ** INTERFACE WITH SELECT.C ** ** When processing the rewritten SELECT statement, code in select.c calls ** sqlite3WhereBegin() to begin iterating through the results of the ** sub-query, which is always implemented as a co-routine. It then calls ** sqlite3WindowCodeStep() to process rows and finish the scan by calling ** sqlite3WhereEnd(). ** ** sqlite3WindowCodeStep() generates VM code so that, for each row returned ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. ** When the sub-routine is invoked: ** ** * The results of all window-functions for the row are stored ** in the associated Window.regResult registers. ** ** * The required terminal values are stored in the current row of ** temp table Window.iEphCsr. ** ** In some cases, depending on the window frame and the specific window ** functions invoked, sqlite3WindowCodeStep() caches each entire partition ** in a temp table before returning any rows. In other cases it does not. ** This detail is encapsulated within this file, the code generated by ** select.c is the same in either case. ** ** BUILT-IN WINDOW FUNCTIONS ** ** This implementation features the following built-in window functions: ** ** row_number() ** rank() ** dense_rank() ** percent_rank() ** cume_dist() ** ntile(N) ** lead(expr [, offset [, default]]) ** lag(expr [, offset [, default]]) ** first_value(expr) ** last_value(expr) ** nth_value(expr, N) ** ** These are the same built-in window functions supported by Postgres. ** Although the behaviour of aggregate window functions (functions that ** can be used as either aggregates or window functions) allows them to ** be implemented using an API, built-in window functions are much more ** esoteric. Additionally, some window functions (e.g. nth_value()) ** may only be implemented by caching the entire partition in memory. ** As such, some built-in window functions use the same API as aggregate ** window functions and some are implemented directly using VDBE ** instructions. Additionally, for those functions that use the API, the ** window frame is sometimes modified before the SELECT statement is ** rewritten. For example, regardless of the specified window frame, the ** row_number() function always uses: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ** ** See sqlite3WindowUpdate() for details. ** ** As well as some of the built-in window functions, aggregate window ** functions min() and max() are implemented using VDBE instructions if ** the start of the window frame is declared as anything other than ** UNBOUNDED PRECEDING. */ /* ** Implementation of built-in window function row_number(). Assumes that the ** window frame has been coerced to: ** ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void row_numberStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) (*p)++; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void row_numberValueFunc(sqlite3_context *pCtx){ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); sqlite3_result_int64(pCtx, (p ? *p : 0)); } /* ** Context object type used by rank(), dense_rank(), percent_rank() and ** cume_dist(). */ struct CallCount { i64 nValue; i64 nStep; i64 nTotal; }; /* ** Implementation of built-in window function dense_rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void dense_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ) p->nStep = 1; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void dense_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nStep ){ p->nValue++; p->nStep = 0; } sqlite3_result_int64(pCtx, p->nValue); } } /* ** Implementation of built-in window function nth_value(). This ** implementation is used in "slow mode" only - when the EXCLUDE clause ** is not set to the default value "NO OTHERS". */ struct NthValueCtx { i64 nStep; sqlite3_value *pValue; }; static void nth_valueStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ i64 iVal; switch( sqlite3_value_numeric_type(apArg[1]) ){ case SQLITE_INTEGER: iVal = sqlite3_value_int64(apArg[1]); break; case SQLITE_FLOAT: { double fVal = sqlite3_value_double(apArg[1]); if( ((i64)fVal)!=fVal ) goto error_out; iVal = (i64)fVal; break; } default: goto error_out; } if( iVal<=0 ) goto error_out; p->nStep++; if( iVal==p->nStep ){ p->pValue = sqlite3_value_dup(apArg[0]); if( !p->pValue ){ sqlite3_result_error_nomem(pCtx); } } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); return; error_out: sqlite3_result_error( pCtx, "second argument to nth_value must be a positive integer", -1 ); } static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); if( p && p->pValue ){ sqlite3_result_value(pCtx, p->pValue); sqlite3_value_free(p->pValue); p->pValue = 0; } } #define nth_valueInvFunc noopStepFunc #define nth_valueValueFunc noopValueFunc static void first_valueStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pValue==0 ){ p->pValue = sqlite3_value_dup(apArg[0]); if( !p->pValue ){ sqlite3_result_error_nomem(pCtx); } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void first_valueFinalizeFunc(sqlite3_context *pCtx){ struct NthValueCtx *p; p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pValue ){ sqlite3_result_value(pCtx, p->pValue); sqlite3_value_free(p->pValue); p->pValue = 0; } } #define first_valueInvFunc noopStepFunc #define first_valueValueFunc noopValueFunc /* ** Implementation of built-in window function rank(). Assumes that ** the window frame has been set to: ** ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW */ static void rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nStep++; if( p->nValue==0 ){ p->nValue = p->nStep; } } UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); } static void rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ sqlite3_result_int64(pCtx, p->nValue); p->nValue = 0; } } /* ** Implementation of built-in window function percent_rank(). Assumes that ** the window frame has been set to: ** ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING */ static void percent_rankStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nTotal++; } } static void percent_rankInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->nStep++; } static void percent_rankValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nValue = p->nStep; if( p->nTotal>1 ){ double r = (double)p->nValue / (double)(p->nTotal-1); sqlite3_result_double(pCtx, r); }else{ sqlite3_result_double(pCtx, 0.0); } } } #define percent_rankFinalizeFunc percent_rankValueFunc /* ** Implementation of built-in window function cume_dist(). Assumes that ** the window frame has been set to: ** ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING */ static void cume_distStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ p->nTotal++; } } static void cume_distInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct CallCount *p; UNUSED_PARAMETER(nArg); assert( nArg==0 ); UNUSED_PARAMETER(apArg); p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->nStep++; } static void cume_distValueFunc(sqlite3_context *pCtx){ struct CallCount *p; p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); if( p ){ double r = (double)(p->nStep) / (double)(p->nTotal); sqlite3_result_double(pCtx, r); } } #define cume_distFinalizeFunc cume_distValueFunc /* ** Context object for ntile() window function. */ struct NtileCtx { i64 nTotal; /* Total rows in partition */ i64 nParam; /* Parameter passed to ntile(N) */ i64 iRow; /* Current row */ }; /* ** Implementation of ntile(). This assumes that the window frame has ** been coerced to: ** ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING */ static void ntileStepFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NtileCtx *p; assert( nArg==1 ); UNUSED_PARAMETER(nArg); p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p ){ if( p->nTotal==0 ){ p->nParam = sqlite3_value_int64(apArg[0]); if( p->nParam<=0 ){ sqlite3_result_error( pCtx, "argument of ntile must be a positive integer", -1 ); } } p->nTotal++; } } static void ntileInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct NtileCtx *p; assert( nArg==1 ); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); p->iRow++; } static void ntileValueFunc(sqlite3_context *pCtx){ struct NtileCtx *p; p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->nParam>0 ){ int nSize = (p->nTotal / p->nParam); if( nSize==0 ){ sqlite3_result_int64(pCtx, p->iRow+1); }else{ i64 nLarge = p->nTotal - p->nParam*nSize; i64 iSmall = nLarge*(nSize+1); i64 iRow = p->iRow; assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); if( iRowpVal); p->pVal = sqlite3_value_dup(apArg[0]); if( p->pVal==0 ){ sqlite3_result_error_nomem(pCtx); }else{ p->nVal++; } } } static void last_valueInvFunc( sqlite3_context *pCtx, int nArg, sqlite3_value **apArg ){ struct LastValueCtx *p; UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(apArg); p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( ALWAYS(p) ){ p->nVal--; if( p->nVal==0 ){ sqlite3_value_free(p->pVal); p->pVal = 0; } } } static void last_valueValueFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); } } static void last_valueFinalizeFunc(sqlite3_context *pCtx){ struct LastValueCtx *p; p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); if( p && p->pVal ){ sqlite3_result_value(pCtx, p->pVal); sqlite3_value_free(p->pVal); p->pVal = 0; } } /* ** Static names for the built-in window function names. These static ** names are used, rather than string literals, so that FuncDef objects ** can be associated with a particular window function by direct ** comparison of the zName pointer. Example: ** ** if( pFuncDef->zName==row_valueName ){ ... } */ static const char row_numberName[] = "row_number"; static const char dense_rankName[] = "dense_rank"; static const char rankName[] = "rank"; static const char percent_rankName[] = "percent_rank"; static const char cume_distName[] = "cume_dist"; static const char ntileName[] = "ntile"; static const char last_valueName[] = "last_value"; static const char nth_valueName[] = "nth_value"; static const char first_valueName[] = "first_value"; static const char leadName[] = "lead"; static const char lagName[] = "lag"; /* ** No-op implementations of xStep() and xFinalize(). Used as place-holders ** for built-in window functions that never call those interfaces. ** ** The noopValueFunc() is called but is expected to do nothing. The ** noopStepFunc() is never called, and so it is marked with NO_TEST to ** let the test coverage routine know not to expect this function to be ** invoked. */ static void noopStepFunc( /*NO_TEST*/ sqlite3_context *p, /*NO_TEST*/ int n, /*NO_TEST*/ sqlite3_value **a /*NO_TEST*/ ){ /*NO_TEST*/ UNUSED_PARAMETER(p); /*NO_TEST*/ UNUSED_PARAMETER(n); /*NO_TEST*/ UNUSED_PARAMETER(a); /*NO_TEST*/ assert(0); /*NO_TEST*/ } /*NO_TEST*/ static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } /* Window functions that use all window interfaces: xStep, xFinal, ** xValue, and xInverse */ #define WINDOWFUNCALL(name,nArg,extra) { \ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ name ## InvFunc, name ## Name, {0} \ } /* Window functions that are implemented using bytecode and thus have ** no-op routines for their methods */ #define WINDOWFUNCNOOP(name,nArg,extra) { \ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ noopStepFunc, noopValueFunc, noopValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* Window functions that use all window interfaces: xStep, the ** same routine for xFinalize and xValue and which never call ** xInverse. */ #define WINDOWFUNCX(name,nArg,extra) { \ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ noopStepFunc, name ## Name, {0} \ } /* ** Register those built-in window functions that are not also aggregates. */ SQLITE_PRIVATE void sqlite3WindowFunctions(void){ static FuncDef aWindowFuncs[] = { WINDOWFUNCX(row_number, 0, 0), WINDOWFUNCX(dense_rank, 0, 0), WINDOWFUNCX(rank, 0, 0), WINDOWFUNCALL(percent_rank, 0, 0), WINDOWFUNCALL(cume_dist, 0, 0), WINDOWFUNCALL(ntile, 1, 0), WINDOWFUNCALL(last_value, 1, 0), WINDOWFUNCALL(nth_value, 2, 0), WINDOWFUNCALL(first_value, 1, 0), WINDOWFUNCNOOP(lead, 1, 0), WINDOWFUNCNOOP(lead, 2, 0), WINDOWFUNCNOOP(lead, 3, 0), WINDOWFUNCNOOP(lag, 1, 0), WINDOWFUNCNOOP(lag, 2, 0), WINDOWFUNCNOOP(lag, 3, 0), }; sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); } static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ Window *p; for(p=pList; p; p=p->pNextWin){ if( sqlite3StrICmp(p->zName, zName)==0 ) break; } if( p==0 ){ sqlite3ErrorMsg(pParse, "no such window: %s", zName); } return p; } /* ** This function is called immediately after resolving the function name ** for a window function within a SELECT statement. Argument pList is a ** linked list of WINDOW definitions for the current SELECT statement. ** Argument pFunc is the function definition just resolved and pWin ** is the Window object representing the associated OVER clause. This ** function updates the contents of pWin as follows: ** ** * If the OVER clause referred to a named window (as in "max(x) OVER win"), ** search list pList for a matching WINDOW definition, and update pWin ** accordingly. If no such WINDOW clause can be found, leave an error ** in pParse. ** ** * If the function is a built-in window function that requires the ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top ** of this file), pWin is updated here. */ SQLITE_PRIVATE void sqlite3WindowUpdate( Parse *pParse, Window *pList, /* List of named windows for this SELECT */ Window *pWin, /* Window frame to update */ FuncDef *pFunc /* Window function definition */ ){ if( pWin->zName && pWin->eFrmType==0 ){ Window *p = windowFind(pParse, pList, pWin->zName); if( p==0 ) return; pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); pWin->eStart = p->eStart; pWin->eEnd = p->eEnd; pWin->eFrmType = p->eFrmType; pWin->eExclude = p->eExclude; }else{ sqlite3WindowChain(pParse, pWin, pList); } if( (pWin->eFrmType==TK_RANGE) && (pWin->pStart || pWin->pEnd) && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) ){ sqlite3ErrorMsg(pParse, "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" ); }else if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ sqlite3 *db = pParse->db; if( pWin->pFilter ){ sqlite3ErrorMsg(pParse, "FILTER clause may only be used with aggregate window functions" ); }else{ struct WindowUpdate { const char *zFunc; int eFrmType; int eStart; int eEnd; } aUp[] = { { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, }; int i; for(i=0; izName==aUp[i].zFunc ){ sqlite3ExprDelete(db, pWin->pStart); sqlite3ExprDelete(db, pWin->pEnd); pWin->pEnd = pWin->pStart = 0; pWin->eFrmType = aUp[i].eFrmType; pWin->eStart = aUp[i].eStart; pWin->eEnd = aUp[i].eEnd; pWin->eExclude = 0; if( pWin->eStart==TK_FOLLOWING ){ pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); } break; } } } } pWin->pWFunc = pFunc; } /* ** Context object passed through sqlite3WalkExprList() to ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). */ typedef struct WindowRewrite WindowRewrite; struct WindowRewrite { Window *pWin; SrcList *pSrc; ExprList *pSub; Table *pTab; Select *pSubSelect; /* Current sub-select, if any */ }; /* ** Callback function used by selectWindowRewriteEList(). If necessary, ** this function appends to the output expression-list and updates ** expression (*ppExpr) in place. */ static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ struct WindowRewrite *p = pWalker->u.pRewrite; Parse *pParse = pWalker->pParse; assert( p!=0 ); assert( p->pWin!=0 ); /* If this function is being called from within a scalar sub-select ** that used by the SELECT statement being processed, only process ** TK_COLUMN expressions that refer to it (the outer SELECT). Do ** not process aggregates or window functions at all, as they belong ** to the scalar sub-select. */ if( p->pSubSelect ){ if( pExpr->op!=TK_COLUMN ){ return WRC_Continue; }else{ int nSrc = p->pSrc->nSrc; int i; for(i=0; iiTable==p->pSrc->a[i].iCursor ) break; } if( i==nSrc ) return WRC_Continue; } } switch( pExpr->op ){ case TK_FUNCTION: if( !ExprHasProperty(pExpr, EP_WinFunc) ){ break; }else{ Window *pWin; for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ if( pExpr->y.pWin==pWin ){ assert( pWin->pOwner==pExpr ); return WRC_Prune; } } } /* no break */ deliberate_fall_through case TK_IF_NULL_ROW: case TK_AGG_FUNCTION: case TK_COLUMN: { int iCol = -1; if( pParse->db->mallocFailed ) return WRC_Abort; if( p->pSub ){ int i; for(i=0; ipSub->nExpr; i++){ if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ iCol = i; break; } } } if( iCol<0 ){ Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); } if( p->pSub ){ int f = pExpr->flags & EP_Collate; assert( ExprHasProperty(pExpr, EP_Static)==0 ); ExprSetProperty(pExpr, EP_Static); sqlite3ExprDelete(pParse->db, pExpr); ExprClearProperty(pExpr, EP_Static); memset(pExpr, 0, sizeof(Expr)); pExpr->op = TK_COLUMN; pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); pExpr->iTable = p->pWin->iEphCsr; pExpr->y.pTab = p->pTab; pExpr->flags = f; } if( pParse->db->mallocFailed ) return WRC_Abort; break; } default: /* no-op */ break; } return WRC_Continue; } static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ struct WindowRewrite *p = pWalker->u.pRewrite; Select *pSave = p->pSubSelect; if( pSave==pSelect ){ return WRC_Continue; }else{ p->pSubSelect = pSelect; sqlite3WalkSelect(pWalker, pSelect); p->pSubSelect = pSave; } return WRC_Prune; } /* ** Iterate through each expression in expression-list pEList. For each: ** ** * TK_COLUMN, ** * aggregate function, or ** * window function with a Window object that is not a member of the ** Window list passed as the second argument (pWin). ** ** Append the node to output expression-list (*ppSub). And replace it ** with a TK_COLUMN that reads the (N-1)th element of table ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after ** appending the new one. */ static void selectWindowRewriteEList( Parse *pParse, Window *pWin, SrcList *pSrc, ExprList *pEList, /* Rewrite expressions in this list */ Table *pTab, ExprList **ppSub /* IN/OUT: Sub-select expression-list */ ){ Walker sWalker; WindowRewrite sRewrite; assert( pWin!=0 ); memset(&sWalker, 0, sizeof(Walker)); memset(&sRewrite, 0, sizeof(WindowRewrite)); sRewrite.pSub = *ppSub; sRewrite.pWin = pWin; sRewrite.pSrc = pSrc; sRewrite.pTab = pTab; sWalker.pParse = pParse; sWalker.xExprCallback = selectWindowRewriteExprCb; sWalker.xSelectCallback = selectWindowRewriteSelectCb; sWalker.u.pRewrite = &sRewrite; (void)sqlite3WalkExprList(&sWalker, pEList); *ppSub = sRewrite.pSub; } /* ** Append a copy of each expression in expression-list pAppend to ** expression list pList. Return a pointer to the result list. */ static ExprList *exprListAppendList( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ ExprList *pAppend, /* List of values to append. Might be NULL */ int bIntToNull ){ if( pAppend ){ int i; int nInit = pList ? pList->nExpr : 0; for(i=0; inExpr; i++){ sqlite3 *db = pParse->db; Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); break; } if( bIntToNull ){ int iDummy; Expr *pSub; pSub = sqlite3ExprSkipCollateAndLikely(pDup); if( sqlite3ExprIsInteger(pSub, &iDummy) ){ pSub->op = TK_NULL; pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); pSub->u.zToken = 0; } } pList = sqlite3ExprListAppend(pParse, pList, pDup); if( pList ) pList->a[nInit+i].fg.sortFlags = pAppend->a[i].fg.sortFlags; } } return pList; } /* ** When rewriting a query, if the new subquery in the FROM clause ** contains TK_AGG_FUNCTION nodes that refer to an outer query, ** then we have to increase the Expr->op2 values of those nodes ** due to the extra subquery layer that was added. ** ** See also the incrAggDepth() routine in resolve.c */ static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_AGG_FUNCTION && pExpr->op2>=pWalker->walkerDepth ){ pExpr->op2++; } return WRC_Continue; } static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); sqlite3ErrorMsg(pWalker->pParse, "misuse of aggregate: %s()", pExpr->u.zToken); } return WRC_Continue; } /* ** If the SELECT statement passed as the second argument does not invoke ** any SQL window functions, this function is a no-op. Otherwise, it ** rewrites the SELECT statement so that window function xStep functions ** are invoked in the correct order as described under "SELECT REWRITING" ** at the top of this file. */ SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){ int rc = SQLITE_OK; if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) && ALWAYS(!IN_RENAME_OBJECT) ){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3 *db = pParse->db; Select *pSub = 0; /* The subquery */ SrcList *pSrc = p->pSrc; Expr *pWhere = p->pWhere; ExprList *pGroupBy = p->pGroupBy; Expr *pHaving = p->pHaving; ExprList *pSort = 0; ExprList *pSublist = 0; /* Expression list for sub-query */ Window *pMWin = p->pWin; /* Main window object */ Window *pWin; /* Window object iterator */ Table *pTab; Walker w; u32 selFlags = p->selFlags; pTab = sqlite3DbMallocZero(db, sizeof(Table)); if( pTab==0 ){ return sqlite3ErrorToParser(db, SQLITE_NOMEM); } sqlite3AggInfoPersistWalkerInit(&w, pParse); sqlite3WalkSelect(&w, p); if( (p->selFlags & SF_Aggregate)==0 ){ w.xExprCallback = disallowAggregatesInOrderByCb; w.xSelectCallback = 0; sqlite3WalkExprList(&w, p->pOrderBy); } p->pSrc = 0; p->pWhere = 0; p->pGroupBy = 0; p->pHaving = 0; p->selFlags &= ~SF_Aggregate; p->selFlags |= SF_WinRewrite; /* Create the ORDER BY clause for the sub-select. This is the concatenation ** of the window PARTITION and ORDER BY clauses. Then, if this makes it ** redundant, remove the ORDER BY from the parent SELECT. */ pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ int nSave = pSort->nExpr; pSort->nExpr = p->pOrderBy->nExpr; if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ sqlite3ExprListDelete(db, p->pOrderBy); p->pOrderBy = 0; } pSort->nExpr = nSave; } /* Assign a cursor number for the ephemeral table used to buffer rows. ** The OpenEphemeral instruction is coded later, after it is known how ** many columns the table will have. */ pMWin->iEphCsr = pParse->nTab++; pParse->nTab += 3; selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); /* Append the PARTITION BY and ORDER BY expressions to the to the ** sub-select expression list. They are required to figure out where ** boundaries for partitions and sets of peer rows lie. */ pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); /* Append the arguments passed to each window function to the ** sub-select expression list. Also allocate two registers for each ** window function - one for the accumulator, another for interim ** results. */ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ ExprList *pArgs; assert( ExprUseXList(pWin->pOwner) ); assert( pWin->pWFunc!=0 ); pArgs = pWin->pOwner->x.pList; if( pWin->pWFunc->funcFlags & SQLITE_SUBTYPE ){ selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); pWin->bExprArgs = 1; }else{ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); } if( pWin->pFilter ){ Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); } pWin->regAccum = ++pParse->nMem; pWin->regResult = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); } /* If there is no ORDER BY or PARTITION BY clause, and the window ** function accepts zero arguments, and there are no other columns ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible ** that pSublist is still NULL here. Add a constant expression here to ** keep everything legal in this case. */ if( pSublist==0 ){ pSublist = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_INTEGER, "0") ); } pSub = sqlite3SelectNew( pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 ); TREETRACE(0x40,pParse,pSub, ("New window-function subquery in FROM clause of (%u/%p)\n", p->selId, p)); p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside ** of sqlite3DbMallocRawNN() called from ** sqlite3SrcListAppend() */ if( p->pSrc ){ Table *pTab2; p->pSrc->a[0].pSelect = pSub; p->pSrc->a[0].fg.isCorrelated = 1; sqlite3SrcListAssignCursors(pParse, p->pSrc); pSub->selFlags |= SF_Expanded|SF_OrderByReqd; pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); pSub->selFlags |= (selFlags & SF_Aggregate); if( pTab2==0 ){ /* Might actually be some other kind of error, but in that case ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get ** the correct error message regardless. */ rc = SQLITE_NOMEM; }else{ memcpy(pTab, pTab2, sizeof(Table)); pTab->tabFlags |= TF_Ephemeral; p->pSrc->a[0].pTab = pTab; pTab = pTab2; memset(&w, 0, sizeof(w)); w.xExprCallback = sqlite3WindowExtraAggFuncDepth; w.xSelectCallback = sqlite3WalkerDepthIncrease; w.xSelectCallback2 = sqlite3WalkerDepthDecrease; sqlite3WalkSelect(&w, pSub); } }else{ sqlite3SelectDelete(db, pSub); } if( db->mallocFailed ) rc = SQLITE_NOMEM; /* Defer deleting the temporary table pTab because if an error occurred, ** there could still be references to that table embedded in the ** result-set or ORDER BY clause of the SELECT statement p. */ sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab); } assert( rc==SQLITE_OK || pParse->nErr!=0 ); return rc; } /* ** Unlink the Window object from the Select to which it is attached, ** if it is attached. */ SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window *p){ if( p->ppThis ){ *p->ppThis = p->pNextWin; if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; p->ppThis = 0; } } /* ** Free the Window object passed as the second argument. */ SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3 *db, Window *p){ if( p ){ sqlite3WindowUnlinkFromSelect(p); sqlite3ExprDelete(db, p->pFilter); sqlite3ExprListDelete(db, p->pPartition); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pEnd); sqlite3ExprDelete(db, p->pStart); sqlite3DbFree(db, p->zName); sqlite3DbFree(db, p->zBase); sqlite3DbFree(db, p); } } /* ** Free the linked list of Window objects starting at the second argument. */ SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p){ while( p ){ Window *pNext = p->pNextWin; sqlite3WindowDelete(db, p); p = pNext; } } /* ** The argument expression is an PRECEDING or FOLLOWING offset. The ** value should be a non-negative integer. If the value is not a ** constant, change it to NULL. The fact that it is then a non-negative ** integer will be caught later. But it is important not to leave ** variable values in the expression tree. */ static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ if( 0==sqlite3ExprIsConstant(pExpr) ){ if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); sqlite3ExprDelete(pParse->db, pExpr); pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); } return pExpr; } /* ** Allocate and return a new Window object describing a Window Definition. */ SQLITE_PRIVATE Window *sqlite3WindowAlloc( Parse *pParse, /* Parsing context */ int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ u8 eExclude /* EXCLUDE clause */ ){ Window *pWin = 0; int bImplicitFrame = 0; /* Parser assures the following: */ assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); assert( eStart==TK_CURRENT || eStart==TK_PRECEDING || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); if( eType==0 ){ bImplicitFrame = 1; eType = TK_RANGE; } /* Additionally, the ** starting boundary type may not occur earlier in the following list than ** the ending boundary type: ** ** UNBOUNDED PRECEDING ** PRECEDING ** CURRENT ROW ** FOLLOWING ** UNBOUNDED FOLLOWING ** ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting ** frame boundary. */ if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) ){ sqlite3ErrorMsg(pParse, "unsupported frame specification"); goto windowAllocErr; } pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( pWin==0 ) goto windowAllocErr; pWin->eFrmType = eType; pWin->eStart = eStart; pWin->eEnd = eEnd; if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ eExclude = TK_NO; } pWin->eExclude = eExclude; pWin->bImplicitFrame = bImplicitFrame; pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); return pWin; windowAllocErr: sqlite3ExprDelete(pParse->db, pEnd); sqlite3ExprDelete(pParse->db, pStart); return 0; } /* ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the ** equivalent nul-terminated string. */ SQLITE_PRIVATE Window *sqlite3WindowAssemble( Parse *pParse, Window *pWin, ExprList *pPartition, ExprList *pOrderBy, Token *pBase ){ if( pWin ){ pWin->pPartition = pPartition; pWin->pOrderBy = pOrderBy; if( pBase ){ pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); } }else{ sqlite3ExprListDelete(pParse->db, pPartition); sqlite3ExprListDelete(pParse->db, pOrderBy); } return pWin; } /* ** Window *pWin has just been created from a WINDOW clause. Token pBase ** is the base window. Earlier windows from the same WINDOW clause are ** stored in the linked list starting at pWin->pNextWin. This function ** either updates *pWin according to the base specification, or else ** leaves an error in pParse. */ SQLITE_PRIVATE void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ if( pWin->zBase ){ sqlite3 *db = pParse->db; Window *pExist = windowFind(pParse, pList, pWin->zBase); if( pExist ){ const char *zErr = 0; /* Check for errors */ if( pWin->pPartition ){ zErr = "PARTITION clause"; }else if( pExist->pOrderBy && pWin->pOrderBy ){ zErr = "ORDER BY clause"; }else if( pExist->bImplicitFrame==0 ){ zErr = "frame specification"; } if( zErr ){ sqlite3ErrorMsg(pParse, "cannot override %s of window: %s", zErr, pWin->zBase ); }else{ pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); if( pExist->pOrderBy ){ assert( pWin->pOrderBy==0 ); pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); } sqlite3DbFree(db, pWin->zBase); pWin->zBase = 0; } } } } /* ** Attach window object pWin to expression p. */ SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ if( p ){ assert( p->op==TK_FUNCTION ); assert( pWin ); assert( ExprIsFullSize(p) ); p->y.pWin = pWin; ExprSetProperty(p, EP_WinFunc|EP_FullSize); pWin->pOwner = p; if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ sqlite3ErrorMsg(pParse, "DISTINCT is not supported for window functions" ); } }else{ sqlite3WindowDelete(pParse->db, pWin); } } /* ** Possibly link window pWin into the list at pSel->pWin (window functions ** to be processed as part of SELECT statement pSel). The window is linked ** in if either (a) there are no other windows already linked to this ** SELECT, or (b) the windows already linked use a compatible window frame. */ SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin){ if( pSel ){ if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ pWin->pNextWin = pSel->pWin; if( pSel->pWin ){ pSel->pWin->ppThis = &pWin->pNextWin; } pSel->pWin = pWin; pWin->ppThis = &pSel->pWin; }else{ if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ pSel->selFlags |= SF_MultiPart; } } } } /* ** Return 0 if the two window objects are identical, 1 if they are ** different, or 2 if it cannot be determined if the objects are identical ** or not. Identical window objects can be processed in a single scan. */ SQLITE_PRIVATE int sqlite3WindowCompare( const Parse *pParse, const Window *p1, const Window *p2, int bFilter ){ int res; if( NEVER(p1==0) || NEVER(p2==0) ) return 1; if( p1->eFrmType!=p2->eFrmType ) return 1; if( p1->eStart!=p2->eStart ) return 1; if( p1->eEnd!=p2->eEnd ) return 1; if( p1->eExclude!=p2->eExclude ) return 1; if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ return res; } if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ return res; } if( bFilter ){ if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ return res; } } return 0; } /* ** This is called by code in select.c before it calls sqlite3WhereBegin() ** to begin iterating through the sub-query results. It is used to allocate ** and initialize registers and cursors used by sqlite3WindowCodeStep(). */ SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; Window *pMWin = pSelect->pWin; Window *pWin; Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); /* Allocate registers to use for PARTITION BY values, if any. Initialize ** said registers to NULL. */ if( pMWin->pPartition ){ int nExpr = pMWin->pPartition->nExpr; pMWin->regPart = pParse->nMem+1; pParse->nMem += nExpr; sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); } pMWin->regOne = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); if( pMWin->eExclude ){ pMWin->regStartRowid = ++pParse->nMem; pMWin->regEndRowid = ++pParse->nMem; pMWin->csrApp = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); return; } for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *p = pWin->pWFunc; if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ /* The inline versions of min() and max() require a single ephemeral ** table and 3 registers. The registers are used as follows: ** ** regApp+0: slot to copy min()/max() argument to for MakeRecord ** regApp+1: integer value used to ensure keys are unique ** regApp+2: output of MakeRecord */ ExprList *pList; KeyInfo *pKeyInfo; assert( ExprUseXList(pWin->pOwner) ); pList = pWin->pOwner->x.pList; pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); pWin->csrApp = pParse->nTab++; pWin->regApp = pParse->nMem+1; pParse->nMem += 3; if( pKeyInfo && pWin->pWFunc->zName[1]=='i' ){ assert( pKeyInfo->aSortFlags[0]==0 ); pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; } sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } else if( p->zName==nth_valueName || p->zName==first_valueName ){ /* Allocate two registers at pWin->regApp. These will be used to ** store the start and end index of the current frame. */ pWin->regApp = pParse->nMem+1; pWin->csrApp = pParse->nTab++; pParse->nMem += 2; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } else if( p->zName==leadName || p->zName==lagName ){ pWin->csrApp = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); } } } #define WINDOW_STARTING_INT 0 #define WINDOW_ENDING_INT 1 #define WINDOW_NTH_VALUE_INT 2 #define WINDOW_STARTING_NUM 3 #define WINDOW_ENDING_NUM 4 /* ** A "PRECEDING " (eCond==0) or "FOLLOWING " (eCond==1) or the ** value of the second argument to nth_value() (eCond==2) has just been ** evaluated and the result left in register reg. This function generates VM ** code to check that the value is a non-negative integer and throws an ** exception if it is not. */ static void windowCheckValue(Parse *pParse, int reg, int eCond){ static const char *azErr[] = { "frame starting offset must be a non-negative integer", "frame ending offset must be a non-negative integer", "second argument to nth_value must be a positive integer", "frame starting offset must be a non-negative number", "frame ending offset must be a non-negative number", }; static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; Vdbe *v = sqlite3GetVdbe(pParse); int regZero = sqlite3GetTempReg(pParse); assert( eCond>=0 && eCond=WINDOW_STARTING_NUM ){ int regString = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); VdbeCoverage(v); assert( eCond==3 || eCond==4 ); VdbeCoverageIf(v, eCond==3); VdbeCoverageIf(v, eCond==4); }else{ sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); assert( eCond==0 || eCond==1 || eCond==2 ); VdbeCoverageIf(v, eCond==0); VdbeCoverageIf(v, eCond==1); VdbeCoverageIf(v, eCond==2); } sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ VdbeCoverageNeverNullIf(v, eCond==2); VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); sqlite3ReleaseTempReg(pParse, regZero); } /* ** Return the number of arguments passed to the window-function associated ** with the object passed as the only argument to this function. */ static int windowArgCount(Window *pWin){ const ExprList *pList; assert( ExprUseXList(pWin->pOwner) ); pList = pWin->pOwner->x.pList; return (pList ? pList->nExpr : 0); } typedef struct WindowCodeArg WindowCodeArg; typedef struct WindowCsrAndReg WindowCsrAndReg; /* ** See comments above struct WindowCodeArg. */ struct WindowCsrAndReg { int csr; /* Cursor number */ int reg; /* First in array of peer values */ }; /* ** A single instance of this structure is allocated on the stack by ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper ** routines. This is to reduce the number of arguments required by each ** helper function. ** ** regArg: ** Each window function requires an accumulator register (just as an ** ordinary aggregate function does). This variable is set to the first ** in an array of accumulator registers - one for each window function ** in the WindowCodeArg.pMWin list. ** ** eDelete: ** The window functions implementation sometimes caches the input rows ** that it processes in a temporary table. If it is not zero, this ** variable indicates when rows may be removed from the temp table (in ** order to reduce memory requirements - it would always be safe just ** to leave them there). Possible values for eDelete are: ** ** WINDOW_RETURN_ROW: ** An input row can be discarded after it is returned to the caller. ** ** WINDOW_AGGINVERSE: ** An input row can be discarded after the window functions xInverse() ** callbacks have been invoked in it. ** ** WINDOW_AGGSTEP: ** An input row can be discarded after the window functions xStep() ** callbacks have been invoked in it. ** ** start,current,end ** Consider a window-frame similar to the following: ** ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) ** ** The windows functions implementation caches the input rows in a temp ** table, sorted by "a, b" (it actually populates the cache lazily, and ** aggressively removes rows once they are no longer required, but that's ** a mere detail). It keeps three cursors open on the temp table. One ** (current) that points to the next row to return to the query engine ** once its window function values have been calculated. Another (end) ** points to the next row to call the xStep() method of each window function ** on (so that it is 2 groups ahead of current). And a third (start) that ** points to the next row to call the xInverse() method of each window ** function on. ** ** Each cursor (start, current and end) consists of a VDBE cursor ** (WindowCsrAndReg.csr) and an array of registers (starting at ** WindowCodeArg.reg) that always contains a copy of the peer values ** read from the corresponding cursor. ** ** Depending on the window-frame in question, all three cursors may not ** be required. In this case both WindowCodeArg.csr and reg are set to ** 0. */ struct WindowCodeArg { Parse *pParse; /* Parse context */ Window *pMWin; /* First in list of functions being processed */ Vdbe *pVdbe; /* VDBE object */ int addrGosub; /* OP_Gosub to this address to return one row */ int regGosub; /* Register used with OP_Gosub(addrGosub) */ int regArg; /* First in array of accumulator registers */ int eDelete; /* See above */ int regRowid; WindowCsrAndReg start; WindowCsrAndReg current; WindowCsrAndReg end; }; /* ** Generate VM code to read the window frames peer values from cursor csr into ** an array of registers starting at reg. */ static void windowReadPeerValues( WindowCodeArg *p, int csr, int reg ){ Window *pMWin = p->pMWin; ExprList *pOrderBy = pMWin->pOrderBy; if( pOrderBy ){ Vdbe *v = sqlite3GetVdbe(p->pParse); ExprList *pPart = pMWin->pPartition; int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); int i; for(i=0; inExpr; i++){ sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); } } } /* ** Generate VM code to invoke either xStep() (if bInverse is 0) or ** xInverse (if bInverse is non-zero) for each window function in the ** linked list starting at pMWin. Or, for built-in window functions ** that do not use the standard function API, generate the required ** inline VM code. ** ** If argument csr is greater than or equal to 0, then argument reg is ** the first register in an array of registers guaranteed to be large ** enough to hold the array of arguments for each function. In this case ** the arguments are extracted from the current row of csr into the ** array of registers before invoking OP_AggStep or OP_AggInverse ** ** Or, if csr is less than zero, then the array of registers at reg is ** already populated with all columns from the current row of the sub-query. ** ** If argument regPartSize is non-zero, then it is a register containing the ** number of rows in the current partition. */ static void windowAggStep( WindowCodeArg *p, Window *pMWin, /* Linked list of window functions */ int csr, /* Read arguments from this cursor */ int bInverse, /* True to invoke xInverse instead of xStep */ int reg /* Array of registers */ ){ Parse *pParse = p->pParse; Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; int regArg; int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); int i; assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); /* All OVER clauses in the same window function aggregate step must ** be the same. */ assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); for(i=0; izName!=nth_valueName ){ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); }else{ sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); } } regArg = reg; if( pMWin->regStartRowid==0 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && (pWin->eStart!=TK_UNBOUNDED) ){ int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); VdbeCoverage(v); if( bInverse==0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); }else{ sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); VdbeCoverageNeverTaken(v); sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); } sqlite3VdbeJumpHere(v, addrIsNull); }else if( pWin->regApp ){ assert( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ); assert( bInverse==0 || bInverse==1 ); sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); }else if( pFunc->xSFunc!=noopStepFunc ){ int addrIf = 0; if( pWin->pFilter ){ int regTmp; assert( ExprUseXList(pWin->pOwner) ); assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); regTmp = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regTmp); } if( pWin->bExprArgs ){ int iOp = sqlite3VdbeCurrentAddr(v); int iEnd; assert( ExprUseXList(pWin->pOwner) ); nArg = pWin->pOwner->x.pList->nExpr; regArg = sqlite3GetTempRange(pParse, nArg); sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); for(iEnd=sqlite3VdbeCurrentAddr(v); iOpopcode==OP_Column && pOp->p1==pMWin->iEphCsr ){ pOp->p1 = csr; } } } if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl; assert( nArg>0 ); assert( ExprUseXList(pWin->pOwner) ); pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, bInverse, regArg, pWin->regAccum); sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); if( pWin->bExprArgs ){ sqlite3ReleaseTempRange(pParse, regArg, nArg); } if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); } } } /* ** Values that may be passed as the second argument to windowCodeOp(). */ #define WINDOW_RETURN_ROW 1 #define WINDOW_AGGINVERSE 2 #define WINDOW_AGGSTEP 3 /* ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() ** (bFin==1) for each window function in the linked list starting at ** pMWin. Or, for built-in window-functions that do not use the standard ** API, generate the equivalent VM code. */ static void windowAggFinal(WindowCodeArg *p, int bFin){ Parse *pParse = p->pParse; Window *pMWin = p->pMWin; Vdbe *v = sqlite3GetVdbe(pParse); Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ if( pMWin->regStartRowid==0 && (pWin->pWFunc->funcFlags & SQLITE_FUNC_MINMAX) && (pWin->eStart!=TK_UNBOUNDED) ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); }else if( pWin->regApp ){ assert( pMWin->regStartRowid==0 ); }else{ int nArg = windowArgCount(pWin); if( bFin ){ sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF); sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); }else{ sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF); } } } } /* ** Generate code to calculate the current values of all window functions in the ** p->pMWin list by doing a full scan of the current window frame. Store the ** results in the Window.regResult registers, ready to return the upper ** layer. */ static void windowFullScan(WindowCodeArg *p){ Window *pWin; Parse *pParse = p->pParse; Window *pMWin = p->pMWin; Vdbe *v = p->pVdbe; int regCRowid = 0; /* Current rowid value */ int regCPeer = 0; /* Current peer values */ int regRowid = 0; /* AggStep rowid value */ int regPeer = 0; /* AggStep peer values */ int nPeer; int lblNext; int lblBrk; int addrNext; int csr; VdbeModuleComment((v, "windowFullScan begin")); assert( pMWin!=0 ); csr = pMWin->csrApp; nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); lblNext = sqlite3VdbeMakeLabel(pParse); lblBrk = sqlite3VdbeMakeLabel(pParse); regCRowid = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); if( nPeer ){ regCPeer = sqlite3GetTempRange(pParse, nPeer); regPeer = sqlite3GetTempRange(pParse, nPeer); } sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); } sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); VdbeCoverage(v); addrNext = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); VdbeCoverageNeverNull(v); if( pMWin->eExclude==TK_CURRENT ){ sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); VdbeCoverageNeverNull(v); }else if( pMWin->eExclude!=TK_NO ){ int addr; int addrEq = 0; KeyInfo *pKeyInfo = 0; if( pMWin->pOrderBy ){ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); } if( pMWin->eExclude==TK_TIES ){ addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); VdbeCoverageNeverNull(v); } if( pKeyInfo ){ windowReadPeerValues(p, csr, regPeer); sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); addr = sqlite3VdbeCurrentAddr(v)+1; sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); VdbeCoverageEqNe(v); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); } if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); } windowAggStep(p, pMWin, csr, 0, p->regArg); sqlite3VdbeResolveLabel(v, lblNext); sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrNext-1); sqlite3VdbeJumpHere(v, addrNext+1); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regCRowid); if( nPeer ){ sqlite3ReleaseTempRange(pParse, regPeer, nPeer); sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); } windowAggFinal(p, 1); VdbeModuleComment((v, "windowFullScan end")); } /* ** Invoke the sub-routine at regGosub (generated by code in select.c) to ** return the current row of Window.iEphCsr. If all window functions are ** aggregate window functions that use the standard API, a single ** OP_Gosub instruction is all that this routine generates. Extra VM code ** for per-row processing is only generated for the following built-in window ** functions: ** ** nth_value() ** first_value() ** lag() ** lead() */ static void windowReturnOneRow(WindowCodeArg *p){ Window *pMWin = p->pMWin; Vdbe *v = p->pVdbe; if( pMWin->regStartRowid ){ windowFullScan(p); }else{ Parse *pParse = p->pParse; Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; assert( ExprUseXList(pWin->pOwner) ); if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(pParse); int tmpReg = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); if( pFunc->zName==nth_valueName ){ sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); windowCheckValue(pParse, tmpReg, 2); }else{ sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); } sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); VdbeCoverageNeverNull(v); sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); VdbeCoverageNeverTaken(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } else if( pFunc->zName==leadName || pFunc->zName==lagName ){ int nArg = pWin->pOwner->x.pList->nExpr; int csr = pWin->csrApp; int lbl = sqlite3VdbeMakeLabel(pParse); int tmpReg = sqlite3GetTempReg(pParse); int iEph = pMWin->iEphCsr; if( nArg<3 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); }else{ sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); } sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); if( nArg<2 ){ int val = (pFunc->zName==leadName ? 1 : -1); sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); }else{ int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); int tmpReg2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); sqlite3ReleaseTempReg(pParse, tmpReg2); } sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); sqlite3VdbeResolveLabel(v, lbl); sqlite3ReleaseTempReg(pParse, tmpReg); } } } sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); } /* ** Generate code to set the accumulator register for each window function ** in the linked list passed as the second argument to NULL. And perform ** any equivalent initialization required by any built-in window functions ** in the list. */ static int windowInitAccum(Parse *pParse, Window *pMWin){ Vdbe *v = sqlite3GetVdbe(pParse); int regArg; int nArg = 0; Window *pWin; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; assert( pWin->regAccum ); sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); nArg = MAX(nArg, windowArgCount(pWin)); if( pMWin->regStartRowid==0 ){ if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ assert( pWin->eStart!=TK_UNBOUNDED ); sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); } } } regArg = pParse->nMem+1; pParse->nMem += nArg; return regArg; } /* ** Return true if the current frame should be cached in the ephemeral table, ** even if there are no xInverse() calls required. */ static int windowCacheFrame(Window *pMWin){ Window *pWin; if( pMWin->regStartRowid ) return 1; for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ FuncDef *pFunc = pWin->pWFunc; if( (pFunc->zName==nth_valueName) || (pFunc->zName==first_valueName) || (pFunc->zName==leadName) || (pFunc->zName==lagName) ){ return 1; } } return 0; } /* ** regOld and regNew are each the first register in an array of size ** pOrderBy->nExpr. This function generates code to compare the two ** arrays of registers using the collation sequences and other comparison ** parameters specified by pOrderBy. ** ** If the two arrays are not equal, the contents of regNew is copied to ** regOld and control falls through. Otherwise, if the contents of the arrays ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. */ static void windowIfNewPeer( Parse *pParse, ExprList *pOrderBy, int regNew, /* First in array of new values */ int regOld, /* First in array of old values */ int addr /* Jump here */ ){ Vdbe *v = sqlite3GetVdbe(pParse); if( pOrderBy ){ int nVal = pOrderBy->nExpr; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 ); VdbeCoverageEqNe(v); sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); } } /* ** This function is called as part of generating VM programs for RANGE ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates ** code equivalent to: ** ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; ** ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. ** ** If the sort-order for the ORDER BY term in the window is DESC, then the ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op ** is OP_Ge, the generated code is equivalent to: ** ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; ** ** A special type of arithmetic is used such that if csr1.peerVal is not ** a numeric type (real or integer), then the result of the addition ** or subtraction is a a copy of csr1.peerVal. */ static void windowCodeRangeTest( WindowCodeArg *p, int op, /* OP_Ge, OP_Gt, or OP_Le */ int csr1, /* Cursor number for cursor 1 */ int regVal, /* Register containing non-negative number */ int csr2, /* Cursor number for cursor 2 */ int lbl /* Jump destination if condition is true */ ){ Parse *pParse = p->pParse; Vdbe *v = sqlite3GetVdbe(pParse); ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ int regString = ++pParse->nMem; /* Reg. for constant value '' */ int arith = OP_Add; /* OP_Add or OP_Subtract */ int addrGe; /* Jump destination */ int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ CollSeq *pColl; /* Read the peer-value from each cursor into a register */ windowReadPeerValues(p, csr1, reg1); windowReadPeerValues(p, csr2, reg2); assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); assert( pOrderBy && pOrderBy->nExpr==1 ); if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_DESC ){ switch( op ){ case OP_Ge: op = OP_Le; break; case OP_Gt: op = OP_Lt; break; default: assert( op==OP_Le ); op = OP_Ge; break; } arith = OP_Subtract; } VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", reg1, (arith==OP_Add ? "+" : "-"), regVal, ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 )); /* If the BIGNULL flag is set for the ORDER BY, then it is required to ** consider NULL values to be larger than all other values, instead of ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this ** (and adding that capability causes a performance regression), so ** instead if the BIGNULL flag is set then cases where either reg1 or ** reg2 are NULL are handled separately in the following block. The code ** generated is equivalent to: ** ** if( reg1 IS NULL ){ ** if( op==OP_Ge ) goto lbl; ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; ** if( op==OP_Le && reg2 IS NULL ) goto lbl; ** }else if( reg2 IS NULL ){ ** if( op==OP_Le ) goto lbl; ** } ** ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is ** not taken, control jumps over the comparison operator coded below this ** block. */ if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_BIGNULL ){ /* This block runs if reg1 contains a NULL. */ int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); switch( op ){ case OP_Ge: sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); break; case OP_Gt: sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); VdbeCoverage(v); break; case OP_Le: sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); break; default: assert( op==OP_Lt ); /* no-op */ break; } sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); /* This block runs if reg1 is not NULL, but reg2 is. */ sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_IsNull, reg2, (op==OP_Gt || op==OP_Ge) ? addrDone : lbl); VdbeCoverage(v); } /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). ** This block adds (or subtracts for DESC) the numeric value in regVal ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), ** then leave reg1 as it is. In pseudo-code, this is implemented as: ** ** if( reg1>='' ) goto addrGe; ** reg1 = reg1 +/- regVal ** addrGe: ** ** Since all strings and blobs are greater-than-or-equal-to an empty string, ** the add/subtract is skipped for these, as required. If reg1 is a NULL, ** then the arithmetic is performed, but since adding or subtracting from ** NULL is always NULL anyway, this case is handled as required too. */ sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); VdbeCoverage(v); if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); sqlite3VdbeJumpHere(v, addrGe); /* Compare registers reg2 and reg1, taking the jump if required. Note that ** control skips over this test if the BIGNULL flag is set and either ** reg1 or reg2 contain a NULL value. */ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); sqlite3VdbeResolveLabel(v, addrDone); assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); sqlite3ReleaseTempReg(pParse, reg1); sqlite3ReleaseTempReg(pParse, reg2); VdbeModuleComment((v, "CodeRangeTest: end")); } /* ** Helper function for sqlite3WindowCodeStep(). Each call to this function ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE ** operation. Refer to the header comment for sqlite3WindowCodeStep() for ** details. */ static int windowCodeOp( WindowCodeArg *p, /* Context object */ int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ int regCountdown, /* Register for OP_IfPos countdown */ int jumpOnEof /* Jump here if stepped cursor reaches EOF */ ){ int csr, reg; Parse *pParse = p->pParse; Window *pMWin = p->pMWin; int ret = 0; Vdbe *v = p->pVdbe; int addrContinue = 0; int bPeer = (pMWin->eFrmType!=TK_ROWS); int lblDone = sqlite3VdbeMakeLabel(pParse); int addrNextRange = 0; /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame ** starts with UNBOUNDED PRECEDING. */ if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ assert( regCountdown==0 && jumpOnEof==0 ); return 0; } if( regCountdown>0 ){ if( pMWin->eFrmType==TK_RANGE ){ addrNextRange = sqlite3VdbeCurrentAddr(v); assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); if( op==WINDOW_AGGINVERSE ){ if( pMWin->eStart==TK_FOLLOWING ){ windowCodeRangeTest( p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone ); }else{ windowCodeRangeTest( p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone ); } }else{ windowCodeRangeTest( p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone ); } }else{ sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); VdbeCoverage(v); } } if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ windowAggFinal(p, 0); } addrContinue = sqlite3VdbeCurrentAddr(v); /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the ** start cursor does not advance past the end cursor within the ** temporary table. It otherwise might, if (a>b). Also ensure that, ** if the input cursor is still finding new rows, that the end ** cursor does not go past it to EOF. */ if( pMWin->eStart==pMWin->eEnd && regCountdown && pMWin->eFrmType==TK_RANGE ){ int regRowid1 = sqlite3GetTempReg(pParse); int regRowid2 = sqlite3GetTempReg(pParse); if( op==WINDOW_AGGINVERSE ){ sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); VdbeCoverage(v); }else if( p->regRowid ){ sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1); sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1); VdbeCoverageNeverNull(v); } sqlite3ReleaseTempReg(pParse, regRowid1); sqlite3ReleaseTempReg(pParse, regRowid2); assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); } switch( op ){ case WINDOW_RETURN_ROW: csr = p->current.csr; reg = p->current.reg; windowReturnOneRow(p); break; case WINDOW_AGGINVERSE: csr = p->start.csr; reg = p->start.reg; if( pMWin->regStartRowid ){ assert( pMWin->regEndRowid ); sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); }else{ windowAggStep(p, pMWin, csr, 1, p->regArg); } break; default: assert( op==WINDOW_AGGSTEP ); csr = p->end.csr; reg = p->end.reg; if( pMWin->regStartRowid ){ assert( pMWin->regEndRowid ); sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); }else{ windowAggStep(p, pMWin, csr, 0, p->regArg); } break; } if( op==p->eDelete ){ sqlite3VdbeAddOp1(v, OP_Delete, csr); sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); } if( jumpOnEof ){ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); ret = sqlite3VdbeAddOp0(v, OP_Goto); }else{ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); VdbeCoverage(v); if( bPeer ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); } } if( bPeer ){ int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); windowReadPeerValues(p, csr, regTmp); windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); sqlite3ReleaseTempRange(pParse, regTmp, nReg); } if( addrNextRange ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); } sqlite3VdbeResolveLabel(v, lblDone); return ret; } /* ** Allocate and return a duplicate of the Window object indicated by the ** third argument. Set the Window.pOwner field of the new object to ** pOwner. */ SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ Window *pNew = 0; if( ALWAYS(p) ){ pNew = sqlite3DbMallocZero(db, sizeof(Window)); if( pNew ){ pNew->zName = sqlite3DbStrDup(db, p->zName); pNew->zBase = sqlite3DbStrDup(db, p->zBase); pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); pNew->pWFunc = p->pWFunc; pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); pNew->eFrmType = p->eFrmType; pNew->eEnd = p->eEnd; pNew->eStart = p->eStart; pNew->eExclude = p->eExclude; pNew->regResult = p->regResult; pNew->regAccum = p->regAccum; pNew->iArgCol = p->iArgCol; pNew->iEphCsr = p->iEphCsr; pNew->bExprArgs = p->bExprArgs; pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); pNew->pOwner = pOwner; pNew->bImplicitFrame = p->bImplicitFrame; } } return pNew; } /* ** Return a copy of the linked list of Window objects passed as the ** second argument. */ SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ Window *pWin; Window *pRet = 0; Window **pp = &pRet; for(pWin=p; pWin; pWin=pWin->pNextWin){ *pp = sqlite3WindowDup(db, 0, pWin); if( *pp==0 ) break; pp = &((*pp)->pNextWin); } return pRet; } /* ** Return true if it can be determined at compile time that expression ** pExpr evaluates to a value that, when cast to an integer, is greater ** than zero. False otherwise. ** ** If an OOM error occurs, this function sets the Parse.db.mallocFailed ** flag and returns zero. */ static int windowExprGtZero(Parse *pParse, Expr *pExpr){ int ret = 0; sqlite3 *db = pParse->db; sqlite3_value *pVal = 0; sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); if( pVal && sqlite3_value_int(pVal)>0 ){ ret = 1; } sqlite3ValueFree(pVal); return ret; } /* ** sqlite3WhereBegin() has already been called for the SELECT statement ** passed as the second argument when this function is invoked. It generates ** code to populate the Window.regResult register for each window function ** and invoke the sub-routine at instruction addrGosub once for each row. ** sqlite3WhereEnd() is always called before returning. ** ** This function handles several different types of window frames, which ** require slightly different processing. The following pseudo code is ** used to implement window frames of the form: ** ** ROWS BETWEEN PRECEDING AND FOLLOWING ** ** Other window frame types use variants of the following: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** ** if( first row of partition ){ ** // Rewind three cursors, all open on the eph table. ** Rewind(csrEnd); ** Rewind(csrStart); ** Rewind(csrCurrent); ** ** regEnd = // FOLLOWING expression ** regStart = // PRECEDING expression ** }else{ ** // First time this branch is taken, the eph table contains two ** // rows. The first row in the partition, which all three cursors ** // currently point to, and the following row. ** AGGSTEP ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** RETURN ROW ** if( csrCurrent is EOF ) break; ** if( (regStart--)<=0 ){ ** AggInverse(csrStart) ** Next(csrStart) ** } ** } ** ** The pseudo-code above uses the following shorthand: ** ** AGGSTEP: invoke the aggregate xStep() function for each window function ** with arguments read from the current row of cursor csrEnd, then ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). ** ** RETURN_ROW: return a row to the caller based on the contents of the ** current row of csrCurrent and the current state of all ** aggregates. Then step cursor csrCurrent forward one row. ** ** AGGINVERSE: invoke the aggregate xInverse() function for each window ** functions with arguments read from the current row of cursor ** csrStart. Then step csrStart forward one row. ** ** There are two other ROWS window frames that are handled significantly ** differently from the above - "BETWEEN PRECEDING AND PRECEDING" ** and "BETWEEN FOLLOWING AND FOLLOWING". These are special ** cases because they change the order in which the three cursors (csrStart, ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these ** three. ** ** ROWS BETWEEN PRECEDING AND PRECEDING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** if( (regEnd--)<=0 ){ ** AGGSTEP ** } ** RETURN_ROW ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** flush: ** if( (regEnd--)<=0 ){ ** AGGSTEP ** } ** RETURN_ROW ** ** ** ROWS BETWEEN FOLLOWING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = regEnd - ** }else{ ** AGGSTEP ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** } ** if( (regStart--)<=0 ){ ** AGGINVERSE ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** if( (regEnd--)<=0 ){ ** RETURN_ROW ** if( eof ) break; ** } ** if( (regStart--)<=0 ){ ** AGGINVERSE ** if( eof ) break ** } ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** For the most part, the patterns above are adapted to support UNBOUNDED by ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and ** CURRENT ROW by assuming that it is equivalent to "0 PRECEDING/FOLLOWING". ** This is optimized of course - branches that will never be taken and ** conditions that are always true are omitted from the VM code. The only ** exceptional case is: ** ** ROWS BETWEEN FOLLOWING AND UNBOUNDED FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regStart = ** }else{ ** AGGSTEP ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** if( (regStart--)<=0 ){ ** AGGINVERSE ** if( eof ) break ** } ** RETURN_ROW ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** Also requiring special handling are the cases: ** ** ROWS BETWEEN PRECEDING AND PRECEDING ** ROWS BETWEEN FOLLOWING AND FOLLOWING ** ** when (expr1 < expr2). This is detected at runtime, not by this function. ** To handle this case, the pseudo-code programs depicted above are modified ** slightly to be: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** if( regEnd < regStart ){ ** RETURN_ROW ** delete eph table contents ** continue ** } ** ... ** ** The new "continue" statement in the above jumps to the next iteration ** of the outer loop - the one started by sqlite3WhereBegin(). ** ** The various GROUPS cases are implemented using the same patterns as ** ROWS. The VM code is modified slightly so that: ** ** 1. The else branch in the main loop is only taken if the row just ** added to the ephemeral table is the start of a new group. In ** other words, it becomes: ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else if( new group ){ ** ... ** } ** } ** ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or ** AGGINVERSE step processes the current row of the relevant cursor and ** all subsequent rows belonging to the same group. ** ** RANGE window frames are a little different again. As for GROUPS, the ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE ** deal in groups instead of rows. As for ROWS and GROUPS, there are three ** basic cases: ** ** RANGE BETWEEN PRECEDING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** AGGSTEP ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ ** RETURN_ROW ** while( csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** RETURN ROW ** if( csrCurrent is EOF ) break; ** while( csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** } ** } ** ** In the above notation, "csr.key" means the current value of the ORDER BY ** expression (there is only ever 1 for a RANGE that uses an FOLLOWING ** or PRECEDING AND PRECEDING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ ** AGGSTEP ** } ** while( (csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** } ** } ** flush: ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ ** AGGSTEP ** } ** while( (csrStart.key + regStart) < csrCurrent.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** ** RANGE BETWEEN FOLLOWING AND FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... ** if( new partition ){ ** Gosub flush ** } ** Insert new row into eph table. ** if( first row of partition ){ ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) ** regEnd = ** regStart = ** }else{ ** AGGSTEP ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ ** while( (csrCurrent.key + regStart) > csrStart.key ){ ** AGGINVERSE ** } ** RETURN_ROW ** } ** } ** } ** flush: ** AGGSTEP ** while( 1 ){ ** while( (csrCurrent.key + regStart) > csrStart.key ){ ** AGGINVERSE ** if( eof ) break "while( 1 )" loop. ** } ** RETURN_ROW ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** The text above leaves out many details. Refer to the code and comments ** below for a more complete picture. */ SQLITE_PRIVATE void sqlite3WindowCodeStep( Parse *pParse, /* Parse context */ Select *p, /* Rewritten SELECT statement */ WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ int regGosub, /* Register for OP_Gosub */ int addrGosub /* OP_Gosub here to return each row */ ){ Window *pMWin = p->pWin; ExprList *pOrderBy = pMWin->pOrderBy; Vdbe *v = sqlite3GetVdbe(pParse); int csrWrite; /* Cursor used to write to eph. table */ int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ int iInput; /* To iterate through sub cols */ int addrNe; /* Address of OP_Ne */ int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ int addrInteger = 0; /* Address of OP_Integer */ int addrEmpty; /* Address of OP_Rewind in flush: */ int regNew; /* Array of registers holding new input row */ int regRecord; /* regNew array in record form */ int regNewPeer = 0; /* Peer values for new row (part of regNew) */ int regPeer = 0; /* Peer values for current row */ int regFlushPart = 0; /* Register for "Gosub flush_partition" */ WindowCodeArg s; /* Context object for sub-routines */ int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ int regStart = 0; /* Value of PRECEDING */ int regEnd = 0; /* Value of FOLLOWING */ assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED ); assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING ); assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES || pMWin->eExclude==TK_NO ); lblWhereEnd = sqlite3VdbeMakeLabel(pParse); /* Fill in the context object */ memset(&s, 0, sizeof(WindowCodeArg)); s.pParse = pParse; s.pMWin = pMWin; s.pVdbe = v; s.regGosub = regGosub; s.addrGosub = addrGosub; s.current.csr = pMWin->iEphCsr; csrWrite = s.current.csr+1; s.start.csr = s.current.csr+2; s.end.csr = s.current.csr+3; /* Figure out when rows may be deleted from the ephemeral table. There ** are four options - they may never be deleted (eDelete==0), they may ** be deleted as soon as they are no longer part of the window frame ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row ** has been returned to the caller (WINDOW_RETURN_ROW), or they may ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ switch( pMWin->eStart ){ case TK_FOLLOWING: if( pMWin->eFrmType!=TK_RANGE && windowExprGtZero(pParse, pMWin->pStart) ){ s.eDelete = WINDOW_RETURN_ROW; } break; case TK_UNBOUNDED: if( windowCacheFrame(pMWin)==0 ){ if( pMWin->eEnd==TK_PRECEDING ){ if( pMWin->eFrmType!=TK_RANGE && windowExprGtZero(pParse, pMWin->pEnd) ){ s.eDelete = WINDOW_AGGSTEP; } }else{ s.eDelete = WINDOW_RETURN_ROW; } } break; default: s.eDelete = WINDOW_AGGINVERSE; break; } /* Allocate registers for the array of values from the sub-query, the ** same values in record form, and the rowid used to insert said record ** into the ephemeral table. */ regNew = pParse->nMem+1; pParse->nMem += nInput; regRecord = ++pParse->nMem; s.regRowid = ++pParse->nMem; /* If the window frame contains an " PRECEDING" or " FOLLOWING" ** clause, allocate registers to store the results of evaluating each ** . */ if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ regStart = ++pParse->nMem; } if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ regEnd = ++pParse->nMem; } /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of ** registers to store copies of the ORDER BY expressions (peer values) ** for the main loop, and for each cursor (start, current and end). */ if( pMWin->eFrmType!=TK_ROWS ){ int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); regNewPeer = regNew + pMWin->nBufferCol; if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; regPeer = pParse->nMem+1; pParse->nMem += nPeer; s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; } /* Load the column values for the row returned by the sub-select ** into an array of registers starting at regNew. Assemble them into ** a record in register regRecord. */ for(iInput=0; iInputpPartition ){ int addr; ExprList *pPart = pMWin->pPartition; int nPart = pPart->nExpr; int regNewPart = regNew + pMWin->nBufferCol; KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); regFlushPart = ++pParse->nMem; addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); VdbeCoverageEqNe(v); addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); VdbeComment((v, "call flush_partition")); sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); } /* Insert the new row into the ephemeral table */ sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid); sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid); addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid); VdbeCoverageNeverNull(v); /* This block is run for the first row of each partition */ s.regArg = windowInitAccum(pParse, pMWin); if( regStart ){ sqlite3ExprCode(pParse, pMWin->pStart, regStart); windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); } if( regEnd ){ sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); } if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound */ VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ windowAggFinal(&s, 0); sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr); windowReturnOneRow(&s); sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); sqlite3VdbeJumpHere(v, addrGe); } if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ assert( pMWin->eEnd==TK_FOLLOWING ); sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); } if( pMWin->eStart!=TK_UNBOUNDED ){ sqlite3VdbeAddOp1(v, OP_Rewind, s.start.csr); } sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr); sqlite3VdbeAddOp1(v, OP_Rewind, s.end.csr); if( regPeer && pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); } sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); sqlite3VdbeJumpHere(v, addrNe); /* Beginning of the block executed for the second and subsequent rows. */ if( regPeer ){ windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); } if( pMWin->eStart==TK_FOLLOWING ){ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eEnd!=TK_UNBOUNDED ){ if( pMWin->eFrmType==TK_RANGE ){ int lbl = sqlite3VdbeMakeLabel(pParse); int addrNext = sqlite3VdbeCurrentAddr(v); windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); sqlite3VdbeResolveLabel(v, lbl); }else{ windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); } } }else if( pMWin->eEnd==TK_PRECEDING ){ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); }else{ int addr = 0; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eEnd!=TK_UNBOUNDED ){ if( pMWin->eFrmType==TK_RANGE ){ int lbl = 0; addr = sqlite3VdbeCurrentAddr(v); if( regEnd ){ lbl = sqlite3VdbeMakeLabel(pParse); windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); } windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); if( regEnd ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); sqlite3VdbeResolveLabel(v, lbl); } }else{ if( regEnd ){ addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); VdbeCoverage(v); } windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); if( regEnd ) sqlite3VdbeJumpHere(v, addr); } } } /* End of the main input loop */ sqlite3VdbeResolveLabel(v, lblWhereEnd); sqlite3WhereEnd(pWInfo); /* Fall through */ if( pMWin->pPartition ){ addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); sqlite3VdbeJumpHere(v, addrGosubFlush); } s.regRowid = 0; addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); VdbeCoverage(v); if( pMWin->eEnd==TK_PRECEDING ){ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); }else if( pMWin->eStart==TK_FOLLOWING ){ int addrStart; int addrBreak1; int addrBreak2; int addrBreak3; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); if( pMWin->eFrmType==TK_RANGE ){ addrStart = sqlite3VdbeCurrentAddr(v); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); }else if( pMWin->eEnd==TK_UNBOUNDED ){ addrStart = sqlite3VdbeCurrentAddr(v); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); }else{ assert( pMWin->eEnd==TK_FOLLOWING ); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); } sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak2); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak1); sqlite3VdbeJumpHere(v, addrBreak3); }else{ int addrBreak; int addrStart; windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); addrStart = sqlite3VdbeCurrentAddr(v); addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); sqlite3VdbeJumpHere(v, addrBreak); } sqlite3VdbeJumpHere(v, addrEmpty); sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); if( pMWin->pPartition ){ if( pMWin->regStartRowid ){ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); } sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); } } #endif /* SQLITE_OMIT_WINDOWFUNC */ /************** End of window.c **********************************************/ /************** Begin file parse.c *******************************************/ /* This file is automatically generated by Lemon from input grammar ** source file "parse.y". */ /* ** 2001-09-15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains SQLite's SQL parser. ** ** The canonical source code to this file ("parse.y") is a Lemon grammar ** file that specifies the input grammar and actions to take while parsing. ** That input file is processed by Lemon to generate a C-language ** implementation of a parser for the given grammar. You might be reading ** this comment as part of the translated C-code. Edits should be made ** to the original parse.y sources. */ /* #include "sqliteInt.h" */ /* ** Disable all error recovery processing in the parser push-down ** automaton. */ #define YYNOERRORRECOVERY 1 /* ** Make yytestcase() the same as testcase() */ #define yytestcase(X) testcase(X) /* ** Indicate that sqlite3ParserFree() will never be called with a null ** pointer. */ #define YYPARSEFREENEVERNULL 1 /* ** In the amalgamation, the parse.c file generated by lemon and the ** tokenize.c file are concatenated. In that case, sqlite3RunParser() ** has access to the the size of the yyParser object and so the parser ** engine can be allocated from stack. In that case, only the ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be ** omitted. */ #ifdef SQLITE_AMALGAMATION # define sqlite3Parser_ENGINEALWAYSONSTACK 1 #endif /* ** Alternative datatype for the argument to the malloc() routine passed ** into sqlite3ParserAlloc(). The default is size_t. */ #define YYMALLOCARGTYPE u64 /* ** An instance of the following structure describes the event of a ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, ** TK_DELETE, or TK_INSTEAD. If the event is of the form ** ** UPDATE ON (a,b,c) ** ** Then the "b" IdList records the list "a,b,c". */ struct TrigEvent { int a; IdList * b; }; struct FrameBound { int eType; Expr *pExpr; }; /* ** Disable lookaside memory allocation for objects that might be ** shared across database connections. */ static void disableLookaside(Parse *pParse){ sqlite3 *db = pParse->db; pParse->disableLookaside++; DisableLookaside; } #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \ && defined(SQLITE_UDL_CAPABLE_PARSER) /* ** Issue an error message if an ORDER BY or LIMIT clause occurs on an ** UPDATE or DELETE statement. */ static void updateDeleteLimitError( Parse *pParse, ExprList *pOrderBy, Expr *pLimit ){ if( pOrderBy ){ sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\""); }else{ sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\""); } sqlite3ExprListDelete(pParse->db, pOrderBy); sqlite3ExprDelete(pParse->db, pLimit); } #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */ /* ** For a compound SELECT statement, make sure p->pPrior->pNext==p for ** all elements in the list. And make sure list length does not exceed ** SQLITE_LIMIT_COMPOUND_SELECT. */ static void parserDoubleLinkSelect(Parse *pParse, Select *p){ assert( p!=0 ); if( p->pPrior ){ Select *pNext = 0, *pLoop = p; int mxSelect, cnt = 1; while(1){ pLoop->pNext = pNext; pLoop->selFlags |= SF_Compound; pNext = pLoop; pLoop = pLoop->pPrior; if( pLoop==0 ) break; cnt++; if( pLoop->pOrderBy || pLoop->pLimit ){ sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT", sqlite3SelectOpName(pNext->op)); break; } } if( (p->selFlags & SF_MultiValue)==0 && (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && cnt>mxSelect ){ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); } } } /* Attach a With object describing the WITH clause to a Select ** object describing the query for which the WITH clause is a prefix. */ static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){ if( pSelect ){ pSelect->pWith = pWith; parserDoubleLinkSelect(pParse, pSelect); }else{ sqlite3WithDelete(pParse->db, pWith); } return pSelect; } /* Construct a new Expr object from a single token */ static Expr *tokenExpr(Parse *pParse, int op, Token t){ Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); if( p ){ /* memset(p, 0, sizeof(Expr)); */ p->op = (u8)op; p->affExpr = 0; p->flags = EP_Leaf; ExprClearVVAProperties(p); /* p->iAgg = -1; // Not required */ p->pLeft = p->pRight = 0; p->pAggInfo = 0; memset(&p->x, 0, sizeof(p->x)); memset(&p->y, 0, sizeof(p->y)); p->op2 = 0; p->iTable = 0; p->iColumn = 0; p->u.zToken = (char*)&p[1]; memcpy(p->u.zToken, t.z, t.n); p->u.zToken[t.n] = 0; p->w.iOfst = (int)(t.z - pParse->zTail); if( sqlite3Isquote(p->u.zToken[0]) ){ sqlite3DequoteExpr(p); } #if SQLITE_MAX_EXPR_DEPTH>0 p->nHeight = 1; #endif if( IN_RENAME_OBJECT ){ return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); } } return p; } /* A routine to convert a binary TK_IS or TK_ISNOT expression into a ** unary TK_ISNULL or TK_NOTNULL expression. */ static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ sqlite3 *db = pParse->db; if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ pA->op = (u8)op; sqlite3ExprDelete(db, pA->pRight); pA->pRight = 0; } } /* Add a single new term to an ExprList that is used to store a ** list of identifiers. Report an error if the ID list contains ** a COLLATE clause or an ASC or DESC keyword, except ignore the ** error while parsing a legacy schema. */ static ExprList *parserAddExprIdListTerm( Parse *pParse, ExprList *pPrior, Token *pIdToken, int hasCollate, int sortOrder ){ ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) && pParse->db->init.busy==0 ){ sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", pIdToken->n, pIdToken->z); } sqlite3ExprListSetName(pParse, p, pIdToken, 1); return p; } #if TK_SPAN>255 # error too many tokens in the grammar #endif /**************** End of %include directives **********************************/ /* These constants specify the various numeric values for terminal symbols. ***************** Begin token definitions *************************************/ #ifndef TK_SEMI #define TK_SEMI 1 #define TK_EXPLAIN 2 #define TK_QUERY 3 #define TK_PLAN 4 #define TK_BEGIN 5 #define TK_TRANSACTION 6 #define TK_DEFERRED 7 #define TK_IMMEDIATE 8 #define TK_EXCLUSIVE 9 #define TK_COMMIT 10 #define TK_END 11 #define TK_ROLLBACK 12 #define TK_SAVEPOINT 13 #define TK_RELEASE 14 #define TK_TO 15 #define TK_TABLE 16 #define TK_CREATE 17 #define TK_IF 18 #define TK_NOT 19 #define TK_EXISTS 20 #define TK_TEMP 21 #define TK_LP 22 #define TK_RP 23 #define TK_AS 24 #define TK_COMMA 25 #define TK_WITHOUT 26 #define TK_ABORT 27 #define TK_ACTION 28 #define TK_AFTER 29 #define TK_ANALYZE 30 #define TK_ASC 31 #define TK_ATTACH 32 #define TK_BEFORE 33 #define TK_BY 34 #define TK_CASCADE 35 #define TK_CAST 36 #define TK_CONFLICT 37 #define TK_DATABASE 38 #define TK_DESC 39 #define TK_DETACH 40 #define TK_EACH 41 #define TK_FAIL 42 #define TK_OR 43 #define TK_AND 44 #define TK_IS 45 #define TK_MATCH 46 #define TK_LIKE_KW 47 #define TK_BETWEEN 48 #define TK_IN 49 #define TK_ISNULL 50 #define TK_NOTNULL 51 #define TK_NE 52 #define TK_EQ 53 #define TK_GT 54 #define TK_LE 55 #define TK_LT 56 #define TK_GE 57 #define TK_ESCAPE 58 #define TK_ID 59 #define TK_COLUMNKW 60 #define TK_DO 61 #define TK_FOR 62 #define TK_IGNORE 63 #define TK_INITIALLY 64 #define TK_INSTEAD 65 #define TK_NO 66 #define TK_KEY 67 #define TK_OF 68 #define TK_OFFSET 69 #define TK_PRAGMA 70 #define TK_RAISE 71 #define TK_RECURSIVE 72 #define TK_REPLACE 73 #define TK_RESTRICT 74 #define TK_ROW 75 #define TK_ROWS 76 #define TK_TRIGGER 77 #define TK_VACUUM 78 #define TK_VIEW 79 #define TK_VIRTUAL 80 #define TK_WITH 81 #define TK_NULLS 82 #define TK_FIRST 83 #define TK_LAST 84 #define TK_CURRENT 85 #define TK_FOLLOWING 86 #define TK_PARTITION 87 #define TK_PRECEDING 88 #define TK_RANGE 89 #define TK_UNBOUNDED 90 #define TK_EXCLUDE 91 #define TK_GROUPS 92 #define TK_OTHERS 93 #define TK_TIES 94 #define TK_GENERATED 95 #define TK_ALWAYS 96 #define TK_MATERIALIZED 97 #define TK_REINDEX 98 #define TK_RENAME 99 #define TK_CTIME_KW 100 #define TK_ANY 101 #define TK_BITAND 102 #define TK_BITOR 103 #define TK_LSHIFT 104 #define TK_RSHIFT 105 #define TK_PLUS 106 #define TK_MINUS 107 #define TK_STAR 108 #define TK_SLASH 109 #define TK_REM 110 #define TK_CONCAT 111 #define TK_PTR 112 #define TK_COLLATE 113 #define TK_BITNOT 114 #define TK_ON 115 #define TK_INDEXED 116 #define TK_STRING 117 #define TK_JOIN_KW 118 #define TK_CONSTRAINT 119 #define TK_DEFAULT 120 #define TK_NULL 121 #define TK_PRIMARY 122 #define TK_UNIQUE 123 #define TK_CHECK 124 #define TK_REFERENCES 125 #define TK_AUTOINCR 126 #define TK_INSERT 127 #define TK_DELETE 128 #define TK_UPDATE 129 #define TK_SET 130 #define TK_DEFERRABLE 131 #define TK_FOREIGN 132 #define TK_DROP 133 #define TK_UNION 134 #define TK_ALL 135 #define TK_EXCEPT 136 #define TK_INTERSECT 137 #define TK_SELECT 138 #define TK_VALUES 139 #define TK_DISTINCT 140 #define TK_DOT 141 #define TK_FROM 142 #define TK_JOIN 143 #define TK_USING 144 #define TK_ORDER 145 #define TK_GROUP 146 #define TK_HAVING 147 #define TK_LIMIT 148 #define TK_WHERE 149 #define TK_RETURNING 150 #define TK_INTO 151 #define TK_NOTHING 152 #define TK_FLOAT 153 #define TK_BLOB 154 #define TK_INTEGER 155 #define TK_VARIABLE 156 #define TK_CASE 157 #define TK_WHEN 158 #define TK_THEN 159 #define TK_ELSE 160 #define TK_INDEX 161 #define TK_ALTER 162 #define TK_ADD 163 #define TK_WINDOW 164 #define TK_OVER 165 #define TK_FILTER 166 #define TK_COLUMN 167 #define TK_AGG_FUNCTION 168 #define TK_AGG_COLUMN 169 #define TK_TRUEFALSE 170 #define TK_ISNOT 171 #define TK_FUNCTION 172 #define TK_UMINUS 173 #define TK_UPLUS 174 #define TK_TRUTH 175 #define TK_REGISTER 176 #define TK_VECTOR 177 #define TK_SELECT_COLUMN 178 #define TK_IF_NULL_ROW 179 #define TK_ASTERISK 180 #define TK_SPAN 181 #define TK_ERROR 182 #define TK_SPACE 183 #define TK_ILLEGAL 184 #endif /**************** End token definitions ***************************************/ /* The next sections is a series of control #defines. ** various aspects of the generated parser. ** YYCODETYPE is the data type used to store the integer codes ** that represent terminal and non-terminal symbols. ** "unsigned char" is used if there are fewer than ** 256 symbols. Larger types otherwise. ** YYNOCODE is a number of type YYCODETYPE that is not used for ** any terminal or nonterminal symbol. ** YYFALLBACK If defined, this indicates that one or more tokens ** (also known as: "terminal symbols") have fall-back ** values which should be used if the original symbol ** would not parse. This permits keywords to sometimes ** be used as identifiers, for example. ** YYACTIONTYPE is the data type used for "action codes" - numbers ** that indicate what to do in response to the next ** token. ** sqlite3ParserTOKENTYPE is the data type used for minor type for terminal ** symbols. Background: A "minor type" is a semantic ** value associated with a terminal or non-terminal ** symbols. For example, for an "ID" terminal symbol, ** the minor type might be the name of the identifier. ** Each non-terminal can have a different minor type. ** Terminal symbols all have the same minor type, though. ** This macros defines the minor type for terminal ** symbols. ** YYMINORTYPE is the data type used for all minor types. ** This is typically a union of many types, one of ** which is sqlite3ParserTOKENTYPE. The entry in the union ** for terminal symbols is called "yy0". ** YYSTACKDEPTH is the maximum depth of the parser's stack. If ** zero the stack is dynamically sized using realloc() ** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument ** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument ** sqlite3ParserARG_PARAM Code to pass %extra_argument as a subroutine parameter ** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser ** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser ** sqlite3ParserCTX_* As sqlite3ParserARG_ except for %extra_context ** YYERRORSYMBOL is the code number of the error symbol. If not ** defined, then do no error processing. ** YYNSTATE the combined number of states. ** YYNRULE the number of rules in the grammar ** YYNTOKEN Number of terminal symbols ** YY_MAX_SHIFT Maximum value for shift actions ** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions ** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions ** YY_ERROR_ACTION The yy_action[] code for syntax error ** YY_ACCEPT_ACTION The yy_action[] code for accept ** YY_NO_ACTION The yy_action[] code for no-op ** YY_MIN_REDUCE Minimum value for reduce actions ** YY_MAX_REDUCE Maximum value for reduce actions */ #ifndef INTERFACE # define INTERFACE 1 #endif /************* Begin control #defines *****************************************/ #define YYCODETYPE unsigned short int #define YYNOCODE 319 #define YYACTIONTYPE unsigned short int #define YYWILDCARD 101 #define sqlite3ParserTOKENTYPE Token typedef union { int yyinit; sqlite3ParserTOKENTYPE yy0; TriggerStep* yy33; Window* yy41; Select* yy47; SrcList* yy131; struct TrigEvent yy180; struct {int value; int mask;} yy231; IdList* yy254; u32 yy285; ExprList* yy322; Cte* yy385; int yy394; Upsert* yy444; u8 yy516; With* yy521; const char* yy522; Expr* yy528; OnOrUsing yy561; struct FrameBound yy595; } YYMINORTYPE; #ifndef YYSTACKDEPTH #define YYSTACKDEPTH 100 #endif #define sqlite3ParserARG_SDECL #define sqlite3ParserARG_PDECL #define sqlite3ParserARG_PARAM #define sqlite3ParserARG_FETCH #define sqlite3ParserARG_STORE #define sqlite3ParserCTX_SDECL Parse *pParse; #define sqlite3ParserCTX_PDECL ,Parse *pParse #define sqlite3ParserCTX_PARAM ,pParse #define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse; #define sqlite3ParserCTX_STORE yypParser->pParse=pParse; #define YYFALLBACK 1 #define YYNSTATE 579 #define YYNRULE 405 #define YYNRULE_WITH_ACTION 340 #define YYNTOKEN 185 #define YY_MAX_SHIFT 578 #define YY_MIN_SHIFTREDUCE 838 #define YY_MAX_SHIFTREDUCE 1242 #define YY_ERROR_ACTION 1243 #define YY_ACCEPT_ACTION 1244 #define YY_NO_ACTION 1245 #define YY_MIN_REDUCE 1246 #define YY_MAX_REDUCE 1650 /************* End control #defines *******************************************/ #define YY_NLOOKAHEAD ((int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0]))) /* Define the yytestcase() macro to be a no-op if is not already defined ** otherwise. ** ** Applications can choose to define yytestcase() in the %include section ** to a macro that can assist in verifying code coverage. For production ** code the yytestcase() macro should be turned off. But it is useful ** for testing. */ #ifndef yytestcase # define yytestcase(X) #endif /* Next are the tables used to determine what action to take based on the ** current state and lookahead token. These tables are used to implement ** functions that take a state number and lookahead value and return an ** action integer. ** ** Suppose the action integer is N. Then the action is determined as ** follows ** ** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead ** token onto the stack and goto state N. ** ** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then ** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE. ** ** N == YY_ERROR_ACTION A syntax error has occurred. ** ** N == YY_ACCEPT_ACTION The parser accepts its input. ** ** N == YY_NO_ACTION No such action. Denotes unused ** slots in the yy_action[] table. ** ** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE ** and YY_MAX_REDUCE ** ** The action table is constructed as a single large table named yy_action[]. ** Given state S and lookahead X, the action is computed as either: ** ** (A) N = yy_action[ yy_shift_ofst[S] + X ] ** (B) N = yy_default[S] ** ** The (A) formula is preferred. The B formula is used instead if ** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X. ** ** The formulas above are for computing the action when the lookahead is ** a terminal symbol. If the lookahead is a non-terminal (as occurs after ** a reduce action) then the yy_reduce_ofst[] array is used in place of ** the yy_shift_ofst[] array. ** ** The following are the tables generated in this section: ** ** yy_action[] A single table containing all actions. ** yy_lookahead[] A table containing the lookahead for each entry in ** yy_action. Used to detect hash collisions. ** yy_shift_ofst[] For each state, the offset into yy_action for ** shifting terminals. ** yy_reduce_ofst[] For each state, the offset into yy_action for ** shifting non-terminals after a reduce. ** yy_default[] Default action for each state. ** *********** Begin parsing tables **********************************************/ #define YY_ACTTAB_COUNT (2100) static const YYACTIONTYPE yy_action[] = { /* 0 */ 572, 210, 572, 119, 116, 231, 572, 119, 116, 231, /* 10 */ 572, 1317, 379, 1296, 410, 566, 566, 566, 572, 411, /* 20 */ 380, 1317, 1279, 42, 42, 42, 42, 210, 1529, 72, /* 30 */ 72, 974, 421, 42, 42, 495, 305, 281, 305, 975, /* 40 */ 399, 72, 72, 126, 127, 81, 1217, 1217, 1054, 1057, /* 50 */ 1044, 1044, 124, 124, 125, 125, 125, 125, 480, 411, /* 60 */ 1244, 1, 1, 578, 2, 1248, 554, 119, 116, 231, /* 70 */ 319, 484, 147, 484, 528, 119, 116, 231, 533, 1330, /* 80 */ 419, 527, 143, 126, 127, 81, 1217, 1217, 1054, 1057, /* 90 */ 1044, 1044, 124, 124, 125, 125, 125, 125, 119, 116, /* 100 */ 231, 329, 123, 123, 123, 123, 122, 122, 121, 121, /* 110 */ 121, 120, 117, 448, 286, 286, 286, 286, 446, 446, /* 120 */ 446, 1568, 378, 1570, 1193, 377, 1164, 569, 1164, 569, /* 130 */ 411, 1568, 541, 261, 228, 448, 102, 146, 453, 318, /* 140 */ 563, 242, 123, 123, 123, 123, 122, 122, 121, 121, /* 150 */ 121, 120, 117, 448, 126, 127, 81, 1217, 1217, 1054, /* 160 */ 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, 143, /* 170 */ 296, 1193, 341, 452, 121, 121, 121, 120, 117, 448, /* 180 */ 128, 1193, 1194, 1193, 149, 445, 444, 572, 120, 117, /* 190 */ 448, 125, 125, 125, 125, 118, 123, 123, 123, 123, /* 200 */ 122, 122, 121, 121, 121, 120, 117, 448, 458, 114, /* 210 */ 13, 13, 550, 123, 123, 123, 123, 122, 122, 121, /* 220 */ 121, 121, 120, 117, 448, 424, 318, 563, 1193, 1194, /* 230 */ 1193, 150, 1225, 411, 1225, 125, 125, 125, 125, 123, /* 240 */ 123, 123, 123, 122, 122, 121, 121, 121, 120, 117, /* 250 */ 448, 469, 344, 1041, 1041, 1055, 1058, 126, 127, 81, /* 260 */ 1217, 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, /* 270 */ 125, 125, 1282, 526, 224, 1193, 572, 411, 226, 519, /* 280 */ 177, 83, 84, 123, 123, 123, 123, 122, 122, 121, /* 290 */ 121, 121, 120, 117, 448, 1010, 16, 16, 1193, 134, /* 300 */ 134, 126, 127, 81, 1217, 1217, 1054, 1057, 1044, 1044, /* 310 */ 124, 124, 125, 125, 125, 125, 123, 123, 123, 123, /* 320 */ 122, 122, 121, 121, 121, 120, 117, 448, 1045, 550, /* 330 */ 1193, 375, 1193, 1194, 1193, 254, 1438, 401, 508, 505, /* 340 */ 504, 112, 564, 570, 4, 929, 929, 435, 503, 342, /* 350 */ 464, 330, 362, 396, 1238, 1193, 1194, 1193, 567, 572, /* 360 */ 123, 123, 123, 123, 122, 122, 121, 121, 121, 120, /* 370 */ 117, 448, 286, 286, 371, 1581, 1607, 445, 444, 155, /* 380 */ 411, 449, 72, 72, 1289, 569, 1222, 1193, 1194, 1193, /* 390 */ 86, 1224, 273, 561, 547, 520, 520, 572, 99, 1223, /* 400 */ 6, 1281, 476, 143, 126, 127, 81, 1217, 1217, 1054, /* 410 */ 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, 554, /* 420 */ 13, 13, 1031, 511, 1225, 1193, 1225, 553, 110, 110, /* 430 */ 224, 572, 1239, 177, 572, 429, 111, 199, 449, 573, /* 440 */ 449, 432, 1555, 1019, 327, 555, 1193, 272, 289, 370, /* 450 */ 514, 365, 513, 259, 72, 72, 547, 72, 72, 361, /* 460 */ 318, 563, 1613, 123, 123, 123, 123, 122, 122, 121, /* 470 */ 121, 121, 120, 117, 448, 1019, 1019, 1021, 1022, 28, /* 480 */ 286, 286, 1193, 1194, 1193, 1159, 572, 1612, 411, 904, /* 490 */ 192, 554, 358, 569, 554, 940, 537, 521, 1159, 437, /* 500 */ 415, 1159, 556, 1193, 1194, 1193, 572, 548, 548, 52, /* 510 */ 52, 216, 126, 127, 81, 1217, 1217, 1054, 1057, 1044, /* 520 */ 1044, 124, 124, 125, 125, 125, 125, 1193, 478, 136, /* 530 */ 136, 411, 286, 286, 1493, 509, 122, 122, 121, 121, /* 540 */ 121, 120, 117, 448, 1010, 569, 522, 219, 545, 545, /* 550 */ 318, 563, 143, 6, 536, 126, 127, 81, 1217, 1217, /* 560 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, /* 570 */ 1557, 123, 123, 123, 123, 122, 122, 121, 121, 121, /* 580 */ 120, 117, 448, 489, 1193, 1194, 1193, 486, 283, 1270, /* 590 */ 960, 254, 1193, 375, 508, 505, 504, 1193, 342, 574, /* 600 */ 1193, 574, 411, 294, 503, 960, 879, 193, 484, 318, /* 610 */ 563, 386, 292, 382, 123, 123, 123, 123, 122, 122, /* 620 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217, /* 630 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, /* 640 */ 125, 411, 396, 1139, 1193, 872, 101, 286, 286, 1193, /* 650 */ 1194, 1193, 375, 1096, 1193, 1194, 1193, 1193, 1194, 1193, /* 660 */ 569, 459, 33, 375, 235, 126, 127, 81, 1217, 1217, /* 670 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, /* 680 */ 1437, 962, 572, 230, 961, 123, 123, 123, 123, 122, /* 690 */ 122, 121, 121, 121, 120, 117, 448, 1159, 230, 1193, /* 700 */ 158, 1193, 1194, 1193, 1556, 13, 13, 303, 960, 1233, /* 710 */ 1159, 154, 411, 1159, 375, 1584, 1177, 5, 371, 1581, /* 720 */ 431, 1239, 3, 960, 123, 123, 123, 123, 122, 122, /* 730 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217, /* 740 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, /* 750 */ 125, 411, 210, 571, 1193, 1032, 1193, 1194, 1193, 1193, /* 760 */ 390, 855, 156, 1555, 376, 404, 1101, 1101, 492, 572, /* 770 */ 469, 344, 1322, 1322, 1555, 126, 127, 81, 1217, 1217, /* 780 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, /* 790 */ 130, 572, 13, 13, 532, 123, 123, 123, 123, 122, /* 800 */ 122, 121, 121, 121, 120, 117, 448, 304, 572, 457, /* 810 */ 229, 1193, 1194, 1193, 13, 13, 1193, 1194, 1193, 1300, /* 820 */ 467, 1270, 411, 1320, 1320, 1555, 1015, 457, 456, 436, /* 830 */ 301, 72, 72, 1268, 123, 123, 123, 123, 122, 122, /* 840 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217, /* 850 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, /* 860 */ 125, 411, 384, 1076, 1159, 286, 286, 421, 314, 280, /* 870 */ 280, 287, 287, 461, 408, 407, 1539, 1159, 569, 572, /* 880 */ 1159, 1196, 569, 409, 569, 126, 127, 81, 1217, 1217, /* 890 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, /* 900 */ 457, 1485, 13, 13, 1541, 123, 123, 123, 123, 122, /* 910 */ 122, 121, 121, 121, 120, 117, 448, 202, 572, 462, /* 920 */ 1587, 578, 2, 1248, 843, 844, 845, 1563, 319, 409, /* 930 */ 147, 6, 411, 257, 256, 255, 208, 1330, 9, 1196, /* 940 */ 264, 72, 72, 1436, 123, 123, 123, 123, 122, 122, /* 950 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217, /* 960 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, /* 970 */ 125, 572, 286, 286, 572, 1213, 411, 577, 315, 1248, /* 980 */ 421, 371, 1581, 356, 319, 569, 147, 495, 529, 1644, /* 990 */ 397, 935, 495, 1330, 71, 71, 934, 72, 72, 242, /* 1000 */ 1328, 105, 81, 1217, 1217, 1054, 1057, 1044, 1044, 124, /* 1010 */ 124, 125, 125, 125, 125, 123, 123, 123, 123, 122, /* 1020 */ 122, 121, 121, 121, 120, 117, 448, 1117, 286, 286, /* 1030 */ 1422, 452, 1528, 1213, 443, 286, 286, 1492, 1355, 313, /* 1040 */ 478, 569, 1118, 454, 351, 495, 354, 1266, 569, 209, /* 1050 */ 572, 418, 179, 572, 1031, 242, 385, 1119, 523, 123, /* 1060 */ 123, 123, 123, 122, 122, 121, 121, 121, 120, 117, /* 1070 */ 448, 1020, 108, 72, 72, 1019, 13, 13, 915, 572, /* 1080 */ 1498, 572, 286, 286, 98, 530, 1537, 452, 916, 1334, /* 1090 */ 1329, 203, 411, 286, 286, 569, 152, 211, 1498, 1500, /* 1100 */ 426, 569, 56, 56, 57, 57, 569, 1019, 1019, 1021, /* 1110 */ 447, 572, 411, 531, 12, 297, 126, 127, 81, 1217, /* 1120 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, /* 1130 */ 125, 572, 411, 867, 15, 15, 126, 127, 81, 1217, /* 1140 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, /* 1150 */ 125, 373, 529, 264, 44, 44, 126, 115, 81, 1217, /* 1160 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, /* 1170 */ 125, 1498, 478, 1271, 417, 123, 123, 123, 123, 122, /* 1180 */ 122, 121, 121, 121, 120, 117, 448, 205, 1213, 495, /* 1190 */ 430, 867, 468, 322, 495, 123, 123, 123, 123, 122, /* 1200 */ 122, 121, 121, 121, 120, 117, 448, 572, 557, 1140, /* 1210 */ 1642, 1422, 1642, 543, 572, 123, 123, 123, 123, 122, /* 1220 */ 122, 121, 121, 121, 120, 117, 448, 572, 1422, 572, /* 1230 */ 13, 13, 542, 323, 1325, 411, 334, 58, 58, 349, /* 1240 */ 1422, 1170, 326, 286, 286, 549, 1213, 300, 895, 530, /* 1250 */ 45, 45, 59, 59, 1140, 1643, 569, 1643, 565, 417, /* 1260 */ 127, 81, 1217, 1217, 1054, 1057, 1044, 1044, 124, 124, /* 1270 */ 125, 125, 125, 125, 1367, 373, 500, 290, 1193, 512, /* 1280 */ 1366, 427, 394, 394, 393, 275, 391, 896, 1138, 852, /* 1290 */ 478, 258, 1422, 1170, 463, 1159, 12, 331, 428, 333, /* 1300 */ 1117, 460, 236, 258, 325, 460, 544, 1544, 1159, 1098, /* 1310 */ 491, 1159, 324, 1098, 440, 1118, 335, 516, 123, 123, /* 1320 */ 123, 123, 122, 122, 121, 121, 121, 120, 117, 448, /* 1330 */ 1119, 318, 563, 1138, 572, 1193, 1194, 1193, 112, 564, /* 1340 */ 201, 4, 238, 433, 935, 490, 285, 228, 1517, 934, /* 1350 */ 170, 560, 572, 142, 1516, 567, 572, 60, 60, 572, /* 1360 */ 416, 572, 441, 572, 535, 302, 875, 8, 487, 572, /* 1370 */ 237, 572, 416, 572, 485, 61, 61, 572, 449, 62, /* 1380 */ 62, 332, 63, 63, 46, 46, 47, 47, 361, 572, /* 1390 */ 561, 572, 48, 48, 50, 50, 51, 51, 572, 295, /* 1400 */ 64, 64, 482, 295, 539, 412, 471, 1031, 572, 538, /* 1410 */ 318, 563, 65, 65, 66, 66, 409, 475, 572, 1031, /* 1420 */ 572, 14, 14, 875, 1020, 110, 110, 409, 1019, 572, /* 1430 */ 474, 67, 67, 111, 455, 449, 573, 449, 98, 317, /* 1440 */ 1019, 132, 132, 133, 133, 572, 1561, 572, 974, 409, /* 1450 */ 6, 1562, 68, 68, 1560, 6, 975, 572, 6, 1559, /* 1460 */ 1019, 1019, 1021, 6, 346, 218, 101, 531, 53, 53, /* 1470 */ 69, 69, 1019, 1019, 1021, 1022, 28, 1586, 1181, 451, /* 1480 */ 70, 70, 290, 87, 215, 31, 1363, 394, 394, 393, /* 1490 */ 275, 391, 350, 109, 852, 107, 572, 112, 564, 483, /* 1500 */ 4, 1212, 572, 239, 153, 572, 39, 236, 1299, 325, /* 1510 */ 112, 564, 1298, 4, 567, 572, 32, 324, 572, 54, /* 1520 */ 54, 572, 1135, 353, 398, 165, 165, 567, 166, 166, /* 1530 */ 572, 291, 355, 572, 17, 357, 572, 449, 77, 77, /* 1540 */ 1313, 55, 55, 1297, 73, 73, 572, 238, 470, 561, /* 1550 */ 449, 472, 364, 135, 135, 170, 74, 74, 142, 163, /* 1560 */ 163, 374, 561, 539, 572, 321, 572, 886, 540, 137, /* 1570 */ 137, 339, 1353, 422, 298, 237, 539, 572, 1031, 572, /* 1580 */ 340, 538, 101, 369, 110, 110, 162, 131, 131, 164, /* 1590 */ 164, 1031, 111, 368, 449, 573, 449, 110, 110, 1019, /* 1600 */ 157, 157, 141, 141, 572, 111, 572, 449, 573, 449, /* 1610 */ 412, 288, 1019, 572, 882, 318, 563, 572, 219, 572, /* 1620 */ 241, 1012, 477, 263, 263, 894, 893, 140, 140, 138, /* 1630 */ 138, 1019, 1019, 1021, 1022, 28, 139, 139, 525, 455, /* 1640 */ 76, 76, 78, 78, 1019, 1019, 1021, 1022, 28, 1181, /* 1650 */ 451, 572, 1083, 290, 112, 564, 1575, 4, 394, 394, /* 1660 */ 393, 275, 391, 572, 1023, 852, 572, 479, 345, 263, /* 1670 */ 101, 567, 882, 1376, 75, 75, 1421, 501, 236, 260, /* 1680 */ 325, 112, 564, 359, 4, 101, 43, 43, 324, 49, /* 1690 */ 49, 901, 902, 161, 449, 101, 977, 978, 567, 1079, /* 1700 */ 1349, 260, 965, 932, 263, 114, 561, 1095, 517, 1095, /* 1710 */ 1083, 1094, 865, 1094, 151, 933, 1144, 114, 238, 1361, /* 1720 */ 558, 449, 1023, 559, 1426, 1278, 170, 1269, 1257, 142, /* 1730 */ 1601, 1256, 1258, 561, 1594, 1031, 496, 278, 213, 1346, /* 1740 */ 310, 110, 110, 939, 311, 312, 237, 11, 234, 111, /* 1750 */ 221, 449, 573, 449, 293, 395, 1019, 1408, 337, 1403, /* 1760 */ 1396, 338, 1031, 299, 343, 1413, 1412, 481, 110, 110, /* 1770 */ 506, 402, 225, 1296, 206, 367, 111, 1358, 449, 573, /* 1780 */ 449, 412, 1359, 1019, 1489, 1488, 318, 563, 1019, 1019, /* 1790 */ 1021, 1022, 28, 562, 207, 220, 80, 564, 389, 4, /* 1800 */ 1597, 1357, 552, 1356, 1233, 181, 267, 232, 1536, 1534, /* 1810 */ 455, 1230, 420, 567, 82, 1019, 1019, 1021, 1022, 28, /* 1820 */ 86, 217, 85, 1494, 190, 175, 183, 465, 185, 466, /* 1830 */ 36, 1409, 186, 187, 188, 499, 449, 244, 37, 99, /* 1840 */ 400, 1415, 1414, 488, 1417, 194, 473, 403, 561, 1483, /* 1850 */ 248, 92, 1505, 494, 198, 279, 112, 564, 250, 4, /* 1860 */ 348, 497, 405, 352, 1259, 251, 252, 515, 1316, 434, /* 1870 */ 1315, 1314, 94, 567, 1307, 886, 1306, 1031, 226, 406, /* 1880 */ 1611, 1610, 438, 110, 110, 1580, 1286, 524, 439, 308, /* 1890 */ 266, 111, 1285, 449, 573, 449, 449, 309, 1019, 366, /* 1900 */ 1284, 1609, 265, 1566, 1565, 442, 372, 1381, 561, 129, /* 1910 */ 550, 1380, 10, 1470, 383, 106, 316, 551, 100, 35, /* 1920 */ 534, 575, 212, 1339, 381, 387, 1187, 1338, 274, 276, /* 1930 */ 1019, 1019, 1021, 1022, 28, 277, 413, 1031, 576, 1254, /* 1940 */ 388, 1521, 1249, 110, 110, 167, 1522, 168, 148, 1520, /* 1950 */ 1519, 111, 306, 449, 573, 449, 222, 223, 1019, 839, /* 1960 */ 169, 79, 450, 214, 414, 233, 320, 145, 1093, 1091, /* 1970 */ 328, 182, 171, 1212, 918, 184, 240, 336, 243, 1107, /* 1980 */ 189, 172, 173, 423, 425, 88, 180, 191, 89, 90, /* 1990 */ 1019, 1019, 1021, 1022, 28, 91, 174, 1110, 245, 1106, /* 2000 */ 246, 159, 18, 247, 347, 1099, 263, 195, 1227, 493, /* 2010 */ 249, 196, 38, 854, 498, 368, 253, 360, 897, 197, /* 2020 */ 502, 93, 19, 20, 507, 884, 363, 510, 95, 307, /* 2030 */ 160, 96, 518, 97, 1175, 1060, 1146, 40, 21, 227, /* 2040 */ 176, 1145, 282, 284, 969, 200, 963, 114, 262, 1165, /* 2050 */ 22, 23, 24, 1161, 1169, 25, 1163, 1150, 34, 26, /* 2060 */ 1168, 546, 27, 204, 101, 103, 104, 1074, 7, 1061, /* 2070 */ 1059, 1063, 1116, 1064, 1115, 268, 269, 29, 41, 270, /* 2080 */ 1024, 866, 113, 30, 568, 392, 1183, 144, 178, 1182, /* 2090 */ 271, 928, 1245, 1245, 1245, 1245, 1245, 1245, 1245, 1602, }; static const YYCODETYPE yy_lookahead[] = { /* 0 */ 193, 193, 193, 274, 275, 276, 193, 274, 275, 276, /* 10 */ 193, 223, 219, 225, 206, 210, 211, 212, 193, 19, /* 20 */ 219, 233, 216, 216, 217, 216, 217, 193, 295, 216, /* 30 */ 217, 31, 193, 216, 217, 193, 228, 213, 230, 39, /* 40 */ 206, 216, 217, 43, 44, 45, 46, 47, 48, 49, /* 50 */ 50, 51, 52, 53, 54, 55, 56, 57, 193, 19, /* 60 */ 185, 186, 187, 188, 189, 190, 253, 274, 275, 276, /* 70 */ 195, 193, 197, 193, 261, 274, 275, 276, 253, 204, /* 80 */ 238, 204, 81, 43, 44, 45, 46, 47, 48, 49, /* 90 */ 50, 51, 52, 53, 54, 55, 56, 57, 274, 275, /* 100 */ 276, 262, 102, 103, 104, 105, 106, 107, 108, 109, /* 110 */ 110, 111, 112, 113, 239, 240, 239, 240, 210, 211, /* 120 */ 212, 314, 315, 314, 59, 316, 86, 252, 88, 252, /* 130 */ 19, 314, 315, 256, 257, 113, 25, 72, 296, 138, /* 140 */ 139, 266, 102, 103, 104, 105, 106, 107, 108, 109, /* 150 */ 110, 111, 112, 113, 43, 44, 45, 46, 47, 48, /* 160 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 81, /* 170 */ 292, 59, 292, 298, 108, 109, 110, 111, 112, 113, /* 180 */ 69, 116, 117, 118, 72, 106, 107, 193, 111, 112, /* 190 */ 113, 54, 55, 56, 57, 58, 102, 103, 104, 105, /* 200 */ 106, 107, 108, 109, 110, 111, 112, 113, 120, 25, /* 210 */ 216, 217, 145, 102, 103, 104, 105, 106, 107, 108, /* 220 */ 109, 110, 111, 112, 113, 231, 138, 139, 116, 117, /* 230 */ 118, 164, 153, 19, 155, 54, 55, 56, 57, 102, /* 240 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, /* 250 */ 113, 128, 129, 46, 47, 48, 49, 43, 44, 45, /* 260 */ 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, /* 270 */ 56, 57, 216, 193, 25, 59, 193, 19, 165, 166, /* 280 */ 193, 67, 24, 102, 103, 104, 105, 106, 107, 108, /* 290 */ 109, 110, 111, 112, 113, 73, 216, 217, 59, 216, /* 300 */ 217, 43, 44, 45, 46, 47, 48, 49, 50, 51, /* 310 */ 52, 53, 54, 55, 56, 57, 102, 103, 104, 105, /* 320 */ 106, 107, 108, 109, 110, 111, 112, 113, 121, 145, /* 330 */ 59, 193, 116, 117, 118, 119, 273, 204, 122, 123, /* 340 */ 124, 19, 20, 134, 22, 136, 137, 19, 132, 127, /* 350 */ 128, 129, 24, 22, 23, 116, 117, 118, 36, 193, /* 360 */ 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, /* 370 */ 112, 113, 239, 240, 311, 312, 215, 106, 107, 241, /* 380 */ 19, 59, 216, 217, 223, 252, 115, 116, 117, 118, /* 390 */ 151, 120, 26, 71, 193, 308, 309, 193, 149, 128, /* 400 */ 313, 216, 269, 81, 43, 44, 45, 46, 47, 48, /* 410 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 253, /* 420 */ 216, 217, 100, 95, 153, 59, 155, 261, 106, 107, /* 430 */ 25, 193, 101, 193, 193, 231, 114, 25, 116, 117, /* 440 */ 118, 113, 304, 121, 193, 204, 59, 119, 120, 121, /* 450 */ 122, 123, 124, 125, 216, 217, 193, 216, 217, 131, /* 460 */ 138, 139, 230, 102, 103, 104, 105, 106, 107, 108, /* 470 */ 109, 110, 111, 112, 113, 153, 154, 155, 156, 157, /* 480 */ 239, 240, 116, 117, 118, 76, 193, 23, 19, 25, /* 490 */ 22, 253, 23, 252, 253, 108, 87, 204, 89, 261, /* 500 */ 198, 92, 261, 116, 117, 118, 193, 306, 307, 216, /* 510 */ 217, 150, 43, 44, 45, 46, 47, 48, 49, 50, /* 520 */ 51, 52, 53, 54, 55, 56, 57, 59, 193, 216, /* 530 */ 217, 19, 239, 240, 283, 23, 106, 107, 108, 109, /* 540 */ 110, 111, 112, 113, 73, 252, 253, 142, 308, 309, /* 550 */ 138, 139, 81, 313, 145, 43, 44, 45, 46, 47, /* 560 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 570 */ 307, 102, 103, 104, 105, 106, 107, 108, 109, 110, /* 580 */ 111, 112, 113, 281, 116, 117, 118, 285, 23, 193, /* 590 */ 25, 119, 59, 193, 122, 123, 124, 59, 127, 203, /* 600 */ 59, 205, 19, 268, 132, 25, 23, 22, 193, 138, /* 610 */ 139, 249, 204, 251, 102, 103, 104, 105, 106, 107, /* 620 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 630 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 640 */ 57, 19, 22, 23, 59, 23, 25, 239, 240, 116, /* 650 */ 117, 118, 193, 11, 116, 117, 118, 116, 117, 118, /* 660 */ 252, 269, 22, 193, 15, 43, 44, 45, 46, 47, /* 670 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 680 */ 273, 143, 193, 118, 143, 102, 103, 104, 105, 106, /* 690 */ 107, 108, 109, 110, 111, 112, 113, 76, 118, 59, /* 700 */ 241, 116, 117, 118, 304, 216, 217, 292, 143, 60, /* 710 */ 89, 241, 19, 92, 193, 193, 23, 22, 311, 312, /* 720 */ 231, 101, 22, 143, 102, 103, 104, 105, 106, 107, /* 730 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 740 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 750 */ 57, 19, 193, 193, 59, 23, 116, 117, 118, 59, /* 760 */ 201, 21, 241, 304, 193, 206, 127, 128, 129, 193, /* 770 */ 128, 129, 235, 236, 304, 43, 44, 45, 46, 47, /* 780 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 790 */ 22, 193, 216, 217, 193, 102, 103, 104, 105, 106, /* 800 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 193, /* 810 */ 193, 116, 117, 118, 216, 217, 116, 117, 118, 226, /* 820 */ 80, 193, 19, 235, 236, 304, 23, 211, 212, 231, /* 830 */ 204, 216, 217, 205, 102, 103, 104, 105, 106, 107, /* 840 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 850 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 860 */ 57, 19, 193, 123, 76, 239, 240, 193, 253, 239, /* 870 */ 240, 239, 240, 244, 106, 107, 193, 89, 252, 193, /* 880 */ 92, 59, 252, 254, 252, 43, 44, 45, 46, 47, /* 890 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, /* 900 */ 284, 161, 216, 217, 193, 102, 103, 104, 105, 106, /* 910 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 244, /* 920 */ 187, 188, 189, 190, 7, 8, 9, 309, 195, 254, /* 930 */ 197, 313, 19, 127, 128, 129, 262, 204, 22, 117, /* 940 */ 24, 216, 217, 273, 102, 103, 104, 105, 106, 107, /* 950 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46, /* 960 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 970 */ 57, 193, 239, 240, 193, 59, 19, 188, 253, 190, /* 980 */ 193, 311, 312, 16, 195, 252, 197, 193, 19, 301, /* 990 */ 302, 135, 193, 204, 216, 217, 140, 216, 217, 266, /* 1000 */ 204, 159, 45, 46, 47, 48, 49, 50, 51, 52, /* 1010 */ 53, 54, 55, 56, 57, 102, 103, 104, 105, 106, /* 1020 */ 107, 108, 109, 110, 111, 112, 113, 12, 239, 240, /* 1030 */ 193, 298, 238, 117, 253, 239, 240, 238, 259, 260, /* 1040 */ 193, 252, 27, 193, 77, 193, 79, 204, 252, 262, /* 1050 */ 193, 299, 300, 193, 100, 266, 278, 42, 204, 102, /* 1060 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, /* 1070 */ 113, 117, 159, 216, 217, 121, 216, 217, 63, 193, /* 1080 */ 193, 193, 239, 240, 115, 116, 193, 298, 73, 240, /* 1090 */ 238, 231, 19, 239, 240, 252, 22, 24, 211, 212, /* 1100 */ 263, 252, 216, 217, 216, 217, 252, 153, 154, 155, /* 1110 */ 253, 193, 19, 144, 213, 268, 43, 44, 45, 46, /* 1120 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 1130 */ 57, 193, 19, 59, 216, 217, 43, 44, 45, 46, /* 1140 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 1150 */ 57, 193, 19, 24, 216, 217, 43, 44, 45, 46, /* 1160 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, /* 1170 */ 57, 284, 193, 208, 209, 102, 103, 104, 105, 106, /* 1180 */ 107, 108, 109, 110, 111, 112, 113, 286, 59, 193, /* 1190 */ 232, 117, 291, 193, 193, 102, 103, 104, 105, 106, /* 1200 */ 107, 108, 109, 110, 111, 112, 113, 193, 204, 22, /* 1210 */ 23, 193, 25, 66, 193, 102, 103, 104, 105, 106, /* 1220 */ 107, 108, 109, 110, 111, 112, 113, 193, 193, 193, /* 1230 */ 216, 217, 85, 193, 238, 19, 16, 216, 217, 238, /* 1240 */ 193, 94, 193, 239, 240, 231, 117, 268, 35, 116, /* 1250 */ 216, 217, 216, 217, 22, 23, 252, 25, 208, 209, /* 1260 */ 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, /* 1270 */ 54, 55, 56, 57, 193, 193, 19, 5, 59, 66, /* 1280 */ 193, 263, 10, 11, 12, 13, 14, 74, 101, 17, /* 1290 */ 193, 46, 193, 146, 193, 76, 213, 77, 263, 79, /* 1300 */ 12, 260, 30, 46, 32, 264, 87, 193, 89, 29, /* 1310 */ 263, 92, 40, 33, 232, 27, 193, 108, 102, 103, /* 1320 */ 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, /* 1330 */ 42, 138, 139, 101, 193, 116, 117, 118, 19, 20, /* 1340 */ 255, 22, 70, 130, 135, 65, 256, 257, 193, 140, /* 1350 */ 78, 63, 193, 81, 193, 36, 193, 216, 217, 193, /* 1360 */ 115, 193, 263, 193, 145, 268, 59, 48, 193, 193, /* 1370 */ 98, 193, 115, 193, 291, 216, 217, 193, 59, 216, /* 1380 */ 217, 161, 216, 217, 216, 217, 216, 217, 131, 193, /* 1390 */ 71, 193, 216, 217, 216, 217, 216, 217, 193, 260, /* 1400 */ 216, 217, 19, 264, 85, 133, 244, 100, 193, 90, /* 1410 */ 138, 139, 216, 217, 216, 217, 254, 244, 193, 100, /* 1420 */ 193, 216, 217, 116, 117, 106, 107, 254, 121, 193, /* 1430 */ 115, 216, 217, 114, 162, 116, 117, 118, 115, 244, /* 1440 */ 121, 216, 217, 216, 217, 193, 309, 193, 31, 254, /* 1450 */ 313, 309, 216, 217, 309, 313, 39, 193, 313, 309, /* 1460 */ 153, 154, 155, 313, 193, 150, 25, 144, 216, 217, /* 1470 */ 216, 217, 153, 154, 155, 156, 157, 0, 1, 2, /* 1480 */ 216, 217, 5, 149, 150, 22, 193, 10, 11, 12, /* 1490 */ 13, 14, 193, 158, 17, 160, 193, 19, 20, 116, /* 1500 */ 22, 25, 193, 24, 22, 193, 24, 30, 226, 32, /* 1510 */ 19, 20, 226, 22, 36, 193, 53, 40, 193, 216, /* 1520 */ 217, 193, 23, 193, 25, 216, 217, 36, 216, 217, /* 1530 */ 193, 99, 193, 193, 22, 193, 193, 59, 216, 217, /* 1540 */ 193, 216, 217, 193, 216, 217, 193, 70, 129, 71, /* 1550 */ 59, 129, 193, 216, 217, 78, 216, 217, 81, 216, /* 1560 */ 217, 193, 71, 85, 193, 133, 193, 126, 90, 216, /* 1570 */ 217, 152, 258, 61, 152, 98, 85, 193, 100, 193, /* 1580 */ 23, 90, 25, 121, 106, 107, 23, 216, 217, 216, /* 1590 */ 217, 100, 114, 131, 116, 117, 118, 106, 107, 121, /* 1600 */ 216, 217, 216, 217, 193, 114, 193, 116, 117, 118, /* 1610 */ 133, 22, 121, 193, 59, 138, 139, 193, 142, 193, /* 1620 */ 141, 23, 23, 25, 25, 120, 121, 216, 217, 216, /* 1630 */ 217, 153, 154, 155, 156, 157, 216, 217, 19, 162, /* 1640 */ 216, 217, 216, 217, 153, 154, 155, 156, 157, 1, /* 1650 */ 2, 193, 59, 5, 19, 20, 318, 22, 10, 11, /* 1660 */ 12, 13, 14, 193, 59, 17, 193, 23, 23, 25, /* 1670 */ 25, 36, 117, 193, 216, 217, 193, 23, 30, 25, /* 1680 */ 32, 19, 20, 23, 22, 25, 216, 217, 40, 216, /* 1690 */ 217, 7, 8, 23, 59, 25, 83, 84, 36, 23, /* 1700 */ 193, 25, 23, 23, 25, 25, 71, 153, 145, 155, /* 1710 */ 117, 153, 23, 155, 25, 23, 97, 25, 70, 193, /* 1720 */ 193, 59, 117, 236, 193, 193, 78, 193, 193, 81, /* 1730 */ 141, 193, 193, 71, 193, 100, 288, 287, 242, 255, /* 1740 */ 255, 106, 107, 108, 255, 255, 98, 243, 297, 114, /* 1750 */ 214, 116, 117, 118, 245, 191, 121, 271, 293, 267, /* 1760 */ 267, 246, 100, 246, 245, 271, 271, 293, 106, 107, /* 1770 */ 220, 271, 229, 225, 249, 219, 114, 259, 116, 117, /* 1780 */ 118, 133, 259, 121, 219, 219, 138, 139, 153, 154, /* 1790 */ 155, 156, 157, 280, 249, 243, 19, 20, 245, 22, /* 1800 */ 196, 259, 140, 259, 60, 297, 141, 297, 200, 200, /* 1810 */ 162, 38, 200, 36, 294, 153, 154, 155, 156, 157, /* 1820 */ 151, 150, 294, 283, 22, 43, 234, 18, 237, 200, /* 1830 */ 270, 272, 237, 237, 237, 18, 59, 199, 270, 149, /* 1840 */ 246, 272, 272, 200, 234, 234, 246, 246, 71, 246, /* 1850 */ 199, 158, 290, 62, 22, 200, 19, 20, 199, 22, /* 1860 */ 289, 221, 221, 200, 200, 199, 199, 115, 218, 64, /* 1870 */ 218, 218, 22, 36, 227, 126, 227, 100, 165, 221, /* 1880 */ 224, 224, 24, 106, 107, 312, 218, 305, 113, 282, /* 1890 */ 91, 114, 220, 116, 117, 118, 59, 282, 121, 218, /* 1900 */ 218, 218, 200, 317, 317, 82, 221, 265, 71, 148, /* 1910 */ 145, 265, 22, 277, 200, 158, 279, 140, 147, 25, /* 1920 */ 146, 202, 248, 250, 249, 247, 13, 250, 194, 194, /* 1930 */ 153, 154, 155, 156, 157, 6, 303, 100, 192, 192, /* 1940 */ 246, 213, 192, 106, 107, 207, 213, 207, 222, 213, /* 1950 */ 213, 114, 222, 116, 117, 118, 214, 214, 121, 4, /* 1960 */ 207, 213, 3, 22, 303, 15, 163, 16, 23, 23, /* 1970 */ 139, 151, 130, 25, 20, 142, 24, 16, 144, 1, /* 1980 */ 142, 130, 130, 61, 37, 53, 300, 151, 53, 53, /* 1990 */ 153, 154, 155, 156, 157, 53, 130, 116, 34, 1, /* 2000 */ 141, 5, 22, 115, 161, 68, 25, 68, 75, 41, /* 2010 */ 141, 115, 24, 20, 19, 131, 125, 23, 28, 22, /* 2020 */ 67, 22, 22, 22, 67, 59, 24, 96, 22, 67, /* 2030 */ 23, 149, 22, 25, 23, 23, 23, 22, 34, 141, /* 2040 */ 37, 97, 23, 23, 116, 22, 143, 25, 34, 75, /* 2050 */ 34, 34, 34, 88, 75, 34, 86, 23, 22, 34, /* 2060 */ 93, 24, 34, 25, 25, 142, 142, 23, 44, 23, /* 2070 */ 23, 23, 23, 11, 23, 25, 22, 22, 22, 141, /* 2080 */ 23, 23, 22, 22, 25, 15, 1, 23, 25, 1, /* 2090 */ 141, 135, 319, 319, 319, 319, 319, 319, 319, 141, /* 2100 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2110 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2120 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2130 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2140 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2150 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2160 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2170 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2180 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2190 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2200 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2210 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2220 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2230 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2240 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2250 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2260 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2270 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319, /* 2280 */ 319, 319, 319, 319, 319, }; #define YY_SHIFT_COUNT (578) #define YY_SHIFT_MIN (0) #define YY_SHIFT_MAX (2088) static const unsigned short int yy_shift_ofst[] = { /* 0 */ 1648, 1477, 1272, 322, 322, 1, 1319, 1478, 1491, 1837, /* 10 */ 1837, 1837, 471, 0, 0, 214, 1093, 1837, 1837, 1837, /* 20 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 30 */ 1837, 271, 271, 1219, 1219, 216, 88, 1, 1, 1, /* 40 */ 1, 1, 40, 111, 258, 361, 469, 512, 583, 622, /* 50 */ 693, 732, 803, 842, 913, 1073, 1093, 1093, 1093, 1093, /* 60 */ 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, /* 70 */ 1093, 1093, 1093, 1093, 1113, 1093, 1216, 957, 957, 1635, /* 80 */ 1662, 1777, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 90 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 100 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 110 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 120 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, /* 130 */ 1837, 137, 181, 181, 181, 181, 181, 181, 181, 94, /* 140 */ 430, 66, 65, 112, 366, 533, 533, 740, 1257, 533, /* 150 */ 533, 79, 79, 533, 412, 412, 412, 77, 412, 123, /* 160 */ 113, 113, 113, 22, 22, 2100, 2100, 328, 328, 328, /* 170 */ 239, 468, 468, 468, 468, 1015, 1015, 409, 366, 1187, /* 180 */ 1232, 533, 533, 533, 533, 533, 533, 533, 533, 533, /* 190 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 533, /* 200 */ 533, 969, 621, 621, 533, 642, 788, 788, 1133, 1133, /* 210 */ 822, 822, 67, 1193, 2100, 2100, 2100, 2100, 2100, 2100, /* 220 */ 2100, 1307, 954, 954, 585, 472, 640, 387, 695, 538, /* 230 */ 541, 700, 533, 533, 533, 533, 533, 533, 533, 533, /* 240 */ 533, 533, 222, 533, 533, 533, 533, 533, 533, 533, /* 250 */ 533, 533, 533, 533, 533, 1213, 1213, 1213, 533, 533, /* 260 */ 533, 565, 533, 533, 533, 916, 1147, 533, 533, 1288, /* 270 */ 533, 533, 533, 533, 533, 533, 533, 533, 639, 1280, /* 280 */ 209, 1129, 1129, 1129, 1129, 580, 209, 209, 1209, 768, /* 290 */ 917, 649, 1315, 1334, 405, 1334, 1383, 249, 1315, 1315, /* 300 */ 249, 1315, 405, 1383, 1441, 464, 1245, 1417, 1417, 1417, /* 310 */ 1323, 1323, 1323, 1323, 184, 184, 1335, 1476, 856, 1482, /* 320 */ 1744, 1744, 1665, 1665, 1773, 1773, 1665, 1669, 1671, 1802, /* 330 */ 1782, 1809, 1809, 1809, 1809, 1665, 1817, 1690, 1671, 1671, /* 340 */ 1690, 1802, 1782, 1690, 1782, 1690, 1665, 1817, 1693, 1791, /* 350 */ 1665, 1817, 1832, 1665, 1817, 1665, 1817, 1832, 1752, 1752, /* 360 */ 1752, 1805, 1850, 1850, 1832, 1752, 1749, 1752, 1805, 1752, /* 370 */ 1752, 1713, 1858, 1775, 1775, 1832, 1665, 1799, 1799, 1823, /* 380 */ 1823, 1761, 1765, 1890, 1665, 1757, 1761, 1771, 1774, 1690, /* 390 */ 1894, 1913, 1913, 1929, 1929, 1929, 2100, 2100, 2100, 2100, /* 400 */ 2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100, /* 410 */ 2100, 207, 1220, 331, 620, 967, 806, 1074, 1499, 1432, /* 420 */ 1463, 1479, 1419, 1422, 1557, 1512, 1598, 1599, 1644, 1645, /* 430 */ 1654, 1660, 1555, 1505, 1684, 1462, 1670, 1563, 1619, 1593, /* 440 */ 1676, 1679, 1613, 1680, 1554, 1558, 1689, 1692, 1605, 1589, /* 450 */ 1955, 1959, 1941, 1803, 1950, 1951, 1945, 1946, 1831, 1820, /* 460 */ 1842, 1948, 1948, 1952, 1833, 1954, 1834, 1961, 1978, 1838, /* 470 */ 1851, 1948, 1852, 1922, 1947, 1948, 1836, 1932, 1935, 1936, /* 480 */ 1942, 1866, 1881, 1964, 1859, 1998, 1996, 1980, 1888, 1843, /* 490 */ 1937, 1981, 1939, 1933, 1968, 1869, 1896, 1988, 1993, 1995, /* 500 */ 1884, 1891, 1997, 1953, 1999, 2000, 1994, 2001, 1957, 1966, /* 510 */ 2002, 1931, 1990, 2006, 1962, 2003, 2007, 2004, 1882, 2010, /* 520 */ 2011, 2012, 2008, 2013, 2015, 1944, 1898, 2019, 2020, 1928, /* 530 */ 2014, 2023, 1903, 2022, 2016, 2017, 2018, 2021, 1965, 1974, /* 540 */ 1970, 2024, 1979, 1967, 2025, 2034, 2036, 2037, 2038, 2039, /* 550 */ 2028, 1923, 1924, 2044, 2022, 2046, 2047, 2048, 2049, 2050, /* 560 */ 2051, 2054, 2062, 2055, 2056, 2057, 2058, 2060, 2061, 2059, /* 570 */ 1956, 1938, 1949, 1958, 2063, 2064, 2070, 2085, 2088, }; #define YY_REDUCE_COUNT (410) #define YY_REDUCE_MIN (-271) #define YY_REDUCE_MAX (1753) static const short yy_reduce_ofst[] = { /* 0 */ -125, 733, 789, 241, 293, -123, -193, -191, -183, -187, /* 10 */ 166, 238, 133, -207, -199, -267, -176, -6, 204, 489, /* 20 */ 576, 598, -175, 686, 860, 615, 725, 1014, 778, 781, /* 30 */ 857, 616, 887, 87, 240, -192, 408, 626, 796, 843, /* 40 */ 854, 1004, -271, -271, -271, -271, -271, -271, -271, -271, /* 50 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271, /* 60 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271, /* 70 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, 80, /* 80 */ 83, 313, 886, 888, 918, 938, 1021, 1034, 1036, 1141, /* 90 */ 1159, 1163, 1166, 1168, 1170, 1176, 1178, 1180, 1184, 1196, /* 100 */ 1198, 1205, 1215, 1225, 1227, 1236, 1252, 1254, 1264, 1303, /* 110 */ 1309, 1312, 1322, 1325, 1328, 1337, 1340, 1343, 1353, 1371, /* 120 */ 1373, 1384, 1386, 1411, 1413, 1420, 1424, 1426, 1458, 1470, /* 130 */ 1473, -271, -271, -271, -271, -271, -271, -271, -271, -271, /* 140 */ -271, -271, 138, 459, 396, -158, 470, 302, -212, 521, /* 150 */ 201, -195, -92, 559, 630, 632, 630, -271, 632, 901, /* 160 */ 63, 407, 670, -271, -271, -271, -271, 161, 161, 161, /* 170 */ 251, 335, 847, 979, 1097, 537, 588, 618, 628, 688, /* 180 */ 688, -166, -161, 674, 787, 794, 799, 852, 996, -122, /* 190 */ 837, -120, 1018, 1035, 415, 1047, 1001, 958, 1082, 400, /* 200 */ 1099, 779, 1137, 1142, 263, 1083, 1145, 1150, 1041, 1139, /* 210 */ 965, 1050, 362, 849, 752, 629, 675, 1162, 1173, 1090, /* 220 */ 1195, -194, 56, 185, -135, 232, 522, 560, 571, 601, /* 230 */ 617, 669, 683, 711, 850, 893, 1000, 1040, 1049, 1081, /* 240 */ 1087, 1101, 392, 1114, 1123, 1155, 1161, 1175, 1271, 1293, /* 250 */ 1299, 1330, 1339, 1342, 1347, 593, 1282, 1286, 1350, 1359, /* 260 */ 1368, 1314, 1480, 1483, 1507, 1085, 1338, 1526, 1527, 1487, /* 270 */ 1531, 560, 1532, 1534, 1535, 1538, 1539, 1541, 1448, 1450, /* 280 */ 1496, 1484, 1485, 1489, 1490, 1314, 1496, 1496, 1504, 1536, /* 290 */ 1564, 1451, 1486, 1492, 1509, 1493, 1465, 1515, 1494, 1495, /* 300 */ 1517, 1500, 1519, 1474, 1550, 1543, 1548, 1556, 1565, 1566, /* 310 */ 1518, 1523, 1542, 1544, 1525, 1545, 1513, 1553, 1552, 1604, /* 320 */ 1508, 1510, 1608, 1609, 1520, 1528, 1612, 1540, 1559, 1560, /* 330 */ 1592, 1591, 1595, 1596, 1597, 1629, 1638, 1594, 1569, 1570, /* 340 */ 1600, 1568, 1610, 1601, 1611, 1603, 1643, 1651, 1562, 1571, /* 350 */ 1655, 1659, 1640, 1663, 1666, 1664, 1667, 1641, 1650, 1652, /* 360 */ 1653, 1647, 1656, 1657, 1658, 1668, 1672, 1681, 1649, 1682, /* 370 */ 1683, 1573, 1582, 1607, 1615, 1685, 1702, 1586, 1587, 1642, /* 380 */ 1646, 1673, 1675, 1636, 1714, 1637, 1677, 1674, 1678, 1694, /* 390 */ 1719, 1734, 1735, 1746, 1747, 1750, 1633, 1661, 1686, 1738, /* 400 */ 1728, 1733, 1736, 1737, 1740, 1726, 1730, 1742, 1743, 1748, /* 410 */ 1753, }; static const YYACTIONTYPE yy_default[] = { /* 0 */ 1648, 1648, 1648, 1478, 1243, 1354, 1243, 1243, 1243, 1478, /* 10 */ 1478, 1478, 1243, 1384, 1384, 1531, 1276, 1243, 1243, 1243, /* 20 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1477, 1243, /* 30 */ 1243, 1243, 1243, 1564, 1564, 1243, 1243, 1243, 1243, 1243, /* 40 */ 1243, 1243, 1243, 1393, 1243, 1400, 1243, 1243, 1243, 1243, /* 50 */ 1243, 1479, 1480, 1243, 1243, 1243, 1530, 1532, 1495, 1407, /* 60 */ 1406, 1405, 1404, 1513, 1372, 1398, 1391, 1395, 1474, 1475, /* 70 */ 1473, 1626, 1480, 1479, 1243, 1394, 1442, 1458, 1441, 1243, /* 80 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 90 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 100 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 110 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 120 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 130 */ 1243, 1450, 1457, 1456, 1455, 1464, 1454, 1451, 1444, 1443, /* 140 */ 1445, 1446, 1243, 1243, 1267, 1243, 1243, 1264, 1318, 1243, /* 150 */ 1243, 1243, 1243, 1243, 1550, 1549, 1243, 1447, 1243, 1276, /* 160 */ 1435, 1434, 1433, 1461, 1448, 1460, 1459, 1538, 1600, 1599, /* 170 */ 1496, 1243, 1243, 1243, 1243, 1243, 1243, 1564, 1243, 1243, /* 180 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 190 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 200 */ 1243, 1374, 1564, 1564, 1243, 1276, 1564, 1564, 1375, 1375, /* 210 */ 1272, 1272, 1378, 1243, 1545, 1345, 1345, 1345, 1345, 1354, /* 220 */ 1345, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 230 */ 1243, 1243, 1243, 1243, 1243, 1243, 1535, 1533, 1243, 1243, /* 240 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 250 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 260 */ 1243, 1243, 1243, 1243, 1243, 1350, 1243, 1243, 1243, 1243, /* 270 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1593, 1243, 1508, /* 280 */ 1332, 1350, 1350, 1350, 1350, 1352, 1333, 1331, 1344, 1277, /* 290 */ 1250, 1640, 1410, 1399, 1351, 1399, 1637, 1397, 1410, 1410, /* 300 */ 1397, 1410, 1351, 1637, 1293, 1615, 1288, 1384, 1384, 1384, /* 310 */ 1374, 1374, 1374, 1374, 1378, 1378, 1476, 1351, 1344, 1243, /* 320 */ 1640, 1640, 1360, 1360, 1639, 1639, 1360, 1496, 1623, 1419, /* 330 */ 1321, 1327, 1327, 1327, 1327, 1360, 1261, 1397, 1623, 1623, /* 340 */ 1397, 1419, 1321, 1397, 1321, 1397, 1360, 1261, 1512, 1634, /* 350 */ 1360, 1261, 1486, 1360, 1261, 1360, 1261, 1486, 1319, 1319, /* 360 */ 1319, 1308, 1243, 1243, 1486, 1319, 1293, 1319, 1308, 1319, /* 370 */ 1319, 1582, 1243, 1490, 1490, 1486, 1360, 1574, 1574, 1387, /* 380 */ 1387, 1392, 1378, 1481, 1360, 1243, 1392, 1390, 1388, 1397, /* 390 */ 1311, 1596, 1596, 1592, 1592, 1592, 1645, 1645, 1545, 1608, /* 400 */ 1276, 1276, 1276, 1276, 1608, 1295, 1295, 1277, 1277, 1276, /* 410 */ 1608, 1243, 1243, 1243, 1243, 1243, 1243, 1603, 1243, 1540, /* 420 */ 1497, 1364, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 430 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1551, 1243, /* 440 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1424, /* 450 */ 1243, 1246, 1542, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 460 */ 1243, 1401, 1402, 1365, 1243, 1243, 1243, 1243, 1243, 1243, /* 470 */ 1243, 1416, 1243, 1243, 1243, 1411, 1243, 1243, 1243, 1243, /* 480 */ 1243, 1243, 1243, 1243, 1636, 1243, 1243, 1243, 1243, 1243, /* 490 */ 1243, 1511, 1510, 1243, 1243, 1362, 1243, 1243, 1243, 1243, /* 500 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1291, /* 510 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 520 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, /* 530 */ 1243, 1243, 1243, 1389, 1243, 1243, 1243, 1243, 1243, 1243, /* 540 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1579, 1379, /* 550 */ 1243, 1243, 1243, 1243, 1627, 1243, 1243, 1243, 1243, 1243, /* 560 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1619, /* 570 */ 1335, 1425, 1243, 1428, 1265, 1243, 1255, 1243, 1243, }; /********** End of lemon-generated parsing tables *****************************/ /* The next table maps tokens (terminal symbols) into fallback tokens. ** If a construct like the following: ** ** %fallback ID X Y Z. ** ** appears in the grammar, then ID becomes a fallback token for X, Y, ** and Z. Whenever one of the tokens X, Y, or Z is input to the parser ** but it does not parse, the type of the token is changed to ID and ** the parse is retried before an error is thrown. ** ** This feature can be used, for example, to cause some keywords in a language ** to revert to identifiers if they keyword does not apply in the context where ** it appears. */ #ifdef YYFALLBACK static const YYCODETYPE yyFallback[] = { 0, /* $ => nothing */ 0, /* SEMI => nothing */ 59, /* EXPLAIN => ID */ 59, /* QUERY => ID */ 59, /* PLAN => ID */ 59, /* BEGIN => ID */ 0, /* TRANSACTION => nothing */ 59, /* DEFERRED => ID */ 59, /* IMMEDIATE => ID */ 59, /* EXCLUSIVE => ID */ 0, /* COMMIT => nothing */ 59, /* END => ID */ 59, /* ROLLBACK => ID */ 59, /* SAVEPOINT => ID */ 59, /* RELEASE => ID */ 0, /* TO => nothing */ 0, /* TABLE => nothing */ 0, /* CREATE => nothing */ 59, /* IF => ID */ 0, /* NOT => nothing */ 0, /* EXISTS => nothing */ 59, /* TEMP => ID */ 0, /* LP => nothing */ 0, /* RP => nothing */ 0, /* AS => nothing */ 0, /* COMMA => nothing */ 59, /* WITHOUT => ID */ 59, /* ABORT => ID */ 59, /* ACTION => ID */ 59, /* AFTER => ID */ 59, /* ANALYZE => ID */ 59, /* ASC => ID */ 59, /* ATTACH => ID */ 59, /* BEFORE => ID */ 59, /* BY => ID */ 59, /* CASCADE => ID */ 59, /* CAST => ID */ 59, /* CONFLICT => ID */ 59, /* DATABASE => ID */ 59, /* DESC => ID */ 59, /* DETACH => ID */ 59, /* EACH => ID */ 59, /* FAIL => ID */ 0, /* OR => nothing */ 0, /* AND => nothing */ 0, /* IS => nothing */ 59, /* MATCH => ID */ 59, /* LIKE_KW => ID */ 0, /* BETWEEN => nothing */ 0, /* IN => nothing */ 0, /* ISNULL => nothing */ 0, /* NOTNULL => nothing */ 0, /* NE => nothing */ 0, /* EQ => nothing */ 0, /* GT => nothing */ 0, /* LE => nothing */ 0, /* LT => nothing */ 0, /* GE => nothing */ 0, /* ESCAPE => nothing */ 0, /* ID => nothing */ 59, /* COLUMNKW => ID */ 59, /* DO => ID */ 59, /* FOR => ID */ 59, /* IGNORE => ID */ 59, /* INITIALLY => ID */ 59, /* INSTEAD => ID */ 59, /* NO => ID */ 59, /* KEY => ID */ 59, /* OF => ID */ 59, /* OFFSET => ID */ 59, /* PRAGMA => ID */ 59, /* RAISE => ID */ 59, /* RECURSIVE => ID */ 59, /* REPLACE => ID */ 59, /* RESTRICT => ID */ 59, /* ROW => ID */ 59, /* ROWS => ID */ 59, /* TRIGGER => ID */ 59, /* VACUUM => ID */ 59, /* VIEW => ID */ 59, /* VIRTUAL => ID */ 59, /* WITH => ID */ 59, /* NULLS => ID */ 59, /* FIRST => ID */ 59, /* LAST => ID */ 59, /* CURRENT => ID */ 59, /* FOLLOWING => ID */ 59, /* PARTITION => ID */ 59, /* PRECEDING => ID */ 59, /* RANGE => ID */ 59, /* UNBOUNDED => ID */ 59, /* EXCLUDE => ID */ 59, /* GROUPS => ID */ 59, /* OTHERS => ID */ 59, /* TIES => ID */ 59, /* GENERATED => ID */ 59, /* ALWAYS => ID */ 59, /* MATERIALIZED => ID */ 59, /* REINDEX => ID */ 59, /* RENAME => ID */ 59, /* CTIME_KW => ID */ 0, /* ANY => nothing */ 0, /* BITAND => nothing */ 0, /* BITOR => nothing */ 0, /* LSHIFT => nothing */ 0, /* RSHIFT => nothing */ 0, /* PLUS => nothing */ 0, /* MINUS => nothing */ 0, /* STAR => nothing */ 0, /* SLASH => nothing */ 0, /* REM => nothing */ 0, /* CONCAT => nothing */ 0, /* PTR => nothing */ 0, /* COLLATE => nothing */ 0, /* BITNOT => nothing */ 0, /* ON => nothing */ 0, /* INDEXED => nothing */ 0, /* STRING => nothing */ 0, /* JOIN_KW => nothing */ 0, /* CONSTRAINT => nothing */ 0, /* DEFAULT => nothing */ 0, /* NULL => nothing */ 0, /* PRIMARY => nothing */ 0, /* UNIQUE => nothing */ 0, /* CHECK => nothing */ 0, /* REFERENCES => nothing */ 0, /* AUTOINCR => nothing */ 0, /* INSERT => nothing */ 0, /* DELETE => nothing */ 0, /* UPDATE => nothing */ 0, /* SET => nothing */ 0, /* DEFERRABLE => nothing */ 0, /* FOREIGN => nothing */ 0, /* DROP => nothing */ 0, /* UNION => nothing */ 0, /* ALL => nothing */ 0, /* EXCEPT => nothing */ 0, /* INTERSECT => nothing */ 0, /* SELECT => nothing */ 0, /* VALUES => nothing */ 0, /* DISTINCT => nothing */ 0, /* DOT => nothing */ 0, /* FROM => nothing */ 0, /* JOIN => nothing */ 0, /* USING => nothing */ 0, /* ORDER => nothing */ 0, /* GROUP => nothing */ 0, /* HAVING => nothing */ 0, /* LIMIT => nothing */ 0, /* WHERE => nothing */ 0, /* RETURNING => nothing */ 0, /* INTO => nothing */ 0, /* NOTHING => nothing */ 0, /* FLOAT => nothing */ 0, /* BLOB => nothing */ 0, /* INTEGER => nothing */ 0, /* VARIABLE => nothing */ 0, /* CASE => nothing */ 0, /* WHEN => nothing */ 0, /* THEN => nothing */ 0, /* ELSE => nothing */ 0, /* INDEX => nothing */ 0, /* ALTER => nothing */ 0, /* ADD => nothing */ 0, /* WINDOW => nothing */ 0, /* OVER => nothing */ 0, /* FILTER => nothing */ 0, /* COLUMN => nothing */ 0, /* AGG_FUNCTION => nothing */ 0, /* AGG_COLUMN => nothing */ 0, /* TRUEFALSE => nothing */ 0, /* ISNOT => nothing */ 0, /* FUNCTION => nothing */ 0, /* UMINUS => nothing */ 0, /* UPLUS => nothing */ 0, /* TRUTH => nothing */ 0, /* REGISTER => nothing */ 0, /* VECTOR => nothing */ 0, /* SELECT_COLUMN => nothing */ 0, /* IF_NULL_ROW => nothing */ 0, /* ASTERISK => nothing */ 0, /* SPAN => nothing */ 0, /* ERROR => nothing */ 0, /* SPACE => nothing */ 0, /* ILLEGAL => nothing */ }; #endif /* YYFALLBACK */ /* The following structure represents a single element of the ** parser's stack. Information stored includes: ** ** + The state number for the parser at this level of the stack. ** ** + The value of the token stored at this level of the stack. ** (In other words, the "major" token.) ** ** + The semantic value stored at this level of the stack. This is ** the information used by the action routines in the grammar. ** It is sometimes called the "minor" token. ** ** After the "shift" half of a SHIFTREDUCE action, the stateno field ** actually contains the reduce action for the second half of the ** SHIFTREDUCE. */ struct yyStackEntry { YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */ YYCODETYPE major; /* The major token value. This is the code ** number for the token at this stack level */ YYMINORTYPE minor; /* The user-supplied minor token value. This ** is the value of the token */ }; typedef struct yyStackEntry yyStackEntry; /* The state of the parser is completely contained in an instance of ** the following structure */ struct yyParser { yyStackEntry *yytos; /* Pointer to top element of the stack */ #ifdef YYTRACKMAXSTACKDEPTH int yyhwm; /* High-water mark of the stack */ #endif #ifndef YYNOERRORRECOVERY int yyerrcnt; /* Shifts left before out of the error */ #endif sqlite3ParserARG_SDECL /* A place to hold %extra_argument */ sqlite3ParserCTX_SDECL /* A place to hold %extra_context */ #if YYSTACKDEPTH<=0 int yystksz; /* Current side of the stack */ yyStackEntry *yystack; /* The parser's stack */ yyStackEntry yystk0; /* First stack entry */ #else yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ yyStackEntry *yystackEnd; /* Last entry in the stack */ #endif }; typedef struct yyParser yyParser; /* #include */ #ifndef NDEBUG /* #include */ static FILE *yyTraceFILE = 0; static char *yyTracePrompt = 0; #endif /* NDEBUG */ #ifndef NDEBUG /* ** Turn parser tracing on by giving a stream to which to write the trace ** and a prompt to preface each trace message. Tracing is turned off ** by making either argument NULL ** ** Inputs: **
      **
    • A FILE* to which trace output should be written. ** If NULL, then tracing is turned off. **
    • A prefix string written at the beginning of every ** line of trace output. If NULL, then tracing is ** turned off. **
    ** ** Outputs: ** None. */ SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){ yyTraceFILE = TraceFILE; yyTracePrompt = zTracePrompt; if( yyTraceFILE==0 ) yyTracePrompt = 0; else if( yyTracePrompt==0 ) yyTraceFILE = 0; } #endif /* NDEBUG */ #if defined(YYCOVERAGE) || !defined(NDEBUG) /* For tracing shifts, the names of all terminals and nonterminals ** are required. The following table supplies these names */ static const char *const yyTokenName[] = { /* 0 */ "$", /* 1 */ "SEMI", /* 2 */ "EXPLAIN", /* 3 */ "QUERY", /* 4 */ "PLAN", /* 5 */ "BEGIN", /* 6 */ "TRANSACTION", /* 7 */ "DEFERRED", /* 8 */ "IMMEDIATE", /* 9 */ "EXCLUSIVE", /* 10 */ "COMMIT", /* 11 */ "END", /* 12 */ "ROLLBACK", /* 13 */ "SAVEPOINT", /* 14 */ "RELEASE", /* 15 */ "TO", /* 16 */ "TABLE", /* 17 */ "CREATE", /* 18 */ "IF", /* 19 */ "NOT", /* 20 */ "EXISTS", /* 21 */ "TEMP", /* 22 */ "LP", /* 23 */ "RP", /* 24 */ "AS", /* 25 */ "COMMA", /* 26 */ "WITHOUT", /* 27 */ "ABORT", /* 28 */ "ACTION", /* 29 */ "AFTER", /* 30 */ "ANALYZE", /* 31 */ "ASC", /* 32 */ "ATTACH", /* 33 */ "BEFORE", /* 34 */ "BY", /* 35 */ "CASCADE", /* 36 */ "CAST", /* 37 */ "CONFLICT", /* 38 */ "DATABASE", /* 39 */ "DESC", /* 40 */ "DETACH", /* 41 */ "EACH", /* 42 */ "FAIL", /* 43 */ "OR", /* 44 */ "AND", /* 45 */ "IS", /* 46 */ "MATCH", /* 47 */ "LIKE_KW", /* 48 */ "BETWEEN", /* 49 */ "IN", /* 50 */ "ISNULL", /* 51 */ "NOTNULL", /* 52 */ "NE", /* 53 */ "EQ", /* 54 */ "GT", /* 55 */ "LE", /* 56 */ "LT", /* 57 */ "GE", /* 58 */ "ESCAPE", /* 59 */ "ID", /* 60 */ "COLUMNKW", /* 61 */ "DO", /* 62 */ "FOR", /* 63 */ "IGNORE", /* 64 */ "INITIALLY", /* 65 */ "INSTEAD", /* 66 */ "NO", /* 67 */ "KEY", /* 68 */ "OF", /* 69 */ "OFFSET", /* 70 */ "PRAGMA", /* 71 */ "RAISE", /* 72 */ "RECURSIVE", /* 73 */ "REPLACE", /* 74 */ "RESTRICT", /* 75 */ "ROW", /* 76 */ "ROWS", /* 77 */ "TRIGGER", /* 78 */ "VACUUM", /* 79 */ "VIEW", /* 80 */ "VIRTUAL", /* 81 */ "WITH", /* 82 */ "NULLS", /* 83 */ "FIRST", /* 84 */ "LAST", /* 85 */ "CURRENT", /* 86 */ "FOLLOWING", /* 87 */ "PARTITION", /* 88 */ "PRECEDING", /* 89 */ "RANGE", /* 90 */ "UNBOUNDED", /* 91 */ "EXCLUDE", /* 92 */ "GROUPS", /* 93 */ "OTHERS", /* 94 */ "TIES", /* 95 */ "GENERATED", /* 96 */ "ALWAYS", /* 97 */ "MATERIALIZED", /* 98 */ "REINDEX", /* 99 */ "RENAME", /* 100 */ "CTIME_KW", /* 101 */ "ANY", /* 102 */ "BITAND", /* 103 */ "BITOR", /* 104 */ "LSHIFT", /* 105 */ "RSHIFT", /* 106 */ "PLUS", /* 107 */ "MINUS", /* 108 */ "STAR", /* 109 */ "SLASH", /* 110 */ "REM", /* 111 */ "CONCAT", /* 112 */ "PTR", /* 113 */ "COLLATE", /* 114 */ "BITNOT", /* 115 */ "ON", /* 116 */ "INDEXED", /* 117 */ "STRING", /* 118 */ "JOIN_KW", /* 119 */ "CONSTRAINT", /* 120 */ "DEFAULT", /* 121 */ "NULL", /* 122 */ "PRIMARY", /* 123 */ "UNIQUE", /* 124 */ "CHECK", /* 125 */ "REFERENCES", /* 126 */ "AUTOINCR", /* 127 */ "INSERT", /* 128 */ "DELETE", /* 129 */ "UPDATE", /* 130 */ "SET", /* 131 */ "DEFERRABLE", /* 132 */ "FOREIGN", /* 133 */ "DROP", /* 134 */ "UNION", /* 135 */ "ALL", /* 136 */ "EXCEPT", /* 137 */ "INTERSECT", /* 138 */ "SELECT", /* 139 */ "VALUES", /* 140 */ "DISTINCT", /* 141 */ "DOT", /* 142 */ "FROM", /* 143 */ "JOIN", /* 144 */ "USING", /* 145 */ "ORDER", /* 146 */ "GROUP", /* 147 */ "HAVING", /* 148 */ "LIMIT", /* 149 */ "WHERE", /* 150 */ "RETURNING", /* 151 */ "INTO", /* 152 */ "NOTHING", /* 153 */ "FLOAT", /* 154 */ "BLOB", /* 155 */ "INTEGER", /* 156 */ "VARIABLE", /* 157 */ "CASE", /* 158 */ "WHEN", /* 159 */ "THEN", /* 160 */ "ELSE", /* 161 */ "INDEX", /* 162 */ "ALTER", /* 163 */ "ADD", /* 164 */ "WINDOW", /* 165 */ "OVER", /* 166 */ "FILTER", /* 167 */ "COLUMN", /* 168 */ "AGG_FUNCTION", /* 169 */ "AGG_COLUMN", /* 170 */ "TRUEFALSE", /* 171 */ "ISNOT", /* 172 */ "FUNCTION", /* 173 */ "UMINUS", /* 174 */ "UPLUS", /* 175 */ "TRUTH", /* 176 */ "REGISTER", /* 177 */ "VECTOR", /* 178 */ "SELECT_COLUMN", /* 179 */ "IF_NULL_ROW", /* 180 */ "ASTERISK", /* 181 */ "SPAN", /* 182 */ "ERROR", /* 183 */ "SPACE", /* 184 */ "ILLEGAL", /* 185 */ "input", /* 186 */ "cmdlist", /* 187 */ "ecmd", /* 188 */ "cmdx", /* 189 */ "explain", /* 190 */ "cmd", /* 191 */ "transtype", /* 192 */ "trans_opt", /* 193 */ "nm", /* 194 */ "savepoint_opt", /* 195 */ "create_table", /* 196 */ "create_table_args", /* 197 */ "createkw", /* 198 */ "temp", /* 199 */ "ifnotexists", /* 200 */ "dbnm", /* 201 */ "columnlist", /* 202 */ "conslist_opt", /* 203 */ "table_option_set", /* 204 */ "select", /* 205 */ "table_option", /* 206 */ "columnname", /* 207 */ "carglist", /* 208 */ "typetoken", /* 209 */ "typename", /* 210 */ "signed", /* 211 */ "plus_num", /* 212 */ "minus_num", /* 213 */ "scanpt", /* 214 */ "scantok", /* 215 */ "ccons", /* 216 */ "term", /* 217 */ "expr", /* 218 */ "onconf", /* 219 */ "sortorder", /* 220 */ "autoinc", /* 221 */ "eidlist_opt", /* 222 */ "refargs", /* 223 */ "defer_subclause", /* 224 */ "generated", /* 225 */ "refarg", /* 226 */ "refact", /* 227 */ "init_deferred_pred_opt", /* 228 */ "conslist", /* 229 */ "tconscomma", /* 230 */ "tcons", /* 231 */ "sortlist", /* 232 */ "eidlist", /* 233 */ "defer_subclause_opt", /* 234 */ "orconf", /* 235 */ "resolvetype", /* 236 */ "raisetype", /* 237 */ "ifexists", /* 238 */ "fullname", /* 239 */ "selectnowith", /* 240 */ "oneselect", /* 241 */ "wqlist", /* 242 */ "multiselect_op", /* 243 */ "distinct", /* 244 */ "selcollist", /* 245 */ "from", /* 246 */ "where_opt", /* 247 */ "groupby_opt", /* 248 */ "having_opt", /* 249 */ "orderby_opt", /* 250 */ "limit_opt", /* 251 */ "window_clause", /* 252 */ "values", /* 253 */ "nexprlist", /* 254 */ "sclp", /* 255 */ "as", /* 256 */ "seltablist", /* 257 */ "stl_prefix", /* 258 */ "joinop", /* 259 */ "on_using", /* 260 */ "indexed_by", /* 261 */ "exprlist", /* 262 */ "xfullname", /* 263 */ "idlist", /* 264 */ "indexed_opt", /* 265 */ "nulls", /* 266 */ "with", /* 267 */ "where_opt_ret", /* 268 */ "setlist", /* 269 */ "insert_cmd", /* 270 */ "idlist_opt", /* 271 */ "upsert", /* 272 */ "returning", /* 273 */ "filter_over", /* 274 */ "likeop", /* 275 */ "between_op", /* 276 */ "in_op", /* 277 */ "paren_exprlist", /* 278 */ "case_operand", /* 279 */ "case_exprlist", /* 280 */ "case_else", /* 281 */ "uniqueflag", /* 282 */ "collate", /* 283 */ "vinto", /* 284 */ "nmnum", /* 285 */ "trigger_decl", /* 286 */ "trigger_cmd_list", /* 287 */ "trigger_time", /* 288 */ "trigger_event", /* 289 */ "foreach_clause", /* 290 */ "when_clause", /* 291 */ "trigger_cmd", /* 292 */ "trnm", /* 293 */ "tridxby", /* 294 */ "database_kw_opt", /* 295 */ "key_opt", /* 296 */ "add_column_fullname", /* 297 */ "kwcolumn_opt", /* 298 */ "create_vtab", /* 299 */ "vtabarglist", /* 300 */ "vtabarg", /* 301 */ "vtabargtoken", /* 302 */ "lp", /* 303 */ "anylist", /* 304 */ "wqitem", /* 305 */ "wqas", /* 306 */ "windowdefn_list", /* 307 */ "windowdefn", /* 308 */ "window", /* 309 */ "frame_opt", /* 310 */ "part_opt", /* 311 */ "filter_clause", /* 312 */ "over_clause", /* 313 */ "range_or_rows", /* 314 */ "frame_bound", /* 315 */ "frame_bound_s", /* 316 */ "frame_bound_e", /* 317 */ "frame_exclude_opt", /* 318 */ "frame_exclude", }; #endif /* defined(YYCOVERAGE) || !defined(NDEBUG) */ #ifndef NDEBUG /* For tracing reduce actions, the names of all rules are required. */ static const char *const yyRuleName[] = { /* 0 */ "explain ::= EXPLAIN", /* 1 */ "explain ::= EXPLAIN QUERY PLAN", /* 2 */ "cmdx ::= cmd", /* 3 */ "cmd ::= BEGIN transtype trans_opt", /* 4 */ "transtype ::=", /* 5 */ "transtype ::= DEFERRED", /* 6 */ "transtype ::= IMMEDIATE", /* 7 */ "transtype ::= EXCLUSIVE", /* 8 */ "cmd ::= COMMIT|END trans_opt", /* 9 */ "cmd ::= ROLLBACK trans_opt", /* 10 */ "cmd ::= SAVEPOINT nm", /* 11 */ "cmd ::= RELEASE savepoint_opt nm", /* 12 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm", /* 13 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm", /* 14 */ "createkw ::= CREATE", /* 15 */ "ifnotexists ::=", /* 16 */ "ifnotexists ::= IF NOT EXISTS", /* 17 */ "temp ::= TEMP", /* 18 */ "temp ::=", /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP table_option_set", /* 20 */ "create_table_args ::= AS select", /* 21 */ "table_option_set ::=", /* 22 */ "table_option_set ::= table_option_set COMMA table_option", /* 23 */ "table_option ::= WITHOUT nm", /* 24 */ "table_option ::= nm", /* 25 */ "columnname ::= nm typetoken", /* 26 */ "typetoken ::=", /* 27 */ "typetoken ::= typename LP signed RP", /* 28 */ "typetoken ::= typename LP signed COMMA signed RP", /* 29 */ "typename ::= typename ID|STRING", /* 30 */ "scanpt ::=", /* 31 */ "scantok ::=", /* 32 */ "ccons ::= CONSTRAINT nm", /* 33 */ "ccons ::= DEFAULT scantok term", /* 34 */ "ccons ::= DEFAULT LP expr RP", /* 35 */ "ccons ::= DEFAULT PLUS scantok term", /* 36 */ "ccons ::= DEFAULT MINUS scantok term", /* 37 */ "ccons ::= DEFAULT scantok ID|INDEXED", /* 38 */ "ccons ::= NOT NULL onconf", /* 39 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc", /* 40 */ "ccons ::= UNIQUE onconf", /* 41 */ "ccons ::= CHECK LP expr RP", /* 42 */ "ccons ::= REFERENCES nm eidlist_opt refargs", /* 43 */ "ccons ::= defer_subclause", /* 44 */ "ccons ::= COLLATE ID|STRING", /* 45 */ "generated ::= LP expr RP", /* 46 */ "generated ::= LP expr RP ID", /* 47 */ "autoinc ::=", /* 48 */ "autoinc ::= AUTOINCR", /* 49 */ "refargs ::=", /* 50 */ "refargs ::= refargs refarg", /* 51 */ "refarg ::= MATCH nm", /* 52 */ "refarg ::= ON INSERT refact", /* 53 */ "refarg ::= ON DELETE refact", /* 54 */ "refarg ::= ON UPDATE refact", /* 55 */ "refact ::= SET NULL", /* 56 */ "refact ::= SET DEFAULT", /* 57 */ "refact ::= CASCADE", /* 58 */ "refact ::= RESTRICT", /* 59 */ "refact ::= NO ACTION", /* 60 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt", /* 61 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt", /* 62 */ "init_deferred_pred_opt ::=", /* 63 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED", /* 64 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE", /* 65 */ "conslist_opt ::=", /* 66 */ "tconscomma ::= COMMA", /* 67 */ "tcons ::= CONSTRAINT nm", /* 68 */ "tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf", /* 69 */ "tcons ::= UNIQUE LP sortlist RP onconf", /* 70 */ "tcons ::= CHECK LP expr RP onconf", /* 71 */ "tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt", /* 72 */ "defer_subclause_opt ::=", /* 73 */ "onconf ::=", /* 74 */ "onconf ::= ON CONFLICT resolvetype", /* 75 */ "orconf ::=", /* 76 */ "orconf ::= OR resolvetype", /* 77 */ "resolvetype ::= IGNORE", /* 78 */ "resolvetype ::= REPLACE", /* 79 */ "cmd ::= DROP TABLE ifexists fullname", /* 80 */ "ifexists ::= IF EXISTS", /* 81 */ "ifexists ::=", /* 82 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select", /* 83 */ "cmd ::= DROP VIEW ifexists fullname", /* 84 */ "cmd ::= select", /* 85 */ "select ::= WITH wqlist selectnowith", /* 86 */ "select ::= WITH RECURSIVE wqlist selectnowith", /* 87 */ "select ::= selectnowith", /* 88 */ "selectnowith ::= selectnowith multiselect_op oneselect", /* 89 */ "multiselect_op ::= UNION", /* 90 */ "multiselect_op ::= UNION ALL", /* 91 */ "multiselect_op ::= EXCEPT|INTERSECT", /* 92 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt", /* 93 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt", /* 94 */ "values ::= VALUES LP nexprlist RP", /* 95 */ "values ::= values COMMA LP nexprlist RP", /* 96 */ "distinct ::= DISTINCT", /* 97 */ "distinct ::= ALL", /* 98 */ "distinct ::=", /* 99 */ "sclp ::=", /* 100 */ "selcollist ::= sclp scanpt expr scanpt as", /* 101 */ "selcollist ::= sclp scanpt STAR", /* 102 */ "selcollist ::= sclp scanpt nm DOT STAR", /* 103 */ "as ::= AS nm", /* 104 */ "as ::=", /* 105 */ "from ::=", /* 106 */ "from ::= FROM seltablist", /* 107 */ "stl_prefix ::= seltablist joinop", /* 108 */ "stl_prefix ::=", /* 109 */ "seltablist ::= stl_prefix nm dbnm as on_using", /* 110 */ "seltablist ::= stl_prefix nm dbnm as indexed_by on_using", /* 111 */ "seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using", /* 112 */ "seltablist ::= stl_prefix LP select RP as on_using", /* 113 */ "seltablist ::= stl_prefix LP seltablist RP as on_using", /* 114 */ "dbnm ::=", /* 115 */ "dbnm ::= DOT nm", /* 116 */ "fullname ::= nm", /* 117 */ "fullname ::= nm DOT nm", /* 118 */ "xfullname ::= nm", /* 119 */ "xfullname ::= nm DOT nm", /* 120 */ "xfullname ::= nm DOT nm AS nm", /* 121 */ "xfullname ::= nm AS nm", /* 122 */ "joinop ::= COMMA|JOIN", /* 123 */ "joinop ::= JOIN_KW JOIN", /* 124 */ "joinop ::= JOIN_KW nm JOIN", /* 125 */ "joinop ::= JOIN_KW nm nm JOIN", /* 126 */ "on_using ::= ON expr", /* 127 */ "on_using ::= USING LP idlist RP", /* 128 */ "on_using ::=", /* 129 */ "indexed_opt ::=", /* 130 */ "indexed_by ::= INDEXED BY nm", /* 131 */ "indexed_by ::= NOT INDEXED", /* 132 */ "orderby_opt ::=", /* 133 */ "orderby_opt ::= ORDER BY sortlist", /* 134 */ "sortlist ::= sortlist COMMA expr sortorder nulls", /* 135 */ "sortlist ::= expr sortorder nulls", /* 136 */ "sortorder ::= ASC", /* 137 */ "sortorder ::= DESC", /* 138 */ "sortorder ::=", /* 139 */ "nulls ::= NULLS FIRST", /* 140 */ "nulls ::= NULLS LAST", /* 141 */ "nulls ::=", /* 142 */ "groupby_opt ::=", /* 143 */ "groupby_opt ::= GROUP BY nexprlist", /* 144 */ "having_opt ::=", /* 145 */ "having_opt ::= HAVING expr", /* 146 */ "limit_opt ::=", /* 147 */ "limit_opt ::= LIMIT expr", /* 148 */ "limit_opt ::= LIMIT expr OFFSET expr", /* 149 */ "limit_opt ::= LIMIT expr COMMA expr", /* 150 */ "cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret", /* 151 */ "where_opt ::=", /* 152 */ "where_opt ::= WHERE expr", /* 153 */ "where_opt_ret ::=", /* 154 */ "where_opt_ret ::= WHERE expr", /* 155 */ "where_opt_ret ::= RETURNING selcollist", /* 156 */ "where_opt_ret ::= WHERE expr RETURNING selcollist", /* 157 */ "cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret", /* 158 */ "setlist ::= setlist COMMA nm EQ expr", /* 159 */ "setlist ::= setlist COMMA LP idlist RP EQ expr", /* 160 */ "setlist ::= nm EQ expr", /* 161 */ "setlist ::= LP idlist RP EQ expr", /* 162 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert", /* 163 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning", /* 164 */ "upsert ::=", /* 165 */ "upsert ::= RETURNING selcollist", /* 166 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert", /* 167 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert", /* 168 */ "upsert ::= ON CONFLICT DO NOTHING returning", /* 169 */ "upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning", /* 170 */ "returning ::= RETURNING selcollist", /* 171 */ "insert_cmd ::= INSERT orconf", /* 172 */ "insert_cmd ::= REPLACE", /* 173 */ "idlist_opt ::=", /* 174 */ "idlist_opt ::= LP idlist RP", /* 175 */ "idlist ::= idlist COMMA nm", /* 176 */ "idlist ::= nm", /* 177 */ "expr ::= LP expr RP", /* 178 */ "expr ::= ID|INDEXED|JOIN_KW", /* 179 */ "expr ::= nm DOT nm", /* 180 */ "expr ::= nm DOT nm DOT nm", /* 181 */ "term ::= NULL|FLOAT|BLOB", /* 182 */ "term ::= STRING", /* 183 */ "term ::= INTEGER", /* 184 */ "expr ::= VARIABLE", /* 185 */ "expr ::= expr COLLATE ID|STRING", /* 186 */ "expr ::= CAST LP expr AS typetoken RP", /* 187 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP", /* 188 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP", /* 189 */ "expr ::= ID|INDEXED|JOIN_KW LP STAR RP", /* 190 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over", /* 191 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over", /* 192 */ "expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over", /* 193 */ "term ::= CTIME_KW", /* 194 */ "expr ::= LP nexprlist COMMA expr RP", /* 195 */ "expr ::= expr AND expr", /* 196 */ "expr ::= expr OR expr", /* 197 */ "expr ::= expr LT|GT|GE|LE expr", /* 198 */ "expr ::= expr EQ|NE expr", /* 199 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr", /* 200 */ "expr ::= expr PLUS|MINUS expr", /* 201 */ "expr ::= expr STAR|SLASH|REM expr", /* 202 */ "expr ::= expr CONCAT expr", /* 203 */ "likeop ::= NOT LIKE_KW|MATCH", /* 204 */ "expr ::= expr likeop expr", /* 205 */ "expr ::= expr likeop expr ESCAPE expr", /* 206 */ "expr ::= expr ISNULL|NOTNULL", /* 207 */ "expr ::= expr NOT NULL", /* 208 */ "expr ::= expr IS expr", /* 209 */ "expr ::= expr IS NOT expr", /* 210 */ "expr ::= expr IS NOT DISTINCT FROM expr", /* 211 */ "expr ::= expr IS DISTINCT FROM expr", /* 212 */ "expr ::= NOT expr", /* 213 */ "expr ::= BITNOT expr", /* 214 */ "expr ::= PLUS|MINUS expr", /* 215 */ "expr ::= expr PTR expr", /* 216 */ "between_op ::= BETWEEN", /* 217 */ "between_op ::= NOT BETWEEN", /* 218 */ "expr ::= expr between_op expr AND expr", /* 219 */ "in_op ::= IN", /* 220 */ "in_op ::= NOT IN", /* 221 */ "expr ::= expr in_op LP exprlist RP", /* 222 */ "expr ::= LP select RP", /* 223 */ "expr ::= expr in_op LP select RP", /* 224 */ "expr ::= expr in_op nm dbnm paren_exprlist", /* 225 */ "expr ::= EXISTS LP select RP", /* 226 */ "expr ::= CASE case_operand case_exprlist case_else END", /* 227 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr", /* 228 */ "case_exprlist ::= WHEN expr THEN expr", /* 229 */ "case_else ::= ELSE expr", /* 230 */ "case_else ::=", /* 231 */ "case_operand ::=", /* 232 */ "exprlist ::=", /* 233 */ "nexprlist ::= nexprlist COMMA expr", /* 234 */ "nexprlist ::= expr", /* 235 */ "paren_exprlist ::=", /* 236 */ "paren_exprlist ::= LP exprlist RP", /* 237 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt", /* 238 */ "uniqueflag ::= UNIQUE", /* 239 */ "uniqueflag ::=", /* 240 */ "eidlist_opt ::=", /* 241 */ "eidlist_opt ::= LP eidlist RP", /* 242 */ "eidlist ::= eidlist COMMA nm collate sortorder", /* 243 */ "eidlist ::= nm collate sortorder", /* 244 */ "collate ::=", /* 245 */ "collate ::= COLLATE ID|STRING", /* 246 */ "cmd ::= DROP INDEX ifexists fullname", /* 247 */ "cmd ::= VACUUM vinto", /* 248 */ "cmd ::= VACUUM nm vinto", /* 249 */ "vinto ::= INTO expr", /* 250 */ "vinto ::=", /* 251 */ "cmd ::= PRAGMA nm dbnm", /* 252 */ "cmd ::= PRAGMA nm dbnm EQ nmnum", /* 253 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP", /* 254 */ "cmd ::= PRAGMA nm dbnm EQ minus_num", /* 255 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP", /* 256 */ "plus_num ::= PLUS INTEGER|FLOAT", /* 257 */ "minus_num ::= MINUS INTEGER|FLOAT", /* 258 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END", /* 259 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause", /* 260 */ "trigger_time ::= BEFORE|AFTER", /* 261 */ "trigger_time ::= INSTEAD OF", /* 262 */ "trigger_time ::=", /* 263 */ "trigger_event ::= DELETE|INSERT", /* 264 */ "trigger_event ::= UPDATE", /* 265 */ "trigger_event ::= UPDATE OF idlist", /* 266 */ "when_clause ::=", /* 267 */ "when_clause ::= WHEN expr", /* 268 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI", /* 269 */ "trigger_cmd_list ::= trigger_cmd SEMI", /* 270 */ "trnm ::= nm DOT nm", /* 271 */ "tridxby ::= INDEXED BY nm", /* 272 */ "tridxby ::= NOT INDEXED", /* 273 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt", /* 274 */ "trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt", /* 275 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt", /* 276 */ "trigger_cmd ::= scanpt select scanpt", /* 277 */ "expr ::= RAISE LP IGNORE RP", /* 278 */ "expr ::= RAISE LP raisetype COMMA nm RP", /* 279 */ "raisetype ::= ROLLBACK", /* 280 */ "raisetype ::= ABORT", /* 281 */ "raisetype ::= FAIL", /* 282 */ "cmd ::= DROP TRIGGER ifexists fullname", /* 283 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt", /* 284 */ "cmd ::= DETACH database_kw_opt expr", /* 285 */ "key_opt ::=", /* 286 */ "key_opt ::= KEY expr", /* 287 */ "cmd ::= REINDEX", /* 288 */ "cmd ::= REINDEX nm dbnm", /* 289 */ "cmd ::= ANALYZE", /* 290 */ "cmd ::= ANALYZE nm dbnm", /* 291 */ "cmd ::= ALTER TABLE fullname RENAME TO nm", /* 292 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist", /* 293 */ "cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm", /* 294 */ "add_column_fullname ::= fullname", /* 295 */ "cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm", /* 296 */ "cmd ::= create_vtab", /* 297 */ "cmd ::= create_vtab LP vtabarglist RP", /* 298 */ "create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm", /* 299 */ "vtabarg ::=", /* 300 */ "vtabargtoken ::= ANY", /* 301 */ "vtabargtoken ::= lp anylist RP", /* 302 */ "lp ::= LP", /* 303 */ "with ::= WITH wqlist", /* 304 */ "with ::= WITH RECURSIVE wqlist", /* 305 */ "wqas ::= AS", /* 306 */ "wqas ::= AS MATERIALIZED", /* 307 */ "wqas ::= AS NOT MATERIALIZED", /* 308 */ "wqitem ::= nm eidlist_opt wqas LP select RP", /* 309 */ "wqlist ::= wqitem", /* 310 */ "wqlist ::= wqlist COMMA wqitem", /* 311 */ "windowdefn_list ::= windowdefn_list COMMA windowdefn", /* 312 */ "windowdefn ::= nm AS LP window RP", /* 313 */ "window ::= PARTITION BY nexprlist orderby_opt frame_opt", /* 314 */ "window ::= nm PARTITION BY nexprlist orderby_opt frame_opt", /* 315 */ "window ::= ORDER BY sortlist frame_opt", /* 316 */ "window ::= nm ORDER BY sortlist frame_opt", /* 317 */ "window ::= nm frame_opt", /* 318 */ "frame_opt ::=", /* 319 */ "frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt", /* 320 */ "frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt", /* 321 */ "range_or_rows ::= RANGE|ROWS|GROUPS", /* 322 */ "frame_bound_s ::= frame_bound", /* 323 */ "frame_bound_s ::= UNBOUNDED PRECEDING", /* 324 */ "frame_bound_e ::= frame_bound", /* 325 */ "frame_bound_e ::= UNBOUNDED FOLLOWING", /* 326 */ "frame_bound ::= expr PRECEDING|FOLLOWING", /* 327 */ "frame_bound ::= CURRENT ROW", /* 328 */ "frame_exclude_opt ::=", /* 329 */ "frame_exclude_opt ::= EXCLUDE frame_exclude", /* 330 */ "frame_exclude ::= NO OTHERS", /* 331 */ "frame_exclude ::= CURRENT ROW", /* 332 */ "frame_exclude ::= GROUP|TIES", /* 333 */ "window_clause ::= WINDOW windowdefn_list", /* 334 */ "filter_over ::= filter_clause over_clause", /* 335 */ "filter_over ::= over_clause", /* 336 */ "filter_over ::= filter_clause", /* 337 */ "over_clause ::= OVER LP window RP", /* 338 */ "over_clause ::= OVER nm", /* 339 */ "filter_clause ::= FILTER LP WHERE expr RP", /* 340 */ "input ::= cmdlist", /* 341 */ "cmdlist ::= cmdlist ecmd", /* 342 */ "cmdlist ::= ecmd", /* 343 */ "ecmd ::= SEMI", /* 344 */ "ecmd ::= cmdx SEMI", /* 345 */ "ecmd ::= explain cmdx SEMI", /* 346 */ "trans_opt ::=", /* 347 */ "trans_opt ::= TRANSACTION", /* 348 */ "trans_opt ::= TRANSACTION nm", /* 349 */ "savepoint_opt ::= SAVEPOINT", /* 350 */ "savepoint_opt ::=", /* 351 */ "cmd ::= create_table create_table_args", /* 352 */ "table_option_set ::= table_option", /* 353 */ "columnlist ::= columnlist COMMA columnname carglist", /* 354 */ "columnlist ::= columnname carglist", /* 355 */ "nm ::= ID|INDEXED|JOIN_KW", /* 356 */ "nm ::= STRING", /* 357 */ "typetoken ::= typename", /* 358 */ "typename ::= ID|STRING", /* 359 */ "signed ::= plus_num", /* 360 */ "signed ::= minus_num", /* 361 */ "carglist ::= carglist ccons", /* 362 */ "carglist ::=", /* 363 */ "ccons ::= NULL onconf", /* 364 */ "ccons ::= GENERATED ALWAYS AS generated", /* 365 */ "ccons ::= AS generated", /* 366 */ "conslist_opt ::= COMMA conslist", /* 367 */ "conslist ::= conslist tconscomma tcons", /* 368 */ "conslist ::= tcons", /* 369 */ "tconscomma ::=", /* 370 */ "defer_subclause_opt ::= defer_subclause", /* 371 */ "resolvetype ::= raisetype", /* 372 */ "selectnowith ::= oneselect", /* 373 */ "oneselect ::= values", /* 374 */ "sclp ::= selcollist COMMA", /* 375 */ "as ::= ID|STRING", /* 376 */ "indexed_opt ::= indexed_by", /* 377 */ "returning ::=", /* 378 */ "expr ::= term", /* 379 */ "likeop ::= LIKE_KW|MATCH", /* 380 */ "case_operand ::= expr", /* 381 */ "exprlist ::= nexprlist", /* 382 */ "nmnum ::= plus_num", /* 383 */ "nmnum ::= nm", /* 384 */ "nmnum ::= ON", /* 385 */ "nmnum ::= DELETE", /* 386 */ "nmnum ::= DEFAULT", /* 387 */ "plus_num ::= INTEGER|FLOAT", /* 388 */ "foreach_clause ::=", /* 389 */ "foreach_clause ::= FOR EACH ROW", /* 390 */ "trnm ::= nm", /* 391 */ "tridxby ::=", /* 392 */ "database_kw_opt ::= DATABASE", /* 393 */ "database_kw_opt ::=", /* 394 */ "kwcolumn_opt ::=", /* 395 */ "kwcolumn_opt ::= COLUMNKW", /* 396 */ "vtabarglist ::= vtabarg", /* 397 */ "vtabarglist ::= vtabarglist COMMA vtabarg", /* 398 */ "vtabarg ::= vtabarg vtabargtoken", /* 399 */ "anylist ::=", /* 400 */ "anylist ::= anylist LP anylist RP", /* 401 */ "anylist ::= anylist ANY", /* 402 */ "with ::=", /* 403 */ "windowdefn_list ::= windowdefn", /* 404 */ "window ::= frame_opt", }; #endif /* NDEBUG */ #if YYSTACKDEPTH<=0 /* ** Try to increase the size of the parser stack. Return the number ** of errors. Return 0 on success. */ static int yyGrowStack(yyParser *p){ int newSize; int idx; yyStackEntry *pNew; newSize = p->yystksz*2 + 100; idx = p->yytos ? (int)(p->yytos - p->yystack) : 0; if( p->yystack==&p->yystk0 ){ pNew = malloc(newSize*sizeof(pNew[0])); if( pNew ) pNew[0] = p->yystk0; }else{ pNew = realloc(p->yystack, newSize*sizeof(pNew[0])); } if( pNew ){ p->yystack = pNew; p->yytos = &p->yystack[idx]; #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sStack grows from %d to %d entries.\n", yyTracePrompt, p->yystksz, newSize); } #endif p->yystksz = newSize; } return pNew==0; } #endif /* Datatype of the argument to the memory allocated passed as the ** second argument to sqlite3ParserAlloc() below. This can be changed by ** putting an appropriate #define in the %include section of the input ** grammar. */ #ifndef YYMALLOCARGTYPE # define YYMALLOCARGTYPE size_t #endif /* Initialize a new parser that has already been allocated. */ SQLITE_PRIVATE void sqlite3ParserInit(void *yypRawParser sqlite3ParserCTX_PDECL){ yyParser *yypParser = (yyParser*)yypRawParser; sqlite3ParserCTX_STORE #ifdef YYTRACKMAXSTACKDEPTH yypParser->yyhwm = 0; #endif #if YYSTACKDEPTH<=0 yypParser->yytos = NULL; yypParser->yystack = NULL; yypParser->yystksz = 0; if( yyGrowStack(yypParser) ){ yypParser->yystack = &yypParser->yystk0; yypParser->yystksz = 1; } #endif #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif yypParser->yytos = yypParser->yystack; yypParser->yystack[0].stateno = 0; yypParser->yystack[0].major = 0; #if YYSTACKDEPTH>0 yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1]; #endif } #ifndef sqlite3Parser_ENGINEALWAYSONSTACK /* ** This function allocates a new parser. ** The only argument is a pointer to a function which works like ** malloc. ** ** Inputs: ** A pointer to the function used to allocate memory. ** ** Outputs: ** A pointer to a parser. This pointer is used in subsequent calls ** to sqlite3Parser and sqlite3ParserFree. */ SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(YYMALLOCARGTYPE) sqlite3ParserCTX_PDECL){ yyParser *yypParser; yypParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) ); if( yypParser ){ sqlite3ParserCTX_STORE sqlite3ParserInit(yypParser sqlite3ParserCTX_PARAM); } return (void*)yypParser; } #endif /* sqlite3Parser_ENGINEALWAYSONSTACK */ /* The following function deletes the "minor type" or semantic value ** associated with a symbol. The symbol can be either a terminal ** or nonterminal. "yymajor" is the symbol code, and "yypminor" is ** a pointer to the value to be deleted. The code used to do the ** deletions is derived from the %destructor and/or %token_destructor ** directives of the input grammar. */ static void yy_destructor( yyParser *yypParser, /* The parser */ YYCODETYPE yymajor, /* Type code for object to destroy */ YYMINORTYPE *yypminor /* The object to be destroyed */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH switch( yymajor ){ /* Here is inserted the actions which take place when a ** terminal or non-terminal is destroyed. This can happen ** when the symbol is popped from the stack during a ** reduce or during error processing or when a parser is ** being destroyed before it is finished parsing. ** ** Note: during a reduce, the only symbols destroyed are those ** which appear on the RHS of the rule, but which are *not* used ** inside the C code. */ /********* Begin destructor definitions ***************************************/ case 204: /* select */ case 239: /* selectnowith */ case 240: /* oneselect */ case 252: /* values */ { sqlite3SelectDelete(pParse->db, (yypminor->yy47)); } break; case 216: /* term */ case 217: /* expr */ case 246: /* where_opt */ case 248: /* having_opt */ case 267: /* where_opt_ret */ case 278: /* case_operand */ case 280: /* case_else */ case 283: /* vinto */ case 290: /* when_clause */ case 295: /* key_opt */ case 311: /* filter_clause */ { sqlite3ExprDelete(pParse->db, (yypminor->yy528)); } break; case 221: /* eidlist_opt */ case 231: /* sortlist */ case 232: /* eidlist */ case 244: /* selcollist */ case 247: /* groupby_opt */ case 249: /* orderby_opt */ case 253: /* nexprlist */ case 254: /* sclp */ case 261: /* exprlist */ case 268: /* setlist */ case 277: /* paren_exprlist */ case 279: /* case_exprlist */ case 310: /* part_opt */ { sqlite3ExprListDelete(pParse->db, (yypminor->yy322)); } break; case 238: /* fullname */ case 245: /* from */ case 256: /* seltablist */ case 257: /* stl_prefix */ case 262: /* xfullname */ { sqlite3SrcListDelete(pParse->db, (yypminor->yy131)); } break; case 241: /* wqlist */ { sqlite3WithDelete(pParse->db, (yypminor->yy521)); } break; case 251: /* window_clause */ case 306: /* windowdefn_list */ { sqlite3WindowListDelete(pParse->db, (yypminor->yy41)); } break; case 263: /* idlist */ case 270: /* idlist_opt */ { sqlite3IdListDelete(pParse->db, (yypminor->yy254)); } break; case 273: /* filter_over */ case 307: /* windowdefn */ case 308: /* window */ case 309: /* frame_opt */ case 312: /* over_clause */ { sqlite3WindowDelete(pParse->db, (yypminor->yy41)); } break; case 286: /* trigger_cmd_list */ case 291: /* trigger_cmd */ { sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy33)); } break; case 288: /* trigger_event */ { sqlite3IdListDelete(pParse->db, (yypminor->yy180).b); } break; case 314: /* frame_bound */ case 315: /* frame_bound_s */ case 316: /* frame_bound_e */ { sqlite3ExprDelete(pParse->db, (yypminor->yy595).pExpr); } break; /********* End destructor definitions *****************************************/ default: break; /* If no destructor action specified: do nothing */ } } /* ** Pop the parser's stack once. ** ** If there is a destructor routine associated with the token which ** is popped from the stack, then call it. */ static void yy_pop_parser_stack(yyParser *pParser){ yyStackEntry *yytos; assert( pParser->yytos!=0 ); assert( pParser->yytos > pParser->yystack ); yytos = pParser->yytos--; #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sPopping %s\n", yyTracePrompt, yyTokenName[yytos->major]); } #endif yy_destructor(pParser, yytos->major, &yytos->minor); } /* ** Clear all secondary memory allocations from the parser */ SQLITE_PRIVATE void sqlite3ParserFinalize(void *p){ yyParser *pParser = (yyParser*)p; while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser); #if YYSTACKDEPTH<=0 if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack); #endif } #ifndef sqlite3Parser_ENGINEALWAYSONSTACK /* ** Deallocate and destroy a parser. Destructors are called for ** all stack elements before shutting the parser down. ** ** If the YYPARSEFREENEVERNULL macro exists (for example because it ** is defined in a %include section of the input grammar) then it is ** assumed that the input pointer is never NULL. */ SQLITE_PRIVATE void sqlite3ParserFree( void *p, /* The parser to be deleted */ void (*freeProc)(void*) /* Function used to reclaim memory */ ){ #ifndef YYPARSEFREENEVERNULL if( p==0 ) return; #endif sqlite3ParserFinalize(p); (*freeProc)(p); } #endif /* sqlite3Parser_ENGINEALWAYSONSTACK */ /* ** Return the peak depth of the stack for a parser. */ #ifdef YYTRACKMAXSTACKDEPTH SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){ yyParser *pParser = (yyParser*)p; return pParser->yyhwm; } #endif /* This array of booleans keeps track of the parser statement ** coverage. The element yycoverage[X][Y] is set when the parser ** is in state X and has a lookahead token Y. In a well-tested ** systems, every element of this matrix should end up being set. */ #if defined(YYCOVERAGE) static unsigned char yycoverage[YYNSTATE][YYNTOKEN]; #endif /* ** Write into out a description of every state/lookahead combination that ** ** (1) has not been used by the parser, and ** (2) is not a syntax error. ** ** Return the number of missed state/lookahead combinations. */ #if defined(YYCOVERAGE) SQLITE_PRIVATE int sqlite3ParserCoverage(FILE *out){ int stateno, iLookAhead, i; int nMissed = 0; for(stateno=0; statenoYY_MAX_SHIFT ) return stateno; assert( stateno <= YY_SHIFT_COUNT ); #if defined(YYCOVERAGE) yycoverage[stateno][iLookAhead] = 1; #endif do{ i = yy_shift_ofst[stateno]; assert( i>=0 ); assert( i<=YY_ACTTAB_COUNT ); assert( i+YYNTOKEN<=(int)YY_NLOOKAHEAD ); assert( iLookAhead!=YYNOCODE ); assert( iLookAhead < YYNTOKEN ); i += iLookAhead; assert( i<(int)YY_NLOOKAHEAD ); if( yy_lookahead[i]!=iLookAhead ){ #ifdef YYFALLBACK YYCODETYPE iFallback; /* Fallback token */ assert( iLookAhead %s\n", yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); } #endif assert( yyFallback[iFallback]==0 ); /* Fallback loop must terminate */ iLookAhead = iFallback; continue; } #endif #ifdef YYWILDCARD { int j = i - iLookAhead + YYWILDCARD; assert( j<(int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])) ); if( yy_lookahead[j]==YYWILDCARD && iLookAhead>0 ){ #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n", yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]); } #endif /* NDEBUG */ return yy_action[j]; } } #endif /* YYWILDCARD */ return yy_default[stateno]; }else{ assert( i>=0 && i<(int)(sizeof(yy_action)/sizeof(yy_action[0])) ); return yy_action[i]; } }while(1); } /* ** Find the appropriate action for a parser given the non-terminal ** look-ahead token iLookAhead. */ static YYACTIONTYPE yy_find_reduce_action( YYACTIONTYPE stateno, /* Current state number */ YYCODETYPE iLookAhead /* The look-ahead token */ ){ int i; #ifdef YYERRORSYMBOL if( stateno>YY_REDUCE_COUNT ){ return yy_default[stateno]; } #else assert( stateno<=YY_REDUCE_COUNT ); #endif i = yy_reduce_ofst[stateno]; assert( iLookAhead!=YYNOCODE ); i += iLookAhead; #ifdef YYERRORSYMBOL if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ return yy_default[stateno]; } #else assert( i>=0 && iyytos>yypParser->yystack ) yy_pop_parser_stack(yypParser); /* Here code is inserted which will execute if the parser ** stack every overflows */ /******** Begin %stack_overflow code ******************************************/ sqlite3ErrorMsg(pParse, "parser stack overflow"); /******** End %stack_overflow code ********************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument var */ sqlite3ParserCTX_STORE } /* ** Print tracing information for a SHIFT action */ #ifndef NDEBUG static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){ if( yyTraceFILE ){ if( yyNewStateyytos->major], yyNewState); }else{ fprintf(yyTraceFILE,"%s%s '%s', pending reduce %d\n", yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major], yyNewState - YY_MIN_REDUCE); } } } #else # define yyTraceShift(X,Y,Z) #endif /* ** Perform a shift action. */ static void yy_shift( yyParser *yypParser, /* The parser to be shifted */ YYACTIONTYPE yyNewState, /* The new state to shift in */ YYCODETYPE yyMajor, /* The major token to shift in */ sqlite3ParserTOKENTYPE yyMinor /* The minor token to shift in */ ){ yyStackEntry *yytos; yypParser->yytos++; #ifdef YYTRACKMAXSTACKDEPTH if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){ yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) ); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>yypParser->yystackEnd ){ yypParser->yytos--; yyStackOverflow(yypParser); return; } #else if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){ if( yyGrowStack(yypParser) ){ yypParser->yytos--; yyStackOverflow(yypParser); return; } } #endif if( yyNewState > YY_MAX_SHIFT ){ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE; } yytos = yypParser->yytos; yytos->stateno = yyNewState; yytos->major = yyMajor; yytos->minor.yy0 = yyMinor; yyTraceShift(yypParser, yyNewState, "Shift"); } /* For rule J, yyRuleInfoLhs[J] contains the symbol on the left-hand side ** of that rule */ static const YYCODETYPE yyRuleInfoLhs[] = { 189, /* (0) explain ::= EXPLAIN */ 189, /* (1) explain ::= EXPLAIN QUERY PLAN */ 188, /* (2) cmdx ::= cmd */ 190, /* (3) cmd ::= BEGIN transtype trans_opt */ 191, /* (4) transtype ::= */ 191, /* (5) transtype ::= DEFERRED */ 191, /* (6) transtype ::= IMMEDIATE */ 191, /* (7) transtype ::= EXCLUSIVE */ 190, /* (8) cmd ::= COMMIT|END trans_opt */ 190, /* (9) cmd ::= ROLLBACK trans_opt */ 190, /* (10) cmd ::= SAVEPOINT nm */ 190, /* (11) cmd ::= RELEASE savepoint_opt nm */ 190, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */ 195, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */ 197, /* (14) createkw ::= CREATE */ 199, /* (15) ifnotexists ::= */ 199, /* (16) ifnotexists ::= IF NOT EXISTS */ 198, /* (17) temp ::= TEMP */ 198, /* (18) temp ::= */ 196, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */ 196, /* (20) create_table_args ::= AS select */ 203, /* (21) table_option_set ::= */ 203, /* (22) table_option_set ::= table_option_set COMMA table_option */ 205, /* (23) table_option ::= WITHOUT nm */ 205, /* (24) table_option ::= nm */ 206, /* (25) columnname ::= nm typetoken */ 208, /* (26) typetoken ::= */ 208, /* (27) typetoken ::= typename LP signed RP */ 208, /* (28) typetoken ::= typename LP signed COMMA signed RP */ 209, /* (29) typename ::= typename ID|STRING */ 213, /* (30) scanpt ::= */ 214, /* (31) scantok ::= */ 215, /* (32) ccons ::= CONSTRAINT nm */ 215, /* (33) ccons ::= DEFAULT scantok term */ 215, /* (34) ccons ::= DEFAULT LP expr RP */ 215, /* (35) ccons ::= DEFAULT PLUS scantok term */ 215, /* (36) ccons ::= DEFAULT MINUS scantok term */ 215, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */ 215, /* (38) ccons ::= NOT NULL onconf */ 215, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */ 215, /* (40) ccons ::= UNIQUE onconf */ 215, /* (41) ccons ::= CHECK LP expr RP */ 215, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */ 215, /* (43) ccons ::= defer_subclause */ 215, /* (44) ccons ::= COLLATE ID|STRING */ 224, /* (45) generated ::= LP expr RP */ 224, /* (46) generated ::= LP expr RP ID */ 220, /* (47) autoinc ::= */ 220, /* (48) autoinc ::= AUTOINCR */ 222, /* (49) refargs ::= */ 222, /* (50) refargs ::= refargs refarg */ 225, /* (51) refarg ::= MATCH nm */ 225, /* (52) refarg ::= ON INSERT refact */ 225, /* (53) refarg ::= ON DELETE refact */ 225, /* (54) refarg ::= ON UPDATE refact */ 226, /* (55) refact ::= SET NULL */ 226, /* (56) refact ::= SET DEFAULT */ 226, /* (57) refact ::= CASCADE */ 226, /* (58) refact ::= RESTRICT */ 226, /* (59) refact ::= NO ACTION */ 223, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ 223, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ 227, /* (62) init_deferred_pred_opt ::= */ 227, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */ 227, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ 202, /* (65) conslist_opt ::= */ 229, /* (66) tconscomma ::= COMMA */ 230, /* (67) tcons ::= CONSTRAINT nm */ 230, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */ 230, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */ 230, /* (70) tcons ::= CHECK LP expr RP onconf */ 230, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */ 233, /* (72) defer_subclause_opt ::= */ 218, /* (73) onconf ::= */ 218, /* (74) onconf ::= ON CONFLICT resolvetype */ 234, /* (75) orconf ::= */ 234, /* (76) orconf ::= OR resolvetype */ 235, /* (77) resolvetype ::= IGNORE */ 235, /* (78) resolvetype ::= REPLACE */ 190, /* (79) cmd ::= DROP TABLE ifexists fullname */ 237, /* (80) ifexists ::= IF EXISTS */ 237, /* (81) ifexists ::= */ 190, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */ 190, /* (83) cmd ::= DROP VIEW ifexists fullname */ 190, /* (84) cmd ::= select */ 204, /* (85) select ::= WITH wqlist selectnowith */ 204, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */ 204, /* (87) select ::= selectnowith */ 239, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */ 242, /* (89) multiselect_op ::= UNION */ 242, /* (90) multiselect_op ::= UNION ALL */ 242, /* (91) multiselect_op ::= EXCEPT|INTERSECT */ 240, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ 240, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */ 252, /* (94) values ::= VALUES LP nexprlist RP */ 252, /* (95) values ::= values COMMA LP nexprlist RP */ 243, /* (96) distinct ::= DISTINCT */ 243, /* (97) distinct ::= ALL */ 243, /* (98) distinct ::= */ 254, /* (99) sclp ::= */ 244, /* (100) selcollist ::= sclp scanpt expr scanpt as */ 244, /* (101) selcollist ::= sclp scanpt STAR */ 244, /* (102) selcollist ::= sclp scanpt nm DOT STAR */ 255, /* (103) as ::= AS nm */ 255, /* (104) as ::= */ 245, /* (105) from ::= */ 245, /* (106) from ::= FROM seltablist */ 257, /* (107) stl_prefix ::= seltablist joinop */ 257, /* (108) stl_prefix ::= */ 256, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */ 256, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */ 256, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */ 256, /* (112) seltablist ::= stl_prefix LP select RP as on_using */ 256, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */ 200, /* (114) dbnm ::= */ 200, /* (115) dbnm ::= DOT nm */ 238, /* (116) fullname ::= nm */ 238, /* (117) fullname ::= nm DOT nm */ 262, /* (118) xfullname ::= nm */ 262, /* (119) xfullname ::= nm DOT nm */ 262, /* (120) xfullname ::= nm DOT nm AS nm */ 262, /* (121) xfullname ::= nm AS nm */ 258, /* (122) joinop ::= COMMA|JOIN */ 258, /* (123) joinop ::= JOIN_KW JOIN */ 258, /* (124) joinop ::= JOIN_KW nm JOIN */ 258, /* (125) joinop ::= JOIN_KW nm nm JOIN */ 259, /* (126) on_using ::= ON expr */ 259, /* (127) on_using ::= USING LP idlist RP */ 259, /* (128) on_using ::= */ 264, /* (129) indexed_opt ::= */ 260, /* (130) indexed_by ::= INDEXED BY nm */ 260, /* (131) indexed_by ::= NOT INDEXED */ 249, /* (132) orderby_opt ::= */ 249, /* (133) orderby_opt ::= ORDER BY sortlist */ 231, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */ 231, /* (135) sortlist ::= expr sortorder nulls */ 219, /* (136) sortorder ::= ASC */ 219, /* (137) sortorder ::= DESC */ 219, /* (138) sortorder ::= */ 265, /* (139) nulls ::= NULLS FIRST */ 265, /* (140) nulls ::= NULLS LAST */ 265, /* (141) nulls ::= */ 247, /* (142) groupby_opt ::= */ 247, /* (143) groupby_opt ::= GROUP BY nexprlist */ 248, /* (144) having_opt ::= */ 248, /* (145) having_opt ::= HAVING expr */ 250, /* (146) limit_opt ::= */ 250, /* (147) limit_opt ::= LIMIT expr */ 250, /* (148) limit_opt ::= LIMIT expr OFFSET expr */ 250, /* (149) limit_opt ::= LIMIT expr COMMA expr */ 190, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */ 246, /* (151) where_opt ::= */ 246, /* (152) where_opt ::= WHERE expr */ 267, /* (153) where_opt_ret ::= */ 267, /* (154) where_opt_ret ::= WHERE expr */ 267, /* (155) where_opt_ret ::= RETURNING selcollist */ 267, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */ 190, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */ 268, /* (158) setlist ::= setlist COMMA nm EQ expr */ 268, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */ 268, /* (160) setlist ::= nm EQ expr */ 268, /* (161) setlist ::= LP idlist RP EQ expr */ 190, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */ 190, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */ 271, /* (164) upsert ::= */ 271, /* (165) upsert ::= RETURNING selcollist */ 271, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */ 271, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */ 271, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */ 271, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */ 272, /* (170) returning ::= RETURNING selcollist */ 269, /* (171) insert_cmd ::= INSERT orconf */ 269, /* (172) insert_cmd ::= REPLACE */ 270, /* (173) idlist_opt ::= */ 270, /* (174) idlist_opt ::= LP idlist RP */ 263, /* (175) idlist ::= idlist COMMA nm */ 263, /* (176) idlist ::= nm */ 217, /* (177) expr ::= LP expr RP */ 217, /* (178) expr ::= ID|INDEXED|JOIN_KW */ 217, /* (179) expr ::= nm DOT nm */ 217, /* (180) expr ::= nm DOT nm DOT nm */ 216, /* (181) term ::= NULL|FLOAT|BLOB */ 216, /* (182) term ::= STRING */ 216, /* (183) term ::= INTEGER */ 217, /* (184) expr ::= VARIABLE */ 217, /* (185) expr ::= expr COLLATE ID|STRING */ 217, /* (186) expr ::= CAST LP expr AS typetoken RP */ 217, /* (187) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */ 217, /* (188) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP */ 217, /* (189) expr ::= ID|INDEXED|JOIN_KW LP STAR RP */ 217, /* (190) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */ 217, /* (191) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over */ 217, /* (192) expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */ 216, /* (193) term ::= CTIME_KW */ 217, /* (194) expr ::= LP nexprlist COMMA expr RP */ 217, /* (195) expr ::= expr AND expr */ 217, /* (196) expr ::= expr OR expr */ 217, /* (197) expr ::= expr LT|GT|GE|LE expr */ 217, /* (198) expr ::= expr EQ|NE expr */ 217, /* (199) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ 217, /* (200) expr ::= expr PLUS|MINUS expr */ 217, /* (201) expr ::= expr STAR|SLASH|REM expr */ 217, /* (202) expr ::= expr CONCAT expr */ 274, /* (203) likeop ::= NOT LIKE_KW|MATCH */ 217, /* (204) expr ::= expr likeop expr */ 217, /* (205) expr ::= expr likeop expr ESCAPE expr */ 217, /* (206) expr ::= expr ISNULL|NOTNULL */ 217, /* (207) expr ::= expr NOT NULL */ 217, /* (208) expr ::= expr IS expr */ 217, /* (209) expr ::= expr IS NOT expr */ 217, /* (210) expr ::= expr IS NOT DISTINCT FROM expr */ 217, /* (211) expr ::= expr IS DISTINCT FROM expr */ 217, /* (212) expr ::= NOT expr */ 217, /* (213) expr ::= BITNOT expr */ 217, /* (214) expr ::= PLUS|MINUS expr */ 217, /* (215) expr ::= expr PTR expr */ 275, /* (216) between_op ::= BETWEEN */ 275, /* (217) between_op ::= NOT BETWEEN */ 217, /* (218) expr ::= expr between_op expr AND expr */ 276, /* (219) in_op ::= IN */ 276, /* (220) in_op ::= NOT IN */ 217, /* (221) expr ::= expr in_op LP exprlist RP */ 217, /* (222) expr ::= LP select RP */ 217, /* (223) expr ::= expr in_op LP select RP */ 217, /* (224) expr ::= expr in_op nm dbnm paren_exprlist */ 217, /* (225) expr ::= EXISTS LP select RP */ 217, /* (226) expr ::= CASE case_operand case_exprlist case_else END */ 279, /* (227) case_exprlist ::= case_exprlist WHEN expr THEN expr */ 279, /* (228) case_exprlist ::= WHEN expr THEN expr */ 280, /* (229) case_else ::= ELSE expr */ 280, /* (230) case_else ::= */ 278, /* (231) case_operand ::= */ 261, /* (232) exprlist ::= */ 253, /* (233) nexprlist ::= nexprlist COMMA expr */ 253, /* (234) nexprlist ::= expr */ 277, /* (235) paren_exprlist ::= */ 277, /* (236) paren_exprlist ::= LP exprlist RP */ 190, /* (237) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */ 281, /* (238) uniqueflag ::= UNIQUE */ 281, /* (239) uniqueflag ::= */ 221, /* (240) eidlist_opt ::= */ 221, /* (241) eidlist_opt ::= LP eidlist RP */ 232, /* (242) eidlist ::= eidlist COMMA nm collate sortorder */ 232, /* (243) eidlist ::= nm collate sortorder */ 282, /* (244) collate ::= */ 282, /* (245) collate ::= COLLATE ID|STRING */ 190, /* (246) cmd ::= DROP INDEX ifexists fullname */ 190, /* (247) cmd ::= VACUUM vinto */ 190, /* (248) cmd ::= VACUUM nm vinto */ 283, /* (249) vinto ::= INTO expr */ 283, /* (250) vinto ::= */ 190, /* (251) cmd ::= PRAGMA nm dbnm */ 190, /* (252) cmd ::= PRAGMA nm dbnm EQ nmnum */ 190, /* (253) cmd ::= PRAGMA nm dbnm LP nmnum RP */ 190, /* (254) cmd ::= PRAGMA nm dbnm EQ minus_num */ 190, /* (255) cmd ::= PRAGMA nm dbnm LP minus_num RP */ 211, /* (256) plus_num ::= PLUS INTEGER|FLOAT */ 212, /* (257) minus_num ::= MINUS INTEGER|FLOAT */ 190, /* (258) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */ 285, /* (259) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ 287, /* (260) trigger_time ::= BEFORE|AFTER */ 287, /* (261) trigger_time ::= INSTEAD OF */ 287, /* (262) trigger_time ::= */ 288, /* (263) trigger_event ::= DELETE|INSERT */ 288, /* (264) trigger_event ::= UPDATE */ 288, /* (265) trigger_event ::= UPDATE OF idlist */ 290, /* (266) when_clause ::= */ 290, /* (267) when_clause ::= WHEN expr */ 286, /* (268) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ 286, /* (269) trigger_cmd_list ::= trigger_cmd SEMI */ 292, /* (270) trnm ::= nm DOT nm */ 293, /* (271) tridxby ::= INDEXED BY nm */ 293, /* (272) tridxby ::= NOT INDEXED */ 291, /* (273) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */ 291, /* (274) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */ 291, /* (275) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */ 291, /* (276) trigger_cmd ::= scanpt select scanpt */ 217, /* (277) expr ::= RAISE LP IGNORE RP */ 217, /* (278) expr ::= RAISE LP raisetype COMMA nm RP */ 236, /* (279) raisetype ::= ROLLBACK */ 236, /* (280) raisetype ::= ABORT */ 236, /* (281) raisetype ::= FAIL */ 190, /* (282) cmd ::= DROP TRIGGER ifexists fullname */ 190, /* (283) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ 190, /* (284) cmd ::= DETACH database_kw_opt expr */ 295, /* (285) key_opt ::= */ 295, /* (286) key_opt ::= KEY expr */ 190, /* (287) cmd ::= REINDEX */ 190, /* (288) cmd ::= REINDEX nm dbnm */ 190, /* (289) cmd ::= ANALYZE */ 190, /* (290) cmd ::= ANALYZE nm dbnm */ 190, /* (291) cmd ::= ALTER TABLE fullname RENAME TO nm */ 190, /* (292) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */ 190, /* (293) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */ 296, /* (294) add_column_fullname ::= fullname */ 190, /* (295) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */ 190, /* (296) cmd ::= create_vtab */ 190, /* (297) cmd ::= create_vtab LP vtabarglist RP */ 298, /* (298) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */ 300, /* (299) vtabarg ::= */ 301, /* (300) vtabargtoken ::= ANY */ 301, /* (301) vtabargtoken ::= lp anylist RP */ 302, /* (302) lp ::= LP */ 266, /* (303) with ::= WITH wqlist */ 266, /* (304) with ::= WITH RECURSIVE wqlist */ 305, /* (305) wqas ::= AS */ 305, /* (306) wqas ::= AS MATERIALIZED */ 305, /* (307) wqas ::= AS NOT MATERIALIZED */ 304, /* (308) wqitem ::= nm eidlist_opt wqas LP select RP */ 241, /* (309) wqlist ::= wqitem */ 241, /* (310) wqlist ::= wqlist COMMA wqitem */ 306, /* (311) windowdefn_list ::= windowdefn_list COMMA windowdefn */ 307, /* (312) windowdefn ::= nm AS LP window RP */ 308, /* (313) window ::= PARTITION BY nexprlist orderby_opt frame_opt */ 308, /* (314) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ 308, /* (315) window ::= ORDER BY sortlist frame_opt */ 308, /* (316) window ::= nm ORDER BY sortlist frame_opt */ 308, /* (317) window ::= nm frame_opt */ 309, /* (318) frame_opt ::= */ 309, /* (319) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ 309, /* (320) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ 313, /* (321) range_or_rows ::= RANGE|ROWS|GROUPS */ 315, /* (322) frame_bound_s ::= frame_bound */ 315, /* (323) frame_bound_s ::= UNBOUNDED PRECEDING */ 316, /* (324) frame_bound_e ::= frame_bound */ 316, /* (325) frame_bound_e ::= UNBOUNDED FOLLOWING */ 314, /* (326) frame_bound ::= expr PRECEDING|FOLLOWING */ 314, /* (327) frame_bound ::= CURRENT ROW */ 317, /* (328) frame_exclude_opt ::= */ 317, /* (329) frame_exclude_opt ::= EXCLUDE frame_exclude */ 318, /* (330) frame_exclude ::= NO OTHERS */ 318, /* (331) frame_exclude ::= CURRENT ROW */ 318, /* (332) frame_exclude ::= GROUP|TIES */ 251, /* (333) window_clause ::= WINDOW windowdefn_list */ 273, /* (334) filter_over ::= filter_clause over_clause */ 273, /* (335) filter_over ::= over_clause */ 273, /* (336) filter_over ::= filter_clause */ 312, /* (337) over_clause ::= OVER LP window RP */ 312, /* (338) over_clause ::= OVER nm */ 311, /* (339) filter_clause ::= FILTER LP WHERE expr RP */ 185, /* (340) input ::= cmdlist */ 186, /* (341) cmdlist ::= cmdlist ecmd */ 186, /* (342) cmdlist ::= ecmd */ 187, /* (343) ecmd ::= SEMI */ 187, /* (344) ecmd ::= cmdx SEMI */ 187, /* (345) ecmd ::= explain cmdx SEMI */ 192, /* (346) trans_opt ::= */ 192, /* (347) trans_opt ::= TRANSACTION */ 192, /* (348) trans_opt ::= TRANSACTION nm */ 194, /* (349) savepoint_opt ::= SAVEPOINT */ 194, /* (350) savepoint_opt ::= */ 190, /* (351) cmd ::= create_table create_table_args */ 203, /* (352) table_option_set ::= table_option */ 201, /* (353) columnlist ::= columnlist COMMA columnname carglist */ 201, /* (354) columnlist ::= columnname carglist */ 193, /* (355) nm ::= ID|INDEXED|JOIN_KW */ 193, /* (356) nm ::= STRING */ 208, /* (357) typetoken ::= typename */ 209, /* (358) typename ::= ID|STRING */ 210, /* (359) signed ::= plus_num */ 210, /* (360) signed ::= minus_num */ 207, /* (361) carglist ::= carglist ccons */ 207, /* (362) carglist ::= */ 215, /* (363) ccons ::= NULL onconf */ 215, /* (364) ccons ::= GENERATED ALWAYS AS generated */ 215, /* (365) ccons ::= AS generated */ 202, /* (366) conslist_opt ::= COMMA conslist */ 228, /* (367) conslist ::= conslist tconscomma tcons */ 228, /* (368) conslist ::= tcons */ 229, /* (369) tconscomma ::= */ 233, /* (370) defer_subclause_opt ::= defer_subclause */ 235, /* (371) resolvetype ::= raisetype */ 239, /* (372) selectnowith ::= oneselect */ 240, /* (373) oneselect ::= values */ 254, /* (374) sclp ::= selcollist COMMA */ 255, /* (375) as ::= ID|STRING */ 264, /* (376) indexed_opt ::= indexed_by */ 272, /* (377) returning ::= */ 217, /* (378) expr ::= term */ 274, /* (379) likeop ::= LIKE_KW|MATCH */ 278, /* (380) case_operand ::= expr */ 261, /* (381) exprlist ::= nexprlist */ 284, /* (382) nmnum ::= plus_num */ 284, /* (383) nmnum ::= nm */ 284, /* (384) nmnum ::= ON */ 284, /* (385) nmnum ::= DELETE */ 284, /* (386) nmnum ::= DEFAULT */ 211, /* (387) plus_num ::= INTEGER|FLOAT */ 289, /* (388) foreach_clause ::= */ 289, /* (389) foreach_clause ::= FOR EACH ROW */ 292, /* (390) trnm ::= nm */ 293, /* (391) tridxby ::= */ 294, /* (392) database_kw_opt ::= DATABASE */ 294, /* (393) database_kw_opt ::= */ 297, /* (394) kwcolumn_opt ::= */ 297, /* (395) kwcolumn_opt ::= COLUMNKW */ 299, /* (396) vtabarglist ::= vtabarg */ 299, /* (397) vtabarglist ::= vtabarglist COMMA vtabarg */ 300, /* (398) vtabarg ::= vtabarg vtabargtoken */ 303, /* (399) anylist ::= */ 303, /* (400) anylist ::= anylist LP anylist RP */ 303, /* (401) anylist ::= anylist ANY */ 266, /* (402) with ::= */ 306, /* (403) windowdefn_list ::= windowdefn */ 308, /* (404) window ::= frame_opt */ }; /* For rule J, yyRuleInfoNRhs[J] contains the negative of the number ** of symbols on the right-hand side of that rule. */ static const signed char yyRuleInfoNRhs[] = { -1, /* (0) explain ::= EXPLAIN */ -3, /* (1) explain ::= EXPLAIN QUERY PLAN */ -1, /* (2) cmdx ::= cmd */ -3, /* (3) cmd ::= BEGIN transtype trans_opt */ 0, /* (4) transtype ::= */ -1, /* (5) transtype ::= DEFERRED */ -1, /* (6) transtype ::= IMMEDIATE */ -1, /* (7) transtype ::= EXCLUSIVE */ -2, /* (8) cmd ::= COMMIT|END trans_opt */ -2, /* (9) cmd ::= ROLLBACK trans_opt */ -2, /* (10) cmd ::= SAVEPOINT nm */ -3, /* (11) cmd ::= RELEASE savepoint_opt nm */ -5, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */ -6, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */ -1, /* (14) createkw ::= CREATE */ 0, /* (15) ifnotexists ::= */ -3, /* (16) ifnotexists ::= IF NOT EXISTS */ -1, /* (17) temp ::= TEMP */ 0, /* (18) temp ::= */ -5, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */ -2, /* (20) create_table_args ::= AS select */ 0, /* (21) table_option_set ::= */ -3, /* (22) table_option_set ::= table_option_set COMMA table_option */ -2, /* (23) table_option ::= WITHOUT nm */ -1, /* (24) table_option ::= nm */ -2, /* (25) columnname ::= nm typetoken */ 0, /* (26) typetoken ::= */ -4, /* (27) typetoken ::= typename LP signed RP */ -6, /* (28) typetoken ::= typename LP signed COMMA signed RP */ -2, /* (29) typename ::= typename ID|STRING */ 0, /* (30) scanpt ::= */ 0, /* (31) scantok ::= */ -2, /* (32) ccons ::= CONSTRAINT nm */ -3, /* (33) ccons ::= DEFAULT scantok term */ -4, /* (34) ccons ::= DEFAULT LP expr RP */ -4, /* (35) ccons ::= DEFAULT PLUS scantok term */ -4, /* (36) ccons ::= DEFAULT MINUS scantok term */ -3, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */ -3, /* (38) ccons ::= NOT NULL onconf */ -5, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */ -2, /* (40) ccons ::= UNIQUE onconf */ -4, /* (41) ccons ::= CHECK LP expr RP */ -4, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */ -1, /* (43) ccons ::= defer_subclause */ -2, /* (44) ccons ::= COLLATE ID|STRING */ -3, /* (45) generated ::= LP expr RP */ -4, /* (46) generated ::= LP expr RP ID */ 0, /* (47) autoinc ::= */ -1, /* (48) autoinc ::= AUTOINCR */ 0, /* (49) refargs ::= */ -2, /* (50) refargs ::= refargs refarg */ -2, /* (51) refarg ::= MATCH nm */ -3, /* (52) refarg ::= ON INSERT refact */ -3, /* (53) refarg ::= ON DELETE refact */ -3, /* (54) refarg ::= ON UPDATE refact */ -2, /* (55) refact ::= SET NULL */ -2, /* (56) refact ::= SET DEFAULT */ -1, /* (57) refact ::= CASCADE */ -1, /* (58) refact ::= RESTRICT */ -2, /* (59) refact ::= NO ACTION */ -3, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ -2, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ 0, /* (62) init_deferred_pred_opt ::= */ -2, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */ -2, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ 0, /* (65) conslist_opt ::= */ -1, /* (66) tconscomma ::= COMMA */ -2, /* (67) tcons ::= CONSTRAINT nm */ -7, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */ -5, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */ -5, /* (70) tcons ::= CHECK LP expr RP onconf */ -10, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */ 0, /* (72) defer_subclause_opt ::= */ 0, /* (73) onconf ::= */ -3, /* (74) onconf ::= ON CONFLICT resolvetype */ 0, /* (75) orconf ::= */ -2, /* (76) orconf ::= OR resolvetype */ -1, /* (77) resolvetype ::= IGNORE */ -1, /* (78) resolvetype ::= REPLACE */ -4, /* (79) cmd ::= DROP TABLE ifexists fullname */ -2, /* (80) ifexists ::= IF EXISTS */ 0, /* (81) ifexists ::= */ -9, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */ -4, /* (83) cmd ::= DROP VIEW ifexists fullname */ -1, /* (84) cmd ::= select */ -3, /* (85) select ::= WITH wqlist selectnowith */ -4, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */ -1, /* (87) select ::= selectnowith */ -3, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */ -1, /* (89) multiselect_op ::= UNION */ -2, /* (90) multiselect_op ::= UNION ALL */ -1, /* (91) multiselect_op ::= EXCEPT|INTERSECT */ -9, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ -10, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */ -4, /* (94) values ::= VALUES LP nexprlist RP */ -5, /* (95) values ::= values COMMA LP nexprlist RP */ -1, /* (96) distinct ::= DISTINCT */ -1, /* (97) distinct ::= ALL */ 0, /* (98) distinct ::= */ 0, /* (99) sclp ::= */ -5, /* (100) selcollist ::= sclp scanpt expr scanpt as */ -3, /* (101) selcollist ::= sclp scanpt STAR */ -5, /* (102) selcollist ::= sclp scanpt nm DOT STAR */ -2, /* (103) as ::= AS nm */ 0, /* (104) as ::= */ 0, /* (105) from ::= */ -2, /* (106) from ::= FROM seltablist */ -2, /* (107) stl_prefix ::= seltablist joinop */ 0, /* (108) stl_prefix ::= */ -5, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */ -6, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */ -8, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */ -6, /* (112) seltablist ::= stl_prefix LP select RP as on_using */ -6, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */ 0, /* (114) dbnm ::= */ -2, /* (115) dbnm ::= DOT nm */ -1, /* (116) fullname ::= nm */ -3, /* (117) fullname ::= nm DOT nm */ -1, /* (118) xfullname ::= nm */ -3, /* (119) xfullname ::= nm DOT nm */ -5, /* (120) xfullname ::= nm DOT nm AS nm */ -3, /* (121) xfullname ::= nm AS nm */ -1, /* (122) joinop ::= COMMA|JOIN */ -2, /* (123) joinop ::= JOIN_KW JOIN */ -3, /* (124) joinop ::= JOIN_KW nm JOIN */ -4, /* (125) joinop ::= JOIN_KW nm nm JOIN */ -2, /* (126) on_using ::= ON expr */ -4, /* (127) on_using ::= USING LP idlist RP */ 0, /* (128) on_using ::= */ 0, /* (129) indexed_opt ::= */ -3, /* (130) indexed_by ::= INDEXED BY nm */ -2, /* (131) indexed_by ::= NOT INDEXED */ 0, /* (132) orderby_opt ::= */ -3, /* (133) orderby_opt ::= ORDER BY sortlist */ -5, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */ -3, /* (135) sortlist ::= expr sortorder nulls */ -1, /* (136) sortorder ::= ASC */ -1, /* (137) sortorder ::= DESC */ 0, /* (138) sortorder ::= */ -2, /* (139) nulls ::= NULLS FIRST */ -2, /* (140) nulls ::= NULLS LAST */ 0, /* (141) nulls ::= */ 0, /* (142) groupby_opt ::= */ -3, /* (143) groupby_opt ::= GROUP BY nexprlist */ 0, /* (144) having_opt ::= */ -2, /* (145) having_opt ::= HAVING expr */ 0, /* (146) limit_opt ::= */ -2, /* (147) limit_opt ::= LIMIT expr */ -4, /* (148) limit_opt ::= LIMIT expr OFFSET expr */ -4, /* (149) limit_opt ::= LIMIT expr COMMA expr */ -6, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */ 0, /* (151) where_opt ::= */ -2, /* (152) where_opt ::= WHERE expr */ 0, /* (153) where_opt_ret ::= */ -2, /* (154) where_opt_ret ::= WHERE expr */ -2, /* (155) where_opt_ret ::= RETURNING selcollist */ -4, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */ -9, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */ -5, /* (158) setlist ::= setlist COMMA nm EQ expr */ -7, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */ -3, /* (160) setlist ::= nm EQ expr */ -5, /* (161) setlist ::= LP idlist RP EQ expr */ -7, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */ -8, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */ 0, /* (164) upsert ::= */ -2, /* (165) upsert ::= RETURNING selcollist */ -12, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */ -9, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */ -5, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */ -8, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */ -2, /* (170) returning ::= RETURNING selcollist */ -2, /* (171) insert_cmd ::= INSERT orconf */ -1, /* (172) insert_cmd ::= REPLACE */ 0, /* (173) idlist_opt ::= */ -3, /* (174) idlist_opt ::= LP idlist RP */ -3, /* (175) idlist ::= idlist COMMA nm */ -1, /* (176) idlist ::= nm */ -3, /* (177) expr ::= LP expr RP */ -1, /* (178) expr ::= ID|INDEXED|JOIN_KW */ -3, /* (179) expr ::= nm DOT nm */ -5, /* (180) expr ::= nm DOT nm DOT nm */ -1, /* (181) term ::= NULL|FLOAT|BLOB */ -1, /* (182) term ::= STRING */ -1, /* (183) term ::= INTEGER */ -1, /* (184) expr ::= VARIABLE */ -3, /* (185) expr ::= expr COLLATE ID|STRING */ -6, /* (186) expr ::= CAST LP expr AS typetoken RP */ -5, /* (187) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */ -8, /* (188) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP */ -4, /* (189) expr ::= ID|INDEXED|JOIN_KW LP STAR RP */ -6, /* (190) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */ -9, /* (191) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over */ -5, /* (192) expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */ -1, /* (193) term ::= CTIME_KW */ -5, /* (194) expr ::= LP nexprlist COMMA expr RP */ -3, /* (195) expr ::= expr AND expr */ -3, /* (196) expr ::= expr OR expr */ -3, /* (197) expr ::= expr LT|GT|GE|LE expr */ -3, /* (198) expr ::= expr EQ|NE expr */ -3, /* (199) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ -3, /* (200) expr ::= expr PLUS|MINUS expr */ -3, /* (201) expr ::= expr STAR|SLASH|REM expr */ -3, /* (202) expr ::= expr CONCAT expr */ -2, /* (203) likeop ::= NOT LIKE_KW|MATCH */ -3, /* (204) expr ::= expr likeop expr */ -5, /* (205) expr ::= expr likeop expr ESCAPE expr */ -2, /* (206) expr ::= expr ISNULL|NOTNULL */ -3, /* (207) expr ::= expr NOT NULL */ -3, /* (208) expr ::= expr IS expr */ -4, /* (209) expr ::= expr IS NOT expr */ -6, /* (210) expr ::= expr IS NOT DISTINCT FROM expr */ -5, /* (211) expr ::= expr IS DISTINCT FROM expr */ -2, /* (212) expr ::= NOT expr */ -2, /* (213) expr ::= BITNOT expr */ -2, /* (214) expr ::= PLUS|MINUS expr */ -3, /* (215) expr ::= expr PTR expr */ -1, /* (216) between_op ::= BETWEEN */ -2, /* (217) between_op ::= NOT BETWEEN */ -5, /* (218) expr ::= expr between_op expr AND expr */ -1, /* (219) in_op ::= IN */ -2, /* (220) in_op ::= NOT IN */ -5, /* (221) expr ::= expr in_op LP exprlist RP */ -3, /* (222) expr ::= LP select RP */ -5, /* (223) expr ::= expr in_op LP select RP */ -5, /* (224) expr ::= expr in_op nm dbnm paren_exprlist */ -4, /* (225) expr ::= EXISTS LP select RP */ -5, /* (226) expr ::= CASE case_operand case_exprlist case_else END */ -5, /* (227) case_exprlist ::= case_exprlist WHEN expr THEN expr */ -4, /* (228) case_exprlist ::= WHEN expr THEN expr */ -2, /* (229) case_else ::= ELSE expr */ 0, /* (230) case_else ::= */ 0, /* (231) case_operand ::= */ 0, /* (232) exprlist ::= */ -3, /* (233) nexprlist ::= nexprlist COMMA expr */ -1, /* (234) nexprlist ::= expr */ 0, /* (235) paren_exprlist ::= */ -3, /* (236) paren_exprlist ::= LP exprlist RP */ -12, /* (237) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */ -1, /* (238) uniqueflag ::= UNIQUE */ 0, /* (239) uniqueflag ::= */ 0, /* (240) eidlist_opt ::= */ -3, /* (241) eidlist_opt ::= LP eidlist RP */ -5, /* (242) eidlist ::= eidlist COMMA nm collate sortorder */ -3, /* (243) eidlist ::= nm collate sortorder */ 0, /* (244) collate ::= */ -2, /* (245) collate ::= COLLATE ID|STRING */ -4, /* (246) cmd ::= DROP INDEX ifexists fullname */ -2, /* (247) cmd ::= VACUUM vinto */ -3, /* (248) cmd ::= VACUUM nm vinto */ -2, /* (249) vinto ::= INTO expr */ 0, /* (250) vinto ::= */ -3, /* (251) cmd ::= PRAGMA nm dbnm */ -5, /* (252) cmd ::= PRAGMA nm dbnm EQ nmnum */ -6, /* (253) cmd ::= PRAGMA nm dbnm LP nmnum RP */ -5, /* (254) cmd ::= PRAGMA nm dbnm EQ minus_num */ -6, /* (255) cmd ::= PRAGMA nm dbnm LP minus_num RP */ -2, /* (256) plus_num ::= PLUS INTEGER|FLOAT */ -2, /* (257) minus_num ::= MINUS INTEGER|FLOAT */ -5, /* (258) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */ -11, /* (259) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ -1, /* (260) trigger_time ::= BEFORE|AFTER */ -2, /* (261) trigger_time ::= INSTEAD OF */ 0, /* (262) trigger_time ::= */ -1, /* (263) trigger_event ::= DELETE|INSERT */ -1, /* (264) trigger_event ::= UPDATE */ -3, /* (265) trigger_event ::= UPDATE OF idlist */ 0, /* (266) when_clause ::= */ -2, /* (267) when_clause ::= WHEN expr */ -3, /* (268) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ -2, /* (269) trigger_cmd_list ::= trigger_cmd SEMI */ -3, /* (270) trnm ::= nm DOT nm */ -3, /* (271) tridxby ::= INDEXED BY nm */ -2, /* (272) tridxby ::= NOT INDEXED */ -9, /* (273) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */ -8, /* (274) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */ -6, /* (275) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */ -3, /* (276) trigger_cmd ::= scanpt select scanpt */ -4, /* (277) expr ::= RAISE LP IGNORE RP */ -6, /* (278) expr ::= RAISE LP raisetype COMMA nm RP */ -1, /* (279) raisetype ::= ROLLBACK */ -1, /* (280) raisetype ::= ABORT */ -1, /* (281) raisetype ::= FAIL */ -4, /* (282) cmd ::= DROP TRIGGER ifexists fullname */ -6, /* (283) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ -3, /* (284) cmd ::= DETACH database_kw_opt expr */ 0, /* (285) key_opt ::= */ -2, /* (286) key_opt ::= KEY expr */ -1, /* (287) cmd ::= REINDEX */ -3, /* (288) cmd ::= REINDEX nm dbnm */ -1, /* (289) cmd ::= ANALYZE */ -3, /* (290) cmd ::= ANALYZE nm dbnm */ -6, /* (291) cmd ::= ALTER TABLE fullname RENAME TO nm */ -7, /* (292) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */ -6, /* (293) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */ -1, /* (294) add_column_fullname ::= fullname */ -8, /* (295) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */ -1, /* (296) cmd ::= create_vtab */ -4, /* (297) cmd ::= create_vtab LP vtabarglist RP */ -8, /* (298) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */ 0, /* (299) vtabarg ::= */ -1, /* (300) vtabargtoken ::= ANY */ -3, /* (301) vtabargtoken ::= lp anylist RP */ -1, /* (302) lp ::= LP */ -2, /* (303) with ::= WITH wqlist */ -3, /* (304) with ::= WITH RECURSIVE wqlist */ -1, /* (305) wqas ::= AS */ -2, /* (306) wqas ::= AS MATERIALIZED */ -3, /* (307) wqas ::= AS NOT MATERIALIZED */ -6, /* (308) wqitem ::= nm eidlist_opt wqas LP select RP */ -1, /* (309) wqlist ::= wqitem */ -3, /* (310) wqlist ::= wqlist COMMA wqitem */ -3, /* (311) windowdefn_list ::= windowdefn_list COMMA windowdefn */ -5, /* (312) windowdefn ::= nm AS LP window RP */ -5, /* (313) window ::= PARTITION BY nexprlist orderby_opt frame_opt */ -6, /* (314) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ -4, /* (315) window ::= ORDER BY sortlist frame_opt */ -5, /* (316) window ::= nm ORDER BY sortlist frame_opt */ -2, /* (317) window ::= nm frame_opt */ 0, /* (318) frame_opt ::= */ -3, /* (319) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ -6, /* (320) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ -1, /* (321) range_or_rows ::= RANGE|ROWS|GROUPS */ -1, /* (322) frame_bound_s ::= frame_bound */ -2, /* (323) frame_bound_s ::= UNBOUNDED PRECEDING */ -1, /* (324) frame_bound_e ::= frame_bound */ -2, /* (325) frame_bound_e ::= UNBOUNDED FOLLOWING */ -2, /* (326) frame_bound ::= expr PRECEDING|FOLLOWING */ -2, /* (327) frame_bound ::= CURRENT ROW */ 0, /* (328) frame_exclude_opt ::= */ -2, /* (329) frame_exclude_opt ::= EXCLUDE frame_exclude */ -2, /* (330) frame_exclude ::= NO OTHERS */ -2, /* (331) frame_exclude ::= CURRENT ROW */ -1, /* (332) frame_exclude ::= GROUP|TIES */ -2, /* (333) window_clause ::= WINDOW windowdefn_list */ -2, /* (334) filter_over ::= filter_clause over_clause */ -1, /* (335) filter_over ::= over_clause */ -1, /* (336) filter_over ::= filter_clause */ -4, /* (337) over_clause ::= OVER LP window RP */ -2, /* (338) over_clause ::= OVER nm */ -5, /* (339) filter_clause ::= FILTER LP WHERE expr RP */ -1, /* (340) input ::= cmdlist */ -2, /* (341) cmdlist ::= cmdlist ecmd */ -1, /* (342) cmdlist ::= ecmd */ -1, /* (343) ecmd ::= SEMI */ -2, /* (344) ecmd ::= cmdx SEMI */ -3, /* (345) ecmd ::= explain cmdx SEMI */ 0, /* (346) trans_opt ::= */ -1, /* (347) trans_opt ::= TRANSACTION */ -2, /* (348) trans_opt ::= TRANSACTION nm */ -1, /* (349) savepoint_opt ::= SAVEPOINT */ 0, /* (350) savepoint_opt ::= */ -2, /* (351) cmd ::= create_table create_table_args */ -1, /* (352) table_option_set ::= table_option */ -4, /* (353) columnlist ::= columnlist COMMA columnname carglist */ -2, /* (354) columnlist ::= columnname carglist */ -1, /* (355) nm ::= ID|INDEXED|JOIN_KW */ -1, /* (356) nm ::= STRING */ -1, /* (357) typetoken ::= typename */ -1, /* (358) typename ::= ID|STRING */ -1, /* (359) signed ::= plus_num */ -1, /* (360) signed ::= minus_num */ -2, /* (361) carglist ::= carglist ccons */ 0, /* (362) carglist ::= */ -2, /* (363) ccons ::= NULL onconf */ -4, /* (364) ccons ::= GENERATED ALWAYS AS generated */ -2, /* (365) ccons ::= AS generated */ -2, /* (366) conslist_opt ::= COMMA conslist */ -3, /* (367) conslist ::= conslist tconscomma tcons */ -1, /* (368) conslist ::= tcons */ 0, /* (369) tconscomma ::= */ -1, /* (370) defer_subclause_opt ::= defer_subclause */ -1, /* (371) resolvetype ::= raisetype */ -1, /* (372) selectnowith ::= oneselect */ -1, /* (373) oneselect ::= values */ -2, /* (374) sclp ::= selcollist COMMA */ -1, /* (375) as ::= ID|STRING */ -1, /* (376) indexed_opt ::= indexed_by */ 0, /* (377) returning ::= */ -1, /* (378) expr ::= term */ -1, /* (379) likeop ::= LIKE_KW|MATCH */ -1, /* (380) case_operand ::= expr */ -1, /* (381) exprlist ::= nexprlist */ -1, /* (382) nmnum ::= plus_num */ -1, /* (383) nmnum ::= nm */ -1, /* (384) nmnum ::= ON */ -1, /* (385) nmnum ::= DELETE */ -1, /* (386) nmnum ::= DEFAULT */ -1, /* (387) plus_num ::= INTEGER|FLOAT */ 0, /* (388) foreach_clause ::= */ -3, /* (389) foreach_clause ::= FOR EACH ROW */ -1, /* (390) trnm ::= nm */ 0, /* (391) tridxby ::= */ -1, /* (392) database_kw_opt ::= DATABASE */ 0, /* (393) database_kw_opt ::= */ 0, /* (394) kwcolumn_opt ::= */ -1, /* (395) kwcolumn_opt ::= COLUMNKW */ -1, /* (396) vtabarglist ::= vtabarg */ -3, /* (397) vtabarglist ::= vtabarglist COMMA vtabarg */ -2, /* (398) vtabarg ::= vtabarg vtabargtoken */ 0, /* (399) anylist ::= */ -4, /* (400) anylist ::= anylist LP anylist RP */ -2, /* (401) anylist ::= anylist ANY */ 0, /* (402) with ::= */ -1, /* (403) windowdefn_list ::= windowdefn */ -1, /* (404) window ::= frame_opt */ }; static void yy_accept(yyParser*); /* Forward Declaration */ /* ** Perform a reduce action and the shift that must immediately ** follow the reduce. ** ** The yyLookahead and yyLookaheadToken parameters provide reduce actions ** access to the lookahead token (if any). The yyLookahead will be YYNOCODE ** if the lookahead token has already been consumed. As this procedure is ** only called from one place, optimizing compilers will in-line it, which ** means that the extra parameters have no performance impact. */ static YYACTIONTYPE yy_reduce( yyParser *yypParser, /* The parser */ unsigned int yyruleno, /* Number of the rule by which to reduce */ int yyLookahead, /* Lookahead token, or YYNOCODE if none */ sqlite3ParserTOKENTYPE yyLookaheadToken /* Value of the lookahead token */ sqlite3ParserCTX_PDECL /* %extra_context */ ){ int yygoto; /* The next state */ YYACTIONTYPE yyact; /* The next action */ yyStackEntry *yymsp; /* The top of the parser's stack */ int yysize; /* Amount to pop the stack */ sqlite3ParserARG_FETCH (void)yyLookahead; (void)yyLookaheadToken; yymsp = yypParser->yytos; switch( yyruleno ){ /* Beginning here are the reduction cases. A typical example ** follows: ** case 0: ** #line ** { ... } // User supplied code ** #line ** break; */ /********** Begin reduce actions **********************************************/ YYMINORTYPE yylhsminor; case 0: /* explain ::= EXPLAIN */ { if( pParse->pReprepare==0 ) pParse->explain = 1; } break; case 1: /* explain ::= EXPLAIN QUERY PLAN */ { if( pParse->pReprepare==0 ) pParse->explain = 2; } break; case 2: /* cmdx ::= cmd */ { sqlite3FinishCoding(pParse); } break; case 3: /* cmd ::= BEGIN transtype trans_opt */ {sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy394);} break; case 4: /* transtype ::= */ {yymsp[1].minor.yy394 = TK_DEFERRED;} break; case 5: /* transtype ::= DEFERRED */ case 6: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==6); case 7: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==7); case 321: /* range_or_rows ::= RANGE|ROWS|GROUPS */ yytestcase(yyruleno==321); {yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/} break; case 8: /* cmd ::= COMMIT|END trans_opt */ case 9: /* cmd ::= ROLLBACK trans_opt */ yytestcase(yyruleno==9); {sqlite3EndTransaction(pParse,yymsp[-1].major);} break; case 10: /* cmd ::= SAVEPOINT nm */ { sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0); } break; case 11: /* cmd ::= RELEASE savepoint_opt nm */ { sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0); } break; case 12: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */ { sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0); } break; case 13: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */ { sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy394,0,0,yymsp[-2].minor.yy394); } break; case 14: /* createkw ::= CREATE */ {disableLookaside(pParse);} break; case 15: /* ifnotexists ::= */ case 18: /* temp ::= */ yytestcase(yyruleno==18); case 47: /* autoinc ::= */ yytestcase(yyruleno==47); case 62: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==62); case 72: /* defer_subclause_opt ::= */ yytestcase(yyruleno==72); case 81: /* ifexists ::= */ yytestcase(yyruleno==81); case 98: /* distinct ::= */ yytestcase(yyruleno==98); case 244: /* collate ::= */ yytestcase(yyruleno==244); {yymsp[1].minor.yy394 = 0;} break; case 16: /* ifnotexists ::= IF NOT EXISTS */ {yymsp[-2].minor.yy394 = 1;} break; case 17: /* temp ::= TEMP */ {yymsp[0].minor.yy394 = pParse->db->init.busy==0;} break; case 19: /* create_table_args ::= LP columnlist conslist_opt RP table_option_set */ { sqlite3EndTable(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,yymsp[0].minor.yy285,0); } break; case 20: /* create_table_args ::= AS select */ { sqlite3EndTable(pParse,0,0,0,yymsp[0].minor.yy47); sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47); } break; case 21: /* table_option_set ::= */ {yymsp[1].minor.yy285 = 0;} break; case 22: /* table_option_set ::= table_option_set COMMA table_option */ {yylhsminor.yy285 = yymsp[-2].minor.yy285|yymsp[0].minor.yy285;} yymsp[-2].minor.yy285 = yylhsminor.yy285; break; case 23: /* table_option ::= WITHOUT nm */ { if( yymsp[0].minor.yy0.n==5 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"rowid",5)==0 ){ yymsp[-1].minor.yy285 = TF_WithoutRowid | TF_NoVisibleRowid; }else{ yymsp[-1].minor.yy285 = 0; sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z); } } break; case 24: /* table_option ::= nm */ { if( yymsp[0].minor.yy0.n==6 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"strict",6)==0 ){ yylhsminor.yy285 = TF_Strict; }else{ yylhsminor.yy285 = 0; sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z); } } yymsp[0].minor.yy285 = yylhsminor.yy285; break; case 25: /* columnname ::= nm typetoken */ {sqlite3AddColumn(pParse,yymsp[-1].minor.yy0,yymsp[0].minor.yy0);} break; case 26: /* typetoken ::= */ case 65: /* conslist_opt ::= */ yytestcase(yyruleno==65); case 104: /* as ::= */ yytestcase(yyruleno==104); {yymsp[1].minor.yy0.n = 0; yymsp[1].minor.yy0.z = 0;} break; case 27: /* typetoken ::= typename LP signed RP */ { yymsp[-3].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z); } break; case 28: /* typetoken ::= typename LP signed COMMA signed RP */ { yymsp[-5].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z); } break; case 29: /* typename ::= typename ID|STRING */ {yymsp[-1].minor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);} break; case 30: /* scanpt ::= */ { assert( yyLookahead!=YYNOCODE ); yymsp[1].minor.yy522 = yyLookaheadToken.z; } break; case 31: /* scantok ::= */ { assert( yyLookahead!=YYNOCODE ); yymsp[1].minor.yy0 = yyLookaheadToken; } break; case 32: /* ccons ::= CONSTRAINT nm */ case 67: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==67); {pParse->constraintName = yymsp[0].minor.yy0;} break; case 33: /* ccons ::= DEFAULT scantok term */ {sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-1].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);} break; case 34: /* ccons ::= DEFAULT LP expr RP */ {sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z+1,yymsp[0].minor.yy0.z);} break; case 35: /* ccons ::= DEFAULT PLUS scantok term */ {sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);} break; case 36: /* ccons ::= DEFAULT MINUS scantok term */ { Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy528, 0); sqlite3AddDefaultValue(pParse,p,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]); } break; case 37: /* ccons ::= DEFAULT scantok ID|INDEXED */ { Expr *p = tokenExpr(pParse, TK_STRING, yymsp[0].minor.yy0); if( p ){ sqlite3ExprIdToTrueFalse(p); testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); } sqlite3AddDefaultValue(pParse,p,yymsp[0].minor.yy0.z,yymsp[0].minor.yy0.z+yymsp[0].minor.yy0.n); } break; case 38: /* ccons ::= NOT NULL onconf */ {sqlite3AddNotNull(pParse, yymsp[0].minor.yy394);} break; case 39: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */ {sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy394,yymsp[0].minor.yy394,yymsp[-2].minor.yy394);} break; case 40: /* ccons ::= UNIQUE onconf */ {sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy394,0,0,0,0, SQLITE_IDXTYPE_UNIQUE);} break; case 41: /* ccons ::= CHECK LP expr RP */ {sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z,yymsp[0].minor.yy0.z);} break; case 42: /* ccons ::= REFERENCES nm eidlist_opt refargs */ {sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy322,yymsp[0].minor.yy394);} break; case 43: /* ccons ::= defer_subclause */ {sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy394);} break; case 44: /* ccons ::= COLLATE ID|STRING */ {sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);} break; case 45: /* generated ::= LP expr RP */ {sqlite3AddGenerated(pParse,yymsp[-1].minor.yy528,0);} break; case 46: /* generated ::= LP expr RP ID */ {sqlite3AddGenerated(pParse,yymsp[-2].minor.yy528,&yymsp[0].minor.yy0);} break; case 48: /* autoinc ::= AUTOINCR */ {yymsp[0].minor.yy394 = 1;} break; case 49: /* refargs ::= */ { yymsp[1].minor.yy394 = OE_None*0x0101; /* EV: R-19803-45884 */} break; case 50: /* refargs ::= refargs refarg */ { yymsp[-1].minor.yy394 = (yymsp[-1].minor.yy394 & ~yymsp[0].minor.yy231.mask) | yymsp[0].minor.yy231.value; } break; case 51: /* refarg ::= MATCH nm */ { yymsp[-1].minor.yy231.value = 0; yymsp[-1].minor.yy231.mask = 0x000000; } break; case 52: /* refarg ::= ON INSERT refact */ { yymsp[-2].minor.yy231.value = 0; yymsp[-2].minor.yy231.mask = 0x000000; } break; case 53: /* refarg ::= ON DELETE refact */ { yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394; yymsp[-2].minor.yy231.mask = 0x0000ff; } break; case 54: /* refarg ::= ON UPDATE refact */ { yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394<<8; yymsp[-2].minor.yy231.mask = 0x00ff00; } break; case 55: /* refact ::= SET NULL */ { yymsp[-1].minor.yy394 = OE_SetNull; /* EV: R-33326-45252 */} break; case 56: /* refact ::= SET DEFAULT */ { yymsp[-1].minor.yy394 = OE_SetDflt; /* EV: R-33326-45252 */} break; case 57: /* refact ::= CASCADE */ { yymsp[0].minor.yy394 = OE_Cascade; /* EV: R-33326-45252 */} break; case 58: /* refact ::= RESTRICT */ { yymsp[0].minor.yy394 = OE_Restrict; /* EV: R-33326-45252 */} break; case 59: /* refact ::= NO ACTION */ { yymsp[-1].minor.yy394 = OE_None; /* EV: R-33326-45252 */} break; case 60: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ {yymsp[-2].minor.yy394 = 0;} break; case 61: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ case 76: /* orconf ::= OR resolvetype */ yytestcase(yyruleno==76); case 171: /* insert_cmd ::= INSERT orconf */ yytestcase(yyruleno==171); {yymsp[-1].minor.yy394 = yymsp[0].minor.yy394;} break; case 63: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ case 80: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==80); case 217: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==217); case 220: /* in_op ::= NOT IN */ yytestcase(yyruleno==220); case 245: /* collate ::= COLLATE ID|STRING */ yytestcase(yyruleno==245); {yymsp[-1].minor.yy394 = 1;} break; case 64: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ {yymsp[-1].minor.yy394 = 0;} break; case 66: /* tconscomma ::= COMMA */ {pParse->constraintName.n = 0;} break; case 68: /* tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */ {sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy322,yymsp[0].minor.yy394,yymsp[-2].minor.yy394,0);} break; case 69: /* tcons ::= UNIQUE LP sortlist RP onconf */ {sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy322,yymsp[0].minor.yy394,0,0,0,0, SQLITE_IDXTYPE_UNIQUE);} break; case 70: /* tcons ::= CHECK LP expr RP onconf */ {sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy528,yymsp[-3].minor.yy0.z,yymsp[-1].minor.yy0.z);} break; case 71: /* tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */ { sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy322, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[-1].minor.yy394); sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy394); } break; case 73: /* onconf ::= */ case 75: /* orconf ::= */ yytestcase(yyruleno==75); {yymsp[1].minor.yy394 = OE_Default;} break; case 74: /* onconf ::= ON CONFLICT resolvetype */ {yymsp[-2].minor.yy394 = yymsp[0].minor.yy394;} break; case 77: /* resolvetype ::= IGNORE */ {yymsp[0].minor.yy394 = OE_Ignore;} break; case 78: /* resolvetype ::= REPLACE */ case 172: /* insert_cmd ::= REPLACE */ yytestcase(yyruleno==172); {yymsp[0].minor.yy394 = OE_Replace;} break; case 79: /* cmd ::= DROP TABLE ifexists fullname */ { sqlite3DropTable(pParse, yymsp[0].minor.yy131, 0, yymsp[-1].minor.yy394); } break; case 82: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */ { sqlite3CreateView(pParse, &yymsp[-8].minor.yy0, &yymsp[-4].minor.yy0, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[0].minor.yy47, yymsp[-7].minor.yy394, yymsp[-5].minor.yy394); } break; case 83: /* cmd ::= DROP VIEW ifexists fullname */ { sqlite3DropTable(pParse, yymsp[0].minor.yy131, 1, yymsp[-1].minor.yy394); } break; case 84: /* cmd ::= select */ { SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0}; sqlite3Select(pParse, yymsp[0].minor.yy47, &dest); sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47); } break; case 85: /* select ::= WITH wqlist selectnowith */ {yymsp[-2].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);} break; case 86: /* select ::= WITH RECURSIVE wqlist selectnowith */ {yymsp[-3].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);} break; case 87: /* select ::= selectnowith */ { Select *p = yymsp[0].minor.yy47; if( p ){ parserDoubleLinkSelect(pParse, p); } } break; case 88: /* selectnowith ::= selectnowith multiselect_op oneselect */ { Select *pRhs = yymsp[0].minor.yy47; Select *pLhs = yymsp[-2].minor.yy47; if( pRhs && pRhs->pPrior ){ SrcList *pFrom; Token x; x.n = 0; parserDoubleLinkSelect(pParse, pRhs); pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0); pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); } if( pRhs ){ pRhs->op = (u8)yymsp[-1].minor.yy394; pRhs->pPrior = pLhs; if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; pRhs->selFlags &= ~SF_MultiValue; if( yymsp[-1].minor.yy394!=TK_ALL ) pParse->hasCompound = 1; }else{ sqlite3SelectDelete(pParse->db, pLhs); } yymsp[-2].minor.yy47 = pRhs; } break; case 89: /* multiselect_op ::= UNION */ case 91: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==91); {yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-OP*/} break; case 90: /* multiselect_op ::= UNION ALL */ {yymsp[-1].minor.yy394 = TK_ALL;} break; case 92: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ { yymsp[-8].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy322,yymsp[-5].minor.yy131,yymsp[-4].minor.yy528,yymsp[-3].minor.yy322,yymsp[-2].minor.yy528,yymsp[-1].minor.yy322,yymsp[-7].minor.yy394,yymsp[0].minor.yy528); } break; case 93: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */ { yymsp[-9].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-7].minor.yy322,yymsp[-6].minor.yy131,yymsp[-5].minor.yy528,yymsp[-4].minor.yy322,yymsp[-3].minor.yy528,yymsp[-1].minor.yy322,yymsp[-8].minor.yy394,yymsp[0].minor.yy528); if( yymsp[-9].minor.yy47 ){ yymsp[-9].minor.yy47->pWinDefn = yymsp[-2].minor.yy41; }else{ sqlite3WindowListDelete(pParse->db, yymsp[-2].minor.yy41); } } break; case 94: /* values ::= VALUES LP nexprlist RP */ { yymsp[-3].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values,0); } break; case 95: /* values ::= values COMMA LP nexprlist RP */ { Select *pRight, *pLeft = yymsp[-4].minor.yy47; pRight = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values|SF_MultiValue,0); if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; if( pRight ){ pRight->op = TK_ALL; pRight->pPrior = pLeft; yymsp[-4].minor.yy47 = pRight; }else{ yymsp[-4].minor.yy47 = pLeft; } } break; case 96: /* distinct ::= DISTINCT */ {yymsp[0].minor.yy394 = SF_Distinct;} break; case 97: /* distinct ::= ALL */ {yymsp[0].minor.yy394 = SF_All;} break; case 99: /* sclp ::= */ case 132: /* orderby_opt ::= */ yytestcase(yyruleno==132); case 142: /* groupby_opt ::= */ yytestcase(yyruleno==142); case 232: /* exprlist ::= */ yytestcase(yyruleno==232); case 235: /* paren_exprlist ::= */ yytestcase(yyruleno==235); case 240: /* eidlist_opt ::= */ yytestcase(yyruleno==240); {yymsp[1].minor.yy322 = 0;} break; case 100: /* selcollist ::= sclp scanpt expr scanpt as */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[-2].minor.yy528); if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[0].minor.yy0, 1); sqlite3ExprListSetSpan(pParse,yymsp[-4].minor.yy322,yymsp[-3].minor.yy522,yymsp[-1].minor.yy522); } break; case 101: /* selcollist ::= sclp scanpt STAR */ { Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); sqlite3ExprSetErrorOffset(p, (int)(yymsp[0].minor.yy0.z - pParse->zTail)); yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, p); } break; case 102: /* selcollist ::= sclp scanpt nm DOT STAR */ { Expr *pRight, *pLeft, *pDot; pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); sqlite3ExprSetErrorOffset(pRight, (int)(yymsp[0].minor.yy0.z - pParse->zTail)); pLeft = tokenExpr(pParse, TK_ID, yymsp[-2].minor.yy0); pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, pDot); } break; case 103: /* as ::= AS nm */ case 115: /* dbnm ::= DOT nm */ yytestcase(yyruleno==115); case 256: /* plus_num ::= PLUS INTEGER|FLOAT */ yytestcase(yyruleno==256); case 257: /* minus_num ::= MINUS INTEGER|FLOAT */ yytestcase(yyruleno==257); {yymsp[-1].minor.yy0 = yymsp[0].minor.yy0;} break; case 105: /* from ::= */ case 108: /* stl_prefix ::= */ yytestcase(yyruleno==108); {yymsp[1].minor.yy131 = 0;} break; case 106: /* from ::= FROM seltablist */ { yymsp[-1].minor.yy131 = yymsp[0].minor.yy131; sqlite3SrcListShiftJoinType(pParse,yymsp[-1].minor.yy131); } break; case 107: /* stl_prefix ::= seltablist joinop */ { if( ALWAYS(yymsp[-1].minor.yy131 && yymsp[-1].minor.yy131->nSrc>0) ) yymsp[-1].minor.yy131->a[yymsp[-1].minor.yy131->nSrc-1].fg.jointype = (u8)yymsp[0].minor.yy394; } break; case 109: /* seltablist ::= stl_prefix nm dbnm as on_using */ { yymsp[-4].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-4].minor.yy131,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561); } break; case 110: /* seltablist ::= stl_prefix nm dbnm as indexed_by on_using */ { yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,0,&yymsp[0].minor.yy561); sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-1].minor.yy0); } break; case 111: /* seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */ { yymsp[-7].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-7].minor.yy131,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561); sqlite3SrcListFuncArgs(pParse, yymsp[-7].minor.yy131, yymsp[-3].minor.yy322); } break; case 112: /* seltablist ::= stl_prefix LP select RP as on_using */ { yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,yymsp[-3].minor.yy47,&yymsp[0].minor.yy561); } break; case 113: /* seltablist ::= stl_prefix LP seltablist RP as on_using */ { if( yymsp[-5].minor.yy131==0 && yymsp[-1].minor.yy0.n==0 && yymsp[0].minor.yy561.pOn==0 && yymsp[0].minor.yy561.pUsing==0 ){ yymsp[-5].minor.yy131 = yymsp[-3].minor.yy131; }else if( ALWAYS(yymsp[-3].minor.yy131!=0) && yymsp[-3].minor.yy131->nSrc==1 ){ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561); if( yymsp[-5].minor.yy131 ){ SrcItem *pNew = &yymsp[-5].minor.yy131->a[yymsp[-5].minor.yy131->nSrc-1]; SrcItem *pOld = yymsp[-3].minor.yy131->a; pNew->zName = pOld->zName; pNew->zDatabase = pOld->zDatabase; pNew->pSelect = pOld->pSelect; if( pNew->pSelect && (pNew->pSelect->selFlags & SF_NestedFrom)!=0 ){ pNew->fg.isNestedFrom = 1; } if( pOld->fg.isTabFunc ){ pNew->u1.pFuncArg = pOld->u1.pFuncArg; pOld->u1.pFuncArg = 0; pOld->fg.isTabFunc = 0; pNew->fg.isTabFunc = 1; } pOld->zName = pOld->zDatabase = 0; pOld->pSelect = 0; } sqlite3SrcListDelete(pParse->db, yymsp[-3].minor.yy131); }else{ Select *pSubquery; sqlite3SrcListShiftJoinType(pParse,yymsp[-3].minor.yy131); pSubquery = sqlite3SelectNew(pParse,0,yymsp[-3].minor.yy131,0,0,0,0,SF_NestedFrom,0); yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,pSubquery,&yymsp[0].minor.yy561); } } break; case 114: /* dbnm ::= */ case 129: /* indexed_opt ::= */ yytestcase(yyruleno==129); {yymsp[1].minor.yy0.z=0; yymsp[1].minor.yy0.n=0;} break; case 116: /* fullname ::= nm */ { yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0); if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0); } yymsp[0].minor.yy131 = yylhsminor.yy131; break; case 117: /* fullname ::= nm DOT nm */ { yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0); } yymsp[-2].minor.yy131 = yylhsminor.yy131; break; case 118: /* xfullname ::= nm */ {yymsp[0].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0); /*A-overwrites-X*/} break; case 119: /* xfullname ::= nm DOT nm */ {yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 120: /* xfullname ::= nm DOT nm AS nm */ { yymsp[-4].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,&yymsp[-2].minor.yy0); /*A-overwrites-X*/ if( yymsp[-4].minor.yy131 ) yymsp[-4].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0); } break; case 121: /* xfullname ::= nm AS nm */ { yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,0); /*A-overwrites-X*/ if( yymsp[-2].minor.yy131 ) yymsp[-2].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0); } break; case 122: /* joinop ::= COMMA|JOIN */ { yymsp[0].minor.yy394 = JT_INNER; } break; case 123: /* joinop ::= JOIN_KW JOIN */ {yymsp[-1].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); /*X-overwrites-A*/} break; case 124: /* joinop ::= JOIN_KW nm JOIN */ {yymsp[-2].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); /*X-overwrites-A*/} break; case 125: /* joinop ::= JOIN_KW nm nm JOIN */ {yymsp[-3].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0);/*X-overwrites-A*/} break; case 126: /* on_using ::= ON expr */ {yymsp[-1].minor.yy561.pOn = yymsp[0].minor.yy528; yymsp[-1].minor.yy561.pUsing = 0;} break; case 127: /* on_using ::= USING LP idlist RP */ {yymsp[-3].minor.yy561.pOn = 0; yymsp[-3].minor.yy561.pUsing = yymsp[-1].minor.yy254;} break; case 128: /* on_using ::= */ {yymsp[1].minor.yy561.pOn = 0; yymsp[1].minor.yy561.pUsing = 0;} break; case 130: /* indexed_by ::= INDEXED BY nm */ {yymsp[-2].minor.yy0 = yymsp[0].minor.yy0;} break; case 131: /* indexed_by ::= NOT INDEXED */ {yymsp[-1].minor.yy0.z=0; yymsp[-1].minor.yy0.n=1;} break; case 133: /* orderby_opt ::= ORDER BY sortlist */ case 143: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==143); {yymsp[-2].minor.yy322 = yymsp[0].minor.yy322;} break; case 134: /* sortlist ::= sortlist COMMA expr sortorder nulls */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322,yymsp[-2].minor.yy528); sqlite3ExprListSetSortOrder(yymsp[-4].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394); } break; case 135: /* sortlist ::= expr sortorder nulls */ { yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[-2].minor.yy528); /*A-overwrites-Y*/ sqlite3ExprListSetSortOrder(yymsp[-2].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394); } break; case 136: /* sortorder ::= ASC */ {yymsp[0].minor.yy394 = SQLITE_SO_ASC;} break; case 137: /* sortorder ::= DESC */ {yymsp[0].minor.yy394 = SQLITE_SO_DESC;} break; case 138: /* sortorder ::= */ case 141: /* nulls ::= */ yytestcase(yyruleno==141); {yymsp[1].minor.yy394 = SQLITE_SO_UNDEFINED;} break; case 139: /* nulls ::= NULLS FIRST */ {yymsp[-1].minor.yy394 = SQLITE_SO_ASC;} break; case 140: /* nulls ::= NULLS LAST */ {yymsp[-1].minor.yy394 = SQLITE_SO_DESC;} break; case 144: /* having_opt ::= */ case 146: /* limit_opt ::= */ yytestcase(yyruleno==146); case 151: /* where_opt ::= */ yytestcase(yyruleno==151); case 153: /* where_opt_ret ::= */ yytestcase(yyruleno==153); case 230: /* case_else ::= */ yytestcase(yyruleno==230); case 231: /* case_operand ::= */ yytestcase(yyruleno==231); case 250: /* vinto ::= */ yytestcase(yyruleno==250); {yymsp[1].minor.yy528 = 0;} break; case 145: /* having_opt ::= HAVING expr */ case 152: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==152); case 154: /* where_opt_ret ::= WHERE expr */ yytestcase(yyruleno==154); case 229: /* case_else ::= ELSE expr */ yytestcase(yyruleno==229); case 249: /* vinto ::= INTO expr */ yytestcase(yyruleno==249); {yymsp[-1].minor.yy528 = yymsp[0].minor.yy528;} break; case 147: /* limit_opt ::= LIMIT expr */ {yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,0);} break; case 148: /* limit_opt ::= LIMIT expr OFFSET expr */ {yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);} break; case 149: /* limit_opt ::= LIMIT expr COMMA expr */ {yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,yymsp[-2].minor.yy528);} break; case 150: /* cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */ { sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy131, &yymsp[-1].minor.yy0); sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy131,yymsp[0].minor.yy528,0,0); } break; case 155: /* where_opt_ret ::= RETURNING selcollist */ {sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-1].minor.yy528 = 0;} break; case 156: /* where_opt_ret ::= WHERE expr RETURNING selcollist */ {sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-3].minor.yy528 = yymsp[-2].minor.yy528;} break; case 157: /* cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */ { sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-4].minor.yy0); sqlite3ExprListCheckLength(pParse,yymsp[-2].minor.yy322,"set list"); if( yymsp[-1].minor.yy131 ){ SrcList *pFromClause = yymsp[-1].minor.yy131; if( pFromClause->nSrc>1 ){ Select *pSubquery; Token as; pSubquery = sqlite3SelectNew(pParse,0,pFromClause,0,0,0,0,SF_NestedFrom,0); as.n = 0; as.z = 0; pFromClause = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0); } yymsp[-5].minor.yy131 = sqlite3SrcListAppendList(pParse, yymsp[-5].minor.yy131, pFromClause); } sqlite3Update(pParse,yymsp[-5].minor.yy131,yymsp[-2].minor.yy322,yymsp[0].minor.yy528,yymsp[-6].minor.yy394,0,0,0); } break; case 158: /* setlist ::= setlist COMMA nm EQ expr */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[0].minor.yy528); sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, 1); } break; case 159: /* setlist ::= setlist COMMA LP idlist RP EQ expr */ { yymsp[-6].minor.yy322 = sqlite3ExprListAppendVector(pParse, yymsp[-6].minor.yy322, yymsp[-3].minor.yy254, yymsp[0].minor.yy528); } break; case 160: /* setlist ::= nm EQ expr */ { yylhsminor.yy322 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy528); sqlite3ExprListSetName(pParse, yylhsminor.yy322, &yymsp[-2].minor.yy0, 1); } yymsp[-2].minor.yy322 = yylhsminor.yy322; break; case 161: /* setlist ::= LP idlist RP EQ expr */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppendVector(pParse, 0, yymsp[-3].minor.yy254, yymsp[0].minor.yy528); } break; case 162: /* cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */ { sqlite3Insert(pParse, yymsp[-3].minor.yy131, yymsp[-1].minor.yy47, yymsp[-2].minor.yy254, yymsp[-5].minor.yy394, yymsp[0].minor.yy444); } break; case 163: /* cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */ { sqlite3Insert(pParse, yymsp[-4].minor.yy131, 0, yymsp[-3].minor.yy254, yymsp[-6].minor.yy394, 0); } break; case 164: /* upsert ::= */ { yymsp[1].minor.yy444 = 0; } break; case 165: /* upsert ::= RETURNING selcollist */ { yymsp[-1].minor.yy444 = 0; sqlite3AddReturning(pParse,yymsp[0].minor.yy322); } break; case 166: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */ { yymsp[-11].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-8].minor.yy322,yymsp[-6].minor.yy528,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,yymsp[0].minor.yy444);} break; case 167: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */ { yymsp[-8].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-5].minor.yy322,yymsp[-3].minor.yy528,0,0,yymsp[0].minor.yy444); } break; case 168: /* upsert ::= ON CONFLICT DO NOTHING returning */ { yymsp[-4].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,0,0,0); } break; case 169: /* upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */ { yymsp[-7].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,0);} break; case 170: /* returning ::= RETURNING selcollist */ {sqlite3AddReturning(pParse,yymsp[0].minor.yy322);} break; case 173: /* idlist_opt ::= */ {yymsp[1].minor.yy254 = 0;} break; case 174: /* idlist_opt ::= LP idlist RP */ {yymsp[-2].minor.yy254 = yymsp[-1].minor.yy254;} break; case 175: /* idlist ::= idlist COMMA nm */ {yymsp[-2].minor.yy254 = sqlite3IdListAppend(pParse,yymsp[-2].minor.yy254,&yymsp[0].minor.yy0);} break; case 176: /* idlist ::= nm */ {yymsp[0].minor.yy254 = sqlite3IdListAppend(pParse,0,&yymsp[0].minor.yy0); /*A-overwrites-Y*/} break; case 177: /* expr ::= LP expr RP */ {yymsp[-2].minor.yy528 = yymsp[-1].minor.yy528;} break; case 178: /* expr ::= ID|INDEXED|JOIN_KW */ {yymsp[0].minor.yy528=tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 179: /* expr ::= nm DOT nm */ { Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0); Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); } yymsp[-2].minor.yy528 = yylhsminor.yy528; break; case 180: /* expr ::= nm DOT nm DOT nm */ { Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-4].minor.yy0); Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0); Expr *temp3 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, 0, temp1); } yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); } yymsp[-4].minor.yy528 = yylhsminor.yy528; break; case 181: /* term ::= NULL|FLOAT|BLOB */ case 182: /* term ::= STRING */ yytestcase(yyruleno==182); {yymsp[0].minor.yy528=tokenExpr(pParse,yymsp[0].major,yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 183: /* term ::= INTEGER */ { yylhsminor.yy528 = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &yymsp[0].minor.yy0, 1); if( yylhsminor.yy528 ) yylhsminor.yy528->w.iOfst = (int)(yymsp[0].minor.yy0.z - pParse->zTail); } yymsp[0].minor.yy528 = yylhsminor.yy528; break; case 184: /* expr ::= VARIABLE */ { if( !(yymsp[0].minor.yy0.z[0]=='#' && sqlite3Isdigit(yymsp[0].minor.yy0.z[1])) ){ u32 n = yymsp[0].minor.yy0.n; yymsp[0].minor.yy528 = tokenExpr(pParse, TK_VARIABLE, yymsp[0].minor.yy0); sqlite3ExprAssignVarNumber(pParse, yymsp[0].minor.yy528, n); }else{ /* When doing a nested parse, one can include terms in an expression ** that look like this: #1 #2 ... These terms refer to registers ** in the virtual machine. #N is the N-th register. */ Token t = yymsp[0].minor.yy0; /*A-overwrites-X*/ assert( t.n>=2 ); if( pParse->nested==0 ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); yymsp[0].minor.yy528 = 0; }else{ yymsp[0].minor.yy528 = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); if( yymsp[0].minor.yy528 ) sqlite3GetInt32(&t.z[1], &yymsp[0].minor.yy528->iTable); } } } break; case 185: /* expr ::= expr COLLATE ID|STRING */ { yymsp[-2].minor.yy528 = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy528, &yymsp[0].minor.yy0, 1); } break; case 186: /* expr ::= CAST LP expr AS typetoken RP */ { yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_CAST, &yymsp[-1].minor.yy0, 1); sqlite3ExprAttachSubtrees(pParse->db, yymsp[-5].minor.yy528, yymsp[-3].minor.yy528, 0); } break; case 187: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0, yymsp[-2].minor.yy394); } yymsp[-4].minor.yy528 = yylhsminor.yy528; break; case 188: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-4].minor.yy322, &yymsp[-7].minor.yy0, yymsp[-5].minor.yy394); sqlite3ExprAddFunctionOrderBy(pParse, yylhsminor.yy528, yymsp[-1].minor.yy322); } yymsp[-7].minor.yy528 = yylhsminor.yy528; break; case 189: /* expr ::= ID|INDEXED|JOIN_KW LP STAR RP */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0, 0); } yymsp[-3].minor.yy528 = yylhsminor.yy528; break; case 190: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-2].minor.yy322, &yymsp[-5].minor.yy0, yymsp[-3].minor.yy394); sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41); } yymsp[-5].minor.yy528 = yylhsminor.yy528; break; case 191: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-5].minor.yy322, &yymsp[-8].minor.yy0, yymsp[-6].minor.yy394); sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41); sqlite3ExprAddFunctionOrderBy(pParse, yylhsminor.yy528, yymsp[-2].minor.yy322); } yymsp[-8].minor.yy528 = yylhsminor.yy528; break; case 192: /* expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-4].minor.yy0, 0); sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41); } yymsp[-4].minor.yy528 = yylhsminor.yy528; break; case 193: /* term ::= CTIME_KW */ { yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0, 0); } yymsp[0].minor.yy528 = yylhsminor.yy528; break; case 194: /* expr ::= LP nexprlist COMMA expr RP */ { ExprList *pList = sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); if( yymsp[-4].minor.yy528 ){ yymsp[-4].minor.yy528->x.pList = pList; if( ALWAYS(pList->nExpr) ){ yymsp[-4].minor.yy528->flags |= pList->a[0].pExpr->flags & EP_Propagate; } }else{ sqlite3ExprListDelete(pParse->db, pList); } } break; case 195: /* expr ::= expr AND expr */ {yymsp[-2].minor.yy528=sqlite3ExprAnd(pParse,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);} break; case 196: /* expr ::= expr OR expr */ case 197: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==197); case 198: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==198); case 199: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==199); case 200: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==200); case 201: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==201); case 202: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==202); {yymsp[-2].minor.yy528=sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);} break; case 203: /* likeop ::= NOT LIKE_KW|MATCH */ {yymsp[-1].minor.yy0=yymsp[0].minor.yy0; yymsp[-1].minor.yy0.n|=0x80000000; /*yymsp[-1].minor.yy0-overwrite-yymsp[0].minor.yy0*/} break; case 204: /* expr ::= expr likeop expr */ { ExprList *pList; int bNot = yymsp[-1].minor.yy0.n & 0x80000000; yymsp[-1].minor.yy0.n &= 0x7fffffff; pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy528); yymsp[-2].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0); if( bNot ) yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-2].minor.yy528, 0); if( yymsp[-2].minor.yy528 ) yymsp[-2].minor.yy528->flags |= EP_InfixFunc; } break; case 205: /* expr ::= expr likeop expr ESCAPE expr */ { ExprList *pList; int bNot = yymsp[-3].minor.yy0.n & 0x80000000; yymsp[-3].minor.yy0.n &= 0x7fffffff; pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528); yymsp[-4].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy0, 0); if( bNot ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); if( yymsp[-4].minor.yy528 ) yymsp[-4].minor.yy528->flags |= EP_InfixFunc; } break; case 206: /* expr ::= expr ISNULL|NOTNULL */ {yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,yymsp[0].major,yymsp[-1].minor.yy528,0);} break; case 207: /* expr ::= expr NOT NULL */ {yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_NOTNULL,yymsp[-2].minor.yy528,0);} break; case 208: /* expr ::= expr IS expr */ { yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-2].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-2].minor.yy528, TK_ISNULL); } break; case 209: /* expr ::= expr IS NOT expr */ { yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-3].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-3].minor.yy528, TK_NOTNULL); } break; case 210: /* expr ::= expr IS NOT DISTINCT FROM expr */ { yymsp[-5].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-5].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-5].minor.yy528, TK_ISNULL); } break; case 211: /* expr ::= expr IS DISTINCT FROM expr */ { yymsp[-4].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-4].minor.yy528,yymsp[0].minor.yy528); binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-4].minor.yy528, TK_NOTNULL); } break; case 212: /* expr ::= NOT expr */ case 213: /* expr ::= BITNOT expr */ yytestcase(yyruleno==213); {yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy528, 0);/*A-overwrites-B*/} break; case 214: /* expr ::= PLUS|MINUS expr */ { yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major==TK_PLUS ? TK_UPLUS : TK_UMINUS, yymsp[0].minor.yy528, 0); /*A-overwrites-B*/ } break; case 215: /* expr ::= expr PTR expr */ { ExprList *pList = sqlite3ExprListAppend(pParse, 0, yymsp[-2].minor.yy528); pList = sqlite3ExprListAppend(pParse, pList, yymsp[0].minor.yy528); yylhsminor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0); } yymsp[-2].minor.yy528 = yylhsminor.yy528; break; case 216: /* between_op ::= BETWEEN */ case 219: /* in_op ::= IN */ yytestcase(yyruleno==219); {yymsp[0].minor.yy394 = 0;} break; case 218: /* expr ::= expr between_op expr AND expr */ { ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528); pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy528, 0); if( yymsp[-4].minor.yy528 ){ yymsp[-4].minor.yy528->x.pList = pList; }else{ sqlite3ExprListDelete(pParse->db, pList); } if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } break; case 221: /* expr ::= expr in_op LP exprlist RP */ { if( yymsp[-1].minor.yy322==0 ){ /* Expressions of the form ** ** expr1 IN () ** expr1 NOT IN () ** ** simplify to constants 0 (false) and 1 (true), respectively, ** regardless of the value of expr1. */ sqlite3ExprUnmapAndDelete(pParse, yymsp[-4].minor.yy528); yymsp[-4].minor.yy528 = sqlite3Expr(pParse->db, TK_STRING, yymsp[-3].minor.yy394 ? "true" : "false"); if( yymsp[-4].minor.yy528 ) sqlite3ExprIdToTrueFalse(yymsp[-4].minor.yy528); }else{ Expr *pRHS = yymsp[-1].minor.yy322->a[0].pExpr; if( yymsp[-1].minor.yy322->nExpr==1 && sqlite3ExprIsConstant(pRHS) && yymsp[-4].minor.yy528->op!=TK_VECTOR ){ yymsp[-1].minor.yy322->a[0].pExpr = 0; sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322); pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_EQ, yymsp[-4].minor.yy528, pRHS); }else if( yymsp[-1].minor.yy322->nExpr==1 && pRHS->op==TK_SELECT ){ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pRHS->x.pSelect); pRHS->x.pSelect = 0; sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322); }else{ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); if( yymsp[-4].minor.yy528==0 ){ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322); }else if( yymsp[-4].minor.yy528->pLeft->op==TK_VECTOR ){ int nExpr = yymsp[-4].minor.yy528->pLeft->x.pList->nExpr; Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, yymsp[-1].minor.yy322); if( pSelectRHS ){ parserDoubleLinkSelect(pParse, pSelectRHS); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelectRHS); } }else{ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy322; sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528); } } if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } } break; case 222: /* expr ::= LP select RP */ { yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_SELECT, 0, 0); sqlite3PExprAddSelect(pParse, yymsp[-2].minor.yy528, yymsp[-1].minor.yy47); } break; case 223: /* expr ::= expr in_op LP select RP */ { yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, yymsp[-1].minor.yy47); if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } break; case 224: /* expr ::= expr in_op nm dbnm paren_exprlist */ { SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); if( yymsp[0].minor.yy322 ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, yymsp[0].minor.yy322); yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelect); if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0); } break; case 225: /* expr ::= EXISTS LP select RP */ { Expr *p; p = yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); sqlite3PExprAddSelect(pParse, p, yymsp[-1].minor.yy47); } break; case 226: /* expr ::= CASE case_operand case_exprlist case_else END */ { yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy528, 0); if( yymsp[-4].minor.yy528 ){ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy528 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528) : yymsp[-2].minor.yy322; sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528); }else{ sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy322); sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528); } } break; case 227: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */ { yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[-2].minor.yy528); yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[0].minor.yy528); } break; case 228: /* case_exprlist ::= WHEN expr THEN expr */ { yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528); yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322, yymsp[0].minor.yy528); } break; case 233: /* nexprlist ::= nexprlist COMMA expr */ {yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[0].minor.yy528);} break; case 234: /* nexprlist ::= expr */ {yymsp[0].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy528); /*A-overwrites-Y*/} break; case 236: /* paren_exprlist ::= LP exprlist RP */ case 241: /* eidlist_opt ::= LP eidlist RP */ yytestcase(yyruleno==241); {yymsp[-2].minor.yy322 = yymsp[-1].minor.yy322;} break; case 237: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */ { sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,0), yymsp[-2].minor.yy322, yymsp[-10].minor.yy394, &yymsp[-11].minor.yy0, yymsp[0].minor.yy528, SQLITE_SO_ASC, yymsp[-8].minor.yy394, SQLITE_IDXTYPE_APPDEF); if( IN_RENAME_OBJECT && pParse->pNewIndex ){ sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &yymsp[-4].minor.yy0); } } break; case 238: /* uniqueflag ::= UNIQUE */ case 280: /* raisetype ::= ABORT */ yytestcase(yyruleno==280); {yymsp[0].minor.yy394 = OE_Abort;} break; case 239: /* uniqueflag ::= */ {yymsp[1].minor.yy394 = OE_None;} break; case 242: /* eidlist ::= eidlist COMMA nm collate sortorder */ { yymsp[-4].minor.yy322 = parserAddExprIdListTerm(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394); } break; case 243: /* eidlist ::= nm collate sortorder */ { yymsp[-2].minor.yy322 = parserAddExprIdListTerm(pParse, 0, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394); /*A-overwrites-Y*/ } break; case 246: /* cmd ::= DROP INDEX ifexists fullname */ {sqlite3DropIndex(pParse, yymsp[0].minor.yy131, yymsp[-1].minor.yy394);} break; case 247: /* cmd ::= VACUUM vinto */ {sqlite3Vacuum(pParse,0,yymsp[0].minor.yy528);} break; case 248: /* cmd ::= VACUUM nm vinto */ {sqlite3Vacuum(pParse,&yymsp[-1].minor.yy0,yymsp[0].minor.yy528);} break; case 251: /* cmd ::= PRAGMA nm dbnm */ {sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);} break; case 252: /* cmd ::= PRAGMA nm dbnm EQ nmnum */ {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);} break; case 253: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */ {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);} break; case 254: /* cmd ::= PRAGMA nm dbnm EQ minus_num */ {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);} break; case 255: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */ {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);} break; case 258: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */ { Token all; all.z = yymsp[-3].minor.yy0.z; all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n; sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy33, &all); } break; case 259: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ { sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy394, yymsp[-4].minor.yy180.a, yymsp[-4].minor.yy180.b, yymsp[-2].minor.yy131, yymsp[0].minor.yy528, yymsp[-10].minor.yy394, yymsp[-8].minor.yy394); yymsp[-10].minor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0); /*A-overwrites-T*/ } break; case 260: /* trigger_time ::= BEFORE|AFTER */ { yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/ } break; case 261: /* trigger_time ::= INSTEAD OF */ { yymsp[-1].minor.yy394 = TK_INSTEAD;} break; case 262: /* trigger_time ::= */ { yymsp[1].minor.yy394 = TK_BEFORE; } break; case 263: /* trigger_event ::= DELETE|INSERT */ case 264: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==264); {yymsp[0].minor.yy180.a = yymsp[0].major; /*A-overwrites-X*/ yymsp[0].minor.yy180.b = 0;} break; case 265: /* trigger_event ::= UPDATE OF idlist */ {yymsp[-2].minor.yy180.a = TK_UPDATE; yymsp[-2].minor.yy180.b = yymsp[0].minor.yy254;} break; case 266: /* when_clause ::= */ case 285: /* key_opt ::= */ yytestcase(yyruleno==285); { yymsp[1].minor.yy528 = 0; } break; case 267: /* when_clause ::= WHEN expr */ case 286: /* key_opt ::= KEY expr */ yytestcase(yyruleno==286); { yymsp[-1].minor.yy528 = yymsp[0].minor.yy528; } break; case 268: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ { assert( yymsp[-2].minor.yy33!=0 ); yymsp[-2].minor.yy33->pLast->pNext = yymsp[-1].minor.yy33; yymsp[-2].minor.yy33->pLast = yymsp[-1].minor.yy33; } break; case 269: /* trigger_cmd_list ::= trigger_cmd SEMI */ { assert( yymsp[-1].minor.yy33!=0 ); yymsp[-1].minor.yy33->pLast = yymsp[-1].minor.yy33; } break; case 270: /* trnm ::= nm DOT nm */ { yymsp[-2].minor.yy0 = yymsp[0].minor.yy0; sqlite3ErrorMsg(pParse, "qualified table names are not allowed on INSERT, UPDATE, and DELETE " "statements within triggers"); } break; case 271: /* tridxby ::= INDEXED BY nm */ { sqlite3ErrorMsg(pParse, "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " "within triggers"); } break; case 272: /* tridxby ::= NOT INDEXED */ { sqlite3ErrorMsg(pParse, "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " "within triggers"); } break; case 273: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */ {yylhsminor.yy33 = sqlite3TriggerUpdateStep(pParse, &yymsp[-6].minor.yy0, yymsp[-2].minor.yy131, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528, yymsp[-7].minor.yy394, yymsp[-8].minor.yy0.z, yymsp[0].minor.yy522);} yymsp[-8].minor.yy33 = yylhsminor.yy33; break; case 274: /* trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */ { yylhsminor.yy33 = sqlite3TriggerInsertStep(pParse,&yymsp[-4].minor.yy0,yymsp[-3].minor.yy254,yymsp[-2].minor.yy47,yymsp[-6].minor.yy394,yymsp[-1].minor.yy444,yymsp[-7].minor.yy522,yymsp[0].minor.yy522);/*yylhsminor.yy33-overwrites-yymsp[-6].minor.yy394*/ } yymsp[-7].minor.yy33 = yylhsminor.yy33; break; case 275: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */ {yylhsminor.yy33 = sqlite3TriggerDeleteStep(pParse, &yymsp[-3].minor.yy0, yymsp[-1].minor.yy528, yymsp[-5].minor.yy0.z, yymsp[0].minor.yy522);} yymsp[-5].minor.yy33 = yylhsminor.yy33; break; case 276: /* trigger_cmd ::= scanpt select scanpt */ {yylhsminor.yy33 = sqlite3TriggerSelectStep(pParse->db, yymsp[-1].minor.yy47, yymsp[-2].minor.yy522, yymsp[0].minor.yy522); /*yylhsminor.yy33-overwrites-yymsp[-1].minor.yy47*/} yymsp[-2].minor.yy33 = yylhsminor.yy33; break; case 277: /* expr ::= RAISE LP IGNORE RP */ { yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_RAISE, 0, 0); if( yymsp[-3].minor.yy528 ){ yymsp[-3].minor.yy528->affExpr = OE_Ignore; } } break; case 278: /* expr ::= RAISE LP raisetype COMMA nm RP */ { yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_RAISE, &yymsp[-1].minor.yy0, 1); if( yymsp[-5].minor.yy528 ) { yymsp[-5].minor.yy528->affExpr = (char)yymsp[-3].minor.yy394; } } break; case 279: /* raisetype ::= ROLLBACK */ {yymsp[0].minor.yy394 = OE_Rollback;} break; case 281: /* raisetype ::= FAIL */ {yymsp[0].minor.yy394 = OE_Fail;} break; case 282: /* cmd ::= DROP TRIGGER ifexists fullname */ { sqlite3DropTrigger(pParse,yymsp[0].minor.yy131,yymsp[-1].minor.yy394); } break; case 283: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ { sqlite3Attach(pParse, yymsp[-3].minor.yy528, yymsp[-1].minor.yy528, yymsp[0].minor.yy528); } break; case 284: /* cmd ::= DETACH database_kw_opt expr */ { sqlite3Detach(pParse, yymsp[0].minor.yy528); } break; case 287: /* cmd ::= REINDEX */ {sqlite3Reindex(pParse, 0, 0);} break; case 288: /* cmd ::= REINDEX nm dbnm */ {sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);} break; case 289: /* cmd ::= ANALYZE */ {sqlite3Analyze(pParse, 0, 0);} break; case 290: /* cmd ::= ANALYZE nm dbnm */ {sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);} break; case 291: /* cmd ::= ALTER TABLE fullname RENAME TO nm */ { sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy131,&yymsp[0].minor.yy0); } break; case 292: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */ { yymsp[-1].minor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-1].minor.yy0.z) + pParse->sLastToken.n; sqlite3AlterFinishAddColumn(pParse, &yymsp[-1].minor.yy0); } break; case 293: /* cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */ { sqlite3AlterDropColumn(pParse, yymsp[-3].minor.yy131, &yymsp[0].minor.yy0); } break; case 294: /* add_column_fullname ::= fullname */ { disableLookaside(pParse); sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy131); } break; case 295: /* cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */ { sqlite3AlterRenameColumn(pParse, yymsp[-5].minor.yy131, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0); } break; case 296: /* cmd ::= create_vtab */ {sqlite3VtabFinishParse(pParse,0);} break; case 297: /* cmd ::= create_vtab LP vtabarglist RP */ {sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);} break; case 298: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */ { sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy394); } break; case 299: /* vtabarg ::= */ {sqlite3VtabArgInit(pParse);} break; case 300: /* vtabargtoken ::= ANY */ case 301: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==301); case 302: /* lp ::= LP */ yytestcase(yyruleno==302); {sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);} break; case 303: /* with ::= WITH wqlist */ case 304: /* with ::= WITH RECURSIVE wqlist */ yytestcase(yyruleno==304); { sqlite3WithPush(pParse, yymsp[0].minor.yy521, 1); } break; case 305: /* wqas ::= AS */ {yymsp[0].minor.yy516 = M10d_Any;} break; case 306: /* wqas ::= AS MATERIALIZED */ {yymsp[-1].minor.yy516 = M10d_Yes;} break; case 307: /* wqas ::= AS NOT MATERIALIZED */ {yymsp[-2].minor.yy516 = M10d_No;} break; case 308: /* wqitem ::= nm eidlist_opt wqas LP select RP */ { yymsp[-5].minor.yy385 = sqlite3CteNew(pParse, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy322, yymsp[-1].minor.yy47, yymsp[-3].minor.yy516); /*A-overwrites-X*/ } break; case 309: /* wqlist ::= wqitem */ { yymsp[0].minor.yy521 = sqlite3WithAdd(pParse, 0, yymsp[0].minor.yy385); /*A-overwrites-X*/ } break; case 310: /* wqlist ::= wqlist COMMA wqitem */ { yymsp[-2].minor.yy521 = sqlite3WithAdd(pParse, yymsp[-2].minor.yy521, yymsp[0].minor.yy385); } break; case 311: /* windowdefn_list ::= windowdefn_list COMMA windowdefn */ { assert( yymsp[0].minor.yy41!=0 ); sqlite3WindowChain(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy41); yymsp[0].minor.yy41->pNextWin = yymsp[-2].minor.yy41; yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[-2].minor.yy41 = yylhsminor.yy41; break; case 312: /* windowdefn ::= nm AS LP window RP */ { if( ALWAYS(yymsp[-1].minor.yy41) ){ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[-4].minor.yy0.z, yymsp[-4].minor.yy0.n); } yylhsminor.yy41 = yymsp[-1].minor.yy41; } yymsp[-4].minor.yy41 = yylhsminor.yy41; break; case 313: /* window ::= PARTITION BY nexprlist orderby_opt frame_opt */ { yymsp[-4].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, 0); } break; case 314: /* window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, &yymsp[-5].minor.yy0); } yymsp[-5].minor.yy41 = yylhsminor.yy41; break; case 315: /* window ::= ORDER BY sortlist frame_opt */ { yymsp[-3].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, 0); } break; case 316: /* window ::= nm ORDER BY sortlist frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0); } yymsp[-4].minor.yy41 = yylhsminor.yy41; break; case 317: /* window ::= nm frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, 0, &yymsp[-1].minor.yy0); } yymsp[-1].minor.yy41 = yylhsminor.yy41; break; case 318: /* frame_opt ::= */ { yymsp[1].minor.yy41 = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); } break; case 319: /* frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ { yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-2].minor.yy394, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, TK_CURRENT, 0, yymsp[0].minor.yy516); } yymsp[-2].minor.yy41 = yylhsminor.yy41; break; case 320: /* frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ { yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-5].minor.yy394, yymsp[-3].minor.yy595.eType, yymsp[-3].minor.yy595.pExpr, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, yymsp[0].minor.yy516); } yymsp[-5].minor.yy41 = yylhsminor.yy41; break; case 322: /* frame_bound_s ::= frame_bound */ case 324: /* frame_bound_e ::= frame_bound */ yytestcase(yyruleno==324); {yylhsminor.yy595 = yymsp[0].minor.yy595;} yymsp[0].minor.yy595 = yylhsminor.yy595; break; case 323: /* frame_bound_s ::= UNBOUNDED PRECEDING */ case 325: /* frame_bound_e ::= UNBOUNDED FOLLOWING */ yytestcase(yyruleno==325); case 327: /* frame_bound ::= CURRENT ROW */ yytestcase(yyruleno==327); {yylhsminor.yy595.eType = yymsp[-1].major; yylhsminor.yy595.pExpr = 0;} yymsp[-1].minor.yy595 = yylhsminor.yy595; break; case 326: /* frame_bound ::= expr PRECEDING|FOLLOWING */ {yylhsminor.yy595.eType = yymsp[0].major; yylhsminor.yy595.pExpr = yymsp[-1].minor.yy528;} yymsp[-1].minor.yy595 = yylhsminor.yy595; break; case 328: /* frame_exclude_opt ::= */ {yymsp[1].minor.yy516 = 0;} break; case 329: /* frame_exclude_opt ::= EXCLUDE frame_exclude */ {yymsp[-1].minor.yy516 = yymsp[0].minor.yy516;} break; case 330: /* frame_exclude ::= NO OTHERS */ case 331: /* frame_exclude ::= CURRENT ROW */ yytestcase(yyruleno==331); {yymsp[-1].minor.yy516 = yymsp[-1].major; /*A-overwrites-X*/} break; case 332: /* frame_exclude ::= GROUP|TIES */ {yymsp[0].minor.yy516 = yymsp[0].major; /*A-overwrites-X*/} break; case 333: /* window_clause ::= WINDOW windowdefn_list */ { yymsp[-1].minor.yy41 = yymsp[0].minor.yy41; } break; case 334: /* filter_over ::= filter_clause over_clause */ { if( yymsp[0].minor.yy41 ){ yymsp[0].minor.yy41->pFilter = yymsp[-1].minor.yy528; }else{ sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528); } yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[-1].minor.yy41 = yylhsminor.yy41; break; case 335: /* filter_over ::= over_clause */ { yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[0].minor.yy41 = yylhsminor.yy41; break; case 336: /* filter_over ::= filter_clause */ { yylhsminor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( yylhsminor.yy41 ){ yylhsminor.yy41->eFrmType = TK_FILTER; yylhsminor.yy41->pFilter = yymsp[0].minor.yy528; }else{ sqlite3ExprDelete(pParse->db, yymsp[0].minor.yy528); } } yymsp[0].minor.yy41 = yylhsminor.yy41; break; case 337: /* over_clause ::= OVER LP window RP */ { yymsp[-3].minor.yy41 = yymsp[-1].minor.yy41; assert( yymsp[-3].minor.yy41!=0 ); } break; case 338: /* over_clause ::= OVER nm */ { yymsp[-1].minor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( yymsp[-1].minor.yy41 ){ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n); } } break; case 339: /* filter_clause ::= FILTER LP WHERE expr RP */ { yymsp[-4].minor.yy528 = yymsp[-1].minor.yy528; } break; default: /* (340) input ::= cmdlist */ yytestcase(yyruleno==340); /* (341) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==341); /* (342) cmdlist ::= ecmd (OPTIMIZED OUT) */ assert(yyruleno!=342); /* (343) ecmd ::= SEMI */ yytestcase(yyruleno==343); /* (344) ecmd ::= cmdx SEMI */ yytestcase(yyruleno==344); /* (345) ecmd ::= explain cmdx SEMI (NEVER REDUCES) */ assert(yyruleno!=345); /* (346) trans_opt ::= */ yytestcase(yyruleno==346); /* (347) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==347); /* (348) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==348); /* (349) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==349); /* (350) savepoint_opt ::= */ yytestcase(yyruleno==350); /* (351) cmd ::= create_table create_table_args */ yytestcase(yyruleno==351); /* (352) table_option_set ::= table_option (OPTIMIZED OUT) */ assert(yyruleno!=352); /* (353) columnlist ::= columnlist COMMA columnname carglist */ yytestcase(yyruleno==353); /* (354) columnlist ::= columnname carglist */ yytestcase(yyruleno==354); /* (355) nm ::= ID|INDEXED|JOIN_KW */ yytestcase(yyruleno==355); /* (356) nm ::= STRING */ yytestcase(yyruleno==356); /* (357) typetoken ::= typename */ yytestcase(yyruleno==357); /* (358) typename ::= ID|STRING */ yytestcase(yyruleno==358); /* (359) signed ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=359); /* (360) signed ::= minus_num (OPTIMIZED OUT) */ assert(yyruleno!=360); /* (361) carglist ::= carglist ccons */ yytestcase(yyruleno==361); /* (362) carglist ::= */ yytestcase(yyruleno==362); /* (363) ccons ::= NULL onconf */ yytestcase(yyruleno==363); /* (364) ccons ::= GENERATED ALWAYS AS generated */ yytestcase(yyruleno==364); /* (365) ccons ::= AS generated */ yytestcase(yyruleno==365); /* (366) conslist_opt ::= COMMA conslist */ yytestcase(yyruleno==366); /* (367) conslist ::= conslist tconscomma tcons */ yytestcase(yyruleno==367); /* (368) conslist ::= tcons (OPTIMIZED OUT) */ assert(yyruleno!=368); /* (369) tconscomma ::= */ yytestcase(yyruleno==369); /* (370) defer_subclause_opt ::= defer_subclause (OPTIMIZED OUT) */ assert(yyruleno!=370); /* (371) resolvetype ::= raisetype (OPTIMIZED OUT) */ assert(yyruleno!=371); /* (372) selectnowith ::= oneselect (OPTIMIZED OUT) */ assert(yyruleno!=372); /* (373) oneselect ::= values */ yytestcase(yyruleno==373); /* (374) sclp ::= selcollist COMMA */ yytestcase(yyruleno==374); /* (375) as ::= ID|STRING */ yytestcase(yyruleno==375); /* (376) indexed_opt ::= indexed_by (OPTIMIZED OUT) */ assert(yyruleno!=376); /* (377) returning ::= */ yytestcase(yyruleno==377); /* (378) expr ::= term (OPTIMIZED OUT) */ assert(yyruleno!=378); /* (379) likeop ::= LIKE_KW|MATCH */ yytestcase(yyruleno==379); /* (380) case_operand ::= expr */ yytestcase(yyruleno==380); /* (381) exprlist ::= nexprlist */ yytestcase(yyruleno==381); /* (382) nmnum ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=382); /* (383) nmnum ::= nm (OPTIMIZED OUT) */ assert(yyruleno!=383); /* (384) nmnum ::= ON */ yytestcase(yyruleno==384); /* (385) nmnum ::= DELETE */ yytestcase(yyruleno==385); /* (386) nmnum ::= DEFAULT */ yytestcase(yyruleno==386); /* (387) plus_num ::= INTEGER|FLOAT */ yytestcase(yyruleno==387); /* (388) foreach_clause ::= */ yytestcase(yyruleno==388); /* (389) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==389); /* (390) trnm ::= nm */ yytestcase(yyruleno==390); /* (391) tridxby ::= */ yytestcase(yyruleno==391); /* (392) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==392); /* (393) database_kw_opt ::= */ yytestcase(yyruleno==393); /* (394) kwcolumn_opt ::= */ yytestcase(yyruleno==394); /* (395) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==395); /* (396) vtabarglist ::= vtabarg */ yytestcase(yyruleno==396); /* (397) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==397); /* (398) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==398); /* (399) anylist ::= */ yytestcase(yyruleno==399); /* (400) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==400); /* (401) anylist ::= anylist ANY */ yytestcase(yyruleno==401); /* (402) with ::= */ yytestcase(yyruleno==402); /* (403) windowdefn_list ::= windowdefn (OPTIMIZED OUT) */ assert(yyruleno!=403); /* (404) window ::= frame_opt (OPTIMIZED OUT) */ assert(yyruleno!=404); break; /********** End reduce actions ************************************************/ }; assert( yyrulenoYY_MAX_SHIFT && yyact<=YY_MAX_SHIFTREDUCE) ); /* It is not possible for a REDUCE to be followed by an error */ assert( yyact!=YY_ERROR_ACTION ); yymsp += yysize+1; yypParser->yytos = yymsp; yymsp->stateno = (YYACTIONTYPE)yyact; yymsp->major = (YYCODETYPE)yygoto; yyTraceShift(yypParser, yyact, "... then shift"); return yyact; } /* ** The following code executes when the parse fails */ #ifndef YYNOERRORRECOVERY static void yy_parse_failed( yyParser *yypParser /* The parser */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); } #endif while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser); /* Here code is inserted which will be executed whenever the ** parser fails */ /************ Begin %parse_failure code ***************************************/ /************ End %parse_failure code *****************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */ sqlite3ParserCTX_STORE } #endif /* YYNOERRORRECOVERY */ /* ** The following code executes when a syntax error first occurs. */ static void yy_syntax_error( yyParser *yypParser, /* The parser */ int yymajor, /* The major type of the error token */ sqlite3ParserTOKENTYPE yyminor /* The minor type of the error token */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH #define TOKEN yyminor /************ Begin %syntax_error code ****************************************/ UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ if( TOKEN.z[0] ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); }else{ sqlite3ErrorMsg(pParse, "incomplete input"); } /************ End %syntax_error code ******************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */ sqlite3ParserCTX_STORE } /* ** The following is executed when the parser accepts */ static void yy_accept( yyParser *yypParser /* The parser */ ){ sqlite3ParserARG_FETCH sqlite3ParserCTX_FETCH #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); } #endif #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif assert( yypParser->yytos==yypParser->yystack ); /* Here code is inserted which will be executed whenever the ** parser accepts */ /*********** Begin %parse_accept code *****************************************/ /*********** End %parse_accept code *******************************************/ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */ sqlite3ParserCTX_STORE } /* The main parser program. ** The first argument is a pointer to a structure obtained from ** "sqlite3ParserAlloc" which describes the current state of the parser. ** The second argument is the major token number. The third is ** the minor token. The fourth optional argument is whatever the ** user wants (and specified in the grammar) and is available for ** use by the action routines. ** ** Inputs: **
      **
    • A pointer to the parser (an opaque structure.) **
    • The major token number. **
    • The minor token number. **
    • An option argument of a grammar-specified type. **
    ** ** Outputs: ** None. */ SQLITE_PRIVATE void sqlite3Parser( void *yyp, /* The parser */ int yymajor, /* The major token code number */ sqlite3ParserTOKENTYPE yyminor /* The value for the token */ sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */ ){ YYMINORTYPE yyminorunion; YYACTIONTYPE yyact; /* The parser action. */ #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) int yyendofinput; /* True if we are at the end of input */ #endif #ifdef YYERRORSYMBOL int yyerrorhit = 0; /* True if yymajor has invoked an error */ #endif yyParser *yypParser = (yyParser*)yyp; /* The parser */ sqlite3ParserCTX_FETCH sqlite3ParserARG_STORE assert( yypParser->yytos!=0 ); #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY) yyendofinput = (yymajor==0); #endif yyact = yypParser->yytos->stateno; #ifndef NDEBUG if( yyTraceFILE ){ if( yyact < YY_MIN_REDUCE ){ fprintf(yyTraceFILE,"%sInput '%s' in state %d\n", yyTracePrompt,yyTokenName[yymajor],yyact); }else{ fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n", yyTracePrompt,yyTokenName[yymajor],yyact-YY_MIN_REDUCE); } } #endif while(1){ /* Exit by "break" */ assert( yypParser->yytos>=yypParser->yystack ); assert( yyact==yypParser->yytos->stateno ); yyact = yy_find_shift_action((YYCODETYPE)yymajor,yyact); if( yyact >= YY_MIN_REDUCE ){ unsigned int yyruleno = yyact - YY_MIN_REDUCE; /* Reduce by this rule */ #ifndef NDEBUG assert( yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ); if( yyTraceFILE ){ int yysize = yyRuleInfoNRhs[yyruleno]; if( yysize ){ fprintf(yyTraceFILE, "%sReduce %d [%s]%s, pop back to state %d.\n", yyTracePrompt, yyruleno, yyRuleName[yyruleno], yyrulenoyytos[yysize].stateno); }else{ fprintf(yyTraceFILE, "%sReduce %d [%s]%s.\n", yyTracePrompt, yyruleno, yyRuleName[yyruleno], yyrulenoyytos - yypParser->yystack)>yypParser->yyhwm ){ yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack)); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>=yypParser->yystackEnd ){ yyStackOverflow(yypParser); break; } #else if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){ if( yyGrowStack(yypParser) ){ yyStackOverflow(yypParser); break; } } #endif } yyact = yy_reduce(yypParser,yyruleno,yymajor,yyminor sqlite3ParserCTX_PARAM); }else if( yyact <= YY_MAX_SHIFTREDUCE ){ yy_shift(yypParser,yyact,(YYCODETYPE)yymajor,yyminor); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt--; #endif break; }else if( yyact==YY_ACCEPT_ACTION ){ yypParser->yytos--; yy_accept(yypParser); return; }else{ assert( yyact == YY_ERROR_ACTION ); yyminorunion.yy0 = yyminor; #ifdef YYERRORSYMBOL int yymx; #endif #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); } #endif #ifdef YYERRORSYMBOL /* A syntax error has occurred. ** The response to an error depends upon whether or not the ** grammar defines an error token "ERROR". ** ** This is what we do if the grammar does define ERROR: ** ** * Call the %syntax_error function. ** ** * Begin popping the stack until we enter a state where ** it is legal to shift the error symbol, then shift ** the error symbol. ** ** * Set the error count to three. ** ** * Begin accepting and shifting new tokens. No new error ** processing will occur until three tokens have been ** shifted successfully. ** */ if( yypParser->yyerrcnt<0 ){ yy_syntax_error(yypParser,yymajor,yyminor); } yymx = yypParser->yytos->major; if( yymx==YYERRORSYMBOL || yyerrorhit ){ #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sDiscard input token %s\n", yyTracePrompt,yyTokenName[yymajor]); } #endif yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion); yymajor = YYNOCODE; }else{ while( yypParser->yytos > yypParser->yystack ){ yyact = yy_find_reduce_action(yypParser->yytos->stateno, YYERRORSYMBOL); if( yyact<=YY_MAX_SHIFTREDUCE ) break; yy_pop_parser_stack(yypParser); } if( yypParser->yytos <= yypParser->yystack || yymajor==0 ){ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); yy_parse_failed(yypParser); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif yymajor = YYNOCODE; }else if( yymx!=YYERRORSYMBOL ){ yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor); } } yypParser->yyerrcnt = 3; yyerrorhit = 1; if( yymajor==YYNOCODE ) break; yyact = yypParser->yytos->stateno; #elif defined(YYNOERRORRECOVERY) /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to ** do any kind of error recovery. Instead, simply invoke the syntax ** error routine and continue going as if nothing had happened. ** ** Applications can set this macro (for example inside %include) if ** they intend to abandon the parse upon the first syntax error seen. */ yy_syntax_error(yypParser,yymajor, yyminor); yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); break; #else /* YYERRORSYMBOL is not defined */ /* This is what we do if the grammar does not define ERROR: ** ** * Report an error message, and throw away the input token. ** ** * If the input token is $, then fail the parse. ** ** As before, subsequent error messages are suppressed until ** three input tokens have been successfully shifted. */ if( yypParser->yyerrcnt<=0 ){ yy_syntax_error(yypParser,yymajor, yyminor); } yypParser->yyerrcnt = 3; yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); if( yyendofinput ){ yy_parse_failed(yypParser); #ifndef YYNOERRORRECOVERY yypParser->yyerrcnt = -1; #endif } break; #endif } } #ifndef NDEBUG if( yyTraceFILE ){ yyStackEntry *i; char cDiv = '['; fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt); for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){ fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]); cDiv = ' '; } fprintf(yyTraceFILE,"]\n"); } #endif return; } /* ** Return the fallback token corresponding to canonical token iToken, or ** 0 if iToken has no fallback. */ SQLITE_PRIVATE int sqlite3ParserFallback(int iToken){ #ifdef YYFALLBACK assert( iToken<(int)(sizeof(yyFallback)/sizeof(yyFallback[0])) ); return yyFallback[iToken]; #else (void)iToken; return 0; #endif } /************** End of parse.c ***********************************************/ /************** Begin file tokenize.c ****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** An tokenizer for SQL ** ** This file contains C code that splits an SQL input string up into ** individual tokens and sends those tokens one-by-one over to the ** parser for analysis. */ /* #include "sqliteInt.h" */ /* #include */ /* Character classes for tokenizing ** ** In the sqlite3GetToken() function, a switch() on aiClass[c] is implemented ** using a lookup table, whereas a switch() directly on c uses a binary search. ** The lookup table is much faster. To maximize speed, and to ensure that ** a lookup table is used, all of the classes need to be small integers and ** all of them need to be used within the switch. */ #define CC_X 0 /* The letter 'x', or start of BLOB literal */ #define CC_KYWD0 1 /* First letter of a keyword */ #define CC_KYWD 2 /* Alphabetics or '_'. Usable in a keyword */ #define CC_DIGIT 3 /* Digits */ #define CC_DOLLAR 4 /* '$' */ #define CC_VARALPHA 5 /* '@', '#', ':'. Alphabetic SQL variables */ #define CC_VARNUM 6 /* '?'. Numeric SQL variables */ #define CC_SPACE 7 /* Space characters */ #define CC_QUOTE 8 /* '"', '\'', or '`'. String literals, quoted ids */ #define CC_QUOTE2 9 /* '['. [...] style quoted ids */ #define CC_PIPE 10 /* '|'. Bitwise OR or concatenate */ #define CC_MINUS 11 /* '-'. Minus or SQL-style comment */ #define CC_LT 12 /* '<'. Part of < or <= or <> */ #define CC_GT 13 /* '>'. Part of > or >= */ #define CC_EQ 14 /* '='. Part of = or == */ #define CC_BANG 15 /* '!'. Part of != */ #define CC_SLASH 16 /* '/'. / or c-style comment */ #define CC_LP 17 /* '(' */ #define CC_RP 18 /* ')' */ #define CC_SEMI 19 /* ';' */ #define CC_PLUS 20 /* '+' */ #define CC_STAR 21 /* '*' */ #define CC_PERCENT 22 /* '%' */ #define CC_COMMA 23 /* ',' */ #define CC_AND 24 /* '&' */ #define CC_TILDA 25 /* '~' */ #define CC_DOT 26 /* '.' */ #define CC_ID 27 /* unicode characters usable in IDs */ #define CC_ILLEGAL 28 /* Illegal character */ #define CC_NUL 29 /* 0x00 */ #define CC_BOM 30 /* First byte of UTF8 BOM: 0xEF 0xBB 0xBF */ static const unsigned char aiClass[] = { #ifdef SQLITE_ASCII /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */ /* 0x */ 29, 28, 28, 28, 28, 28, 28, 28, 28, 7, 7, 28, 7, 7, 28, 28, /* 1x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 2x */ 7, 15, 8, 5, 4, 22, 24, 8, 17, 18, 21, 20, 23, 11, 26, 16, /* 3x */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 19, 12, 14, 13, 6, /* 4x */ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 5x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 9, 28, 28, 28, 2, /* 6x */ 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 28, 10, 28, 25, 28, /* 8x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* 9x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Ax */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Bx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Cx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Dx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Ex */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 30, /* Fx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27 #endif #ifdef SQLITE_EBCDIC /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */ /* 0x */ 29, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 7, 7, 28, 28, /* 1x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 2x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 3x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 4x */ 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 26, 12, 17, 20, 10, /* 5x */ 24, 28, 28, 28, 28, 28, 28, 28, 28, 28, 15, 4, 21, 18, 19, 28, /* 6x */ 11, 16, 28, 28, 28, 28, 28, 28, 28, 28, 28, 23, 22, 2, 13, 6, /* 7x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 8, 5, 5, 5, 8, 14, 8, /* 8x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* 9x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Ax */ 28, 25, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28, /* Bx */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 9, 28, 28, 28, 28, 28, /* Cx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Dx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Ex */ 28, 28, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28, /* Fx */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 28, 28, 28, 28, 28, 28, #endif }; /* ** The charMap() macro maps alphabetic characters (only) into their ** lower-case ASCII equivalent. On ASCII machines, this is just ** an upper-to-lower case map. On EBCDIC machines we also need ** to adjust the encoding. The mapping is only valid for alphabetics ** which are the only characters for which this feature is used. ** ** Used by keywordhash.h */ #ifdef SQLITE_ASCII # define charMap(X) sqlite3UpperToLower[(unsigned char)X] #endif #ifdef SQLITE_EBCDIC # define charMap(X) ebcdicToAscii[(unsigned char)X] const unsigned char ebcdicToAscii[] = { /* 0 1 2 3 4 5 6 7 8 9 A B C D E F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */ }; #endif /* ** The sqlite3KeywordCode function looks up an identifier to determine if ** it is a keyword. If it is a keyword, the token code of that keyword is ** returned. If the input is not a keyword, TK_ID is returned. ** ** The implementation of this routine was generated by a program, ** mkkeywordhash.c, located in the tool subdirectory of the distribution. ** The output of the mkkeywordhash.c program is written into a file ** named keywordhash.h and then included into this source file by ** the #include below. */ /************** Include keywordhash.h in the middle of tokenize.c ************/ /************** Begin file keywordhash.h *************************************/ /***** This file contains automatically generated code ****** ** ** The code in this file has been automatically generated by ** ** sqlite/tool/mkkeywordhash.c ** ** The code in this file implements a function that determines whether ** or not a given identifier is really an SQL keyword. The same thing ** might be implemented more directly using a hand-written hash table. ** But by using this automatically generated code, the size of the code ** is substantially reduced. This is important for embedded applications ** on platforms with limited memory. */ /* Hash score: 231 */ /* zKWText[] encodes 1007 bytes of keyword text in 667 bytes */ /* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */ /* ABLEFTHENDEFERRABLELSEXCLUDELETEMPORARYISNULLSAVEPOINTERSECT */ /* IESNOTNULLIKEXCEPTRANSACTIONATURALTERAISEXCLUSIVEXISTS */ /* CONSTRAINTOFFSETRIGGERANGENERATEDETACHAVINGLOBEGINNEREFERENCES */ /* UNIQUERYWITHOUTERELEASEATTACHBETWEENOTHINGROUPSCASCADEFAULT */ /* CASECOLLATECREATECURRENT_DATEIMMEDIATEJOINSERTMATCHPLANALYZE */ /* PRAGMATERIALIZEDEFERREDISTINCTUPDATEVALUESVIRTUALWAYSWHENWHERE */ /* CURSIVEABORTAFTERENAMEANDROPARTITIONAUTOINCREMENTCASTCOLUMN */ /* COMMITCONFLICTCROSSCURRENT_TIMESTAMPRECEDINGFAILASTFILTER */ /* EPLACEFIRSTFOLLOWINGFROMFULLIMITIFORDERESTRICTOTHERSOVER */ /* ETURNINGRIGHTROLLBACKROWSUNBOUNDEDUNIONUSINGVACUUMVIEWINDOWBY */ /* INITIALLYPRIMARY */ static const char zKWText[666] = { 'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H', 'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G', 'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A', 'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F', 'E','R','R','A','B','L','E','L','S','E','X','C','L','U','D','E','L','E', 'T','E','M','P','O','R','A','R','Y','I','S','N','U','L','L','S','A','V', 'E','P','O','I','N','T','E','R','S','E','C','T','I','E','S','N','O','T', 'N','U','L','L','I','K','E','X','C','E','P','T','R','A','N','S','A','C', 'T','I','O','N','A','T','U','R','A','L','T','E','R','A','I','S','E','X', 'C','L','U','S','I','V','E','X','I','S','T','S','C','O','N','S','T','R', 'A','I','N','T','O','F','F','S','E','T','R','I','G','G','E','R','A','N', 'G','E','N','E','R','A','T','E','D','E','T','A','C','H','A','V','I','N', 'G','L','O','B','E','G','I','N','N','E','R','E','F','E','R','E','N','C', 'E','S','U','N','I','Q','U','E','R','Y','W','I','T','H','O','U','T','E', 'R','E','L','E','A','S','E','A','T','T','A','C','H','B','E','T','W','E', 'E','N','O','T','H','I','N','G','R','O','U','P','S','C','A','S','C','A', 'D','E','F','A','U','L','T','C','A','S','E','C','O','L','L','A','T','E', 'C','R','E','A','T','E','C','U','R','R','E','N','T','_','D','A','T','E', 'I','M','M','E','D','I','A','T','E','J','O','I','N','S','E','R','T','M', 'A','T','C','H','P','L','A','N','A','L','Y','Z','E','P','R','A','G','M', 'A','T','E','R','I','A','L','I','Z','E','D','E','F','E','R','R','E','D', 'I','S','T','I','N','C','T','U','P','D','A','T','E','V','A','L','U','E', 'S','V','I','R','T','U','A','L','W','A','Y','S','W','H','E','N','W','H', 'E','R','E','C','U','R','S','I','V','E','A','B','O','R','T','A','F','T', 'E','R','E','N','A','M','E','A','N','D','R','O','P','A','R','T','I','T', 'I','O','N','A','U','T','O','I','N','C','R','E','M','E','N','T','C','A', 'S','T','C','O','L','U','M','N','C','O','M','M','I','T','C','O','N','F', 'L','I','C','T','C','R','O','S','S','C','U','R','R','E','N','T','_','T', 'I','M','E','S','T','A','M','P','R','E','C','E','D','I','N','G','F','A', 'I','L','A','S','T','F','I','L','T','E','R','E','P','L','A','C','E','F', 'I','R','S','T','F','O','L','L','O','W','I','N','G','F','R','O','M','F', 'U','L','L','I','M','I','T','I','F','O','R','D','E','R','E','S','T','R', 'I','C','T','O','T','H','E','R','S','O','V','E','R','E','T','U','R','N', 'I','N','G','R','I','G','H','T','R','O','L','L','B','A','C','K','R','O', 'W','S','U','N','B','O','U','N','D','E','D','U','N','I','O','N','U','S', 'I','N','G','V','A','C','U','U','M','V','I','E','W','I','N','D','O','W', 'B','Y','I','N','I','T','I','A','L','L','Y','P','R','I','M','A','R','Y', }; /* aKWHash[i] is the hash value for the i-th keyword */ static const unsigned char aKWHash[127] = { 84, 92, 134, 82, 105, 29, 0, 0, 94, 0, 85, 72, 0, 53, 35, 86, 15, 0, 42, 97, 54, 89, 135, 19, 0, 0, 140, 0, 40, 129, 0, 22, 107, 0, 9, 0, 0, 123, 80, 0, 78, 6, 0, 65, 103, 147, 0, 136, 115, 0, 0, 48, 0, 90, 24, 0, 17, 0, 27, 70, 23, 26, 5, 60, 142, 110, 122, 0, 73, 91, 71, 145, 61, 120, 74, 0, 49, 0, 11, 41, 0, 113, 0, 0, 0, 109, 10, 111, 116, 125, 14, 50, 124, 0, 100, 0, 18, 121, 144, 56, 130, 139, 88, 83, 37, 30, 126, 0, 0, 108, 51, 131, 128, 0, 34, 0, 0, 132, 0, 98, 38, 39, 0, 20, 45, 117, 93, }; /* aKWNext[] forms the hash collision chain. If aKWHash[i]==0 ** then the i-th keyword has no more hash collisions. Otherwise, ** the next keyword with the same hash is aKWHash[i]-1. */ static const unsigned char aKWNext[148] = {0, 0, 0, 0, 0, 4, 0, 43, 0, 0, 106, 114, 0, 0, 0, 2, 0, 0, 143, 0, 0, 0, 13, 0, 0, 0, 0, 141, 0, 0, 119, 52, 0, 0, 137, 12, 0, 0, 62, 0, 138, 0, 133, 0, 0, 36, 0, 0, 28, 77, 0, 0, 0, 0, 59, 0, 47, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 69, 0, 0, 0, 0, 0, 146, 3, 0, 58, 0, 1, 75, 0, 0, 0, 31, 0, 0, 0, 0, 0, 127, 0, 104, 0, 64, 66, 63, 0, 0, 0, 0, 0, 46, 0, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 101, 0, 112, 21, 7, 67, 0, 79, 96, 118, 0, 0, 68, 0, 0, 99, 44, 0, 55, 0, 76, 0, 95, 32, 33, 57, 25, 0, 102, 0, 0, 87, }; /* aKWLen[i] is the length (in bytes) of the i-th keyword */ static const unsigned char aKWLen[148] = {0, 7, 7, 5, 4, 6, 4, 5, 3, 6, 7, 3, 6, 6, 7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 7, 6, 9, 4, 2, 6, 5, 9, 9, 4, 7, 3, 2, 4, 4, 6, 11, 6, 2, 7, 5, 5, 9, 6, 10, 4, 6, 2, 3, 7, 5, 9, 6, 6, 4, 5, 5, 10, 6, 5, 7, 4, 5, 7, 6, 7, 7, 6, 5, 7, 3, 7, 4, 7, 6, 12, 9, 4, 6, 5, 4, 7, 6, 12, 8, 8, 2, 6, 6, 7, 6, 4, 5, 9, 5, 5, 6, 3, 4, 9, 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 9, 4, 4, 6, 7, 5, 9, 4, 4, 5, 2, 5, 8, 6, 4, 9, 5, 8, 4, 3, 9, 5, 5, 6, 4, 6, 2, 2, 9, 3, 7, }; /* aKWOffset[i] is the index into zKWText[] of the start of ** the text for the i-th keyword. */ static const unsigned short int aKWOffset[148] = {0, 0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33, 36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81, 86, 90, 90, 94, 99, 101, 105, 111, 119, 123, 123, 123, 126, 129, 132, 137, 142, 146, 147, 152, 156, 160, 168, 174, 181, 184, 184, 187, 189, 195, 198, 206, 211, 216, 219, 222, 226, 236, 239, 244, 244, 248, 252, 259, 265, 271, 277, 277, 283, 284, 288, 295, 299, 306, 312, 324, 333, 335, 341, 346, 348, 355, 359, 370, 377, 378, 385, 391, 397, 402, 408, 412, 415, 424, 429, 433, 439, 441, 444, 453, 455, 457, 466, 470, 476, 482, 490, 495, 495, 495, 511, 520, 523, 527, 532, 539, 544, 553, 557, 560, 565, 567, 571, 579, 585, 588, 597, 602, 610, 610, 614, 623, 628, 633, 639, 642, 645, 648, 650, 655, 659, }; /* aKWCode[i] is the parser symbol code for the i-th keyword */ static const unsigned char aKWCode[148] = {0, TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE, TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE, TK_EXCLUDE, TK_DELETE, TK_TEMP, TK_TEMP, TK_OR, TK_ISNULL, TK_NULLS, TK_SAVEPOINT, TK_INTERSECT, TK_TIES, TK_NOTNULL, TK_NOT, TK_NO, TK_NULL, TK_LIKE_KW, TK_EXCEPT, TK_TRANSACTION,TK_ACTION, TK_ON, TK_JOIN_KW, TK_ALTER, TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_CONSTRAINT, TK_INTO, TK_OFFSET, TK_OF, TK_SET, TK_TRIGGER, TK_RANGE, TK_GENERATED, TK_DETACH, TK_HAVING, TK_LIKE_KW, TK_BEGIN, TK_JOIN_KW, TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_WITHOUT, TK_WITH, TK_JOIN_KW, TK_RELEASE, TK_ATTACH, TK_BETWEEN, TK_NOTHING, TK_GROUPS, TK_GROUP, TK_CASCADE, TK_ASC, TK_DEFAULT, TK_CASE, TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN, TK_ANALYZE, TK_PRAGMA, TK_MATERIALIZED, TK_DEFERRED, TK_DISTINCT, TK_IS, TK_UPDATE, TK_VALUES, TK_VIRTUAL, TK_ALWAYS, TK_WHEN, TK_WHERE, TK_RECURSIVE, TK_ABORT, TK_AFTER, TK_RENAME, TK_AND, TK_DROP, TK_PARTITION, TK_AUTOINCR, TK_TO, TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_CURRENT, TK_PRECEDING, TK_FAIL, TK_LAST, TK_FILTER, TK_REPLACE, TK_FIRST, TK_FOLLOWING, TK_FROM, TK_JOIN_KW, TK_LIMIT, TK_IF, TK_ORDER, TK_RESTRICT, TK_OTHERS, TK_OVER, TK_RETURNING, TK_JOIN_KW, TK_ROLLBACK, TK_ROWS, TK_ROW, TK_UNBOUNDED, TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_WINDOW, TK_DO, TK_BY, TK_INITIALLY, TK_ALL, TK_PRIMARY, }; /* Hash table decoded: ** 0: INSERT ** 1: IS ** 2: ROLLBACK TRIGGER ** 3: IMMEDIATE ** 4: PARTITION ** 5: TEMP ** 6: ** 7: ** 8: VALUES WITHOUT ** 9: ** 10: MATCH ** 11: NOTHING ** 12: ** 13: OF ** 14: TIES IGNORE ** 15: PLAN ** 16: INSTEAD INDEXED ** 17: ** 18: TRANSACTION RIGHT ** 19: WHEN ** 20: SET HAVING ** 21: MATERIALIZED IF ** 22: ROWS ** 23: SELECT ** 24: ** 25: ** 26: VACUUM SAVEPOINT ** 27: ** 28: LIKE UNION VIRTUAL REFERENCES ** 29: RESTRICT ** 30: ** 31: THEN REGEXP ** 32: TO ** 33: ** 34: BEFORE ** 35: ** 36: ** 37: FOLLOWING COLLATE CASCADE ** 38: CREATE ** 39: ** 40: CASE REINDEX ** 41: EACH ** 42: ** 43: QUERY ** 44: AND ADD ** 45: PRIMARY ANALYZE ** 46: ** 47: ROW ASC DETACH ** 48: CURRENT_TIME CURRENT_DATE ** 49: ** 50: ** 51: EXCLUSIVE TEMPORARY ** 52: ** 53: DEFERRED ** 54: DEFERRABLE ** 55: ** 56: DATABASE ** 57: ** 58: DELETE VIEW GENERATED ** 59: ATTACH ** 60: END ** 61: EXCLUDE ** 62: ESCAPE DESC ** 63: GLOB ** 64: WINDOW ELSE ** 65: COLUMN ** 66: FIRST ** 67: ** 68: GROUPS ALL ** 69: DISTINCT DROP KEY ** 70: BETWEEN ** 71: INITIALLY ** 72: BEGIN ** 73: FILTER CHECK ACTION ** 74: GROUP INDEX ** 75: ** 76: EXISTS DEFAULT ** 77: ** 78: FOR CURRENT_TIMESTAMP ** 79: EXCEPT ** 80: ** 81: CROSS ** 82: ** 83: ** 84: ** 85: CAST ** 86: FOREIGN AUTOINCREMENT ** 87: COMMIT ** 88: CURRENT AFTER ALTER ** 89: FULL FAIL CONFLICT ** 90: EXPLAIN ** 91: CONSTRAINT ** 92: FROM ALWAYS ** 93: ** 94: ABORT ** 95: ** 96: AS DO ** 97: REPLACE WITH RELEASE ** 98: BY RENAME ** 99: RANGE RAISE ** 100: OTHERS ** 101: USING NULLS ** 102: PRAGMA ** 103: JOIN ISNULL OFFSET ** 104: NOT ** 105: OR LAST LEFT ** 106: LIMIT ** 107: ** 108: ** 109: IN ** 110: INTO ** 111: OVER RECURSIVE ** 112: ORDER OUTER ** 113: ** 114: INTERSECT UNBOUNDED ** 115: ** 116: ** 117: RETURNING ON ** 118: ** 119: WHERE ** 120: NO INNER ** 121: NULL ** 122: ** 123: TABLE ** 124: NATURAL NOTNULL ** 125: PRECEDING ** 126: UPDATE UNIQUE */ /* Check to see if z[0..n-1] is a keyword. If it is, write the ** parser symbol code for that keyword into *pType. Always ** return the integer n (the length of the token). */ static int keywordCode(const char *z, int n, int *pType){ int i, j; const char *zKW; assert( n>=2 ); i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n*1) % 127; for(i=(int)aKWHash[i]; i>0; i=aKWNext[i]){ if( aKWLen[i]!=n ) continue; zKW = &zKWText[aKWOffset[i]]; #ifdef SQLITE_ASCII if( (z[0]&~0x20)!=zKW[0] ) continue; if( (z[1]&~0x20)!=zKW[1] ) continue; j = 2; while( j=2 ) keywordCode((char*)z, n, &id); return id; } #define SQLITE_N_KEYWORD 147 SQLITE_API int sqlite3_keyword_name(int i,const char **pzName,int *pnName){ if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR; i++; *pzName = zKWText + aKWOffset[i]; *pnName = aKWLen[i]; return SQLITE_OK; } SQLITE_API int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; } SQLITE_API int sqlite3_keyword_check(const char *zName, int nName){ return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName); } /************** End of keywordhash.h *****************************************/ /************** Continuing where we left off in tokenize.c *******************/ /* ** If X is a character that can be used in an identifier then ** IdChar(X) will be true. Otherwise it is false. ** ** For ASCII, any character with the high-order bit set is ** allowed in an identifier. For 7-bit characters, ** sqlite3IsIdChar[X] must be 1. ** ** For EBCDIC, the rules are more complex but have the same ** end result. ** ** Ticket #1066. the SQL standard does not allow '$' in the ** middle of identifiers. But many SQL implementations do. ** SQLite will allow '$' in identifiers for compatibility. ** But the feature is undocumented. */ #ifdef SQLITE_ASCII #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) #endif #ifdef SQLITE_EBCDIC SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = { /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */ }; #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) #endif /* Make the IdChar function accessible from ctime.c and alter.c */ SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Return the id of the next token in string (*pz). Before returning, set ** (*pz) to point to the byte following the parsed token. */ static int getToken(const unsigned char **pz){ const unsigned char *z = *pz; int t; /* Token type to return */ do { z += sqlite3GetToken(z, &t); }while( t==TK_SPACE ); if( t==TK_ID || t==TK_STRING || t==TK_JOIN_KW || t==TK_WINDOW || t==TK_OVER || sqlite3ParserFallback(t)==TK_ID ){ t = TK_ID; } *pz = z; return t; } /* ** The following three functions are called immediately after the tokenizer ** reads the keywords WINDOW, OVER and FILTER, respectively, to determine ** whether the token should be treated as a keyword or an SQL identifier. ** This cannot be handled by the usual lemon %fallback method, due to ** the ambiguity in some constructions. e.g. ** ** SELECT sum(x) OVER ... ** ** In the above, "OVER" might be a keyword, or it might be an alias for the ** sum(x) expression. If a "%fallback ID OVER" directive were added to ** grammar, then SQLite would always treat "OVER" as an alias, making it ** impossible to call a window-function without a FILTER clause. ** ** WINDOW is treated as a keyword if: ** ** * the following token is an identifier, or a keyword that can fallback ** to being an identifier, and ** * the token after than one is TK_AS. ** ** OVER is a keyword if: ** ** * the previous token was TK_RP, and ** * the next token is either TK_LP or an identifier. ** ** FILTER is a keyword if: ** ** * the previous token was TK_RP, and ** * the next token is TK_LP. */ static int analyzeWindowKeyword(const unsigned char *z){ int t; t = getToken(&z); if( t!=TK_ID ) return TK_ID; t = getToken(&z); if( t!=TK_AS ) return TK_ID; return TK_WINDOW; } static int analyzeOverKeyword(const unsigned char *z, int lastToken){ if( lastToken==TK_RP ){ int t = getToken(&z); if( t==TK_LP || t==TK_ID ) return TK_OVER; } return TK_ID; } static int analyzeFilterKeyword(const unsigned char *z, int lastToken){ if( lastToken==TK_RP && getToken(&z)==TK_LP ){ return TK_FILTER; } return TK_ID; } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** Return the length (in bytes) of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){ int i, c; switch( aiClass[*z] ){ /* Switch on the character-class of the first byte ** of the token. See the comment on the CC_ defines ** above. */ case CC_SPACE: { testcase( z[0]==' ' ); testcase( z[0]=='\t' ); testcase( z[0]=='\n' ); testcase( z[0]=='\f' ); testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case CC_MINUS: { if( z[1]=='-' ){ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; }else if( z[1]=='>' ){ *tokenType = TK_PTR; return 2 + (z[2]=='>'); } *tokenType = TK_MINUS; return 1; } case CC_LP: { *tokenType = TK_LP; return 1; } case CC_RP: { *tokenType = TK_RP; return 1; } case CC_SEMI: { *tokenType = TK_SEMI; return 1; } case CC_PLUS: { *tokenType = TK_PLUS; return 1; } case CC_STAR: { *tokenType = TK_STAR; return 1; } case CC_SLASH: { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case CC_PERCENT: { *tokenType = TK_REM; return 1; } case CC_EQ: { *tokenType = TK_EQ; return 1 + (z[1]=='='); } case CC_LT: { if( (c=z[1])=='=' ){ *tokenType = TK_LE; return 2; }else if( c=='>' ){ *tokenType = TK_NE; return 2; }else if( c=='<' ){ *tokenType = TK_LSHIFT; return 2; }else{ *tokenType = TK_LT; return 1; } } case CC_GT: { if( (c=z[1])=='=' ){ *tokenType = TK_GE; return 2; }else if( c=='>' ){ *tokenType = TK_RSHIFT; return 2; }else{ *tokenType = TK_GT; return 1; } } case CC_BANG: { if( z[1]!='=' ){ *tokenType = TK_ILLEGAL; return 1; }else{ *tokenType = TK_NE; return 2; } } case CC_PIPE: { if( z[1]!='|' ){ *tokenType = TK_BITOR; return 1; }else{ *tokenType = TK_CONCAT; return 2; } } case CC_COMMA: { *tokenType = TK_COMMA; return 1; } case CC_AND: { *tokenType = TK_BITAND; return 1; } case CC_TILDA: { *tokenType = TK_BITNOT; return 1; } case CC_QUOTE: { int delim = z[0]; testcase( delim=='`' ); testcase( delim=='\'' ); testcase( delim=='"' ); for(i=1; (c=z[i])!=0; i++){ if( c==delim ){ if( z[i+1]==delim ){ i++; }else{ break; } } } if( c=='\'' ){ *tokenType = TK_STRING; return i+1; }else if( c!=0 ){ *tokenType = TK_ID; return i+1; }else{ *tokenType = TK_ILLEGAL; return i; } } case CC_DOT: { #ifndef SQLITE_OMIT_FLOATING_POINT if( !sqlite3Isdigit(z[1]) ) #endif { *tokenType = TK_DOT; return 1; } /* If the next character is a digit, this is a floating point ** number that begins with ".". Fall thru into the next case */ /* no break */ deliberate_fall_through } case CC_DIGIT: { testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); testcase( z[0]=='9' ); testcase( z[0]=='.' ); *tokenType = TK_INTEGER; #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){ for(i=3; sqlite3Isxdigit(z[i]); i++){} return i; } #endif for(i=0; sqlite3Isdigit(z[i]); i++){} #ifndef SQLITE_OMIT_FLOATING_POINT if( z[i]=='.' ){ i++; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } if( (z[i]=='e' || z[i]=='E') && ( sqlite3Isdigit(z[i+1]) || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2])) ) ){ i += 2; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } #endif while( IdChar(z[i]) ){ *tokenType = TK_ILLEGAL; i++; } return i; } case CC_QUOTE2: { for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} *tokenType = c==']' ? TK_ID : TK_ILLEGAL; return i; } case CC_VARNUM: { *tokenType = TK_VARIABLE; for(i=1; sqlite3Isdigit(z[i]); i++){} return i; } case CC_DOLLAR: case CC_VARALPHA: { int n = 0; testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' ); testcase( z[0]=='#' ); *tokenType = TK_VARIABLE; for(i=1; (c=z[i])!=0; i++){ if( IdChar(c) ){ n++; #ifndef SQLITE_OMIT_TCL_VARIABLE }else if( c=='(' && n>0 ){ do{ i++; }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' ); if( c==')' ){ i++; }else{ *tokenType = TK_ILLEGAL; } break; }else if( c==':' && z[i+1]==':' ){ i++; #endif }else{ break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } case CC_KYWD0: { if( aiClass[z[1]]>CC_KYWD ){ i = 1; break; } for(i=2; aiClass[z[i]]<=CC_KYWD; i++){} if( IdChar(z[i]) ){ /* This token started out using characters that can appear in keywords, ** but z[i] is a character not allowed within keywords, so this must ** be an identifier instead */ i++; break; } *tokenType = TK_ID; return keywordCode((char*)z, i, tokenType); } case CC_X: { #ifndef SQLITE_OMIT_BLOB_LITERAL testcase( z[0]=='x' ); testcase( z[0]=='X' ); if( z[1]=='\'' ){ *tokenType = TK_BLOB; for(i=2; sqlite3Isxdigit(z[i]); i++){} if( z[i]!='\'' || i%2 ){ *tokenType = TK_ILLEGAL; while( z[i] && z[i]!='\'' ){ i++; } } if( z[i] ) i++; return i; } #endif /* If it is not a BLOB literal, then it must be an ID, since no ** SQL keywords start with the letter 'x'. Fall through */ /* no break */ deliberate_fall_through } case CC_KYWD: case CC_ID: { i = 1; break; } case CC_BOM: { if( z[1]==0xbb && z[2]==0xbf ){ *tokenType = TK_SPACE; return 3; } i = 1; break; } case CC_NUL: { *tokenType = TK_ILLEGAL; return 0; } default: { *tokenType = TK_ILLEGAL; return 1; } } while( IdChar(z[i]) ){ i++; } *tokenType = TK_ID; return i; } /* ** Run the parser on the given SQL string. */ SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql){ int nErr = 0; /* Number of errors encountered */ void *pEngine; /* The LEMON-generated LALR(1) parser */ int n = 0; /* Length of the next token token */ int tokenType; /* type of the next token */ int lastTokenParsed = -1; /* type of the previous token */ sqlite3 *db = pParse->db; /* The database connection */ int mxSqlLen; /* Max length of an SQL string */ Parse *pParentParse = 0; /* Outer parse context, if any */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK yyParser sEngine; /* Space to hold the Lemon-generated Parser object */ #endif VVA_ONLY( u8 startedWithOom = db->mallocFailed ); assert( zSql!=0 ); mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; if( db->nVdbeActive==0 ){ AtomicStore(&db->u1.isInterrupted, 0); } pParse->rc = SQLITE_OK; pParse->zTail = zSql; #ifdef SQLITE_DEBUG if( db->flags & SQLITE_ParserTrace ){ printf("parser: [[[%s]]]\n", zSql); sqlite3ParserTrace(stdout, "parser: "); }else{ sqlite3ParserTrace(0, 0); } #endif #ifdef sqlite3Parser_ENGINEALWAYSONSTACK pEngine = &sEngine; sqlite3ParserInit(pEngine, pParse); #else pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse); if( pEngine==0 ){ sqlite3OomFault(db); return SQLITE_NOMEM_BKPT; } #endif assert( pParse->pNewTable==0 ); assert( pParse->pNewTrigger==0 ); assert( pParse->nVar==0 ); assert( pParse->pVList==0 ); pParentParse = db->pParse; db->pParse = pParse; while( 1 ){ n = sqlite3GetToken((u8*)zSql, &tokenType); mxSqlLen -= n; if( mxSqlLen<0 ){ pParse->rc = SQLITE_TOOBIG; pParse->nErr++; break; } #ifndef SQLITE_OMIT_WINDOWFUNC if( tokenType>=TK_WINDOW ){ assert( tokenType==TK_SPACE || tokenType==TK_OVER || tokenType==TK_FILTER || tokenType==TK_ILLEGAL || tokenType==TK_WINDOW ); #else if( tokenType>=TK_SPACE ){ assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL ); #endif /* SQLITE_OMIT_WINDOWFUNC */ if( AtomicLoad(&db->u1.isInterrupted) ){ pParse->rc = SQLITE_INTERRUPT; pParse->nErr++; break; } if( tokenType==TK_SPACE ){ zSql += n; continue; } if( zSql[0]==0 ){ /* Upon reaching the end of input, call the parser two more times ** with tokens TK_SEMI and 0, in that order. */ if( lastTokenParsed==TK_SEMI ){ tokenType = 0; }else if( lastTokenParsed==0 ){ break; }else{ tokenType = TK_SEMI; } n = 0; #ifndef SQLITE_OMIT_WINDOWFUNC }else if( tokenType==TK_WINDOW ){ assert( n==6 ); tokenType = analyzeWindowKeyword((const u8*)&zSql[6]); }else if( tokenType==TK_OVER ){ assert( n==4 ); tokenType = analyzeOverKeyword((const u8*)&zSql[4], lastTokenParsed); }else if( tokenType==TK_FILTER ){ assert( n==6 ); tokenType = analyzeFilterKeyword((const u8*)&zSql[6], lastTokenParsed); #endif /* SQLITE_OMIT_WINDOWFUNC */ }else{ Token x; x.z = zSql; x.n = n; sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"", &x); break; } } pParse->sLastToken.z = zSql; pParse->sLastToken.n = n; sqlite3Parser(pEngine, tokenType, pParse->sLastToken); lastTokenParsed = tokenType; zSql += n; assert( db->mallocFailed==0 || pParse->rc!=SQLITE_OK || startedWithOom ); if( pParse->rc!=SQLITE_OK ) break; } assert( nErr==0 ); #ifdef YYTRACKMAXSTACKDEPTH sqlite3_mutex_enter(sqlite3MallocMutex()); sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK, sqlite3ParserStackPeak(pEngine) ); sqlite3_mutex_leave(sqlite3MallocMutex()); #endif /* YYDEBUG */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK sqlite3ParserFinalize(pEngine); #else sqlite3ParserFree(pEngine, sqlite3_free); #endif if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM_BKPT; } if( pParse->zErrMsg || (pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE) ){ if( pParse->zErrMsg==0 ){ pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc)); } sqlite3_log(pParse->rc, "%s in \"%s\"", pParse->zErrMsg, pParse->zTail); nErr++; } pParse->zTail = zSql; #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_free(pParse->apVtabLock); #endif if( pParse->pNewTable && !IN_SPECIAL_PARSE ){ /* If the pParse->declareVtab flag is set, do not delete any table ** structure built up in pParse->pNewTable. The calling code (see vtab.c) ** will take responsibility for freeing the Table structure. */ sqlite3DeleteTable(db, pParse->pNewTable); } if( pParse->pNewTrigger && !IN_RENAME_OBJECT ){ sqlite3DeleteTrigger(db, pParse->pNewTrigger); } if( pParse->pVList ) sqlite3DbNNFreeNN(db, pParse->pVList); db->pParse = pParentParse; assert( nErr==0 || pParse->rc!=SQLITE_OK ); return nErr; } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Insert a single space character into pStr if the current string ** ends with an identifier */ static void addSpaceSeparator(sqlite3_str *pStr){ if( pStr->nChar && sqlite3IsIdChar(pStr->zText[pStr->nChar-1]) ){ sqlite3_str_append(pStr, " ", 1); } } /* ** Compute a normalization of the SQL given by zSql[0..nSql-1]. Return ** the normalization in space obtained from sqlite3DbMalloc(). Or return ** NULL if anything goes wrong or if zSql is NULL. */ SQLITE_PRIVATE char *sqlite3Normalize( Vdbe *pVdbe, /* VM being reprepared */ const char *zSql /* The original SQL string */ ){ sqlite3 *db; /* The database connection */ int i; /* Next unread byte of zSql[] */ int n; /* length of current token */ int tokenType; /* type of current token */ int prevType = 0; /* Previous non-whitespace token */ int nParen; /* Number of nested levels of parentheses */ int iStartIN; /* Start of RHS of IN operator in z[] */ int nParenAtIN; /* Value of nParent at start of RHS of IN operator */ u32 j; /* Bytes of normalized SQL generated so far */ sqlite3_str *pStr; /* The normalized SQL string under construction */ db = sqlite3VdbeDb(pVdbe); tokenType = -1; nParen = iStartIN = nParenAtIN = 0; pStr = sqlite3_str_new(db); assert( pStr!=0 ); /* sqlite3_str_new() never returns NULL */ for(i=0; zSql[i] && pStr->accError==0; i+=n){ if( tokenType!=TK_SPACE ){ prevType = tokenType; } n = sqlite3GetToken((unsigned char*)zSql+i, &tokenType); if( NEVER(n<=0) ) break; switch( tokenType ){ case TK_SPACE: { break; } case TK_NULL: { if( prevType==TK_IS || prevType==TK_NOT ){ sqlite3_str_append(pStr, " NULL", 5); break; } /* Fall through */ } case TK_STRING: case TK_INTEGER: case TK_FLOAT: case TK_VARIABLE: case TK_BLOB: { sqlite3_str_append(pStr, "?", 1); break; } case TK_LP: { nParen++; if( prevType==TK_IN ){ iStartIN = pStr->nChar; nParenAtIN = nParen; } sqlite3_str_append(pStr, "(", 1); break; } case TK_RP: { if( iStartIN>0 && nParen==nParenAtIN ){ assert( pStr->nChar>=(u32)iStartIN ); pStr->nChar = iStartIN+1; sqlite3_str_append(pStr, "?,?,?", 5); iStartIN = 0; } nParen--; sqlite3_str_append(pStr, ")", 1); break; } case TK_ID: { iStartIN = 0; j = pStr->nChar; if( sqlite3Isquote(zSql[i]) ){ char *zId = sqlite3DbStrNDup(db, zSql+i, n); int nId; int eType = 0; if( zId==0 ) break; sqlite3Dequote(zId); if( zSql[i]=='"' && sqlite3VdbeUsesDoubleQuotedString(pVdbe, zId) ){ sqlite3_str_append(pStr, "?", 1); sqlite3DbFree(db, zId); break; } nId = sqlite3Strlen30(zId); if( sqlite3GetToken((u8*)zId, &eType)==nId && eType==TK_ID ){ addSpaceSeparator(pStr); sqlite3_str_append(pStr, zId, nId); }else{ sqlite3_str_appendf(pStr, "\"%w\"", zId); } sqlite3DbFree(db, zId); }else{ addSpaceSeparator(pStr); sqlite3_str_append(pStr, zSql+i, n); } while( jnChar ){ pStr->zText[j] = sqlite3Tolower(pStr->zText[j]); j++; } break; } case TK_SELECT: { iStartIN = 0; /* fall through */ } default: { if( sqlite3IsIdChar(zSql[i]) ) addSpaceSeparator(pStr); j = pStr->nChar; sqlite3_str_append(pStr, zSql+i, n); while( jnChar ){ pStr->zText[j] = sqlite3Toupper(pStr->zText[j]); j++; } break; } } } if( tokenType!=TK_SEMI ) sqlite3_str_append(pStr, ";", 1); return sqlite3_str_finish(pStr); } #endif /* SQLITE_ENABLE_NORMALIZE */ /************** End of tokenize.c ********************************************/ /************** Begin file complete.c ****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** An tokenizer for SQL ** ** This file contains C code that implements the sqlite3_complete() API. ** This code used to be part of the tokenizer.c source file. But by ** separating it out, the code will be automatically omitted from ** static links that do not use it. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_OMIT_COMPLETE /* ** This is defined in tokenize.c. We just have to import the definition. */ #ifndef SQLITE_AMALGAMATION #ifdef SQLITE_ASCII #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) #endif #ifdef SQLITE_EBCDIC SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[]; #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) #endif #endif /* SQLITE_AMALGAMATION */ /* ** Token types used by the sqlite3_complete() routine. See the header ** comments on that procedure for additional information. */ #define tkSEMI 0 #define tkWS 1 #define tkOTHER 2 #ifndef SQLITE_OMIT_TRIGGER #define tkEXPLAIN 3 #define tkCREATE 4 #define tkTEMP 5 #define tkTRIGGER 6 #define tkEND 7 #endif /* ** Return TRUE if the given SQL string ends in a semicolon. ** ** Special handling is require for CREATE TRIGGER statements. ** Whenever the CREATE TRIGGER keywords are seen, the statement ** must end with ";END;". ** ** This implementation uses a state machine with 8 states: ** ** (0) INVALID We have not yet seen a non-whitespace character. ** ** (1) START At the beginning or end of an SQL statement. This routine ** returns 1 if it ends in the START state and 0 if it ends ** in any other state. ** ** (2) NORMAL We are in the middle of statement which ends with a single ** semicolon. ** ** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of ** a statement. ** ** (4) CREATE The keyword CREATE has been seen at the beginning of a ** statement, possibly preceded by EXPLAIN and/or followed by ** TEMP or TEMPORARY ** ** (5) TRIGGER We are in the middle of a trigger definition that must be ** ended by a semicolon, the keyword END, and another semicolon. ** ** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at ** the end of a trigger definition. ** ** (7) END We've seen the ";END" of the ";END;" that occurs at the end ** of a trigger definition. ** ** Transitions between states above are determined by tokens extracted ** from the input. The following tokens are significant: ** ** (0) tkSEMI A semicolon. ** (1) tkWS Whitespace. ** (2) tkOTHER Any other SQL token. ** (3) tkEXPLAIN The "explain" keyword. ** (4) tkCREATE The "create" keyword. ** (5) tkTEMP The "temp" or "temporary" keyword. ** (6) tkTRIGGER The "trigger" keyword. ** (7) tkEND The "end" keyword. ** ** Whitespace never causes a state transition and is always ignored. ** This means that a SQL string of all whitespace is invalid. ** ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed ** to recognize the end of a trigger can be omitted. All we have to do ** is look for a semicolon that is not part of an string or comment. */ SQLITE_API int sqlite3_complete(const char *zSql){ u8 state = 0; /* Current state, using numbers defined in header comment */ u8 token; /* Value of the next token */ #ifndef SQLITE_OMIT_TRIGGER /* A complex statement machine used to detect the end of a CREATE TRIGGER ** statement. This is the normal case. */ static const u8 trans[8][8] = { /* Token: */ /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */ /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, }, /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, }, /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, }, /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, }, /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, }, /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, }, /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, }, /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, }, }; #else /* If triggers are not supported by this compile then the statement machine ** used to detect the end of a statement is much simpler */ static const u8 trans[3][3] = { /* Token: */ /* State: ** SEMI WS OTHER */ /* 0 INVALID: */ { 1, 0, 2, }, /* 1 START: */ { 1, 1, 2, }, /* 2 NORMAL: */ { 1, 2, 2, }, }; #endif /* SQLITE_OMIT_TRIGGER */ #ifdef SQLITE_ENABLE_API_ARMOR if( zSql==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif while( *zSql ){ switch( *zSql ){ case ';': { /* A semicolon */ token = tkSEMI; break; } case ' ': case '\r': case '\t': case '\n': case '\f': { /* White space is ignored */ token = tkWS; break; } case '/': { /* C-style comments */ if( zSql[1]!='*' ){ token = tkOTHER; break; } zSql += 2; while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; } if( zSql[0]==0 ) return 0; zSql++; token = tkWS; break; } case '-': { /* SQL-style comments from "--" to end of line */ if( zSql[1]!='-' ){ token = tkOTHER; break; } while( *zSql && *zSql!='\n' ){ zSql++; } if( *zSql==0 ) return state==1; token = tkWS; break; } case '[': { /* Microsoft-style identifiers in [...] */ zSql++; while( *zSql && *zSql!=']' ){ zSql++; } if( *zSql==0 ) return 0; token = tkOTHER; break; } case '`': /* Grave-accent quoted symbols used by MySQL */ case '"': /* single- and double-quoted strings */ case '\'': { int c = *zSql; zSql++; while( *zSql && *zSql!=c ){ zSql++; } if( *zSql==0 ) return 0; token = tkOTHER; break; } default: { #ifdef SQLITE_EBCDIC unsigned char c; #endif if( IdChar((u8)*zSql) ){ /* Keywords and unquoted identifiers */ int nId; for(nId=1; IdChar(zSql[nId]); nId++){} #ifdef SQLITE_OMIT_TRIGGER token = tkOTHER; #else switch( *zSql ){ case 'c': case 'C': { if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){ token = tkCREATE; }else{ token = tkOTHER; } break; } case 't': case 'T': { if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){ token = tkTRIGGER; }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){ token = tkTEMP; }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){ token = tkTEMP; }else{ token = tkOTHER; } break; } case 'e': case 'E': { if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){ token = tkEND; }else #ifndef SQLITE_OMIT_EXPLAIN if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){ token = tkEXPLAIN; }else #endif { token = tkOTHER; } break; } default: { token = tkOTHER; break; } } #endif /* SQLITE_OMIT_TRIGGER */ zSql += nId-1; }else{ /* Operators and special symbols */ token = tkOTHER; } break; } } state = trans[state][token]; zSql++; } return state==1; } #ifndef SQLITE_OMIT_UTF16 /* ** This routine is the same as the sqlite3_complete() routine described ** above, except that the parameter is required to be UTF-16 encoded, not ** UTF-8. */ SQLITE_API int sqlite3_complete16(const void *zSql){ sqlite3_value *pVal; char const *zSql8; int rc; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zSql8 ){ rc = sqlite3_complete(zSql8); }else{ rc = SQLITE_NOMEM_BKPT; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_COMPLETE */ /************** End of complete.c ********************************************/ /************** Begin file main.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. */ /* #include "sqliteInt.h" */ #ifdef SQLITE_ENABLE_FTS3 /************** Include fts3.h in the middle of main.c ***********************/ /************** Begin file fts3.h ********************************************/ /* ** 2006 Oct 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file is used by programs that want to link against the ** FTS3 library. All it does is declare the sqlite3Fts3Init() interface. */ /* #include "sqlite3.h" */ #if 0 extern "C" { #endif /* __cplusplus */ SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db); #if 0 } /* extern "C" */ #endif /* __cplusplus */ /************** End of fts3.h ************************************************/ /************** Continuing where we left off in main.c ***********************/ #endif #ifdef SQLITE_ENABLE_RTREE /************** Include rtree.h in the middle of main.c **********************/ /************** Begin file rtree.h *******************************************/ /* ** 2008 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file is used by programs that want to link against the ** RTREE library. All it does is declare the sqlite3RtreeInit() interface. */ /* #include "sqlite3.h" */ #ifdef SQLITE_OMIT_VIRTUALTABLE # undef SQLITE_ENABLE_RTREE #endif #if 0 extern "C" { #endif /* __cplusplus */ SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db); #if 0 } /* extern "C" */ #endif /* __cplusplus */ /************** End of rtree.h ***********************************************/ /************** Continuing where we left off in main.c ***********************/ #endif #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) /************** Include sqliteicu.h in the middle of main.c ******************/ /************** Begin file sqliteicu.h ***************************************/ /* ** 2008 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This header file is used by programs that want to link against the ** ICU extension. All it does is declare the sqlite3IcuInit() interface. */ /* #include "sqlite3.h" */ #if 0 extern "C" { #endif /* __cplusplus */ SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db); #if 0 } /* extern "C" */ #endif /* __cplusplus */ /************** End of sqliteicu.h *******************************************/ /************** Continuing where we left off in main.c ***********************/ #endif /* ** This is an extension initializer that is a no-op and always ** succeeds, except that it fails if the fault-simulation is set ** to 500. */ static int sqlite3TestExtInit(sqlite3 *db){ (void)db; return sqlite3FaultSim(500); } /* ** Forward declarations of external module initializer functions ** for modules that need them. */ #ifdef SQLITE_ENABLE_FTS5 SQLITE_PRIVATE int sqlite3Fts5Init(sqlite3*); #endif #ifdef SQLITE_ENABLE_STMTVTAB SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3*); #endif #ifdef SQLITE_EXTRA_AUTOEXT int SQLITE_EXTRA_AUTOEXT(sqlite3*); #endif /* ** An array of pointers to extension initializer functions for ** built-in extensions. */ static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = { #ifdef SQLITE_ENABLE_FTS3 sqlite3Fts3Init, #endif #ifdef SQLITE_ENABLE_FTS5 sqlite3Fts5Init, #endif #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) sqlite3IcuInit, #endif #ifdef SQLITE_ENABLE_RTREE sqlite3RtreeInit, #endif #ifdef SQLITE_ENABLE_DBPAGE_VTAB sqlite3DbpageRegister, #endif #ifdef SQLITE_ENABLE_DBSTAT_VTAB sqlite3DbstatRegister, #endif sqlite3TestExtInit, #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) sqlite3JsonTableFunctions, #endif #ifdef SQLITE_ENABLE_STMTVTAB sqlite3StmtVtabInit, #endif #ifdef SQLITE_ENABLE_BYTECODE_VTAB sqlite3VdbeBytecodeVtabInit, #endif #ifdef SQLITE_EXTRA_AUTOEXT SQLITE_EXTRA_AUTOEXT, #endif }; #ifndef SQLITE_AMALGAMATION /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant ** contains the text of SQLITE_VERSION macro. */ SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; #endif /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns ** a pointer to the to the sqlite3_version[] string constant. */ SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; } /* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a ** pointer to a string constant whose value is the same as the ** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using ** an edited copy of the amalgamation, then the last four characters of ** the hash might be different from SQLITE_SOURCE_ID. */ /* SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } */ /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function ** returns an integer equal to SQLITE_VERSION_NUMBER. */ SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns ** zero if and only if SQLite was compiled with mutexing code omitted due to ** the SQLITE_THREADSAFE compile-time option being set to 0. */ SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } /* ** When compiling the test fixture or with debugging enabled (on Win32), ** this variable being set to non-zero will cause OSTRACE macros to emit ** extra diagnostic information. */ #ifdef SQLITE_HAVE_OS_TRACE # ifndef SQLITE_DEBUG_OS_TRACE # define SQLITE_DEBUG_OS_TRACE 0 # endif int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing ** I/O active are written using this function. These messages ** are intended for debugging activity only. */ SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; #endif /* ** If the following global variable points to a string which is the ** name of a directory, then that directory will be used to store ** temporary files. ** ** See also the "PRAGMA temp_store_directory" SQL command. */ SQLITE_API char *sqlite3_temp_directory = 0; /* ** If the following global variable points to a string which is the ** name of a directory, then that directory will be used to store ** all database files specified with a relative pathname. ** ** See also the "PRAGMA data_store_directory" SQL command. */ SQLITE_API char *sqlite3_data_directory = 0; /* ** Determine whether or not high-precision (long double) floating point ** math works correctly on CPU currently running. */ static SQLITE_NOINLINE int hasHighPrecisionDouble(int rc){ if( sizeof(LONGDOUBLE_TYPE)<=8 ){ /* If the size of "long double" is not more than 8, then ** high-precision math is not possible. */ return 0; }else{ /* Just because sizeof(long double)>8 does not mean that the underlying ** hardware actually supports high-precision floating point. For example, ** clearing the 0x100 bit in the floating-point control word on Intel ** processors will make long double work like double, even though long ** double takes up more space. The only way to determine if long double ** actually works is to run an experiment. */ LONGDOUBLE_TYPE a, b, c; rc++; a = 1.0+rc*0.1; b = 1.0e+18+rc*25.0; c = a+b; return b!=c; } } /* ** Initialize SQLite. ** ** This routine must be called to initialize the memory allocation, ** VFS, and mutex subsystems prior to doing any serious work with ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT ** this routine will be called automatically by key routines such as ** sqlite3_open(). ** ** This routine is a no-op except on its very first call for the process, ** or for the first call after a call to sqlite3_shutdown. ** ** The first thread to call this routine runs the initialization to ** completion. If subsequent threads call this routine before the first ** thread has finished the initialization process, then the subsequent ** threads must block until the first thread finishes with the initialization. ** ** The first thread might call this routine recursively. Recursive ** calls to this routine should not block, of course. Otherwise the ** initialization process would never complete. ** ** Let X be the first thread to enter this routine. Let Y be some other ** thread. Then while the initial invocation of this routine by X is ** incomplete, it is required that: ** ** * Calls to this routine from Y must block until the outer-most ** call by X completes. ** ** * Recursive calls to this routine from thread X return immediately ** without blocking. */ SQLITE_API int sqlite3_initialize(void){ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */ int rc; /* Result code */ #ifdef SQLITE_EXTRA_INIT int bRunExtraInit = 0; /* Extra initialization needed */ #endif #ifdef SQLITE_OMIT_WSD rc = sqlite3_wsd_init(4096, 24); if( rc!=SQLITE_OK ){ return rc; } #endif /* If the following assert() fails on some obscure processor/compiler ** combination, the work-around is to set the correct pointer ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ assert( SQLITE_PTRSIZE==sizeof(char*) ); /* If SQLite is already completely initialized, then this call ** to sqlite3_initialize() should be a no-op. But the initialization ** must be complete. So isInit must not be set until the very end ** of this routine. */ if( sqlite3GlobalConfig.isInit ){ sqlite3MemoryBarrier(); return SQLITE_OK; } /* Make sure the mutex subsystem is initialized. If unable to ** initialize the mutex subsystem, return early with the error. ** If the system is so sick that we are unable to allocate a mutex, ** there is not much SQLite is going to be able to do. ** ** The mutex subsystem must take care of serializing its own ** initialization. */ rc = sqlite3MutexInit(); if( rc ) return rc; /* Initialize the malloc() system and the recursive pInitMutex mutex. ** This operation is protected by the STATIC_MAIN mutex. Note that ** MutexAlloc() is called for a static mutex prior to initializing the ** malloc subsystem - this implies that the allocation of a static ** mutex must not require support from the malloc subsystem. */ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) sqlite3_mutex_enter(pMainMtx); sqlite3GlobalConfig.isMutexInit = 1; if( !sqlite3GlobalConfig.isMallocInit ){ rc = sqlite3MallocInit(); } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.isMallocInit = 1; if( !sqlite3GlobalConfig.pInitMutex ){ sqlite3GlobalConfig.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ rc = SQLITE_NOMEM_BKPT; } } } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.nRefInitMutex++; } sqlite3_mutex_leave(pMainMtx); /* If rc is not SQLITE_OK at this point, then either the malloc ** subsystem could not be initialized or the system failed to allocate ** the pInitMutex mutex. Return an error in either case. */ if( rc!=SQLITE_OK ){ return rc; } /* Do the rest of the initialization under the recursive mutex so ** that we will be able to handle recursive calls into ** sqlite3_initialize(). The recursive calls normally come through ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other ** recursive calls might also be possible. ** ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls ** to the xInit method, so the xInit method need not be threadsafe. ** ** The following mutex is what serializes access to the appdef pcache xInit ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the ** call to sqlite3PcacheInitialize(). */ sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ sqlite3GlobalConfig.inProgress = 1; #ifdef SQLITE_ENABLE_SQLLOG { extern void sqlite3_init_sqllog(void); sqlite3_init_sqllog(); } #endif memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions)); sqlite3RegisterBuiltinFunctions(); if( sqlite3GlobalConfig.isPCacheInit==0 ){ rc = sqlite3PcacheInitialize(); } if( rc==SQLITE_OK ){ sqlite3GlobalConfig.isPCacheInit = 1; rc = sqlite3OsInit(); } #ifndef SQLITE_OMIT_DESERIALIZE if( rc==SQLITE_OK ){ rc = sqlite3MemdbInit(); } #endif if( rc==SQLITE_OK ){ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); sqlite3MemoryBarrier(); sqlite3GlobalConfig.isInit = 1; #ifdef SQLITE_EXTRA_INIT bRunExtraInit = 1; #endif } sqlite3GlobalConfig.inProgress = 0; } sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); /* Go back under the static mutex and clean up the recursive ** mutex to prevent a resource leak. */ sqlite3_mutex_enter(pMainMtx); sqlite3GlobalConfig.nRefInitMutex--; if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ assert( sqlite3GlobalConfig.nRefInitMutex==0 ); sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); sqlite3GlobalConfig.pInitMutex = 0; } sqlite3_mutex_leave(pMainMtx); /* The following is just a sanity check to make sure SQLite has ** been compiled correctly. It is important to run this code, but ** we don't want to run it too often and soak up CPU cycles for no ** reason. So we run it once during initialization. */ #ifndef NDEBUG #ifndef SQLITE_OMIT_FLOATING_POINT /* This section of code's only "output" is via assert() statements. */ if( rc==SQLITE_OK ){ u64 x = (((u64)1)<<63)-1; double y; assert(sizeof(x)==8); assert(sizeof(x)==sizeof(y)); memcpy(&y, &x, 8); assert( sqlite3IsNaN(y) ); } #endif #endif /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT ** compile-time option. */ #ifdef SQLITE_EXTRA_INIT if( bRunExtraInit ){ int SQLITE_EXTRA_INIT(const char*); rc = SQLITE_EXTRA_INIT(0); } #endif /* Experimentally determine if high-precision floating point is ** available. */ #ifndef SQLITE_OMIT_WSD sqlite3Config.bUseLongDouble = hasHighPrecisionDouble(rc); #endif return rc; } /* ** Undo the effects of sqlite3_initialize(). Must not be called while ** there are outstanding database connections or memory allocations or ** while any part of SQLite is otherwise in use in any thread. This ** routine is not threadsafe. But it is safe to invoke this routine ** on when SQLite is already shut down. If SQLite is already shut down ** when this routine is invoked, then this routine is a harmless no-op. */ SQLITE_API int sqlite3_shutdown(void){ #ifdef SQLITE_OMIT_WSD int rc = sqlite3_wsd_init(4096, 24); if( rc!=SQLITE_OK ){ return rc; } #endif if( sqlite3GlobalConfig.isInit ){ #ifdef SQLITE_EXTRA_SHUTDOWN void SQLITE_EXTRA_SHUTDOWN(void); SQLITE_EXTRA_SHUTDOWN(); #endif sqlite3_os_end(); sqlite3_reset_auto_extension(); sqlite3GlobalConfig.isInit = 0; } if( sqlite3GlobalConfig.isPCacheInit ){ sqlite3PcacheShutdown(); sqlite3GlobalConfig.isPCacheInit = 0; } if( sqlite3GlobalConfig.isMallocInit ){ sqlite3MallocEnd(); sqlite3GlobalConfig.isMallocInit = 0; #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES /* The heap subsystem has now been shutdown and these values are supposed ** to be NULL or point to memory that was obtained from sqlite3_malloc(), ** which would rely on that heap subsystem; therefore, make sure these ** values cannot refer to heap memory that was just invalidated when the ** heap subsystem was shutdown. This is only done if the current call to ** this function resulted in the heap subsystem actually being shutdown. */ sqlite3_data_directory = 0; sqlite3_temp_directory = 0; #endif } if( sqlite3GlobalConfig.isMutexInit ){ sqlite3MutexEnd(); sqlite3GlobalConfig.isMutexInit = 0; } return SQLITE_OK; } /* ** This API allows applications to modify the global configuration of ** the SQLite library at run-time. ** ** This routine should only be called when there are no outstanding ** database connections or memory allocations. This routine is not ** threadsafe. Failure to heed these warnings can lead to unpredictable ** behavior. */ SQLITE_API int sqlite3_config(int op, ...){ va_list ap; int rc = SQLITE_OK; /* sqlite3_config() normally returns SQLITE_MISUSE if it is invoked while ** the SQLite library is in use. Except, a few selected opcodes ** are allowed. */ if( sqlite3GlobalConfig.isInit ){ static const u64 mAnytimeConfigOption = 0 | MASKBIT64( SQLITE_CONFIG_LOG ) | MASKBIT64( SQLITE_CONFIG_PCACHE_HDRSZ ) ; if( op<0 || op>63 || (MASKBIT64(op) & mAnytimeConfigOption)==0 ){ return SQLITE_MISUSE_BKPT; } testcase( op==SQLITE_CONFIG_LOG ); testcase( op==SQLITE_CONFIG_PCACHE_HDRSZ ); } va_start(ap, op); switch( op ){ /* Mutex configuration options are only available in a threadsafe ** compile. */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ case SQLITE_CONFIG_SINGLETHREAD: { /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to ** Single-thread. */ sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ case SQLITE_CONFIG_MULTITHREAD: { /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to ** Multi-thread. */ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ case SQLITE_CONFIG_SERIALIZED: { /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to ** Serialized. */ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ case SQLITE_CONFIG_MUTEX: { /* Specify an alternative mutex implementation */ sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ case SQLITE_CONFIG_GETMUTEX: { /* Retrieve the current mutex implementation */ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; break; } #endif case SQLITE_CONFIG_MALLOC: { /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a ** single argument which is a pointer to an instance of the ** sqlite3_mem_methods structure. The argument specifies alternative ** low-level memory allocation routines to be used in place of the memory ** allocation routines built into SQLite. */ sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); break; } case SQLITE_CONFIG_GETMALLOC: { /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a ** single argument which is a pointer to an instance of the ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is ** filled with the currently defined memory allocation routines. */ if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; break; } case SQLITE_CONFIG_MEMSTATUS: { assert( !sqlite3GlobalConfig.isInit ); /* Cannot change at runtime */ /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes ** single argument of type int, interpreted as a boolean, which enables ** or disables the collection of memory allocation statistics. */ sqlite3GlobalConfig.bMemstat = va_arg(ap, int); break; } case SQLITE_CONFIG_SMALL_MALLOC: { sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int); break; } case SQLITE_CONFIG_PAGECACHE: { /* EVIDENCE-OF: R-18761-36601 There are three arguments to ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem), ** the size of each page cache line (sz), and the number of cache lines ** (N). */ sqlite3GlobalConfig.pPage = va_arg(ap, void*); sqlite3GlobalConfig.szPage = va_arg(ap, int); sqlite3GlobalConfig.nPage = va_arg(ap, int); break; } case SQLITE_CONFIG_PCACHE_HDRSZ: { /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes ** a single parameter which is a pointer to an integer and writes into ** that integer the number of extra bytes per page required for each page ** in SQLITE_CONFIG_PAGECACHE. */ *va_arg(ap, int*) = sqlite3HeaderSizeBtree() + sqlite3HeaderSizePcache() + sqlite3HeaderSizePcache1(); break; } case SQLITE_CONFIG_PCACHE: { /* no-op */ break; } case SQLITE_CONFIG_GETPCACHE: { /* now an error */ rc = SQLITE_ERROR; break; } case SQLITE_CONFIG_PCACHE2: { /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a ** single argument which is a pointer to an sqlite3_pcache_methods2 ** object. This object specifies the interface to a custom page cache ** implementation. */ sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); break; } case SQLITE_CONFIG_GETPCACHE2: { /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a ** single argument which is a pointer to an sqlite3_pcache_methods2 ** object. SQLite copies of the current page cache implementation into ** that object. */ if( sqlite3GlobalConfig.pcache2.xInit==0 ){ sqlite3PCacheSetDefault(); } *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; break; } /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) case SQLITE_CONFIG_HEAP: { /* EVIDENCE-OF: R-19854-42126 There are three arguments to ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the ** number of bytes in the memory buffer, and the minimum allocation size. */ sqlite3GlobalConfig.pHeap = va_arg(ap, void*); sqlite3GlobalConfig.nHeap = va_arg(ap, int); sqlite3GlobalConfig.mnReq = va_arg(ap, int); if( sqlite3GlobalConfig.mnReq<1 ){ sqlite3GlobalConfig.mnReq = 1; }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ /* cap min request size at 2^12 */ sqlite3GlobalConfig.mnReq = (1<<12); } if( sqlite3GlobalConfig.pHeap==0 ){ /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) ** is NULL, then SQLite reverts to using its default memory allocator ** (the system malloc() implementation), undoing any prior invocation of ** SQLITE_CONFIG_MALLOC. ** ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to ** revert to its default implementation when sqlite3_initialize() is run */ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); }else{ /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the ** alternative memory allocator is engaged to handle all of SQLites ** memory allocation needs. */ #ifdef SQLITE_ENABLE_MEMSYS3 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); #endif #ifdef SQLITE_ENABLE_MEMSYS5 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); #endif } break; } #endif case SQLITE_CONFIG_LOOKASIDE: { sqlite3GlobalConfig.szLookaside = va_arg(ap, int); sqlite3GlobalConfig.nLookaside = va_arg(ap, int); break; } /* Record a pointer to the logger function and its first argument. ** The default is NULL. Logging is disabled if the function pointer is ** NULL. */ case SQLITE_CONFIG_LOG: { /* MSVC is picky about pulling func ptrs from va lists. ** http://support.microsoft.com/kb/47961 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); */ typedef void(*LOGFUNC_t)(void*,int,const char*); LOGFUNC_t xLog = va_arg(ap, LOGFUNC_t); void *pLogArg = va_arg(ap, void*); AtomicStore(&sqlite3GlobalConfig.xLog, xLog); AtomicStore(&sqlite3GlobalConfig.pLogArg, pLogArg); break; } /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames ** can be changed at start-time using the ** sqlite3_config(SQLITE_CONFIG_URI,1) or ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. */ case SQLITE_CONFIG_URI: { /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single ** argument of type int. If non-zero, then URI handling is globally ** enabled. If the parameter is zero, then URI handling is globally ** disabled. */ int bOpenUri = va_arg(ap, int); AtomicStore(&sqlite3GlobalConfig.bOpenUri, bOpenUri); break; } case SQLITE_CONFIG_COVERING_INDEX_SCAN: { /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN ** option takes a single integer argument which is interpreted as a ** boolean in order to enable or disable the use of covering indices for ** full table scans in the query optimizer. */ sqlite3GlobalConfig.bUseCis = va_arg(ap, int); break; } #ifdef SQLITE_ENABLE_SQLLOG case SQLITE_CONFIG_SQLLOG: { typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); break; } #endif case SQLITE_CONFIG_MMAP_SIZE: { /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit ** integer (sqlite3_int64) values that are the default mmap size limit ** (the default setting for PRAGMA mmap_size) and the maximum allowed ** mmap size limit. */ sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); /* EVIDENCE-OF: R-53367-43190 If either argument to this option is ** negative, then that argument is changed to its compile-time default. ** ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be ** silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE ** compile-time option. */ if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ mxMmap = SQLITE_MAX_MMAP_SIZE; } if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; if( szMmap>mxMmap) szMmap = mxMmap; sqlite3GlobalConfig.mxMmap = mxMmap; sqlite3GlobalConfig.szMmap = szMmap; break; } #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ case SQLITE_CONFIG_WIN32_HEAPSIZE: { /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit ** unsigned integer value that specifies the maximum size of the created ** heap. */ sqlite3GlobalConfig.nHeap = va_arg(ap, int); break; } #endif case SQLITE_CONFIG_PMASZ: { sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); break; } case SQLITE_CONFIG_STMTJRNL_SPILL: { sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); break; } #ifdef SQLITE_ENABLE_SORTER_REFERENCES case SQLITE_CONFIG_SORTERREF_SIZE: { int iVal = va_arg(ap, int); if( iVal<0 ){ iVal = SQLITE_DEFAULT_SORTERREF_SIZE; } sqlite3GlobalConfig.szSorterRef = (u32)iVal; break; } #endif /* SQLITE_ENABLE_SORTER_REFERENCES */ #ifndef SQLITE_OMIT_DESERIALIZE case SQLITE_CONFIG_MEMDB_MAXSIZE: { sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64); break; } #endif /* SQLITE_OMIT_DESERIALIZE */ case SQLITE_CONFIG_ROWID_IN_VIEW: { int *pVal = va_arg(ap,int*); #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( 0==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = TF_NoVisibleRowid; if( 1==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = 0; *pVal = (sqlite3GlobalConfig.mNoVisibleRowid==0); #else *pVal = 0; #endif break; } default: { rc = SQLITE_ERROR; break; } } va_end(ap); return rc; } /* ** Set up the lookaside buffers for a database connection. ** Return SQLITE_OK on success. ** If lookaside is already active, return SQLITE_BUSY. ** ** The sz parameter is the number of bytes in each lookaside slot. ** The cnt parameter is the number of slots. If pStart is NULL the ** space for the lookaside memory is obtained from sqlite3_malloc(). ** If pStart is not NULL then it is sz*cnt bytes of memory to use for ** the lookaside memory. */ static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ #ifndef SQLITE_OMIT_LOOKASIDE void *pStart; sqlite3_int64 szAlloc = sz*(sqlite3_int64)cnt; int nBig; /* Number of full-size slots */ int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */ if( sqlite3LookasideUsed(db,0)>0 ){ return SQLITE_BUSY; } /* Free any existing lookaside buffer for this handle before ** allocating a new one so we don't have to have space for ** both at the same time. */ if( db->lookaside.bMalloced ){ sqlite3_free(db->lookaside.pStart); } /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger ** than a pointer to be useful. */ sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; if( cnt<0 ) cnt = 0; if( sz==0 || cnt==0 ){ sz = 0; pStart = 0; }else if( pBuf==0 ){ sqlite3BeginBenignMalloc(); pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */ sqlite3EndBenignMalloc(); if( pStart ) szAlloc = sqlite3MallocSize(pStart); }else{ pStart = pBuf; } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( sz>=LOOKASIDE_SMALL*3 ){ nBig = szAlloc/(3*LOOKASIDE_SMALL+sz); nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; }else if( sz>=LOOKASIDE_SMALL*2 ){ nBig = szAlloc/(LOOKASIDE_SMALL+sz); nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; }else #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( sz>0 ){ nBig = szAlloc/sz; nSm = 0; }else{ nBig = nSm = 0; } db->lookaside.pStart = pStart; db->lookaside.pInit = 0; db->lookaside.pFree = 0; db->lookaside.sz = (u16)sz; db->lookaside.szTrue = (u16)sz; if( pStart ){ int i; LookasideSlot *p; assert( sz > (int)sizeof(LookasideSlot*) ); p = (LookasideSlot*)pStart; for(i=0; ipNext = db->lookaside.pInit; db->lookaside.pInit = p; p = (LookasideSlot*)&((u8*)p)[sz]; } #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE db->lookaside.pSmallInit = 0; db->lookaside.pSmallFree = 0; db->lookaside.pMiddle = p; for(i=0; ipNext = db->lookaside.pSmallInit; db->lookaside.pSmallInit = p; p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL]; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ assert( ((uptr)p)<=szAlloc + (uptr)pStart ); db->lookaside.pEnd = p; db->lookaside.bDisable = 0; db->lookaside.bMalloced = pBuf==0 ?1:0; db->lookaside.nSlot = nBig+nSm; }else{ db->lookaside.pStart = 0; #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE db->lookaside.pSmallInit = 0; db->lookaside.pSmallFree = 0; db->lookaside.pMiddle = 0; #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ db->lookaside.pEnd = 0; db->lookaside.bDisable = 1; db->lookaside.sz = 0; db->lookaside.bMalloced = 0; db->lookaside.nSlot = 0; } db->lookaside.pTrueEnd = db->lookaside.pEnd; assert( sqlite3LookasideUsed(db,0)==0 ); #endif /* SQLITE_OMIT_LOOKASIDE */ return SQLITE_OK; } /* ** Return the mutex associated with a database connection. */ SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->mutex; } /* ** Free up as much memory as we can from the given database ** connection. */ SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){ int i; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); sqlite3PagerShrink(pPager); } } sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Flush any dirty pages in the pager-cache for any attached database ** to disk. */ SQLITE_API int sqlite3_db_cacheflush(sqlite3 *db){ int i; int rc = SQLITE_OK; int bSeenBusy = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; rc==SQLITE_OK && inDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ Pager *pPager = sqlite3BtreePager(pBt); rc = sqlite3PagerFlush(pPager); if( rc==SQLITE_BUSY ){ bSeenBusy = 1; rc = SQLITE_OK; } } } sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc); } /* ** Configuration settings for an individual database connection */ SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){ va_list ap; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); va_start(ap, op); switch( op ){ case SQLITE_DBCONFIG_MAINDBNAME: { /* IMP: R-06824-28531 */ /* IMP: R-36257-52125 */ db->aDb[0].zDbSName = va_arg(ap,char*); rc = SQLITE_OK; break; } case SQLITE_DBCONFIG_LOOKASIDE: { void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ rc = setupLookaside(db, pBuf, sz, cnt); break; } default: { static const struct { int op; /* The opcode */ u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ } aFlagOp[] = { { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, { SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView }, { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive }, { SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema| SQLITE_NoSchemaError }, { SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter }, { SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL }, { SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML }, { SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt }, { SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema }, { SQLITE_DBCONFIG_STMT_SCANSTATUS, SQLITE_StmtScanStatus }, { SQLITE_DBCONFIG_REVERSE_SCANORDER, SQLITE_ReverseOrder }, }; unsigned int i; rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ for(i=0; iflags; if( onoff>0 ){ db->flags |= aFlagOp[i].mask; }else if( onoff==0 ){ db->flags &= ~(u64)aFlagOp[i].mask; } if( oldFlags!=db->flags ){ sqlite3ExpirePreparedStatements(db, 0); } if( pRes ){ *pRes = (db->flags & aFlagOp[i].mask)!=0; } rc = SQLITE_OK; break; } } break; } } va_end(ap); sqlite3_mutex_leave(db->mutex); return rc; } /* ** This is the default collating function named "BINARY" which is always ** available. */ static int binCollFunc( void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int rc, n; UNUSED_PARAMETER(NotUsed); n = nKey1xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 ); return p==0 || p->xCmp==binCollFunc; } /* ** Another built-in collating sequence: NOCASE. ** ** This collating sequence is intended to be used for "case independent ** comparison". SQLite's knowledge of upper and lower case equivalents ** extends only to the 26 characters used in the English language. ** ** At the moment there is only a UTF-8 implementation. */ static int nocaseCollatingFunc( void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int r = sqlite3StrNICmp( (const char *)pKey1, (const char *)pKey2, (nKey1lastRowid; } /* ** Set the value returned by the sqlite3_last_insert_rowid() API function. */ SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif sqlite3_mutex_enter(db->mutex); db->lastRowid = iRowid; sqlite3_mutex_leave(db->mutex); } /* ** Return the number of changes in the most recent call to sqlite3_exec(). */ SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->nChange; } SQLITE_API int sqlite3_changes(sqlite3 *db){ return (int)sqlite3_changes64(db); } /* ** Return the number of changes since the database handle was opened. */ SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->nTotalChange; } SQLITE_API int sqlite3_total_changes(sqlite3 *db){ return (int)sqlite3_total_changes64(db); } /* ** Close all open savepoints. This function only manipulates fields of the ** database handle object, it does not close any savepoints that may be open ** at the b-tree/pager level. */ SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){ while( db->pSavepoint ){ Savepoint *pTmp = db->pSavepoint; db->pSavepoint = pTmp->pNext; sqlite3DbFree(db, pTmp); } db->nSavepoint = 0; db->nStatement = 0; db->isTransactionSavepoint = 0; } /* ** Invoke the destructor function associated with FuncDef p, if any. Except, ** if this is not the last copy of the function, do not invoke it. Multiple ** copies of a single function are created when create_function() is called ** with SQLITE_ANY as the encoding. */ static void functionDestroy(sqlite3 *db, FuncDef *p){ FuncDestructor *pDestructor; assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); pDestructor = p->u.pDestructor; if( pDestructor ){ pDestructor->nRef--; if( pDestructor->nRef==0 ){ pDestructor->xDestroy(pDestructor->pUserData); sqlite3DbFree(db, pDestructor); } } } /* ** Disconnect all sqlite3_vtab objects that belong to database connection ** db. This is called when db is being closed. */ static void disconnectAllVtab(sqlite3 *db){ #ifndef SQLITE_OMIT_VIRTUALTABLE int i; HashElem *p; sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( pSchema ){ for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ Table *pTab = (Table *)sqliteHashData(p); if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); } } } for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){ Module *pMod = (Module *)sqliteHashData(p); if( pMod->pEpoTab ){ sqlite3VtabDisconnect(db, pMod->pEpoTab); } } sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); #else UNUSED_PARAMETER(db); #endif } /* ** Return TRUE if database connection db has unfinalized prepared ** statements or unfinished sqlite3_backup objects. */ static int connectionIsBusy(sqlite3 *db){ int j; assert( sqlite3_mutex_held(db->mutex) ); if( db->pVdbe ) return 1; for(j=0; jnDb; j++){ Btree *pBt = db->aDb[j].pBt; if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; } return 0; } /* ** Close an existing SQLite database */ static int sqlite3Close(sqlite3 *db, int forceZombie){ if( !db ){ /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ return SQLITE_OK; } if( !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); if( db->mTrace & SQLITE_TRACE_CLOSE ){ db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0); } /* Force xDisconnect calls on all virtual tables */ disconnectAllVtab(db); /* If a transaction is open, the disconnectAllVtab() call above ** will not have called the xDisconnect() method on any virtual ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() ** call will do so. We need to do this before the check for active ** SQL statements below, as the v-table implementation may be storing ** some prepared statements internally. */ sqlite3VtabRollback(db); /* Legacy behavior (sqlite3_close() behavior) is to return ** SQLITE_BUSY if the connection can not be closed immediately. */ if( !forceZombie && connectionIsBusy(db) ){ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " "statements or unfinished backups"); sqlite3_mutex_leave(db->mutex); return SQLITE_BUSY; } #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Closing the handle. Fourth parameter is passed the value 2. */ sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); } #endif while( db->pDbData ){ DbClientData *p = db->pDbData; db->pDbData = p->pNext; assert( p->pData!=0 ); if( p->xDestructor ) p->xDestructor(p->pData); sqlite3_free(p); } /* Convert the connection into a zombie and then close it. */ db->eOpenState = SQLITE_STATE_ZOMBIE; sqlite3LeaveMutexAndCloseZombie(db); return SQLITE_OK; } /* ** Return the transaction state for a single databse, or the maximum ** transaction state over all attached databases if zSchema is null. */ SQLITE_API int sqlite3_txn_state(sqlite3 *db, const char *zSchema){ int iDb, nDb; int iTxn = -1; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif sqlite3_mutex_enter(db->mutex); if( zSchema ){ nDb = iDb = sqlite3FindDbName(db, zSchema); if( iDb<0 ) nDb--; }else{ iDb = 0; nDb = db->nDb-1; } for(; iDb<=nDb; iDb++){ Btree *pBt = db->aDb[iDb].pBt; int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE; if( x>iTxn ) iTxn = x; } sqlite3_mutex_leave(db->mutex); return iTxn; } /* ** Two variations on the public interface for closing a database ** connection. The sqlite3_close() version returns SQLITE_BUSY and ** leaves the connection open if there are unfinalized prepared ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() ** version forces the connection to become a zombie if there are ** unclosed resources, and arranges for deallocation when the last ** prepare statement or sqlite3_backup closes. */ SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } /* ** Close the mutex on database connection db. ** ** Furthermore, if database connection db is a zombie (meaning that there ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and ** every sqlite3_stmt has now been finalized and every sqlite3_backup has ** finished, then free all resources. */ SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ HashElem *i; /* Hash table iterator */ int j; /* If there are outstanding sqlite3_stmt or sqlite3_backup objects ** or if the connection has not yet been closed by sqlite3_close_v2(), ** then just leave the mutex and return. */ if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){ sqlite3_mutex_leave(db->mutex); return; } /* If we reach this point, it means that the database connection has ** closed all sqlite3_stmt and sqlite3_backup objects and has been ** passed to sqlite3_close (meaning that it is a zombie). Therefore, ** go ahead and free all resources. */ /* If a transaction is open, roll it back. This also ensures that if ** any database schemas have been modified by an uncommitted transaction ** they are reset. And that the required b-tree mutex is held to make ** the pager rollback and schema reset an atomic operation. */ sqlite3RollbackAll(db, SQLITE_OK); /* Free any outstanding Savepoint structures. */ sqlite3CloseSavepoints(db); /* Close all database connections */ for(j=0; jnDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } /* Clear the TEMP schema separately and last */ if( db->aDb[1].pSchema ){ sqlite3SchemaClear(db->aDb[1].pSchema); } sqlite3VtabUnlockList(db); /* Free up the array of auxiliary databases */ sqlite3CollapseDatabaseArray(db); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); /* Tell the code in notify.c that the connection no longer holds any ** locks and does not require any further unlock-notify callbacks. */ sqlite3ConnectionClosed(db); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pNext, *p; p = sqliteHashData(i); do{ functionDestroy(db, p); pNext = p->pNext; sqlite3DbFree(db, p); p = pNext; }while( p ); } sqlite3HashClear(&db->aFunc); for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); /* Invoke any destructors registered for collation sequence user data. */ for(j=0; j<3; j++){ if( pColl[j].xDel ){ pColl[j].xDel(pColl[j].pUser); } } sqlite3DbFree(db, pColl); } sqlite3HashClear(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ Module *pMod = (Module *)sqliteHashData(i); sqlite3VtabEponymousTableClear(db, pMod); sqlite3VtabModuleUnref(db, pMod); } sqlite3HashClear(&db->aModule); #endif sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ sqlite3ValueFree(db->pErr); sqlite3CloseExtensions(db); #if SQLITE_USER_AUTHENTICATION sqlite3_free(db->auth.zAuthUser); sqlite3_free(db->auth.zAuthPW); #endif db->eOpenState = SQLITE_STATE_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database ** structure? */ sqlite3DbFree(db, db->aDb[1].pSchema); if( db->xAutovacDestr ){ db->xAutovacDestr(db->pAutovacPagesArg); } sqlite3_mutex_leave(db->mutex); db->eOpenState = SQLITE_STATE_CLOSED; sqlite3_mutex_free(db->mutex); assert( sqlite3LookasideUsed(db,0)==0 ); if( db->lookaside.bMalloced ){ sqlite3_free(db->lookaside.pStart); } sqlite3_free(db); } /* ** Rollback all database files. If tripCode is not SQLITE_OK, then ** any write cursors are invalidated ("tripped" - as in "tripping a circuit ** breaker") and made to return tripCode if there are any further ** attempts to use that cursor. Read cursors remain open and valid ** but are "saved" in case the table pages are moved around. */ SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){ int i; int inTrans = 0; int schemaChange; assert( sqlite3_mutex_held(db->mutex) ); sqlite3BeginBenignMalloc(); /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). ** This is important in case the transaction being rolled back has ** modified the database schema. If the b-tree mutexes are not taken ** here, then another shared-cache connection might sneak in between ** the database rollback and schema reset, which can cause false ** corruption reports in some cases. */ sqlite3BtreeEnterAll(db); schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0; for(i=0; inDb; i++){ Btree *p = db->aDb[i].pBt; if( p ){ if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){ inTrans = 1; } sqlite3BtreeRollback(p, tripCode, !schemaChange); } } sqlite3VtabRollback(db); sqlite3EndBenignMalloc(); if( schemaChange ){ sqlite3ExpirePreparedStatements(db, 0); sqlite3ResetAllSchemasOfConnection(db); } sqlite3BtreeLeaveAll(db); /* Any deferred constraint violations have now been resolved. */ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly); /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ db->xRollbackCallback(db->pRollbackArg); } } /* ** Return a static string containing the name corresponding to the error code ** specified in the argument. */ #if defined(SQLITE_NEED_ERR_NAME) SQLITE_PRIVATE const char *sqlite3ErrName(int rc){ const char *zName = 0; int i, origRc = rc; for(i=0; i<2 && zName==0; i++, rc &= 0xff){ switch( rc ){ case SQLITE_OK: zName = "SQLITE_OK"; break; case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break; case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; case SQLITE_PERM: zName = "SQLITE_PERM"; break; case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break; case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break; case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; case SQLITE_IOERR_CHECKRESERVEDLOCK: zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; case SQLITE_FULL: zName = "SQLITE_FULL"; break; case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break; case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; case SQLITE_CONSTRAINT_FOREIGNKEY: zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; case SQLITE_CONSTRAINT_PRIMARYKEY: zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; case SQLITE_CONSTRAINT_COMMITHOOK: zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; case SQLITE_CONSTRAINT_FUNCTION: zName = "SQLITE_CONSTRAINT_FUNCTION"; break; case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; case SQLITE_ROW: zName = "SQLITE_ROW"; break; case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; case SQLITE_NOTICE_RECOVER_ROLLBACK: zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; case SQLITE_NOTICE_RBU: zName = "SQLITE_NOTICE_RBU"; break; case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; case SQLITE_DONE: zName = "SQLITE_DONE"; break; } } if( zName==0 ){ static char zBuf[50]; sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); zName = zBuf; } return zName; } #endif /* ** Return a static string that describes the kind of error specified in the ** argument. */ SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){ static const char* const aMsg[] = { /* SQLITE_OK */ "not an error", /* SQLITE_ERROR */ "SQL logic error", /* SQLITE_INTERNAL */ 0, /* SQLITE_PERM */ "access permission denied", /* SQLITE_ABORT */ "query aborted", /* SQLITE_BUSY */ "database is locked", /* SQLITE_LOCKED */ "database table is locked", /* SQLITE_NOMEM */ "out of memory", /* SQLITE_READONLY */ "attempt to write a readonly database", /* SQLITE_INTERRUPT */ "interrupted", /* SQLITE_IOERR */ "disk I/O error", /* SQLITE_CORRUPT */ "database disk image is malformed", /* SQLITE_NOTFOUND */ "unknown operation", /* SQLITE_FULL */ "database or disk is full", /* SQLITE_CANTOPEN */ "unable to open database file", /* SQLITE_PROTOCOL */ "locking protocol", /* SQLITE_EMPTY */ 0, /* SQLITE_SCHEMA */ "database schema has changed", /* SQLITE_TOOBIG */ "string or blob too big", /* SQLITE_CONSTRAINT */ "constraint failed", /* SQLITE_MISMATCH */ "datatype mismatch", /* SQLITE_MISUSE */ "bad parameter or other API misuse", #ifdef SQLITE_DISABLE_LFS /* SQLITE_NOLFS */ "large file support is disabled", #else /* SQLITE_NOLFS */ 0, #endif /* SQLITE_AUTH */ "authorization denied", /* SQLITE_FORMAT */ 0, /* SQLITE_RANGE */ "column index out of range", /* SQLITE_NOTADB */ "file is not a database", /* SQLITE_NOTICE */ "notification message", /* SQLITE_WARNING */ "warning message", }; const char *zErr = "unknown error"; switch( rc ){ case SQLITE_ABORT_ROLLBACK: { zErr = "abort due to ROLLBACK"; break; } case SQLITE_ROW: { zErr = "another row available"; break; } case SQLITE_DONE: { zErr = "no more rows available"; break; } default: { rc &= 0xff; if( ALWAYS(rc>=0) && rcbusyTimeout; int delay, prior; assert( count>=0 ); if( count < NDELAY ){ delay = delays[count]; prior = totals[count]; }else{ delay = delays[NDELAY-1]; prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); } if( prior + delay > tmout ){ delay = tmout - prior; if( delay<=0 ) return 0; } sqlite3OsSleep(db->pVfs, delay*1000); return 1; #else /* This case for unix systems that lack usleep() support. Sleeping ** must be done in increments of whole seconds */ sqlite3 *db = (sqlite3 *)ptr; int tmout = ((sqlite3 *)ptr)->busyTimeout; if( (count+1)*1000 > tmout ){ return 0; } sqlite3OsSleep(db->pVfs, 1000000); return 1; #endif } /* ** Invoke the given busy handler. ** ** This routine is called when an operation failed to acquire a ** lock on VFS file pFile. ** ** If this routine returns non-zero, the lock is retried. If it ** returns 0, the operation aborts with an SQLITE_BUSY error. */ SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){ int rc; if( p->xBusyHandler==0 || p->nBusy<0 ) return 0; rc = p->xBusyHandler(p->pBusyArg, p->nBusy); if( rc==0 ){ p->nBusy = -1; }else{ p->nBusy++; } return rc; } /* ** This routine sets the busy callback for an Sqlite database to the ** given callback function with the given argument. */ SQLITE_API int sqlite3_busy_handler( sqlite3 *db, int (*xBusy)(void*,int), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->busyHandler.xBusyHandler = xBusy; db->busyHandler.pBusyArg = pArg; db->busyHandler.nBusy = 0; db->busyTimeout = 0; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* ** This routine sets the progress callback for an Sqlite database to the ** given callback function with the given argument. The progress callback will ** be invoked every nOps opcodes. */ SQLITE_API void sqlite3_progress_handler( sqlite3 *db, int nOps, int (*xProgress)(void*), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif sqlite3_mutex_enter(db->mutex); if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = (unsigned)nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } sqlite3_mutex_leave(db->mutex); } #endif /* ** This routine installs a default busy handler that waits for the ** specified number of milliseconds before returning 0. */ SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif if( ms>0 ){ sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback, (void*)db); db->busyTimeout = ms; }else{ sqlite3_busy_handler(db, 0, 0); } return SQLITE_OK; } /* ** Cause any pending operation to stop at its earliest opportunity. */ SQLITE_API void sqlite3_interrupt(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif AtomicStore(&db->u1.isInterrupted, 1); } /* ** Return true or false depending on whether or not an interrupt is ** pending on connection db. */ SQLITE_API int sqlite3_is_interrupted(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return AtomicLoad(&db->u1.isInterrupted)!=0; } /* ** This function is exactly the same as sqlite3_create_function(), except ** that it is designed to be called by internal code. The difference is ** that if a malloc() fails in sqlite3_create_function(), an error code ** is returned and the mallocFailed flag cleared. */ SQLITE_PRIVATE int sqlite3CreateFunc( sqlite3 *db, const char *zFunctionName, int nArg, int enc, void *pUserData, void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value **), FuncDestructor *pDestructor ){ FuncDef *p; int extraFlags; assert( sqlite3_mutex_held(db->mutex) ); assert( xValue==0 || xSFunc==0 ); if( zFunctionName==0 /* Must have a valid name */ || (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */ || ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */ || ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */ || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || (255funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){ if( db->nVdbeActive ){ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to delete/modify user-function due to active statements"); assert( !db->mallocFailed ); return SQLITE_BUSY; }else{ sqlite3ExpirePreparedStatements(db, 0); } }else if( xSFunc==0 && xFinal==0 ){ /* Trying to delete a function that does not exist. This is a no-op. ** https://sqlite.org/forum/forumpost/726219164b */ return SQLITE_OK; } p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1); assert(p || db->mallocFailed); if( !p ){ return SQLITE_NOMEM_BKPT; } /* If an older version of the function with a configured destructor is ** being replaced invoke the destructor function here. */ functionDestroy(db, p); if( pDestructor ){ pDestructor->nRef++; } p->u.pDestructor = pDestructor; p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; testcase( p->funcFlags & SQLITE_DETERMINISTIC ); testcase( p->funcFlags & SQLITE_DIRECTONLY ); p->xSFunc = xSFunc ? xSFunc : xStep; p->xFinalize = xFinal; p->xValue = xValue; p->xInverse = xInverse; p->pUserData = pUserData; p->nArg = (u16)nArg; return SQLITE_OK; } /* ** Worker function used by utf-8 APIs that create new functions: ** ** sqlite3_create_function() ** sqlite3_create_function_v2() ** sqlite3_create_window_function() */ static int createFunctionApi( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*) ){ int rc = SQLITE_ERROR; FuncDestructor *pArg = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( xDestroy ){ pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor)); if( !pArg ){ sqlite3OomFault(db); xDestroy(p); goto out; } pArg->nRef = 0; pArg->xDestroy = xDestroy; pArg->pUserData = p; } rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, xValue, xInverse, pArg ); if( pArg && pArg->nRef==0 ){ assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) ); xDestroy(p); sqlite3_free(pArg); } out: rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Create new user functions. */ SQLITE_API int sqlite3_create_function( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*) ){ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, 0, 0, 0); } SQLITE_API int sqlite3_create_function_v2( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xDestroy)(void *) ){ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, 0, 0, xDestroy); } SQLITE_API int sqlite3_create_window_function( sqlite3 *db, const char *zFunc, int nArg, int enc, void *p, void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInverse)(sqlite3_context*,int,sqlite3_value **), void (*xDestroy)(void *) ){ return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep, xFinal, xValue, xInverse, xDestroy); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API int sqlite3_create_function16( sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, void *p, void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ){ int rc; char *zFunc8; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0); sqlite3DbFree(db, zFunc8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* ** The following is the implementation of an SQL function that always ** fails with an error message stating that the function is used in the ** wrong context. The sqlite3_overload_function() API might construct ** SQL function that use this routine so that the functions will exist ** for name resolution but are actually overloaded by the xFindFunction ** method of virtual tables. */ static void sqlite3InvalidFunction( sqlite3_context *context, /* The function calling context */ int NotUsed, /* Number of arguments to the function */ sqlite3_value **NotUsed2 /* Value of each argument */ ){ const char *zName = (const char*)sqlite3_user_data(context); char *zErr; UNUSED_PARAMETER2(NotUsed, NotUsed2); zErr = sqlite3_mprintf( "unable to use function %s in the requested context", zName); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); } /* ** Declare that a function has been overloaded by a virtual table. ** ** If the function already exists as a regular global function, then ** this routine is a no-op. If the function does not exist, then create ** a new one that always throws a run-time error. ** ** When virtual tables intend to provide an overloaded function, they ** should call this routine to make sure the global function exists. ** A global function must exist in order for name resolution to work ** properly. */ SQLITE_API int sqlite3_overload_function( sqlite3 *db, const char *zName, int nArg ){ int rc; char *zCopy; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0; sqlite3_mutex_leave(db->mutex); if( rc ) return SQLITE_OK; zCopy = sqlite3_mprintf("%s", zName); if( zCopy==0 ) return SQLITE_NOMEM; return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8, zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free); } #ifndef SQLITE_OMIT_TRACE /* ** Register a trace function. The pArg from the previously registered trace ** is returned. ** ** A NULL trace function means that no tracing is executes. A non-NULL ** trace is a pointer to a function that is invoked at the start of each ** SQL statement. */ #ifndef SQLITE_OMIT_DEPRECATED SQLITE_API void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pTraceArg; db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0; db->trace.xLegacy = xTrace; db->pTraceArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } #endif /* SQLITE_OMIT_DEPRECATED */ /* Register a trace callback using the version-2 interface. */ SQLITE_API int sqlite3_trace_v2( sqlite3 *db, /* Trace this connection */ unsigned mTrace, /* Mask of events to be traced */ int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */ void *pArg /* Context */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( mTrace==0 ) xTrace = 0; if( xTrace==0 ) mTrace = 0; db->mTrace = mTrace; db->trace.xV2 = xTrace; db->pTraceArg = pArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_DEPRECATED /* ** Register a profile function. The pArg from the previously registered ** profile function is returned. ** ** A NULL profile function means that no profiling is executes. A non-NULL ** profile is a pointer to a function that is invoked at the conclusion of ** each SQL statement that is run. */ SQLITE_API void *sqlite3_profile( sqlite3 *db, void (*xProfile)(void*,const char*,sqlite_uint64), void *pArg ){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pProfileArg; db->xProfile = xProfile; db->pProfileArg = pArg; db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK; if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE; sqlite3_mutex_leave(db->mutex); return pOld; } #endif /* SQLITE_OMIT_DEPRECATED */ #endif /* SQLITE_OMIT_TRACE */ /* ** Register a function to be invoked when a transaction commits. ** If the invoked function returns non-zero, then the commit becomes a ** rollback. */ SQLITE_API void *sqlite3_commit_hook( sqlite3 *db, /* Attach the hook to this database */ int (*xCallback)(void*), /* Function to invoke on each commit */ void *pArg /* Argument to the function */ ){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pCommitArg; db->xCommitCallback = xCallback; db->pCommitArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } /* ** Register a callback to be invoked each time a row is updated, ** inserted or deleted using this database connection. */ SQLITE_API void *sqlite3_update_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), void *pArg /* Argument to the function */ ){ void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pUpdateArg; db->xUpdateCallback = xCallback; db->pUpdateArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } /* ** Register a callback to be invoked each time a transaction is rolled ** back by this database connection. */ SQLITE_API void *sqlite3_rollback_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*), /* Callback function */ void *pArg /* Argument to the function */ ){ void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pRollbackArg; db->xRollbackCallback = xCallback; db->pRollbackArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Register a callback to be invoked each time a row is updated, ** inserted or deleted using this database connection. */ SQLITE_API void *sqlite3_preupdate_hook( sqlite3 *db, /* Attach the hook to this database */ void(*xCallback)( /* Callback function */ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64), void *pArg /* First callback argument */ ){ void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( db==0 ){ return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pPreUpdateArg; db->xPreUpdateCallback = xCallback; db->pPreUpdateArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ /* ** Register a function to be invoked prior to each autovacuum that ** determines the number of pages to vacuum. */ SQLITE_API int sqlite3_autovacuum_pages( sqlite3 *db, /* Attach the hook to this database */ unsigned int (*xCallback)(void*,const char*,u32,u32,u32), void *pArg, /* Argument to the function */ void (*xDestructor)(void*) /* Destructor for pArg */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ if( xDestructor ) xDestructor(pArg); return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( db->xAutovacDestr ){ db->xAutovacDestr(db->pAutovacPagesArg); } db->xAutovacPages = xCallback; db->pAutovacPagesArg = pArg; db->xAutovacDestr = xDestructor; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_WAL /* ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file ** is greater than sqlite3.pWalArg cast to an integer (the value configured by ** wal_autocheckpoint()). */ SQLITE_PRIVATE int sqlite3WalDefaultHook( void *pClientData, /* Argument */ sqlite3 *db, /* Connection */ const char *zDb, /* Database */ int nFrame /* Size of WAL */ ){ if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ sqlite3BeginBenignMalloc(); sqlite3_wal_checkpoint(db, zDb); sqlite3EndBenignMalloc(); } return SQLITE_OK; } #endif /* SQLITE_OMIT_WAL */ /* ** Configure an sqlite3_wal_hook() callback to automatically checkpoint ** a database after committing a transaction if there are nFrame or ** more frames in the log file. Passing zero or a negative value as the ** nFrame parameter disables automatic checkpoints entirely. ** ** The callback registered by this function replaces any existing callback ** registered using sqlite3_wal_hook(). Likewise, registering a callback ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism ** configured by this function. */ SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ #ifdef SQLITE_OMIT_WAL UNUSED_PARAMETER(db); UNUSED_PARAMETER(nFrame); #else #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif if( nFrame>0 ){ sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); }else{ sqlite3_wal_hook(db, 0, 0); } #endif return SQLITE_OK; } /* ** Register a callback to be invoked each time a transaction is written ** into the write-ahead-log by this database connection. */ SQLITE_API void *sqlite3_wal_hook( sqlite3 *db, /* Attach the hook to this db handle */ int(*xCallback)(void *, sqlite3*, const char*, int), void *pArg /* First argument passed to xCallback() */ ){ #ifndef SQLITE_OMIT_WAL void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pWalArg; db->xWalCallback = xCallback; db->pWalArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; #else return 0; #endif } /* ** Checkpoint database zDb. */ SQLITE_API int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of attached database (or NULL) */ int eMode, /* SQLITE_CHECKPOINT_* value */ int *pnLog, /* OUT: Size of WAL log in frames */ int *pnCkpt /* OUT: Total number of frames checkpointed */ ){ #ifdef SQLITE_OMIT_WAL return SQLITE_OK; #else int rc; /* Return code */ int iDb; /* Schema to checkpoint */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif /* Initialize the output variables to -1 in case an error occurs. */ if( pnLog ) *pnLog = -1; if( pnCkpt ) *pnCkpt = -1; assert( SQLITE_CHECKPOINT_PASSIVE==0 ); assert( SQLITE_CHECKPOINT_FULL==1 ); assert( SQLITE_CHECKPOINT_RESTART==2 ); assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); if( eModeSQLITE_CHECKPOINT_TRUNCATE ){ /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint ** mode: */ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); if( zDb && zDb[0] ){ iDb = sqlite3FindDbName(db, zDb); }else{ iDb = SQLITE_MAX_DB; /* This means process all schemas */ } if( iDb<0 ){ rc = SQLITE_ERROR; sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); }else{ db->busyHandler.nBusy = 0; rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); sqlite3Error(db, rc); } rc = sqlite3ApiExit(db, rc); /* If there are no active statements, clear the interrupt flag at this ** point. */ if( db->nVdbeActive==0 ){ AtomicStore(&db->u1.isInterrupted, 0); } sqlite3_mutex_leave(db->mutex); return rc; #endif } /* ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points ** to contains a zero-length string, all attached databases are ** checkpointed. */ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); } #ifndef SQLITE_OMIT_WAL /* ** Run a checkpoint on database iDb. This is a no-op if database iDb is ** not currently open in WAL mode. ** ** If a transaction is open on the database being checkpointed, this ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If ** an error occurs while running the checkpoint, an SQLite error code is ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. ** ** The mutex on database handle db should be held by the caller. The mutex ** associated with the specific b-tree being checkpointed is taken by ** this function while the checkpoint is running. ** ** If iDb is passed SQLITE_MAX_DB then all attached databases are ** checkpointed. If an error is encountered it is returned immediately - ** no attempt is made to checkpoint any remaining databases. ** ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART ** or TRUNCATE. */ SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; /* Return code */ int i; /* Used to iterate through attached dbs */ int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ assert( sqlite3_mutex_held(db->mutex) ); assert( !pnLog || *pnLog==-1 ); assert( !pnCkpt || *pnCkpt==-1 ); testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */ testcase( iDb==SQLITE_MAX_DB ); for(i=0; inDb && rc==SQLITE_OK; i++){ if( i==iDb || iDb==SQLITE_MAX_DB ){ rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); pnLog = 0; pnCkpt = 0; if( rc==SQLITE_BUSY ){ bBusy = 1; rc = SQLITE_OK; } } } return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; } #endif /* SQLITE_OMIT_WAL */ /* ** This function returns true if main-memory should be used instead of ** a temporary file for transient pager files and statement journals. ** The value returned depends on the value of db->temp_store (runtime ** parameter) and the compile time value of SQLITE_TEMP_STORE. The ** following table describes the relationship between these two values ** and this functions return value. ** ** SQLITE_TEMP_STORE db->temp_store Location of temporary database ** ----------------- -------------- ------------------------------ ** 0 any file (return 0) ** 1 1 file (return 0) ** 1 2 memory (return 1) ** 1 0 file (return 0) ** 2 1 file (return 0) ** 2 2 memory (return 1) ** 2 0 memory (return 1) ** 3 any memory (return 1) */ SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){ #if SQLITE_TEMP_STORE==1 return ( db->temp_store==2 ); #endif #if SQLITE_TEMP_STORE==2 return ( db->temp_store!=1 ); #endif #if SQLITE_TEMP_STORE==3 UNUSED_PARAMETER(db); return 1; #endif #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 UNUSED_PARAMETER(db); return 0; #endif } /* ** Return UTF-8 encoded English language explanation of the most recent ** error. */ SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){ const char *z; if( !db ){ return sqlite3ErrStr(SQLITE_NOMEM_BKPT); } if( !sqlite3SafetyCheckSickOrOk(db) ){ return sqlite3ErrStr(SQLITE_MISUSE_BKPT); } sqlite3_mutex_enter(db->mutex); if( db->mallocFailed ){ z = sqlite3ErrStr(SQLITE_NOMEM_BKPT); }else{ testcase( db->pErr==0 ); z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0; assert( !db->mallocFailed ); if( z==0 ){ z = sqlite3ErrStr(db->errCode); } } sqlite3_mutex_leave(db->mutex); return z; } /* ** Return the byte offset of the most recent error */ SQLITE_API int sqlite3_error_offset(sqlite3 *db){ int iOffset = -1; if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){ sqlite3_mutex_enter(db->mutex); iOffset = db->errByteOffset; sqlite3_mutex_leave(db->mutex); } return iOffset; } #ifndef SQLITE_OMIT_UTF16 /* ** Return UTF-16 encoded English language explanation of the most recent ** error. */ SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){ static const u16 outOfMem[] = { 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 }; static const u16 misuse[] = { 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ', 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ', 'm', 'i', 's', 'u', 's', 'e', 0 }; const void *z; if( !db ){ return (void *)outOfMem; } if( !sqlite3SafetyCheckSickOrOk(db) ){ return (void *)misuse; } sqlite3_mutex_enter(db->mutex); if( db->mallocFailed ){ z = (void *)outOfMem; }else{ z = sqlite3_value_text16(db->pErr); if( z==0 ){ sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); z = sqlite3_value_text16(db->pErr); } /* A malloc() may have failed within the call to sqlite3_value_text16() ** above. If this is the case, then the db->mallocFailed flag needs to ** be cleared before returning. Do this directly, instead of via ** sqlite3ApiExit(), to avoid setting the database handle error message. */ sqlite3OomClear(db); } sqlite3_mutex_leave(db->mutex); return z; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the most recent error code generated by an SQLite routine. If NULL is ** passed to this function, we assume a malloc() failed during sqlite3_open(). */ SQLITE_API int sqlite3_errcode(sqlite3 *db){ if( db && !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } if( !db || db->mallocFailed ){ return SQLITE_NOMEM_BKPT; } return db->errCode & db->errMask; } SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){ if( db && !sqlite3SafetyCheckSickOrOk(db) ){ return SQLITE_MISUSE_BKPT; } if( !db || db->mallocFailed ){ return SQLITE_NOMEM_BKPT; } return db->errCode; } SQLITE_API int sqlite3_system_errno(sqlite3 *db){ return db ? db->iSysErrno : 0; } /* ** Return a string that describes the kind of error specified in the ** argument. For now, this simply calls the internal sqlite3ErrStr() ** function. */ SQLITE_API const char *sqlite3_errstr(int rc){ return sqlite3ErrStr(rc); } /* ** Create a new collating function for database "db". The name is zName ** and the encoding is enc. */ static int createCollation( sqlite3* db, const char *zName, u8 enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ CollSeq *pColl; int enc2; assert( sqlite3_mutex_held(db->mutex) ); /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. */ enc2 = enc; testcase( enc2==SQLITE_UTF16 ); testcase( enc2==SQLITE_UTF16_ALIGNED ); if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ enc2 = SQLITE_UTF16NATIVE; } if( enc2SQLITE_UTF16BE ){ return SQLITE_MISUSE_BKPT; } /* Check if this call is removing or replacing an existing collation ** sequence. If so, and there are active VMs, return busy. If there ** are no active VMs, invalidate any pre-compiled statements. */ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); if( pColl && pColl->xCmp ){ if( db->nVdbeActive ){ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to delete/modify collation sequence due to active statements"); return SQLITE_BUSY; } sqlite3ExpirePreparedStatements(db, 0); /* If collation sequence pColl was created directly by a call to ** sqlite3_create_collation, and not generated by synthCollSeq(), ** then any copies made by synthCollSeq() need to be invalidated. ** Also, collation destructor - CollSeq.xDel() - function may need ** to be called. */ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); int j; for(j=0; j<3; j++){ CollSeq *p = &aColl[j]; if( p->enc==pColl->enc ){ if( p->xDel ){ p->xDel(p->pUser); } p->xCmp = 0; } } } } pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); if( pColl==0 ) return SQLITE_NOMEM_BKPT; pColl->xCmp = xCompare; pColl->pUser = pCtx; pColl->xDel = xDel; pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); sqlite3Error(db, SQLITE_OK); return SQLITE_OK; } /* ** This array defines hard upper bounds on limit values. The ** initializer must be kept in sync with the SQLITE_LIMIT_* ** #defines in sqlite3.h. */ static const int aHardLimit[] = { SQLITE_MAX_LENGTH, SQLITE_MAX_SQL_LENGTH, SQLITE_MAX_COLUMN, SQLITE_MAX_EXPR_DEPTH, SQLITE_MAX_COMPOUND_SELECT, SQLITE_MAX_VDBE_OP, SQLITE_MAX_FUNCTION_ARG, SQLITE_MAX_ATTACHED, SQLITE_MAX_LIKE_PATTERN_LENGTH, SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ SQLITE_MAX_TRIGGER_DEPTH, SQLITE_MAX_WORKER_THREADS, }; /* ** Make sure the hard limits are set to reasonable values */ #if SQLITE_MAX_LENGTH<100 # error SQLITE_MAX_LENGTH must be at least 100 #endif #if SQLITE_MAX_SQL_LENGTH<100 # error SQLITE_MAX_SQL_LENGTH must be at least 100 #endif #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH #endif #if SQLITE_MAX_COMPOUND_SELECT<2 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 #endif #if SQLITE_MAX_VDBE_OP<40 # error SQLITE_MAX_VDBE_OP must be at least 40 #endif #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127 #endif #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 # error SQLITE_MAX_ATTACHED must be between 0 and 125 #endif #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 #endif #if SQLITE_MAX_COLUMN>32767 # error SQLITE_MAX_COLUMN must not exceed 32767 #endif #if SQLITE_MAX_TRIGGER_DEPTH<1 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 #endif #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 #endif /* ** Change the value of a limit. Report the old value. ** If an invalid limit index is supplied, report -1. ** Make no changes but still report the old value if the ** new limit is negative. ** ** A new lower limit does not shrink existing constructs. ** It merely prevents new constructs that exceed the limit ** from forming. */ SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ int oldLimit; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME ** there is a hard upper bound set at compile-time by a C preprocessor ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to ** "_MAX_".) */ assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== SQLITE_MAX_LIKE_PATTERN_LENGTH ); assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ return -1; } oldLimit = db->aLimit[limitId]; if( newLimit>=0 ){ /* IMP: R-52476-28732 */ if( newLimit>aHardLimit[limitId] ){ newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ }else if( newLimit<1 && limitId==SQLITE_LIMIT_LENGTH ){ newLimit = 1; } db->aLimit[limitId] = newLimit; } return oldLimit; /* IMP: R-53341-35419 */ } /* ** This function is used to parse both URIs and non-URI filenames passed by the ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database ** URIs specified as part of ATTACH statements. ** ** The first argument to this function is the name of the VFS to use (or ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" ** query parameter. The second argument contains the URI (or non-URI filename) ** itself. When this function is called the *pFlags variable should contain ** the default flags to open the database handle with. The value stored in ** *pFlags may be updated before returning if the URI filename contains ** "cache=xxx" or "mode=xxx" query parameters. ** ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to ** the VFS that should be used to open the database file. *pzFile is set to ** point to a buffer containing the name of the file to open. The value ** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter() ** and is in the same format as names created using sqlite3_create_filename(). ** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on ** the value returned in *pzFile to avoid a memory leak. ** ** If an error occurs, then an SQLite error code is returned and *pzErrMsg ** may be set to point to a buffer containing an English language error ** message. It is the responsibility of the caller to eventually release ** this buffer by calling sqlite3_free(). */ SQLITE_PRIVATE int sqlite3ParseUri( const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ const char *zUri, /* Nul-terminated URI to parse */ unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ sqlite3_vfs **ppVfs, /* OUT: VFS to use */ char **pzFile, /* OUT: Filename component of URI */ char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ ){ int rc = SQLITE_OK; unsigned int flags = *pFlags; const char *zVfs = zDefaultVfs; char *zFile; char c; int nUri = sqlite3Strlen30(zUri); assert( *pzErrMsg==0 ); if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ || AtomicLoad(&sqlite3GlobalConfig.bOpenUri)) /* IMP: R-51689-46548 */ && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ ){ char *zOpt; int eState; /* Parser state when parsing URI */ int iIn; /* Input character index */ int iOut = 0; /* Output character index */ u64 nByte = nUri+8; /* Bytes of space to allocate */ /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen ** method that there may be extra parameters following the file-name. */ flags |= SQLITE_OPEN_URI; for(iIn=0; iIn=0 && octet<256 ); if( octet==0 ){ #ifndef SQLITE_ENABLE_URI_00_ERROR /* This branch is taken when "%00" appears within the URI. In this ** case we ignore all text in the remainder of the path, name or ** value currently being parsed. So ignore the current character ** and skip to the next "?", "=" or "&", as appropriate. */ while( (c = zUri[iIn])!=0 && c!='#' && (eState!=0 || c!='?') && (eState!=1 || (c!='=' && c!='&')) && (eState!=2 || c!='&') ){ iIn++; } continue; #else /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */ *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri"); rc = SQLITE_ERROR; goto parse_uri_out; #endif } c = octet; }else if( eState==1 && (c=='&' || c=='=') ){ if( zFile[iOut-1]==0 ){ /* An empty option name. Ignore this option altogether. */ while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; continue; } if( c=='&' ){ zFile[iOut++] = '\0'; }else{ eState = 2; } c = 0; }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ c = 0; eState = 1; } zFile[iOut++] = c; } if( eState==1 ) zFile[iOut++] = '\0'; memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */ /* Check if there were any options specified that should be interpreted ** here. Options that are interpreted here include "vfs" and those that ** correspond to flags that may be passed to the sqlite3_open_v2() ** method. */ zOpt = &zFile[sqlite3Strlen30(zFile)+1]; while( zOpt[0] ){ int nOpt = sqlite3Strlen30(zOpt); char *zVal = &zOpt[nOpt+1]; int nVal = sqlite3Strlen30(zVal); if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ zVfs = zVal; }else{ struct OpenMode { const char *z; int mode; } *aMode = 0; char *zModeType = 0; int mask = 0; int limit = 0; if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ static struct OpenMode aCacheMode[] = { { "shared", SQLITE_OPEN_SHAREDCACHE }, { "private", SQLITE_OPEN_PRIVATECACHE }, { 0, 0 } }; mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; aMode = aCacheMode; limit = mask; zModeType = "cache"; } if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ static struct OpenMode aOpenMode[] = { { "ro", SQLITE_OPEN_READONLY }, { "rw", SQLITE_OPEN_READWRITE }, { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, { "memory", SQLITE_OPEN_MEMORY }, { 0, 0 } }; mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; aMode = aOpenMode; limit = mask & flags; zModeType = "access"; } if( aMode ){ int i; int mode = 0; for(i=0; aMode[i].z; i++){ const char *z = aMode[i].z; if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ mode = aMode[i].mode; break; } } if( mode==0 ){ *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); rc = SQLITE_ERROR; goto parse_uri_out; } if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", zModeType, zVal); rc = SQLITE_PERM; goto parse_uri_out; } flags = (flags & ~mask) | mode; } } zOpt = &zVal[nVal+1]; } }else{ zFile = sqlite3_malloc64(nUri+8); if( !zFile ) return SQLITE_NOMEM_BKPT; memset(zFile, 0, 4); zFile += 4; if( nUri ){ memcpy(zFile, zUri, nUri); } memset(zFile+nUri, 0, 4); flags &= ~SQLITE_OPEN_URI; } *ppVfs = sqlite3_vfs_find(zVfs); if( *ppVfs==0 ){ *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); rc = SQLITE_ERROR; } parse_uri_out: if( rc!=SQLITE_OK ){ sqlite3_free_filename(zFile); zFile = 0; } *pFlags = flags; *pzFile = zFile; return rc; } /* ** This routine does the core work of extracting URI parameters from a ** database filename for the sqlite3_uri_parameter() interface. */ static const char *uriParameter(const char *zFilename, const char *zParam){ zFilename += sqlite3Strlen30(zFilename) + 1; while( ALWAYS(zFilename!=0) && zFilename[0] ){ int x = strcmp(zFilename, zParam); zFilename += sqlite3Strlen30(zFilename) + 1; if( x==0 ) return zFilename; zFilename += sqlite3Strlen30(zFilename) + 1; } return 0; } /* BEGIN SQLCIPHER */ #if defined(SQLITE_HAS_CODEC) /* ** Process URI filename query parameters relevant to the SQLite Encryption ** Extension. Return true if any of the relevant query parameters are ** seen and return false if not. */ SQLITE_PRIVATE int sqlite3CodecQueryParameters( sqlite3 *db, /* Database connection */ const char *zDb, /* Which schema is being created/attached */ const char *zUri /* URI filename */ ){ const char *zKey; if( zUri==0 ){ return 0; }else if( (zKey = uriParameter(zUri, "hexkey"))!=0 && zKey[0] ){ u8 iByte; int i; char zDecoded[40]; for(i=0, iByte=0; imutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( db->mutex==0 ){ sqlite3_free(db); db = 0; goto opendb_out; } if( isThreadsafe==0 ){ sqlite3MutexWarnOnContention(db->mutex); } } sqlite3_mutex_enter(db->mutex); db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff; db->nDb = 2; db->eOpenState = SQLITE_STATE_BUSY; db->aDb = db->aDbStatic; db->lookaside.bDisable = 1; db->lookaside.sz = 0; assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; db->autoCommit = 1; db->nextAutovac = -1; db->szMmap = sqlite3GlobalConfig.szMmap; db->nextPagesize = 0; db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ #ifdef SQLITE_ENABLE_SORTER_MMAP /* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map ** the temporary files used to do external sorts (see code in vdbesort.c) ** is disabled. It can still be used either by defining ** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the ** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */ db->nMaxSorterMmap = 0x7FFFFFFF; #endif db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_EnableView | SQLITE_CacheSpill #if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0 | SQLITE_TrustedSchema #endif /* The SQLITE_DQS compile-time option determines the default settings ** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML. ** ** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML ** ---------- ----------------------- ----------------------- ** undefined on on ** 3 on on ** 2 on off ** 1 off on ** 0 off off ** ** Legacy behavior is 3 (double-quoted string literals are allowed anywhere) ** and so that is the default. But developers are encouraged to use ** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible. */ #if !defined(SQLITE_DQS) # define SQLITE_DQS 3 #endif #if (SQLITE_DQS&1)==1 | SQLITE_DqsDML #endif #if (SQLITE_DQS&2)==2 | SQLITE_DqsDDL #endif #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX | SQLITE_AutoIndex #endif #if SQLITE_DEFAULT_CKPTFULLFSYNC | SQLITE_CkptFullFSync #endif #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS | SQLITE_RecTriggers #endif #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS | SQLITE_ForeignKeys #endif #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) | SQLITE_ReverseOrder #endif #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) | SQLITE_CellSizeCk #endif #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) | SQLITE_Fts3Tokenizer #endif #if defined(SQLITE_ENABLE_QPSG) | SQLITE_EnableQPSG #endif #if defined(SQLITE_DEFAULT_DEFENSIVE) | SQLITE_Defensive #endif #if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE) | SQLITE_LegacyAlter #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) | SQLITE_StmtScanStatus #endif ; sqlite3HashInit(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. ** ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating ** functions: */ createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0); createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0); createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0); createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0); if( db->mallocFailed ){ goto opendb_out; } #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) /* Process magic filenames ":localStorage:" and ":sessionStorage:" */ if( zFilename && zFilename[0]==':' ){ if( strcmp(zFilename, ":localStorage:")==0 ){ zFilename = "file:local?vfs=kvvfs"; flags |= SQLITE_OPEN_URI; }else if( strcmp(zFilename, ":sessionStorage:")==0 ){ zFilename = "file:session?vfs=kvvfs"; flags |= SQLITE_OPEN_URI; } } #endif /* SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) */ /* Parse the filename/URI argument ** ** Only allow sensible combinations of bits in the flags argument. ** Throw an error if any non-sense combination is used. If we ** do not block illegal combinations here, it could trigger ** assert() statements in deeper layers. Sensible combinations ** are: ** ** 1: SQLITE_OPEN_READONLY ** 2: SQLITE_OPEN_READWRITE ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE */ db->openFlags = flags; assert( SQLITE_OPEN_READONLY == 0x01 ); assert( SQLITE_OPEN_READWRITE == 0x02 ); assert( SQLITE_OPEN_CREATE == 0x04 ); testcase( (1<<(flags&7))==0x02 ); /* READONLY */ testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ if( ((1<<(flags&7)) & 0x46)==0 ){ rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */ }else{ rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); } if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); sqlite3_free(zErrMsg); goto opendb_out; } assert( db->pVfs!=0 ); #if SQLITE_OS_KV || defined(SQLITE_OS_KV_OPTIONAL) if( sqlite3_stricmp(db->pVfs->zName, "kvvfs")==0 ){ db->temp_store = 2; } #endif /* Open the backend database driver */ rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, flags | SQLITE_OPEN_MAIN_DB); if( rc!=SQLITE_OK ){ if( rc==SQLITE_IOERR_NOMEM ){ rc = SQLITE_NOMEM_BKPT; } sqlite3Error(db, rc); goto opendb_out; } sqlite3BtreeEnter(db->aDb[0].pBt); db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); if( !db->mallocFailed ){ sqlite3SetTextEncoding(db, SCHEMA_ENC(db)); } sqlite3BtreeLeave(db->aDb[0].pBt); db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); /* The default safety_level for the main database is FULL; for the temp ** database it is OFF. This matches the pager layer defaults. */ db->aDb[0].zDbSName = "main"; db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; db->aDb[1].zDbSName = "temp"; db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF; db->eOpenState = SQLITE_STATE_OPEN; if( db->mallocFailed ){ goto opendb_out; } /* Register all built-in functions, but do not attempt to read the ** database schema yet. This is delayed until the first time the database ** is accessed. */ sqlite3Error(db, SQLITE_OK); sqlite3RegisterPerConnectionBuiltinFunctions(db); rc = sqlite3_errcode(db); /* Load compiled-in extensions */ for(i=0; rc==SQLITE_OK && imallocFailed && rc==SQLITE_OK ){ extern int sqlcipherVtabInit(sqlite3 *); rc = sqlcipherVtabInit(db); } #endif #ifdef SQLITE_ENABLE_INTERNAL_FUNCTIONS /* Testing use only!!! The -DSQLITE_ENABLE_INTERNAL_FUNCTIONS=1 compile-time ** option gives access to internal functions by default. ** Testing use only!!! */ db->mDbFlags |= DBFLAG_InternalFunc; #endif /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking ** mode. Doing nothing at all also makes NORMAL the default. */ #ifdef SQLITE_DEFAULT_LOCKING_MODE db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), SQLITE_DEFAULT_LOCKING_MODE); #endif if( rc ) sqlite3Error(db, rc); /* Enable the lookaside-malloc subsystem */ setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, sqlite3GlobalConfig.nLookaside); sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); opendb_out: if( db ){ assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); sqlite3_mutex_leave(db->mutex); } rc = sqlite3_errcode(db); assert( db!=0 || (rc&0xff)==SQLITE_NOMEM ); if( (rc&0xff)==SQLITE_NOMEM ){ sqlite3_close(db); db = 0; }else if( rc!=SQLITE_OK ){ db->eOpenState = SQLITE_STATE_SICK; } *ppDb = db; #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Opening a db handle. Fourth parameter is passed 0. */ void *pArg = sqlite3GlobalConfig.pSqllogArg; sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); } #endif /* BEGIN SQLCIPHER */ #if defined(SQLITE_HAS_CODEC) if( rc==SQLITE_OK ) sqlite3CodecQueryParameters(db, 0, zOpen); #endif /* END SQLCIPHER */ sqlite3_free_filename(zOpen); return rc; } /* ** Open a new database handle. */ SQLITE_API int sqlite3_open( const char *zFilename, sqlite3 **ppDb ){ return openDatabase(zFilename, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); } SQLITE_API int sqlite3_open_v2( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb, /* OUT: SQLite db handle */ int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ){ return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); } #ifndef SQLITE_OMIT_UTF16 /* ** Open a new database handle. */ SQLITE_API int sqlite3_open16( const void *zFilename, sqlite3 **ppDb ){ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ sqlite3_value *pVal; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( ppDb==0 ) return SQLITE_MISUSE_BKPT; #endif *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif if( zFilename==0 ) zFilename = "\000\000"; pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zFilename8 ){ rc = openDatabase(zFilename8, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); assert( *ppDb || rc==SQLITE_NOMEM ); if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; } }else{ rc = SQLITE_NOMEM_BKPT; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int sqlite3_create_collation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); } /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int sqlite3_create_collation_v2( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int sqlite3_create_collation16( sqlite3* db, const void *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc = SQLITE_OK; char *zName8; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); if( zName8 ){ rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); sqlite3DbFree(db, zName8); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ SQLITE_API int sqlite3_collation_needed( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xCollNeeded = xCollNeeded; db->xCollNeeded16 = 0; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ SQLITE_API int sqlite3_collation_needed16( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xCollNeeded = 0; db->xCollNeeded16 = xCollNeeded16; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Find existing client data. */ SQLITE_API void *sqlite3_get_clientdata(sqlite3 *db, const char *zName){ DbClientData *p; sqlite3_mutex_enter(db->mutex); for(p=db->pDbData; p; p=p->pNext){ if( strcmp(p->zName, zName)==0 ){ void *pResult = p->pData; sqlite3_mutex_leave(db->mutex); return pResult; } } sqlite3_mutex_leave(db->mutex); return 0; } /* ** Add new client data to a database connection. */ SQLITE_API int sqlite3_set_clientdata( sqlite3 *db, /* Attach client data to this connection */ const char *zName, /* Name of the client data */ void *pData, /* The client data itself */ void (*xDestructor)(void*) /* Destructor */ ){ DbClientData *p, **pp; sqlite3_mutex_enter(db->mutex); pp = &db->pDbData; for(p=db->pDbData; p && strcmp(p->zName,zName); p=p->pNext){ pp = &p->pNext; } if( p ){ assert( p->pData!=0 ); if( p->xDestructor ) p->xDestructor(p->pData); if( pData==0 ){ *pp = p->pNext; sqlite3_free(p); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } }else if( pData==0 ){ sqlite3_mutex_leave(db->mutex); return SQLITE_OK; }else{ size_t n = strlen(zName); p = sqlite3_malloc64( sizeof(DbClientData)+n+1 ); if( p==0 ){ if( xDestructor ) xDestructor(pData); sqlite3_mutex_leave(db->mutex); return SQLITE_NOMEM; } memcpy(p->zName, zName, n+1); p->pNext = db->pDbData; db->pDbData = p; } p->pData = pData; p->xDestructor = xDestructor; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_DEPRECATED /* ** This function is now an anachronism. It used to be used to recover from a ** malloc() failure, but SQLite now does this automatically. */ SQLITE_API int sqlite3_global_recover(void){ return SQLITE_OK; } #endif /* ** Test to see whether or not the database connection is in autocommit ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on ** by default. Autocommit is disabled by a BEGIN statement and reenabled ** by the next COMMIT or ROLLBACK. */ SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->autoCommit; } /* ** The following routines are substitutes for constants SQLITE_CORRUPT, ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error ** constants. They serve two purposes: ** ** 1. Serve as a convenient place to set a breakpoint in a debugger ** to detect when version error conditions occurs. ** ** 2. Invoke sqlite3_log() to provide the source code location where ** a low-level error is first detected. */ SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType){ sqlite3_log(iErr, "%s at line %d of [%.10s]", zType, lineno, 20+sqlite3_sourceid()); return iErr; } SQLITE_PRIVATE int sqlite3CorruptError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption"); } SQLITE_PRIVATE int sqlite3MisuseError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse"); } SQLITE_PRIVATE int sqlite3CantopenError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file"); } #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO) SQLITE_PRIVATE int sqlite3CorruptPgnoError(int lineno, Pgno pgno){ char zMsg[100]; sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno); testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); } #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NomemError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM"); } SQLITE_PRIVATE int sqlite3IoerrnomemError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); } #endif #ifndef SQLITE_OMIT_DEPRECATED /* ** This is a convenience routine that makes sure that all thread-specific ** data for this thread has been deallocated. ** ** SQLite no longer uses thread-specific data so this routine is now a ** no-op. It is retained for historical compatibility. */ SQLITE_API void sqlite3_thread_cleanup(void){ } #endif /* ** Return meta information about a specific column of a database table. ** See comment in sqlite3.h (sqlite.h.in) for details. */ SQLITE_API int sqlite3_table_column_metadata( sqlite3 *db, /* Connection handle */ const char *zDbName, /* Database name or NULL */ const char *zTableName, /* Table name */ const char *zColumnName, /* Column name */ char const **pzDataType, /* OUTPUT: Declared data type */ char const **pzCollSeq, /* OUTPUT: Collation sequence name */ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if column is auto-increment */ ){ int rc; char *zErrMsg = 0; Table *pTab = 0; Column *pCol = 0; int iCol = 0; char const *zDataType = 0; char const *zCollSeq = 0; int notnull = 0; int primarykey = 0; int autoinc = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ return SQLITE_MISUSE_BKPT; } #endif /* Ensure the database schema has been loaded */ sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); rc = sqlite3Init(db, &zErrMsg); if( SQLITE_OK!=rc ){ goto error_out; } /* Locate the table in question */ pTab = sqlite3FindTable(db, zTableName, zDbName); if( !pTab || IsView(pTab) ){ pTab = 0; goto error_out; } /* Find the column for which info is requested */ if( zColumnName==0 ){ /* Query for existence of table only */ }else{ for(iCol=0; iColnCol; iCol++){ pCol = &pTab->aCol[iCol]; if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){ break; } } if( iCol==pTab->nCol ){ if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ iCol = pTab->iPKey; pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; }else{ pTab = 0; goto error_out; } } } /* The following block stores the meta information that will be returned ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey ** and autoinc. At this point there are two possibilities: ** ** 1. The specified column name was rowid", "oid" or "_rowid_" ** and there is no explicitly declared IPK column. ** ** 2. The table is not a view and the column name identified an ** explicitly declared column. Copy meta information from *pCol. */ if( pCol ){ zDataType = sqlite3ColumnType(pCol,0); zCollSeq = sqlite3ColumnColl(pCol); notnull = pCol->notNull!=0; primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; }else{ zDataType = "INTEGER"; primarykey = 1; } if( !zCollSeq ){ zCollSeq = sqlite3StrBINARY; } error_out: sqlite3BtreeLeaveAll(db); /* Whether the function call succeeded or failed, set the output parameters ** to whatever their local counterparts contain. If an error did occur, ** this has the effect of zeroing all output parameters. */ if( pzDataType ) *pzDataType = zDataType; if( pzCollSeq ) *pzCollSeq = zCollSeq; if( pNotNull ) *pNotNull = notnull; if( pPrimaryKey ) *pPrimaryKey = primarykey; if( pAutoinc ) *pAutoinc = autoinc; if( SQLITE_OK==rc && !pTab ){ sqlite3DbFree(db, zErrMsg); zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, zColumnName); rc = SQLITE_ERROR; } sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); sqlite3DbFree(db, zErrMsg); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Sleep for a little while. Return the amount of time slept. */ SQLITE_API int sqlite3_sleep(int ms){ sqlite3_vfs *pVfs; int rc; pVfs = sqlite3_vfs_find(0); if( pVfs==0 ) return 0; /* This function works in milliseconds, but the underlying OsSleep() ** API uses microseconds. Hence the 1000's. */ rc = (sqlite3OsSleep(pVfs, ms<0 ? 0 : 1000*ms)/1000); return rc; } /* ** Enable or disable the extended result codes. */ SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->errMask = onoff ? 0xffffffff : 0xff; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Invoke the xFileControl method on a particular database. */ SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ int rc = SQLITE_ERROR; Btree *pBtree; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); pBtree = sqlite3DbNameToBtree(db, zDbName); if( pBtree ){ Pager *pPager; sqlite3_file *fd; sqlite3BtreeEnter(pBtree); pPager = sqlite3BtreePager(pBtree); assert( pPager!=0 ); fd = sqlite3PagerFile(pPager); assert( fd!=0 ); if( op==SQLITE_FCNTL_FILE_POINTER ){ *(sqlite3_file**)pArg = fd; rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_VFS_POINTER ){ *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager); rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){ *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager); rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_DATA_VERSION ){ *(unsigned int*)pArg = sqlite3PagerDataVersion(pPager); rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_RESERVE_BYTES ){ int iNew = *(int*)pArg; *(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree); if( iNew>=0 && iNew<=255 ){ sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0); } rc = SQLITE_OK; }else if( op==SQLITE_FCNTL_RESET_CACHE ){ sqlite3BtreeClearCache(pBtree); rc = SQLITE_OK; }else{ int nSave = db->busyHandler.nBusy; rc = sqlite3OsFileControl(fd, op, pArg); db->busyHandler.nBusy = nSave; } sqlite3BtreeLeave(pBtree); } sqlite3_mutex_leave(db->mutex); return rc; } /* ** Interface to the testing logic. */ SQLITE_API int sqlite3_test_control(int op, ...){ int rc = 0; #ifdef SQLITE_UNTESTABLE UNUSED_PARAMETER(op); #else va_list ap; va_start(ap, op); switch( op ){ /* ** Save the current state of the PRNG. */ case SQLITE_TESTCTRL_PRNG_SAVE: { sqlite3PrngSaveState(); break; } /* ** Restore the state of the PRNG to the last state saved using ** PRNG_SAVE. If PRNG_SAVE has never before been called, then ** this verb acts like PRNG_RESET. */ case SQLITE_TESTCTRL_PRNG_RESTORE: { sqlite3PrngRestoreState(); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db); ** ** Control the seed for the pseudo-random number generator (PRNG) that ** is built into SQLite. Cases: ** ** x!=0 && db!=0 Seed the PRNG to the current value of the ** schema cookie in the main database for db, or ** x if the schema cookie is zero. This case ** is convenient to use with database fuzzers ** as it allows the fuzzer some control over the ** the PRNG seed. ** ** x!=0 && db==0 Seed the PRNG to the value of x. ** ** x==0 && db==0 Revert to default behavior of using the ** xRandomness method on the primary VFS. ** ** This test-control also resets the PRNG so that the new seed will ** be used for the next call to sqlite3_randomness(). */ #ifndef SQLITE_OMIT_WSD case SQLITE_TESTCTRL_PRNG_SEED: { int x = va_arg(ap, int); int y; sqlite3 *db = va_arg(ap, sqlite3*); assert( db==0 || db->aDb[0].pSchema!=0 ); if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; } sqlite3Config.iPrngSeed = x; sqlite3_randomness(0,0); break; } #endif /* sqlite3_test_control(SQLITE_TESTCTRL_FK_NO_ACTION, sqlite3 *db, int b); ** ** If b is true, then activate the SQLITE_FkNoAction setting. If b is ** false then clearn that setting. If the SQLITE_FkNoAction setting is ** abled, all foreign key ON DELETE and ON UPDATE actions behave as if ** they were NO ACTION, regardless of how they are defined. ** ** NB: One must usually run "PRAGMA writable_schema=RESET" after ** using this test-control, before it will take full effect. failing ** to reset the schema can result in some unexpected behavior. */ case SQLITE_TESTCTRL_FK_NO_ACTION: { sqlite3 *db = va_arg(ap, sqlite3*); int b = va_arg(ap, int); if( b ){ db->flags |= SQLITE_FkNoAction; }else{ db->flags &= ~SQLITE_FkNoAction; } break; } /* ** sqlite3_test_control(BITVEC_TEST, size, program) ** ** Run a test against a Bitvec object of size. The program argument ** is an array of integers that defines the test. Return -1 on a ** memory allocation error, 0 on success, or non-zero for an error. ** See the sqlite3BitvecBuiltinTest() for additional information. */ case SQLITE_TESTCTRL_BITVEC_TEST: { int sz = va_arg(ap, int); int *aProg = va_arg(ap, int*); rc = sqlite3BitvecBuiltinTest(sz, aProg); break; } /* ** sqlite3_test_control(FAULT_INSTALL, xCallback) ** ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, ** if xCallback is not NULL. ** ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) ** is called immediately after installing the new callback and the return ** value from sqlite3FaultSim(0) becomes the return from ** sqlite3_test_control(). */ case SQLITE_TESTCTRL_FAULT_INSTALL: { /* A bug in MSVC prevents it from understanding pointers to functions ** types in the second argument to va_arg(). Work around the problem ** using a typedef. ** http://support.microsoft.com/kb/47961 <-- dead hyperlink ** Search at http://web.archive.org/ to find the 2015-03-16 archive ** of the link above to see the original text. ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); */ typedef int(*sqlite3FaultFuncType)(int); sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType); rc = sqlite3FaultSim(0); break; } /* ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) ** ** Register hooks to call to indicate which malloc() failures ** are benign. */ case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { typedef void (*void_function)(void); void_function xBenignBegin; void_function xBenignEnd; xBenignBegin = va_arg(ap, void_function); xBenignEnd = va_arg(ap, void_function); sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) ** ** Set the PENDING byte to the value in the argument, if X>0. ** Make no changes if X==0. Return the value of the pending byte ** as it existing before this routine was called. ** ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in ** an incompatible database file format. Changing the PENDING byte ** while any database connection is open results in undefined and ** deleterious behavior. */ case SQLITE_TESTCTRL_PENDING_BYTE: { rc = PENDING_BYTE; #ifndef SQLITE_OMIT_WSD { unsigned int newVal = va_arg(ap, unsigned int); if( newVal ) sqlite3PendingByte = newVal; } #endif break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) ** ** This action provides a run-time test to see whether or not ** assert() was enabled at compile-time. If X is true and assert() ** is enabled, then the return value is true. If X is true and ** assert() is disabled, then the return value is zero. If X is ** false and assert() is enabled, then the assertion fires and the ** process aborts. If X is false and assert() is disabled, then the ** return value is zero. */ case SQLITE_TESTCTRL_ASSERT: { volatile int x = 0; assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 ); rc = x; #if defined(SQLITE_DEBUG) /* Invoke these debugging routines so that the compiler does not ** issue "defined but not used" warnings. */ if( x==9999 ){ sqlite3ShowExpr(0); sqlite3ShowExpr(0); sqlite3ShowExprList(0); sqlite3ShowIdList(0); sqlite3ShowSrcList(0); sqlite3ShowWith(0); sqlite3ShowUpsert(0); #ifndef SQLITE_OMIT_TRIGGER sqlite3ShowTriggerStep(0); sqlite3ShowTriggerStepList(0); sqlite3ShowTrigger(0); sqlite3ShowTriggerList(0); #endif #ifndef SQLITE_OMIT_WINDOWFUNC sqlite3ShowWindow(0); sqlite3ShowWinFunc(0); #endif sqlite3ShowSelect(0); } #endif break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) ** ** This action provides a run-time test to see how the ALWAYS and ** NEVER macros were defined at compile-time. ** ** The return value is ALWAYS(X) if X is true, or 0 if X is false. ** ** The recommended test is X==2. If the return value is 2, that means ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the ** default setting. If the return value is 1, then ALWAYS() is either ** hard-coded to true or else it asserts if its argument is false. ** The first behavior (hard-coded to true) is the case if ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second ** behavior (assert if the argument to ALWAYS() is false) is the case if ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. ** ** The run-time test procedure might look something like this: ** ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ ** // ALWAYS() and NEVER() are no-op pass-through macros ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. ** }else{ ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. ** } */ case SQLITE_TESTCTRL_ALWAYS: { int x = va_arg(ap,int); rc = x ? ALWAYS(x) : 0; break; } /* ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); ** ** The integer returned reveals the byte-order of the computer on which ** SQLite is running: ** ** 1 big-endian, determined at run-time ** 10 little-endian, determined at run-time ** 432101 big-endian, determined at compile-time ** 123410 little-endian, determined at compile-time */ case SQLITE_TESTCTRL_BYTEORDER: { rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) ** ** Enable or disable various optimizations for testing purposes. The ** argument N is a bitmask of optimizations to be disabled. For normal ** operation N should be 0. The idea is that a test program (like the ** SQL Logic Test or SLT test module) can run the same SQL multiple times ** with various optimizations disabled to verify that the same answer ** is obtained in every case. */ case SQLITE_TESTCTRL_OPTIMIZATIONS: { sqlite3 *db = va_arg(ap, sqlite3*); db->dbOptFlags = va_arg(ap, u32); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt); ** ** If parameter onoff is 1, subsequent calls to localtime() fail. ** If 2, then invoke xAlt() instead of localtime(). If 0, normal ** processing. ** ** xAlt arguments are void pointers, but they really want to be: ** ** int xAlt(const time_t*, struct tm*); ** ** xAlt should write results in to struct tm object of its 2nd argument ** and return zero on success, or return non-zero on failure. */ case SQLITE_TESTCTRL_LOCALTIME_FAULT: { sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); if( sqlite3GlobalConfig.bLocaltimeFault==2 ){ typedef int(*sqlite3LocaltimeType)(const void*,void*); sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType); }else{ sqlite3GlobalConfig.xAltLocaltime = 0; } break; } /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*); ** ** Toggle the ability to use internal functions on or off for ** the database connection given in the argument. */ case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: { sqlite3 *db = va_arg(ap, sqlite3*); db->mDbFlags ^= DBFLAG_InternalFunc; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); ** ** Set or clear a flag that indicates that the database file is always well- ** formed and never corrupt. This flag is clear by default, indicating that ** database files might have arbitrary corruption. Setting the flag during ** testing causes certain assert() statements in the code to be activated ** that demonstrate invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int); ** ** Set or clear a flag that causes SQLite to verify that type, name, ** and tbl_name fields of the sqlite_schema table. This is normally ** on, but it is sometimes useful to turn it off for testing. ** ** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the ** verification of rootpage numbers when parsing the schema. This ** is useful to make it easier to reach strange internal error states ** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled ** in production. */ case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: { sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int); break; } /* Set the threshold at which OP_Once counters reset back to zero. ** By default this is 0x7ffffffe (over 2 billion), but that value is ** too big to test in a reasonable amount of time, so this control is ** provided to set a small and easily reachable reset value. */ case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: { sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); ** ** Set the VDBE coverage callback function to xCallback with context ** pointer ptr. */ case SQLITE_TESTCTRL_VDBE_COVERAGE: { #ifdef SQLITE_VDBE_COVERAGE typedef void (*branch_callback)(void*,unsigned int, unsigned char,unsigned char); sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); #endif break; } /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ case SQLITE_TESTCTRL_SORTER_MMAP: { sqlite3 *db = va_arg(ap, sqlite3*); db->nMaxSorterMmap = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); ** ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if ** not. */ case SQLITE_TESTCTRL_ISINIT: { if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); ** ** This test control is used to create imposter tables. "db" is a pointer ** to the database connection. dbName is the database name (ex: "main" or ** "temp") which will receive the imposter. "onOff" turns imposter mode on ** or off. "tnum" is the root page of the b-tree to which the imposter ** table should connect. ** ** Enable imposter mode only when the schema has already been parsed. Then ** run a single CREATE TABLE statement to construct the imposter table in ** the parsed schema. Then turn imposter mode back off again. ** ** If onOff==0 and tnum>0 then reset the schema for all databases, causing ** the schema to be reparsed the next time it is needed. This has the ** effect of erasing all imposter tables. */ case SQLITE_TESTCTRL_IMPOSTER: { sqlite3 *db = va_arg(ap, sqlite3*); int iDb; sqlite3_mutex_enter(db->mutex); iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); if( iDb>=0 ){ db->init.iDb = iDb; db->init.busy = db->init.imposterTable = va_arg(ap,int); db->init.newTnum = va_arg(ap,int); if( db->init.busy==0 && db->init.newTnum>0 ){ sqlite3ResetAllSchemasOfConnection(db); } } sqlite3_mutex_leave(db->mutex); break; } #if defined(YYCOVERAGE) /* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out) ** ** This test control (only available when SQLite is compiled with ** -DYYCOVERAGE) writes a report onto "out" that shows all ** state/lookahead combinations in the parser state machine ** which are never exercised. If any state is missed, make the ** return code SQLITE_ERROR. */ case SQLITE_TESTCTRL_PARSER_COVERAGE: { FILE *out = va_arg(ap, FILE*); if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR; break; } #endif /* defined(YYCOVERAGE) */ /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*); ** ** This test-control causes the most recent sqlite3_result_int64() value ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally, ** MEM_IntReal values only arise during an INSERT operation of integer ** values into a REAL column, so they can be challenging to test. This ** test-control enables us to write an intreal() SQL function that can ** inject an intreal() value at arbitrary places in an SQL statement, ** for testing purposes. */ case SQLITE_TESTCTRL_RESULT_INTREAL: { sqlite3_context *pCtx = va_arg(ap, sqlite3_context*); sqlite3ResultIntReal(pCtx); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT, ** sqlite3 *db, // Database connection ** u64 *pnSeek // Write seek count here ** ); ** ** This test-control queries the seek-counter on the "main" database ** file. The seek-counter is written into *pnSeek and is then reset. ** The seek-count is only available if compiled with SQLITE_DEBUG. */ case SQLITE_TESTCTRL_SEEK_COUNT: { sqlite3 *db = va_arg(ap, sqlite3*); u64 *pn = va_arg(ap, sqlite3_uint64*); *pn = sqlite3BtreeSeekCount(db->aDb->pBt); (void)db; /* Silence harmless unused variable warning */ break; } /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr) ** ** "ptr" is a pointer to a u32. ** ** op==0 Store the current sqlite3TreeTrace in *ptr ** op==1 Set sqlite3TreeTrace to the value *ptr ** op==2 Store the current sqlite3WhereTrace in *ptr ** op==3 Set sqlite3WhereTrace to the value *ptr */ case SQLITE_TESTCTRL_TRACEFLAGS: { int opTrace = va_arg(ap, int); u32 *ptr = va_arg(ap, u32*); switch( opTrace ){ case 0: *ptr = sqlite3TreeTrace; break; case 1: sqlite3TreeTrace = *ptr; break; case 2: *ptr = sqlite3WhereTrace; break; case 3: sqlite3WhereTrace = *ptr; break; } break; } /* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST, ** double fIn, // Input value ** int *pLogEst, // sqlite3LogEstFromDouble(fIn) ** u64 *pInt, // sqlite3LogEstToInt(*pLogEst) ** int *pLogEst2 // sqlite3LogEst(*pInt) ** ); ** ** Test access for the LogEst conversion routines. */ case SQLITE_TESTCTRL_LOGEST: { double rIn = va_arg(ap, double); LogEst rLogEst = sqlite3LogEstFromDouble(rIn); int *pI1 = va_arg(ap,int*); u64 *pU64 = va_arg(ap,u64*); int *pI2 = va_arg(ap,int*); *pI1 = rLogEst; *pU64 = sqlite3LogEstToInt(rLogEst); *pI2 = sqlite3LogEst(*pU64); break; } #if !defined(SQLITE_OMIT_WSD) /* sqlite3_test_control(SQLITE_TESTCTRL_USELONGDOUBLE, int X); ** ** X<0 Make no changes to the bUseLongDouble. Just report value. ** X==0 Disable bUseLongDouble ** X==1 Enable bUseLongDouble ** X>=2 Set bUseLongDouble to its default value for this platform */ case SQLITE_TESTCTRL_USELONGDOUBLE: { int b = va_arg(ap, int); if( b>=2 ) b = hasHighPrecisionDouble(b); if( b>=0 ) sqlite3Config.bUseLongDouble = b>0; rc = sqlite3Config.bUseLongDouble!=0; break; } #endif #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue) ** ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value ** of the id-th tuning parameter to *piValue. If "id" is between -1 ** and -SQLITE_NTUNE, then write the current value of the (-id)-th ** tuning parameter into *piValue. ** ** Tuning parameters are for use during transient development builds, ** to help find the best values for constants in the query planner. ** Access tuning parameters using the Tuning(ID) macro. Set the ** parameters in the CLI using ".testctrl tune ID VALUE". ** ** Transient use only. Tuning parameters should not be used in ** checked-in code. */ case SQLITE_TESTCTRL_TUNE: { int id = va_arg(ap, int); int *piValue = va_arg(ap, int*); if( id>0 && id<=SQLITE_NTUNE ){ Tuning(id) = *piValue; }else if( id<0 && id>=-SQLITE_NTUNE ){ *piValue = Tuning(-id); }else{ rc = SQLITE_NOTFOUND; } break; } #endif /* sqlite3_test_control(SQLITE_TESTCTRL_JSON_SELFCHECK, &onOff); ** ** Activate or deactivate validation of JSONB that is generated from ** text. Off by default, as the validation is slow. Validation is ** only available if compiled using SQLITE_DEBUG. ** ** If onOff is initially 1, then turn it on. If onOff is initially ** off, turn it off. If onOff is initially -1, then change onOff ** to be the current setting. */ case SQLITE_TESTCTRL_JSON_SELFCHECK: { #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) int *pOnOff = va_arg(ap, int*); if( *pOnOff<0 ){ *pOnOff = sqlite3Config.bJsonSelfcheck; }else{ sqlite3Config.bJsonSelfcheck = (u8)((*pOnOff)&0xff); } #endif break; } } va_end(ap); #endif /* SQLITE_UNTESTABLE */ return rc; } /* ** The Pager stores the Database filename, Journal filename, and WAL filename ** consecutively in memory, in that order. The database filename is prefixed ** by four zero bytes. Locate the start of the database filename by searching ** backwards for the first byte following four consecutive zero bytes. ** ** This only works if the filename passed in was obtained from the Pager. */ static const char *databaseName(const char *zName){ while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ zName--; } return zName; } /* ** Append text z[] to the end of p[]. Return a pointer to the first ** character after then zero terminator on the new text in p[]. */ static char *appendText(char *p, const char *z){ size_t n = strlen(z); memcpy(p, z, n+1); return p+n+1; } /* ** Allocate memory to hold names for a database, journal file, WAL file, ** and query parameters. The pointer returned is valid for use by ** sqlite3_filename_database() and sqlite3_uri_parameter() and related ** functions. ** ** Memory layout must be compatible with that generated by the pager ** and expected by sqlite3_uri_parameter() and databaseName(). */ SQLITE_API const char *sqlite3_create_filename( const char *zDatabase, const char *zJournal, const char *zWal, int nParam, const char **azParam ){ sqlite3_int64 nByte; int i; char *pResult, *p; nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10; for(i=0; i0 ){ zFilename += sqlite3Strlen30(zFilename) + 1; zFilename += sqlite3Strlen30(zFilename) + 1; } return zFilename[0] ? zFilename : 0; } /* ** Return a boolean value for a query parameter. */ SQLITE_API int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ const char *z = sqlite3_uri_parameter(zFilename, zParam); bDflt = bDflt!=0; return z ? sqlite3GetBoolean(z, bDflt) : bDflt; } /* ** Return a 64-bit integer value for a query parameter. */ SQLITE_API sqlite3_int64 sqlite3_uri_int64( const char *zFilename, /* Filename as passed to xOpen */ const char *zParam, /* URI parameter sought */ sqlite3_int64 bDflt /* return if parameter is missing */ ){ const char *z = sqlite3_uri_parameter(zFilename, zParam); sqlite3_int64 v; if( z && sqlite3DecOrHexToI64(z, &v)==0 ){ bDflt = v; } return bDflt; } /* ** Translate a filename that was handed to a VFS routine into the corresponding ** database, journal, or WAL file. ** ** It is an error to pass this routine a filename string that was not ** passed into the VFS from the SQLite core. Doing so is similar to ** passing free() a pointer that was not obtained from malloc() - it is ** an error that we cannot easily detect but that will likely cause memory ** corruption. */ SQLITE_API const char *sqlite3_filename_database(const char *zFilename){ if( zFilename==0 ) return 0; return databaseName(zFilename); } SQLITE_API const char *sqlite3_filename_journal(const char *zFilename){ if( zFilename==0 ) return 0; zFilename = databaseName(zFilename); zFilename += sqlite3Strlen30(zFilename) + 1; while( ALWAYS(zFilename) && zFilename[0] ){ zFilename += sqlite3Strlen30(zFilename) + 1; zFilename += sqlite3Strlen30(zFilename) + 1; } return zFilename + 1; } SQLITE_API const char *sqlite3_filename_wal(const char *zFilename){ #ifdef SQLITE_OMIT_WAL return 0; #else zFilename = sqlite3_filename_journal(zFilename); if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1; return zFilename; #endif } /* ** Return the Btree pointer identified by zDbName. Return NULL if not found. */ SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0; return iDb<0 ? 0 : db->aDb[iDb].pBt; } /* ** Return the name of the N-th database schema. Return NULL if N is out ** of range. */ SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( N<0 || N>=db->nDb ){ return 0; }else{ return db->aDb[N].zDbSName; } } /* ** Return the filename of the database associated with a database ** connection. */ SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ Btree *pBt; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeGetFilename(pBt) : 0; } /* ** Return 1 if database is read-only or 0 if read/write. Return -1 if ** no such database exists. */ SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ Btree *pBt; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; } #ifdef SQLITE_ENABLE_SNAPSHOT /* ** Obtain a snapshot handle for the snapshot of database zDb currently ** being read by handle db. */ SQLITE_API int sqlite3_snapshot_get( sqlite3 *db, const char *zDb, sqlite3_snapshot **ppSnapshot ){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( db->autoCommit==0 ){ int iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); } } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Open a read-transaction on the snapshot identified by pSnapshot. */ SQLITE_API int sqlite3_snapshot_open( sqlite3 *db, const char *zDb, sqlite3_snapshot *pSnapshot ){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( db->autoCommit==0 ){ int iDb; iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){ Pager *pPager = sqlite3BtreePager(pBt); int bUnlock = 0; if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){ if( db->nVdbeActive==0 ){ rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot); if( rc==SQLITE_OK ){ bUnlock = 1; rc = sqlite3BtreeCommit(pBt); } } }else{ rc = SQLITE_OK; } if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot); } if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); sqlite3PagerSnapshotOpen(pPager, 0); } if( bUnlock ){ sqlite3PagerSnapshotUnlock(pPager); } } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Recover as many snapshots as possible from the wal file associated with ** schema zDb of database db. */ SQLITE_API int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL int iDb; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); sqlite3BtreeCommit(pBt); } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Free a snapshot handle obtained from sqlite3_snapshot_get(). */ SQLITE_API void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){ sqlite3_free(pSnapshot); } #endif /* SQLITE_ENABLE_SNAPSHOT */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* ** Given the name of a compile-time option, return true if that option ** was used and false if not. ** ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix ** is not required for a match. */ SQLITE_API int sqlite3_compileoption_used(const char *zOptName){ int i, n; int nOpt; const char **azCompileOpt; #ifdef SQLITE_ENABLE_API_ARMOR if( zOptName==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif azCompileOpt = sqlite3CompileOptions(&nOpt); if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; n = sqlite3Strlen30(zOptName); /* Since nOpt is normally in single digits, a linear search is ** adequate. No need for a binary search. */ for(i=0; i=0 && NpNextBlocked){ int seen = 0; sqlite3 *p2; /* Verify property (1) */ assert( p->pUnlockConnection || p->pBlockingConnection ); /* Verify property (2) */ for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){ if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1; assert( p2->xUnlockNotify==p->xUnlockNotify || !seen ); assert( db==0 || p->pUnlockConnection!=db ); assert( db==0 || p->pBlockingConnection!=db ); } } } #else # define checkListProperties(x) #endif /* ** Remove connection db from the blocked connections list. If connection ** db is not currently a part of the list, this function is a no-op. */ static void removeFromBlockedList(sqlite3 *db){ sqlite3 **pp; assertMutexHeld(); for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){ if( *pp==db ){ *pp = (*pp)->pNextBlocked; break; } } } /* ** Add connection db to the blocked connections list. It is assumed ** that it is not already a part of the list. */ static void addToBlockedList(sqlite3 *db){ sqlite3 **pp; assertMutexHeld(); for( pp=&sqlite3BlockedList; *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify; pp=&(*pp)->pNextBlocked ); db->pNextBlocked = *pp; *pp = db; } /* ** Obtain the STATIC_MAIN mutex. */ static void enterMutex(void){ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); checkListProperties(0); } /* ** Release the STATIC_MAIN mutex. */ static void leaveMutex(void){ assertMutexHeld(); checkListProperties(0); sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); } /* ** Register an unlock-notify callback. ** ** This is called after connection "db" has attempted some operation ** but has received an SQLITE_LOCKED error because another connection ** (call it pOther) in the same process was busy using the same shared ** cache. pOther is found by looking at db->pBlockingConnection. ** ** If there is no blocking connection, the callback is invoked immediately, ** before this routine returns. ** ** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate ** a deadlock. ** ** Otherwise, make arrangements to invoke xNotify when pOther drops ** its locks. ** ** Each call to this routine overrides any prior callbacks registered ** on the same "db". If xNotify==0 then any prior callbacks are immediately ** cancelled. */ SQLITE_API int sqlite3_unlock_notify( sqlite3 *db, void (*xNotify)(void **, int), void *pArg ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); enterMutex(); if( xNotify==0 ){ removeFromBlockedList(db); db->pBlockingConnection = 0; db->pUnlockConnection = 0; db->xUnlockNotify = 0; db->pUnlockArg = 0; }else if( 0==db->pBlockingConnection ){ /* The blocking transaction has been concluded. Or there never was a ** blocking transaction. In either case, invoke the notify callback ** immediately. */ xNotify(&pArg, 1); }else{ sqlite3 *p; for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){} if( p ){ rc = SQLITE_LOCKED; /* Deadlock detected. */ }else{ db->pUnlockConnection = db->pBlockingConnection; db->xUnlockNotify = xNotify; db->pUnlockArg = pArg; removeFromBlockedList(db); addToBlockedList(db); } } leaveMutex(); assert( !db->mallocFailed ); sqlite3ErrorWithMsg(db, rc, (rc?"database is deadlocked":0)); sqlite3_mutex_leave(db->mutex); return rc; } /* ** This function is called while stepping or preparing a statement ** associated with connection db. The operation will return SQLITE_LOCKED ** to the user because it requires a lock that will not be available ** until connection pBlocker concludes its current transaction. */ SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){ enterMutex(); if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){ addToBlockedList(db); } db->pBlockingConnection = pBlocker; leaveMutex(); } /* ** This function is called when ** the transaction opened by database db has just finished. Locks held ** by database connection db have been released. ** ** This function loops through each entry in the blocked connections ** list and does the following: ** ** 1) If the sqlite3.pBlockingConnection member of a list entry is ** set to db, then set pBlockingConnection=0. ** ** 2) If the sqlite3.pUnlockConnection member of a list entry is ** set to db, then invoke the configured unlock-notify callback and ** set pUnlockConnection=0. ** ** 3) If the two steps above mean that pBlockingConnection==0 and ** pUnlockConnection==0, remove the entry from the blocked connections ** list. */ SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){ void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */ int nArg = 0; /* Number of entries in aArg[] */ sqlite3 **pp; /* Iterator variable */ void **aArg; /* Arguments to the unlock callback */ void **aDyn = 0; /* Dynamically allocated space for aArg[] */ void *aStatic[16]; /* Starter space for aArg[]. No malloc required */ aArg = aStatic; enterMutex(); /* Enter STATIC_MAIN mutex */ /* This loop runs once for each entry in the blocked-connections list. */ for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){ sqlite3 *p = *pp; /* Step 1. */ if( p->pBlockingConnection==db ){ p->pBlockingConnection = 0; } /* Step 2. */ if( p->pUnlockConnection==db ){ assert( p->xUnlockNotify ); if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){ xUnlockNotify(aArg, nArg); nArg = 0; } sqlite3BeginBenignMalloc(); assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); if( (!aDyn && nArg==(int)ArraySize(aStatic)) || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*))) ){ /* The aArg[] array needs to grow. */ void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2); if( pNew ){ memcpy(pNew, aArg, nArg*sizeof(void *)); sqlite3_free(aDyn); aDyn = aArg = pNew; }else{ /* This occurs when the array of context pointers that need to ** be passed to the unlock-notify callback is larger than the ** aStatic[] array allocated on the stack and the attempt to ** allocate a larger array from the heap has failed. ** ** This is a difficult situation to handle. Returning an error ** code to the caller is insufficient, as even if an error code ** is returned the transaction on connection db will still be ** closed and the unlock-notify callbacks on blocked connections ** will go unissued. This might cause the application to wait ** indefinitely for an unlock-notify callback that will never ** arrive. ** ** Instead, invoke the unlock-notify callback with the context ** array already accumulated. We can then clear the array and ** begin accumulating any further context pointers without ** requiring any dynamic allocation. This is sub-optimal because ** it means that instead of one callback with a large array of ** context pointers the application will receive two or more ** callbacks with smaller arrays of context pointers, which will ** reduce the applications ability to prioritize multiple ** connections. But it is the best that can be done under the ** circumstances. */ xUnlockNotify(aArg, nArg); nArg = 0; } } sqlite3EndBenignMalloc(); aArg[nArg++] = p->pUnlockArg; xUnlockNotify = p->xUnlockNotify; p->pUnlockConnection = 0; p->xUnlockNotify = 0; p->pUnlockArg = 0; } /* Step 3. */ if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){ /* Remove connection p from the blocked connections list. */ *pp = p->pNextBlocked; p->pNextBlocked = 0; }else{ pp = &p->pNextBlocked; } } if( nArg!=0 ){ xUnlockNotify(aArg, nArg); } sqlite3_free(aDyn); leaveMutex(); /* Leave STATIC_MAIN mutex */ } /* ** This is called when the database connection passed as an argument is ** being closed. The connection is removed from the blocked list. */ SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){ sqlite3ConnectionUnlocked(db); enterMutex(); removeFromBlockedList(db); checkListProperties(db); leaveMutex(); } #endif /************** End of notify.c **********************************************/ /************** Begin file fts3.c ********************************************/ /* ** 2006 Oct 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This is an SQLite module implementing full-text search. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* The full-text index is stored in a series of b+tree (-like) ** structures called segments which map terms to doclists. The ** structures are like b+trees in layout, but are constructed from the ** bottom up in optimal fashion and are not updatable. Since trees ** are built from the bottom up, things will be described from the ** bottom up. ** ** **** Varints **** ** The basic unit of encoding is a variable-length integer called a ** varint. We encode variable-length integers in little-endian order ** using seven bits * per byte as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** and so on. ** ** This is similar in concept to how sqlite encodes "varints" but ** the encoding is not the same. SQLite varints are big-endian ** are are limited to 9 bytes in length whereas FTS3 varints are ** little-endian and can be up to 10 bytes in length (in theory). ** ** Example encodings: ** ** 1: 0x01 ** 127: 0x7f ** 128: 0x81 0x00 ** ** **** Document lists **** ** A doclist (document list) holds a docid-sorted list of hits for a ** given term. Doclists hold docids and associated token positions. ** A docid is the unique integer identifier for a single document. ** A position is the index of a word within the document. The first ** word of the document has a position of 0. ** ** FTS3 used to optionally store character offsets using a compile-time ** option. But that functionality is no longer supported. ** ** A doclist is stored like this: ** ** array { ** varint docid; (delta from previous doclist) ** array { (position list for column 0) ** varint position; (2 more than the delta from previous position) ** } ** array { ** varint POS_COLUMN; (marks start of position list for new column) ** varint column; (index of new column) ** array { ** varint position; (2 more than the delta from previous position) ** } ** } ** varint POS_END; (marks end of positions for this document. ** } ** ** Here, array { X } means zero or more occurrences of X, adjacent in ** memory. A "position" is an index of a token in the token stream ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur ** in the same logical place as the position element, and act as sentinals ** ending a position list array. POS_END is 0. POS_COLUMN is 1. ** The positions numbers are not stored literally but rather as two more ** than the difference from the prior position, or the just the position plus ** 2 for the first position. Example: ** ** label: A B C D E F G H I J K ** value: 123 5 9 1 1 14 35 0 234 72 0 ** ** The 123 value is the first docid. For column zero in this document ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 ** at D signals the start of a new column; the 1 at E indicates that the ** new column is column number 1. There are two positions at 12 and 45 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The ** 234 at I is the delta to next docid (357). It has one position 70 ** (72-2) and then terminates with the 0 at K. ** ** A "position-list" is the list of positions for multiple columns for ** a single docid. A "column-list" is the set of positions for a single ** column. Hence, a position-list consists of one or more column-lists, ** a document record consists of a docid followed by a position-list and ** a doclist consists of one or more document records. ** ** A bare doclist omits the position information, becoming an ** array of varint-encoded docids. ** **** Segment leaf nodes **** ** Segment leaf nodes store terms and doclists, ordered by term. Leaf ** nodes are written using LeafWriter, and read using LeafReader (to ** iterate through a single leaf node's data) and LeavesReader (to ** iterate through a segment's entire leaf layer). Leaf nodes have ** the format: ** ** varint iHeight; (height from leaf level, always 0) ** varint nTerm; (length of first term) ** char pTerm[nTerm]; (content of first term) ** varint nDoclist; (length of term's associated doclist) ** char pDoclist[nDoclist]; (content of doclist) ** array { ** (further terms are delta-encoded) ** varint nPrefix; (length of prefix shared with previous term) ** varint nSuffix; (length of unshared suffix) ** char pTermSuffix[nSuffix];(unshared suffix of next term) ** varint nDoclist; (length of term's associated doclist) ** char pDoclist[nDoclist]; (content of doclist) ** } ** ** Here, array { X } means zero or more occurrences of X, adjacent in ** memory. ** ** Leaf nodes are broken into blocks which are stored contiguously in ** the %_segments table in sorted order. This means that when the end ** of a node is reached, the next term is in the node with the next ** greater node id. ** ** New data is spilled to a new leaf node when the current node ** exceeds LEAF_MAX bytes (default 2048). New data which itself is ** larger than STANDALONE_MIN (default 1024) is placed in a standalone ** node (a leaf node with a single term and doclist). The goal of ** these settings is to pack together groups of small doclists while ** making it efficient to directly access large doclists. The ** assumption is that large doclists represent terms which are more ** likely to be query targets. ** ** TODO(shess) It may be useful for blocking decisions to be more ** dynamic. For instance, it may make more sense to have a 2.5k leaf ** node rather than splitting into 2k and .5k nodes. My intuition is ** that this might extend through 2x or 4x the pagesize. ** ** **** Segment interior nodes **** ** Segment interior nodes store blockids for subtree nodes and terms ** to describe what data is stored by the each subtree. Interior ** nodes are written using InteriorWriter, and read using ** InteriorReader. InteriorWriters are created as needed when ** SegmentWriter creates new leaf nodes, or when an interior node ** itself grows too big and must be split. The format of interior ** nodes: ** ** varint iHeight; (height from leaf level, always >0) ** varint iBlockid; (block id of node's leftmost subtree) ** optional { ** varint nTerm; (length of first term) ** char pTerm[nTerm]; (content of first term) ** array { ** (further terms are delta-encoded) ** varint nPrefix; (length of shared prefix with previous term) ** varint nSuffix; (length of unshared suffix) ** char pTermSuffix[nSuffix]; (unshared suffix of next term) ** } ** } ** ** Here, optional { X } means an optional element, while array { X } ** means zero or more occurrences of X, adjacent in memory. ** ** An interior node encodes n terms separating n+1 subtrees. The ** subtree blocks are contiguous, so only the first subtree's blockid ** is encoded. The subtree at iBlockid will contain all terms less ** than the first term encoded (or all terms if no term is encoded). ** Otherwise, for terms greater than or equal to pTerm[i] but less ** than pTerm[i+1], the subtree for that term will be rooted at ** iBlockid+i. Interior nodes only store enough term data to ** distinguish adjacent children (if the rightmost term of the left ** child is "something", and the leftmost term of the right child is ** "wicked", only "w" is stored). ** ** New data is spilled to a new interior node at the same height when ** the current node exceeds INTERIOR_MAX bytes (default 2048). ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing ** interior nodes and making the tree too skinny. The interior nodes ** at a given height are naturally tracked by interior nodes at ** height+1, and so on. ** ** **** Segment directory **** ** The segment directory in table %_segdir stores meta-information for ** merging and deleting segments, and also the root node of the ** segment's tree. ** ** The root node is the top node of the segment's tree after encoding ** the entire segment, restricted to ROOT_MAX bytes (default 1024). ** This could be either a leaf node or an interior node. If the top ** node requires more than ROOT_MAX bytes, it is flushed to %_segments ** and a new root interior node is generated (which should always fit ** within ROOT_MAX because it only needs space for 2 varints, the ** height and the blockid of the previous root). ** ** The meta-information in the segment directory is: ** level - segment level (see below) ** idx - index within level ** - (level,idx uniquely identify a segment) ** start_block - first leaf node ** leaves_end_block - last leaf node ** end_block - last block (including interior nodes) ** root - contents of root node ** ** If the root node is a leaf node, then start_block, ** leaves_end_block, and end_block are all 0. ** ** **** Segment merging **** ** To amortize update costs, segments are grouped into levels and ** merged in batches. Each increase in level represents exponentially ** more documents. ** ** New documents (actually, document updates) are tokenized and ** written individually (using LeafWriter) to a level 0 segment, with ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all ** level 0 segments are merged into a single level 1 segment. Level 1 ** is populated like level 0, and eventually MERGE_COUNT level 1 ** segments are merged to a single level 2 segment (representing ** MERGE_COUNT^2 updates), and so on. ** ** A segment merge traverses all segments at a given level in ** parallel, performing a straightforward sorted merge. Since segment ** leaf nodes are written in to the %_segments table in order, this ** merge traverses the underlying sqlite disk structures efficiently. ** After the merge, all segment blocks from the merged level are ** deleted. ** ** MERGE_COUNT controls how often we merge segments. 16 seems to be ** somewhat of a sweet spot for insertion performance. 32 and 64 show ** very similar performance numbers to 16 on insertion, though they're ** a tiny bit slower (perhaps due to more overhead in merge-time ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than ** 16, 2 about 66% slower than 16. ** ** At query time, high MERGE_COUNT increases the number of segments ** which need to be scanned and merged. For instance, with 100k docs ** inserted: ** ** MERGE_COUNT segments ** 16 25 ** 8 12 ** 4 10 ** 2 6 ** ** This appears to have only a moderate impact on queries for very ** frequent terms (which are somewhat dominated by segment merge ** costs), and infrequent and non-existent terms still seem to be fast ** even with many segments. ** ** TODO(shess) That said, it would be nice to have a better query-side ** argument for MERGE_COUNT of 16. Also, it is possible/likely that ** optimizations to things like doclist merging will swing the sweet ** spot around. ** ** ** **** Handling of deletions and updates **** ** Since we're using a segmented structure, with no docid-oriented ** index into the term index, we clearly cannot simply update the term ** index when a document is deleted or updated. For deletions, we ** write an empty doclist (varint(docid) varint(POS_END)), for updates ** we simply write the new doclist. Segment merges overwrite older ** data for a particular docid with newer data, so deletes or updates ** will eventually overtake the earlier data and knock it out. The ** query logic likewise merges doclists so that newer data knocks out ** older data. */ /************** Include fts3Int.h in the middle of fts3.c ********************/ /************** Begin file fts3Int.h *****************************************/ /* ** 2009 Nov 12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ #ifndef _FTSINT_H #define _FTSINT_H #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif /* FTS3/FTS4 require virtual tables */ #ifdef SQLITE_OMIT_VIRTUALTABLE # undef SQLITE_ENABLE_FTS3 # undef SQLITE_ENABLE_FTS4 #endif /* ** FTS4 is really an extension for FTS3. It is enabled using the ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 #endif #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* If not building as part of the core, include sqlite3ext.h. */ #ifndef SQLITE_CORE /* # include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT3 #endif /* #include "sqlite3.h" */ /************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/ /************** Begin file fts3_tokenizer.h **********************************/ /* ** 2006 July 10 ** ** The author disclaims copyright to this source code. ** ************************************************************************* ** Defines the interface to tokenizers used by fulltext-search. There ** are three basic components: ** ** sqlite3_tokenizer_module is a singleton defining the tokenizer ** interface functions. This is essentially the class structure for ** tokenizers. ** ** sqlite3_tokenizer is used to define a particular tokenizer, perhaps ** including customization information defined at creation time. ** ** sqlite3_tokenizer_cursor is generated by a tokenizer to generate ** tokens from a particular input. */ #ifndef _FTS3_TOKENIZER_H_ #define _FTS3_TOKENIZER_H_ /* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. ** If tokenizers are to be allowed to call sqlite3_*() functions, then ** we will need a way to register the API consistently. */ /* #include "sqlite3.h" */ /* ** Structures used by the tokenizer interface. When a new tokenizer ** implementation is registered, the caller provides a pointer to ** an sqlite3_tokenizer_module containing pointers to the callback ** functions that make up an implementation. ** ** When an fts3 table is created, it passes any arguments passed to ** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the ** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer ** implementation. The xCreate() function in turn returns an ** sqlite3_tokenizer structure representing the specific tokenizer to ** be used for the fts3 table (customized by the tokenizer clause arguments). ** ** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() ** method is called. It returns an sqlite3_tokenizer_cursor object ** that may be used to tokenize a specific input buffer based on ** the tokenization rules supplied by a specific sqlite3_tokenizer ** object. */ typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; typedef struct sqlite3_tokenizer sqlite3_tokenizer; typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; struct sqlite3_tokenizer_module { /* ** Structure version. Should always be set to 0 or 1. */ int iVersion; /* ** Create a new tokenizer. The values in the argv[] array are the ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL ** TABLE statement that created the fts3 table. For example, if ** the following SQL is executed: ** ** CREATE .. USING fts3( ... , tokenizer arg1 arg2) ** ** then argc is set to 2, and the argv[] array contains pointers ** to the strings "arg1" and "arg2". ** ** This method should return either SQLITE_OK (0), or an SQLite error ** code. If SQLITE_OK is returned, then *ppTokenizer should be set ** to point at the newly created tokenizer structure. The generic ** sqlite3_tokenizer.pModule variable should not be initialized by ** this callback. The caller will do so. */ int (*xCreate)( int argc, /* Size of argv array */ const char *const*argv, /* Tokenizer argument strings */ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ ); /* ** Destroy an existing tokenizer. The fts3 module calls this method ** exactly once for each successful call to xCreate(). */ int (*xDestroy)(sqlite3_tokenizer *pTokenizer); /* ** Create a tokenizer cursor to tokenize an input buffer. The caller ** is responsible for ensuring that the input buffer remains valid ** until the cursor is closed (using the xClose() method). */ int (*xOpen)( sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ const char *pInput, int nBytes, /* Input buffer */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ ); /* ** Destroy an existing tokenizer cursor. The fts3 module calls this ** method exactly once for each successful call to xOpen(). */ int (*xClose)(sqlite3_tokenizer_cursor *pCursor); /* ** Retrieve the next token from the tokenizer cursor pCursor. This ** method should either return SQLITE_OK and set the values of the ** "OUT" variables identified below, or SQLITE_DONE to indicate that ** the end of the buffer has been reached, or an SQLite error code. ** ** *ppToken should be set to point at a buffer containing the ** normalized version of the token (i.e. after any case-folding and/or ** stemming has been performed). *pnBytes should be set to the length ** of this buffer in bytes. The input text that generated the token is ** identified by the byte offsets returned in *piStartOffset and ** *piEndOffset. *piStartOffset should be set to the index of the first ** byte of the token in the input buffer. *piEndOffset should be set ** to the index of the first byte just past the end of the token in ** the input buffer. ** ** The buffer *ppToken is set to point at is managed by the tokenizer ** implementation. It is only required to be valid until the next call ** to xNext() or xClose(). */ /* TODO(shess) current implementation requires pInput to be ** nul-terminated. This should either be fixed, or pInput/nBytes ** should be converted to zInput. */ int (*xNext)( sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ int *piStartOffset, /* OUT: Byte offset of token in input buffer */ int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ int *piPosition /* OUT: Number of tokens returned before this one */ ); /*********************************************************************** ** Methods below this point are only available if iVersion>=1. */ /* ** Configure the language id of a tokenizer cursor. */ int (*xLanguageid)(sqlite3_tokenizer_cursor *pCsr, int iLangid); }; struct sqlite3_tokenizer { const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ /* Tokenizer implementations will typically add additional fields */ }; struct sqlite3_tokenizer_cursor { sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ /* Tokenizer implementations will typically add additional fields */ }; int fts3_global_term_cnt(int iTerm, int iCol); int fts3_term_cnt(int iTerm, int iCol); #endif /* _FTS3_TOKENIZER_H_ */ /************** End of fts3_tokenizer.h **************************************/ /************** Continuing where we left off in fts3Int.h ********************/ /************** Include fts3_hash.h in the middle of fts3Int.h ***************/ /************** Begin file fts3_hash.h ***************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the header file for the generic hash-table implementation ** used in SQLite. We've modified it slightly to serve as a standalone ** hash table implementation for the full-text indexing module. ** */ #ifndef _FTS3_HASH_H_ #define _FTS3_HASH_H_ /* Forward declarations of structures. */ typedef struct Fts3Hash Fts3Hash; typedef struct Fts3HashElem Fts3HashElem; /* A complete hash table is an instance of the following structure. ** The internals of this structure are intended to be opaque -- client ** code should not attempt to access or modify the fields of this structure ** directly. Change this structure only by using the routines below. ** However, many of the "procedures" and "functions" for modifying and ** accessing this structure are really macros, so we can't really make ** this structure opaque. */ struct Fts3Hash { char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */ char copyKey; /* True if copy of key made on insert */ int count; /* Number of entries in this table */ Fts3HashElem *first; /* The first element of the array */ int htsize; /* Number of buckets in the hash table */ struct _fts3ht { /* the hash table */ int count; /* Number of entries with this hash */ Fts3HashElem *chain; /* Pointer to first entry with this hash */ } *ht; }; /* Each element in the hash table is an instance of the following ** structure. All elements are stored on a single doubly-linked list. ** ** Again, this structure is intended to be opaque, but it can't really ** be opaque because it is used by macros. */ struct Fts3HashElem { Fts3HashElem *next, *prev; /* Next and previous elements in the table */ void *data; /* Data associated with this element */ void *pKey; int nKey; /* Key associated with this element */ }; /* ** There are 2 different modes of operation for a hash table: ** ** FTS3_HASH_STRING pKey points to a string that is nKey bytes long ** (including the null-terminator, if any). Case ** is respected in comparisons. ** ** FTS3_HASH_BINARY pKey points to binary data nKey bytes long. ** memcmp() is used to compare keys. ** ** A copy of the key is made if the copyKey parameter to fts3HashInit is 1. */ #define FTS3_HASH_STRING 1 #define FTS3_HASH_BINARY 2 /* ** Access routines. To delete, insert a NULL pointer. */ SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey); SQLITE_PRIVATE void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData); SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey); SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash*); SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int); /* ** Shorthand for the functions above */ #define fts3HashInit sqlite3Fts3HashInit #define fts3HashInsert sqlite3Fts3HashInsert #define fts3HashFind sqlite3Fts3HashFind #define fts3HashClear sqlite3Fts3HashClear #define fts3HashFindElem sqlite3Fts3HashFindElem /* ** Macros for looping over all elements of a hash table. The idiom is ** like this: ** ** Fts3Hash h; ** Fts3HashElem *p; ** ... ** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){ ** SomeStructure *pData = fts3HashData(p); ** // do something with pData ** } */ #define fts3HashFirst(H) ((H)->first) #define fts3HashNext(E) ((E)->next) #define fts3HashData(E) ((E)->data) #define fts3HashKey(E) ((E)->pKey) #define fts3HashKeysize(E) ((E)->nKey) /* ** Number of entries in a hash table */ #define fts3HashCount(H) ((H)->count) #endif /* _FTS3_HASH_H_ */ /************** End of fts3_hash.h *******************************************/ /************** Continuing where we left off in fts3Int.h ********************/ /* ** This constant determines the maximum depth of an FTS expression tree ** that the library will create and use. FTS uses recursion to perform ** various operations on the query tree, so the disadvantage of a large ** limit is that it may allow very large queries to use large amounts ** of stack space (perhaps causing a stack overflow). */ #ifndef SQLITE_FTS3_MAX_EXPR_DEPTH # define SQLITE_FTS3_MAX_EXPR_DEPTH 12 #endif /* ** This constant controls how often segments are merged. Once there are ** FTS3_MERGE_COUNT segments of level N, they are merged into a single ** segment of level N+1. */ #define FTS3_MERGE_COUNT 16 /* ** This is the maximum amount of data (in bytes) to store in the ** Fts3Table.pendingTerms hash table. Normally, the hash table is ** populated as documents are inserted/updated/deleted in a transaction ** and used to create a new segment when the transaction is committed. ** However if this limit is reached midway through a transaction, a new ** segment is created and the hash table cleared immediately. */ #define FTS3_MAX_PENDING_DATA (1*1024*1024) /* ** Macro to return the number of elements in an array. SQLite has a ** similar macro called ArraySize(). Use a different name to avoid ** a collision when building an amalgamation with built-in FTS3. */ #define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0]))) #ifndef MIN # define MIN(x,y) ((x)<(y)?(x):(y)) #endif #ifndef MAX # define MAX(x,y) ((x)>(y)?(x):(y)) #endif /* ** Maximum length of a varint encoded integer. The varint format is different ** from that used by SQLite, so the maximum length is 10, not 9. */ #define FTS3_VARINT_MAX 10 #define FTS3_BUFFER_PADDING 8 /* ** FTS4 virtual tables may maintain multiple indexes - one index of all terms ** in the document set and zero or more prefix indexes. All indexes are stored ** as one or more b+-trees in the %_segments and %_segdir tables. ** ** It is possible to determine which index a b+-tree belongs to based on the ** value stored in the "%_segdir.level" column. Given this value L, the index ** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with ** level values between 0 and 1023 (inclusive) belong to index 0, all levels ** between 1024 and 2047 to index 1, and so on. ** ** It is considered impossible for an index to use more than 1024 levels. In ** theory though this may happen, but only after at least ** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables. */ #define FTS3_SEGDIR_MAXLEVEL 1024 #define FTS3_SEGDIR_MAXLEVEL_STR "1024" /* ** The testcase() macro is only used by the amalgamation. If undefined, ** make it a no-op. */ #ifndef testcase # define testcase(X) #endif /* ** Terminator values for position-lists and column-lists. */ #define POS_COLUMN (1) /* Column-list terminator */ #define POS_END (0) /* Position-list terminator */ /* ** The assert_fts3_nc() macro is similar to the assert() macro, except that it ** is used for assert() conditions that are true only if it can be ** guranteed that the database is not corrupt. */ #ifdef SQLITE_DEBUG SQLITE_API extern int sqlite3_fts3_may_be_corrupt; # define assert_fts3_nc(x) assert(sqlite3_fts3_may_be_corrupt || (x)) #else # define assert_fts3_nc(x) assert(x) #endif /* ** This section provides definitions to allow the ** FTS3 extension to be compiled outside of the ** amalgamation. */ #ifndef SQLITE_AMALGAMATION /* ** Macros indicating that conditional expressions are always true or ** false. */ #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 #endif #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif /* ** Internal types used by SQLite. */ typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */ typedef short int i16; /* 2-byte (or larger) signed integer */ typedef unsigned int u32; /* 4-byte unsigned integer */ typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */ typedef sqlite3_int64 i64; /* 8-byte signed integer */ /* ** Macro used to suppress compiler warnings for unused parameters. */ #define UNUSED_PARAMETER(x) (void)(x) /* ** Activate assert() only if SQLITE_TEST is enabled. */ #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif /* ** The TESTONLY macro is used to enclose variable declarations or ** other bits of code that are needed to support the arguments ** within testcase() and assert() macros. */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) # define TESTONLY(X) X #else # define TESTONLY(X) #endif #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) #define deliberate_fall_through #endif /* SQLITE_AMALGAMATION */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3Fts3Corrupt(void); # define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt() #else # define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB #endif typedef struct Fts3Table Fts3Table; typedef struct Fts3Cursor Fts3Cursor; typedef struct Fts3Expr Fts3Expr; typedef struct Fts3Phrase Fts3Phrase; typedef struct Fts3PhraseToken Fts3PhraseToken; typedef struct Fts3Doclist Fts3Doclist; typedef struct Fts3SegFilter Fts3SegFilter; typedef struct Fts3DeferredToken Fts3DeferredToken; typedef struct Fts3SegReader Fts3SegReader; typedef struct Fts3MultiSegReader Fts3MultiSegReader; typedef struct MatchinfoBuffer MatchinfoBuffer; /* ** A connection to a fulltext index is an instance of the following ** structure. The xCreate and xConnect methods create an instance ** of this structure and xDestroy and xDisconnect free that instance. ** All other methods receive a pointer to the structure as one of their ** arguments. */ struct Fts3Table { sqlite3_vtab base; /* Base class used by SQLite core */ sqlite3 *db; /* The database connection */ const char *zDb; /* logical database name */ const char *zName; /* virtual table name */ int nColumn; /* number of named columns in virtual table */ char **azColumn; /* column names. malloced */ u8 *abNotindexed; /* True for 'notindexed' columns */ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ char *zContentTbl; /* content=xxx option, or NULL */ char *zLanguageid; /* languageid=xxx option, or NULL */ int nAutoincrmerge; /* Value configured by 'automerge' */ u32 nLeafAdd; /* Number of leaf blocks added this trans */ int bLock; /* Used to prevent recursive content= tbls */ /* Precompiled statements used by the implementation. Each of these ** statements is run and reset within a single virtual table API call. */ sqlite3_stmt *aStmt[40]; sqlite3_stmt *pSeekStmt; /* Cache for fts3CursorSeekStmt() */ char *zReadExprlist; char *zWriteExprlist; int nNodeSize; /* Soft limit for node size */ u8 bFts4; /* True for FTS4, false for FTS3 */ u8 bHasStat; /* True if %_stat table exists (2==unknown) */ u8 bHasDocsize; /* True if %_docsize table exists */ u8 bDescIdx; /* True if doclists are in reverse order */ u8 bIgnoreSavepoint; /* True to ignore xSavepoint invocations */ int nPgsz; /* Page size for host database */ char *zSegmentsTbl; /* Name of %_segments table */ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */ int iSavepoint; /* ** The following array of hash tables is used to buffer pending index ** updates during transactions. All pending updates buffered at any one ** time must share a common language-id (see the FTS4 langid= feature). ** The current language id is stored in variable iPrevLangid. ** ** A single FTS4 table may have multiple full-text indexes. For each index ** there is an entry in the aIndex[] array. Index 0 is an index of all the ** terms that appear in the document set. Each subsequent index in aIndex[] ** is an index of prefixes of a specific length. ** ** Variable nPendingData contains an estimate the memory consumed by the ** pending data structures, including hash table overhead, but not including ** malloc overhead. When nPendingData exceeds nMaxPendingData, all hash ** tables are flushed to disk. Variable iPrevDocid is the docid of the most ** recently inserted record. */ int nIndex; /* Size of aIndex[] */ struct Fts3Index { int nPrefix; /* Prefix length (0 for main terms index) */ Fts3Hash hPending; /* Pending terms table for this index */ } *aIndex; int nMaxPendingData; /* Max pending data before flush to disk */ int nPendingData; /* Current bytes of pending data */ sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */ int iPrevLangid; /* Langid of recently inserted document */ int bPrevDelete; /* True if last operation was a delete */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* State variables used for validating that the transaction control ** methods of the virtual table are called at appropriate times. These ** values do not contribute to FTS functionality; they are used for ** verifying the operation of the SQLite core. */ int inTransaction; /* True after xBegin but before xCommit/xRollback */ int mxSavepoint; /* Largest valid xSavepoint integer */ #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* True to disable the incremental doclist optimization. This is controled ** by special insert command 'test-no-incr-doclist'. */ int bNoIncrDoclist; /* Number of segments in a level */ int nMergeCount; #endif }; /* Macro to find the number of segments to merge */ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) # define MergeCount(P) ((P)->nMergeCount) #else # define MergeCount(P) FTS3_MERGE_COUNT #endif /* ** When the core wants to read from the virtual table, it creates a ** virtual table cursor (an instance of the following structure) using ** the xOpen method. Cursors are destroyed using the xClose method. */ struct Fts3Cursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ i16 eSearch; /* Search strategy (see below) */ u8 isEof; /* True if at End Of Results */ u8 isRequireSeek; /* True if must seek pStmt to %_content row */ u8 bSeekStmt; /* True if pStmt is a seek */ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ Fts3Expr *pExpr; /* Parsed MATCH query string */ int iLangid; /* Language being queried for */ int nPhrase; /* Number of matchable phrases in query */ Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ char *pNextId; /* Pointer into the body of aDoclist */ char *aDoclist; /* List of docids for full-text queries */ int nDoclist; /* Size of buffer at aDoclist */ u8 bDesc; /* True to sort in descending order */ int eEvalmode; /* An FTS3_EVAL_XX constant */ int nRowAvg; /* Average size of database rows, in pages */ sqlite3_int64 nDoc; /* Documents in table */ i64 iMinDocid; /* Minimum docid to return */ i64 iMaxDocid; /* Maximum docid to return */ int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */ MatchinfoBuffer *pMIBuffer; /* Buffer for matchinfo data */ }; #define FTS3_EVAL_FILTER 0 #define FTS3_EVAL_NEXT 1 #define FTS3_EVAL_MATCHINFO 2 /* ** The Fts3Cursor.eSearch member is always set to one of the following. ** Actualy, Fts3Cursor.eSearch can be greater than or equal to ** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index ** of the column to be searched. For example, in ** ** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d); ** SELECT docid FROM ex1 WHERE b MATCH 'one two three'; ** ** Because the LHS of the MATCH operator is 2nd column "b", ** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a, ** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1" ** indicating that all columns should be searched, ** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4. */ #define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */ #define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */ #define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */ /* ** The lower 16-bits of the sqlite3_index_info.idxNum value set by ** the xBestIndex() method contains the Fts3Cursor.eSearch value described ** above. The upper 16-bits contain a combination of the following ** bits, used to describe extra constraints on full-text searches. */ #define FTS3_HAVE_LANGID 0x00010000 /* languageid=? */ #define FTS3_HAVE_DOCID_GE 0x00020000 /* docid>=? */ #define FTS3_HAVE_DOCID_LE 0x00040000 /* docid<=? */ struct Fts3Doclist { char *aAll; /* Array containing doclist (or NULL) */ int nAll; /* Size of a[] in bytes */ char *pNextDocid; /* Pointer to next docid */ sqlite3_int64 iDocid; /* Current docid (if pList!=0) */ int bFreeList; /* True if pList should be sqlite3_free()d */ char *pList; /* Pointer to position list following iDocid */ int nList; /* Length of position list */ }; /* ** A "phrase" is a sequence of one or more tokens that must match in ** sequence. A single token is the base case and the most common case. ** For a sequence of tokens contained in double-quotes (i.e. "one two three") ** nToken will be the number of tokens in the string. */ struct Fts3PhraseToken { char *z; /* Text of the token */ int n; /* Number of bytes in buffer z */ int isPrefix; /* True if token ends with a "*" character */ int bFirst; /* True if token must appear at position 0 */ /* Variables above this point are populated when the expression is ** parsed (by code in fts3_expr.c). Below this point the variables are ** used when evaluating the expression. */ Fts3DeferredToken *pDeferred; /* Deferred token object for this token */ Fts3MultiSegReader *pSegcsr; /* Segment-reader for this token */ }; struct Fts3Phrase { /* Cache of doclist for this phrase. */ Fts3Doclist doclist; int bIncr; /* True if doclist is loaded incrementally */ int iDoclistToken; /* Used by sqlite3Fts3EvalPhrasePoslist() if this is a descendent of an ** OR condition. */ char *pOrPoslist; i64 iOrDocid; /* Variables below this point are populated by fts3_expr.c when parsing ** a MATCH expression. Everything above is part of the evaluation phase. */ int nToken; /* Number of tokens in the phrase */ int iColumn; /* Index of column this phrase must match */ Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */ }; /* ** A tree of these objects forms the RHS of a MATCH operator. ** ** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist ** points to a malloced buffer, size nDoclist bytes, containing the results ** of this phrase query in FTS3 doclist format. As usual, the initial ** "Length" field found in doclists stored on disk is omitted from this ** buffer. ** ** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global ** matchinfo data. If it is not NULL, it points to an array of size nCol*3, ** where nCol is the number of columns in the queried FTS table. The array ** is populated as follows: ** ** aMI[iCol*3 + 0] = Undefined ** aMI[iCol*3 + 1] = Number of occurrences ** aMI[iCol*3 + 2] = Number of rows containing at least one instance ** ** The aMI array is allocated using sqlite3_malloc(). It should be freed ** when the expression node is. */ struct Fts3Expr { int eType; /* One of the FTSQUERY_XXX values defined below */ int nNear; /* Valid if eType==FTSQUERY_NEAR */ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */ Fts3Expr *pLeft; /* Left operand */ Fts3Expr *pRight; /* Right operand */ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */ /* The following are used by the fts3_eval.c module. */ sqlite3_int64 iDocid; /* Current docid */ u8 bEof; /* True this expression is at EOF already */ u8 bStart; /* True if iDocid is valid */ u8 bDeferred; /* True if this expression is entirely deferred */ /* The following are used by the fts3_snippet.c module. */ int iPhrase; /* Index of this phrase in matchinfo() results */ u32 *aMI; /* See above */ }; /* ** Candidate values for Fts3Query.eType. Note that the order of the first ** four values is in order of precedence when parsing expressions. For ** example, the following: ** ** "a OR b AND c NOT d NEAR e" ** ** is equivalent to: ** ** "a OR (b AND (c NOT (d NEAR e)))" */ #define FTSQUERY_NEAR 1 #define FTSQUERY_NOT 2 #define FTSQUERY_AND 3 #define FTSQUERY_OR 4 #define FTSQUERY_PHRASE 5 /* fts3_write.c */ SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*); SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *); SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64, sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); SQLITE_PRIVATE int sqlite3Fts3SegReaderPending( Fts3Table*,int,const char*,int,int,Fts3SegReader**); SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *); SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*); SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **); #ifndef SQLITE_DISABLE_FTS4_DEFERRED SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int); SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *); SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *); SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *); #else # define sqlite3Fts3FreeDeferredTokens(x) # define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK # define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK # define sqlite3Fts3FreeDeferredDoclists(x) # define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK #endif SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *); /* Special values interpreted by sqlite3SegReaderCursor() */ #define FTS3_SEGCURSOR_PENDING -1 #define FTS3_SEGCURSOR_ALL -2 SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*); SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *); SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *); SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(Fts3Table *, int, int, int, const char *, int, int, int, Fts3MultiSegReader *); /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */ #define FTS3_SEGMENT_REQUIRE_POS 0x00000001 #define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004 #define FTS3_SEGMENT_PREFIX 0x00000008 #define FTS3_SEGMENT_SCAN 0x00000010 #define FTS3_SEGMENT_FIRST 0x00000020 /* Type passed as 4th argument to SegmentReaderIterate() */ struct Fts3SegFilter { const char *zTerm; int nTerm; int iCol; int flags; }; struct Fts3MultiSegReader { /* Used internally by sqlite3Fts3SegReaderXXX() calls */ Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */ int nSegment; /* Size of apSegment array */ int nAdvance; /* How many seg-readers to advance */ Fts3SegFilter *pFilter; /* Pointer to filter object */ char *aBuffer; /* Buffer to merge doclists in */ i64 nBuffer; /* Allocated size of aBuffer[] in bytes */ int iColFilter; /* If >=0, filter for this column */ int bRestart; /* Used by fts3.c only. */ int nCost; /* Cost of running iterator */ int bLookup; /* True if a lookup of a single entry. */ /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */ char *zTerm; /* Pointer to term buffer */ int nTerm; /* Size of zTerm in bytes */ char *aDoclist; /* Pointer to doclist buffer */ int nDoclist; /* Size of aDoclist[] in bytes */ }; SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table*,int,int); #define fts3GetVarint32(p, piVal) ( \ (*(u8*)(p)&0x80) ? sqlite3Fts3GetVarint32(p, piVal) : (*piVal=*(u8*)(p), 1) \ ) /* fts3.c */ SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char**,const char*,...); SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64); SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *, sqlite_uint64 *); SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded(const char*,const char*,sqlite3_int64*); SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *); SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64); SQLITE_PRIVATE void sqlite3Fts3Dequote(char *); SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*); SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *); SQLITE_PRIVATE int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *); SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int*, Fts3Table*); SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc); SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut); /* fts3_tokenizer.c */ SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *, int *); SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *); SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, sqlite3_tokenizer **, char ** ); SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char); /* fts3_snippet.c */ SQLITE_PRIVATE void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*); SQLITE_PRIVATE void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *, const char *, const char *, int, int ); SQLITE_PRIVATE void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *); SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p); /* fts3_expr.c */ SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int, char **, int, int, int, const char *, int, Fts3Expr **, char ** ); SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*); SQLITE_PRIVATE int sqlite3Fts3InitTerm(sqlite3 *db); #endif SQLITE_PRIVATE void *sqlite3Fts3MallocZero(i64 nByte); SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int, sqlite3_tokenizer_cursor ** ); /* fts3_aux.c */ SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db); SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *); SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart( Fts3Table*, Fts3MultiSegReader*, int, const char*, int); SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext( Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *); SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **); SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *); SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr); /* fts3_tokenize_vtab.c */ SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *, void(*xDestroy)(void*)); /* fts3_unicode2.c (functions generated by parsing unicode text files) */ #ifndef SQLITE_DISABLE_FTS3_UNICODE SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int); SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int); SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int); #endif SQLITE_PRIVATE int sqlite3Fts3ExprIterate(Fts3Expr*, int (*x)(Fts3Expr*,int,void*), void*); SQLITE_PRIVATE int sqlite3Fts3IntegrityCheck(Fts3Table *p, int *pbOk); #endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */ #endif /* _FTSINT_H */ /************** End of fts3Int.h *********************************************/ /************** Continuing where we left off in fts3.c ***********************/ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) # define SQLITE_CORE 1 #endif /* #include */ /* #include */ /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3.h" */ #ifndef SQLITE_CORE /* # include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #endif typedef struct Fts3HashWrapper Fts3HashWrapper; struct Fts3HashWrapper { Fts3Hash hash; /* Hash table */ int nRef; /* Number of pointers to this object */ }; static int fts3EvalNext(Fts3Cursor *pCsr); static int fts3EvalStart(Fts3Cursor *pCsr); static int fts3TermSegReaderCursor( Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); /* ** This variable is set to false when running tests for which the on disk ** structures should not be corrupt. Otherwise, true. If it is false, extra ** assert() conditions in the fts3 code are activated - conditions that are ** only true if it is guaranteed that the fts3 database is not corrupt. */ #ifdef SQLITE_DEBUG SQLITE_API int sqlite3_fts3_may_be_corrupt = 1; #endif /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. ** The number of bytes written is returned. */ SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; sqlite_uint64 vu = v; do{ *q++ = (unsigned char) ((vu & 0x7f) | 0x80); vu >>= 7; }while( vu!=0 ); q[-1] &= 0x7f; /* turn off high bit in final byte */ assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); return (int) (q - (unsigned char *)p); } #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \ v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \ if( (v & mask2)==0 ){ var = v; return ret; } #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \ v = (*ptr++); \ if( (v & mask2)==0 ){ var = v; return ret; } SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){ const unsigned char *p = (const unsigned char*)pBuf; const unsigned char *pStart = p; u32 a; u64 b; int shift; GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1); GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2); GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3); GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4); b = (a & 0x0FFFFFFF ); for(shift=28; shift<=63; shift+=7){ u64 c = *p++; b += (c&0x7F) << shift; if( (c & 0x80)==0 ) break; } *v = b; return (int)(p - pStart); } /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){ return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v); } /* ** Read a 64-bit variable-length integer from memory starting at p[0] and ** not extending past pEnd[-1]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded( const char *pBuf, const char *pEnd, sqlite_int64 *v ){ const unsigned char *p = (const unsigned char*)pBuf; const unsigned char *pStart = p; const unsigned char *pX = (const unsigned char*)pEnd; u64 b = 0; int shift; for(shift=0; shift<=63; shift+=7){ u64 c = p=0 ); return 5; } /* ** Return the number of bytes required to encode v as a varint */ SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){ int i = 0; do{ i++; v >>= 7; }while( v!=0 ); return i; } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** Examples: ** ** "abc" becomes abc ** 'xyz' becomes xyz ** [pqr] becomes pqr ** `mno` becomes mno ** */ SQLITE_PRIVATE void sqlite3Fts3Dequote(char *z){ char quote; /* Quote character (if any ) */ quote = z[0]; if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ int iIn = 1; /* Index of next byte to read from input */ int iOut = 0; /* Index of next byte to write to output */ /* If the first byte was a '[', then the close-quote character is a ']' */ if( quote=='[' ) quote = ']'; while( z[iIn] ){ if( z[iIn]==quote ){ if( z[iIn+1]!=quote ) break; z[iOut++] = quote; iIn += 2; }else{ z[iOut++] = z[iIn++]; } } z[iOut] = '\0'; } } /* ** Read a single varint from the doclist at *pp and advance *pp to point ** to the first byte past the end of the varint. Add the value of the varint ** to *pVal. */ static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ sqlite3_int64 iVal; *pp += sqlite3Fts3GetVarint(*pp, &iVal); *pVal += iVal; } /* ** When this function is called, *pp points to the first byte following a ** varint that is part of a doclist (or position-list, or any other list ** of varints). This function moves *pp to point to the start of that varint, ** and sets *pVal by the varint value. ** ** Argument pStart points to the first byte of the doclist that the ** varint is part of. */ static void fts3GetReverseVarint( char **pp, char *pStart, sqlite3_int64 *pVal ){ sqlite3_int64 iVal; char *p; /* Pointer p now points at the first byte past the varint we are ** interested in. So, unless the doclist is corrupt, the 0x80 bit is ** clear on character p[-1]. */ for(p = (*pp)-2; p>=pStart && *p&0x80; p--); p++; *pp = p; sqlite3Fts3GetVarint(p, &iVal); *pVal = iVal; } /* ** The xDisconnect() virtual table method. */ static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table *)pVtab; int i; assert( p->nPendingData==0 ); assert( p->pSegments==0 ); /* Free any prepared statements held */ sqlite3_finalize(p->pSeekStmt); for(i=0; iaStmt); i++){ sqlite3_finalize(p->aStmt[i]); } sqlite3_free(p->zSegmentsTbl); sqlite3_free(p->zReadExprlist); sqlite3_free(p->zWriteExprlist); sqlite3_free(p->zContentTbl); sqlite3_free(p->zLanguageid); /* Invoke the tokenizer destructor to free the tokenizer. */ p->pTokenizer->pModule->xDestroy(p->pTokenizer); sqlite3_free(p); return SQLITE_OK; } /* ** Write an error message into *pzErr */ SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){ va_list ap; sqlite3_free(*pzErr); va_start(ap, zFormat); *pzErr = sqlite3_vmprintf(zFormat, ap); va_end(ap); } /* ** Construct one or more SQL statements from the format string given ** and then evaluate those statements. The success code is written ** into *pRc. ** ** If *pRc is initially non-zero then this routine is a no-op. */ static void fts3DbExec( int *pRc, /* Success code */ sqlite3 *db, /* Database in which to run SQL */ const char *zFormat, /* Format string for SQL */ ... /* Arguments to the format string */ ){ va_list ap; char *zSql; if( *pRc ) return; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( zSql==0 ){ *pRc = SQLITE_NOMEM; }else{ *pRc = sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); } } /* ** The xDestroy() virtual table method. */ static int fts3DestroyMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return code */ const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */ sqlite3 *db = p->db; /* Database handle */ /* Drop the shadow tables */ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments';" "DROP TABLE IF EXISTS %Q.'%q_segdir';" "DROP TABLE IF EXISTS %Q.'%q_docsize';" "DROP TABLE IF EXISTS %Q.'%q_stat';" "%s DROP TABLE IF EXISTS %Q.'%q_content';", zDb, p->zName, zDb, p->zName, zDb, p->zName, zDb, p->zName, (p->zContentTbl ? "--" : ""), zDb,p->zName ); /* If everything has worked, invoke fts3DisconnectMethod() to free the ** memory associated with the Fts3Table structure and return SQLITE_OK. ** Otherwise, return an SQLite error code. */ return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); } /* ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table ** passed as the first argument. This is done as part of the xConnect() ** and xCreate() methods. ** ** If *pRc is non-zero when this function is called, it is a no-op. ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc ** before returning. */ static void fts3DeclareVtab(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int i; /* Iterator variable */ int rc; /* Return code */ char *zSql; /* SQL statement passed to declare_vtab() */ char *zCols; /* List of user defined columns */ const char *zLanguageid; zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid"); sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); sqlite3_vtab_config(p->db, SQLITE_VTAB_INNOCUOUS); /* Create a list of user columns for the virtual table */ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); for(i=1; zCols && inColumn; i++){ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); } /* Create the whole "CREATE TABLE" statement to pass to SQLite */ zSql = sqlite3_mprintf( "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)", zCols, p->zName, zLanguageid ); if( !zCols || !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_declare_vtab(p->db, zSql); } sqlite3_free(zSql); sqlite3_free(zCols); *pRc = rc; } } /* ** Create the %_stat table if it does not already exist. */ SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){ fts3DbExec(pRc, p->db, "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'" "(id INTEGER PRIMARY KEY, value BLOB);", p->zDb, p->zName ); if( (*pRc)==SQLITE_OK ) p->bHasStat = 1; } /* ** Create the backing store tables (%_content, %_segments and %_segdir) ** required by the FTS3 table passed as the only argument. This is done ** as part of the vtab xCreate() method. ** ** If the p->bHasDocsize boolean is true (indicating that this is an ** FTS4 table, not an FTS3 table) then also create the %_docsize and ** %_stat tables required by FTS4. */ static int fts3CreateTables(Fts3Table *p){ int rc = SQLITE_OK; /* Return code */ int i; /* Iterator variable */ sqlite3 *db = p->db; /* The database connection */ if( p->zContentTbl==0 ){ const char *zLanguageid = p->zLanguageid; char *zContentCols; /* Columns of %_content table */ /* Create a list of user columns for the content table */ zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); for(i=0; zContentCols && inColumn; i++){ char *z = p->azColumn[i]; zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); } if( zLanguageid && zContentCols ){ zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid); } if( zContentCols==0 ) rc = SQLITE_NOMEM; /* Create the content table */ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_content'(%s)", p->zDb, p->zName, zContentCols ); sqlite3_free(zContentCols); } /* Create other tables */ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", p->zDb, p->zName ); fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_segdir'(" "level INTEGER," "idx INTEGER," "start_block INTEGER," "leaves_end_block INTEGER," "end_block INTEGER," "root BLOB," "PRIMARY KEY(level, idx)" ");", p->zDb, p->zName ); if( p->bHasDocsize ){ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", p->zDb, p->zName ); } assert( p->bHasStat==p->bFts4 ); if( p->bHasStat ){ sqlite3Fts3CreateStatTable(&rc, p); } return rc; } /* ** Store the current database page-size in bytes in p->nPgsz. ** ** If *pRc is non-zero when this function is called, it is a no-op. ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc ** before returning. */ static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int rc; /* Return code */ char *zSql; /* SQL text "PRAGMA %Q.page_size" */ sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_step(pStmt); p->nPgsz = sqlite3_column_int(pStmt, 0); rc = sqlite3_finalize(pStmt); }else if( rc==SQLITE_AUTH ){ p->nPgsz = 1024; rc = SQLITE_OK; } } assert( p->nPgsz>0 || rc!=SQLITE_OK ); sqlite3_free(zSql); *pRc = rc; } } /* ** "Special" FTS4 arguments are column specifications of the following form: ** ** = ** ** There may not be whitespace surrounding the "=" character. The ** term may be quoted, but the may not. */ static int fts3IsSpecialColumn( const char *z, int *pnKey, char **pzValue ){ char *zValue; const char *zCsr = z; while( *zCsr!='=' ){ if( *zCsr=='\0' ) return 0; zCsr++; } *pnKey = (int)(zCsr-z); zValue = sqlite3_mprintf("%s", &zCsr[1]); if( zValue ){ sqlite3Fts3Dequote(zValue); } *pzValue = zValue; return 1; } /* ** Append the output of a printf() style formatting to an existing string. */ static void fts3Appendf( int *pRc, /* IN/OUT: Error code */ char **pz, /* IN/OUT: Pointer to string buffer */ const char *zFormat, /* Printf format string to append */ ... /* Arguments for printf format string */ ){ if( *pRc==SQLITE_OK ){ va_list ap; char *z; va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( z && *pz ){ char *z2 = sqlite3_mprintf("%s%s", *pz, z); sqlite3_free(z); z = z2; } if( z==0 ) *pRc = SQLITE_NOMEM; sqlite3_free(*pz); *pz = z; } } /* ** Return a copy of input string zInput enclosed in double-quotes (") and ** with all double quote characters escaped. For example: ** ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" ** ** The pointer returned points to memory obtained from sqlite3_malloc(). It ** is the callers responsibility to call sqlite3_free() to release this ** memory. */ static char *fts3QuoteId(char const *zInput){ sqlite3_int64 nRet; char *zRet; nRet = 2 + (int)strlen(zInput)*2 + 1; zRet = sqlite3_malloc64(nRet); if( zRet ){ int i; char *z = zRet; *(z++) = '"'; for(i=0; zInput[i]; i++){ if( zInput[i]=='"' ) *(z++) = '"'; *(z++) = zInput[i]; } *(z++) = '"'; *(z++) = '\0'; } return zRet; } /* ** Return a list of comma separated SQL expressions and a FROM clause that ** could be used in a SELECT statement such as the following: ** ** SELECT FROM %_content AS x ... ** ** to return the docid, followed by each column of text data in order ** from left to write. If parameter zFunc is not NULL, then instead of ** being returned directly each column of text data is passed to an SQL ** function named zFunc first. For example, if zFunc is "unzip" and the ** table has the three user-defined columns "a", "b", and "c", the following ** string is returned: ** ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( p->zContentTbl==0 ){ if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "docid"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", x.%Q", "langid"); } sqlite3_free(zFree); }else{ fts3Appendf(pRc, &zRet, "rowid"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid); } } fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x", p->zDb, (p->zContentTbl ? p->zContentTbl : p->zName), (p->zContentTbl ? "" : "_content") ); return zRet; } /* ** Return a list of N comma separated question marks, where N is the number ** of columns in the %_content table (one for the docid plus one for each ** user-defined text column). ** ** If argument zFunc is not NULL, then all but the first question mark ** is preceded by zFunc and an open bracket, and followed by a closed ** bracket. For example, if zFunc is "zip" and the FTS3 table has three ** user-defined text columns, the following string is returned: ** ** "?, zip(?), zip(?), zip(?)" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "?"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", ?"); } sqlite3_free(zFree); return zRet; } /* ** Buffer z contains a positive integer value encoded as utf-8 text. ** Decode this value and store it in *pnOut, returning the number of bytes ** consumed. If an overflow error occurs return a negative value. */ SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut){ u64 iVal = 0; int i; for(i=0; z[i]>='0' && z[i]<='9'; i++){ iVal = iVal*10 + (z[i] - '0'); if( iVal>0x7FFFFFFF ) return -1; } *pnOut = (int)iVal; return i; } /* ** This function interprets the string at (*pp) as a non-negative integer ** value. It reads the integer and sets *pnOut to the value read, then ** sets *pp to point to the byte immediately following the last byte of ** the integer value. ** ** Only decimal digits ('0'..'9') may be part of an integer value. ** ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and ** the output value undefined. Otherwise SQLITE_OK is returned. ** ** This function is used when parsing the "prefix=" FTS4 parameter. */ static int fts3GobbleInt(const char **pp, int *pnOut){ const int MAX_NPREFIX = 10000000; int nInt = 0; /* Output value */ int nByte; nByte = sqlite3Fts3ReadInt(*pp, &nInt); if( nInt>MAX_NPREFIX ){ nInt = 0; } if( nByte==0 ){ return SQLITE_ERROR; } *pnOut = nInt; *pp += nByte; return SQLITE_OK; } /* ** This function is called to allocate an array of Fts3Index structures ** representing the indexes maintained by the current FTS table. FTS tables ** always maintain the main "terms" index, but may also maintain one or ** more "prefix" indexes, depending on the value of the "prefix=" parameter ** (if any) specified as part of the CREATE VIRTUAL TABLE statement. ** ** Argument zParam is passed the value of the "prefix=" option if one was ** specified, or NULL otherwise. ** ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to ** the allocated array. *pnIndex is set to the number of elements in the ** array. If an error does occur, an SQLite error code is returned. ** ** Regardless of whether or not an error is returned, it is the responsibility ** of the caller to call sqlite3_free() on the output array to free it. */ static int fts3PrefixParameter( const char *zParam, /* ABC in prefix=ABC parameter to parse */ int *pnIndex, /* OUT: size of *apIndex[] array */ struct Fts3Index **apIndex /* OUT: Array of indexes for this table */ ){ struct Fts3Index *aIndex; /* Allocated array */ int nIndex = 1; /* Number of entries in array */ if( zParam && zParam[0] ){ const char *p; nIndex++; for(p=zParam; *p; p++){ if( *p==',' ) nIndex++; } } aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex); *apIndex = aIndex; if( !aIndex ){ return SQLITE_NOMEM; } memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex); if( zParam ){ const char *p = zParam; int i; for(i=1; i=0 ); if( nPrefix==0 ){ nIndex--; i--; }else{ aIndex[i].nPrefix = nPrefix; } p++; } } *pnIndex = nIndex; return SQLITE_OK; } /* ** This function is called when initializing an FTS4 table that uses the ** content=xxx option. It determines the number of and names of the columns ** of the new FTS4 table. ** ** The third argument passed to this function is the value passed to the ** config=xxx option (i.e. "xxx"). This function queries the database for ** a table of that name. If found, the output variables are populated ** as follows: ** ** *pnCol: Set to the number of columns table xxx has, ** ** *pnStr: Set to the total amount of space required to store a copy ** of each columns name, including the nul-terminator. ** ** *pazCol: Set to point to an array of *pnCol strings. Each string is ** the name of the corresponding column in table xxx. The array ** and its contents are allocated using a single allocation. It ** is the responsibility of the caller to free this allocation ** by eventually passing the *pazCol value to sqlite3_free(). ** ** If the table cannot be found, an error code is returned and the output ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is ** returned (and the output variables are undefined). */ static int fts3ContentColumns( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ const char *zTbl, /* Name of content table */ const char ***pazCol, /* OUT: Malloc'd array of column names */ int *pnCol, /* OUT: Size of array *pazCol */ int *pnStr, /* OUT: Bytes of string content */ char **pzErr /* OUT: error message */ ){ int rc = SQLITE_OK; /* Return code */ char *zSql; /* "SELECT *" statement on zTbl */ sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db)); } } sqlite3_free(zSql); if( rc==SQLITE_OK ){ const char **azCol; /* Output array */ sqlite3_int64 nStr = 0; /* Size of all column names (incl. 0x00) */ int nCol; /* Number of table columns */ int i; /* Used to iterate through columns */ /* Loop through the returned columns. Set nStr to the number of bytes of ** space required to store a copy of each column name, including the ** nul-terminator byte. */ nCol = sqlite3_column_count(pStmt); for(i=0; i module name ("fts3" or "fts4") ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> "column name" and other module argument fields. */ static int fts3InitVtab( int isCreate, /* True for xCreate, false for xConnect */ sqlite3 *db, /* The SQLite database connection */ void *pAux, /* Hash table containing tokenizers */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ char **pzErr /* Write any error message here */ ){ Fts3Hash *pHash = &((Fts3HashWrapper*)pAux)->hash; Fts3Table *p = 0; /* Pointer to allocated vtab */ int rc = SQLITE_OK; /* Return code */ int i; /* Iterator variable */ sqlite3_int64 nByte; /* Size of allocation used for *p */ int iCol; /* Column index */ int nString = 0; /* Bytes required to hold all column names */ int nCol = 0; /* Number of columns in the FTS table */ char *zCsr; /* Space for holding column names */ int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ int nIndex = 0; /* Size of aIndex[] array */ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ /* The results of parsing supported FTS4 key=value options: */ int bNoDocsize = 0; /* True to omit %_docsize table */ int bDescIdx = 0; /* True to store descending indexes */ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ char *zCompress = 0; /* compress=? parameter (or NULL) */ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ char *zContent = 0; /* content=? parameter (or NULL) */ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ char **azNotindexed = 0; /* The set of notindexed= columns */ int nNotindexed = 0; /* Size of azNotindexed[] array */ assert( strlen(argv[0])==4 ); assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) ); nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; nByte = sizeof(const char *) * (argc-2); aCol = (const char **)sqlite3_malloc64(nByte); if( aCol ){ memset((void*)aCol, 0, nByte); azNotindexed = (char **)sqlite3_malloc64(nByte); } if( azNotindexed ){ memset(azNotindexed, 0, nByte); } if( !aCol || !azNotindexed ){ rc = SQLITE_NOMEM; goto fts3_init_out; } /* Loop through all of the arguments passed by the user to the FTS3/4 ** module (i.e. all the column names and special arguments). This loop ** does the following: ** ** + Figures out the number of columns the FTSX table will have, and ** the number of bytes of space that must be allocated to store copies ** of the column names. ** ** + If there is a tokenizer specification included in the arguments, ** initializes the tokenizer pTokenizer. */ for(i=3; rc==SQLITE_OK && i8 && 0==sqlite3_strnicmp(z, "tokenize", 8) && 0==sqlite3Fts3IsIdChar(z[8]) ){ rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); } /* Check if it is an FTS4 special argument. */ else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ struct Fts4Option { const char *zOpt; int nOpt; } aFts4Opt[] = { { "matchinfo", 9 }, /* 0 -> MATCHINFO */ { "prefix", 6 }, /* 1 -> PREFIX */ { "compress", 8 }, /* 2 -> COMPRESS */ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ { "order", 5 }, /* 4 -> ORDER */ { "content", 7 }, /* 5 -> CONTENT */ { "languageid", 10 }, /* 6 -> LANGUAGEID */ { "notindexed", 10 } /* 7 -> NOTINDEXED */ }; int iOpt; if( !zVal ){ rc = SQLITE_NOMEM; }else{ for(iOpt=0; iOptnOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ break; } } switch( iOpt ){ case 0: /* MATCHINFO */ if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal); rc = SQLITE_ERROR; } bNoDocsize = 1; break; case 1: /* PREFIX */ sqlite3_free(zPrefix); zPrefix = zVal; zVal = 0; break; case 2: /* COMPRESS */ sqlite3_free(zCompress); zCompress = zVal; zVal = 0; break; case 3: /* UNCOMPRESS */ sqlite3_free(zUncompress); zUncompress = zVal; zVal = 0; break; case 4: /* ORDER */ if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal); rc = SQLITE_ERROR; } bDescIdx = (zVal[0]=='d' || zVal[0]=='D'); break; case 5: /* CONTENT */ sqlite3_free(zContent); zContent = zVal; zVal = 0; break; case 6: /* LANGUAGEID */ assert( iOpt==6 ); sqlite3_free(zLanguageid); zLanguageid = zVal; zVal = 0; break; case 7: /* NOTINDEXED */ azNotindexed[nNotindexed++] = zVal; zVal = 0; break; default: assert( iOpt==SizeofArray(aFts4Opt) ); sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z); rc = SQLITE_ERROR; break; } sqlite3_free(zVal); } } /* Otherwise, the argument is a column name. */ else { nString += (int)(strlen(z) + 1); aCol[nCol++] = z; } } /* If a content=xxx option was specified, the following: ** ** 1. Ignore any compress= and uncompress= options. ** ** 2. If no column names were specified as part of the CREATE VIRTUAL ** TABLE statement, use all columns from the content table. */ if( rc==SQLITE_OK && zContent ){ sqlite3_free(zCompress); sqlite3_free(zUncompress); zCompress = 0; zUncompress = 0; if( nCol==0 ){ sqlite3_free((void*)aCol); aCol = 0; rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr); /* If a languageid= option was specified, remove the language id ** column from the aCol[] array. */ if( rc==SQLITE_OK && zLanguageid ){ int j; for(j=0; jdb = db; p->nColumn = nCol; p->nPendingData = 0; p->azColumn = (char **)&p[1]; p->pTokenizer = pTokenizer; p->nMaxPendingData = FTS3_MAX_PENDING_DATA; p->bHasDocsize = (isFts4 && bNoDocsize==0); p->bHasStat = (u8)isFts4; p->bFts4 = (u8)isFts4; p->bDescIdx = (u8)bDescIdx; p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */ p->zContentTbl = zContent; p->zLanguageid = zLanguageid; zContent = 0; zLanguageid = 0; TESTONLY( p->inTransaction = -1 ); TESTONLY( p->mxSavepoint = -1 ); p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); p->nIndex = nIndex; for(i=0; iaIndex[i].hPending, FTS3_HASH_STRING, 1); } p->abNotindexed = (u8 *)&p->aIndex[nIndex]; /* Fill in the zName and zDb fields of the vtab structure. */ zCsr = (char *)&p->abNotindexed[nCol]; p->zName = zCsr; memcpy(zCsr, argv[2], nName); zCsr += nName; p->zDb = zCsr; memcpy(zCsr, argv[1], nDb); zCsr += nDb; /* Fill in the azColumn array */ for(iCol=0; iCol0 ){ memcpy(zCsr, z, n); } zCsr[n] = '\0'; sqlite3Fts3Dequote(zCsr); p->azColumn[iCol] = zCsr; zCsr += n+1; assert( zCsr <= &((char *)p)[nByte] ); } /* Fill in the abNotindexed array */ for(iCol=0; iColazColumn[iCol]); for(i=0; iazColumn[iCol], zNot, n) ){ p->abNotindexed[iCol] = 1; sqlite3_free(zNot); azNotindexed[i] = 0; } } } for(i=0; izReadExprlist = fts3ReadExprList(p, zUncompress, &rc); p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); if( rc!=SQLITE_OK ) goto fts3_init_out; /* If this is an xCreate call, create the underlying tables in the ** database. TODO: For xConnect(), it could verify that said tables exist. */ if( isCreate ){ rc = fts3CreateTables(p); } /* Check to see if a legacy fts3 table has been "upgraded" by the ** addition of a %_stat table so that it can use incremental merge. */ if( !isFts4 && !isCreate ){ p->bHasStat = 2; } /* Figure out the page-size for the database. This is required in order to ** estimate the cost of loading large doclists from the database. */ fts3DatabasePageSize(&rc, p); p->nNodeSize = p->nPgsz-35; #if defined(SQLITE_DEBUG)||defined(SQLITE_TEST) p->nMergeCount = FTS3_MERGE_COUNT; #endif /* Declare the table schema to SQLite. */ fts3DeclareVtab(&rc, p); fts3_init_out: sqlite3_free(zPrefix); sqlite3_free(aIndex); sqlite3_free(zCompress); sqlite3_free(zUncompress); sqlite3_free(zContent); sqlite3_free(zLanguageid); for(i=0; ipModule->xDestroy(pTokenizer); } }else{ assert( p->pSegments==0 ); *ppVTab = &p->base; } return rc; } /* ** The xConnect() and xCreate() methods for the virtual table. All the ** work is done in function fts3InitVtab(). */ static int fts3ConnectMethod( sqlite3 *db, /* Database connection */ void *pAux, /* Pointer to tokenizer hash table */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); } static int fts3CreateMethod( sqlite3 *db, /* Database connection */ void *pAux, /* Pointer to tokenizer hash table */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); } /* ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this ** extension is currently being used by a version of SQLite too old to ** support estimatedRows. In that case this function is a no-op. */ static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ #if SQLITE_VERSION_NUMBER>=3008002 if( sqlite3_libversion_number()>=3008002 ){ pIdxInfo->estimatedRows = nRow; } #endif } /* ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this ** extension is currently being used by a version of SQLite too old to ** support index-info flags. In that case this function is a no-op. */ static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){ #if SQLITE_VERSION_NUMBER>=3008012 if( sqlite3_libversion_number()>=3008012 ){ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE; } #endif } /* ** Implementation of the xBestIndex method for FTS3 tables. There ** are three possible strategies, in order of preference: ** ** 1. Direct lookup by rowid or docid. ** 2. Full-text search using a MATCH operator on a non-docid column. ** 3. Linear scan of %_content table. */ static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ Fts3Table *p = (Fts3Table *)pVTab; int i; /* Iterator variable */ int iCons = -1; /* Index of constraint to use */ int iLangidCons = -1; /* Index of langid=x constraint, if present */ int iDocidGe = -1; /* Index of docid>=x constraint, if present */ int iDocidLe = -1; /* Index of docid<=x constraint, if present */ int iIdx; if( p->bLock ){ return SQLITE_ERROR; } /* By default use a full table scan. This is an expensive option, ** so search through the constraints to see if a more efficient ** strategy is possible. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; pInfo->estimatedCost = 5000000; for(i=0; inConstraint; i++){ int bDocid; /* True if this constraint is on docid */ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; if( pCons->usable==0 ){ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ /* There exists an unusable MATCH constraint. This means that if ** the planner does elect to use the results of this call as part ** of the overall query plan the user will see an "unable to use ** function MATCH in the requested context" error. To discourage ** this, return a very high cost here. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; pInfo->estimatedCost = 1e50; fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50); return SQLITE_OK; } continue; } bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1); /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){ pInfo->idxNum = FTS3_DOCID_SEARCH; pInfo->estimatedCost = 1.0; iCons = i; } /* A MATCH constraint. Use a full-text search. ** ** If there is more than one MATCH constraint available, use the first ** one encountered. If there is both a MATCH constraint and a direct ** rowid/docid lookup, prefer the MATCH strategy. This is done even ** though the rowid/docid lookup is faster than a MATCH query, selecting ** it would lead to an "unable to use function MATCH in the requested ** context" error. */ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn ){ pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; pInfo->estimatedCost = 2.0; iCons = i; } /* Equality constraint on the langid column */ if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && pCons->iColumn==p->nColumn + 2 ){ iLangidCons = i; } if( bDocid ){ switch( pCons->op ){ case SQLITE_INDEX_CONSTRAINT_GE: case SQLITE_INDEX_CONSTRAINT_GT: iDocidGe = i; break; case SQLITE_INDEX_CONSTRAINT_LE: case SQLITE_INDEX_CONSTRAINT_LT: iDocidLe = i; break; } } } /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */ if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo); iIdx = 1; if( iCons>=0 ){ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++; pInfo->aConstraintUsage[iCons].omit = 1; } if( iLangidCons>=0 ){ pInfo->idxNum |= FTS3_HAVE_LANGID; pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++; } if( iDocidGe>=0 ){ pInfo->idxNum |= FTS3_HAVE_DOCID_GE; pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++; } if( iDocidLe>=0 ){ pInfo->idxNum |= FTS3_HAVE_DOCID_LE; pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++; } /* Regardless of the strategy selected, FTS can deliver rows in rowid (or ** docid) order. Both ascending and descending are possible. */ if( pInfo->nOrderBy==1 ){ struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0]; if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){ if( pOrder->desc ){ pInfo->idxStr = "DESC"; }else{ pInfo->idxStr = "ASC"; } pInfo->orderByConsumed = 1; } } assert( p->pSegments==0 ); return SQLITE_OK; } /* ** Implementation of xOpen method. */ static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ UNUSED_PARAMETER(pVTab); /* Allocate a buffer large enough for an Fts3Cursor structure. If the ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, ** if the allocation fails, return SQLITE_NOMEM. */ *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); if( !pCsr ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(Fts3Cursor)); return SQLITE_OK; } /* ** Finalize the statement handle at pCsr->pStmt. ** ** Or, if that statement handle is one created by fts3CursorSeekStmt(), ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement ** pointer there instead of finalizing it. */ static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){ if( pCsr->bSeekStmt ){ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; if( p->pSeekStmt==0 ){ p->pSeekStmt = pCsr->pStmt; sqlite3_reset(pCsr->pStmt); pCsr->pStmt = 0; } pCsr->bSeekStmt = 0; } sqlite3_finalize(pCsr->pStmt); } /* ** Free all resources currently held by the cursor passed as the only ** argument. */ static void fts3ClearCursor(Fts3Cursor *pCsr){ fts3CursorFinalizeStmt(pCsr); sqlite3Fts3FreeDeferredTokens(pCsr); sqlite3_free(pCsr->aDoclist); sqlite3Fts3MIBufferFree(pCsr->pMIBuffer); sqlite3Fts3ExprFree(pCsr->pExpr); memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); } /* ** Close the cursor. For additional information see the documentation ** on the xClose method of the virtual table interface. */ static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); fts3ClearCursor(pCsr); assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); sqlite3_free(pCsr); return SQLITE_OK; } /* ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then ** compose and prepare an SQL statement of the form: ** ** "SELECT FROM %_content WHERE rowid = ?" ** ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to ** it. If an error occurs, return an SQLite error code. */ static int fts3CursorSeekStmt(Fts3Cursor *pCsr){ int rc = SQLITE_OK; if( pCsr->pStmt==0 ){ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; char *zSql; if( p->pSeekStmt ){ pCsr->pStmt = p->pSeekStmt; p->pSeekStmt = 0; }else{ zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist); if( !zSql ) return SQLITE_NOMEM; p->bLock++; rc = sqlite3_prepare_v3( p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0 ); p->bLock--; sqlite3_free(zSql); } if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1; } return rc; } /* ** Position the pCsr->pStmt statement so that it is on the row ** of the %_content table that contains the last match. Return ** SQLITE_OK on success. */ static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ int rc = SQLITE_OK; if( pCsr->isRequireSeek ){ rc = fts3CursorSeekStmt(pCsr); if( rc==SQLITE_OK ){ Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab; pTab->bLock++; sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); pCsr->isRequireSeek = 0; if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ pTab->bLock--; return SQLITE_OK; }else{ pTab->bLock--; rc = sqlite3_reset(pCsr->pStmt); if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){ /* If no row was found and no error has occurred, then the %_content ** table is missing a row that is present in the full-text index. ** The data structures are corrupt. */ rc = FTS_CORRUPT_VTAB; pCsr->isEof = 1; } } } } if( rc!=SQLITE_OK && pContext ){ sqlite3_result_error_code(pContext, rc); } return rc; } /* ** This function is used to process a single interior node when searching ** a b-tree for a term or term prefix. The node data is passed to this ** function via the zNode/nNode parameters. The term to search for is ** passed in zTerm/nTerm. ** ** If piFirst is not NULL, then this function sets *piFirst to the blockid ** of the child node that heads the sub-tree that may contain the term. ** ** If piLast is not NULL, then *piLast is set to the right-most child node ** that heads a sub-tree that may contain a term for which zTerm/nTerm is ** a prefix. ** ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. */ static int fts3ScanInteriorNode( const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piFirst, /* OUT: Selected child node */ sqlite3_int64 *piLast /* OUT: Selected child node */ ){ int rc = SQLITE_OK; /* Return code */ const char *zCsr = zNode; /* Cursor to iterate through node */ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ char *zBuffer = 0; /* Buffer to load terms into */ i64 nAlloc = 0; /* Size of allocated buffer */ int isFirstTerm = 1; /* True when processing first term on page */ u64 iChild; /* Block id of child node to descend to */ int nBuffer = 0; /* Total term size */ /* Skip over the 'height' varint that occurs at the start of every ** interior node. Then load the blockid of the left-child of the b-tree ** node into variable iChild. ** ** Even if the data structure on disk is corrupted, this (reading two ** varints from the buffer) does not risk an overread. If zNode is a ** root node, then the buffer comes from a SELECT statement. SQLite does ** not make this guarantee explicitly, but in practice there are always ** either more than 20 bytes of allocated space following the nNode bytes of ** contents, or two zero bytes. Or, if the node is read from the %_segments ** table, then there are always 20 bytes of zeroed padding following the ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). */ zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild); zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild); if( zCsr>zEnd ){ return FTS_CORRUPT_VTAB; } while( zCsrnBuffer ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } } isFirstTerm = 0; zCsr += fts3GetVarint32(zCsr, &nSuffix); assert( nPrefix>=0 && nSuffix>=0 ); if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } if( (i64)nPrefix+nSuffix>nAlloc ){ char *zNew; nAlloc = ((i64)nPrefix+nSuffix) * 2; zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc); if( !zNew ){ rc = SQLITE_NOMEM; goto finish_scan; } zBuffer = zNew; } assert( zBuffer ); memcpy(&zBuffer[nPrefix], zCsr, nSuffix); nBuffer = nPrefix + nSuffix; zCsr += nSuffix; /* Compare the term we are searching for with the term just loaded from ** the interior node. If the specified term is greater than or equal ** to the term from the interior node, then all terms on the sub-tree ** headed by node iChild are smaller than zTerm. No need to search ** iChild. ** ** If the interior node term is larger than the specified term, then ** the tree headed by iChild may contain the specified term. */ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ *piFirst = (i64)iChild; piFirst = 0; } if( piLast && cmp<0 ){ *piLast = (i64)iChild; piLast = 0; } iChild++; }; if( piFirst ) *piFirst = (i64)iChild; if( piLast ) *piLast = (i64)iChild; finish_scan: sqlite3_free(zBuffer); return rc; } /* ** The buffer pointed to by argument zNode (size nNode bytes) contains an ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) ** contains a term. This function searches the sub-tree headed by the zNode ** node for the range of leaf nodes that may contain the specified term ** or terms for which the specified term is a prefix. ** ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the ** left-most leaf node in the tree that may contain the specified term. ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the ** right-most leaf node that may contain a term for which the specified ** term is a prefix. ** ** It is possible that the range of returned leaf nodes does not contain ** the specified term or any terms for which it is a prefix. However, if the ** segment does contain any such terms, they are stored within the identified ** range. Because this function only inspects interior segment nodes (and ** never loads leaf nodes into memory), it is not possible to be sure. ** ** If an error occurs, an error code other than SQLITE_OK is returned. */ static int fts3SelectLeaf( Fts3Table *p, /* Virtual table handle */ const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piLeaf, /* Selected leaf node */ sqlite3_int64 *piLeaf2 /* Selected leaf node */ ){ int rc = SQLITE_OK; /* Return code */ int iHeight; /* Height of this node in tree */ assert( piLeaf || piLeaf2 ); fts3GetVarint32(zNode, &iHeight); rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); if( rc==SQLITE_OK && iHeight>1 ){ char *zBlob = 0; /* Blob read from %_segments table */ int nBlob = 0; /* Size of zBlob in bytes */ if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0); if( rc==SQLITE_OK ){ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); } sqlite3_free(zBlob); piLeaf = 0; zBlob = 0; } if( rc==SQLITE_OK ){ rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0); } if( rc==SQLITE_OK ){ int iNewHeight = 0; fts3GetVarint32(zBlob, &iNewHeight); if( iNewHeight>=iHeight ){ rc = FTS_CORRUPT_VTAB; }else{ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); } } sqlite3_free(zBlob); } return rc; } /* ** This function is used to create delta-encoded serialized lists of FTS3 ** varints. Each call to this function appends a single varint to a list. */ static void fts3PutDeltaVarint( char **pp, /* IN/OUT: Output pointer */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ sqlite3_int64 iVal /* Write this value to the list */ ){ assert_fts3_nc( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); *piPrev = iVal; } /* ** When this function is called, *ppPoslist is assumed to point to the ** start of a position-list. After it returns, *ppPoslist points to the ** first byte after the position-list. ** ** A position list is list of positions (delta encoded) and columns for ** a single document record of a doclist. So, in other words, this ** routine advances *ppPoslist so that it points to the next docid in ** the doclist, or to the first byte past the end of the doclist. ** ** If pp is not NULL, then the contents of the position list are copied ** to *pp. *pp is set to point to the first byte past the last byte copied ** before this function returns. */ static void fts3PoslistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; /* The end of a position list is marked by a zero encoded as an FTS3 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail ** of some other, multi-byte, value. ** ** The following while-loop moves pEnd to point to the first byte that is not ** immediately preceded by a byte with the 0x80 bit set. Then increments ** pEnd once more so that it points to the byte immediately following the ** last byte in the position-list. */ while( *pEnd | c ){ c = *pEnd++ & 0x80; testcase( c!=0 && (*pEnd)==0 ); } pEnd++; /* Advance past the POS_END terminator byte */ if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } *ppPoslist = pEnd; } /* ** When this function is called, *ppPoslist is assumed to point to the ** start of a column-list. After it returns, *ppPoslist points to the ** to the terminator (POS_COLUMN or POS_END) byte of the column-list. ** ** A column-list is list of delta-encoded positions for a single column ** within a single document within a doclist. ** ** The column-list is terminated either by a POS_COLUMN varint (1) or ** a POS_END varint (0). This routine leaves *ppPoslist pointing to ** the POS_COLUMN or POS_END that terminates the column-list. ** ** If pp is not NULL, then the contents of the column-list are copied ** to *pp. *pp is set to point to the first byte past the last byte copied ** before this function returns. The POS_COLUMN or POS_END terminator ** is not copied into *pp. */ static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; /* A column-list is terminated by either a 0x01 or 0x00 byte that is ** not part of a multi-byte varint. */ while( 0xFE & (*pEnd | c) ){ c = *pEnd++ & 0x80; testcase( c!=0 && ((*pEnd)&0xfe)==0 ); } if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } *ppPoslist = pEnd; } /* ** Value used to signify the end of an position-list. This must be ** as large or larger than any value that might appear on the ** position-list, even a position list that has been corrupted. */ #define POSITION_LIST_END LARGEST_INT64 /* ** This function is used to help parse position-lists. When this function is ** called, *pp may point to the start of the next varint in the position-list ** being parsed, or it may point to 1 byte past the end of the position-list ** (in which case **pp will be a terminator bytes POS_END (0) or ** (1)). ** ** If *pp points past the end of the current position-list, set *pi to ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, ** increment the current value of *pi by the value read, and set *pp to ** point to the next value before returning. ** ** Before calling this routine *pi must be initialized to the value of ** the previous position, or zero if we are reading the first position ** in the position-list. Because positions are delta-encoded, the value ** of the previous position is needed in order to compute the value of ** the next position. */ static void fts3ReadNextPos( char **pp, /* IN/OUT: Pointer into position-list buffer */ sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ ){ if( (**pp)&0xFE ){ int iVal; *pp += fts3GetVarint32((*pp), &iVal); *pi += iVal; *pi -= 2; }else{ *pi = POSITION_LIST_END; } } /* ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by ** the value of iCol encoded as a varint to *pp. This will start a new ** column list. ** ** Set *pp to point to the byte just after the last byte written before ** returning (do not modify it if iCol==0). Return the total number of bytes ** written (0 if iCol==0). */ static int fts3PutColNumber(char **pp, int iCol){ int n = 0; /* Number of bytes written */ if( iCol ){ char *p = *pp; /* Output pointer */ n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); *p = 0x01; *pp = &p[n]; } return n; } /* ** Compute the union of two position lists. The output written ** into *pp contains all positions of both *pp1 and *pp2 in sorted ** order and with any duplicates removed. All pointers are ** updated appropriately. The caller is responsible for insuring ** that there is enough space in *pp to hold the complete output. */ static int fts3PoslistMerge( char **pp, /* Output buffer */ char **pp1, /* Left input list */ char **pp2 /* Right input list */ ){ char *p = *pp; char *p1 = *pp1; char *p2 = *pp2; while( *p1 || *p2 ){ int iCol1; /* The current column index in pp1 */ int iCol2; /* The current column index in pp2 */ if( *p1==POS_COLUMN ){ fts3GetVarint32(&p1[1], &iCol1); if( iCol1==0 ) return FTS_CORRUPT_VTAB; } else if( *p1==POS_END ) iCol1 = 0x7fffffff; else iCol1 = 0; if( *p2==POS_COLUMN ){ fts3GetVarint32(&p2[1], &iCol2); if( iCol2==0 ) return FTS_CORRUPT_VTAB; } else if( *p2==POS_END ) iCol2 = 0x7fffffff; else iCol2 = 0; if( iCol1==iCol2 ){ sqlite3_int64 i1 = 0; /* Last position from pp1 */ sqlite3_int64 i2 = 0; /* Last position from pp2 */ sqlite3_int64 iPrev = 0; int n = fts3PutColNumber(&p, iCol1); p1 += n; p2 += n; /* At this point, both p1 and p2 point to the start of column-lists ** for the same column (the column with index iCol1 and iCol2). ** A column-list is a list of non-negative delta-encoded varints, each ** incremented by 2 before being stored. Each list is terminated by a ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists ** and writes the results to buffer p. p is left pointing to the byte ** after the list written. No terminator (POS_END or POS_COLUMN) is ** written to the output. */ fts3GetDeltaVarint(&p1, &i1); fts3GetDeltaVarint(&p2, &i2); if( i1<2 || i2<2 ){ break; } do { fts3PutDeltaVarint(&p, &iPrev, (i1pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. ** when the *pp1 token appears before the *pp2 token, but not more than nToken ** slots before it. ** ** e.g. nToken==1 searches for adjacent positions. */ static int fts3PoslistPhraseMerge( char **pp, /* IN/OUT: Preallocated output buffer */ int nToken, /* Maximum difference in token positions */ int isSaveLeft, /* Save the left position */ int isExact, /* If *pp1 is exactly nTokens before *pp2 */ char **pp1, /* IN/OUT: Left input list */ char **pp2 /* IN/OUT: Right input list */ ){ char *p = *pp; char *p1 = *pp1; char *p2 = *pp2; int iCol1 = 0; int iCol2 = 0; /* Never set both isSaveLeft and isExact for the same invocation. */ assert( isSaveLeft==0 || isExact==0 ); assert_fts3_nc( p!=0 && *p1!=0 && *p2!=0 ); if( *p1==POS_COLUMN ){ p1++; p1 += fts3GetVarint32(p1, &iCol1); } if( *p2==POS_COLUMN ){ p2++; p2 += fts3GetVarint32(p2, &iCol2); } while( 1 ){ if( iCol1==iCol2 ){ char *pSave = p; sqlite3_int64 iPrev = 0; sqlite3_int64 iPos1 = 0; sqlite3_int64 iPos2 = 0; if( iCol1 ){ *p++ = POS_COLUMN; p += sqlite3Fts3PutVarint(p, iCol1); } fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; if( iPos1<0 || iPos2<0 ) break; while( 1 ){ if( iPos2==iPos1+nToken || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) ){ sqlite3_int64 iSave; iSave = isSaveLeft ? iPos1 : iPos2; fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; pSave = 0; assert( p ); } if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ if( (*p2&0xFE)==0 ) break; fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; }else{ if( (*p1&0xFE)==0 ) break; fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; } } if( pSave ){ assert( pp && p ); p = pSave; } fts3ColumnlistCopy(0, &p1); fts3ColumnlistCopy(0, &p2); assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); if( 0==*p1 || 0==*p2 ) break; p1++; p1 += fts3GetVarint32(p1, &iCol1); p2++; p2 += fts3GetVarint32(p2, &iCol2); } /* Advance pointer p1 or p2 (whichever corresponds to the smaller of ** iCol1 and iCol2) so that it points to either the 0x00 that marks the ** end of the position list, or the 0x01 that precedes the next ** column-number in the position list. */ else if( iCol1=pEnd ){ *pp = 0; }else{ u64 iVal; *pp += sqlite3Fts3GetVarintU(*pp, &iVal); if( bDescIdx ){ *pVal = (i64)((u64)*pVal - iVal); }else{ *pVal = (i64)((u64)*pVal + iVal); } } } /* ** This function is used to write a single varint to a buffer. The varint ** is written to *pp. Before returning, *pp is set to point 1 byte past the ** end of the value written. ** ** If *pbFirst is zero when this function is called, the value written to ** the buffer is that of parameter iVal. ** ** If *pbFirst is non-zero when this function is called, then the value ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal) ** (if bDescIdx is non-zero). ** ** Before returning, this function always sets *pbFirst to 1 and *piPrev ** to the value of parameter iVal. */ static void fts3PutDeltaVarint3( char **pp, /* IN/OUT: Output pointer */ int bDescIdx, /* True for descending docids */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ int *pbFirst, /* IN/OUT: True after first int written */ sqlite3_int64 iVal /* Write this value to the list */ ){ sqlite3_uint64 iWrite; if( bDescIdx==0 || *pbFirst==0 ){ assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev ); iWrite = (u64)iVal - (u64)*piPrev; }else{ assert_fts3_nc( *piPrev>=iVal ); iWrite = (u64)*piPrev - (u64)iVal; } assert( *pbFirst || *piPrev==0 ); assert_fts3_nc( *pbFirst==0 || iWrite>0 ); *pp += sqlite3Fts3PutVarint(*pp, iWrite); *piPrev = iVal; *pbFirst = 1; } /* ** This macro is used by various functions that merge doclists. The two ** arguments are 64-bit docid values. If the value of the stack variable ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). ** Otherwise, (i2-i1). ** ** Using this makes it easier to write code that can merge doclists that are ** sorted in either ascending or descending order. */ /* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */ #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1))) /* ** This function does an "OR" merge of two doclists (output contains all ** positions contained in either argument doclist). If the docids in the ** input doclists are sorted in ascending order, parameter bDescDoclist ** should be false. If they are sorted in ascending order, it should be ** passed a non-zero value. ** ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer ** containing the output doclist and SQLITE_OK is returned. In this case ** *pnOut is set to the number of bytes in the output doclist. ** ** If an error occurs, an SQLite error code is returned. The output values ** are undefined in this case. */ static int fts3DoclistOrMerge( int bDescDoclist, /* True if arguments are desc */ char *a1, int n1, /* First doclist */ char *a2, int n2, /* Second doclist */ char **paOut, int *pnOut /* OUT: Malloc'd doclist */ ){ int rc = SQLITE_OK; sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *pEnd1 = &a1[n1]; char *pEnd2 = &a2[n2]; char *p1 = a1; char *p2 = a2; char *p; char *aOut; int bFirstOut = 0; *paOut = 0; *pnOut = 0; /* Allocate space for the output. Both the input and output doclists ** are delta encoded. If they are in ascending order (bDescDoclist==0), ** then the first docid in each list is simply encoded as a varint. For ** each subsequent docid, the varint stored is the difference between the ** current and previous docid (a positive number - since the list is in ** ascending order). ** ** The first docid written to the output is therefore encoded using the ** same number of bytes as it is in whichever of the input lists it is ** read from. And each subsequent docid read from the same input list ** consumes either the same or less bytes as it did in the input (since ** the difference between it and the previous value in the output must ** be a positive value less than or equal to the delta value read from ** the input list). The same argument applies to all but the first docid ** read from the 'other' list. And to the contents of all position lists ** that will be copied and merged from the input to the output. ** ** However, if the first docid copied to the output is a negative number, ** then the encoding of the first docid from the 'other' input list may ** be larger in the output than it was in the input (since the delta value ** may be a larger positive integer than the actual docid). ** ** The space required to store the output is therefore the sum of the ** sizes of the two inputs, plus enough space for exactly one of the input ** docids to grow. ** ** A symetric argument may be made if the doclists are in descending ** order. */ aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING); if( !aOut ) return SQLITE_NOMEM; p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 || p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( p2 && p1 && iDiff==0 ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); rc = fts3PoslistMerge(&p, &p1, &p2); if( rc ) break; fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( !p2 || (p1 && iDiff<0) ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); fts3PoslistCopy(&p, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2); fts3PoslistCopy(&p, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) ); } if( rc!=SQLITE_OK ){ sqlite3_free(aOut); p = aOut = 0; }else{ assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 ); memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING); } *paOut = aOut; *pnOut = (int)(p-aOut); return rc; } /* ** This function does a "phrase" merge of two doclists. In a phrase merge, ** the output contains a copy of each position from the right-hand input ** doclist for which there is a position in the left-hand input doclist ** exactly nDist tokens before it. ** ** If the docids in the input doclists are sorted in ascending order, ** parameter bDescDoclist should be false. If they are sorted in ascending ** order, it should be passed a non-zero value. ** ** The right-hand input doclist is overwritten by this function. */ static int fts3DoclistPhraseMerge( int bDescDoclist, /* True if arguments are desc */ int nDist, /* Distance from left to right (1=adjacent) */ char *aLeft, int nLeft, /* Left doclist */ char **paRight, int *pnRight /* IN/OUT: Right/output doclist */ ){ sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *aRight = *paRight; char *pEnd1 = &aLeft[nLeft]; char *pEnd2 = &aRight[*pnRight]; char *p1 = aLeft; char *p2 = aRight; char *p; int bFirstOut = 0; char *aOut; assert( nDist>0 ); if( bDescDoclist ){ aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX); if( aOut==0 ) return SQLITE_NOMEM; }else{ aOut = aRight; } p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 && p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( iDiff==0 ){ char *pSave = p; sqlite3_int64 iPrevSave = iPrev; int bFirstOutSave = bFirstOut; fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){ p = pSave; iPrev = iPrevSave; bFirstOut = bFirstOutSave; } fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( iDiff<0 ){ fts3PoslistCopy(0, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PoslistCopy(0, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } } *pnRight = (int)(p - aOut); if( bDescDoclist ){ sqlite3_free(aRight); *paRight = aOut; } return SQLITE_OK; } /* ** Argument pList points to a position list nList bytes in size. This ** function checks to see if the position list contains any entries for ** a token in position 0 (of any column). If so, it writes argument iDelta ** to the output buffer pOut, followed by a position list consisting only ** of the entries from pList at position 0, and terminated by an 0x00 byte. ** The value returned is the number of bytes written to pOut (if any). */ SQLITE_PRIVATE int sqlite3Fts3FirstFilter( sqlite3_int64 iDelta, /* Varint that may be written to pOut */ char *pList, /* Position list (no 0x00 term) */ int nList, /* Size of pList in bytes */ char *pOut /* Write output here */ ){ int nOut = 0; int bWritten = 0; /* True once iDelta has been written */ char *p = pList; char *pEnd = &pList[nList]; if( *p!=0x01 ){ if( *p==0x02 ){ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); pOut[nOut++] = 0x02; bWritten = 1; } fts3ColumnlistCopy(0, &p); } while( paaOutput); i++){ if( pTS->aaOutput[i] ){ if( !aOut ){ aOut = pTS->aaOutput[i]; nOut = pTS->anOutput[i]; pTS->aaOutput[i] = 0; }else{ int nNew; char *aNew; int rc = fts3DoclistOrMerge(p->bDescIdx, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew ); if( rc!=SQLITE_OK ){ sqlite3_free(aOut); return rc; } sqlite3_free(pTS->aaOutput[i]); sqlite3_free(aOut); pTS->aaOutput[i] = 0; aOut = aNew; nOut = nNew; } } } pTS->aaOutput[0] = aOut; pTS->anOutput[0] = nOut; return SQLITE_OK; } /* ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed ** as the first argument. The merge is an "OR" merge (see function ** fts3DoclistOrMerge() for details). ** ** This function is called with the doclist for each term that matches ** a queried prefix. It merges all these doclists into one, the doclist ** for the specified prefix. Since there can be a very large number of ** doclists to merge, the merging is done pair-wise using the TermSelect ** object. ** ** This function returns SQLITE_OK if the merge is successful, or an ** SQLite error code (SQLITE_NOMEM) if an error occurs. */ static int fts3TermSelectMerge( Fts3Table *p, /* FTS table handle */ TermSelect *pTS, /* TermSelect object to merge into */ char *aDoclist, /* Pointer to doclist */ int nDoclist /* Size of aDoclist in bytes */ ){ if( pTS->aaOutput[0]==0 ){ /* If this is the first term selected, copy the doclist to the output ** buffer using memcpy(). ** ** Add FTS3_VARINT_MAX bytes of unused space to the end of the ** allocation. This is so as to ensure that the buffer is big enough ** to hold the current doclist AND'd with any other doclist. If the ** doclists are stored in order=ASC order, this padding would not be ** required (since the size of [doclistA AND doclistB] is always less ** than or equal to the size of [doclistA] in that case). But this is ** not true for order=DESC. For example, a doclist containing (1, -1) ** may be smaller than (-1), as in the first example the -1 may be stored ** as a single-byte delta, whereas in the second it must be stored as a ** FTS3_VARINT_MAX byte varint. ** ** Similar padding is added in the fts3DoclistOrMerge() function. */ pTS->aaOutput[0] = sqlite3_malloc64((i64)nDoclist + FTS3_VARINT_MAX + 1); pTS->anOutput[0] = nDoclist; if( pTS->aaOutput[0] ){ memcpy(pTS->aaOutput[0], aDoclist, nDoclist); memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX); }else{ return SQLITE_NOMEM; } }else{ char *aMerge = aDoclist; int nMerge = nDoclist; int iOut; for(iOut=0; iOutaaOutput); iOut++){ if( pTS->aaOutput[iOut]==0 ){ assert( iOut>0 ); pTS->aaOutput[iOut] = aMerge; pTS->anOutput[iOut] = nMerge; break; }else{ char *aNew; int nNew; int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge, pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew ); if( rc!=SQLITE_OK ){ if( aMerge!=aDoclist ) sqlite3_free(aMerge); return rc; } if( aMerge!=aDoclist ) sqlite3_free(aMerge); sqlite3_free(pTS->aaOutput[iOut]); pTS->aaOutput[iOut] = 0; aMerge = aNew; nMerge = nNew; if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ pTS->aaOutput[iOut] = aMerge; pTS->anOutput[iOut] = nMerge; } } } } return SQLITE_OK; } /* ** Append SegReader object pNew to the end of the pCsr->apSegment[] array. */ static int fts3SegReaderCursorAppend( Fts3MultiSegReader *pCsr, Fts3SegReader *pNew ){ if( (pCsr->nSegment%16)==0 ){ Fts3SegReader **apNew; sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte); if( !apNew ){ sqlite3Fts3SegReaderFree(pNew); return SQLITE_NOMEM; } pCsr->apSegment = apNew; } pCsr->apSegment[pCsr->nSegment++] = pNew; return SQLITE_OK; } /* ** Add seg-reader objects to the Fts3MultiSegReader object passed as the ** 8th argument. ** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ static int fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language id */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ int rc = SQLITE_OK; /* Error code */ sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */ int rc2; /* Result of sqlite3_reset() */ /* If iLevel is less than 0 and this is not a scan, include a seg-reader ** for the pending-terms. If this is a scan, then this call must be being ** made by an fts4aux module, not an FTS table. In this case calling ** Fts3SegReaderPending might segfault, as the data structures used by ** fts4aux are not completely populated. So it's easiest to filter these ** calls out here. */ if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){ Fts3SegReader *pSeg = 0; rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg); if( rc==SQLITE_OK && pSeg ){ rc = fts3SegReaderCursorAppend(pCsr, pSeg); } } if( iLevel!=FTS3_SEGCURSOR_PENDING ){ if( rc==SQLITE_OK ){ rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt); } while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ Fts3SegReader *pSeg = 0; /* Read the values returned by the SELECT into local variables. */ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); int nRoot = sqlite3_column_bytes(pStmt, 4); char const *zRoot = sqlite3_column_blob(pStmt, 4); /* If zTerm is not NULL, and this segment is not stored entirely on its ** root node, the range of leaves scanned can be reduced. Do this. */ if( iStartBlock && zTerm && zRoot ){ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); if( rc!=SQLITE_OK ) goto finished; if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; } rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, (isPrefix==0 && isScan==0), iStartBlock, iLeavesEndBlock, iEndBlock, zRoot, nRoot, &pSeg ); if( rc!=SQLITE_OK ) goto finished; rc = fts3SegReaderCursorAppend(pCsr, pSeg); } } finished: rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_DONE ) rc = rc2; return rc; } /* ** Set up a cursor object for iterating through a full-text index or a ** single level therein. */ SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language-id to search */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ assert( iIndex>=0 && iIndexnIndex ); assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel==FTS3_SEGCURSOR_PENDING || iLevel>=0 ); assert( iLevelbase.pVtab; if( isPrefix ){ for(i=1; bFound==0 && inIndex; i++){ if( p->aIndex[i].nPrefix==nTerm ){ bFound = 1; rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr ); pSegcsr->bLookup = 1; } } for(i=1; bFound==0 && inIndex; i++){ if( p->aIndex[i].nPrefix==nTerm+1 ){ bFound = 1; rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr ); if( rc==SQLITE_OK ){ rc = fts3SegReaderCursorAddZero( p, pCsr->iLangid, zTerm, nTerm, pSegcsr ); } } } } if( bFound==0 ){ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr ); pSegcsr->bLookup = !isPrefix; } } *ppSegcsr = pSegcsr; return rc; } /* ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor(). */ static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ sqlite3Fts3SegReaderFinish(pSegcsr); sqlite3_free(pSegcsr); } /* ** This function retrieves the doclist for the specified term (or term ** prefix) from the database. */ static int fts3TermSelect( Fts3Table *p, /* Virtual table handle */ Fts3PhraseToken *pTok, /* Token to query for */ int iColumn, /* Column to query (or -ve for all columns) */ int *pnOut, /* OUT: Size of buffer at *ppOut */ char **ppOut /* OUT: Malloced result buffer */ ){ int rc; /* Return code */ Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */ TermSelect tsc; /* Object for pair-wise doclist merging */ Fts3SegFilter filter; /* Segment term filter configuration */ pSegcsr = pTok->pSegcsr; memset(&tsc, 0, sizeof(TermSelect)); filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0) | (iColumnnColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); filter.iCol = iColumn; filter.zTerm = pTok->z; filter.nTerm = pTok->n; rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); while( SQLITE_OK==rc && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) ){ rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist); } if( rc==SQLITE_OK ){ rc = fts3TermSelectFinishMerge(p, &tsc); } if( rc==SQLITE_OK ){ *ppOut = tsc.aaOutput[0]; *pnOut = tsc.anOutput[0]; }else{ int i; for(i=0; ipSegcsr = 0; return rc; } /* ** This function counts the total number of docids in the doclist stored ** in buffer aList[], size nList bytes. ** ** If the isPoslist argument is true, then it is assumed that the doclist ** contains a position-list following each docid. Otherwise, it is assumed ** that the doclist is simply a list of docids stored as delta encoded ** varints. */ static int fts3DoclistCountDocids(char *aList, int nList){ int nDoc = 0; /* Return value */ if( aList ){ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ char *p = aList; /* Cursor */ while( peSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){ Fts3Table *pTab = (Fts3Table*)pCursor->pVtab; pTab->bLock++; if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ pCsr->isEof = 1; rc = sqlite3_reset(pCsr->pStmt); }else{ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); rc = SQLITE_OK; } pTab->bLock--; }else{ rc = fts3EvalNext((Fts3Cursor *)pCursor); } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* ** If the numeric type of argument pVal is "integer", then return it ** converted to a 64-bit signed integer. Otherwise, return a copy of ** the second parameter, iDefault. */ static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){ if( pVal ){ int eType = sqlite3_value_numeric_type(pVal); if( eType==SQLITE_INTEGER ){ return sqlite3_value_int64(pVal); } } return iDefault; } /* ** This is the xFilter interface for the virtual table. See ** the virtual table xFilter method documentation for additional ** information. ** ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against ** the %_content table. ** ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry ** in the %_content table. ** ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The ** column on the left-hand side of the MATCH operator is column ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand ** side of the MATCH operator. */ static int fts3FilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ int rc = SQLITE_OK; char *zSql; /* SQL statement used to access %_content */ int eSearch; Fts3Table *p = (Fts3Table *)pCursor->pVtab; Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */ sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */ sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */ sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */ int iIdx; UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(nVal); if( p->bLock ){ return SQLITE_ERROR; } eSearch = (idxNum & 0x0000FFFF); assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); assert( p->pSegments==0 ); /* Collect arguments into local variables */ iIdx = 0; if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++]; if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++]; assert( iIdx==nVal ); /* In case the cursor has been used before, clear it now. */ fts3ClearCursor(pCsr); /* Set the lower and upper bounds on docids to return */ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64); pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64); if( idxStr ){ pCsr->bDesc = (idxStr[0]=='D'); }else{ pCsr->bDesc = p->bDescIdx; } pCsr->eSearch = (i16)eSearch; if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){ int iCol = eSearch-FTS3_FULLTEXT_SEARCH; const char *zQuery = (const char *)sqlite3_value_text(pCons); if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){ return SQLITE_NOMEM; } pCsr->iLangid = 0; if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid); assert( p->base.zErrMsg==0 ); rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid, p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr, &p->base.zErrMsg ); if( rc!=SQLITE_OK ){ return rc; } rc = fts3EvalStart(pCsr); sqlite3Fts3SegmentsClose(p); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; } /* Compile a SELECT statement for this cursor. For a full-table-scan, the ** statement loops through all rows of the %_content table. For a ** full-text query or docid lookup, the statement retrieves a single ** row by docid. */ if( eSearch==FTS3_FULLSCAN_SEARCH ){ if( pDocidGe || pDocidLe ){ zSql = sqlite3_mprintf( "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s", p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid, (pCsr->bDesc ? "DESC" : "ASC") ); }else{ zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s", p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC") ); } if( zSql ){ p->bLock++; rc = sqlite3_prepare_v3( p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0 ); p->bLock--; sqlite3_free(zSql); }else{ rc = SQLITE_NOMEM; } }else if( eSearch==FTS3_DOCID_SEARCH ){ rc = fts3CursorSeekStmt(pCsr); if( rc==SQLITE_OK ){ rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons); } } if( rc!=SQLITE_OK ) return rc; return fts3NextMethod(pCursor); } /* ** This is the xEof method of the virtual table. SQLite calls this ** routine to find out if it has reached the end of a result set. */ static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor*)pCursor; if( pCsr->isEof ){ fts3ClearCursor(pCsr); pCsr->isEof = 1; } return pCsr->isEof; } /* ** This is the xRowid method. The SQLite core calls this routine to ** retrieve the rowid for the current row of the result set. fts3 ** exposes %_content.docid as the rowid for the virtual table. The ** rowid should be written to *pRowid. */ static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; *pRowid = pCsr->iPrevId; return SQLITE_OK; } /* ** This is the xColumn method, called by SQLite to request a value from ** the row that the supplied cursor currently points to. ** ** If: ** ** (iCol < p->nColumn) -> The value of the iCol'th user column. ** (iCol == p->nColumn) -> Magic column with the same name as the table. ** (iCol == p->nColumn+1) -> Docid column ** (iCol == p->nColumn+2) -> Langid column */ static int fts3ColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ int rc = SQLITE_OK; /* Return Code */ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; Fts3Table *p = (Fts3Table *)pCursor->pVtab; /* The column value supplied by SQLite must be in range. */ assert( iCol>=0 && iCol<=p->nColumn+2 ); switch( iCol-p->nColumn ){ case 0: /* The special 'table-name' column */ sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0); break; case 1: /* The docid column */ sqlite3_result_int64(pCtx, pCsr->iPrevId); break; case 2: if( pCsr->pExpr ){ sqlite3_result_int64(pCtx, pCsr->iLangid); break; }else if( p->zLanguageid==0 ){ sqlite3_result_int(pCtx, 0); break; }else{ iCol = p->nColumn; /* no break */ deliberate_fall_through } default: /* A user column. Or, if this is a full-table scan, possibly the ** language-id column. Seek the cursor. */ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); } break; } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* ** This function is the implementation of the xUpdate callback used by ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be ** inserted, updated or deleted. */ static int fts3UpdateMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid); } /* ** Implementation of xSync() method. Flush the contents of the pending-terms ** hash-table to the database. */ static int fts3SyncMethod(sqlite3_vtab *pVtab){ /* Following an incremental-merge operation, assuming that the input ** segments are not completely consumed (the usual case), they are updated ** in place to remove the entries that have already been merged. This ** involves updating the leaf block that contains the smallest unmerged ** entry and each block (if any) between the leaf and the root node. So ** if the height of the input segment b-trees is N, and input segments ** are merged eight at a time, updating the input segments at the end ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually ** small - often between 0 and 2. So the overhead of the incremental ** merge is somewhere between 8 and 24 blocks. To avoid this overhead ** dwarfing the actual productive work accomplished, the incremental merge ** is only attempted if it will write at least 64 leaf blocks. Hence ** nMinMerge. ** ** Of course, updating the input segments also involves deleting a bunch ** of blocks from the segments table. But this is not considered overhead ** as it would also be required by a crisis-merge that used the same input ** segments. */ const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */ Fts3Table *p = (Fts3Table*)pVtab; int rc; i64 iLastRowid = sqlite3_last_insert_rowid(p->db); rc = sqlite3Fts3PendingTermsFlush(p); if( rc==SQLITE_OK && p->nLeafAdd>(nMinMerge/16) && p->nAutoincrmerge && p->nAutoincrmerge!=0xff ){ int mxLevel = 0; /* Maximum relative level value in db */ int A; /* Incr-merge parameter A */ rc = sqlite3Fts3MaxLevel(p, &mxLevel); assert( rc==SQLITE_OK || mxLevel==0 ); A = p->nLeafAdd * mxLevel; A += (A/2); if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge); } sqlite3Fts3SegmentsClose(p); sqlite3_set_last_insert_rowid(p->db, iLastRowid); return rc; } /* ** If it is currently unknown whether or not the FTS table has an %_stat ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code ** if an error occurs. */ static int fts3SetHasStat(Fts3Table *p){ int rc = SQLITE_OK; if( p->bHasStat==2 ){ char *zTbl = sqlite3_mprintf("%s_stat", p->zName); if( zTbl ){ int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0); sqlite3_free(zTbl); p->bHasStat = (res==SQLITE_OK); }else{ rc = SQLITE_NOMEM; } } return rc; } /* ** Implementation of xBegin() method. */ static int fts3BeginMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table*)pVtab; int rc; UNUSED_PARAMETER(pVtab); assert( p->pSegments==0 ); assert( p->nPendingData==0 ); assert( p->inTransaction!=1 ); p->nLeafAdd = 0; rc = fts3SetHasStat(p); #ifdef SQLITE_DEBUG if( rc==SQLITE_OK ){ p->inTransaction = 1; p->mxSavepoint = -1; } #endif return rc; } /* ** Implementation of xCommit() method. This is a no-op. The contents of ** the pending-terms hash-table have already been flushed into the database ** by fts3SyncMethod(). */ static int fts3CommitMethod(sqlite3_vtab *pVtab){ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); UNUSED_PARAMETER(pVtab); assert( p->nPendingData==0 ); assert( p->inTransaction!=0 ); assert( p->pSegments==0 ); TESTONLY( p->inTransaction = 0 ); TESTONLY( p->mxSavepoint = -1; ); return SQLITE_OK; } /* ** Implementation of xRollback(). Discard the contents of the pending-terms ** hash-table. Any changes made to the database are reverted by SQLite. */ static int fts3RollbackMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table*)pVtab; sqlite3Fts3PendingTermsClear(p); assert( p->inTransaction!=0 ); TESTONLY( p->inTransaction = 0 ); TESTONLY( p->mxSavepoint = -1; ); return SQLITE_OK; } /* ** When called, *ppPoslist must point to the byte immediately following the ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function ** moves *ppPoslist so that it instead points to the first byte of the ** same position list. */ static void fts3ReversePoslist(char *pStart, char **ppPoslist){ char *p = &(*ppPoslist)[-2]; char c = 0; /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */ while( p>pStart && (c=*p--)==0 ); /* Search backwards for a varint with value zero (the end of the previous ** poslist). This is an 0x00 byte preceded by some byte that does not ** have the 0x80 bit set. */ while( p>pStart && (*p & 0x80) | c ){ c = *p--; } assert( p==pStart || c==0 ); /* At this point p points to that preceding byte without the 0x80 bit ** set. So to find the start of the poslist, skip forward 2 bytes then ** over a varint. ** ** Normally. The other case is that p==pStart and the poslist to return ** is the first in the doclist. In this case do not skip forward 2 bytes. ** The second part of the if condition (c==0 && *ppPoslist>&p[2]) ** is required for cases where the first byte of a doclist and the ** doclist is empty. For example, if the first docid is 10, a doclist ** that begins with: ** ** 0x0A 0x00 */ if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; } while( *p++&0x80 ); *ppPoslist = p; } /* ** Helper function used by the implementation of the overloaded snippet(), ** offsets() and optimize() SQL functions. ** ** If the value passed as the third argument is a blob of size ** sizeof(Fts3Cursor*), then the blob contents are copied to the ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error ** message is written to context pContext and SQLITE_ERROR returned. The ** string passed via zFunc is used as part of the error message. */ static int fts3FunctionArg( sqlite3_context *pContext, /* SQL function call context */ const char *zFunc, /* Function name */ sqlite3_value *pVal, /* argv[0] passed to function */ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ ){ int rc; *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor"); if( (*ppCsr)!=0 ){ rc = SQLITE_OK; }else{ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); sqlite3_result_error(pContext, zErr, -1); sqlite3_free(zErr); rc = SQLITE_ERROR; } return rc; } /* ** Implementation of the snippet() function for FTS3 */ static void fts3SnippetFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of apVal[] array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ const char *zStart = ""; const char *zEnd = ""; const char *zEllipsis = "..."; int iCol = -1; int nToken = 15; /* Default number of tokens in snippet */ /* There must be at least one argument passed to this function (otherwise ** the non-overloaded version would have been called instead of this one). */ assert( nVal>=1 ); if( nVal>6 ){ sqlite3_result_error(pContext, "wrong number of arguments to function snippet()", -1); return; } if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; switch( nVal ){ case 6: nToken = sqlite3_value_int(apVal[5]); /* no break */ deliberate_fall_through case 5: iCol = sqlite3_value_int(apVal[4]); /* no break */ deliberate_fall_through case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); /* no break */ deliberate_fall_through case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); /* no break */ deliberate_fall_through case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( nToken==0 ){ sqlite3_result_text(pContext, "", -1, SQLITE_STATIC); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); } } /* ** Implementation of the offsets() function for FTS3 */ static void fts3OffsetsFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ UNUSED_PARAMETER(nVal); assert( nVal==1 ); if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return; assert( pCsr ); if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Offsets(pContext, pCsr); } } /* ** Implementation of the special optimize() function for FTS3. This ** function merges all segments in the database to a single segment. ** Example usage is: ** ** SELECT optimize(t) FROM t LIMIT 1; ** ** where 't' is the name of an FTS3 table. */ static void fts3OptimizeFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ int rc; /* Return code */ Fts3Table *p; /* Virtual table handle */ Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */ UNUSED_PARAMETER(nVal); assert( nVal==1 ); if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return; p = (Fts3Table *)pCursor->base.pVtab; assert( p ); rc = sqlite3Fts3Optimize(p); switch( rc ){ case SQLITE_OK: sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); break; case SQLITE_DONE: sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); break; default: sqlite3_result_error_code(pContext, rc); break; } } /* ** Implementation of the matchinfo() function for FTS3 */ static void fts3MatchinfoFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ assert( nVal==1 || nVal==2 ); if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ const char *zArg = 0; if( nVal>1 ){ zArg = (const char *)sqlite3_value_text(apVal[1]); } sqlite3Fts3Matchinfo(pContext, pCsr, zArg); } } /* ** This routine implements the xFindFunction method for the FTS3 ** virtual table. */ static int fts3FindFunctionMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Number of SQL function arguments */ const char *zName, /* Name of SQL function */ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ void **ppArg /* Unused */ ){ struct Overloaded { const char *zName; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } aOverload[] = { { "snippet", fts3SnippetFunc }, { "offsets", fts3OffsetsFunc }, { "optimize", fts3OptimizeFunc }, { "matchinfo", fts3MatchinfoFunc }, }; int i; /* Iterator variable */ UNUSED_PARAMETER(pVtab); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(ppArg); for(i=0; idb; /* Database connection */ int rc; /* Return Code */ /* At this point it must be known if the %_stat table exists or not. ** So bHasStat may not be 2. */ rc = fts3SetHasStat(p); /* As it happens, the pending terms table is always empty here. This is ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction ** always opens a savepoint transaction. And the xSavepoint() method ** flushes the pending terms table. But leave the (no-op) call to ** PendingTermsFlush() in in case that changes. */ assert( p->nPendingData==0 ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3PendingTermsFlush(p); } p->bIgnoreSavepoint = 1; if( p->zContentTbl==0 ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';", p->zDb, p->zName, zName ); } if( p->bHasDocsize ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';", p->zDb, p->zName, zName ); } if( p->bHasStat ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';", p->zDb, p->zName, zName ); } fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';", p->zDb, p->zName, zName ); fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb, p->zName, zName ); p->bIgnoreSavepoint = 0; return rc; } /* ** The xSavepoint() method. ** ** Flush the contents of the pending-terms table to disk. */ static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ int rc = SQLITE_OK; Fts3Table *pTab = (Fts3Table*)pVtab; assert( pTab->inTransaction ); assert( pTab->mxSavepoint<=iSavepoint ); TESTONLY( pTab->mxSavepoint = iSavepoint ); if( pTab->bIgnoreSavepoint==0 ){ if( fts3HashCount(&pTab->aIndex[0].hPending)>0 ){ char *zSql = sqlite3_mprintf("INSERT INTO %Q.%Q(%Q) VALUES('flush')", pTab->zDb, pTab->zName, pTab->zName ); if( zSql ){ pTab->bIgnoreSavepoint = 1; rc = sqlite3_exec(pTab->db, zSql, 0, 0, 0); pTab->bIgnoreSavepoint = 0; sqlite3_free(zSql); }else{ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ pTab->iSavepoint = iSavepoint+1; } } return rc; } /* ** The xRelease() method. ** ** This is a no-op. */ static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ Fts3Table *pTab = (Fts3Table*)pVtab; assert( pTab->inTransaction ); assert( pTab->mxSavepoint >= iSavepoint ); TESTONLY( pTab->mxSavepoint = iSavepoint-1 ); pTab->iSavepoint = iSavepoint; return SQLITE_OK; } /* ** The xRollbackTo() method. ** ** Discard the contents of the pending terms table. */ static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ Fts3Table *pTab = (Fts3Table*)pVtab; UNUSED_PARAMETER(iSavepoint); assert( pTab->inTransaction ); TESTONLY( pTab->mxSavepoint = iSavepoint ); if( (iSavepoint+1)<=pTab->iSavepoint ){ sqlite3Fts3PendingTermsClear(pTab); } return SQLITE_OK; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int fts3ShadowName(const char *zName){ static const char *azName[] = { "content", "docsize", "segdir", "segments", "stat", }; unsigned int i; for(i=0; ibFts4 ? 4 : 3, zSchema, zTabname, sqlite3_errstr(rc)); }else if( bOk==0 ){ *pzErr = sqlite3_mprintf("malformed inverted index for FTS%d table %s.%s", p->bFts4 ? 4 : 3, zSchema, zTabname); } sqlite3Fts3SegmentsClose(p); return SQLITE_OK; } static const sqlite3_module fts3Module = { /* iVersion */ 4, /* xCreate */ fts3CreateMethod, /* xConnect */ fts3ConnectMethod, /* xBestIndex */ fts3BestIndexMethod, /* xDisconnect */ fts3DisconnectMethod, /* xDestroy */ fts3DestroyMethod, /* xOpen */ fts3OpenMethod, /* xClose */ fts3CloseMethod, /* xFilter */ fts3FilterMethod, /* xNext */ fts3NextMethod, /* xEof */ fts3EofMethod, /* xColumn */ fts3ColumnMethod, /* xRowid */ fts3RowidMethod, /* xUpdate */ fts3UpdateMethod, /* xBegin */ fts3BeginMethod, /* xSync */ fts3SyncMethod, /* xCommit */ fts3CommitMethod, /* xRollback */ fts3RollbackMethod, /* xFindFunction */ fts3FindFunctionMethod, /* xRename */ fts3RenameMethod, /* xSavepoint */ fts3SavepointMethod, /* xRelease */ fts3ReleaseMethod, /* xRollbackTo */ fts3RollbackToMethod, /* xShadowName */ fts3ShadowName, /* xIntegrity */ fts3IntegrityMethod, }; /* ** This function is registered as the module destructor (called when an ** FTS3 enabled database connection is closed). It frees the memory ** allocated for the tokenizer hash table. */ static void hashDestroy(void *p){ Fts3HashWrapper *pHash = (Fts3HashWrapper *)p; pHash->nRef--; if( pHash->nRef<=0 ){ sqlite3Fts3HashClear(&pHash->hash); sqlite3_free(pHash); } } /* ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c ** respectively. The following three forward declarations are for functions ** declared in these files used to retrieve the respective implementations. ** ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed ** to by the argument to point to the "simple" tokenizer implementation. ** And so on. */ SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); #ifndef SQLITE_DISABLE_FTS3_UNICODE SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule); #endif #ifdef SQLITE_ENABLE_ICU SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); #endif /* ** Initialize the fts3 extension. If this extension is built as part ** of the sqlite library, then this function is called directly by ** SQLite. If fts3 is built as a dynamically loadable extension, this ** function is called by the sqlite3_extension_init() entry point. */ SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){ int rc = SQLITE_OK; Fts3HashWrapper *pHash = 0; const sqlite3_tokenizer_module *pSimple = 0; const sqlite3_tokenizer_module *pPorter = 0; #ifndef SQLITE_DISABLE_FTS3_UNICODE const sqlite3_tokenizer_module *pUnicode = 0; #endif #ifdef SQLITE_ENABLE_ICU const sqlite3_tokenizer_module *pIcu = 0; sqlite3Fts3IcuTokenizerModule(&pIcu); #endif #ifndef SQLITE_DISABLE_FTS3_UNICODE sqlite3Fts3UnicodeTokenizer(&pUnicode); #endif #ifdef SQLITE_TEST rc = sqlite3Fts3InitTerm(db); if( rc!=SQLITE_OK ) return rc; #endif rc = sqlite3Fts3InitAux(db); if( rc!=SQLITE_OK ) return rc; sqlite3Fts3SimpleTokenizerModule(&pSimple); sqlite3Fts3PorterTokenizerModule(&pPorter); /* Allocate and initialize the hash-table used to store tokenizers. */ pHash = sqlite3_malloc(sizeof(Fts3HashWrapper)); if( !pHash ){ rc = SQLITE_NOMEM; }else{ sqlite3Fts3HashInit(&pHash->hash, FTS3_HASH_STRING, 1); pHash->nRef = 0; } /* Load the built-in tokenizers into the hash table */ if( rc==SQLITE_OK ){ if( sqlite3Fts3HashInsert(&pHash->hash, "simple", 7, (void *)pSimple) || sqlite3Fts3HashInsert(&pHash->hash, "porter", 7, (void *)pPorter) #ifndef SQLITE_DISABLE_FTS3_UNICODE || sqlite3Fts3HashInsert(&pHash->hash, "unicode61", 10, (void *)pUnicode) #endif #ifdef SQLITE_ENABLE_ICU || (pIcu && sqlite3Fts3HashInsert(&pHash->hash, "icu", 4, (void *)pIcu)) #endif ){ rc = SQLITE_NOMEM; } } #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ rc = sqlite3Fts3ExprInitTestInterface(db, &pHash->hash); } #endif /* Create the virtual table wrapper around the hash-table and overload ** the four scalar functions. If this is successful, register the ** module with sqlite. */ if( SQLITE_OK==rc && SQLITE_OK==(rc=sqlite3Fts3InitHashTable(db,&pHash->hash,"fts3_tokenizer")) && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) ){ pHash->nRef++; rc = sqlite3_create_module_v2( db, "fts3", &fts3Module, (void *)pHash, hashDestroy ); if( rc==SQLITE_OK ){ pHash->nRef++; rc = sqlite3_create_module_v2( db, "fts4", &fts3Module, (void *)pHash, hashDestroy ); } if( rc==SQLITE_OK ){ pHash->nRef++; rc = sqlite3Fts3InitTok(db, (void *)pHash, hashDestroy); } return rc; } /* An error has occurred. Delete the hash table and return the error code. */ assert( rc!=SQLITE_OK ); if( pHash ){ sqlite3Fts3HashClear(&pHash->hash); sqlite3_free(pHash); } return rc; } /* ** Allocate an Fts3MultiSegReader for each token in the expression headed ** by pExpr. ** ** An Fts3SegReader object is a cursor that can seek or scan a range of ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple ** Fts3SegReader objects internally to provide an interface to seek or scan ** within the union of all segments of a b-tree. Hence the name. ** ** If the allocated Fts3MultiSegReader just seeks to a single entry in a ** segment b-tree (if the term is not a prefix or it is a prefix for which ** there exists prefix b-tree of the right length) then it may be traversed ** and merged incrementally. Otherwise, it has to be merged into an in-memory ** doclist and then traversed. */ static void fts3EvalAllocateReaders( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Allocate readers for this expression */ int *pnToken, /* OUT: Total number of tokens in phrase. */ int *pnOr, /* OUT: Total number of OR nodes in expr. */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int i; int nToken = pExpr->pPhrase->nToken; *pnToken += nToken; for(i=0; ipPhrase->aToken[i]; int rc = fts3TermSegReaderCursor(pCsr, pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr ); if( rc!=SQLITE_OK ){ *pRc = rc; return; } } assert( pExpr->pPhrase->iDoclistToken==0 ); pExpr->pPhrase->iDoclistToken = -1; }else{ *pnOr += (pExpr->eType==FTSQUERY_OR); fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc); fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc); } } } /* ** Arguments pList/nList contain the doclist for token iToken of phrase p. ** It is merged into the main doclist stored in p->doclist.aAll/nAll. ** ** This function assumes that pList points to a buffer allocated using ** sqlite3_malloc(). This function takes responsibility for eventually ** freeing the buffer. ** ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs. */ static int fts3EvalPhraseMergeToken( Fts3Table *pTab, /* FTS Table pointer */ Fts3Phrase *p, /* Phrase to merge pList/nList into */ int iToken, /* Token pList/nList corresponds to */ char *pList, /* Pointer to doclist */ int nList /* Number of bytes in pList */ ){ int rc = SQLITE_OK; assert( iToken!=p->iDoclistToken ); if( pList==0 ){ sqlite3_free(p->doclist.aAll); p->doclist.aAll = 0; p->doclist.nAll = 0; } else if( p->iDoclistToken<0 ){ p->doclist.aAll = pList; p->doclist.nAll = nList; } else if( p->doclist.aAll==0 ){ sqlite3_free(pList); } else { char *pLeft; char *pRight; int nLeft; int nRight; int nDiff; if( p->iDoclistTokendoclist.aAll; nLeft = p->doclist.nAll; pRight = pList; nRight = nList; nDiff = iToken - p->iDoclistToken; }else{ pRight = p->doclist.aAll; nRight = p->doclist.nAll; pLeft = pList; nLeft = nList; nDiff = p->iDoclistToken - iToken; } rc = fts3DoclistPhraseMerge( pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight ); sqlite3_free(pLeft); p->doclist.aAll = pRight; p->doclist.nAll = nRight; } if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; return rc; } /* ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist ** does not take deferred tokens into account. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseLoad( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p /* Phrase object */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int iToken; int rc = SQLITE_OK; for(iToken=0; rc==SQLITE_OK && iTokennToken; iToken++){ Fts3PhraseToken *pToken = &p->aToken[iToken]; assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); if( pToken->pSegcsr ){ int nThis = 0; char *pThis = 0; rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); } } assert( pToken->pSegcsr==0 ); } return rc; } #ifndef SQLITE_DISABLE_FTS4_DEFERRED /* ** This function is called on each phrase after the position lists for ** any deferred tokens have been loaded into memory. It updates the phrases ** current position list to include only those positions that are really ** instances of the phrase (after considering deferred tokens). If this ** means that the phrase does not appear in the current row, doclist.pList ** and doclist.nList are both zeroed. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){ int iToken; /* Used to iterate through phrase tokens */ char *aPoslist = 0; /* Position list for deferred tokens */ int nPoslist = 0; /* Number of bytes in aPoslist */ int iPrev = -1; /* Token number of previous deferred token */ char *aFree = (pPhrase->doclist.bFreeList ? pPhrase->doclist.pList : 0); for(iToken=0; iTokennToken; iToken++){ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; Fts3DeferredToken *pDeferred = pToken->pDeferred; if( pDeferred ){ char *pList; int nList; int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList); if( rc!=SQLITE_OK ) return rc; if( pList==0 ){ sqlite3_free(aPoslist); sqlite3_free(aFree); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; return SQLITE_OK; }else if( aPoslist==0 ){ aPoslist = pList; nPoslist = nList; }else{ char *aOut = pList; char *p1 = aPoslist; char *p2 = aOut; assert( iPrev>=0 ); fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2); sqlite3_free(aPoslist); aPoslist = pList; nPoslist = (int)(aOut - aPoslist); if( nPoslist==0 ){ sqlite3_free(aPoslist); sqlite3_free(aFree); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; return SQLITE_OK; } } iPrev = iToken; } } if( iPrev>=0 ){ int nMaxUndeferred = pPhrase->iDoclistToken; if( nMaxUndeferred<0 ){ pPhrase->doclist.pList = aPoslist; pPhrase->doclist.nList = nPoslist; pPhrase->doclist.iDocid = pCsr->iPrevId; pPhrase->doclist.bFreeList = 1; }else{ int nDistance; char *p1; char *p2; char *aOut; if( nMaxUndeferred>iPrev ){ p1 = aPoslist; p2 = pPhrase->doclist.pList; nDistance = nMaxUndeferred - iPrev; }else{ p1 = pPhrase->doclist.pList; p2 = aPoslist; nDistance = iPrev - nMaxUndeferred; } aOut = (char *)sqlite3Fts3MallocZero(nPoslist+FTS3_BUFFER_PADDING); if( !aOut ){ sqlite3_free(aPoslist); return SQLITE_NOMEM; } pPhrase->doclist.pList = aOut; assert( p1 && p2 ); if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){ pPhrase->doclist.bFreeList = 1; pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList); }else{ sqlite3_free(aOut); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; } sqlite3_free(aPoslist); } } if( pPhrase->doclist.pList!=aFree ) sqlite3_free(aFree); return SQLITE_OK; } #endif /* SQLITE_DISABLE_FTS4_DEFERRED */ /* ** Maximum number of tokens a phrase may have to be considered for the ** incremental doclists strategy. */ #define MAX_INCR_PHRASE_TOKENS 4 /* ** This function is called for each Fts3Phrase in a full-text query ** expression to initialize the mechanism for returning rows. Once this ** function has been called successfully on an Fts3Phrase, it may be ** used with fts3EvalPhraseNext() to iterate through the matching docids. ** ** If parameter bOptOk is true, then the phrase may (or may not) use the ** incremental loading strategy. Otherwise, the entire doclist is loaded into ** memory within this call. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; /* Error code */ int i; /* Determine if doclists may be loaded from disk incrementally. This is ** possible if the bOptOk argument is true, the FTS doclists will be ** scanned in forward order, and the phrase consists of ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first" ** tokens or prefix tokens that cannot use a prefix-index. */ int bHaveIncr = 0; int bIncrOk = (bOptOk && pCsr->bDesc==pTab->bDescIdx && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) && pTab->bNoIncrDoclist==0 #endif ); for(i=0; bIncrOk==1 && inToken; i++){ Fts3PhraseToken *pToken = &p->aToken[i]; if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){ bIncrOk = 0; } if( pToken->pSegcsr ) bHaveIncr = 1; } if( bIncrOk && bHaveIncr ){ /* Use the incremental approach. */ int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn); for(i=0; rc==SQLITE_OK && inToken; i++){ Fts3PhraseToken *pToken = &p->aToken[i]; Fts3MultiSegReader *pSegcsr = pToken->pSegcsr; if( pSegcsr ){ rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n); } } p->bIncr = 1; }else{ /* Load the full doclist for the phrase into memory. */ rc = fts3EvalPhraseLoad(pCsr, p); p->bIncr = 0; } assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); return rc; } /* ** This function is used to iterate backwards (from the end to start) ** through doclists. It is used by this module to iterate through phrase ** doclists in reverse and by the fts3_write.c module to iterate through ** pending-terms lists when writing to databases with "order=desc". ** ** The doclist may be sorted in ascending (parameter bDescIdx==0) or ** descending (parameter bDescIdx==1) order of docid. Regardless, this ** function iterates from the end of the doclist to the beginning. */ SQLITE_PRIVATE void sqlite3Fts3DoclistPrev( int bDescIdx, /* True if the doclist is desc */ char *aDoclist, /* Pointer to entire doclist */ int nDoclist, /* Length of aDoclist in bytes */ char **ppIter, /* IN/OUT: Iterator pointer */ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ int *pnList, /* OUT: List length pointer */ u8 *pbEof /* OUT: End-of-file flag */ ){ char *p = *ppIter; assert( nDoclist>0 ); assert( *pbEof==0 ); assert_fts3_nc( p || *piDocid==0 ); assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) ); if( p==0 ){ sqlite3_int64 iDocid = 0; char *pNext = 0; char *pDocid = aDoclist; char *pEnd = &aDoclist[nDoclist]; int iMul = 1; while( pDocid0 ); assert( *pbEof==0 ); assert_fts3_nc( p || *piDocid==0 ); assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) ); if( p==0 ){ p = aDoclist; p += sqlite3Fts3GetVarint(p, piDocid); }else{ fts3PoslistCopy(0, &p); while( p<&aDoclist[nDoclist] && *p==0 ) p++; if( p>=&aDoclist[nDoclist] ){ *pbEof = 1; }else{ sqlite3_int64 iVar; p += sqlite3Fts3GetVarint(p, &iVar); *piDocid += ((bDescIdx ? -1 : 1) * iVar); } } *ppIter = p; } /* ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof ** to true if EOF is reached. */ static void fts3EvalDlPhraseNext( Fts3Table *pTab, Fts3Doclist *pDL, u8 *pbEof ){ char *pIter; /* Used to iterate through aAll */ char *pEnd; /* 1 byte past end of aAll */ if( pDL->pNextDocid ){ pIter = pDL->pNextDocid; assert( pDL->aAll!=0 || pIter==0 ); }else{ pIter = pDL->aAll; } if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){ /* We have already reached the end of this doclist. EOF. */ *pbEof = 1; }else{ sqlite3_int64 iDelta; pIter += sqlite3Fts3GetVarint(pIter, &iDelta); if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){ pDL->iDocid += iDelta; }else{ pDL->iDocid -= iDelta; } pDL->pList = pIter; fts3PoslistCopy(0, &pIter); pDL->nList = (int)(pIter - pDL->pList); /* pIter now points just past the 0x00 that terminates the position- ** list for document pDL->iDocid. However, if this position-list was ** edited in place by fts3EvalNearTrim(), then pIter may not actually ** point to the start of the next docid value. The following line deals ** with this case by advancing pIter past the zero-padding added by ** fts3EvalNearTrim(). */ while( pIterpNextDocid = pIter; assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter ); *pbEof = 0; } } /* ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext(). */ typedef struct TokenDoclist TokenDoclist; struct TokenDoclist { int bIgnore; sqlite3_int64 iDocid; char *pList; int nList; }; /* ** Token pToken is an incrementally loaded token that is part of a ** multi-token phrase. Advance it to the next matching document in the ** database and populate output variable *p with the details of the new ** entry. Or, if the iterator has reached EOF, set *pbEof to true. ** ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. */ static int incrPhraseTokenNext( Fts3Table *pTab, /* Virtual table handle */ Fts3Phrase *pPhrase, /* Phrase to advance token of */ int iToken, /* Specific token to advance */ TokenDoclist *p, /* OUT: Docid and doclist for new entry */ u8 *pbEof /* OUT: True if iterator is at EOF */ ){ int rc = SQLITE_OK; if( pPhrase->iDoclistToken==iToken ){ assert( p->bIgnore==0 ); assert( pPhrase->aToken[iToken].pSegcsr==0 ); fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof); p->pList = pPhrase->doclist.pList; p->nList = pPhrase->doclist.nList; p->iDocid = pPhrase->doclist.iDocid; }else{ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; assert( pToken->pDeferred==0 ); assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 ); if( pToken->pSegcsr ){ assert( p->bIgnore==0 ); rc = sqlite3Fts3MsrIncrNext( pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList ); if( p->pList==0 ) *pbEof = 1; }else{ p->bIgnore = 1; } } return rc; } /* ** The phrase iterator passed as the second argument: ** ** * features at least one token that uses an incremental doclist, and ** ** * does not contain any deferred tokens. ** ** Advance it to the next matching documnent in the database and populate ** the Fts3Doclist.pList and nList fields. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. ** ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. */ static int fts3EvalIncrPhraseNext( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p, /* Phrase object to advance to next docid */ u8 *pbEof /* OUT: Set to 1 if EOF */ ){ int rc = SQLITE_OK; Fts3Doclist *pDL = &p->doclist; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; u8 bEof = 0; /* This is only called if it is guaranteed that the phrase has at least ** one incremental token. In which case the bIncr flag is set. */ assert( p->bIncr==1 ); if( p->nToken==1 ){ rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, &pDL->iDocid, &pDL->pList, &pDL->nList ); if( pDL->pList==0 ) bEof = 1; }else{ int bDescDoclist = pCsr->bDesc; struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS]; memset(a, 0, sizeof(a)); assert( p->nToken<=MAX_INCR_PHRASE_TOKENS ); assert( p->iDoclistTokennToken && bEof==0; i++){ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){ iMax = a[i].iDocid; bMaxSet = 1; } } assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) ); assert( rc!=SQLITE_OK || bMaxSet ); /* Keep advancing iterators until they all point to the same document */ for(i=0; inToken; i++){ while( rc==SQLITE_OK && bEof==0 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0 ){ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); if( DOCID_CMP(a[i].iDocid, iMax)>0 ){ iMax = a[i].iDocid; i = 0; } } } /* Check if the current entries really are a phrase match */ if( bEof==0 ){ int nList = 0; int nByte = a[p->nToken-1].nList; char *aDoclist = sqlite3_malloc64((i64)nByte+FTS3_BUFFER_PADDING); if( !aDoclist ) return SQLITE_NOMEM; memcpy(aDoclist, a[p->nToken-1].pList, nByte+1); memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING); for(i=0; i<(p->nToken-1); i++){ if( a[i].bIgnore==0 ){ char *pL = a[i].pList; char *pR = aDoclist; char *pOut = aDoclist; int nDist = p->nToken-1-i; int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR); if( res==0 ) break; nList = (int)(pOut - aDoclist); } } if( i==(p->nToken-1) ){ pDL->iDocid = iMax; pDL->pList = aDoclist; pDL->nList = nList; pDL->bFreeList = 1; break; } sqlite3_free(aDoclist); } } } *pbEof = bEof; return rc; } /* ** Attempt to move the phrase iterator to point to the next matching docid. ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. */ static int fts3EvalPhraseNext( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p, /* Phrase object to advance to next docid */ u8 *pbEof /* OUT: Set to 1 if EOF */ ){ int rc = SQLITE_OK; Fts3Doclist *pDL = &p->doclist; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; if( p->bIncr ){ rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof); }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){ sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll, &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof ); pDL->pList = pDL->pNextDocid; }else{ fts3EvalDlPhraseNext(pTab, pDL, pbEof); } return rc; } /* ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the ** expression. Also the Fts3Expr.bDeferred variable is set to true for any ** expressions for which all descendent tokens are deferred. ** ** If parameter bOptOk is zero, then it is guaranteed that the ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for ** each phrase in the expression (subject to deferred token processing). ** Or, if bOptOk is non-zero, then one or more tokens within the expression ** may be loaded incrementally, meaning doclist.aAll/nAll is not available. ** ** If an error occurs within this function, *pRc is set to an SQLite error ** code before returning. */ static void fts3EvalStartReaders( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expression to initialize phrases in */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int nToken = pExpr->pPhrase->nToken; if( nToken ){ int i; for(i=0; ipPhrase->aToken[i].pDeferred==0 ) break; } pExpr->bDeferred = (i==nToken); } *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase); }else{ fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc); fts3EvalStartReaders(pCsr, pExpr->pRight, pRc); pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); } } } /* ** An array of the following structures is assembled as part of the process ** of selecting tokens to defer before the query starts executing (as part ** of the xFilter() method). There is one element in the array for each ** token in the FTS expression. ** ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong ** to phrases that are connected only by AND and NEAR operators (not OR or ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered ** separately. The root of a tokens AND/NEAR cluster is stored in ** Fts3TokenAndCost.pRoot. */ typedef struct Fts3TokenAndCost Fts3TokenAndCost; struct Fts3TokenAndCost { Fts3Phrase *pPhrase; /* The phrase the token belongs to */ int iToken; /* Position of token in phrase */ Fts3PhraseToken *pToken; /* The token itself */ Fts3Expr *pRoot; /* Root of NEAR/AND cluster */ int nOvfl; /* Number of overflow pages to load doclist */ int iCol; /* The column the token must match */ }; /* ** This function is used to populate an allocated Fts3TokenAndCost array. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, if an error occurs during execution, *pRc is set to an ** SQLite error code. */ static void fts3EvalTokenCosts( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */ Fts3Expr *pExpr, /* Expression to consider */ Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */ Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK ){ if( pExpr->eType==FTSQUERY_PHRASE ){ Fts3Phrase *pPhrase = pExpr->pPhrase; int i; for(i=0; *pRc==SQLITE_OK && inToken; i++){ Fts3TokenAndCost *pTC = (*ppTC)++; pTC->pPhrase = pPhrase; pTC->iToken = i; pTC->pRoot = pRoot; pTC->pToken = &pPhrase->aToken[i]; pTC->iCol = pPhrase->iColumn; *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl); } }else if( pExpr->eType!=FTSQUERY_NOT ){ assert( pExpr->eType==FTSQUERY_OR || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NEAR ); assert( pExpr->pLeft && pExpr->pRight ); if( pExpr->eType==FTSQUERY_OR ){ pRoot = pExpr->pLeft; **ppOr = pRoot; (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc); if( pExpr->eType==FTSQUERY_OR ){ pRoot = pExpr->pRight; **ppOr = pRoot; (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); } } } /* ** Determine the average document (row) size in pages. If successful, ** write this value to *pnPage and return SQLITE_OK. Otherwise, return ** an SQLite error code. ** ** The average document size in pages is calculated by first calculating ** determining the average size in bytes, B. If B is less than the amount ** of data that will fit on a single leaf page of an intkey table in ** this database, then the average docsize is 1. Otherwise, it is 1 plus ** the number of overflow pages consumed by a record B bytes in size. */ static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ int rc = SQLITE_OK; if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost ** of each doclist, has not yet been determined. Read the required ** data from the %_stat table to calculate it. ** ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 ** varints, where nCol is the number of columns in the FTS3 table. ** The first varint is the number of documents currently stored in ** the table. The following nCol varints contain the total amount of ** data stored in all rows of each column of the table, from left ** to right. */ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; sqlite3_stmt *pStmt; sqlite3_int64 nDoc = 0; sqlite3_int64 nByte = 0; const char *pEnd; const char *a; rc = sqlite3Fts3SelectDoctotal(p, &pStmt); if( rc!=SQLITE_OK ) return rc; a = sqlite3_column_blob(pStmt, 0); testcase( a==0 ); /* If %_stat.value set to X'' */ if( a ){ pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc); while( anDoc = nDoc; pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); assert( pCsr->nRowAvg>0 ); rc = sqlite3_reset(pStmt); } *pnPage = pCsr->nRowAvg; return rc; } /* ** This function is called to select the tokens (if any) that will be ** deferred. The array aTC[] has already been populated when this is ** called. ** ** This function is called once for each AND/NEAR cluster in the ** expression. Each invocation determines which tokens to defer within ** the cluster with root node pRoot. See comments above the definition ** of struct Fts3TokenAndCost for more details. ** ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken() ** called on each token to defer. Otherwise, an SQLite error code is ** returned. */ static int fts3EvalSelectDeferred( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Consider tokens with this root node */ Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */ int nTC /* Number of entries in aTC[] */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int nDocSize = 0; /* Number of pages per doc loaded */ int rc = SQLITE_OK; /* Return code */ int ii; /* Iterator variable for various purposes */ int nOvfl = 0; /* Total overflow pages used by doclists */ int nToken = 0; /* Total number of tokens in cluster */ int nMinEst = 0; /* The minimum count for any phrase so far. */ int nLoad4 = 1; /* (Phrases that will be loaded)^4. */ /* Tokens are never deferred for FTS tables created using the content=xxx ** option. The reason being that it is not guaranteed that the content ** table actually contains the same data as the index. To prevent this from ** causing any problems, the deferred token optimization is completely ** disabled for content=xxx tables. */ if( pTab->zContentTbl ){ return SQLITE_OK; } /* Count the tokens in this AND/NEAR cluster. If none of the doclists ** associated with the tokens spill onto overflow pages, or if there is ** only 1 token, exit early. No tokens to defer in this case. */ for(ii=0; ii0 ); /* Iterate through all tokens in this AND/NEAR cluster, in ascending order ** of the number of overflow pages that will be loaded by the pager layer ** to retrieve the entire doclist for the token from the full-text index. ** Load the doclists for tokens that are either: ** ** a. The cheapest token in the entire query (i.e. the one visited by the ** first iteration of this loop), or ** ** b. Part of a multi-token phrase. ** ** After each token doclist is loaded, merge it with the others from the ** same phrase and count the number of documents that the merged doclist ** contains. Set variable "nMinEst" to the smallest number of documents in ** any phrase doclist for which 1 or more token doclists have been loaded. ** Let nOther be the number of other phrases for which it is certain that ** one or more tokens will not be deferred. ** ** Then, for each token, defer it if loading the doclist would result in ** loading N or more overflow pages into memory, where N is computed as: ** ** (nMinEst + 4^nOther - 1) / (4^nOther) */ for(ii=0; iinOvfl) ){ pTC = &aTC[iTC]; } } assert( pTC ); if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){ /* The number of overflow pages to load for this (and therefore all ** subsequent) tokens is greater than the estimated number of pages ** that will be loaded if all subsequent tokens are deferred. */ Fts3PhraseToken *pToken = pTC->pToken; rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol); fts3SegReaderCursorFree(pToken->pSegcsr); pToken->pSegcsr = 0; }else{ /* Set nLoad4 to the value of (4^nOther) for the next iteration of the ** for-loop. Except, limit the value to 2^24 to prevent it from ** overflowing the 32-bit integer it is stored in. */ if( ii<12 ) nLoad4 = nLoad4*4; if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){ /* Either this is the cheapest token in the entire query, or it is ** part of a multi-token phrase. Either way, the entire doclist will ** (eventually) be loaded into memory. It may as well be now. */ Fts3PhraseToken *pToken = pTC->pToken; int nList = 0; char *pList = 0; rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); assert( rc==SQLITE_OK || pList==0 ); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken( pTab, pTC->pPhrase, pTC->iToken,pList,nList ); } if( rc==SQLITE_OK ){ int nCount; nCount = fts3DoclistCountDocids( pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll ); if( ii==0 || nCountpToken = 0; } return rc; } /* ** This function is called from within the xFilter method. It initializes ** the full-text query currently stored in pCsr->pExpr. To iterate through ** the results of a query, the caller does: ** ** fts3EvalStart(pCsr); ** while( 1 ){ ** fts3EvalNext(pCsr); ** if( pCsr->bEof ) break; ** ... return row pCsr->iPrevId to the caller ... ** } */ static int fts3EvalStart(Fts3Cursor *pCsr){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int nToken = 0; int nOr = 0; /* Allocate a MultiSegReader for each token in the expression. */ fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc); /* Determine which, if any, tokens in the expression should be deferred. */ #ifndef SQLITE_DISABLE_FTS4_DEFERRED if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){ Fts3TokenAndCost *aTC; aTC = (Fts3TokenAndCost *)sqlite3_malloc64( sizeof(Fts3TokenAndCost) * nToken + sizeof(Fts3Expr *) * nOr * 2 ); if( !aTC ){ rc = SQLITE_NOMEM; }else{ Fts3Expr **apOr = (Fts3Expr **)&aTC[nToken]; int ii; Fts3TokenAndCost *pTC = aTC; Fts3Expr **ppOr = apOr; fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc); nToken = (int)(pTC-aTC); nOr = (int)(ppOr-apOr); if( rc==SQLITE_OK ){ rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken); for(ii=0; rc==SQLITE_OK && iipExpr, &rc); return rc; } /* ** Invalidate the current position list for phrase pPhrase. */ static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){ if( pPhrase->doclist.bFreeList ){ sqlite3_free(pPhrase->doclist.pList); } pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; pPhrase->doclist.bFreeList = 0; } /* ** This function is called to edit the position list associated with ** the phrase object passed as the fifth argument according to a NEAR ** condition. For example: ** ** abc NEAR/5 "def ghi" ** ** Parameter nNear is passed the NEAR distance of the expression (5 in ** the example above). When this function is called, *paPoslist points to ** the position list, and *pnToken is the number of phrase tokens in the ** phrase on the other side of the NEAR operator to pPhrase. For example, ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to ** the position list associated with phrase "abc". ** ** All positions in the pPhrase position list that are not sufficiently ** close to a position in the *paPoslist position list are removed. If this ** leaves 0 positions, zero is returned. Otherwise, non-zero. ** ** Before returning, *paPoslist is set to point to the position lsit ** associated with pPhrase. And *pnToken is set to the number of tokens in ** pPhrase. */ static int fts3EvalNearTrim( int nNear, /* NEAR distance. As in "NEAR/nNear". */ char *aTmp, /* Temporary space to use */ char **paPoslist, /* IN/OUT: Position list */ int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */ Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */ ){ int nParam1 = nNear + pPhrase->nToken; int nParam2 = nNear + *pnToken; int nNew; char *p2; char *pOut; int res; assert( pPhrase->doclist.pList ); p2 = pOut = pPhrase->doclist.pList; res = fts3PoslistNearMerge( &pOut, aTmp, nParam1, nParam2, paPoslist, &p2 ); if( res ){ nNew = (int)(pOut - pPhrase->doclist.pList) - 1; assert_fts3_nc( nNew<=pPhrase->doclist.nList && nNew>0 ); if( nNew>=0 && nNew<=pPhrase->doclist.nList ){ assert( pPhrase->doclist.pList[nNew]=='\0' ); memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew); pPhrase->doclist.nList = nNew; } *paPoslist = pPhrase->doclist.pList; *pnToken = pPhrase->nToken; } return res; } /* ** This function is a no-op if *pRc is other than SQLITE_OK when it is called. ** Otherwise, it advances the expression passed as the second argument to ** point to the next matching row in the database. Expressions iterate through ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero, ** or descending if it is non-zero. ** ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if ** successful, the following variables in pExpr are set: ** ** Fts3Expr.bEof (non-zero if EOF - there is no next row) ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row) ** ** If the expression is of type FTSQUERY_PHRASE, and the expression is not ** at EOF, then the following variables are populated with the position list ** for the phrase for the visited row: ** ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes) ** FTs3Expr.pPhrase->doclist.pList (pointer to position list) ** ** It says above that this function advances the expression to the next ** matching row. This is usually true, but there are the following exceptions: ** ** 1. Deferred tokens are not taken into account. If a phrase consists ** entirely of deferred tokens, it is assumed to match every row in ** the db. In this case the position-list is not populated at all. ** ** Or, if a phrase contains one or more deferred tokens and one or ** more non-deferred tokens, then the expression is advanced to the ** next possible match, considering only non-deferred tokens. In other ** words, if the phrase is "A B C", and "B" is deferred, the expression ** is advanced to the next row that contains an instance of "A * C", ** where "*" may match any single token. The position list in this case ** is populated as for "A * C" before returning. ** ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is ** advanced to point to the next row that matches "x AND y". ** ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is ** really a match, taking into account deferred tokens and NEAR operators. */ static void fts3EvalNextRow( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expr. to advance to next matching row */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK && pExpr->bEof==0 ){ int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */ pExpr->bStart = 1; switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; assert( !pLeft->bDeferred || !pRight->bDeferred ); if( pLeft->bDeferred ){ /* LHS is entirely deferred. So we assume it matches every row. ** Advance the RHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pRight, pRc); pExpr->iDocid = pRight->iDocid; pExpr->bEof = pRight->bEof; }else if( pRight->bDeferred ){ /* RHS is entirely deferred. So we assume it matches every row. ** Advance the LHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pLeft, pRc); pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; }else{ /* Neither the RHS or LHS are deferred. */ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){ sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( iDiff==0 ) break; if( iDiff<0 ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else{ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = (pLeft->bEof || pRight->bEof); if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){ assert( pRight->eType==FTSQUERY_PHRASE ); if( pRight->pPhrase->doclist.aAll ){ Fts3Doclist *pDl = &pRight->pPhrase->doclist; while( *pRc==SQLITE_OK && pRight->bEof==0 ){ memset(pDl->pList, 0, pDl->nList); fts3EvalNextRow(pCsr, pRight, pRc); } } if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){ Fts3Doclist *pDl = &pLeft->pPhrase->doclist; while( *pRc==SQLITE_OK && pLeft->bEof==0 ){ memset(pDl->pList, 0, pDl->nList); fts3EvalNextRow(pCsr, pLeft, pRc); } } pRight->bEof = pLeft->bEof = 1; } } break; } case FTSQUERY_OR: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); assert_fts3_nc( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); assert_fts3_nc( pRight->bStart || pLeft->iDocid==pRight->iDocid ); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else if( pLeft->bEof || iCmp>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); }else{ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); } pExpr->bEof = (pLeft->bEof && pRight->bEof); iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ pExpr->iDocid = pLeft->iDocid; }else{ pExpr->iDocid = pRight->iDocid; } break; } case FTSQUERY_NOT: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; if( pRight->bStart==0 ){ fts3EvalNextRow(pCsr, pRight, pRc); assert( *pRc!=SQLITE_OK || pRight->bStart ); } fts3EvalNextRow(pCsr, pLeft, pRc); if( pLeft->bEof==0 ){ while( !*pRc && !pRight->bEof && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; break; } default: { Fts3Phrase *pPhrase = pExpr->pPhrase; fts3EvalInvalidatePoslist(pPhrase); *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof); pExpr->iDocid = pPhrase->doclist.iDocid; break; } } } } /* ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR ** cluster, then this function returns 1 immediately. ** ** Otherwise, it checks if the current row really does match the NEAR ** expression, using the data currently stored in the position lists ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. ** ** If the current row is a match, the position list associated with each ** phrase in the NEAR expression is edited in place to contain only those ** phrase instances sufficiently close to their peers to satisfy all NEAR ** constraints. In this case it returns 1. If the NEAR expression does not ** match the current row, 0 is returned. The position lists may or may not ** be edited if 0 is returned. */ static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ int res = 1; /* The following block runs if pExpr is the root of a NEAR query. ** For example, the query: ** ** "w" NEAR "x" NEAR "y" NEAR "z" ** ** which is represented in tree form as: ** ** | ** +--NEAR--+ <-- root of NEAR query ** | | ** +--NEAR--+ "z" ** | | ** +--NEAR--+ "y" ** | | ** "w" "x" ** ** The right-hand child of a NEAR node is always a phrase. The ** left-hand child may be either a phrase or a NEAR node. There are ** no exceptions to this - it's the way the parser in fts3_expr.c works. */ if( *pRc==SQLITE_OK && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; sqlite3_int64 nTmp = 0; /* Bytes of temp space */ char *aTmp; /* Temp space for PoslistNearMerge() */ /* Allocate temporary working space. */ for(p=pExpr; p->pLeft; p=p->pLeft){ assert( p->pRight->pPhrase->doclist.nList>0 ); nTmp += p->pRight->pPhrase->doclist.nList; } nTmp += p->pPhrase->doclist.nList; aTmp = sqlite3_malloc64(nTmp*2); if( !aTmp ){ *pRc = SQLITE_NOMEM; res = 0; }else{ char *aPoslist = p->pPhrase->doclist.pList; int nToken = p->pPhrase->nToken; for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ Fts3Phrase *pPhrase = p->pRight->pPhrase; int nNear = p->nNear; res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } aPoslist = pExpr->pRight->pPhrase->doclist.pList; nToken = pExpr->pRight->pPhrase->nToken; for(p=pExpr->pLeft; p && res; p=p->pLeft){ int nNear; Fts3Phrase *pPhrase; assert( p->pParent && p->pParent->pLeft==p ); nNear = p->pParent->nNear; pPhrase = ( p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase ); res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } } sqlite3_free(aTmp); } return res; } /* ** This function is a helper function for sqlite3Fts3EvalTestDeferred(). ** Assuming no error occurs or has occurred, It returns non-zero if the ** expression passed as the second argument matches the row that pCsr ** currently points to, or zero if it does not. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** If an error occurs during execution of this function, *pRc is set to ** the appropriate SQLite error code. In this case the returned value is ** undefined. */ static int fts3EvalTestExpr( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Expr to test. May or may not be root. */ int *pRc /* IN/OUT: Error code */ ){ int bHit = 1; /* Return value */ if( *pRc==SQLITE_OK ){ switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) && fts3EvalNearTest(pExpr, pRc) ); /* If the NEAR expression does not match any rows, zero the doclist for ** all phrases involved in the NEAR. This is because the snippet(), ** offsets() and matchinfo() functions are not supposed to recognize ** any instances of phrases that are part of unmatched NEAR queries. ** For example if this expression: ** ** ... MATCH 'a OR (b NEAR c)' ** ** is matched against a row containing: ** ** 'a b d e' ** ** then any snippet() should ony highlight the "a" term, not the "b" ** (as "b" is part of a non-matching NEAR clause). */ if( bHit==0 && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; for(p=pExpr; p->pPhrase==0; p=p->pLeft){ if( p->pRight->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pRight->pPhrase); } } if( p->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pPhrase); } } break; case FTSQUERY_OR: { int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc); int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc); bHit = bHit1 || bHit2; break; } case FTSQUERY_NOT: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) ); break; default: { #ifndef SQLITE_DISABLE_FTS4_DEFERRED if( pCsr->pDeferred && (pExpr->bDeferred || ( pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.pList ))){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pExpr->bDeferred ){ fts3EvalInvalidatePoslist(pPhrase); } *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase); bHit = (pPhrase->doclist.pList!=0); pExpr->iDocid = pCsr->iPrevId; }else #endif { bHit = ( pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.nList>0 ); } break; } } } return bHit; } /* ** This function is called as the second part of each xNext operation when ** iterating through the results of a full-text query. At this point the ** cursor points to a row that matches the query expression, with the ** following caveats: ** ** * Up until this point, "NEAR" operators in the expression have been ** treated as "AND". ** ** * Deferred tokens have not yet been considered. ** ** If *pRc is not SQLITE_OK when this function is called, it immediately ** returns 0. Otherwise, it tests whether or not after considering NEAR ** operators and deferred tokens the current row is still a match for the ** expression. It returns 1 if both of the following are true: ** ** 1. *pRc is SQLITE_OK when this function returns, and ** ** 2. After scanning the current FTS table row for the deferred tokens, ** it is determined that the row does *not* match the query. ** ** Or, if no error occurs and it seems the current row does match the FTS ** query, return 0. */ SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){ int rc = *pRc; int bMiss = 0; if( rc==SQLITE_OK ){ /* If there are one or more deferred tokens, load the current row into ** memory and scan it to determine the position list for each deferred ** token. Then, see if this row is really a match, considering deferred ** tokens and NEAR operators (neither of which were taken into account ** earlier, by fts3EvalNextRow()). */ if( pCsr->pDeferred ){ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK ){ rc = sqlite3Fts3CacheDeferredDoclists(pCsr); } } bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc)); /* Free the position-lists accumulated for each deferred token above. */ sqlite3Fts3FreeDeferredDoclists(pCsr); *pRc = rc; } return (rc==SQLITE_OK && bMiss); } /* ** Advance to the next document that matches the FTS expression in ** Fts3Cursor.pExpr. */ static int fts3EvalNext(Fts3Cursor *pCsr){ int rc = SQLITE_OK; /* Return Code */ Fts3Expr *pExpr = pCsr->pExpr; assert( pCsr->isEof==0 ); if( pExpr==0 ){ pCsr->isEof = 1; }else{ do { if( pCsr->isRequireSeek==0 ){ sqlite3_reset(pCsr->pStmt); } assert( sqlite3_data_count(pCsr->pStmt)==0 ); fts3EvalNextRow(pCsr, pExpr, &rc); pCsr->isEof = pExpr->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pExpr->iDocid; }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) ); } /* Check if the cursor is past the end of the docid range specified ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */ if( rc==SQLITE_OK && ( (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid) || (pCsr->bDesc!=0 && pCsr->iPrevIdiMinDocid) )){ pCsr->isEof = 1; } return rc; } /* ** Restart interation for expression pExpr so that the next call to ** fts3EvalNext() visits the first row. Do not allow incremental ** loading or merging of phrase doclists for this iteration. ** ** If *pRc is other than SQLITE_OK when this function is called, it is ** a no-op. If an error occurs within this function, *pRc is set to an ** SQLite error code before returning. */ static void fts3EvalRestart( Fts3Cursor *pCsr, Fts3Expr *pExpr, int *pRc ){ if( pExpr && *pRc==SQLITE_OK ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase ){ fts3EvalInvalidatePoslist(pPhrase); if( pPhrase->bIncr ){ int i; for(i=0; inToken; i++){ Fts3PhraseToken *pToken = &pPhrase->aToken[i]; assert( pToken->pDeferred==0 ); if( pToken->pSegcsr ){ sqlite3Fts3MsrIncrRestart(pToken->pSegcsr); } } *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase); } pPhrase->doclist.pNextDocid = 0; pPhrase->doclist.iDocid = 0; pPhrase->pOrPoslist = 0; } pExpr->iDocid = 0; pExpr->bEof = 0; pExpr->bStart = 0; fts3EvalRestart(pCsr, pExpr->pLeft, pRc); fts3EvalRestart(pCsr, pExpr->pRight, pRc); } } /* ** After allocating the Fts3Expr.aMI[] array for each phrase in the ** expression rooted at pExpr, the cursor iterates through all rows matched ** by pExpr, calling this function for each row. This function increments ** the values in Fts3Expr.aMI[] according to the position-list currently ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase ** expression nodes. */ static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){ if( pExpr ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase && pPhrase->doclist.pList ){ int iCol = 0; char *p = pPhrase->doclist.pList; do{ u8 c = 0; int iCnt = 0; while( 0xFE & (*p | c) ){ if( (c&0x80)==0 ) iCnt++; c = *p++ & 0x80; } /* aMI[iCol*3 + 1] = Number of occurrences ** aMI[iCol*3 + 2] = Number of rows containing at least one instance */ pExpr->aMI[iCol*3 + 1] += iCnt; pExpr->aMI[iCol*3 + 2] += (iCnt>0); if( *p==0x00 ) break; p++; p += fts3GetVarint32(p, &iCol); }while( iColpLeft, nCol); fts3EvalUpdateCounts(pExpr->pRight, nCol); } } /* ** This is an sqlite3Fts3ExprIterate() callback. If the Fts3Expr.aMI[] array ** has not yet been allocated, allocate and zero it. Otherwise, just zero ** it. */ static int fts3AllocateMSI(Fts3Expr *pExpr, int iPhrase, void *pCtx){ Fts3Table *pTab = (Fts3Table*)pCtx; UNUSED_PARAMETER(iPhrase); if( pExpr->aMI==0 ){ pExpr->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32)); if( pExpr->aMI==0 ) return SQLITE_NOMEM; } memset(pExpr->aMI, 0, pTab->nColumn * 3 * sizeof(u32)); return SQLITE_OK; } /* ** Expression pExpr must be of type FTSQUERY_PHRASE. ** ** If it is not already allocated and populated, this function allocates and ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part ** of a NEAR expression, then it also allocates and populates the same array ** for all other phrases that are part of the NEAR expression. ** ** SQLITE_OK is returned if the aMI[] array is successfully allocated and ** populated. Otherwise, if an error occurs, an SQLite error code is returned. */ static int fts3EvalGatherStats( Fts3Cursor *pCsr, /* Cursor object */ Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */ ){ int rc = SQLITE_OK; /* Return code */ assert( pExpr->eType==FTSQUERY_PHRASE ); if( pExpr->aMI==0 ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; Fts3Expr *pRoot; /* Root of NEAR expression */ sqlite3_int64 iPrevId = pCsr->iPrevId; sqlite3_int64 iDocid; u8 bEof; /* Find the root of the NEAR expression */ pRoot = pExpr; while( pRoot->pParent && (pRoot->pParent->eType==FTSQUERY_NEAR || pRoot->bDeferred) ){ pRoot = pRoot->pParent; } iDocid = pRoot->iDocid; bEof = pRoot->bEof; assert( pRoot->bStart ); /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */ rc = sqlite3Fts3ExprIterate(pRoot, fts3AllocateMSI, (void*)pTab); if( rc!=SQLITE_OK ) return rc; fts3EvalRestart(pCsr, pRoot, &rc); while( pCsr->isEof==0 && rc==SQLITE_OK ){ do { /* Ensure the %_content statement is reset. */ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); assert( sqlite3_data_count(pCsr->pStmt)==0 ); /* Advance to the next document */ fts3EvalNextRow(pCsr, pRoot, &rc); pCsr->isEof = pRoot->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pRoot->iDocid; }while( pCsr->isEof==0 && pRoot->eType==FTSQUERY_NEAR && sqlite3Fts3EvalTestDeferred(pCsr, &rc) ); if( rc==SQLITE_OK && pCsr->isEof==0 ){ fts3EvalUpdateCounts(pRoot, pTab->nColumn); } } pCsr->isEof = 0; pCsr->iPrevId = iPrevId; if( bEof ){ pRoot->bEof = bEof; }else{ /* Caution: pRoot may iterate through docids in ascending or descending ** order. For this reason, even though it seems more defensive, the ** do loop can not be written: ** ** do {...} while( pRoot->iDocidbEof==0 ); if( pRoot->bEof ) rc = FTS_CORRUPT_VTAB; }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK ); } } return rc; } /* ** This function is used by the matchinfo() module to query a phrase ** expression node for the following information: ** ** 1. The total number of occurrences of the phrase in each column of ** the FTS table (considering all rows), and ** ** 2. For each column, the number of rows in the table for which the ** column contains at least one instance of the phrase. ** ** If no error occurs, SQLITE_OK is returned and the values for each column ** written into the array aiOut as follows: ** ** aiOut[iCol*3 + 1] = Number of occurrences ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance ** ** Caveats: ** ** * If a phrase consists entirely of deferred tokens, then all output ** values are set to the number of documents in the table. In other ** words we assume that very common tokens occur exactly once in each ** column of each row of the table. ** ** * If a phrase contains some deferred tokens (and some non-deferred ** tokens), count the potential occurrence identified by considering ** the non-deferred tokens instead of actual phrase occurrences. ** ** * If the phrase is part of a NEAR expression, then only phrase instances ** that meet the NEAR constraint are included in the counts. */ SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Phrase expression */ u32 *aiOut /* Array to write results into (see above) */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int iCol; if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){ assert( pCsr->nDoc>0 ); for(iCol=0; iColnColumn; iCol++){ aiOut[iCol*3 + 1] = (u32)pCsr->nDoc; aiOut[iCol*3 + 2] = (u32)pCsr->nDoc; } }else{ rc = fts3EvalGatherStats(pCsr, pExpr); if( rc==SQLITE_OK ){ assert( pExpr->aMI ); for(iCol=0; iColnColumn; iCol++){ aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1]; aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2]; } } } return rc; } /* ** The expression pExpr passed as the second argument to this function ** must be of type FTSQUERY_PHRASE. ** ** The returned value is either NULL or a pointer to a buffer containing ** a position-list indicating the occurrences of the phrase in column iCol ** of the current row. ** ** More specifically, the returned buffer contains 1 varint for each ** occurrence of the phrase in the column, stored using the normal (delta+2) ** compression and is terminated by either an 0x01 or 0x00 byte. For example, ** if the requested column contains "a b X c d X X" and the position-list ** for 'X' is requested, the buffer returned may contain: ** ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00 ** ** This function works regardless of whether or not the phrase is deferred, ** incremental, or neither. */ SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist( Fts3Cursor *pCsr, /* FTS3 cursor object */ Fts3Expr *pExpr, /* Phrase to return doclist for */ int iCol, /* Column to return position list for */ char **ppOut /* OUT: Pointer to position list */ ){ Fts3Phrase *pPhrase = pExpr->pPhrase; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; char *pIter; int iThis; sqlite3_int64 iDocid; /* If this phrase is applies specifically to some column other than ** column iCol, return a NULL pointer. */ *ppOut = 0; assert( iCol>=0 && iColnColumn ); if( (pPhrase->iColumnnColumn && pPhrase->iColumn!=iCol) ){ return SQLITE_OK; } iDocid = pExpr->iDocid; pIter = pPhrase->doclist.pList; if( iDocid!=pCsr->iPrevId || pExpr->bEof ){ int rc = SQLITE_OK; int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */ int bOr = 0; u8 bTreeEof = 0; Fts3Expr *p; /* Used to iterate from pExpr to root */ Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */ Fts3Expr *pRun; /* Closest non-deferred ancestor of pNear */ int bMatch; /* Check if this phrase descends from an OR expression node. If not, ** return NULL. Otherwise, the entry that corresponds to docid ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the ** tree that the node is part of has been marked as EOF, but the node ** itself is not EOF, then it may point to an earlier entry. */ pNear = pExpr; for(p=pExpr->pParent; p; p=p->pParent){ if( p->eType==FTSQUERY_OR ) bOr = 1; if( p->eType==FTSQUERY_NEAR ) pNear = p; if( p->bEof ) bTreeEof = 1; } if( bOr==0 ) return SQLITE_OK; pRun = pNear; while( pRun->bDeferred ){ assert( pRun->pParent ); pRun = pRun->pParent; } /* This is the descendent of an OR node. In this case we cannot use ** an incremental phrase. Load the entire doclist for the phrase ** into memory in this case. */ if( pPhrase->bIncr ){ int bEofSave = pRun->bEof; fts3EvalRestart(pCsr, pRun, &rc); while( rc==SQLITE_OK && !pRun->bEof ){ fts3EvalNextRow(pCsr, pRun, &rc); if( bEofSave==0 && pRun->iDocid==iDocid ) break; } assert( rc!=SQLITE_OK || pPhrase->bIncr==0 ); if( rc==SQLITE_OK && pRun->bEof!=bEofSave ){ rc = FTS_CORRUPT_VTAB; } } if( bTreeEof ){ while( rc==SQLITE_OK && !pRun->bEof ){ fts3EvalNextRow(pCsr, pRun, &rc); } } if( rc!=SQLITE_OK ) return rc; bMatch = 1; for(p=pNear; p; p=p->pLeft){ u8 bEof = 0; Fts3Expr *pTest = p; Fts3Phrase *pPh; assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE ); if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight; assert( pTest->eType==FTSQUERY_PHRASE ); pPh = pTest->pPhrase; pIter = pPh->pOrPoslist; iDocid = pPh->iOrDocid; if( pCsr->bDesc==bDescDoclist ){ bEof = !pPh->doclist.nAll || (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll)); while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){ sqlite3Fts3DoclistNext( bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, &pIter, &iDocid, &bEof ); } }else{ bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll); while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){ int dummy; sqlite3Fts3DoclistPrev( bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, &pIter, &iDocid, &dummy, &bEof ); } } pPh->pOrPoslist = pIter; pPh->iOrDocid = iDocid; if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0; } if( bMatch ){ pIter = pPhrase->pOrPoslist; }else{ pIter = 0; } } if( pIter==0 ) return SQLITE_OK; if( *pIter==0x01 ){ pIter++; pIter += fts3GetVarint32(pIter, &iThis); }else{ iThis = 0; } while( iThisdoclist, and ** * any Fts3MultiSegReader objects held by phrase tokens. */ SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ if( pPhrase ){ int i; sqlite3_free(pPhrase->doclist.aAll); fts3EvalInvalidatePoslist(pPhrase); memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist)); for(i=0; inToken; i++){ fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr); pPhrase->aToken[i].pSegcsr = 0; } } } /* ** Return SQLITE_CORRUPT_VTAB. */ #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3Fts3Corrupt(){ return SQLITE_CORRUPT_VTAB; } #endif #if !SQLITE_CORE /* ** Initialize API pointer table, if required. */ #ifdef _WIN32 __declspec(dllexport) #endif SQLITE_API int sqlite3_fts3_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3Fts3Init(db); } #endif #endif /************** End of fts3.c ************************************************/ /************** Begin file fts3_aux.c ****************************************/ /* ** 2011 Jan 27 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ typedef struct Fts3auxTable Fts3auxTable; typedef struct Fts3auxCursor Fts3auxCursor; struct Fts3auxTable { sqlite3_vtab base; /* Base class used by SQLite core */ Fts3Table *pFts3Tab; }; struct Fts3auxCursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ Fts3MultiSegReader csr; /* Must be right after "base" */ Fts3SegFilter filter; char *zStop; int nStop; /* Byte-length of string zStop */ int iLangid; /* Language id to query */ int isEof; /* True if cursor is at EOF */ sqlite3_int64 iRowid; /* Current rowid */ int iCol; /* Current value of 'col' column */ int nStat; /* Size of aStat[] array */ struct Fts3auxColstats { sqlite3_int64 nDoc; /* 'documents' values for current csr row */ sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */ } *aStat; }; /* ** Schema of the terms table. */ #define FTS3_AUX_SCHEMA \ "CREATE TABLE x(term, col, documents, occurrences, languageid HIDDEN)" /* ** This function does all the work for both the xConnect and xCreate methods. ** These tables have no persistent representation of their own, so xConnect ** and xCreate are identical operations. */ static int fts3auxConnectMethod( sqlite3 *db, /* Database connection */ void *pUnused, /* Unused */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ char const *zDb; /* Name of database (e.g. "main") */ char const *zFts3; /* Name of fts3 table */ int nDb; /* Result of strlen(zDb) */ int nFts3; /* Result of strlen(zFts3) */ sqlite3_int64 nByte; /* Bytes of space to allocate here */ int rc; /* value returned by declare_vtab() */ Fts3auxTable *p; /* Virtual table object to return */ UNUSED_PARAMETER(pUnused); /* The user should invoke this in one of two forms: ** ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table); ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table-db, fts4-table); */ if( argc!=4 && argc!=5 ) goto bad_args; zDb = argv[1]; nDb = (int)strlen(zDb); if( argc==5 ){ if( nDb==4 && 0==sqlite3_strnicmp("temp", zDb, 4) ){ zDb = argv[3]; nDb = (int)strlen(zDb); zFts3 = argv[4]; }else{ goto bad_args; } }else{ zFts3 = argv[3]; } nFts3 = (int)strlen(zFts3); rc = sqlite3_declare_vtab(db, FTS3_AUX_SCHEMA); if( rc!=SQLITE_OK ) return rc; nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2; p = (Fts3auxTable *)sqlite3_malloc64(nByte); if( !p ) return SQLITE_NOMEM; memset(p, 0, nByte); p->pFts3Tab = (Fts3Table *)&p[1]; p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1]; p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1]; p->pFts3Tab->db = db; p->pFts3Tab->nIndex = 1; memcpy((char *)p->pFts3Tab->zDb, zDb, nDb); memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3); sqlite3Fts3Dequote((char *)p->pFts3Tab->zName); *ppVtab = (sqlite3_vtab *)p; return SQLITE_OK; bad_args: sqlite3Fts3ErrMsg(pzErr, "invalid arguments to fts4aux constructor"); return SQLITE_ERROR; } /* ** This function does the work for both the xDisconnect and xDestroy methods. ** These tables have no persistent representation of their own, so xDisconnect ** and xDestroy are identical operations. */ static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){ Fts3auxTable *p = (Fts3auxTable *)pVtab; Fts3Table *pFts3 = p->pFts3Tab; int i; /* Free any prepared statements held */ for(i=0; iaStmt); i++){ sqlite3_finalize(pFts3->aStmt[i]); } sqlite3_free(pFts3->zSegmentsTbl); sqlite3_free(p); return SQLITE_OK; } #define FTS4AUX_EQ_CONSTRAINT 1 #define FTS4AUX_GE_CONSTRAINT 2 #define FTS4AUX_LE_CONSTRAINT 4 /* ** xBestIndex - Analyze a WHERE and ORDER BY clause. */ static int fts3auxBestIndexMethod( sqlite3_vtab *pVTab, sqlite3_index_info *pInfo ){ int i; int iEq = -1; int iGe = -1; int iLe = -1; int iLangid = -1; int iNext = 1; /* Next free argvIndex value */ UNUSED_PARAMETER(pVTab); /* This vtab delivers always results in "ORDER BY term ASC" order. */ if( pInfo->nOrderBy==1 && pInfo->aOrderBy[0].iColumn==0 && pInfo->aOrderBy[0].desc==0 ){ pInfo->orderByConsumed = 1; } /* Search for equality and range constraints on the "term" column. ** And equality constraints on the hidden "languageid" column. */ for(i=0; inConstraint; i++){ if( pInfo->aConstraint[i].usable ){ int op = pInfo->aConstraint[i].op; int iCol = pInfo->aConstraint[i].iColumn; if( iCol==0 ){ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i; if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i; if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i; if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i; if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i; } if( iCol==4 ){ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iLangid = i; } } } if( iEq>=0 ){ pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT; pInfo->aConstraintUsage[iEq].argvIndex = iNext++; pInfo->estimatedCost = 5; }else{ pInfo->idxNum = 0; pInfo->estimatedCost = 20000; if( iGe>=0 ){ pInfo->idxNum += FTS4AUX_GE_CONSTRAINT; pInfo->aConstraintUsage[iGe].argvIndex = iNext++; pInfo->estimatedCost /= 2; } if( iLe>=0 ){ pInfo->idxNum += FTS4AUX_LE_CONSTRAINT; pInfo->aConstraintUsage[iLe].argvIndex = iNext++; pInfo->estimatedCost /= 2; } } if( iLangid>=0 ){ pInfo->aConstraintUsage[iLangid].argvIndex = iNext++; pInfo->estimatedCost--; } return SQLITE_OK; } /* ** xOpen - Open a cursor. */ static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ Fts3auxCursor *pCsr; /* Pointer to cursor object to return */ UNUSED_PARAMETER(pVTab); pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor)); if( !pCsr ) return SQLITE_NOMEM; memset(pCsr, 0, sizeof(Fts3auxCursor)); *ppCsr = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } /* ** xClose - Close a cursor. */ static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; sqlite3Fts3SegmentsClose(pFts3); sqlite3Fts3SegReaderFinish(&pCsr->csr); sqlite3_free((void *)pCsr->filter.zTerm); sqlite3_free(pCsr->zStop); sqlite3_free(pCsr->aStat); sqlite3_free(pCsr); return SQLITE_OK; } static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){ if( nSize>pCsr->nStat ){ struct Fts3auxColstats *aNew; aNew = (struct Fts3auxColstats *)sqlite3_realloc64(pCsr->aStat, sizeof(struct Fts3auxColstats) * nSize ); if( aNew==0 ) return SQLITE_NOMEM; memset(&aNew[pCsr->nStat], 0, sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat) ); pCsr->aStat = aNew; pCsr->nStat = nSize; } return SQLITE_OK; } /* ** xNext - Advance the cursor to the next row, if any. */ static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; int rc; /* Increment our pretend rowid value. */ pCsr->iRowid++; for(pCsr->iCol++; pCsr->iColnStat; pCsr->iCol++){ if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK; } rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr); if( rc==SQLITE_ROW ){ int i = 0; int nDoclist = pCsr->csr.nDoclist; char *aDoclist = pCsr->csr.aDoclist; int iCol; int eState = 0; if( pCsr->zStop ){ int n = (pCsr->nStopcsr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm; int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n); if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){ pCsr->isEof = 1; return SQLITE_OK; } } if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM; memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat); iCol = 0; rc = SQLITE_OK; while( iaStat[0].nDoc++; eState = 1; iCol = 0; break; /* State 1. In this state we are expecting either a 1, indicating ** that the following integer will be a column number, or the ** start of a position list for column 0. ** ** The only difference between state 1 and state 2 is that if the ** integer encountered in state 1 is not 0 or 1, then we need to ** increment the column 0 "nDoc" count for this term. */ case 1: assert( iCol==0 ); if( v>1 ){ pCsr->aStat[1].nDoc++; } eState = 2; /* fall through */ case 2: if( v==0 ){ /* 0x00. Next integer will be a docid. */ eState = 0; }else if( v==1 ){ /* 0x01. Next integer will be a column number. */ eState = 3; }else{ /* 2 or greater. A position. */ pCsr->aStat[iCol+1].nOcc++; pCsr->aStat[0].nOcc++; } break; /* State 3. The integer just read is a column number. */ default: assert( eState==3 ); iCol = (int)v; if( iCol<1 ){ rc = SQLITE_CORRUPT_VTAB; break; } if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM; pCsr->aStat[iCol+1].nDoc++; eState = 2; break; } } pCsr->iCol = 0; }else{ pCsr->isEof = 1; } return rc; } /* ** xFilter - Initialize a cursor to point at the start of its data. */ static int fts3auxFilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab; int rc; int isScan = 0; int iLangVal = 0; /* Language id to query */ int iEq = -1; /* Index of term=? value in apVal */ int iGe = -1; /* Index of term>=? value in apVal */ int iLe = -1; /* Index of term<=? value in apVal */ int iLangid = -1; /* Index of languageid=? value in apVal */ int iNext = 0; UNUSED_PARAMETER(nVal); UNUSED_PARAMETER(idxStr); assert( idxStr==0 ); assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0 || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) ); if( idxNum==FTS4AUX_EQ_CONSTRAINT ){ iEq = iNext++; }else{ isScan = 1; if( idxNum & FTS4AUX_GE_CONSTRAINT ){ iGe = iNext++; } if( idxNum & FTS4AUX_LE_CONSTRAINT ){ iLe = iNext++; } } if( iNextfilter.zTerm); sqlite3Fts3SegReaderFinish(&pCsr->csr); sqlite3_free((void *)pCsr->filter.zTerm); sqlite3_free(pCsr->aStat); sqlite3_free(pCsr->zStop); memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr); pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN; if( iEq>=0 || iGe>=0 ){ const unsigned char *zStr = sqlite3_value_text(apVal[0]); assert( (iEq==0 && iGe==-1) || (iEq==-1 && iGe==0) ); if( zStr ){ pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr); if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM; pCsr->filter.nTerm = (int)strlen(pCsr->filter.zTerm); } } if( iLe>=0 ){ pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iLe])); if( pCsr->zStop==0 ) return SQLITE_NOMEM; pCsr->nStop = (int)strlen(pCsr->zStop); } if( iLangid>=0 ){ iLangVal = sqlite3_value_int(apVal[iLangid]); /* If the user specified a negative value for the languageid, use zero ** instead. This works, as the "languageid=?" constraint will also ** be tested by the VDBE layer. The test will always be false (since ** this module will not return a row with a negative languageid), and ** so the overall query will return zero rows. */ if( iLangVal<0 ) iLangVal = 0; } pCsr->iLangid = iLangVal; rc = sqlite3Fts3SegReaderCursor(pFts3, iLangVal, 0, FTS3_SEGCURSOR_ALL, pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter); } if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor); return rc; } /* ** xEof - Return true if the cursor is at EOF, or false otherwise. */ static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; return pCsr->isEof; } /* ** xColumn - Return a column value. */ static int fts3auxColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ Fts3auxCursor *p = (Fts3auxCursor *)pCursor; assert( p->isEof==0 ); switch( iCol ){ case 0: /* term */ sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT); break; case 1: /* col */ if( p->iCol ){ sqlite3_result_int(pCtx, p->iCol-1); }else{ sqlite3_result_text(pCtx, "*", -1, SQLITE_STATIC); } break; case 2: /* documents */ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nDoc); break; case 3: /* occurrences */ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nOcc); break; default: /* languageid */ assert( iCol==4 ); sqlite3_result_int(pCtx, p->iLangid); break; } return SQLITE_OK; } /* ** xRowid - Return the current rowid for the cursor. */ static int fts3auxRowidMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite_int64 *pRowid /* OUT: Rowid value */ ){ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor; *pRowid = pCsr->iRowid; return SQLITE_OK; } /* ** Register the fts3aux module with database connection db. Return SQLITE_OK ** if successful or an error code if sqlite3_create_module() fails. */ SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){ static const sqlite3_module fts3aux_module = { 0, /* iVersion */ fts3auxConnectMethod, /* xCreate */ fts3auxConnectMethod, /* xConnect */ fts3auxBestIndexMethod, /* xBestIndex */ fts3auxDisconnectMethod, /* xDisconnect */ fts3auxDisconnectMethod, /* xDestroy */ fts3auxOpenMethod, /* xOpen */ fts3auxCloseMethod, /* xClose */ fts3auxFilterMethod, /* xFilter */ fts3auxNextMethod, /* xNext */ fts3auxEofMethod, /* xEof */ fts3auxColumnMethod, /* xColumn */ fts3auxRowidMethod, /* xRowid */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; int rc; /* Return code */ rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0); return rc; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_aux.c ********************************************/ /************** Begin file fts3_expr.c ***************************************/ /* ** 2008 Nov 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This module contains code that implements a parser for fts3 query strings ** (the right-hand argument to the MATCH operator). Because the supported ** syntax is relatively simple, the whole tokenizer/parser system is ** hand-coded. */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* ** By default, this module parses the legacy syntax that has been ** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS ** is defined, then it uses the new syntax. The differences between ** the new and the old syntaxes are: ** ** a) The new syntax supports parenthesis. The old does not. ** ** b) The new syntax supports the AND and NOT operators. The old does not. ** ** c) The old syntax supports the "-" token qualifier. This is not ** supported by the new syntax (it is replaced by the NOT operator). ** ** d) When using the old syntax, the OR operator has a greater precedence ** than an implicit AND. When using the new, both implicity and explicit ** AND operators have a higher precedence than OR. ** ** If compiled with SQLITE_TEST defined, then this module exports the ** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable ** to zero causes the module to use the old syntax. If it is set to ** non-zero the new syntax is activated. This is so both syntaxes can ** be tested using a single build of testfixture. ** ** The following describes the syntax supported by the fts3 MATCH ** operator in a similar format to that used by the lemon parser ** generator. This module does not use actually lemon, it uses a ** custom parser. ** ** query ::= andexpr (OR andexpr)*. ** ** andexpr ::= notexpr (AND? notexpr)*. ** ** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*. ** notexpr ::= LP query RP. ** ** nearexpr ::= phrase (NEAR distance_opt nearexpr)*. ** ** distance_opt ::= . ** distance_opt ::= / INTEGER. ** ** phrase ::= TOKEN. ** phrase ::= COLUMN:TOKEN. ** phrase ::= "TOKEN TOKEN TOKEN...". */ #ifdef SQLITE_TEST SQLITE_API int sqlite3_fts3_enable_parentheses = 0; #else # ifdef SQLITE_ENABLE_FTS3_PARENTHESIS # define sqlite3_fts3_enable_parentheses 1 # else # define sqlite3_fts3_enable_parentheses 0 # endif #endif /* ** Default span for NEAR operators. */ #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 /* #include */ /* #include */ /* ** isNot: ** This variable is used by function getNextNode(). When getNextNode() is ** called, it sets ParseContext.isNot to true if the 'next node' is a ** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the ** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to ** zero. */ typedef struct ParseContext ParseContext; struct ParseContext { sqlite3_tokenizer *pTokenizer; /* Tokenizer module */ int iLangid; /* Language id used with tokenizer */ const char **azCol; /* Array of column names for fts3 table */ int bFts4; /* True to allow FTS4-only syntax */ int nCol; /* Number of entries in azCol[] */ int iDefaultCol; /* Default column to query */ int isNot; /* True if getNextNode() sees a unary - */ sqlite3_context *pCtx; /* Write error message here */ int nNest; /* Number of nested brackets */ }; /* ** This function is equivalent to the standard isspace() function. ** ** The standard isspace() can be awkward to use safely, because although it ** is defined to accept an argument of type int, its behavior when passed ** an integer that falls outside of the range of the unsigned char type ** is undefined (and sometimes, "undefined" means segfault). This wrapper ** is defined to accept an argument of type char, and always returns 0 for ** any values that fall outside of the range of the unsigned char type (i.e. ** negative values). */ static int fts3isspace(char c){ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; } /* ** Allocate nByte bytes of memory using sqlite3_malloc(). If successful, ** zero the memory before returning a pointer to it. If unsuccessful, ** return NULL. */ SQLITE_PRIVATE void *sqlite3Fts3MallocZero(sqlite3_int64 nByte){ void *pRet = sqlite3_malloc64(nByte); if( pRet ) memset(pRet, 0, nByte); return pRet; } SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer( sqlite3_tokenizer *pTokenizer, int iLangid, const char *z, int n, sqlite3_tokenizer_cursor **ppCsr ){ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCsr = 0; int rc; rc = pModule->xOpen(pTokenizer, z, n, &pCsr); assert( rc==SQLITE_OK || pCsr==0 ); if( rc==SQLITE_OK ){ pCsr->pTokenizer = pTokenizer; if( pModule->iVersion>=1 ){ rc = pModule->xLanguageid(pCsr, iLangid); if( rc!=SQLITE_OK ){ pModule->xClose(pCsr); pCsr = 0; } } } *ppCsr = pCsr; return rc; } /* ** Function getNextNode(), which is called by fts3ExprParse(), may itself ** call fts3ExprParse(). So this forward declaration is required. */ static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *); /* ** Extract the next token from buffer z (length n) using the tokenizer ** and other information (column names etc.) in pParse. Create an Fts3Expr ** structure of type FTSQUERY_PHRASE containing a phrase consisting of this ** single token and set *ppExpr to point to it. If the end of the buffer is ** reached before a token is found, set *ppExpr to zero. It is the ** responsibility of the caller to eventually deallocate the allocated ** Fts3Expr structure (if any) by passing it to sqlite3_free(). ** ** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation ** fails. */ static int getNextToken( ParseContext *pParse, /* fts3 query parse context */ int iCol, /* Value for Fts3Phrase.iColumn */ const char *z, int n, /* Input string */ Fts3Expr **ppExpr, /* OUT: expression */ int *pnConsumed /* OUT: Number of bytes consumed */ ){ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; int rc; sqlite3_tokenizer_cursor *pCursor; Fts3Expr *pRet = 0; int i = 0; /* Set variable i to the maximum number of bytes of input to tokenize. */ for(i=0; iiLangid, z, i, &pCursor); if( rc==SQLITE_OK ){ const char *zToken; int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0; sqlite3_int64 nByte; /* total space to allocate */ rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition); if( rc==SQLITE_OK ){ nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken; pRet = (Fts3Expr *)sqlite3Fts3MallocZero(nByte); if( !pRet ){ rc = SQLITE_NOMEM; }else{ pRet->eType = FTSQUERY_PHRASE; pRet->pPhrase = (Fts3Phrase *)&pRet[1]; pRet->pPhrase->nToken = 1; pRet->pPhrase->iColumn = iCol; pRet->pPhrase->aToken[0].n = nToken; pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1]; memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken); if( iEndpPhrase->aToken[0].isPrefix = 1; iEnd++; } while( 1 ){ if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){ pParse->isNot = 1; iStart--; }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){ pRet->pPhrase->aToken[0].bFirst = 1; iStart--; }else{ break; } } } *pnConsumed = iEnd; }else if( i && rc==SQLITE_DONE ){ rc = SQLITE_OK; } pModule->xClose(pCursor); } *ppExpr = pRet; return rc; } /* ** Enlarge a memory allocation. If an out-of-memory allocation occurs, ** then free the old allocation. */ static void *fts3ReallocOrFree(void *pOrig, sqlite3_int64 nNew){ void *pRet = sqlite3_realloc64(pOrig, nNew); if( !pRet ){ sqlite3_free(pOrig); } return pRet; } /* ** Buffer zInput, length nInput, contains the contents of a quoted string ** that appeared as part of an fts3 query expression. Neither quote character ** is included in the buffer. This function attempts to tokenize the entire ** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE ** containing the results. ** ** If successful, SQLITE_OK is returned and *ppExpr set to point at the ** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory ** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set ** to 0. */ static int getNextString( ParseContext *pParse, /* fts3 query parse context */ const char *zInput, int nInput, /* Input string */ Fts3Expr **ppExpr /* OUT: expression */ ){ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; int rc; Fts3Expr *p = 0; sqlite3_tokenizer_cursor *pCursor = 0; char *zTemp = 0; int nTemp = 0; const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase); int nToken = 0; /* The final Fts3Expr data structure, including the Fts3Phrase, ** Fts3PhraseToken structures token buffers are all stored as a single ** allocation so that the expression can be freed with a single call to ** sqlite3_free(). Setting this up requires a two pass approach. ** ** The first pass, in the block below, uses a tokenizer cursor to iterate ** through the tokens in the expression. This pass uses fts3ReallocOrFree() ** to assemble data in two dynamic buffers: ** ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase ** structure, followed by the array of Fts3PhraseToken ** structures. This pass only populates the Fts3PhraseToken array. ** ** Buffer zTemp: Contains copies of all tokens. ** ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below, ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase ** structures. */ rc = sqlite3Fts3OpenTokenizer( pTokenizer, pParse->iLangid, zInput, nInput, &pCursor); if( rc==SQLITE_OK ){ int ii; for(ii=0; rc==SQLITE_OK; ii++){ const char *zByte; int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0; rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos); if( rc==SQLITE_OK ){ Fts3PhraseToken *pToken; p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken)); if( !p ) goto no_mem; zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte); if( !zTemp ) goto no_mem; assert( nToken==ii ); pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii]; memset(pToken, 0, sizeof(Fts3PhraseToken)); memcpy(&zTemp[nTemp], zByte, nByte); nTemp += nByte; pToken->n = nByte; pToken->isPrefix = (iEndbFirst = (iBegin>0 && zInput[iBegin-1]=='^'); nToken = ii+1; } } pModule->xClose(pCursor); pCursor = 0; } if( rc==SQLITE_DONE ){ int jj; char *zBuf = 0; p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp); if( !p ) goto no_mem; memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p); p->eType = FTSQUERY_PHRASE; p->pPhrase = (Fts3Phrase *)&p[1]; p->pPhrase->iColumn = pParse->iDefaultCol; p->pPhrase->nToken = nToken; zBuf = (char *)&p->pPhrase->aToken[nToken]; if( zTemp ){ memcpy(zBuf, zTemp, nTemp); sqlite3_free(zTemp); }else{ assert( nTemp==0 ); } for(jj=0; jjpPhrase->nToken; jj++){ p->pPhrase->aToken[jj].z = zBuf; zBuf += p->pPhrase->aToken[jj].n; } rc = SQLITE_OK; } *ppExpr = p; return rc; no_mem: if( pCursor ){ pModule->xClose(pCursor); } sqlite3_free(zTemp); sqlite3_free(p); *ppExpr = 0; return SQLITE_NOMEM; } /* ** The output variable *ppExpr is populated with an allocated Fts3Expr ** structure, or set to 0 if the end of the input buffer is reached. ** ** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM ** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered. ** If SQLITE_ERROR is returned, pContext is populated with an error message. */ static int getNextNode( ParseContext *pParse, /* fts3 query parse context */ const char *z, int n, /* Input string */ Fts3Expr **ppExpr, /* OUT: expression */ int *pnConsumed /* OUT: Number of bytes consumed */ ){ static const struct Fts3Keyword { char *z; /* Keyword text */ unsigned char n; /* Length of the keyword */ unsigned char parenOnly; /* Only valid in paren mode */ unsigned char eType; /* Keyword code */ } aKeyword[] = { { "OR" , 2, 0, FTSQUERY_OR }, { "AND", 3, 1, FTSQUERY_AND }, { "NOT", 3, 1, FTSQUERY_NOT }, { "NEAR", 4, 0, FTSQUERY_NEAR } }; int ii; int iCol; int iColLen; int rc; Fts3Expr *pRet = 0; const char *zInput = z; int nInput = n; pParse->isNot = 0; /* Skip over any whitespace before checking for a keyword, an open or ** close bracket, or a quoted string. */ while( nInput>0 && fts3isspace(*zInput) ){ nInput--; zInput++; } if( nInput==0 ){ return SQLITE_DONE; } /* See if we are dealing with a keyword. */ for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){ const struct Fts3Keyword *pKey = &aKeyword[ii]; if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){ continue; } if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){ int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; int nKey = pKey->n; char cNext; /* If this is a "NEAR" keyword, check for an explicit nearness. */ if( pKey->eType==FTSQUERY_NEAR ){ assert( nKey==4 ); if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){ nKey += 1+sqlite3Fts3ReadInt(&zInput[nKey+1], &nNear); } } /* At this point this is probably a keyword. But for that to be true, ** the next byte must contain either whitespace, an open or close ** parenthesis, a quote character, or EOF. */ cNext = zInput[nKey]; if( fts3isspace(cNext) || cNext=='"' || cNext=='(' || cNext==')' || cNext==0 ){ pRet = (Fts3Expr *)sqlite3Fts3MallocZero(sizeof(Fts3Expr)); if( !pRet ){ return SQLITE_NOMEM; } pRet->eType = pKey->eType; pRet->nNear = nNear; *ppExpr = pRet; *pnConsumed = (int)((zInput - z) + nKey); return SQLITE_OK; } /* Turns out that wasn't a keyword after all. This happens if the ** user has supplied a token such as "ORacle". Continue. */ } } /* See if we are dealing with a quoted phrase. If this is the case, then ** search for the closing quote and pass the whole string to getNextString() ** for processing. This is easy to do, as fts3 has no syntax for escaping ** a quote character embedded in a string. */ if( *zInput=='"' ){ for(ii=1; iinNest++; #if !defined(SQLITE_MAX_EXPR_DEPTH) if( pParse->nNest>1000 ) return SQLITE_ERROR; #elif SQLITE_MAX_EXPR_DEPTH>0 if( pParse->nNest>SQLITE_MAX_EXPR_DEPTH ) return SQLITE_ERROR; #endif rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed); *pnConsumed = (int)(zInput - z) + 1 + nConsumed; return rc; }else if( *zInput==')' ){ pParse->nNest--; *pnConsumed = (int)((zInput - z) + 1); *ppExpr = 0; return SQLITE_DONE; } } /* If control flows to this point, this must be a regular token, or ** the end of the input. Read a regular token using the sqlite3_tokenizer ** interface. Before doing so, figure out if there is an explicit ** column specifier for the token. ** ** TODO: Strangely, it is not possible to associate a column specifier ** with a quoted phrase, only with a single token. Not sure if this was ** an implementation artifact or an intentional decision when fts3 was ** first implemented. Whichever it was, this module duplicates the ** limitation. */ iCol = pParse->iDefaultCol; iColLen = 0; for(ii=0; iinCol; ii++){ const char *zStr = pParse->azCol[ii]; int nStr = (int)strlen(zStr); if( nInput>nStr && zInput[nStr]==':' && sqlite3_strnicmp(zStr, zInput, nStr)==0 ){ iCol = ii; iColLen = (int)((zInput - z) + nStr + 1); break; } } rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed); *pnConsumed += iColLen; return rc; } /* ** The argument is an Fts3Expr structure for a binary operator (any type ** except an FTSQUERY_PHRASE). Return an integer value representing the ** precedence of the operator. Lower values have a higher precedence (i.e. ** group more tightly). For example, in the C language, the == operator ** groups more tightly than ||, and would therefore have a higher precedence. ** ** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS ** is defined), the order of the operators in precedence from highest to ** lowest is: ** ** NEAR ** NOT ** AND (including implicit ANDs) ** OR ** ** Note that when using the old query syntax, the OR operator has a higher ** precedence than the AND operator. */ static int opPrecedence(Fts3Expr *p){ assert( p->eType!=FTSQUERY_PHRASE ); if( sqlite3_fts3_enable_parentheses ){ return p->eType; }else if( p->eType==FTSQUERY_NEAR ){ return 1; }else if( p->eType==FTSQUERY_OR ){ return 2; } assert( p->eType==FTSQUERY_AND ); return 3; } /* ** Argument ppHead contains a pointer to the current head of a query ** expression tree being parsed. pPrev is the expression node most recently ** inserted into the tree. This function adds pNew, which is always a binary ** operator node, into the expression tree based on the relative precedence ** of pNew and the existing nodes of the tree. This may result in the head ** of the tree changing, in which case *ppHead is set to the new root node. */ static void insertBinaryOperator( Fts3Expr **ppHead, /* Pointer to the root node of a tree */ Fts3Expr *pPrev, /* Node most recently inserted into the tree */ Fts3Expr *pNew /* New binary node to insert into expression tree */ ){ Fts3Expr *pSplit = pPrev; while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){ pSplit = pSplit->pParent; } if( pSplit->pParent ){ assert( pSplit->pParent->pRight==pSplit ); pSplit->pParent->pRight = pNew; pNew->pParent = pSplit->pParent; }else{ *ppHead = pNew; } pNew->pLeft = pSplit; pSplit->pParent = pNew; } /* ** Parse the fts3 query expression found in buffer z, length n. This function ** returns either when the end of the buffer is reached or an unmatched ** closing bracket - ')' - is encountered. ** ** If successful, SQLITE_OK is returned, *ppExpr is set to point to the ** parsed form of the expression and *pnConsumed is set to the number of ** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM ** (out of memory error) or SQLITE_ERROR (parse error) is returned. */ static int fts3ExprParse( ParseContext *pParse, /* fts3 query parse context */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ int *pnConsumed /* OUT: Number of bytes consumed */ ){ Fts3Expr *pRet = 0; Fts3Expr *pPrev = 0; Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */ int nIn = n; const char *zIn = z; int rc = SQLITE_OK; int isRequirePhrase = 1; while( rc==SQLITE_OK ){ Fts3Expr *p = 0; int nByte = 0; rc = getNextNode(pParse, zIn, nIn, &p, &nByte); assert( nByte>0 || (rc!=SQLITE_OK && p==0) ); if( rc==SQLITE_OK ){ if( p ){ int isPhrase; if( !sqlite3_fts3_enable_parentheses && p->eType==FTSQUERY_PHRASE && pParse->isNot ){ /* Create an implicit NOT operator. */ Fts3Expr *pNot = sqlite3Fts3MallocZero(sizeof(Fts3Expr)); if( !pNot ){ sqlite3Fts3ExprFree(p); rc = SQLITE_NOMEM; goto exprparse_out; } pNot->eType = FTSQUERY_NOT; pNot->pRight = p; p->pParent = pNot; if( pNotBranch ){ pNot->pLeft = pNotBranch; pNotBranch->pParent = pNot; } pNotBranch = pNot; p = pPrev; }else{ int eType = p->eType; isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft); /* The isRequirePhrase variable is set to true if a phrase or ** an expression contained in parenthesis is required. If a ** binary operator (AND, OR, NOT or NEAR) is encounted when ** isRequirePhrase is set, this is a syntax error. */ if( !isPhrase && isRequirePhrase ){ sqlite3Fts3ExprFree(p); rc = SQLITE_ERROR; goto exprparse_out; } if( isPhrase && !isRequirePhrase ){ /* Insert an implicit AND operator. */ Fts3Expr *pAnd; assert( pRet && pPrev ); pAnd = sqlite3Fts3MallocZero(sizeof(Fts3Expr)); if( !pAnd ){ sqlite3Fts3ExprFree(p); rc = SQLITE_NOMEM; goto exprparse_out; } pAnd->eType = FTSQUERY_AND; insertBinaryOperator(&pRet, pPrev, pAnd); pPrev = pAnd; } /* This test catches attempts to make either operand of a NEAR ** operator something other than a phrase. For example, either of ** the following: ** ** (bracketed expression) NEAR phrase ** phrase NEAR (bracketed expression) ** ** Return an error in either case. */ if( pPrev && ( (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE) || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR) )){ sqlite3Fts3ExprFree(p); rc = SQLITE_ERROR; goto exprparse_out; } if( isPhrase ){ if( pRet ){ assert( pPrev && pPrev->pLeft && pPrev->pRight==0 ); pPrev->pRight = p; p->pParent = pPrev; }else{ pRet = p; } }else{ insertBinaryOperator(&pRet, pPrev, p); } isRequirePhrase = !isPhrase; } pPrev = p; } assert( nByte>0 ); } assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) ); nIn -= nByte; zIn += nByte; } if( rc==SQLITE_DONE && pRet && isRequirePhrase ){ rc = SQLITE_ERROR; } if( rc==SQLITE_DONE ){ rc = SQLITE_OK; if( !sqlite3_fts3_enable_parentheses && pNotBranch ){ if( !pRet ){ rc = SQLITE_ERROR; }else{ Fts3Expr *pIter = pNotBranch; while( pIter->pLeft ){ pIter = pIter->pLeft; } pIter->pLeft = pRet; pRet->pParent = pIter; pRet = pNotBranch; } } } *pnConsumed = n - nIn; exprparse_out: if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRet); sqlite3Fts3ExprFree(pNotBranch); pRet = 0; } *ppExpr = pRet; return rc; } /* ** Return SQLITE_ERROR if the maximum depth of the expression tree passed ** as the only argument is more than nMaxDepth. */ static int fts3ExprCheckDepth(Fts3Expr *p, int nMaxDepth){ int rc = SQLITE_OK; if( p ){ if( nMaxDepth<0 ){ rc = SQLITE_TOOBIG; }else{ rc = fts3ExprCheckDepth(p->pLeft, nMaxDepth-1); if( rc==SQLITE_OK ){ rc = fts3ExprCheckDepth(p->pRight, nMaxDepth-1); } } } return rc; } /* ** This function attempts to transform the expression tree at (*pp) to ** an equivalent but more balanced form. The tree is modified in place. ** If successful, SQLITE_OK is returned and (*pp) set to point to the ** new root expression node. ** ** nMaxDepth is the maximum allowable depth of the balanced sub-tree. ** ** Otherwise, if an error occurs, an SQLite error code is returned and ** expression (*pp) freed. */ static int fts3ExprBalance(Fts3Expr **pp, int nMaxDepth){ int rc = SQLITE_OK; /* Return code */ Fts3Expr *pRoot = *pp; /* Initial root node */ Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */ int eType = pRoot->eType; /* Type of node in this tree */ if( nMaxDepth==0 ){ rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ if( (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){ Fts3Expr **apLeaf; apLeaf = (Fts3Expr **)sqlite3_malloc64(sizeof(Fts3Expr *) * nMaxDepth); if( 0==apLeaf ){ rc = SQLITE_NOMEM; }else{ memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth); } if( rc==SQLITE_OK ){ int i; Fts3Expr *p; /* Set $p to point to the left-most leaf in the tree of eType nodes. */ for(p=pRoot; p->eType==eType; p=p->pLeft){ assert( p->pParent==0 || p->pParent->pLeft==p ); assert( p->pLeft && p->pRight ); } /* This loop runs once for each leaf in the tree of eType nodes. */ while( 1 ){ int iLvl; Fts3Expr *pParent = p->pParent; /* Current parent of p */ assert( pParent==0 || pParent->pLeft==p ); p->pParent = 0; if( pParent ){ pParent->pLeft = 0; }else{ pRoot = 0; } rc = fts3ExprBalance(&p, nMaxDepth-1); if( rc!=SQLITE_OK ) break; for(iLvl=0; p && iLvlpLeft = apLeaf[iLvl]; pFree->pRight = p; pFree->pLeft->pParent = pFree; pFree->pRight->pParent = pFree; p = pFree; pFree = pFree->pParent; p->pParent = 0; apLeaf[iLvl] = 0; } } if( p ){ sqlite3Fts3ExprFree(p); rc = SQLITE_TOOBIG; break; } /* If that was the last leaf node, break out of the loop */ if( pParent==0 ) break; /* Set $p to point to the next leaf in the tree of eType nodes */ for(p=pParent->pRight; p->eType==eType; p=p->pLeft); /* Remove pParent from the original tree. */ assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent ); pParent->pRight->pParent = pParent->pParent; if( pParent->pParent ){ pParent->pParent->pLeft = pParent->pRight; }else{ assert( pParent==pRoot ); pRoot = pParent->pRight; } /* Link pParent into the free node list. It will be used as an ** internal node of the new tree. */ pParent->pParent = pFree; pFree = pParent; } if( rc==SQLITE_OK ){ p = 0; for(i=0; ipParent = 0; }else{ assert( pFree!=0 ); pFree->pRight = p; pFree->pLeft = apLeaf[i]; pFree->pLeft->pParent = pFree; pFree->pRight->pParent = pFree; p = pFree; pFree = pFree->pParent; p->pParent = 0; } } } pRoot = p; }else{ /* An error occurred. Delete the contents of the apLeaf[] array ** and pFree list. Everything else is cleaned up by the call to ** sqlite3Fts3ExprFree(pRoot) below. */ Fts3Expr *pDel; for(i=0; ipParent; sqlite3_free(pDel); } } assert( pFree==0 ); sqlite3_free( apLeaf ); } }else if( eType==FTSQUERY_NOT ){ Fts3Expr *pLeft = pRoot->pLeft; Fts3Expr *pRight = pRoot->pRight; pRoot->pLeft = 0; pRoot->pRight = 0; pLeft->pParent = 0; pRight->pParent = 0; rc = fts3ExprBalance(&pLeft, nMaxDepth-1); if( rc==SQLITE_OK ){ rc = fts3ExprBalance(&pRight, nMaxDepth-1); } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRight); sqlite3Fts3ExprFree(pLeft); }else{ assert( pLeft && pRight ); pRoot->pLeft = pLeft; pLeft->pParent = pRoot; pRoot->pRight = pRight; pRight->pParent = pRoot; } } } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRoot); pRoot = 0; } *pp = pRoot; return rc; } /* ** This function is similar to sqlite3Fts3ExprParse(), with the following ** differences: ** ** 1. It does not do expression rebalancing. ** 2. It does not check that the expression does not exceed the ** maximum allowable depth. ** 3. Even if it fails, *ppExpr may still be set to point to an ** expression tree. It should be deleted using sqlite3Fts3ExprFree() ** in this case. */ static int fts3ExprParseUnbalanced( sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ int iLangid, /* Language id for tokenizer */ char **azCol, /* Array of column names for fts3 table */ int bFts4, /* True to allow FTS4-only syntax */ int nCol, /* Number of entries in azCol[] */ int iDefaultCol, /* Default column to query */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr /* OUT: Parsed query structure */ ){ int nParsed; int rc; ParseContext sParse; memset(&sParse, 0, sizeof(ParseContext)); sParse.pTokenizer = pTokenizer; sParse.iLangid = iLangid; sParse.azCol = (const char **)azCol; sParse.nCol = nCol; sParse.iDefaultCol = iDefaultCol; sParse.bFts4 = bFts4; if( z==0 ){ *ppExpr = 0; return SQLITE_OK; } if( n<0 ){ n = (int)strlen(z); } rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed); assert( rc==SQLITE_OK || *ppExpr==0 ); /* Check for mismatched parenthesis */ if( rc==SQLITE_OK && sParse.nNest ){ rc = SQLITE_ERROR; } return rc; } /* ** Parameters z and n contain a pointer to and length of a buffer containing ** an fts3 query expression, respectively. This function attempts to parse the ** query expression and create a tree of Fts3Expr structures representing the ** parsed expression. If successful, *ppExpr is set to point to the head ** of the parsed expression tree and SQLITE_OK is returned. If an error ** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse ** error) is returned and *ppExpr is set to 0. ** ** If parameter n is a negative number, then z is assumed to point to a ** nul-terminated string and the length is determined using strlen(). ** ** The first parameter, pTokenizer, is passed the fts3 tokenizer module to ** use to normalize query tokens while parsing the expression. The azCol[] ** array, which is assumed to contain nCol entries, should contain the names ** of each column in the target fts3 table, in order from left to right. ** Column names must be nul-terminated strings. ** ** The iDefaultCol parameter should be passed the index of the table column ** that appears on the left-hand-side of the MATCH operator (the default ** column to match against for tokens for which a column name is not explicitly ** specified as part of the query string), or -1 if tokens may by default ** match any table column. */ SQLITE_PRIVATE int sqlite3Fts3ExprParse( sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ int iLangid, /* Language id for tokenizer */ char **azCol, /* Array of column names for fts3 table */ int bFts4, /* True to allow FTS4-only syntax */ int nCol, /* Number of entries in azCol[] */ int iDefaultCol, /* Default column to query */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ char **pzErr /* OUT: Error message (sqlite3_malloc) */ ){ int rc = fts3ExprParseUnbalanced( pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr ); /* Rebalance the expression. And check that its depth does not exceed ** SQLITE_FTS3_MAX_EXPR_DEPTH. */ if( rc==SQLITE_OK && *ppExpr ){ rc = fts3ExprBalance(ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH); if( rc==SQLITE_OK ){ rc = fts3ExprCheckDepth(*ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH); } } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(*ppExpr); *ppExpr = 0; if( rc==SQLITE_TOOBIG ){ sqlite3Fts3ErrMsg(pzErr, "FTS expression tree is too large (maximum depth %d)", SQLITE_FTS3_MAX_EXPR_DEPTH ); rc = SQLITE_ERROR; }else if( rc==SQLITE_ERROR ){ sqlite3Fts3ErrMsg(pzErr, "malformed MATCH expression: [%s]", z); } } return rc; } /* ** Free a single node of an expression tree. */ static void fts3FreeExprNode(Fts3Expr *p){ assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 ); sqlite3Fts3EvalPhraseCleanup(p->pPhrase); sqlite3_free(p->aMI); sqlite3_free(p); } /* ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse(). ** ** This function would be simpler if it recursively called itself. But ** that would mean passing a sufficiently large expression to ExprParse() ** could cause a stack overflow. */ SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *pDel){ Fts3Expr *p; assert( pDel==0 || pDel->pParent==0 ); for(p=pDel; p && (p->pLeft||p->pRight); p=(p->pLeft ? p->pLeft : p->pRight)){ assert( p->pParent==0 || p==p->pParent->pRight || p==p->pParent->pLeft ); } while( p ){ Fts3Expr *pParent = p->pParent; fts3FreeExprNode(p); if( pParent && p==pParent->pLeft && pParent->pRight ){ p = pParent->pRight; while( p && (p->pLeft || p->pRight) ){ assert( p==p->pParent->pRight || p==p->pParent->pLeft ); p = (p->pLeft ? p->pLeft : p->pRight); } }else{ p = pParent; } } } /**************************************************************************** ***************************************************************************** ** Everything after this point is just test code. */ #ifdef SQLITE_TEST /* #include */ /* ** Return a pointer to a buffer containing a text representation of the ** expression passed as the first argument. The buffer is obtained from ** sqlite3_malloc(). It is the responsibility of the caller to use ** sqlite3_free() to release the memory. If an OOM condition is encountered, ** NULL is returned. ** ** If the second argument is not NULL, then its contents are prepended to ** the returned expression text and then freed using sqlite3_free(). */ static char *exprToString(Fts3Expr *pExpr, char *zBuf){ if( pExpr==0 ){ return sqlite3_mprintf(""); } switch( pExpr->eType ){ case FTSQUERY_PHRASE: { Fts3Phrase *pPhrase = pExpr->pPhrase; int i; zBuf = sqlite3_mprintf( "%zPHRASE %d 0", zBuf, pPhrase->iColumn); for(i=0; zBuf && inToken; i++){ zBuf = sqlite3_mprintf("%z %.*s%s", zBuf, pPhrase->aToken[i].n, pPhrase->aToken[i].z, (pPhrase->aToken[i].isPrefix?"+":"") ); } return zBuf; } case FTSQUERY_NEAR: zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear); break; case FTSQUERY_NOT: zBuf = sqlite3_mprintf("%zNOT ", zBuf); break; case FTSQUERY_AND: zBuf = sqlite3_mprintf("%zAND ", zBuf); break; case FTSQUERY_OR: zBuf = sqlite3_mprintf("%zOR ", zBuf); break; } if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf); if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf); if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf); if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf); if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf); return zBuf; } /* ** This is the implementation of a scalar SQL function used to test the ** expression parser. It should be called as follows: ** ** fts3_exprtest(, , , ...); ** ** The first argument, , is the name of the fts3 tokenizer used ** to parse the query expression (see README.tokenizers). The second argument ** is the query expression to parse. Each subsequent argument is the name ** of a column of the fts3 table that the query expression may refer to. ** For example: ** ** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2'); */ static void fts3ExprTestCommon( int bRebalance, sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_tokenizer *pTokenizer = 0; int rc; char **azCol = 0; const char *zExpr; int nExpr; int nCol; int ii; Fts3Expr *pExpr; char *zBuf = 0; Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context); const char *zTokenizer = 0; char *zErr = 0; if( argc<3 ){ sqlite3_result_error(context, "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1 ); return; } zTokenizer = (const char*)sqlite3_value_text(argv[0]); rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_error(context, zErr, -1); } sqlite3_free(zErr); return; } zExpr = (const char *)sqlite3_value_text(argv[1]); nExpr = sqlite3_value_bytes(argv[1]); nCol = argc-2; azCol = (char **)sqlite3_malloc64(nCol*sizeof(char *)); if( !azCol ){ sqlite3_result_error_nomem(context); goto exprtest_out; } for(ii=0; iipModule->xDestroy(pTokenizer); } sqlite3_free(azCol); } static void fts3ExprTest( sqlite3_context *context, int argc, sqlite3_value **argv ){ fts3ExprTestCommon(0, context, argc, argv); } static void fts3ExprTestRebalance( sqlite3_context *context, int argc, sqlite3_value **argv ){ fts3ExprTestCommon(1, context, argc, argv); } /* ** Register the query expression parser test function fts3_exprtest() ** with database connection db. */ SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){ int rc = sqlite3_create_function( db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0 ); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0 ); } return rc; } #endif #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_expr.c *******************************************/ /************** Begin file fts3_hash.c ***************************************/ /* ** 2001 September 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the implementation of generic hash-tables used in SQLite. ** We've modified it slightly to serve as a standalone hash table ** implementation for the full-text indexing module. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include "fts3_hash.h" */ /* ** Malloc and Free functions */ static void *fts3HashMalloc(sqlite3_int64 n){ void *p = sqlite3_malloc64(n); if( p ){ memset(p, 0, n); } return p; } static void fts3HashFree(void *p){ sqlite3_free(p); } /* Turn bulk memory into a hash table object by initializing the ** fields of the Hash structure. ** ** "pNew" is a pointer to the hash table that is to be initialized. ** keyClass is one of the constants ** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass ** determines what kind of key the hash table will use. "copyKey" is ** true if the hash table should make its own private copy of keys and ** false if it should just use the supplied pointer. */ SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){ assert( pNew!=0 ); assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY ); pNew->keyClass = keyClass; pNew->copyKey = copyKey; pNew->first = 0; pNew->count = 0; pNew->htsize = 0; pNew->ht = 0; } /* Remove all entries from a hash table. Reclaim all memory. ** Call this routine to delete a hash table or to reset a hash table ** to the empty state. */ SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash *pH){ Fts3HashElem *elem; /* For looping over all elements of the table */ assert( pH!=0 ); elem = pH->first; pH->first = 0; fts3HashFree(pH->ht); pH->ht = 0; pH->htsize = 0; while( elem ){ Fts3HashElem *next_elem = elem->next; if( pH->copyKey && elem->pKey ){ fts3HashFree(elem->pKey); } fts3HashFree(elem); elem = next_elem; } pH->count = 0; } /* ** Hash and comparison functions when the mode is FTS3_HASH_STRING */ static int fts3StrHash(const void *pKey, int nKey){ const char *z = (const char *)pKey; unsigned h = 0; if( nKey<=0 ) nKey = (int) strlen(z); while( nKey > 0 ){ h = (h<<3) ^ h ^ *z++; nKey--; } return (int)(h & 0x7fffffff); } static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ if( n1!=n2 ) return 1; return strncmp((const char*)pKey1,(const char*)pKey2,n1); } /* ** Hash and comparison functions when the mode is FTS3_HASH_BINARY */ static int fts3BinHash(const void *pKey, int nKey){ int h = 0; const char *z = (const char *)pKey; while( nKey-- > 0 ){ h = (h<<3) ^ h ^ *(z++); } return h & 0x7fffffff; } static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){ if( n1!=n2 ) return 1; return memcmp(pKey1,pKey2,n1); } /* ** Return a pointer to the appropriate hash function given the key class. ** ** The C syntax in this function definition may be unfamilar to some ** programmers, so we provide the following additional explanation: ** ** The name of the function is "ftsHashFunction". The function takes a ** single parameter "keyClass". The return value of ftsHashFunction() ** is a pointer to another function. Specifically, the return value ** of ftsHashFunction() is a pointer to a function that takes two parameters ** with types "const void*" and "int" and returns an "int". */ static int (*ftsHashFunction(int keyClass))(const void*,int){ if( keyClass==FTS3_HASH_STRING ){ return &fts3StrHash; }else{ assert( keyClass==FTS3_HASH_BINARY ); return &fts3BinHash; } } /* ** Return a pointer to the appropriate hash function given the key class. ** ** For help in interpreted the obscure C code in the function definition, ** see the header comment on the previous function. */ static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){ if( keyClass==FTS3_HASH_STRING ){ return &fts3StrCompare; }else{ assert( keyClass==FTS3_HASH_BINARY ); return &fts3BinCompare; } } /* Link an element into the hash table */ static void fts3HashInsertElement( Fts3Hash *pH, /* The complete hash table */ struct _fts3ht *pEntry, /* The entry into which pNew is inserted */ Fts3HashElem *pNew /* The element to be inserted */ ){ Fts3HashElem *pHead; /* First element already in pEntry */ pHead = pEntry->chain; if( pHead ){ pNew->next = pHead; pNew->prev = pHead->prev; if( pHead->prev ){ pHead->prev->next = pNew; } else { pH->first = pNew; } pHead->prev = pNew; }else{ pNew->next = pH->first; if( pH->first ){ pH->first->prev = pNew; } pNew->prev = 0; pH->first = pNew; } pEntry->count++; pEntry->chain = pNew; } /* Resize the hash table so that it cantains "new_size" buckets. ** "new_size" must be a power of 2. The hash table might fail ** to resize if sqliteMalloc() fails. ** ** Return non-zero if a memory allocation error occurs. */ static int fts3Rehash(Fts3Hash *pH, int new_size){ struct _fts3ht *new_ht; /* The new hash table */ Fts3HashElem *elem, *next_elem; /* For looping over existing elements */ int (*xHash)(const void*,int); /* The hash function */ assert( (new_size & (new_size-1))==0 ); new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) ); if( new_ht==0 ) return 1; fts3HashFree(pH->ht); pH->ht = new_ht; pH->htsize = new_size; xHash = ftsHashFunction(pH->keyClass); for(elem=pH->first, pH->first=0; elem; elem = next_elem){ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); next_elem = elem->next; fts3HashInsertElement(pH, &new_ht[h], elem); } return 0; } /* This function (for internal use only) locates an element in an ** hash table that matches the given key. The hash for this key has ** already been computed and is passed as the 4th parameter. */ static Fts3HashElem *fts3FindElementByHash( const Fts3Hash *pH, /* The pH to be searched */ const void *pKey, /* The key we are searching for */ int nKey, int h /* The hash for this key. */ ){ Fts3HashElem *elem; /* Used to loop thru the element list */ int count; /* Number of elements left to test */ int (*xCompare)(const void*,int,const void*,int); /* comparison function */ if( pH->ht ){ struct _fts3ht *pEntry = &pH->ht[h]; elem = pEntry->chain; count = pEntry->count; xCompare = ftsCompareFunction(pH->keyClass); while( count-- && elem ){ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ return elem; } elem = elem->next; } } return 0; } /* Remove a single entry from the hash table given a pointer to that ** element and a hash on the element's key. */ static void fts3RemoveElementByHash( Fts3Hash *pH, /* The pH containing "elem" */ Fts3HashElem* elem, /* The element to be removed from the pH */ int h /* Hash value for the element */ ){ struct _fts3ht *pEntry; if( elem->prev ){ elem->prev->next = elem->next; }else{ pH->first = elem->next; } if( elem->next ){ elem->next->prev = elem->prev; } pEntry = &pH->ht[h]; if( pEntry->chain==elem ){ pEntry->chain = elem->next; } pEntry->count--; if( pEntry->count<=0 ){ pEntry->chain = 0; } if( pH->copyKey && elem->pKey ){ fts3HashFree(elem->pKey); } fts3HashFree( elem ); pH->count--; if( pH->count<=0 ){ assert( pH->first==0 ); assert( pH->count==0 ); fts3HashClear(pH); } } SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem( const Fts3Hash *pH, const void *pKey, int nKey ){ int h; /* A hash on key */ int (*xHash)(const void*,int); /* The hash function */ if( pH==0 || pH->ht==0 ) return 0; xHash = ftsHashFunction(pH->keyClass); assert( xHash!=0 ); h = (*xHash)(pKey,nKey); assert( (pH->htsize & (pH->htsize-1))==0 ); return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1)); } /* ** Attempt to locate an element of the hash table pH with a key ** that matches pKey,nKey. Return the data for this element if it is ** found, or NULL if there is no match. */ SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){ Fts3HashElem *pElem; /* The element that matches key (if any) */ pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey); return pElem ? pElem->data : 0; } /* Insert an element into the hash table pH. The key is pKey,nKey ** and the data is "data". ** ** If no element exists with a matching key, then a new ** element is created. A copy of the key is made if the copyKey ** flag is set. NULL is returned. ** ** If another element already exists with the same key, then the ** new data replaces the old data and the old data is returned. ** The key is not copied in this instance. If a malloc fails, then ** the new data is returned and the hash table is unchanged. ** ** If the "data" parameter to this function is NULL, then the ** element corresponding to "key" is removed from the hash table. */ SQLITE_PRIVATE void *sqlite3Fts3HashInsert( Fts3Hash *pH, /* The hash table to insert into */ const void *pKey, /* The key */ int nKey, /* Number of bytes in the key */ void *data /* The data */ ){ int hraw; /* Raw hash value of the key */ int h; /* the hash of the key modulo hash table size */ Fts3HashElem *elem; /* Used to loop thru the element list */ Fts3HashElem *new_elem; /* New element added to the pH */ int (*xHash)(const void*,int); /* The hash function */ assert( pH!=0 ); xHash = ftsHashFunction(pH->keyClass); assert( xHash!=0 ); hraw = (*xHash)(pKey, nKey); assert( (pH->htsize & (pH->htsize-1))==0 ); h = hraw & (pH->htsize-1); elem = fts3FindElementByHash(pH,pKey,nKey,h); if( elem ){ void *old_data = elem->data; if( data==0 ){ fts3RemoveElementByHash(pH,elem,h); }else{ elem->data = data; } return old_data; } if( data==0 ) return 0; if( (pH->htsize==0 && fts3Rehash(pH,8)) || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2)) ){ pH->count = 0; return data; } assert( pH->htsize>0 ); new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) ); if( new_elem==0 ) return data; if( pH->copyKey && pKey!=0 ){ new_elem->pKey = fts3HashMalloc( nKey ); if( new_elem->pKey==0 ){ fts3HashFree(new_elem); return data; } memcpy((void*)new_elem->pKey, pKey, nKey); }else{ new_elem->pKey = (void*)pKey; } new_elem->nKey = nKey; pH->count++; assert( pH->htsize>0 ); assert( (pH->htsize & (pH->htsize-1))==0 ); h = hraw & (pH->htsize-1); fts3HashInsertElement(pH, &pH->ht[h], new_elem); new_elem->data = data; return 0; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_hash.c *******************************************/ /************** Begin file fts3_porter.c *************************************/ /* ** 2006 September 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Implementation of the full-text-search tokenizer that implements ** a Porter stemmer. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ /* ** Class derived from sqlite3_tokenizer */ typedef struct porter_tokenizer { sqlite3_tokenizer base; /* Base class */ } porter_tokenizer; /* ** Class derived from sqlite3_tokenizer_cursor */ typedef struct porter_tokenizer_cursor { sqlite3_tokenizer_cursor base; const char *zInput; /* input we are tokenizing */ int nInput; /* size of the input */ int iOffset; /* current position in zInput */ int iToken; /* index of next token to be returned */ char *zToken; /* storage for current token */ int nAllocated; /* space allocated to zToken buffer */ } porter_tokenizer_cursor; /* ** Create a new tokenizer instance. */ static int porterCreate( int argc, const char * const *argv, sqlite3_tokenizer **ppTokenizer ){ porter_tokenizer *t; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t)); if( t==NULL ) return SQLITE_NOMEM; memset(t, 0, sizeof(*t)); *ppTokenizer = &t->base; return SQLITE_OK; } /* ** Destroy a tokenizer */ static int porterDestroy(sqlite3_tokenizer *pTokenizer){ sqlite3_free(pTokenizer); return SQLITE_OK; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is zInput[0..nInput-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int porterOpen( sqlite3_tokenizer *pTokenizer, /* The tokenizer */ const char *zInput, int nInput, /* String to be tokenized */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ ){ porter_tokenizer_cursor *c; UNUSED_PARAMETER(pTokenizer); c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); if( c==NULL ) return SQLITE_NOMEM; c->zInput = zInput; if( zInput==0 ){ c->nInput = 0; }else if( nInput<0 ){ c->nInput = (int)strlen(zInput); }else{ c->nInput = nInput; } c->iOffset = 0; /* start tokenizing at the beginning */ c->iToken = 0; c->zToken = NULL; /* no space allocated, yet. */ c->nAllocated = 0; *ppCursor = &c->base; return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to ** porterOpen() above. */ static int porterClose(sqlite3_tokenizer_cursor *pCursor){ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; sqlite3_free(c->zToken); sqlite3_free(c); return SQLITE_OK; } /* ** Vowel or consonant */ static const char cType[] = { 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1 }; /* ** isConsonant() and isVowel() determine if their first character in ** the string they point to is a consonant or a vowel, according ** to Porter ruls. ** ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'. ** 'Y' is a consonant unless it follows another consonant, ** in which case it is a vowel. ** ** In these routine, the letters are in reverse order. So the 'y' rule ** is that 'y' is a consonant unless it is followed by another ** consonent. */ static int isVowel(const char*); static int isConsonant(const char *z){ int j; char x = *z; if( x==0 ) return 0; assert( x>='a' && x<='z' ); j = cType[x-'a']; if( j<2 ) return j; return z[1]==0 || isVowel(z + 1); } static int isVowel(const char *z){ int j; char x = *z; if( x==0 ) return 0; assert( x>='a' && x<='z' ); j = cType[x-'a']; if( j<2 ) return 1-j; return isConsonant(z + 1); } /* ** Let any sequence of one or more vowels be represented by V and let ** C be sequence of one or more consonants. Then every word can be ** represented as: ** ** [C] (VC){m} [V] ** ** In prose: A word is an optional consonant followed by zero or ** vowel-consonant pairs followed by an optional vowel. "m" is the ** number of vowel consonant pairs. This routine computes the value ** of m for the first i bytes of a word. ** ** Return true if the m-value for z is 1 or more. In other words, ** return true if z contains at least one vowel that is followed ** by a consonant. ** ** In this routine z[] is in reverse order. So we are really looking ** for an instance of a consonant followed by a vowel. */ static int m_gt_0(const char *z){ while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } return *z!=0; } /* Like mgt0 above except we are looking for a value of m which is ** exactly 1 */ static int m_eq_1(const char *z){ while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } if( *z==0 ) return 0; while( isVowel(z) ){ z++; } if( *z==0 ) return 1; while( isConsonant(z) ){ z++; } return *z==0; } /* Like mgt0 above except we are looking for a value of m>1 instead ** or m>0 */ static int m_gt_1(const char *z){ while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } if( *z==0 ) return 0; while( isVowel(z) ){ z++; } if( *z==0 ) return 0; while( isConsonant(z) ){ z++; } return *z!=0; } /* ** Return TRUE if there is a vowel anywhere within z[0..n-1] */ static int hasVowel(const char *z){ while( isConsonant(z) ){ z++; } return *z!=0; } /* ** Return TRUE if the word ends in a double consonant. ** ** The text is reversed here. So we are really looking at ** the first two characters of z[]. */ static int doubleConsonant(const char *z){ return isConsonant(z) && z[0]==z[1]; } /* ** Return TRUE if the word ends with three letters which ** are consonant-vowel-consonent and where the final consonant ** is not 'w', 'x', or 'y'. ** ** The word is reversed here. So we are really checking the ** first three letters and the first one cannot be in [wxy]. */ static int star_oh(const char *z){ return isConsonant(z) && z[0]!='w' && z[0]!='x' && z[0]!='y' && isVowel(z+1) && isConsonant(z+2); } /* ** If the word ends with zFrom and xCond() is true for the stem ** of the word that preceeds the zFrom ending, then change the ** ending to zTo. ** ** The input word *pz and zFrom are both in reverse order. zTo ** is in normal order. ** ** Return TRUE if zFrom matches. Return FALSE if zFrom does not ** match. Not that TRUE is returned even if xCond() fails and ** no substitution occurs. */ static int stem( char **pz, /* The word being stemmed (Reversed) */ const char *zFrom, /* If the ending matches this... (Reversed) */ const char *zTo, /* ... change the ending to this (not reversed) */ int (*xCond)(const char*) /* Condition that must be true */ ){ char *z = *pz; while( *zFrom && *zFrom==*z ){ z++; zFrom++; } if( *zFrom!=0 ) return 0; if( xCond && !xCond(z) ) return 1; while( *zTo ){ *(--z) = *(zTo++); } *pz = z; return 1; } /* ** This is the fallback stemmer used when the porter stemmer is ** inappropriate. The input word is copied into the output with ** US-ASCII case folding. If the input word is too long (more ** than 20 bytes if it contains no digits or more than 6 bytes if ** it contains digits) then word is truncated to 20 or 6 bytes ** by taking 10 or 3 bytes from the beginning and end. */ static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ int i, mx, j; int hasDigit = 0; for(i=0; i='A' && c<='Z' ){ zOut[i] = c - 'A' + 'a'; }else{ if( c>='0' && c<='9' ) hasDigit = 1; zOut[i] = c; } } mx = hasDigit ? 3 : 10; if( nIn>mx*2 ){ for(j=mx, i=nIn-mx; i=(int)sizeof(zReverse)-7 ){ /* The word is too big or too small for the porter stemmer. ** Fallback to the copy stemmer */ copy_stemmer(zIn, nIn, zOut, pnOut); return; } for(i=0, j=sizeof(zReverse)-6; i='A' && c<='Z' ){ zReverse[j] = c + 'a' - 'A'; }else if( c>='a' && c<='z' ){ zReverse[j] = c; }else{ /* The use of a character not in [a-zA-Z] means that we fallback ** to the copy stemmer */ copy_stemmer(zIn, nIn, zOut, pnOut); return; } } memset(&zReverse[sizeof(zReverse)-5], 0, 5); z = &zReverse[j+1]; /* Step 1a */ if( z[0]=='s' ){ if( !stem(&z, "sess", "ss", 0) && !stem(&z, "sei", "i", 0) && !stem(&z, "ss", "ss", 0) ){ z++; } } /* Step 1b */ z2 = z; if( stem(&z, "dee", "ee", m_gt_0) ){ /* Do nothing. The work was all in the test */ }else if( (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) && z!=z2 ){ if( stem(&z, "ta", "ate", 0) || stem(&z, "lb", "ble", 0) || stem(&z, "zi", "ize", 0) ){ /* Do nothing. The work was all in the test */ }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){ z++; }else if( m_eq_1(z) && star_oh(z) ){ *(--z) = 'e'; } } /* Step 1c */ if( z[0]=='y' && hasVowel(z+1) ){ z[0] = 'i'; } /* Step 2 */ switch( z[1] ){ case 'a': if( !stem(&z, "lanoita", "ate", m_gt_0) ){ stem(&z, "lanoit", "tion", m_gt_0); } break; case 'c': if( !stem(&z, "icne", "ence", m_gt_0) ){ stem(&z, "icna", "ance", m_gt_0); } break; case 'e': stem(&z, "rezi", "ize", m_gt_0); break; case 'g': stem(&z, "igol", "log", m_gt_0); break; case 'l': if( !stem(&z, "ilb", "ble", m_gt_0) && !stem(&z, "illa", "al", m_gt_0) && !stem(&z, "iltne", "ent", m_gt_0) && !stem(&z, "ile", "e", m_gt_0) ){ stem(&z, "ilsuo", "ous", m_gt_0); } break; case 'o': if( !stem(&z, "noitazi", "ize", m_gt_0) && !stem(&z, "noita", "ate", m_gt_0) ){ stem(&z, "rota", "ate", m_gt_0); } break; case 's': if( !stem(&z, "msila", "al", m_gt_0) && !stem(&z, "ssenevi", "ive", m_gt_0) && !stem(&z, "ssenluf", "ful", m_gt_0) ){ stem(&z, "ssensuo", "ous", m_gt_0); } break; case 't': if( !stem(&z, "itila", "al", m_gt_0) && !stem(&z, "itivi", "ive", m_gt_0) ){ stem(&z, "itilib", "ble", m_gt_0); } break; } /* Step 3 */ switch( z[0] ){ case 'e': if( !stem(&z, "etaci", "ic", m_gt_0) && !stem(&z, "evita", "", m_gt_0) ){ stem(&z, "ezila", "al", m_gt_0); } break; case 'i': stem(&z, "itici", "ic", m_gt_0); break; case 'l': if( !stem(&z, "laci", "ic", m_gt_0) ){ stem(&z, "luf", "", m_gt_0); } break; case 's': stem(&z, "ssen", "", m_gt_0); break; } /* Step 4 */ switch( z[1] ){ case 'a': if( z[0]=='l' && m_gt_1(z+2) ){ z += 2; } break; case 'c': if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){ z += 4; } break; case 'e': if( z[0]=='r' && m_gt_1(z+2) ){ z += 2; } break; case 'i': if( z[0]=='c' && m_gt_1(z+2) ){ z += 2; } break; case 'l': if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){ z += 4; } break; case 'n': if( z[0]=='t' ){ if( z[2]=='a' ){ if( m_gt_1(z+3) ){ z += 3; } }else if( z[2]=='e' ){ if( !stem(&z, "tneme", "", m_gt_1) && !stem(&z, "tnem", "", m_gt_1) ){ stem(&z, "tne", "", m_gt_1); } } } break; case 'o': if( z[0]=='u' ){ if( m_gt_1(z+2) ){ z += 2; } }else if( z[3]=='s' || z[3]=='t' ){ stem(&z, "noi", "", m_gt_1); } break; case 's': if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){ z += 3; } break; case 't': if( !stem(&z, "eta", "", m_gt_1) ){ stem(&z, "iti", "", m_gt_1); } break; case 'u': if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){ z += 3; } break; case 'v': case 'z': if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){ z += 3; } break; } /* Step 5a */ if( z[0]=='e' ){ if( m_gt_1(z+1) ){ z++; }else if( m_eq_1(z+1) && !star_oh(z+1) ){ z++; } } /* Step 5b */ if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){ z++; } /* z[] is now the stemmed word in reverse order. Flip it back ** around into forward order and return. */ *pnOut = i = (int)strlen(z); zOut[i] = 0; while( *z ){ zOut[--i] = *(z++); } } /* ** Characters that can be part of a token. We assume any character ** whose value is greater than 0x80 (any UTF character) can be ** part of a token. In other words, delimiters all must have ** values of 0x7f or lower. */ static const char porterIdChar[] = { /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ }; #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30])) /* ** Extract the next token from a tokenization cursor. The cursor must ** have been opened by a prior call to porterOpen(). */ static int porterNext( sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */ const char **pzToken, /* OUT: *pzToken is the token text */ int *pnBytes, /* OUT: Number of bytes in token */ int *piStartOffset, /* OUT: Starting offset of token */ int *piEndOffset, /* OUT: Ending offset of token */ int *piPosition /* OUT: Position integer of token */ ){ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; const char *z = c->zInput; while( c->iOffsetnInput ){ int iStartOffset, ch; /* Scan past delimiter characters */ while( c->iOffsetnInput && isDelim(z[c->iOffset]) ){ c->iOffset++; } /* Count non-delimiter characters. */ iStartOffset = c->iOffset; while( c->iOffsetnInput && !isDelim(z[c->iOffset]) ){ c->iOffset++; } if( c->iOffset>iStartOffset ){ int n = c->iOffset-iStartOffset; if( n>c->nAllocated ){ char *pNew; c->nAllocated = n+20; pNew = sqlite3_realloc64(c->zToken, c->nAllocated); if( !pNew ) return SQLITE_NOMEM; c->zToken = pNew; } porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes); *pzToken = c->zToken; *piStartOffset = iStartOffset; *piEndOffset = c->iOffset; *piPosition = c->iToken++; return SQLITE_OK; } } return SQLITE_DONE; } /* ** The set of routines that implement the porter-stemmer tokenizer */ static const sqlite3_tokenizer_module porterTokenizerModule = { 0, porterCreate, porterDestroy, porterOpen, porterClose, porterNext, 0 }; /* ** Allocate a new porter tokenizer. Return a pointer to the new ** tokenizer in *ppModule */ SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule( sqlite3_tokenizer_module const**ppModule ){ *ppModule = &porterTokenizerModule; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_porter.c *****************************************/ /************** Begin file fts3_tokenizer.c **********************************/ /* ** 2007 June 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This is part of an SQLite module implementing full-text search. ** This particular file implements the generic tokenizer interface. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* ** Return true if the two-argument version of fts3_tokenizer() ** has been activated via a prior call to sqlite3_db_config(db, ** SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, 1, 0); */ static int fts3TokenizerEnabled(sqlite3_context *context){ sqlite3 *db = sqlite3_context_db_handle(context); int isEnabled = 0; sqlite3_db_config(db,SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER,-1,&isEnabled); return isEnabled; } /* ** Implementation of the SQL scalar function for accessing the underlying ** hash table. This function may be called as follows: ** ** SELECT (); ** SELECT (, ); ** ** where is the name passed as the second argument ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer'). ** ** If the argument is specified, it must be a blob value ** containing a pointer to be stored as the hash data corresponding ** to the string . If is not specified, then ** the string must already exist in the has table. Otherwise, ** an error is returned. ** ** Whether or not the argument is specified, the value returned ** is a blob containing the pointer stored as the hash data corresponding ** to string (after the hash-table is updated, if applicable). */ static void fts3TokenizerFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Fts3Hash *pHash; void *pPtr = 0; const unsigned char *zName; int nName; assert( argc==1 || argc==2 ); pHash = (Fts3Hash *)sqlite3_user_data(context); zName = sqlite3_value_text(argv[0]); nName = sqlite3_value_bytes(argv[0])+1; if( argc==2 ){ if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[1]) ){ void *pOld; int n = sqlite3_value_bytes(argv[1]); if( zName==0 || n!=sizeof(pPtr) ){ sqlite3_result_error(context, "argument type mismatch", -1); return; } pPtr = *(void **)sqlite3_value_blob(argv[1]); pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr); if( pOld==pPtr ){ sqlite3_result_error(context, "out of memory", -1); } }else{ sqlite3_result_error(context, "fts3tokenize disabled", -1); return; } }else{ if( zName ){ pPtr = sqlite3Fts3HashFind(pHash, zName, nName); } if( !pPtr ){ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); return; } } if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[0]) ){ sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT); } } SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char c){ static const char isFtsIdChar[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ }; return (c&0x80 || isFtsIdChar[(int)(c)]); } SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *zStr, int *pn){ const char *z1; const char *z2 = 0; /* Find the start of the next token. */ z1 = zStr; while( z2==0 ){ char c = *z1; switch( c ){ case '\0': return 0; /* No more tokens here */ case '\'': case '"': case '`': { z2 = z1; while( *++z2 && (*z2!=c || *++z2==c) ); break; } case '[': z2 = &z1[1]; while( *z2 && z2[0]!=']' ) z2++; if( *z2 ) z2++; break; default: if( sqlite3Fts3IsIdChar(*z1) ){ z2 = &z1[1]; while( sqlite3Fts3IsIdChar(*z2) ) z2++; }else{ z1++; } } } *pn = (int)(z2-z1); return z1; } SQLITE_PRIVATE int sqlite3Fts3InitTokenizer( Fts3Hash *pHash, /* Tokenizer hash table */ const char *zArg, /* Tokenizer name */ sqlite3_tokenizer **ppTok, /* OUT: Tokenizer (if applicable) */ char **pzErr /* OUT: Set to malloced error message */ ){ int rc; char *z = (char *)zArg; int n = 0; char *zCopy; char *zEnd; /* Pointer to nul-term of zCopy */ sqlite3_tokenizer_module *m; zCopy = sqlite3_mprintf("%s", zArg); if( !zCopy ) return SQLITE_NOMEM; zEnd = &zCopy[strlen(zCopy)]; z = (char *)sqlite3Fts3NextToken(zCopy, &n); if( z==0 ){ assert( n==0 ); z = zCopy; } z[n] = '\0'; sqlite3Fts3Dequote(z); m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1); if( !m ){ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", z); rc = SQLITE_ERROR; }else{ char const **aArg = 0; int iArg = 0; z = &z[n+1]; while( zxCreate(iArg, aArg, ppTok); assert( rc!=SQLITE_OK || *ppTok ); if( rc!=SQLITE_OK ){ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer"); }else{ (*ppTok)->pModule = m; } sqlite3_free((void *)aArg); } sqlite3_free(zCopy); return rc; } #ifdef SQLITE_TEST #if defined(INCLUDE_SQLITE_TCL_H) # include "sqlite_tcl.h" #else # include "tcl.h" #endif /* #include */ /* ** Implementation of a special SQL scalar function for testing tokenizers ** designed to be used in concert with the Tcl testing framework. This ** function must be called with two or more arguments: ** ** SELECT (, ..., ); ** ** where is the name passed as the second argument ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer') ** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test'). ** ** The return value is a string that may be interpreted as a Tcl ** list. For each token in the , three elements are ** added to the returned list. The first is the token position, the ** second is the token text (folded, stemmed, etc.) and the third is the ** substring of associated with the token. For example, ** using the built-in "simple" tokenizer: ** ** SELECT fts_tokenizer_test('simple', 'I don't see how'); ** ** will return the string: ** ** "{0 i I 1 dont don't 2 see see 3 how how}" ** */ static void testFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ Fts3Hash *pHash; sqlite3_tokenizer_module *p; sqlite3_tokenizer *pTokenizer = 0; sqlite3_tokenizer_cursor *pCsr = 0; const char *zErr = 0; const char *zName; int nName; const char *zInput; int nInput; const char *azArg[64]; const char *zToken; int nToken = 0; int iStart = 0; int iEnd = 0; int iPos = 0; int i; Tcl_Obj *pRet; if( argc<2 ){ sqlite3_result_error(context, "insufficient arguments", -1); return; } nName = sqlite3_value_bytes(argv[0]); zName = (const char *)sqlite3_value_text(argv[0]); nInput = sqlite3_value_bytes(argv[argc-1]); zInput = (const char *)sqlite3_value_text(argv[argc-1]); pHash = (Fts3Hash *)sqlite3_user_data(context); p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); if( !p ){ char *zErr2 = sqlite3_mprintf("unknown tokenizer: %s", zName); sqlite3_result_error(context, zErr2, -1); sqlite3_free(zErr2); return; } pRet = Tcl_NewObj(); Tcl_IncrRefCount(pRet); for(i=1; ixCreate(argc-2, azArg, &pTokenizer) ){ zErr = "error in xCreate()"; goto finish; } pTokenizer->pModule = p; if( sqlite3Fts3OpenTokenizer(pTokenizer, 0, zInput, nInput, &pCsr) ){ zErr = "error in xOpen()"; goto finish; } while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){ Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos)); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); zToken = &zInput[iStart]; nToken = iEnd-iStart; Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); } if( SQLITE_OK!=p->xClose(pCsr) ){ zErr = "error in xClose()"; goto finish; } if( SQLITE_OK!=p->xDestroy(pTokenizer) ){ zErr = "error in xDestroy()"; goto finish; } finish: if( zErr ){ sqlite3_result_error(context, zErr, -1); }else{ sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); } Tcl_DecrRefCount(pRet); } static int registerTokenizer( sqlite3 *db, char *zName, const sqlite3_tokenizer_module *p ){ int rc; sqlite3_stmt *pStmt; const char zSql[] = "SELECT fts3_tokenizer(?, ?)"; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ return rc; } sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC); sqlite3_step(pStmt); return sqlite3_finalize(pStmt); } static int queryTokenizer( sqlite3 *db, char *zName, const sqlite3_tokenizer_module **pp ){ int rc; sqlite3_stmt *pStmt; const char zSql[] = "SELECT fts3_tokenizer(?)"; *pp = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ return rc; } sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); if( SQLITE_ROW==sqlite3_step(pStmt) ){ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB && sqlite3_column_bytes(pStmt, 0)==sizeof(*pp) ){ memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); } } return sqlite3_finalize(pStmt); } SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); /* ** Implementation of the scalar function fts3_tokenizer_internal_test(). ** This function is used for testing only, it is not included in the ** build unless SQLITE_TEST is defined. ** ** The purpose of this is to test that the fts3_tokenizer() function ** can be used as designed by the C-code in the queryTokenizer and ** registerTokenizer() functions above. These two functions are repeated ** in the README.tokenizer file as an example, so it is important to ** test them. ** ** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar ** function with no arguments. An assert() will fail if a problem is ** detected. i.e.: ** ** SELECT fts3_tokenizer_internal_test(); ** */ static void intTestFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int rc; const sqlite3_tokenizer_module *p1; const sqlite3_tokenizer_module *p2; sqlite3 *db = (sqlite3 *)sqlite3_user_data(context); UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); /* Test the query function */ sqlite3Fts3SimpleTokenizerModule(&p1); rc = queryTokenizer(db, "simple", &p2); assert( rc==SQLITE_OK ); assert( p1==p2 ); rc = queryTokenizer(db, "nosuchtokenizer", &p2); assert( rc==SQLITE_ERROR ); assert( p2==0 ); assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") ); /* Test the storage function */ if( fts3TokenizerEnabled(context) ){ rc = registerTokenizer(db, "nosuchtokenizer", p1); assert( rc==SQLITE_OK ); rc = queryTokenizer(db, "nosuchtokenizer", &p2); assert( rc==SQLITE_OK ); assert( p2==p1 ); } sqlite3_result_text(context, "ok", -1, SQLITE_STATIC); } #endif /* ** Set up SQL objects in database db used to access the contents of ** the hash table pointed to by argument pHash. The hash table must ** been initialized to use string keys, and to take a private copy ** of the key when a value is inserted. i.e. by a call similar to: ** ** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); ** ** This function adds a scalar function (see header comment above ** fts3TokenizerFunc() in this file for details) and, if ENABLE_TABLE is ** defined at compilation time, a temporary virtual table (see header ** comment above struct HashTableVtab) to the database schema. Both ** provide read/write access to the contents of *pHash. ** ** The third argument to this function, zName, is used as the name ** of both the scalar and, if created, the virtual table. */ SQLITE_PRIVATE int sqlite3Fts3InitHashTable( sqlite3 *db, Fts3Hash *pHash, const char *zName ){ int rc = SQLITE_OK; void *p = (void *)pHash; const int any = SQLITE_UTF8|SQLITE_DIRECTONLY; #ifdef SQLITE_TEST char *zTest = 0; char *zTest2 = 0; void *pdb = (void *)db; zTest = sqlite3_mprintf("%s_test", zName); zTest2 = sqlite3_mprintf("%s_internal_test", zName); if( !zTest || !zTest2 ){ rc = SQLITE_NOMEM; } #endif if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zName, 1, any, p, fts3TokenizerFunc, 0, 0); } if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zName, 2, any, p, fts3TokenizerFunc, 0, 0); } #ifdef SQLITE_TEST if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zTest, -1, any, p, testFunc, 0, 0); } if( SQLITE_OK==rc ){ rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0); } #endif #ifdef SQLITE_TEST sqlite3_free(zTest); sqlite3_free(zTest2); #endif return rc; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_tokenizer.c **************************************/ /************** Begin file fts3_tokenizer1.c *********************************/ /* ** 2006 Oct 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** Implementation of the "simple" full-text-search tokenizer. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ typedef struct simple_tokenizer { sqlite3_tokenizer base; char delim[128]; /* flag ASCII delimiters */ } simple_tokenizer; typedef struct simple_tokenizer_cursor { sqlite3_tokenizer_cursor base; const char *pInput; /* input we are tokenizing */ int nBytes; /* size of the input */ int iOffset; /* current position in pInput */ int iToken; /* index of next token to be returned */ char *pToken; /* storage for current token */ int nTokenAllocated; /* space allocated to zToken buffer */ } simple_tokenizer_cursor; static int simpleDelim(simple_tokenizer *t, unsigned char c){ return c<0x80 && t->delim[c]; } static int fts3_isalnum(int x){ return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z'); } /* ** Create a new tokenizer instance. */ static int simpleCreate( int argc, const char * const *argv, sqlite3_tokenizer **ppTokenizer ){ simple_tokenizer *t; t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t)); if( t==NULL ) return SQLITE_NOMEM; memset(t, 0, sizeof(*t)); /* TODO(shess) Delimiters need to remain the same from run to run, ** else we need to reindex. One solution would be a meta-table to ** track such information in the database, then we'd only want this ** information on the initial create. */ if( argc>1 ){ int i, n = (int)strlen(argv[1]); for(i=0; i=0x80 ){ sqlite3_free(t); return SQLITE_ERROR; } t->delim[ch] = 1; } } else { /* Mark non-alphanumeric ASCII characters as delimiters */ int i; for(i=1; i<0x80; i++){ t->delim[i] = !fts3_isalnum(i) ? -1 : 0; } } *ppTokenizer = &t->base; return SQLITE_OK; } /* ** Destroy a tokenizer */ static int simpleDestroy(sqlite3_tokenizer *pTokenizer){ sqlite3_free(pTokenizer); return SQLITE_OK; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is pInput[0..nBytes-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int simpleOpen( sqlite3_tokenizer *pTokenizer, /* The tokenizer */ const char *pInput, int nBytes, /* String to be tokenized */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ ){ simple_tokenizer_cursor *c; UNUSED_PARAMETER(pTokenizer); c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); if( c==NULL ) return SQLITE_NOMEM; c->pInput = pInput; if( pInput==0 ){ c->nBytes = 0; }else if( nBytes<0 ){ c->nBytes = (int)strlen(pInput); }else{ c->nBytes = nBytes; } c->iOffset = 0; /* start tokenizing at the beginning */ c->iToken = 0; c->pToken = NULL; /* no space allocated, yet. */ c->nTokenAllocated = 0; *ppCursor = &c->base; return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to ** simpleOpen() above. */ static int simpleClose(sqlite3_tokenizer_cursor *pCursor){ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; sqlite3_free(c->pToken); sqlite3_free(c); return SQLITE_OK; } /* ** Extract the next token from a tokenization cursor. The cursor must ** have been opened by a prior call to simpleOpen(). */ static int simpleNext( sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ const char **ppToken, /* OUT: *ppToken is the token text */ int *pnBytes, /* OUT: Number of bytes in token */ int *piStartOffset, /* OUT: Starting offset of token */ int *piEndOffset, /* OUT: Ending offset of token */ int *piPosition /* OUT: Position integer of token */ ){ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer; unsigned char *p = (unsigned char *)c->pInput; while( c->iOffsetnBytes ){ int iStartOffset; /* Scan past delimiter characters */ while( c->iOffsetnBytes && simpleDelim(t, p[c->iOffset]) ){ c->iOffset++; } /* Count non-delimiter characters. */ iStartOffset = c->iOffset; while( c->iOffsetnBytes && !simpleDelim(t, p[c->iOffset]) ){ c->iOffset++; } if( c->iOffset>iStartOffset ){ int i, n = c->iOffset-iStartOffset; if( n>c->nTokenAllocated ){ char *pNew; c->nTokenAllocated = n+20; pNew = sqlite3_realloc64(c->pToken, c->nTokenAllocated); if( !pNew ) return SQLITE_NOMEM; c->pToken = pNew; } for(i=0; ipToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch); } *ppToken = c->pToken; *pnBytes = n; *piStartOffset = iStartOffset; *piEndOffset = c->iOffset; *piPosition = c->iToken++; return SQLITE_OK; } } return SQLITE_DONE; } /* ** The set of routines that implement the simple tokenizer */ static const sqlite3_tokenizer_module simpleTokenizerModule = { 0, simpleCreate, simpleDestroy, simpleOpen, simpleClose, simpleNext, 0, }; /* ** Allocate a new simple tokenizer. Return a pointer to the new ** tokenizer in *ppModule */ SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule( sqlite3_tokenizer_module const**ppModule ){ *ppModule = &simpleTokenizerModule; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_tokenizer1.c *************************************/ /************** Begin file fts3_tokenize_vtab.c ******************************/ /* ** 2013 Apr 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code for the "fts3tokenize" virtual table module. ** An fts3tokenize virtual table is created as follows: ** ** CREATE VIRTUAL TABLE USING fts3tokenize( ** , , ... ** ); ** ** The table created has the following schema: ** ** CREATE TABLE (input, token, start, end, position) ** ** When queried, the query must include a WHERE clause of type: ** ** input = ** ** The virtual table module tokenizes this , using the FTS3 ** tokenizer specified by the arguments to the CREATE VIRTUAL TABLE ** statement and returns one row for each token in the result. With ** fields set as follows: ** ** input: Always set to a copy of ** token: A token from the input. ** start: Byte offset of the token within the input . ** end: Byte offset of the byte immediately following the end of the ** token within the input string. ** pos: Token offset of token within input. ** */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ typedef struct Fts3tokTable Fts3tokTable; typedef struct Fts3tokCursor Fts3tokCursor; /* ** Virtual table structure. */ struct Fts3tokTable { sqlite3_vtab base; /* Base class used by SQLite core */ const sqlite3_tokenizer_module *pMod; sqlite3_tokenizer *pTok; }; /* ** Virtual table cursor structure. */ struct Fts3tokCursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ char *zInput; /* Input string */ sqlite3_tokenizer_cursor *pCsr; /* Cursor to iterate through zInput */ int iRowid; /* Current 'rowid' value */ const char *zToken; /* Current 'token' value */ int nToken; /* Size of zToken in bytes */ int iStart; /* Current 'start' value */ int iEnd; /* Current 'end' value */ int iPos; /* Current 'pos' value */ }; /* ** Query FTS for the tokenizer implementation named zName. */ static int fts3tokQueryTokenizer( Fts3Hash *pHash, const char *zName, const sqlite3_tokenizer_module **pp, char **pzErr ){ sqlite3_tokenizer_module *p; int nName = (int)strlen(zName); p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); if( !p ){ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", zName); return SQLITE_ERROR; } *pp = p; return SQLITE_OK; } /* ** The second argument, argv[], is an array of pointers to nul-terminated ** strings. This function makes a copy of the array and strings into a ** single block of memory. It then dequotes any of the strings that appear ** to be quoted. ** ** If successful, output parameter *pazDequote is set to point at the ** array of dequoted strings and SQLITE_OK is returned. The caller is ** responsible for eventually calling sqlite3_free() to free the array ** in this case. Or, if an error occurs, an SQLite error code is returned. ** The final value of *pazDequote is undefined in this case. */ static int fts3tokDequoteArray( int argc, /* Number of elements in argv[] */ const char * const *argv, /* Input array */ char ***pazDequote /* Output array */ ){ int rc = SQLITE_OK; /* Return code */ if( argc==0 ){ *pazDequote = 0; }else{ int i; int nByte = 0; char **azDequote; for(i=0; i1 ) azArg = (const char * const *)&azDequote[1]; rc = pMod->xCreate((nDequote>1 ? nDequote-1 : 0), azArg, &pTok); } if( rc==SQLITE_OK ){ pTab = (Fts3tokTable *)sqlite3_malloc(sizeof(Fts3tokTable)); if( pTab==0 ){ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ memset(pTab, 0, sizeof(Fts3tokTable)); pTab->pMod = pMod; pTab->pTok = pTok; *ppVtab = &pTab->base; }else{ if( pTok ){ pMod->xDestroy(pTok); } } sqlite3_free(azDequote); return rc; } /* ** This function does the work for both the xDisconnect and xDestroy methods. ** These tables have no persistent representation of their own, so xDisconnect ** and xDestroy are identical operations. */ static int fts3tokDisconnectMethod(sqlite3_vtab *pVtab){ Fts3tokTable *pTab = (Fts3tokTable *)pVtab; pTab->pMod->xDestroy(pTab->pTok); sqlite3_free(pTab); return SQLITE_OK; } /* ** xBestIndex - Analyze a WHERE and ORDER BY clause. */ static int fts3tokBestIndexMethod( sqlite3_vtab *pVTab, sqlite3_index_info *pInfo ){ int i; UNUSED_PARAMETER(pVTab); for(i=0; inConstraint; i++){ if( pInfo->aConstraint[i].usable && pInfo->aConstraint[i].iColumn==0 && pInfo->aConstraint[i].op==SQLITE_INDEX_CONSTRAINT_EQ ){ pInfo->idxNum = 1; pInfo->aConstraintUsage[i].argvIndex = 1; pInfo->aConstraintUsage[i].omit = 1; pInfo->estimatedCost = 1; return SQLITE_OK; } } pInfo->idxNum = 0; assert( pInfo->estimatedCost>1000000.0 ); return SQLITE_OK; } /* ** xOpen - Open a cursor. */ static int fts3tokOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ Fts3tokCursor *pCsr; UNUSED_PARAMETER(pVTab); pCsr = (Fts3tokCursor *)sqlite3_malloc(sizeof(Fts3tokCursor)); if( pCsr==0 ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(Fts3tokCursor)); *ppCsr = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } /* ** Reset the tokenizer cursor passed as the only argument. As if it had ** just been returned by fts3tokOpenMethod(). */ static void fts3tokResetCursor(Fts3tokCursor *pCsr){ if( pCsr->pCsr ){ Fts3tokTable *pTab = (Fts3tokTable *)(pCsr->base.pVtab); pTab->pMod->xClose(pCsr->pCsr); pCsr->pCsr = 0; } sqlite3_free(pCsr->zInput); pCsr->zInput = 0; pCsr->zToken = 0; pCsr->nToken = 0; pCsr->iStart = 0; pCsr->iEnd = 0; pCsr->iPos = 0; pCsr->iRowid = 0; } /* ** xClose - Close a cursor. */ static int fts3tokCloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; fts3tokResetCursor(pCsr); sqlite3_free(pCsr); return SQLITE_OK; } /* ** xNext - Advance the cursor to the next row, if any. */ static int fts3tokNextMethod(sqlite3_vtab_cursor *pCursor){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab); int rc; /* Return code */ pCsr->iRowid++; rc = pTab->pMod->xNext(pCsr->pCsr, &pCsr->zToken, &pCsr->nToken, &pCsr->iStart, &pCsr->iEnd, &pCsr->iPos ); if( rc!=SQLITE_OK ){ fts3tokResetCursor(pCsr); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } return rc; } /* ** xFilter - Initialize a cursor to point at the start of its data. */ static int fts3tokFilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ int rc = SQLITE_ERROR; Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab); UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(nVal); fts3tokResetCursor(pCsr); if( idxNum==1 ){ const char *zByte = (const char *)sqlite3_value_text(apVal[0]); int nByte = sqlite3_value_bytes(apVal[0]); pCsr->zInput = sqlite3_malloc64(nByte+1); if( pCsr->zInput==0 ){ rc = SQLITE_NOMEM; }else{ if( nByte>0 ) memcpy(pCsr->zInput, zByte, nByte); pCsr->zInput[nByte] = 0; rc = pTab->pMod->xOpen(pTab->pTok, pCsr->zInput, nByte, &pCsr->pCsr); if( rc==SQLITE_OK ){ pCsr->pCsr->pTokenizer = pTab->pTok; } } } if( rc!=SQLITE_OK ) return rc; return fts3tokNextMethod(pCursor); } /* ** xEof - Return true if the cursor is at EOF, or false otherwise. */ static int fts3tokEofMethod(sqlite3_vtab_cursor *pCursor){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; return (pCsr->zToken==0); } /* ** xColumn - Return a column value. */ static int fts3tokColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; /* CREATE TABLE x(input, token, start, end, position) */ switch( iCol ){ case 0: sqlite3_result_text(pCtx, pCsr->zInput, -1, SQLITE_TRANSIENT); break; case 1: sqlite3_result_text(pCtx, pCsr->zToken, pCsr->nToken, SQLITE_TRANSIENT); break; case 2: sqlite3_result_int(pCtx, pCsr->iStart); break; case 3: sqlite3_result_int(pCtx, pCsr->iEnd); break; default: assert( iCol==4 ); sqlite3_result_int(pCtx, pCsr->iPos); break; } return SQLITE_OK; } /* ** xRowid - Return the current rowid for the cursor. */ static int fts3tokRowidMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite_int64 *pRowid /* OUT: Rowid value */ ){ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor; *pRowid = (sqlite3_int64)pCsr->iRowid; return SQLITE_OK; } /* ** Register the fts3tok module with database connection db. Return SQLITE_OK ** if successful or an error code if sqlite3_create_module() fails. */ SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3 *db, Fts3Hash *pHash, void(*xDestroy)(void*)){ static const sqlite3_module fts3tok_module = { 0, /* iVersion */ fts3tokConnectMethod, /* xCreate */ fts3tokConnectMethod, /* xConnect */ fts3tokBestIndexMethod, /* xBestIndex */ fts3tokDisconnectMethod, /* xDisconnect */ fts3tokDisconnectMethod, /* xDestroy */ fts3tokOpenMethod, /* xOpen */ fts3tokCloseMethod, /* xClose */ fts3tokFilterMethod, /* xFilter */ fts3tokNextMethod, /* xNext */ fts3tokEofMethod, /* xEof */ fts3tokColumnMethod, /* xColumn */ fts3tokRowidMethod, /* xRowid */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; int rc; /* Return code */ rc = sqlite3_create_module_v2( db, "fts3tokenize", &fts3tok_module, (void*)pHash, xDestroy ); return rc; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_tokenize_vtab.c **********************************/ /************** Begin file fts3_write.c **************************************/ /* ** 2009 Oct 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file is part of the SQLite FTS3 extension module. Specifically, ** this file contains code to insert, update and delete rows from FTS3 ** tables. It also contains code to merge FTS3 b-tree segments. Some ** of the sub-routines used to merge segments are also used by the query ** code in fts3.c. */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ #define FTS_MAX_APPENDABLE_HEIGHT 16 /* ** When full-text index nodes are loaded from disk, the buffer that they ** are loaded into has the following number of bytes of padding at the end ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer ** of 920 bytes is allocated for it. ** ** This means that if we have a pointer into a buffer containing node data, ** it is always safe to read up to two varints from it without risking an ** overread, even if the node data is corrupted. */ #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) /* ** Under certain circumstances, b-tree nodes (doclists) can be loaded into ** memory incrementally instead of all at once. This can be a big performance ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() ** method before retrieving all query results (as may happen, for example, ** if a query has a LIMIT clause). ** ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. ** The code is written so that the hard lower-limit for each of these values ** is 1. Clearly such small values would be inefficient, but can be useful ** for testing purposes. ** ** If this module is built with SQLITE_TEST defined, these constants may ** be overridden at runtime for testing purposes. File fts3_test.c contains ** a Tcl interface to read and write the values. */ #ifdef SQLITE_TEST int test_fts3_node_chunksize = (4*1024); int test_fts3_node_chunk_threshold = (4*1024)*4; # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold #else # define FTS3_NODE_CHUNKSIZE (4*1024) # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) #endif /* ** The values that may be meaningfully bound to the :1 parameter in ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. */ #define FTS_STAT_DOCTOTAL 0 #define FTS_STAT_INCRMERGEHINT 1 #define FTS_STAT_AUTOINCRMERGE 2 /* ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic ** and incremental merge operation that takes place. This is used for ** debugging FTS only, it should not usually be turned on in production ** systems. */ #ifdef FTS3_LOG_MERGES static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); } #else #define fts3LogMerge(x, y) #endif typedef struct PendingList PendingList; typedef struct SegmentNode SegmentNode; typedef struct SegmentWriter SegmentWriter; /* ** An instance of the following data structure is used to build doclists ** incrementally. See function fts3PendingListAppend() for details. */ struct PendingList { int nData; char *aData; int nSpace; sqlite3_int64 iLastDocid; sqlite3_int64 iLastCol; sqlite3_int64 iLastPos; }; /* ** Each cursor has a (possibly empty) linked list of the following objects. */ struct Fts3DeferredToken { Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ int iCol; /* Column token must occur in */ Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ PendingList *pList; /* Doclist is assembled here */ }; /* ** An instance of this structure is used to iterate through the terms on ** a contiguous set of segment b-tree leaf nodes. Although the details of ** this structure are only manipulated by code in this file, opaque handles ** of type Fts3SegReader* are also used by code in fts3.c to iterate through ** terms when querying the full-text index. See functions: ** ** sqlite3Fts3SegReaderNew() ** sqlite3Fts3SegReaderFree() ** sqlite3Fts3SegReaderIterate() ** ** Methods used to manipulate Fts3SegReader structures: ** ** fts3SegReaderNext() ** fts3SegReaderFirstDocid() ** fts3SegReaderNextDocid() */ struct Fts3SegReader { int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ u8 bLookup; /* True for a lookup only */ u8 rootOnly; /* True for a root-only reader */ sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ char *aNode; /* Pointer to node data (or NULL) */ int nNode; /* Size of buffer at aNode (or 0) */ int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ Fts3HashElem **ppNextElem; /* Variables set by fts3SegReaderNext(). These may be read directly ** by the caller. They are valid from the time SegmentReaderNew() returns ** until SegmentReaderNext() returns something other than SQLITE_OK ** (i.e. SQLITE_DONE). */ int nTerm; /* Number of bytes in current term */ char *zTerm; /* Pointer to current term */ int nTermAlloc; /* Allocated size of zTerm buffer */ char *aDoclist; /* Pointer to doclist of current entry */ int nDoclist; /* Size of doclist in current entry */ /* The following variables are used by fts3SegReaderNextDocid() to iterate ** through the current doclist (aDoclist/nDoclist). */ char *pOffsetList; int nOffsetList; /* For descending pending seg-readers only */ sqlite3_int64 iDocid; }; #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) /* ** An instance of this structure is used to create a segment b-tree in the ** database. The internal details of this type are only accessed by the ** following functions: ** ** fts3SegWriterAdd() ** fts3SegWriterFlush() ** fts3SegWriterFree() */ struct SegmentWriter { SegmentNode *pTree; /* Pointer to interior tree structure */ sqlite3_int64 iFirst; /* First slot in %_segments written */ sqlite3_int64 iFree; /* Next free slot in %_segments */ char *zTerm; /* Pointer to previous term buffer */ int nTerm; /* Number of bytes in zTerm */ int nMalloc; /* Size of malloc'd buffer at zMalloc */ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ int nSize; /* Size of allocation at aData */ int nData; /* Bytes of data in aData */ char *aData; /* Pointer to block from malloc() */ i64 nLeafData; /* Number of bytes of leaf data written */ }; /* ** Type SegmentNode is used by the following three functions to create ** the interior part of the segment b+-tree structures (everything except ** the leaf nodes). These functions and type are only ever used by code ** within the fts3SegWriterXXX() family of functions described above. ** ** fts3NodeAddTerm() ** fts3NodeWrite() ** fts3NodeFree() ** ** When a b+tree is written to the database (either as a result of a merge ** or the pending-terms table being flushed), leaves are written into the ** database file as soon as they are completely populated. The interior of ** the tree is assembled in memory and written out only once all leaves have ** been populated and stored. This is Ok, as the b+-tree fanout is usually ** very large, meaning that the interior of the tree consumes relatively ** little memory. */ struct SegmentNode { SegmentNode *pParent; /* Parent node (or NULL for root node) */ SegmentNode *pRight; /* Pointer to right-sibling */ SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ int nEntry; /* Number of terms written to node so far */ char *zTerm; /* Pointer to previous term buffer */ int nTerm; /* Number of bytes in zTerm */ int nMalloc; /* Size of malloc'd buffer at zMalloc */ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ int nData; /* Bytes of valid data so far */ char *aData; /* Node data */ }; /* ** Valid values for the second argument to fts3SqlStmt(). */ #define SQL_DELETE_CONTENT 0 #define SQL_IS_EMPTY 1 #define SQL_DELETE_ALL_CONTENT 2 #define SQL_DELETE_ALL_SEGMENTS 3 #define SQL_DELETE_ALL_SEGDIR 4 #define SQL_DELETE_ALL_DOCSIZE 5 #define SQL_DELETE_ALL_STAT 6 #define SQL_SELECT_CONTENT_BY_ROWID 7 #define SQL_NEXT_SEGMENT_INDEX 8 #define SQL_INSERT_SEGMENTS 9 #define SQL_NEXT_SEGMENTS_ID 10 #define SQL_INSERT_SEGDIR 11 #define SQL_SELECT_LEVEL 12 #define SQL_SELECT_LEVEL_RANGE 13 #define SQL_SELECT_LEVEL_COUNT 14 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15 #define SQL_DELETE_SEGDIR_LEVEL 16 #define SQL_DELETE_SEGMENTS_RANGE 17 #define SQL_CONTENT_INSERT 18 #define SQL_DELETE_DOCSIZE 19 #define SQL_REPLACE_DOCSIZE 20 #define SQL_SELECT_DOCSIZE 21 #define SQL_SELECT_STAT 22 #define SQL_REPLACE_STAT 23 #define SQL_SELECT_ALL_PREFIX_LEVEL 24 #define SQL_DELETE_ALL_TERMS_SEGDIR 25 #define SQL_DELETE_SEGDIR_RANGE 26 #define SQL_SELECT_ALL_LANGID 27 #define SQL_FIND_MERGE_LEVEL 28 #define SQL_MAX_LEAF_NODE_ESTIMATE 29 #define SQL_DELETE_SEGDIR_ENTRY 30 #define SQL_SHIFT_SEGDIR_ENTRY 31 #define SQL_SELECT_SEGDIR 32 #define SQL_CHOMP_SEGDIR 33 #define SQL_SEGMENT_IS_APPENDABLE 34 #define SQL_SELECT_INDEXES 35 #define SQL_SELECT_MXLEVEL 36 #define SQL_SELECT_LEVEL_RANGE2 37 #define SQL_UPDATE_LEVEL_IDX 38 #define SQL_UPDATE_LEVEL 39 /* ** This function is used to obtain an SQLite prepared statement handle ** for the statement identified by the second argument. If successful, ** *pp is set to the requested statement handle and SQLITE_OK returned. ** Otherwise, an SQLite error code is returned and *pp is set to 0. ** ** If argument apVal is not NULL, then it must point to an array with ** at least as many entries as the requested statement has bound ** parameters. The values are bound to the statements parameters before ** returning. */ static int fts3SqlStmt( Fts3Table *p, /* Virtual table handle */ int eStmt, /* One of the SQL_XXX constants above */ sqlite3_stmt **pp, /* OUT: Statement handle */ sqlite3_value **apVal /* Values to bind to statement */ ){ const char *azSql[] = { /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", /* 2 */ "DELETE FROM %Q.'%q_content'", /* 3 */ "DELETE FROM %Q.'%q_segments'", /* 4 */ "DELETE FROM %Q.'%q_segdir'", /* 5 */ "DELETE FROM %Q.'%q_docsize'", /* 6 */ "DELETE FROM %Q.'%q_stat'", /* 7 */ "SELECT %s WHERE rowid=?", /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", /* Return segments in order from oldest to newest.*/ /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" "ORDER BY level DESC, idx ASC", /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", /* 24 */ "", /* 25 */ "", /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'", /* This statement is used to determine which level to read the input from ** when performing an incremental merge. It returns the absolute level number ** of the oldest level in the db that contains at least ? segments. Or, ** if no level in the FTS index contains more than ? segments, the statement ** returns zero rows. */ /* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' " " GROUP BY level HAVING cnt>=?" " ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1", /* Estimate the upper limit on the number of leaf nodes in a new segment ** created by merging the oldest :2 segments from absolute level :1. See ** function sqlite3Fts3Incrmerge() for details. */ /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " " FROM (SELECT * FROM %Q.'%q_segdir' " " WHERE level = ? ORDER BY idx ASC LIMIT ?" " )", /* SQL_DELETE_SEGDIR_ENTRY ** Delete the %_segdir entry on absolute level :1 with index :2. */ /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", /* SQL_SHIFT_SEGDIR_ENTRY ** Modify the idx value for the segment with idx=:3 on absolute level :2 ** to :1. */ /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", /* SQL_SELECT_SEGDIR ** Read a single entry from the %_segdir table. The entry from absolute ** level :1 with index value :2. */ /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", /* SQL_CHOMP_SEGDIR ** Update the start_block (:1) and root (:2) fields of the %_segdir ** entry located on absolute level :3 with index :4. */ /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" "WHERE level = ? AND idx = ?", /* SQL_SEGMENT_IS_APPENDABLE ** Return a single row if the segment with end_block=? is appendable. Or ** no rows otherwise. */ /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", /* SQL_SELECT_INDEXES ** Return the list of valid segment indexes for absolute level ? */ /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", /* SQL_SELECT_MXLEVEL ** Return the largest relative level in the FTS index or indexes. */ /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", /* Return segments in order from oldest to newest.*/ /* 37 */ "SELECT level, idx, end_block " "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " "ORDER BY level DESC, idx ASC", /* Update statements used while promoting segments */ /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " "WHERE level=? AND idx=?", /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" }; int rc = SQLITE_OK; sqlite3_stmt *pStmt; assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); assert( eStmt=0 ); pStmt = p->aStmt[eStmt]; if( !pStmt ){ int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB; char *zSql; if( eStmt==SQL_CONTENT_INSERT ){ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ f &= ~SQLITE_PREPARE_NO_VTAB; zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); }else{ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); } if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL); sqlite3_free(zSql); assert( rc==SQLITE_OK || pStmt==0 ); p->aStmt[eStmt] = pStmt; } } if( apVal ){ int i; int nParam = sqlite3_bind_parameter_count(pStmt); for(i=0; rc==SQLITE_OK && inPendingData==0 ){ sqlite3_stmt *pStmt; rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_null(pStmt, 1); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); } } return rc; } /* ** FTS maintains a separate indexes for each language-id (a 32-bit integer). ** Within each language id, a separate index is maintained to store the ** document terms, and each configured prefix size (configured the FTS ** "prefix=" option). And each index consists of multiple levels ("relative ** levels"). ** ** All three of these values (the language id, the specific index and the ** level within the index) are encoded in 64-bit integer values stored ** in the %_segdir table on disk. This function is used to convert three ** separate component values into the single 64-bit integer value that ** can be used to query the %_segdir table. ** ** Specifically, each language-id/index combination is allocated 1024 ** 64-bit integer level values ("absolute levels"). The main terms index ** for language-id 0 is allocate values 0-1023. The first prefix index ** (if any) for language-id 0 is allocated values 1024-2047. And so on. ** Language 1 indexes are allocated immediately following language 0. ** ** So, for a system with nPrefix prefix indexes configured, the block of ** absolute levels that corresponds to language-id iLangid and index ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). */ static sqlite3_int64 getAbsoluteLevel( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language id */ int iIndex, /* Index in p->aIndex[] */ int iLevel /* Level of segments */ ){ sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ assert_fts3_nc( iLangid>=0 ); assert( p->nIndex>0 ); assert( iIndex>=0 && iIndexnIndex ); iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; return iBase + iLevel; } /* ** Set *ppStmt to a statement handle that may be used to iterate through ** all rows in the %_segdir table, from oldest to newest. If successful, ** return SQLITE_OK. If an error occurs while preparing the statement, ** return an SQLite error code. ** ** There is only ever one instance of this SQL statement compiled for ** each FTS3 table. ** ** The statement returns the following columns from the %_segdir table: ** ** 0: idx ** 1: start_block ** 2: leaves_end_block ** 3: end_block ** 4: root */ SQLITE_PRIVATE int sqlite3Fts3AllSegdirs( Fts3Table *p, /* FTS3 table */ int iLangid, /* Language being queried */ int iIndex, /* Index for p->aIndex[] */ int iLevel, /* Level to select (relative level) */ sqlite3_stmt **ppStmt /* OUT: Compiled statement */ ){ int rc; sqlite3_stmt *pStmt = 0; assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); assert( iLevel=0 && iIndexnIndex ); if( iLevel<0 ){ /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pStmt, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); } }else{ /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); } } *ppStmt = pStmt; return rc; } /* ** Append a single varint to a PendingList buffer. SQLITE_OK is returned ** if successful, or an SQLite error code otherwise. ** ** This function also serves to allocate the PendingList structure itself. ** For example, to create a new PendingList structure containing two ** varints: ** ** PendingList *p = 0; ** fts3PendingListAppendVarint(&p, 1); ** fts3PendingListAppendVarint(&p, 2); */ static int fts3PendingListAppendVarint( PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ sqlite3_int64 i /* Value to append to data */ ){ PendingList *p = *pp; /* Allocate or grow the PendingList as required. */ if( !p ){ p = sqlite3_malloc64(sizeof(*p) + 100); if( !p ){ return SQLITE_NOMEM; } p->nSpace = 100; p->aData = (char *)&p[1]; p->nData = 0; } else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ i64 nNew = p->nSpace * 2; p = sqlite3_realloc64(p, sizeof(*p) + nNew); if( !p ){ sqlite3_free(*pp); *pp = 0; return SQLITE_NOMEM; } p->nSpace = (int)nNew; p->aData = (char *)&p[1]; } /* Append the new serialized varint to the end of the list. */ p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); p->aData[p->nData] = '\0'; *pp = p; return SQLITE_OK; } /* ** Add a docid/column/position entry to a PendingList structure. Non-zero ** is returned if the structure is sqlite3_realloced as part of adding ** the entry. Otherwise, zero. ** ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. ** Zero is always returned in this case. Otherwise, if no OOM error occurs, ** it is set to SQLITE_OK. */ static int fts3PendingListAppend( PendingList **pp, /* IN/OUT: PendingList structure */ sqlite3_int64 iDocid, /* Docid for entry to add */ sqlite3_int64 iCol, /* Column for entry to add */ sqlite3_int64 iPos, /* Position of term for entry to add */ int *pRc /* OUT: Return code */ ){ PendingList *p = *pp; int rc = SQLITE_OK; assert( !p || p->iLastDocid<=iDocid ); if( !p || p->iLastDocid!=iDocid ){ u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0); if( p ){ assert( p->nDatanSpace ); assert( p->aData[p->nData]==0 ); p->nData++; } if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ goto pendinglistappend_out; } p->iLastCol = -1; p->iLastPos = 0; p->iLastDocid = iDocid; } if( iCol>0 && p->iLastCol!=iCol ){ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) ){ goto pendinglistappend_out; } p->iLastCol = iCol; p->iLastPos = 0; } if( iCol>=0 ){ assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); if( rc==SQLITE_OK ){ p->iLastPos = iPos; } } pendinglistappend_out: *pRc = rc; if( p!=*pp ){ *pp = p; return 1; } return 0; } /* ** Free a PendingList object allocated by fts3PendingListAppend(). */ static void fts3PendingListDelete(PendingList *pList){ sqlite3_free(pList); } /* ** Add an entry to one of the pending-terms hash tables. */ static int fts3PendingTermsAddOne( Fts3Table *p, int iCol, int iPos, Fts3Hash *pHash, /* Pending terms hash table to add entry to */ const char *zToken, int nToken ){ PendingList *pList; int rc = SQLITE_OK; pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); if( pList ){ p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); } if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ /* Malloc failed while inserting the new entry. This can only ** happen if there was no previous entry for this token. */ assert( 0==fts3HashFind(pHash, zToken, nToken) ); sqlite3_free(pList); rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); } return rc; } /* ** Tokenize the nul-terminated string zText and add all tokens to the ** pending-terms hash-table. The docid used is that currently stored in ** p->iPrevDocid, and the column is specified by argument iCol. ** ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. */ static int fts3PendingTermsAdd( Fts3Table *p, /* Table into which text will be inserted */ int iLangid, /* Language id to use */ const char *zText, /* Text of document to be inserted */ int iCol, /* Column into which text is being inserted */ u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ ){ int rc; int iStart = 0; int iEnd = 0; int iPos = 0; int nWord = 0; char const *zToken; int nToken = 0; sqlite3_tokenizer *pTokenizer = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCsr; int (*xNext)(sqlite3_tokenizer_cursor *pCursor, const char**,int*,int*,int*,int*); assert( pTokenizer && pModule ); /* If the user has inserted a NULL value, this function may be called with ** zText==0. In this case, add zero token entries to the hash table and ** return early. */ if( zText==0 ){ *pnWord = 0; return SQLITE_OK; } rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); if( rc!=SQLITE_OK ){ return rc; } xNext = pModule->xNext; while( SQLITE_OK==rc && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) ){ int i; if( iPos>=nWord ) nWord = iPos+1; /* Positions cannot be negative; we use -1 as a terminator internally. ** Tokens must have a non-zero length. */ if( iPos<0 || !zToken || nToken<=0 ){ rc = SQLITE_ERROR; break; } /* Add the term to the terms index */ rc = fts3PendingTermsAddOne( p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken ); /* Add the term to each of the prefix indexes that it is not too ** short for. */ for(i=1; rc==SQLITE_OK && inIndex; i++){ struct Fts3Index *pIndex = &p->aIndex[i]; if( nTokennPrefix ) continue; rc = fts3PendingTermsAddOne( p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix ); } } pModule->xClose(pCsr); *pnWord += nWord; return (rc==SQLITE_DONE ? SQLITE_OK : rc); } /* ** Calling this function indicates that subsequent calls to ** fts3PendingTermsAdd() are to add term/position-list pairs for the ** contents of the document with docid iDocid. */ static int fts3PendingTermsDocid( Fts3Table *p, /* Full-text table handle */ int bDelete, /* True if this op is a delete */ int iLangid, /* Language id of row being written */ sqlite_int64 iDocid /* Docid of row being written */ ){ assert( iLangid>=0 ); assert( bDelete==1 || bDelete==0 ); /* TODO(shess) Explore whether partially flushing the buffer on ** forced-flush would provide better performance. I suspect that if ** we ordered the doclists by size and flushed the largest until the ** buffer was half empty, that would let the less frequent terms ** generate longer doclists. */ if( iDocidiPrevDocid || (iDocid==p->iPrevDocid && p->bPrevDelete==0) || p->iPrevLangid!=iLangid || p->nPendingData>p->nMaxPendingData ){ int rc = sqlite3Fts3PendingTermsFlush(p); if( rc!=SQLITE_OK ) return rc; } p->iPrevDocid = iDocid; p->iPrevLangid = iLangid; p->bPrevDelete = bDelete; return SQLITE_OK; } /* ** Discard the contents of the pending-terms hash tables. */ SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){ int i; for(i=0; inIndex; i++){ Fts3HashElem *pElem; Fts3Hash *pHash = &p->aIndex[i].hPending; for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ PendingList *pList = (PendingList *)fts3HashData(pElem); fts3PendingListDelete(pList); } fts3HashClear(pHash); } p->nPendingData = 0; } /* ** This function is called by the xUpdate() method as part of an INSERT ** operation. It adds entries for each term in the new record to the ** pendingTerms hash table. ** ** Argument apVal is the same as the similarly named argument passed to ** fts3InsertData(). Parameter iDocid is the docid of the new row. */ static int fts3InsertTerms( Fts3Table *p, int iLangid, sqlite3_value **apVal, u32 *aSz ){ int i; /* Iterator variable */ for(i=2; inColumn+2; i++){ int iCol = i-2; if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_value_text(apVal[i]); int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); if( rc!=SQLITE_OK ){ return rc; } aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); } } return SQLITE_OK; } /* ** This function is called by the xUpdate() method for an INSERT operation. ** The apVal parameter is passed a copy of the apVal argument passed by ** SQLite to the xUpdate() method. i.e: ** ** apVal[0] Not used for INSERT. ** apVal[1] rowid ** apVal[2] Left-most user-defined column ** ... ** apVal[p->nColumn+1] Right-most user-defined column ** apVal[p->nColumn+2] Hidden column with same name as table ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) ** apVal[p->nColumn+4] Hidden languageid column */ static int fts3InsertData( Fts3Table *p, /* Full-text table */ sqlite3_value **apVal, /* Array of values to insert */ sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ ){ int rc; /* Return code */ sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ if( p->zContentTbl ){ sqlite3_value *pRowid = apVal[p->nColumn+3]; if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ pRowid = apVal[1]; } if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ return SQLITE_CONSTRAINT; } *piDocid = sqlite3_value_int64(pRowid); return SQLITE_OK; } /* Locate the statement handle used to insert data into the %_content ** table. The SQL for this statement is: ** ** INSERT INTO %_content VALUES(?, ?, ?, ...) ** ** The statement features N '?' variables, where N is the number of user ** defined columns in the FTS3 table, plus one for the docid field. */ rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); if( rc==SQLITE_OK && p->zLanguageid ){ rc = sqlite3_bind_int( pContentInsert, p->nColumn+2, sqlite3_value_int(apVal[p->nColumn+4]) ); } if( rc!=SQLITE_OK ) return rc; /* There is a quirk here. The users INSERT statement may have specified ** a value for the "rowid" field, for the "docid" field, or for both. ** Which is a problem, since "rowid" and "docid" are aliases for the ** same value. For example: ** ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); ** ** In FTS3, this is an error. It is an error to specify non-NULL values ** for both docid and some other rowid alias. */ if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ if( SQLITE_NULL==sqlite3_value_type(apVal[0]) && SQLITE_NULL!=sqlite3_value_type(apVal[1]) ){ /* A rowid/docid conflict. */ return SQLITE_ERROR; } rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); if( rc!=SQLITE_OK ) return rc; } /* Execute the statement to insert the record. Set *piDocid to the ** new docid value. */ sqlite3_step(pContentInsert); rc = sqlite3_reset(pContentInsert); *piDocid = sqlite3_last_insert_rowid(p->db); return rc; } /* ** Remove all data from the FTS3 table. Clear the hash table containing ** pending terms. */ static int fts3DeleteAll(Fts3Table *p, int bContent){ int rc = SQLITE_OK; /* Return code */ /* Discard the contents of the pending-terms hash table. */ sqlite3Fts3PendingTermsClear(p); /* Delete everything from the shadow tables. Except, leave %_content as ** is if bContent is false. */ assert( p->zContentTbl==0 || bContent==0 ); if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); if( p->bHasDocsize ){ fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); } if( p->bHasStat ){ fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); } return rc; } /* ** */ static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ int iLangid = 0; if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); return iLangid; } /* ** The first element in the apVal[] array is assumed to contain the docid ** (an integer) of a row about to be deleted. Remove all terms from the ** full-text index. */ static void fts3DeleteTerms( int *pRC, /* Result code */ Fts3Table *p, /* The FTS table to delete from */ sqlite3_value *pRowid, /* The docid to be deleted */ u32 *aSz, /* Sizes of deleted document written here */ int *pbFound /* OUT: Set to true if row really does exist */ ){ int rc; sqlite3_stmt *pSelect; assert( *pbFound==0 ); if( *pRC ) return; rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; int iLangid = langidFromSelect(p, pSelect); i64 iDocid = sqlite3_column_int64(pSelect, 0); rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid); for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ int iCol = i-1; if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_column_text(pSelect, i); rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); } } if( rc!=SQLITE_OK ){ sqlite3_reset(pSelect); *pRC = rc; return; } *pbFound = 1; } rc = sqlite3_reset(pSelect); }else{ sqlite3_reset(pSelect); } *pRC = rc; } /* ** Forward declaration to account for the circular dependency between ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). */ static int fts3SegmentMerge(Fts3Table *, int, int, int); /* ** This function allocates a new level iLevel index in the segdir table. ** Usually, indexes are allocated within a level sequentially starting ** with 0, so the allocated index is one greater than the value returned ** by: ** ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel ** ** However, if there are already FTS3_MERGE_COUNT indexes at the requested ** level, they are merged into a single level (iLevel+1) segment and the ** allocated index is 0. ** ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK ** returned. Otherwise, an SQLite error code is returned. */ static int fts3AllocateSegdirIdx( Fts3Table *p, int iLangid, /* Language id */ int iIndex, /* Index for p->aIndex */ int iLevel, int *piIdx ){ int rc; /* Return Code */ sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ int iNext = 0; /* Result of query pNextIdx */ assert( iLangid>=0 ); assert( p->nIndex>=1 ); /* Set variable iNext to the next available segdir index at level iLevel. */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64( pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) ); if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ iNext = sqlite3_column_int(pNextIdx, 0); } rc = sqlite3_reset(pNextIdx); } if( rc==SQLITE_OK ){ /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already ** full, merge all segments in level iLevel into a single iLevel+1 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. */ if( iNext>=MergeCount(p) ){ fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); *piIdx = 0; }else{ *piIdx = iNext; } } return rc; } /* ** The %_segments table is declared as follows: ** ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) ** ** This function reads data from a single row of the %_segments table. The ** specific row is identified by the iBlockid parameter. If paBlob is not ** NULL, then a buffer is allocated using sqlite3_malloc() and populated ** with the contents of the blob stored in the "block" column of the ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set ** to the size of the blob in bytes before returning. ** ** If an error occurs, or the table does not contain the specified row, ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If ** paBlob is non-NULL, then it is the responsibility of the caller to ** eventually free the returned buffer. ** ** This function may leave an open sqlite3_blob* handle in the ** Fts3Table.pSegments variable. This handle is reused by subsequent calls ** to this function. The handle may be closed by calling the ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy ** performance improvement, but the blob handle should always be closed ** before control is returned to the user (to prevent a lock being held ** on the database file for longer than necessary). Thus, any virtual table ** method (xFilter etc.) that may directly or indirectly call this function ** must call sqlite3Fts3SegmentsClose() before returning. */ SQLITE_PRIVATE int sqlite3Fts3ReadBlock( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ char **paBlob, /* OUT: Blob data in malloc'd buffer */ int *pnBlob, /* OUT: Size of blob data */ int *pnLoad /* OUT: Bytes actually loaded */ ){ int rc; /* Return code */ /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ assert( pnBlob ); if( p->pSegments ){ rc = sqlite3_blob_reopen(p->pSegments, iBlockid); }else{ if( 0==p->zSegmentsTbl ){ p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; } rc = sqlite3_blob_open( p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments ); } if( rc==SQLITE_OK ){ int nByte = sqlite3_blob_bytes(p->pSegments); *pnBlob = nByte; if( paBlob ){ char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING); if( !aByte ){ rc = SQLITE_NOMEM; }else{ if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ nByte = FTS3_NODE_CHUNKSIZE; *pnLoad = nByte; } rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); memset(&aByte[nByte], 0, FTS3_NODE_PADDING); if( rc!=SQLITE_OK ){ sqlite3_free(aByte); aByte = 0; } } *paBlob = aByte; } }else if( rc==SQLITE_ERROR ){ rc = FTS_CORRUPT_VTAB; } return rc; } /* ** Close the blob handle at p->pSegments, if it is open. See comments above ** the sqlite3Fts3ReadBlock() function for details. */ SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *p){ sqlite3_blob_close(p->pSegments); p->pSegments = 0; } static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ int nRead; /* Number of bytes to read */ int rc; /* Return code */ nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); rc = sqlite3_blob_read( pReader->pBlob, &pReader->aNode[pReader->nPopulate], nRead, pReader->nPopulate ); if( rc==SQLITE_OK ){ pReader->nPopulate += nRead; memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); if( pReader->nPopulate==pReader->nNode ){ sqlite3_blob_close(pReader->pBlob); pReader->pBlob = 0; pReader->nPopulate = 0; } } return rc; } static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ int rc = SQLITE_OK; assert( !pReader->pBlob || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) ); while( pReader->pBlob && rc==SQLITE_OK && (pFrom - pReader->aNode + nByte)>pReader->nPopulate ){ rc = fts3SegReaderIncrRead(pReader); } return rc; } /* ** Set an Fts3SegReader cursor to point at EOF. */ static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ if( !fts3SegReaderIsRootOnly(pSeg) ){ sqlite3_free(pSeg->aNode); sqlite3_blob_close(pSeg->pBlob); pSeg->pBlob = 0; } pSeg->aNode = 0; } /* ** Move the iterator passed as the first argument to the next term in the ** segment. If successful, SQLITE_OK is returned. If there is no next term, ** SQLITE_DONE. Otherwise, an SQLite error code. */ static int fts3SegReaderNext( Fts3Table *p, Fts3SegReader *pReader, int bIncr ){ int rc; /* Return code of various sub-routines */ char *pNext; /* Cursor variable */ int nPrefix; /* Number of bytes in term prefix */ int nSuffix; /* Number of bytes in term suffix */ if( !pReader->aDoclist ){ pNext = pReader->aNode; }else{ pNext = &pReader->aDoclist[pReader->nDoclist]; } if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ if( fts3SegReaderIsPending(pReader) ){ Fts3HashElem *pElem = *(pReader->ppNextElem); sqlite3_free(pReader->aNode); pReader->aNode = 0; if( pElem ){ char *aCopy; PendingList *pList = (PendingList *)fts3HashData(pElem); int nCopy = pList->nData+1; int nTerm = fts3HashKeysize(pElem); if( (nTerm+1)>pReader->nTermAlloc ){ sqlite3_free(pReader->zTerm); pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2); if( !pReader->zTerm ) return SQLITE_NOMEM; pReader->nTermAlloc = (nTerm+1)*2; } memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm); pReader->zTerm[nTerm] = '\0'; pReader->nTerm = nTerm; aCopy = (char*)sqlite3_malloc64(nCopy); if( !aCopy ) return SQLITE_NOMEM; memcpy(aCopy, pList->aData, nCopy); pReader->nNode = pReader->nDoclist = nCopy; pReader->aNode = pReader->aDoclist = aCopy; pReader->ppNextElem++; assert( pReader->aNode ); } return SQLITE_OK; } fts3SegReaderSetEof(pReader); /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf ** blocks have already been traversed. */ #ifdef CORRUPT_DB assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB ); #endif if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ return SQLITE_OK; } rc = sqlite3Fts3ReadBlock( p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, (bIncr ? &pReader->nPopulate : 0) ); if( rc!=SQLITE_OK ) return rc; assert( pReader->pBlob==0 ); if( bIncr && pReader->nPopulatenNode ){ pReader->pBlob = p->pSegments; p->pSegments = 0; } pNext = pReader->aNode; } assert( !fts3SegReaderIsPending(pReader) ); rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); if( rc!=SQLITE_OK ) return rc; /* Because of the FTS3_NODE_PADDING bytes of padding, the following is ** safe (no risk of overread) even if the node data is corrupted. */ pNext += fts3GetVarint32(pNext, &nPrefix); pNext += fts3GetVarint32(pNext, &nSuffix); if( nSuffix<=0 || (&pReader->aNode[pReader->nNode] - pNext)pReader->nTerm ){ return FTS_CORRUPT_VTAB; } /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer ** overflow - hence the (i64) casts. */ if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){ i64 nNew = ((i64)nPrefix+nSuffix)*2; char *zNew = sqlite3_realloc64(pReader->zTerm, nNew); if( !zNew ){ return SQLITE_NOMEM; } pReader->zTerm = zNew; pReader->nTermAlloc = nNew; } rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); if( rc!=SQLITE_OK ) return rc; memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); pReader->nTerm = nPrefix+nSuffix; pNext += nSuffix; pNext += fts3GetVarint32(pNext, &pReader->nDoclist); pReader->aDoclist = pNext; pReader->pOffsetList = 0; /* Check that the doclist does not appear to extend past the end of the ** b-tree node. And that the final byte of the doclist is 0x00. If either ** of these statements is untrue, then the data structure is corrupt. */ if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode) || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) || pReader->nDoclist==0 ){ return FTS_CORRUPT_VTAB; } return SQLITE_OK; } /* ** Set the SegReader to point to the first docid in the doclist associated ** with the current term. */ static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ int rc = SQLITE_OK; assert( pReader->aDoclist ); assert( !pReader->pOffsetList ); if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ u8 bEof = 0; pReader->iDocid = 0; pReader->nOffsetList = 0; sqlite3Fts3DoclistPrev(0, pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, &pReader->iDocid, &pReader->nOffsetList, &bEof ); }else{ rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); if( rc==SQLITE_OK ){ int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); pReader->pOffsetList = &pReader->aDoclist[n]; } } return rc; } /* ** Advance the SegReader to point to the next docid in the doclist ** associated with the current term. ** ** If arguments ppOffsetList and pnOffsetList are not NULL, then ** *ppOffsetList is set to point to the first column-offset list ** in the doclist entry (i.e. immediately past the docid varint). ** *pnOffsetList is set to the length of the set of column-offset ** lists, not including the nul-terminator byte. For example: */ static int fts3SegReaderNextDocid( Fts3Table *pTab, Fts3SegReader *pReader, /* Reader to advance to next docid */ char **ppOffsetList, /* OUT: Pointer to current position-list */ int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ ){ int rc = SQLITE_OK; char *p = pReader->pOffsetList; char c = 0; assert( p ); if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ /* A pending-terms seg-reader for an FTS4 table that uses order=desc. ** Pending-terms doclists are always built up in ascending order, so ** we have to iterate through them backwards here. */ u8 bEof = 0; if( ppOffsetList ){ *ppOffsetList = pReader->pOffsetList; *pnOffsetList = pReader->nOffsetList - 1; } sqlite3Fts3DoclistPrev(0, pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, &pReader->nOffsetList, &bEof ); if( bEof ){ pReader->pOffsetList = 0; }else{ pReader->pOffsetList = p; } }else{ char *pEnd = &pReader->aDoclist[pReader->nDoclist]; /* Pointer p currently points at the first byte of an offset list. The ** following block advances it to point one byte past the end of ** the same offset list. */ while( 1 ){ /* The following line of code (and the "p++" below the while() loop) is ** normally all that is required to move pointer p to the desired ** position. The exception is if this node is being loaded from disk ** incrementally and pointer "p" now points to the first byte past ** the populated part of pReader->aNode[]. */ while( *p | c ) c = *p++ & 0x80; assert( *p==0 ); if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; rc = fts3SegReaderIncrRead(pReader); if( rc!=SQLITE_OK ) return rc; } p++; /* If required, populate the output variables with a pointer to and the ** size of the previous offset-list. */ if( ppOffsetList ){ *ppOffsetList = pReader->pOffsetList; *pnOffsetList = (int)(p - pReader->pOffsetList - 1); } /* List may have been edited in place by fts3EvalNearTrim() */ while( p=pEnd ){ pReader->pOffsetList = 0; }else{ rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); if( rc==SQLITE_OK ){ u64 iDelta; pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta); if( pTab->bDescIdx ){ pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta); }else{ pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta); } } } } return rc; } SQLITE_PRIVATE int sqlite3Fts3MsrOvfl( Fts3Cursor *pCsr, Fts3MultiSegReader *pMsr, int *pnOvfl ){ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; int nOvfl = 0; int ii; int rc = SQLITE_OK; int pgsz = p->nPgsz; assert( p->bFts4 ); assert( pgsz>0 ); for(ii=0; rc==SQLITE_OK && iinSegment; ii++){ Fts3SegReader *pReader = pMsr->apSegment[ii]; if( !fts3SegReaderIsPending(pReader) && !fts3SegReaderIsRootOnly(pReader) ){ sqlite3_int64 jj; for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ int nBlob; rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); if( rc!=SQLITE_OK ) break; if( (nBlob+35)>pgsz ){ nOvfl += (nBlob + 34)/pgsz; } } } } *pnOvfl = nOvfl; return rc; } /* ** Free all allocations associated with the iterator passed as the ** second argument. */ SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ if( pReader ){ sqlite3_free(pReader->zTerm); if( !fts3SegReaderIsRootOnly(pReader) ){ sqlite3_free(pReader->aNode); } sqlite3_blob_close(pReader->pBlob); } sqlite3_free(pReader); } /* ** Allocate a new SegReader object. */ SQLITE_PRIVATE int sqlite3Fts3SegReaderNew( int iAge, /* Segment "age". */ int bLookup, /* True for a lookup only */ sqlite3_int64 iStartLeaf, /* First leaf to traverse */ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ sqlite3_int64 iEndBlock, /* Final block of segment */ const char *zRoot, /* Buffer containing root node */ int nRoot, /* Size of buffer containing root node */ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ ){ Fts3SegReader *pReader; /* Newly allocated SegReader object */ int nExtra = 0; /* Bytes to allocate segment root node */ assert( zRoot!=0 || nRoot==0 ); #ifdef CORRUPT_DB assert( zRoot!=0 || CORRUPT_DB ); #endif if( iStartLeaf==0 ){ if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB; nExtra = nRoot + FTS3_NODE_PADDING; } pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra); if( !pReader ){ return SQLITE_NOMEM; } memset(pReader, 0, sizeof(Fts3SegReader)); pReader->iIdx = iAge; pReader->bLookup = bLookup!=0; pReader->iStartBlock = iStartLeaf; pReader->iLeafEndBlock = iEndLeaf; pReader->iEndBlock = iEndBlock; if( nExtra ){ /* The entire segment is stored in the root node. */ pReader->aNode = (char *)&pReader[1]; pReader->rootOnly = 1; pReader->nNode = nRoot; if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot); memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); }else{ pReader->iCurrentBlock = iStartLeaf-1; } *ppReader = pReader; return SQLITE_OK; } /* ** This is a comparison function used as a qsort() callback when sorting ** an array of pending terms by term. This occurs as part of flushing ** the contents of the pending-terms hash table to the database. */ static int SQLITE_CDECL fts3CompareElemByTerm( const void *lhs, const void *rhs ){ char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); int n = (n1aIndex */ const char *zTerm, /* Term to search for */ int nTerm, /* Size of buffer zTerm */ int bPrefix, /* True for a prefix iterator */ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ ){ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ Fts3HashElem *pE; /* Iterator variable */ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ int nElem = 0; /* Size of array at aElem */ int rc = SQLITE_OK; /* Return Code */ Fts3Hash *pHash; pHash = &p->aIndex[iIndex].hPending; if( bPrefix ){ int nAlloc = 0; /* Size of allocated array at aElem */ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ char *zKey = (char *)fts3HashKey(pE); int nKey = fts3HashKeysize(pE); if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ if( nElem==nAlloc ){ Fts3HashElem **aElem2; nAlloc += 16; aElem2 = (Fts3HashElem **)sqlite3_realloc64( aElem, nAlloc*sizeof(Fts3HashElem *) ); if( !aElem2 ){ rc = SQLITE_NOMEM; nElem = 0; break; } aElem = aElem2; } aElem[nElem++] = pE; } } /* If more than one term matches the prefix, sort the Fts3HashElem ** objects in term order using qsort(). This uses the same comparison ** callback as is used when flushing terms to disk. */ if( nElem>1 ){ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); } }else{ /* The query is a simple term lookup that matches at most one term in ** the index. All that is required is a straight hash-lookup. ** ** Because the stack address of pE may be accessed via the aElem pointer ** below, the "Fts3HashElem *pE" must be declared so that it is valid ** within this entire function, not just this "else{...}" block. */ pE = fts3HashFindElem(pHash, zTerm, nTerm); if( pE ){ aElem = &pE; nElem = 1; } } if( nElem>0 ){ sqlite3_int64 nByte; nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); pReader = (Fts3SegReader *)sqlite3_malloc64(nByte); if( !pReader ){ rc = SQLITE_NOMEM; }else{ memset(pReader, 0, nByte); pReader->iIdx = 0x7FFFFFFF; pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); } } if( bPrefix ){ sqlite3_free(aElem); } *ppReader = pReader; return rc; } /* ** Compare the entries pointed to by two Fts3SegReader structures. ** Comparison is as follows: ** ** 1) EOF is greater than not EOF. ** ** 2) The current terms (if any) are compared using memcmp(). If one ** term is a prefix of another, the longer term is considered the ** larger. ** ** 3) By segment age. An older segment is considered larger. */ static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc; if( pLhs->aNode && pRhs->aNode ){ int rc2 = pLhs->nTerm - pRhs->nTerm; if( rc2<0 ){ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); }else{ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); } if( rc==0 ){ rc = rc2; } }else{ rc = (pLhs->aNode==0) - (pRhs->aNode==0); } if( rc==0 ){ rc = pRhs->iIdx - pLhs->iIdx; } assert_fts3_nc( rc!=0 ); return rc; } /* ** A different comparison function for SegReader structures. In this ** version, it is assumed that each SegReader points to an entry in ** a doclist for identical terms. Comparison is made as follows: ** ** 1) EOF (end of doclist in this case) is greater than not EOF. ** ** 2) By current docid. ** ** 3) By segment age. An older segment is considered larger. */ static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); if( rc==0 ){ if( pLhs->iDocid==pRhs->iDocid ){ rc = pRhs->iIdx - pLhs->iIdx; }else{ rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; } } assert( pLhs->aNode && pRhs->aNode ); return rc; } static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); if( rc==0 ){ if( pLhs->iDocid==pRhs->iDocid ){ rc = pRhs->iIdx - pLhs->iIdx; }else{ rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; } } assert( pLhs->aNode && pRhs->aNode ); return rc; } /* ** Compare the term that the Fts3SegReader object passed as the first argument ** points to with the term specified by arguments zTerm and nTerm. ** ** If the pSeg iterator is already at EOF, return 0. Otherwise, return ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are ** equal, or +ve if the pSeg term is greater than zTerm/nTerm. */ static int fts3SegReaderTermCmp( Fts3SegReader *pSeg, /* Segment reader object */ const char *zTerm, /* Term to compare to */ int nTerm /* Size of term zTerm in bytes */ ){ int res = 0; if( pSeg->aNode ){ if( pSeg->nTerm>nTerm ){ res = memcmp(pSeg->zTerm, zTerm, nTerm); }else{ res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); } if( res==0 ){ res = pSeg->nTerm-nTerm; } } return res; } /* ** Argument apSegment is an array of nSegment elements. It is known that ** the final (nSegment-nSuspect) members are already in sorted order ** (according to the comparison function provided). This function shuffles ** the array around until all entries are in sorted order. */ static void fts3SegReaderSort( Fts3SegReader **apSegment, /* Array to sort entries of */ int nSegment, /* Size of apSegment array */ int nSuspect, /* Unsorted entry count */ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ ){ int i; /* Iterator variable */ assert( nSuspect<=nSegment ); if( nSuspect==nSegment ) nSuspect--; for(i=nSuspect-1; i>=0; i--){ int j; for(j=i; j<(nSegment-1); j++){ Fts3SegReader *pTmp; if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; pTmp = apSegment[j+1]; apSegment[j+1] = apSegment[j]; apSegment[j] = pTmp; } } #ifndef NDEBUG /* Check that the list really is sorted now. */ for(i=0; i<(nSuspect-1); i++){ assert( xCmp(apSegment[i], apSegment[i+1])<0 ); } #endif } /* ** Insert a record into the %_segments table. */ static int fts3WriteSegment( Fts3Table *p, /* Virtual table handle */ sqlite3_int64 iBlock, /* Block id for new block */ char *z, /* Pointer to buffer containing block data */ int n /* Size of buffer z in bytes */ ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, iBlock); sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 2); } return rc; } /* ** Find the largest relative level number in the table. If successful, set ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, ** set *pnMax to zero and return an SQLite error code. */ SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ int rc; int mxLevel = 0; sqlite3_stmt *pStmt = 0; rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ mxLevel = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } *pnMax = mxLevel; return rc; } /* ** Insert a record into the %_segdir table. */ static int fts3WriteSegdir( Fts3Table *p, /* Virtual table handle */ sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ int iIdx, /* Value for "idx" field */ sqlite3_int64 iStartBlock, /* Value for "start_block" field */ sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ sqlite3_int64 iEndBlock, /* Value for "end_block" field */ sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ char *zRoot, /* Blob value for "root" field */ int nRoot /* Number of bytes in buffer zRoot */ ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, iLevel); sqlite3_bind_int(pStmt, 2, iIdx); sqlite3_bind_int64(pStmt, 3, iStartBlock); sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); if( nLeafData==0 ){ sqlite3_bind_int64(pStmt, 5, iEndBlock); }else{ char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); if( !zEnd ) return SQLITE_NOMEM; sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); } sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 6); } return rc; } /* ** Return the size of the common prefix (if any) shared by zPrev and ** zNext, in bytes. For example, ** ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 */ static int fts3PrefixCompress( const char *zPrev, /* Buffer containing previous term */ int nPrev, /* Size of buffer zPrev in bytes */ const char *zNext, /* Buffer containing next term */ int nNext /* Size of buffer zNext in bytes */ ){ int n; for(n=0; nnData; /* Current size of node in bytes */ int nReq = nData; /* Required space after adding zTerm */ int nPrefix; /* Number of bytes of prefix compression */ int nSuffix; /* Suffix length */ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when ** compared with BINARY collation. This indicates corruption. */ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; if( nReq<=p->nNodeSize || !pTree->zTerm ){ if( nReq>p->nNodeSize ){ /* An unusual case: this is the first term to be added to the node ** and the static node buffer (p->nNodeSize bytes) is not large ** enough. Use a separately malloced buffer instead This wastes ** p->nNodeSize bytes, but since this scenario only comes about when ** the database contain two terms that share a prefix of almost 2KB, ** this is not expected to be a serious problem. */ assert( pTree->aData==(char *)&pTree[1] ); pTree->aData = (char *)sqlite3_malloc64(nReq); if( !pTree->aData ){ return SQLITE_NOMEM; } } if( pTree->zTerm ){ /* There is no prefix-length field for first term in a node */ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); } nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); pTree->nData = nData + nSuffix; pTree->nEntry++; if( isCopyTerm ){ if( pTree->nMalloczMalloc, (i64)nTerm*2); if( !zNew ){ return SQLITE_NOMEM; } pTree->nMalloc = nTerm*2; pTree->zMalloc = zNew; } pTree->zTerm = pTree->zMalloc; memcpy(pTree->zTerm, zTerm, nTerm); pTree->nTerm = nTerm; }else{ pTree->zTerm = (char *)zTerm; pTree->nTerm = nTerm; } return SQLITE_OK; } } /* If control flows to here, it was not possible to append zTerm to the ** current node. Create a new node (a right-sibling of the current node). ** If this is the first node in the tree, the term is added to it. ** ** Otherwise, the term is not added to the new node, it is left empty for ** now. Instead, the term is inserted into the parent of pTree. If pTree ** has no parent, one is created here. */ pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize); if( !pNew ){ return SQLITE_NOMEM; } memset(pNew, 0, sizeof(SegmentNode)); pNew->nData = 1 + FTS3_VARINT_MAX; pNew->aData = (char *)&pNew[1]; if( pTree ){ SegmentNode *pParent = pTree->pParent; rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); if( pTree->pParent==0 ){ pTree->pParent = pParent; } pTree->pRight = pNew; pNew->pLeftmost = pTree->pLeftmost; pNew->pParent = pParent; pNew->zMalloc = pTree->zMalloc; pNew->nMalloc = pTree->nMalloc; pTree->zMalloc = 0; }else{ pNew->pLeftmost = pNew; rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); } *ppTree = pNew; return rc; } /* ** Helper function for fts3NodeWrite(). */ static int fts3TreeFinishNode( SegmentNode *pTree, int iHeight, sqlite3_int64 iLeftChild ){ int nStart; assert( iHeight>=1 && iHeight<128 ); nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); pTree->aData[nStart] = (char)iHeight; sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); return nStart; } /* ** Write the buffer for the segment node pTree and all of its peers to the ** database. Then call this function recursively to write the parent of ** pTree and its peers to the database. ** ** Except, if pTree is a root node, do not write it to the database. Instead, ** set output variables *paRoot and *pnRoot to contain the root node. ** ** If successful, SQLITE_OK is returned and output variable *piLast is ** set to the largest blockid written to the database (or zero if no ** blocks were written to the db). Otherwise, an SQLite error code is ** returned. */ static int fts3NodeWrite( Fts3Table *p, /* Virtual table handle */ SegmentNode *pTree, /* SegmentNode handle */ int iHeight, /* Height of this node in tree */ sqlite3_int64 iLeaf, /* Block id of first leaf node */ sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ char **paRoot, /* OUT: Data for root node */ int *pnRoot /* OUT: Size of root node in bytes */ ){ int rc = SQLITE_OK; if( !pTree->pParent ){ /* Root node of the tree. */ int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); *piLast = iFree-1; *pnRoot = pTree->nData - nStart; *paRoot = &pTree->aData[nStart]; }else{ SegmentNode *pIter; sqlite3_int64 iNextFree = iFree; sqlite3_int64 iNextLeaf = iLeaf; for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); int nWrite = pIter->nData - nStart; rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); iNextFree++; iNextLeaf += (pIter->nEntry+1); } if( rc==SQLITE_OK ){ assert( iNextLeaf==iFree ); rc = fts3NodeWrite( p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot ); } } return rc; } /* ** Free all memory allocations associated with the tree pTree. */ static void fts3NodeFree(SegmentNode *pTree){ if( pTree ){ SegmentNode *p = pTree->pLeftmost; fts3NodeFree(p->pParent); while( p ){ SegmentNode *pRight = p->pRight; if( p->aData!=(char *)&p[1] ){ sqlite3_free(p->aData); } assert( pRight==0 || p->zMalloc==0 ); sqlite3_free(p->zMalloc); sqlite3_free(p); p = pRight; } } } /* ** Add a term to the segment being constructed by the SegmentWriter object ** *ppWriter. When adding the first term to a segment, *ppWriter should ** be passed NULL. This function will allocate a new SegmentWriter object ** and return it via the input/output variable *ppWriter in this case. ** ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. */ static int fts3SegWriterAdd( Fts3Table *p, /* Virtual table handle */ SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ int isCopyTerm, /* True if buffer zTerm must be copied */ const char *zTerm, /* Pointer to buffer containing term */ int nTerm, /* Size of term in bytes */ const char *aDoclist, /* Pointer to buffer containing doclist */ int nDoclist /* Size of doclist in bytes */ ){ int nPrefix; /* Size of term prefix in bytes */ int nSuffix; /* Size of term suffix in bytes */ i64 nReq; /* Number of bytes required on leaf page */ int nData; SegmentWriter *pWriter = *ppWriter; if( !pWriter ){ int rc; sqlite3_stmt *pStmt; /* Allocate the SegmentWriter structure */ pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter)); if( !pWriter ) return SQLITE_NOMEM; memset(pWriter, 0, sizeof(SegmentWriter)); *ppWriter = pWriter; /* Allocate a buffer in which to accumulate data */ pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize); if( !pWriter->aData ) return SQLITE_NOMEM; pWriter->nSize = p->nNodeSize; /* Find the next free blockid in the %_segments table */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; if( SQLITE_ROW==sqlite3_step(pStmt) ){ pWriter->iFree = sqlite3_column_int64(pStmt, 0); pWriter->iFirst = pWriter->iFree; } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ) return rc; } nData = pWriter->nData; nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when ** compared with BINARY collation. This indicates corruption. */ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; /* Figure out how many bytes are required by this new entry */ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ nSuffix + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ if( nData>0 && nData+nReq>p->nNodeSize ){ int rc; /* The current leaf node is full. Write it out to the database. */ if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB; rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); if( rc!=SQLITE_OK ) return rc; p->nLeafAdd++; /* Add the current term to the interior node tree. The term added to ** the interior tree must: ** ** a) be greater than the largest term on the leaf node just written ** to the database (still available in pWriter->zTerm), and ** ** b) be less than or equal to the term about to be added to the new ** leaf node (zTerm/nTerm). ** ** In other words, it must be the prefix of zTerm 1 byte longer than ** the common prefix (if any) of zTerm and pWriter->zTerm. */ assert( nPrefixpTree, isCopyTerm, zTerm, nPrefix+1); if( rc!=SQLITE_OK ) return rc; nData = 0; pWriter->nTerm = 0; nPrefix = 0; nSuffix = nTerm; nReq = 1 + /* varint containing prefix size */ sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ nTerm + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ } /* Increase the total number of bytes written to account for the new entry. */ pWriter->nLeafData += nReq; /* If the buffer currently allocated is too small for this entry, realloc ** the buffer to make it large enough. */ if( nReq>pWriter->nSize ){ char *aNew = sqlite3_realloc64(pWriter->aData, nReq); if( !aNew ) return SQLITE_NOMEM; pWriter->aData = aNew; pWriter->nSize = nReq; } assert( nData+nReq<=pWriter->nSize ); /* Append the prefix-compressed term and doclist to the buffer. */ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); assert( nSuffix>0 ); memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); nData += nSuffix; nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); assert( nDoclist>0 ); memcpy(&pWriter->aData[nData], aDoclist, nDoclist); pWriter->nData = nData + nDoclist; /* Save the current term so that it can be used to prefix-compress the next. ** If the isCopyTerm parameter is true, then the buffer pointed to by ** zTerm is transient, so take a copy of the term data. Otherwise, just ** store a copy of the pointer. */ if( isCopyTerm ){ if( nTerm>pWriter->nMalloc ){ char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2); if( !zNew ){ return SQLITE_NOMEM; } pWriter->nMalloc = nTerm*2; pWriter->zMalloc = zNew; pWriter->zTerm = zNew; } assert( pWriter->zTerm==pWriter->zMalloc ); assert( nTerm>0 ); memcpy(pWriter->zTerm, zTerm, nTerm); }else{ pWriter->zTerm = (char *)zTerm; } pWriter->nTerm = nTerm; return SQLITE_OK; } /* ** Flush all data associated with the SegmentWriter object pWriter to the ** database. This function must be called after all terms have been added ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is ** returned. Otherwise, an SQLite error code. */ static int fts3SegWriterFlush( Fts3Table *p, /* Virtual table handle */ SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ int iIdx /* Value for 'idx' column of %_segdir */ ){ int rc; /* Return code */ if( pWriter->pTree ){ sqlite3_int64 iLast = 0; /* Largest block id written to database */ sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ char *zRoot = NULL; /* Pointer to buffer containing root node */ int nRoot = 0; /* Size of buffer zRoot */ iLastLeaf = pWriter->iFree; rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); if( rc==SQLITE_OK ){ rc = fts3NodeWrite(p, pWriter->pTree, 1, pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); } if( rc==SQLITE_OK ){ rc = fts3WriteSegdir(p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); } }else{ /* The entire tree fits on the root node. Write it to the segdir table. */ rc = fts3WriteSegdir(p, iLevel, iIdx, 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); } p->nLeafAdd++; return rc; } /* ** Release all memory held by the SegmentWriter object passed as the ** first argument. */ static void fts3SegWriterFree(SegmentWriter *pWriter){ if( pWriter ){ sqlite3_free(pWriter->aData); sqlite3_free(pWriter->zMalloc); fts3NodeFree(pWriter->pTree); sqlite3_free(pWriter); } } /* ** The first value in the apVal[] array is assumed to contain an integer. ** This function tests if there exist any documents with docid values that ** are different from that integer. i.e. if deleting the document with docid ** pRowid would mean the FTS3 table were empty. ** ** If successful, *pisEmpty is set to true if the table is empty except for ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an ** error occurs, an SQLite error code is returned. */ static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ sqlite3_stmt *pStmt; int rc; if( p->zContentTbl ){ /* If using the content=xxx option, assume the table is never empty */ *pisEmpty = 0; rc = SQLITE_OK; }else{ rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pisEmpty = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } } return rc; } /* ** Set *pnMax to the largest segment level in the database for the index ** iIndex. ** ** Segment levels are stored in the 'level' column of the %_segdir table. ** ** Return SQLITE_OK if successful, or an SQLite error code if not. */ static int fts3SegmentMaxLevel( Fts3Table *p, int iLangid, int iIndex, sqlite3_int64 *pnMax ){ sqlite3_stmt *pStmt; int rc; assert( iIndex>=0 && iIndexnIndex ); /* Set pStmt to the compiled version of: ** ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? ** ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pStmt, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pnMax = sqlite3_column_int64(pStmt, 0); } return sqlite3_reset(pStmt); } /* ** iAbsLevel is an absolute level that may be assumed to exist within ** the database. This function checks if it is the largest level number ** within its index. Assuming no error occurs, *pbMax is set to 1 if ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK ** is returned. If an error occurs, an error code is returned and the ** final value of *pbMax is undefined. */ static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ /* Set pStmt to the compiled version of: ** ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? ** ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). */ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); sqlite3_bind_int64(pStmt, 2, (((u64)iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL ); *pbMax = 0; if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; } return sqlite3_reset(pStmt); } /* ** Delete all entries in the %_segments table associated with the segment ** opened with seg-reader pSeg. This function does not affect the contents ** of the %_segdir table. */ static int fts3DeleteSegment( Fts3Table *p, /* FTS table handle */ Fts3SegReader *pSeg /* Segment to delete */ ){ int rc = SQLITE_OK; /* Return code */ if( pSeg->iStartBlock ){ sqlite3_stmt *pDelete; /* SQL statement to delete rows */ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } } return rc; } /* ** This function is used after merging multiple segments into a single large ** segment to delete the old, now redundant, segment b-trees. Specifically, ** it: ** ** 1) Deletes all %_segments entries for the segments associated with ** each of the SegReader objects in the array passed as the third ** argument, and ** ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir ** entries regardless of level if (iLevel<0). ** ** SQLITE_OK is returned if successful, otherwise an SQLite error code. */ static int fts3DeleteSegdir( Fts3Table *p, /* Virtual table handle */ int iLangid, /* Language id */ int iIndex, /* Index for p->aIndex */ int iLevel, /* Level of %_segdir entries to delete */ Fts3SegReader **apSegment, /* Array of SegReader objects */ int nReader /* Size of array apSegment */ ){ int rc = SQLITE_OK; /* Return Code */ int i; /* Iterator variable */ sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ for(i=0; rc==SQLITE_OK && i=0 || iLevel==FTS3_SEGCURSOR_ALL ); if( iLevel==FTS3_SEGCURSOR_ALL ){ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pDelete, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); } }else{ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64( pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) ); } } if( rc==SQLITE_OK ){ sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } return rc; } /* ** When this function is called, buffer *ppList (size *pnList bytes) contains ** a position list that may (or may not) feature multiple columns. This ** function adjusts the pointer *ppList and the length *pnList so that they ** identify the subset of the position list that corresponds to column iCol. ** ** If there are no entries in the input position list for column iCol, then ** *pnList is set to zero before returning. ** ** If parameter bZero is non-zero, then any part of the input list following ** the end of the output list is zeroed before returning. */ static void fts3ColumnFilter( int iCol, /* Column to filter on */ int bZero, /* Zero out anything following *ppList */ char **ppList, /* IN/OUT: Pointer to position list */ int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ ){ char *pList = *ppList; int nList = *pnList; char *pEnd = &pList[nList]; int iCurrent = 0; char *p = pList; assert( iCol>=0 ); while( 1 ){ char c = 0; while( p0){ memset(&pList[nList], 0, pEnd - &pList[nList]); } *ppList = pList; *pnList = nList; } /* ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any ** existing data). Grow the buffer if required. ** ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered ** trying to resize the buffer, return SQLITE_NOMEM. */ static int fts3MsrBufferData( Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ char *pList, i64 nList ){ if( (nList+FTS3_NODE_PADDING)>pMsr->nBuffer ){ char *pNew; int nNew = nList*2 + FTS3_NODE_PADDING; pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, nNew); if( !pNew ) return SQLITE_NOMEM; pMsr->aBuffer = pNew; pMsr->nBuffer = nNew; } assert( nList>0 ); memcpy(pMsr->aBuffer, pList, nList); memset(&pMsr->aBuffer[nList], 0, FTS3_NODE_PADDING); return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ sqlite3_int64 *piDocid, /* OUT: Docid value */ char **paPoslist, /* OUT: Pointer to position list */ int *pnPoslist /* OUT: Size of position list in bytes */ ){ int nMerge = pMsr->nAdvance; Fts3SegReader **apSegment = pMsr->apSegment; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); if( nMerge==0 ){ *paPoslist = 0; return SQLITE_OK; } while( 1 ){ Fts3SegReader *pSeg; pSeg = pMsr->apSegment[0]; if( pSeg->pOffsetList==0 ){ *paPoslist = 0; break; }else{ int rc; char *pList; int nList; int j; sqlite3_int64 iDocid = apSegment[0]->iDocid; rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); j = 1; while( rc==SQLITE_OK && jpOffsetList && apSegment[j]->iDocid==iDocid ){ rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); j++; } if( rc!=SQLITE_OK ) return rc; fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1); if( rc!=SQLITE_OK ) return rc; assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); pList = pMsr->aBuffer; } if( pMsr->iColFilter>=0 ){ fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); } if( nList>0 ){ *paPoslist = pList; *piDocid = iDocid; *pnPoslist = nList; break; } } } return SQLITE_OK; } static int fts3SegReaderStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ const char *zTerm, /* Term searched for (or NULL) */ int nTerm /* Length of zTerm in bytes */ ){ int i; int nSeg = pCsr->nSegment; /* If the Fts3SegFilter defines a specific term (or term prefix) to search ** for, then advance each segment iterator until it points to a term of ** equal or greater value than the specified term. This prevents many ** unnecessary merge/sort operations for the case where single segment ** b-tree leaf nodes contain more than one term. */ for(i=0; pCsr->bRestart==0 && inSegment; i++){ int res = 0; Fts3SegReader *pSeg = pCsr->apSegment[i]; do { int rc = fts3SegReaderNext(p, pSeg, 0); if( rc!=SQLITE_OK ) return rc; }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); if( pSeg->bLookup && res!=0 ){ fts3SegReaderSetEof(pSeg); } } fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3SegReaderStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ Fts3SegFilter *pFilter /* Restrictions on range of iteration */ ){ pCsr->pFilter = pFilter; return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); } SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ int iCol, /* Column to match on. */ const char *zTerm, /* Term to iterate through a doclist for */ int nTerm /* Number of bytes in zTerm */ ){ int i; int rc; int nSegment = pCsr->nSegment; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); assert( pCsr->pFilter==0 ); assert( zTerm && nTerm>0 ); /* Advance each segment iterator until it points to the term zTerm/nTerm. */ rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); if( rc!=SQLITE_OK ) return rc; /* Determine how many of the segments actually point to zTerm/nTerm. */ for(i=0; iapSegment[i]; if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ break; } } pCsr->nAdvance = i; /* Advance each of the segments to point to the first docid. */ for(i=0; inAdvance; i++){ rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); if( rc!=SQLITE_OK ) return rc; } fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); assert( iCol<0 || iColnColumn ); pCsr->iColFilter = iCol; return SQLITE_OK; } /* ** This function is called on a MultiSegReader that has been started using ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also ** have been made. Calling this function puts the MultiSegReader in such ** a state that if the next two calls are: ** ** sqlite3Fts3SegReaderStart() ** sqlite3Fts3SegReaderStep() ** ** then the entire doclist for the term is available in ** MultiSegReader.aDoclist/nDoclist. */ SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ int i; /* Used to iterate through segment-readers */ assert( pCsr->zTerm==0 ); assert( pCsr->nTerm==0 ); assert( pCsr->aDoclist==0 ); assert( pCsr->nDoclist==0 ); pCsr->nAdvance = 0; pCsr->bRestart = 1; for(i=0; inSegment; i++){ pCsr->apSegment[i]->pOffsetList = 0; pCsr->apSegment[i]->nOffsetList = 0; pCsr->apSegment[i]->iDocid = 0; } return SQLITE_OK; } static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){ if( nReq>pCsr->nBuffer ){ char *aNew; pCsr->nBuffer = nReq*2; aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer); if( !aNew ){ return SQLITE_NOMEM; } pCsr->aBuffer = aNew; } return SQLITE_OK; } SQLITE_PRIVATE int sqlite3Fts3SegReaderStep( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr /* Cursor object */ ){ int rc = SQLITE_OK; int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); Fts3SegReader **apSegment = pCsr->apSegment; int nSegment = pCsr->nSegment; Fts3SegFilter *pFilter = pCsr->pFilter; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); if( pCsr->nSegment==0 ) return SQLITE_OK; do { int nMerge; int i; /* Advance the first pCsr->nAdvance entries in the apSegment[] array ** forward. Then sort the list in order of current term again. */ for(i=0; inAdvance; i++){ Fts3SegReader *pSeg = apSegment[i]; if( pSeg->bLookup ){ fts3SegReaderSetEof(pSeg); }else{ rc = fts3SegReaderNext(p, pSeg, 0); } if( rc!=SQLITE_OK ) return rc; } fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); pCsr->nAdvance = 0; /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ assert( rc==SQLITE_OK ); if( apSegment[0]->aNode==0 ) break; pCsr->nTerm = apSegment[0]->nTerm; pCsr->zTerm = apSegment[0]->zTerm; /* If this is a prefix-search, and if the term that apSegment[0] points ** to does not share a suffix with pFilter->zTerm/nTerm, then all ** required callbacks have been made. In this case exit early. ** ** Similarly, if this is a search for an exact match, and the first term ** of segment apSegment[0] is not a match, exit early. */ if( pFilter->zTerm && !isScan ){ if( pCsr->nTermnTerm || (!isPrefix && pCsr->nTerm>pFilter->nTerm) || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) ){ break; } } nMerge = 1; while( nMergeaNode && apSegment[nMerge]->nTerm==pCsr->nTerm && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) ){ nMerge++; } assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); if( nMerge==1 && !isIgnoreEmpty && !isFirst && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) ){ pCsr->nDoclist = apSegment[0]->nDoclist; if( fts3SegReaderIsPending(apSegment[0]) ){ rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, (i64)pCsr->nDoclist); pCsr->aDoclist = pCsr->aBuffer; }else{ pCsr->aDoclist = apSegment[0]->aDoclist; } if( rc==SQLITE_OK ) rc = SQLITE_ROW; }else{ int nDoclist = 0; /* Size of doclist */ sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ /* The current term of the first nMerge entries in the array ** of Fts3SegReader objects is the same. The doclists must be merged ** and a single term returned with the merged doclist. */ for(i=0; ipOffsetList ){ int j; /* Number of segments that share a docid */ char *pList = 0; int nList = 0; int nByte; sqlite3_int64 iDocid = apSegment[0]->iDocid; fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); j = 1; while( jpOffsetList && apSegment[j]->iDocid==iDocid ){ fts3SegReaderNextDocid(p, apSegment[j], 0, 0); j++; } if( isColFilter ){ fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); } if( !isIgnoreEmpty || nList>0 ){ /* Calculate the 'docid' delta value to write into the merged ** doclist. */ sqlite3_int64 iDelta; if( p->bDescIdx && nDoclist>0 ){ if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB; iDelta = (i64)((u64)iPrev - (u64)iDocid); }else{ if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB; iDelta = (i64)((u64)iDocid - (u64)iPrev); } nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); rc = fts3GrowSegReaderBuffer(pCsr, (i64)nByte+nDoclist+FTS3_NODE_PADDING); if( rc ) return rc; if( isFirst ){ char *a = &pCsr->aBuffer[nDoclist]; int nWrite; nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); if( nWrite ){ iPrev = iDocid; nDoclist += nWrite; } }else{ nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); iPrev = iDocid; if( isRequirePos ){ memcpy(&pCsr->aBuffer[nDoclist], pList, nList); nDoclist += nList; pCsr->aBuffer[nDoclist++] = '\0'; } } } fts3SegReaderSort(apSegment, nMerge, j, xCmp); } if( nDoclist>0 ){ rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING); if( rc ) return rc; memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING); pCsr->aDoclist = pCsr->aBuffer; pCsr->nDoclist = nDoclist; rc = SQLITE_ROW; } } pCsr->nAdvance = nMerge; }while( rc==SQLITE_OK ); return rc; } SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish( Fts3MultiSegReader *pCsr /* Cursor object */ ){ if( pCsr ){ int i; for(i=0; inSegment; i++){ sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); } sqlite3_free(pCsr->apSegment); sqlite3_free(pCsr->aBuffer); pCsr->nSegment = 0; pCsr->apSegment = 0; pCsr->aBuffer = 0; } } /* ** Decode the "end_block" field, selected by column iCol of the SELECT ** statement passed as the first argument. ** ** The "end_block" field may contain either an integer, or a text field ** containing the text representation of two non-negative integers separated ** by one or more space (0x20) characters. In the first case, set *piEndBlock ** to the integer value and *pnByte to zero before returning. In the second, ** set *piEndBlock to the first value and *pnByte to the second. */ static void fts3ReadEndBlockField( sqlite3_stmt *pStmt, int iCol, i64 *piEndBlock, i64 *pnByte ){ const unsigned char *zText = sqlite3_column_text(pStmt, iCol); if( zText ){ int i; int iMul = 1; u64 iVal = 0; for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ iVal = iVal*10 + (zText[i] - '0'); } *piEndBlock = (i64)iVal; while( zText[i]==' ' ) i++; iVal = 0; if( zText[i]=='-' ){ i++; iMul = -1; } for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ iVal = iVal*10 + (zText[i] - '0'); } *pnByte = ((i64)iVal * (i64)iMul); } } /* ** A segment of size nByte bytes has just been written to absolute level ** iAbsLevel. Promote any segments that should be promoted as a result. */ static int fts3PromoteSegments( Fts3Table *p, /* FTS table handle */ sqlite3_int64 iAbsLevel, /* Absolute level just updated */ sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ ){ int rc = SQLITE_OK; sqlite3_stmt *pRange; rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); if( rc==SQLITE_OK ){ int bOk = 0; i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; i64 nLimit = (nByte*3)/2; /* Loop through all entries in the %_segdir table corresponding to ** segments in this index on levels greater than iAbsLevel. If there is ** at least one such segment, and it is possible to determine that all ** such segments are smaller than nLimit bytes in size, they will be ** promoted to level iAbsLevel. */ sqlite3_bind_int64(pRange, 1, iAbsLevel+1); sqlite3_bind_int64(pRange, 2, iLast); while( SQLITE_ROW==sqlite3_step(pRange) ){ i64 nSize = 0, dummy; fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); if( nSize<=0 || nSize>nLimit ){ /* If nSize==0, then the %_segdir.end_block field does not not ** contain a size value. This happens if it was written by an ** old version of FTS. In this case it is not possible to determine ** the size of the segment, and so segment promotion does not ** take place. */ bOk = 0; break; } bOk = 1; } rc = sqlite3_reset(pRange); if( bOk ){ int iIdx = 0; sqlite3_stmt *pUpdate1 = 0; sqlite3_stmt *pUpdate2 = 0; if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); } if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); } if( rc==SQLITE_OK ){ /* Loop through all %_segdir entries for segments in this index with ** levels equal to or greater than iAbsLevel. As each entry is visited, ** updated it to set (level = -1) and (idx = N), where N is 0 for the ** oldest segment in the range, 1 for the next oldest, and so on. ** ** In other words, move all segments being promoted to level -1, ** setting the "idx" fields as appropriate to keep them in the same ** order. The contents of level -1 (which is never used, except ** transiently here), will be moved back to level iAbsLevel below. */ sqlite3_bind_int64(pRange, 1, iAbsLevel); while( SQLITE_ROW==sqlite3_step(pRange) ){ sqlite3_bind_int(pUpdate1, 1, iIdx++); sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); sqlite3_step(pUpdate1); rc = sqlite3_reset(pUpdate1); if( rc!=SQLITE_OK ){ sqlite3_reset(pRange); break; } } } if( rc==SQLITE_OK ){ rc = sqlite3_reset(pRange); } /* Move level -1 to level iAbsLevel */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); sqlite3_step(pUpdate2); rc = sqlite3_reset(pUpdate2); } } } return rc; } /* ** Merge all level iLevel segments in the database into a single ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a ** single segment with a level equal to the numerically largest level ** currently present in the database. ** ** If this function is called with iLevel<0, but there is only one ** segment in the database, SQLITE_DONE is returned immediately. ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, ** an SQLite error code is returned. */ static int fts3SegmentMerge( Fts3Table *p, int iLangid, /* Language id to merge */ int iIndex, /* Index in p->aIndex[] to merge */ int iLevel /* Level to merge */ ){ int rc; /* Return code */ int iIdx = 0; /* Index of new segment */ sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ Fts3SegFilter filter; /* Segment term filter condition */ Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ int bIgnoreEmpty = 0; /* True to ignore empty segments */ i64 iMaxLevel = 0; /* Max level number for this index/langid */ assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel==FTS3_SEGCURSOR_PENDING || iLevel>=0 ); assert( iLevel=0 && iIndexnIndex ); rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; if( iLevel!=FTS3_SEGCURSOR_PENDING ){ rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); if( rc!=SQLITE_OK ) goto finished; } if( iLevel==FTS3_SEGCURSOR_ALL ){ /* This call is to merge all segments in the database to a single ** segment. The level of the new segment is equal to the numerically ** greatest segment level currently present in the database for this ** index. The idx of the new segment is always 0. */ if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){ rc = SQLITE_DONE; goto finished; } iNewLevel = iMaxLevel; bIgnoreEmpty = 1; }else{ /* This call is to merge all segments at level iLevel. find the next ** available segment index at level iLevel+1. The call to ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to ** a single iLevel+2 segment if necessary. */ assert( FTS3_SEGCURSOR_PENDING==-1 ); iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); } if( rc!=SQLITE_OK ) goto finished; assert( csr.nSegment>0 ); assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); assert_fts3_nc( iNewLevelnLeafData); } } } finished: fts3SegWriterFree(pWriter); sqlite3Fts3SegReaderFinish(&csr); return rc; } /* ** Flush the contents of pendingTerms to level 0 segments. */ SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ int rc = SQLITE_OK; int i; for(i=0; rc==SQLITE_OK && inIndex; i++){ rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } /* Determine the auto-incr-merge setting if unknown. If enabled, ** estimate the number of leaf blocks of content to be written */ if( rc==SQLITE_OK && p->bHasStat && p->nAutoincrmerge==0xff && p->nLeafAdd>0 ){ sqlite3_stmt *pStmt = 0; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); rc = sqlite3_step(pStmt); if( rc==SQLITE_ROW ){ p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; }else if( rc==SQLITE_DONE ){ p->nAutoincrmerge = 0; } rc = sqlite3_reset(pStmt); } } if( rc==SQLITE_OK ){ sqlite3Fts3PendingTermsClear(p); } return rc; } /* ** Encode N integers as varints into a blob. */ static void fts3EncodeIntArray( int N, /* The number of integers to encode */ u32 *a, /* The integer values */ char *zBuf, /* Write the BLOB here */ int *pNBuf /* Write number of bytes if zBuf[] used here */ ){ int i, j; for(i=j=0; iiPrevDocid. The sizes are encoded as ** a blob of varints. */ static void fts3InsertDocsize( int *pRC, /* Result code */ Fts3Table *p, /* Table into which to insert */ u32 *aSz /* Sizes of each column, in tokens */ ){ char *pBlob; /* The BLOB encoding of the document size */ int nBlob; /* Number of bytes in the BLOB */ sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ int rc; /* Result code from subfunctions */ if( *pRC ) return; pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn ); if( pBlob==0 ){ *pRC = SQLITE_NOMEM; return; } fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); if( rc ){ sqlite3_free(pBlob); *pRC = rc; return; } sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); sqlite3_step(pStmt); *pRC = sqlite3_reset(pStmt); } /* ** Record 0 of the %_stat table contains a blob consisting of N varints, ** where N is the number of user defined columns in the fts3 table plus ** two. If nCol is the number of user defined columns, then values of the ** varints are set as follows: ** ** Varint 0: Total number of rows in the table. ** ** Varint 1..nCol: For each column, the total number of tokens stored in ** the column for all rows of the table. ** ** Varint 1+nCol: The total size, in bytes, of all text values in all ** columns of all rows of the table. ** */ static void fts3UpdateDocTotals( int *pRC, /* The result code */ Fts3Table *p, /* Table being updated */ u32 *aSzIns, /* Size increases */ u32 *aSzDel, /* Size decreases */ int nChng /* Change in the number of documents */ ){ char *pBlob; /* Storage for BLOB written into %_stat */ int nBlob; /* Size of BLOB written into %_stat */ u32 *a; /* Array of integers that becomes the BLOB */ sqlite3_stmt *pStmt; /* Statement for reading and writing */ int i; /* Loop counter */ int rc; /* Result code from subfunctions */ const int nStat = p->nColumn+2; if( *pRC ) return; a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat ); if( a==0 ){ *pRC = SQLITE_NOMEM; return; } pBlob = (char*)&a[nStat]; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); if( rc ){ sqlite3_free(a); *pRC = rc; return; } sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); if( sqlite3_step(pStmt)==SQLITE_ROW ){ fts3DecodeIntArray(nStat, a, sqlite3_column_blob(pStmt, 0), sqlite3_column_bytes(pStmt, 0)); }else{ memset(a, 0, sizeof(u32)*(nStat) ); } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ sqlite3_free(a); *pRC = rc; return; } if( nChng<0 && a[0]<(u32)(-nChng) ){ a[0] = 0; }else{ a[0] += nChng; } for(i=0; inColumn+1; i++){ u32 x = a[i+1]; if( x+aSzIns[i] < aSzDel[i] ){ x = 0; }else{ x = x + aSzIns[i] - aSzDel[i]; } a[i+1] = x; } fts3EncodeIntArray(nStat, a, pBlob, &nBlob); rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); if( rc ){ sqlite3_free(a); *pRC = rc; return; } sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); sqlite3_step(pStmt); *pRC = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 2); sqlite3_free(a); } /* ** Merge the entire database so that there is one segment for each ** iIndex/iLangid combination. */ static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ int bSeenDone = 0; int rc; sqlite3_stmt *pAllLangid = 0; rc = sqlite3Fts3PendingTermsFlush(p); if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); } if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); sqlite3_bind_int(pAllLangid, 2, p->nIndex); while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ int i; int iLangid = sqlite3_column_int(pAllLangid, 0); for(i=0; rc==SQLITE_OK && inIndex; i++){ rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); if( rc==SQLITE_DONE ){ bSeenDone = 1; rc = SQLITE_OK; } } } rc2 = sqlite3_reset(pAllLangid); if( rc==SQLITE_OK ) rc = rc2; } sqlite3Fts3SegmentsClose(p); return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; } /* ** This function is called when the user executes the following statement: ** ** INSERT INTO () VALUES('rebuild'); ** ** The entire FTS index is discarded and rebuilt. If the table is one ** created using the content=xxx option, then the new index is based on ** the current contents of the xxx table. Otherwise, it is rebuilt based ** on the contents of the %_content table. */ static int fts3DoRebuild(Fts3Table *p){ int rc; /* Return Code */ rc = fts3DeleteAll(p, 0); if( rc==SQLITE_OK ){ u32 *aSz = 0; u32 *aSzIns = 0; u32 *aSzDel = 0; sqlite3_stmt *pStmt = 0; int nEntry = 0; /* Compose and prepare an SQL statement to loop through the content table */ char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } if( rc==SQLITE_OK ){ sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3; aSz = (u32 *)sqlite3_malloc64(nByte); if( aSz==0 ){ rc = SQLITE_NOMEM; }else{ memset(aSz, 0, nByte); aSzIns = &aSz[p->nColumn+1]; aSzDel = &aSzIns[p->nColumn+1]; } } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ int iCol; int iLangid = langidFromSelect(p, pStmt); rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0)); memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); for(iCol=0; rc==SQLITE_OK && iColnColumn; iCol++){ if( p->abNotindexed[iCol]==0 ){ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); } } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSz); } if( rc!=SQLITE_OK ){ sqlite3_finalize(pStmt); pStmt = 0; }else{ nEntry++; for(iCol=0; iCol<=p->nColumn; iCol++){ aSzIns[iCol] += aSz[iCol]; } } } if( p->bFts4 ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); } sqlite3_free(aSz); if( pStmt ){ int rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** This function opens a cursor used to read the input data for an ** incremental merge operation. Specifically, it opens a cursor to scan ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute ** level iAbsLevel. */ static int fts3IncrmergeCsr( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level to open */ int nSeg, /* Number of segments to merge */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ int rc; /* Return Code */ sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */ /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ memset(pCsr, 0, sizeof(*pCsr)); nByte = sizeof(Fts3SegReader *) * nSeg; pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte); if( pCsr->apSegment==0 ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->apSegment, 0, nByte); rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); } if( rc==SQLITE_OK ){ int i; int rc2; sqlite3_bind_int64(pStmt, 1, iAbsLevel); assert( pCsr->nSegment==0 ); for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && iapSegment[i] ); pCsr->nSegment++; } rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_OK ) rc = rc2; } return rc; } typedef struct IncrmergeWriter IncrmergeWriter; typedef struct NodeWriter NodeWriter; typedef struct Blob Blob; typedef struct NodeReader NodeReader; /* ** An instance of the following structure is used as a dynamic buffer ** to build up nodes or other blobs of data in. ** ** The function blobGrowBuffer() is used to extend the allocation. */ struct Blob { char *a; /* Pointer to allocation */ int n; /* Number of valid bytes of data in a[] */ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ }; /* ** This structure is used to build up buffers containing segment b-tree ** nodes (blocks). */ struct NodeWriter { sqlite3_int64 iBlock; /* Current block id */ Blob key; /* Last key written to the current block */ Blob block; /* Current block image */ }; /* ** An object of this type contains the state required to create or append ** to an appendable b-tree segment. */ struct IncrmergeWriter { int nLeafEst; /* Space allocated for leaf blocks */ int nWork; /* Number of leaf pages flushed */ sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ int iIdx; /* Index of *output* segment in iAbsLevel+1 */ sqlite3_int64 iStart; /* Block number of first allocated block */ sqlite3_int64 iEnd; /* Block number of last allocated block */ sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ u8 bNoLeafData; /* If true, store 0 for segment size */ NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; }; /* ** An object of the following type is used to read data from a single ** FTS segment node. See the following functions: ** ** nodeReaderInit() ** nodeReaderNext() ** nodeReaderRelease() */ struct NodeReader { const char *aNode; int nNode; int iOff; /* Current offset within aNode[] */ /* Output variables. Containing the current node entry. */ sqlite3_int64 iChild; /* Pointer to child node */ Blob term; /* Current term */ const char *aDoclist; /* Pointer to doclist */ int nDoclist; /* Size of doclist in bytes */ }; /* ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, if the allocation at pBlob->a is not already at least nMin ** bytes in size, extend (realloc) it to be so. ** ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc ** to reflect the new size of the pBlob->a[] buffer. */ static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ int nAlloc = nMin; char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc); if( a ){ pBlob->nAlloc = nAlloc; pBlob->a = a; }else{ *pRc = SQLITE_NOMEM; } } } /* ** Attempt to advance the node-reader object passed as the first argument to ** the next entry on the node. ** ** Return an error code if an error occurs (SQLITE_NOMEM is possible). ** Otherwise return SQLITE_OK. If there is no next entry on the node ** (e.g. because the current entry is the last) set NodeReader->aNode to ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output ** variables for the new entry. */ static int nodeReaderNext(NodeReader *p){ int bFirst = (p->term.n==0); /* True for first term on the node */ int nPrefix = 0; /* Bytes to copy from previous term */ int nSuffix = 0; /* Bytes to append to the prefix */ int rc = SQLITE_OK; /* Return code */ assert( p->aNode ); if( p->iChild && bFirst==0 ) p->iChild++; if( p->iOff>=p->nNode ){ /* EOF */ p->aNode = 0; }else{ if( bFirst==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); } p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){ return FTS_CORRUPT_VTAB; } blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); if( rc==SQLITE_OK && ALWAYS(p->term.a!=0) ){ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); p->term.n = nPrefix+nSuffix; p->iOff += nSuffix; if( p->iChild==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); if( (p->nNode-p->iOff)nDoclist ){ return FTS_CORRUPT_VTAB; } p->aDoclist = &p->aNode[p->iOff]; p->iOff += p->nDoclist; } } } assert_fts3_nc( p->iOff<=p->nNode ); return rc; } /* ** Release all dynamic resources held by node-reader object *p. */ static void nodeReaderRelease(NodeReader *p){ sqlite3_free(p->term.a); } /* ** Initialize a node-reader object to read the node in buffer aNode/nNode. ** ** If successful, SQLITE_OK is returned and the NodeReader object set to ** point to the first entry on the node (if any). Otherwise, an SQLite ** error code is returned. */ static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ memset(p, 0, sizeof(NodeReader)); p->aNode = aNode; p->nNode = nNode; /* Figure out if this is a leaf or an internal node. */ if( aNode && aNode[0] ){ /* An internal node. */ p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); }else{ p->iOff = 1; } return aNode ? nodeReaderNext(p) : SQLITE_OK; } /* ** This function is called while writing an FTS segment each time a leaf o ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed ** to be greater than the largest key on the node just written, but smaller ** than or equal to the first key that will be written to the next leaf ** node. ** ** The block id of the leaf node just written to disk may be found in ** (pWriter->aNodeWriter[0].iBlock) when this function is called. */ static int fts3IncrmergePush( Fts3Table *p, /* Fts3 table handle */ IncrmergeWriter *pWriter, /* Writer object */ const char *zTerm, /* Term to write to internal node */ int nTerm /* Bytes at zTerm */ ){ sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; int iLayer; assert( nTerm>0 ); for(iLayer=1; ALWAYS(iLayeraNodeWriter[iLayer]; int rc = SQLITE_OK; int nPrefix; int nSuffix; int nSpace; /* Figure out how much space the key will consume if it is written to ** the current node of layer iLayer. Due to the prefix compression, ** the space required changes depending on which node the key is to ** be added to. */ nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); nSuffix = nTerm - nPrefix; if(nSuffix<=0 ) return FTS_CORRUPT_VTAB; nSpace = sqlite3Fts3VarintLen(nPrefix); nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ /* If the current node of layer iLayer contains zero keys, or if adding ** the key to it will not cause it to grow to larger than nNodeSize ** bytes in size, write the key here. */ Blob *pBlk = &pNode->block; if( pBlk->n==0 ){ blobGrowBuffer(pBlk, p->nNodeSize, &rc); if( rc==SQLITE_OK ){ pBlk->a[0] = (char)iLayer; pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); } } blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); blobGrowBuffer(&pNode->key, nTerm, &rc); if( rc==SQLITE_OK ){ if( pNode->key.n ){ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); } pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); assert( nPrefix+nSuffix<=nTerm ); assert( nPrefix>=0 ); memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); pBlk->n += nSuffix; memcpy(pNode->key.a, zTerm, nTerm); pNode->key.n = nTerm; } }else{ /* Otherwise, flush the current node of layer iLayer to disk. ** Then allocate a new, empty sibling node. The key will be written ** into the parent of this node. */ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); assert( pNode->block.nAlloc>=p->nNodeSize ); pNode->block.a[0] = (char)iLayer; pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); iNextPtr = pNode->iBlock; pNode->iBlock++; pNode->key.n = 0; } if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; iPtr = iNextPtr; } assert( 0 ); return 0; } /* ** Append a term and (optionally) doclist to the FTS segment node currently ** stored in blob *pNode. The node need not contain any terms, but the ** header must be written before this function is called. ** ** A node header is a single 0x00 byte for a leaf node, or a height varint ** followed by the left-hand-child varint for an internal node. ** ** The term to be appended is passed via arguments zTerm/nTerm. For a ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal ** node, both aDoclist and nDoclist must be passed 0. ** ** If the size of the value in blob pPrev is zero, then this is the first ** term written to the node. Otherwise, pPrev contains a copy of the ** previous term. Before this function returns, it is updated to contain a ** copy of zTerm/nTerm. ** ** It is assumed that the buffer associated with pNode is already large ** enough to accommodate the new entry. The buffer associated with pPrev ** is extended by this function if requrired. ** ** If an error (i.e. OOM condition) occurs, an SQLite error code is ** returned. Otherwise, SQLITE_OK. */ static int fts3AppendToNode( Blob *pNode, /* Current node image to append to */ Blob *pPrev, /* Buffer containing previous term written */ const char *zTerm, /* New term to write */ int nTerm, /* Size of zTerm in bytes */ const char *aDoclist, /* Doclist (or NULL) to write */ int nDoclist /* Size of aDoclist in bytes */ ){ int rc = SQLITE_OK; /* Return code */ int bFirst = (pPrev->n==0); /* True if this is the first term written */ int nPrefix; /* Size of term prefix in bytes */ int nSuffix; /* Size of term suffix in bytes */ /* Node must have already been started. There must be a doclist for a ** leaf node, and there must not be a doclist for an internal node. */ assert( pNode->n>0 ); assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) ); blobGrowBuffer(pPrev, nTerm, &rc); if( rc!=SQLITE_OK ) return rc; assert( pPrev!=0 ); assert( pPrev->a!=0 ); nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); nSuffix = nTerm - nPrefix; if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; memcpy(pPrev->a, zTerm, nTerm); pPrev->n = nTerm; if( bFirst==0 ){ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); } pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); pNode->n += nSuffix; if( aDoclist ){ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); pNode->n += nDoclist; } assert( pNode->n<=pNode->nAlloc ); return SQLITE_OK; } /* ** Append the current term and doclist pointed to by cursor pCsr to the ** appendable b-tree segment opened for writing by pWriter. ** ** Return SQLITE_OK if successful, or an SQLite error code otherwise. */ static int fts3IncrmergeAppend( Fts3Table *p, /* Fts3 table handle */ IncrmergeWriter *pWriter, /* Writer object */ Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ ){ const char *zTerm = pCsr->zTerm; int nTerm = pCsr->nTerm; const char *aDoclist = pCsr->aDoclist; int nDoclist = pCsr->nDoclist; int rc = SQLITE_OK; /* Return code */ int nSpace; /* Total space in bytes required on leaf */ int nPrefix; /* Size of prefix shared with previous term */ int nSuffix; /* Size of suffix (nTerm - nPrefix) */ NodeWriter *pLeaf; /* Object used to write leaf nodes */ pLeaf = &pWriter->aNodeWriter[0]; nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); nSuffix = nTerm - nPrefix; if(nSuffix<=0 ) return FTS_CORRUPT_VTAB; nSpace = sqlite3Fts3VarintLen(nPrefix); nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; /* If the current block is not empty, and if adding this term/doclist ** to the current block would make it larger than Fts3Table.nNodeSize bytes, ** and if there is still room for another leaf page, write this block out to ** the database. */ if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize && pLeaf->iBlock < (pWriter->iStart + pWriter->nLeafEst) ){ rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); pWriter->nWork++; /* Add the current term to the parent node. The term added to the ** parent must: ** ** a) be greater than the largest term on the leaf node just written ** to the database (still available in pLeaf->key), and ** ** b) be less than or equal to the term about to be added to the new ** leaf node (zTerm/nTerm). ** ** In other words, it must be the prefix of zTerm 1 byte longer than ** the common prefix (if any) of zTerm and pWriter->zTerm. */ if( rc==SQLITE_OK ){ rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); } /* Advance to the next output block */ pLeaf->iBlock++; pLeaf->key.n = 0; pLeaf->block.n = 0; nSuffix = nTerm; nSpace = 1; nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; } pWriter->nLeafData += nSpace; blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); if( rc==SQLITE_OK ){ if( pLeaf->block.n==0 ){ pLeaf->block.n = 1; pLeaf->block.a[0] = '\0'; } rc = fts3AppendToNode( &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist ); } return rc; } /* ** This function is called to release all dynamic resources held by the ** merge-writer object pWriter, and if no error has occurred, to flush ** all outstanding node buffers held by pWriter to disk. ** ** If *pRc is not SQLITE_OK when this function is called, then no attempt ** is made to write any data to disk. Instead, this function serves only ** to release outstanding resources. ** ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while ** flushing buffers to disk, *pRc is set to an SQLite error code before ** returning. */ static void fts3IncrmergeRelease( Fts3Table *p, /* FTS3 table handle */ IncrmergeWriter *pWriter, /* Merge-writer object */ int *pRc /* IN/OUT: Error code */ ){ int i; /* Used to iterate through non-root layers */ int iRoot; /* Index of root in pWriter->aNodeWriter */ NodeWriter *pRoot; /* NodeWriter for root node */ int rc = *pRc; /* Error code */ /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment ** root node. If the segment fits entirely on a single leaf node, iRoot ** will be set to 0. If the root node is the parent of the leaves, iRoot ** will be 1. And so on. */ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; if( pNode->block.n>0 ) break; assert( *pRc || pNode->block.nAlloc==0 ); assert( *pRc || pNode->key.nAlloc==0 ); sqlite3_free(pNode->block.a); sqlite3_free(pNode->key.a); } /* Empty output segment. This is a no-op. */ if( iRoot<0 ) return; /* The entire output segment fits on a single node. Normally, this means ** the node would be stored as a blob in the "root" column of the %_segdir ** table. However, this is not permitted in this case. The problem is that ** space has already been reserved in the %_segments table, and so the ** start_block and end_block fields of the %_segdir table must be populated. ** And, by design or by accident, released versions of FTS cannot handle ** segments that fit entirely on the root node with start_block!=0. ** ** Instead, create a synthetic root node that contains nothing but a ** pointer to the single content node. So that the segment consists of a ** single leaf and a single interior (root) node. ** ** Todo: Better might be to defer allocating space in the %_segments ** table until we are sure it is needed. */ if( iRoot==0 ){ Blob *pBlock = &pWriter->aNodeWriter[1].block; blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); if( rc==SQLITE_OK ){ pBlock->a[0] = 0x01; pBlock->n = 1 + sqlite3Fts3PutVarint( &pBlock->a[1], pWriter->aNodeWriter[0].iBlock ); } iRoot = 1; } pRoot = &pWriter->aNodeWriter[iRoot]; /* Flush all currently outstanding nodes to disk. */ for(i=0; iaNodeWriter[i]; if( pNode->block.n>0 && rc==SQLITE_OK ){ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); } sqlite3_free(pNode->block.a); sqlite3_free(pNode->key.a); } /* Write the %_segdir record. */ if( rc==SQLITE_OK ){ rc = fts3WriteSegdir(p, pWriter->iAbsLevel+1, /* level */ pWriter->iIdx, /* idx */ pWriter->iStart, /* start_block */ pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ pWriter->iEnd, /* end_block */ (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ pRoot->block.a, pRoot->block.n /* root */ ); } sqlite3_free(pRoot->block.a); sqlite3_free(pRoot->key.a); *pRc = rc; } /* ** Compare the term in buffer zLhs (size in bytes nLhs) with that in ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of ** the other, it is considered to be smaller than the other. ** ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve ** if it is greater. */ static int fts3TermCmp( const char *zLhs, int nLhs, /* LHS of comparison */ const char *zRhs, int nRhs /* RHS of comparison */ ){ int nCmp = MIN(nLhs, nRhs); int res; if( nCmp && ALWAYS(zLhs) && ALWAYS(zRhs) ){ res = memcmp(zLhs, zRhs, nCmp); }else{ res = 0; } if( res==0 ) res = nLhs - nRhs; return res; } /* ** Query to see if the entry in the %_segments table with blockid iEnd is ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before ** returning. Otherwise, set *pbRes to 0. ** ** Or, if an error occurs while querying the database, return an SQLite ** error code. The final value of *pbRes is undefined in this case. ** ** This is used to test if a segment is an "appendable" segment. If it ** is, then a NULL entry has been inserted into the %_segments table ** with blockid %_segdir.end_block. */ static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ int bRes = 0; /* Result to set *pbRes to */ sqlite3_stmt *pCheck = 0; /* Statement to query database with */ int rc; /* Return code */ rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pCheck, 1, iEnd); if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; rc = sqlite3_reset(pCheck); } *pbRes = bRes; return rc; } /* ** This function is called when initializing an incremental-merge operation. ** It checks if the existing segment with index value iIdx at absolute level ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the ** merge-writer object *pWriter is initialized to write to it. ** ** An existing segment can be appended to by an incremental merge if: ** ** * It was initially created as an appendable segment (with all required ** space pre-allocated), and ** ** * The first key read from the input (arguments zKey and nKey) is ** greater than the largest key currently stored in the potential ** output segment. */ static int fts3IncrmergeLoad( Fts3Table *p, /* Fts3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ int iIdx, /* Index of candidate output segment */ const char *zKey, /* First key to write */ int nKey, /* Number of bytes in nKey */ IncrmergeWriter *pWriter /* Populate this object */ ){ int rc; /* Return code */ sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); if( rc==SQLITE_OK ){ sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ int nRoot = 0; /* Size of aRoot[] in bytes */ int rc2; /* Return code from sqlite3_reset() */ int bAppendable = 0; /* Set to true if segment is appendable */ /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); sqlite3_bind_int(pSelect, 2, iIdx); if( sqlite3_step(pSelect)==SQLITE_ROW ){ iStart = sqlite3_column_int64(pSelect, 1); iLeafEnd = sqlite3_column_int64(pSelect, 2); fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); if( pWriter->nLeafData<0 ){ pWriter->nLeafData = pWriter->nLeafData * -1; } pWriter->bNoLeafData = (pWriter->nLeafData==0); nRoot = sqlite3_column_bytes(pSelect, 4); aRoot = sqlite3_column_blob(pSelect, 4); if( aRoot==0 ){ sqlite3_reset(pSelect); return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB; } }else{ return sqlite3_reset(pSelect); } /* Check for the zero-length marker in the %_segments table */ rc = fts3IsAppendable(p, iEnd, &bAppendable); /* Check that zKey/nKey is larger than the largest key the candidate */ if( rc==SQLITE_OK && bAppendable ){ char *aLeaf = 0; int nLeaf = 0; rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); if( rc==SQLITE_OK ){ NodeReader reader; for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); rc==SQLITE_OK && reader.aNode; rc = nodeReaderNext(&reader) ){ assert( reader.aNode ); } if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ bAppendable = 0; } nodeReaderRelease(&reader); } sqlite3_free(aLeaf); } if( rc==SQLITE_OK && bAppendable ){ /* It is possible to append to this segment. Set up the IncrmergeWriter ** object to do so. */ int i; int nHeight = (int)aRoot[0]; NodeWriter *pNode; if( nHeight<1 || nHeight>=FTS_MAX_APPENDABLE_HEIGHT ){ sqlite3_reset(pSelect); return FTS_CORRUPT_VTAB; } pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; pWriter->iStart = iStart; pWriter->iEnd = iEnd; pWriter->iAbsLevel = iAbsLevel; pWriter->iIdx = iIdx; for(i=nHeight+1; iaNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; } pNode = &pWriter->aNodeWriter[nHeight]; pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc ); if( rc==SQLITE_OK ){ memcpy(pNode->block.a, aRoot, nRoot); pNode->block.n = nRoot; memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING); } for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ NodeReader reader; memset(&reader, 0, sizeof(reader)); pNode = &pWriter->aNodeWriter[i]; if( pNode->block.a){ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); blobGrowBuffer(&pNode->key, reader.term.n, &rc); if( rc==SQLITE_OK ){ assert_fts3_nc( reader.term.n>0 || reader.aNode==0 ); if( reader.term.n>0 ){ memcpy(pNode->key.a, reader.term.a, reader.term.n); } pNode->key.n = reader.term.n; if( i>0 ){ char *aBlock = 0; int nBlock = 0; pNode = &pWriter->aNodeWriter[i-1]; pNode->iBlock = reader.iChild; rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock,0); blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc ); if( rc==SQLITE_OK ){ memcpy(pNode->block.a, aBlock, nBlock); pNode->block.n = nBlock; memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING); } sqlite3_free(aBlock); } } } nodeReaderRelease(&reader); } } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } return rc; } /* ** Determine the largest segment index value that exists within absolute ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus ** one before returning SQLITE_OK. Or, if there are no segments at all ** within level iAbsLevel, set *piIdx to zero. ** ** If an error occurs, return an SQLite error code. The final value of ** *piIdx is undefined in this case. */ static int fts3IncrmergeOutputIdx( Fts3Table *p, /* FTS Table handle */ sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ int *piIdx /* OUT: Next free index at iAbsLevel+1 */ ){ int rc; sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); sqlite3_step(pOutputIdx); *piIdx = sqlite3_column_int(pOutputIdx, 0); rc = sqlite3_reset(pOutputIdx); } return rc; } /* ** Allocate an appendable output segment on absolute level iAbsLevel+1 ** with idx value iIdx. ** ** In the %_segdir table, a segment is defined by the values in three ** columns: ** ** start_block ** leaves_end_block ** end_block ** ** When an appendable segment is allocated, it is estimated that the ** maximum number of leaf blocks that may be required is the sum of the ** number of leaf blocks consumed by the input segments, plus the number ** of input segments, multiplied by two. This value is stored in stack ** variable nLeafEst. ** ** A total of 16*nLeafEst blocks are allocated when an appendable segment ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous ** array of leaf nodes starts at the first block allocated. The array ** of interior nodes that are parents of the leaf nodes start at block ** (start_block + (1 + end_block - start_block) / 16). And so on. ** ** In the actual code below, the value "16" is replaced with the ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. */ static int fts3IncrmergeWriter( Fts3Table *p, /* Fts3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ int iIdx, /* Index of new output segment */ Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ IncrmergeWriter *pWriter /* Populate this object */ ){ int rc; /* Return Code */ int i; /* Iterator variable */ int nLeafEst = 0; /* Blocks allocated for leaf nodes */ sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ /* Calculate nLeafEst. */ rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ nLeafEst = sqlite3_column_int(pLeafEst, 0); } rc = sqlite3_reset(pLeafEst); } if( rc!=SQLITE_OK ) return rc; /* Calculate the first block to use in the output segment */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); pWriter->iEnd = pWriter->iStart - 1; pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; } rc = sqlite3_reset(pFirstBlock); } if( rc!=SQLITE_OK ) return rc; /* Insert the marker in the %_segments table to make sure nobody tries ** to steal the space just allocated. This is also used to identify ** appendable segments. */ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); if( rc!=SQLITE_OK ) return rc; pWriter->iAbsLevel = iAbsLevel; pWriter->nLeafEst = nLeafEst; pWriter->iIdx = iIdx; /* Set up the array of NodeWriter objects */ for(i=0; iaNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; } return SQLITE_OK; } /* ** Remove an entry from the %_segdir table. This involves running the ** following two statements: ** ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx ** ** The DELETE statement removes the specific %_segdir level. The UPDATE ** statement ensures that the remaining segments have contiguously allocated ** idx values. */ static int fts3RemoveSegdirEntry( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ int iIdx /* Index of %_segdir entry to delete */ ){ int rc; /* Return code */ sqlite3_stmt *pDelete = 0; /* DELETE statement */ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, iAbsLevel); sqlite3_bind_int(pDelete, 2, iIdx); sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } return rc; } /* ** One or more segments have just been removed from absolute level iAbsLevel. ** Update the 'idx' values of the remaining segments in the level so that ** the idx values are a contiguous sequence starting from 0. */ static int fts3RepackSegdirLevel( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel /* Absolute level to repack */ ){ int rc; /* Return code */ int *aIdx = 0; /* Array of remaining idx values */ int nIdx = 0; /* Valid entries in aIdx[] */ int nAlloc = 0; /* Allocated size of aIdx[] */ int i; /* Iterator variable */ sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int64(pSelect, 1, iAbsLevel); while( SQLITE_ROW==sqlite3_step(pSelect) ){ if( nIdx>=nAlloc ){ int *aNew; nAlloc += 16; aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int)); if( !aNew ){ rc = SQLITE_NOMEM; break; } aIdx = aNew; } aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); } if( rc==SQLITE_OK ){ sqlite3_bind_int64(pUpdate, 2, iAbsLevel); } assert( p->bIgnoreSavepoint==0 ); p->bIgnoreSavepoint = 1; for(i=0; rc==SQLITE_OK && ibIgnoreSavepoint = 0; sqlite3_free(aIdx); return rc; } static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ pNode->a[0] = (char)iHeight; if( iChild ){ assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); }else{ assert( pNode->nAlloc>=1 ); pNode->n = 1; } } /* ** The first two arguments are a pointer to and the size of a segment b-tree ** node. The node may be a leaf or an internal node. ** ** This function creates a new node image in blob object *pNew by copying ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. */ static int fts3TruncateNode( const char *aNode, /* Current node image */ int nNode, /* Size of aNode in bytes */ Blob *pNew, /* OUT: Write new node image here */ const char *zTerm, /* Omit all terms smaller than this */ int nTerm, /* Size of zTerm in bytes */ sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ ){ NodeReader reader; /* Reader object */ Blob prev = {0, 0, 0}; /* Previous term written to new node */ int rc = SQLITE_OK; /* Return code */ int bLeaf; /* True for a leaf node */ if( nNode<1 ) return FTS_CORRUPT_VTAB; bLeaf = aNode[0]=='\0'; /* Allocate required output space */ blobGrowBuffer(pNew, nNode, &rc); if( rc!=SQLITE_OK ) return rc; pNew->n = 0; /* Populate new node buffer */ for(rc = nodeReaderInit(&reader, aNode, nNode); rc==SQLITE_OK && reader.aNode; rc = nodeReaderNext(&reader) ){ if( pNew->n==0 ){ int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); if( res<0 || (bLeaf==0 && res==0) ) continue; fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } rc = fts3AppendToNode( pNew, &prev, reader.term.a, reader.term.n, reader.aDoclist, reader.nDoclist ); if( rc!=SQLITE_OK ) break; } if( pNew->n==0 ){ fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } assert( pNew->n<=pNew->nAlloc ); nodeReaderRelease(&reader); sqlite3_free(prev.a); return rc; } /* ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute ** level iAbsLevel. This may involve deleting entries from the %_segments ** table, and modifying existing entries in both the %_segments and %_segdir ** tables. ** ** SQLITE_OK is returned if the segment is updated successfully. Or an ** SQLite error code otherwise. */ static int fts3TruncateSegment( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ int iIdx, /* Index within level of segment to modify */ const char *zTerm, /* Remove terms smaller than this */ int nTerm /* Number of bytes in buffer zTerm */ ){ int rc = SQLITE_OK; /* Return code */ Blob root = {0,0,0}; /* New root page image */ Blob block = {0,0,0}; /* Buffer used for any other block */ sqlite3_int64 iBlock = 0; /* Block id */ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); if( rc==SQLITE_OK ){ int rc2; /* sqlite3_reset() return code */ sqlite3_bind_int64(pFetch, 1, iAbsLevel); sqlite3_bind_int(pFetch, 2, iIdx); if( SQLITE_ROW==sqlite3_step(pFetch) ){ const char *aRoot = sqlite3_column_blob(pFetch, 4); int nRoot = sqlite3_column_bytes(pFetch, 4); iOldStart = sqlite3_column_int64(pFetch, 1); rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); } rc2 = sqlite3_reset(pFetch); if( rc==SQLITE_OK ) rc = rc2; } while( rc==SQLITE_OK && iBlock ){ char *aBlock = 0; int nBlock = 0; iNewStart = iBlock; rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); if( rc==SQLITE_OK ){ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); } if( rc==SQLITE_OK ){ rc = fts3WriteSegment(p, iNewStart, block.a, block.n); } sqlite3_free(aBlock); } /* Variable iNewStart now contains the first valid leaf node. */ if( rc==SQLITE_OK && iNewStart ){ sqlite3_stmt *pDel = 0; rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDel, 1, iOldStart); sqlite3_bind_int64(pDel, 2, iNewStart-1); sqlite3_step(pDel); rc = sqlite3_reset(pDel); } } if( rc==SQLITE_OK ){ sqlite3_stmt *pChomp = 0; rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pChomp, 1, iNewStart); sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); sqlite3_bind_int64(pChomp, 3, iAbsLevel); sqlite3_bind_int(pChomp, 4, iIdx); sqlite3_step(pChomp); rc = sqlite3_reset(pChomp); sqlite3_bind_null(pChomp, 2); } } sqlite3_free(root.a); sqlite3_free(block.a); return rc; } /* ** This function is called after an incrmental-merge operation has run to ** merge (or partially merge) two or more segments from absolute level ** iAbsLevel. ** ** Each input segment is either removed from the db completely (if all of ** its data was copied to the output segment by the incrmerge operation) ** or modified in place so that it no longer contains those entries that ** have been duplicated in the output segment. */ static int fts3IncrmergeChomp( Fts3Table *p, /* FTS table handle */ sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ int *pnRem /* Number of segments not deleted */ ){ int i; int nRem = 0; int rc = SQLITE_OK; for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ Fts3SegReader *pSeg = 0; int j; /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding ** somewhere in the pCsr->apSegment[] array. */ for(j=0; ALWAYS(jnSegment); j++){ pSeg = pCsr->apSegment[j]; if( pSeg->iIdx==i ) break; } assert( jnSegment && pSeg->iIdx==i ); if( pSeg->aNode==0 ){ /* Seg-reader is at EOF. Remove the entire input segment. */ rc = fts3DeleteSegment(p, pSeg); if( rc==SQLITE_OK ){ rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); } *pnRem = 0; }else{ /* The incremental merge did not copy all the data from this ** segment to the upper level. The segment is modified in place ** so that it contains no keys smaller than zTerm/nTerm. */ const char *zTerm = pSeg->zTerm; int nTerm = pSeg->nTerm; rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); nRem++; } } if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ rc = fts3RepackSegdirLevel(p, iAbsLevel); } *pnRem = nRem; return rc; } /* ** Store an incr-merge hint in the database. */ static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ sqlite3_stmt *pReplace = 0; int rc; /* Return code */ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); sqlite3_step(pReplace); rc = sqlite3_reset(pReplace); sqlite3_bind_null(pReplace, 2); } return rc; } /* ** Load an incr-merge hint from the database. The incr-merge hint, if one ** exists, is stored in the rowid==1 row of the %_stat table. ** ** If successful, populate blob *pHint with the value read from the %_stat ** table and return SQLITE_OK. Otherwise, if an error occurs, return an ** SQLite error code. */ static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ sqlite3_stmt *pSelect = 0; int rc; pHint->n = 0; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); if( SQLITE_ROW==sqlite3_step(pSelect) ){ const char *aHint = sqlite3_column_blob(pSelect, 0); int nHint = sqlite3_column_bytes(pSelect, 0); if( aHint ){ blobGrowBuffer(pHint, nHint, &rc); if( rc==SQLITE_OK ){ if( ALWAYS(pHint->a!=0) ) memcpy(pHint->a, aHint, nHint); pHint->n = nHint; } } } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } return rc; } /* ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry ** consists of two varints, the absolute level number of the input segments ** and the number of input segments. ** ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, ** set *pRc to an SQLite error code before returning. */ static void fts3IncrmergeHintPush( Blob *pHint, /* Hint blob to append to */ i64 iAbsLevel, /* First varint to store in hint */ int nInput, /* Second varint to store in hint */ int *pRc /* IN/OUT: Error code */ ){ blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); if( *pRc==SQLITE_OK ){ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); } } /* ** Read the last entry (most recently pushed) from the hint blob *pHint ** and then remove the entry. Write the two values read to *piAbsLevel and ** *pnInput before returning. ** ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. */ static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ const int nHint = pHint->n; int i; i = pHint->n-1; if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB; while( i>0 && (pHint->a[i-1] & 0x80) ) i--; if( i==0 ) return FTS_CORRUPT_VTAB; i--; while( i>0 && (pHint->a[i-1] & 0x80) ) i--; pHint->n = i; i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); i += fts3GetVarint32(&pHint->a[i], pnInput); assert( i<=nHint ); if( i!=nHint ) return FTS_CORRUPT_VTAB; return SQLITE_OK; } /* ** Attempt an incremental merge that writes nMerge leaf blocks. ** ** Incremental merges happen nMin segments at a time. The segments ** to be merged are the nMin oldest segments (the ones with the smallest ** values for the _segdir.idx field) in the highest level that contains ** at least nMin segments. Multiple merges might occur in an attempt to ** write the quota of nMerge leaf blocks. */ SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ int rc; /* Return code */ int nRem = nMerge; /* Number of leaf pages yet to be written */ Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ IncrmergeWriter *pWriter; /* Writer object */ int nSeg = 0; /* Number of input segments */ sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ int bDirtyHint = 0; /* True if blob 'hint' has been modified */ /* Allocate space for the cursor, filter and writer objects */ const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc); if( !pWriter ) return SQLITE_NOMEM; pFilter = (Fts3SegFilter *)&pWriter[1]; pCsr = (Fts3MultiSegReader *)&pFilter[1]; rc = fts3IncrmergeHintLoad(p, &hint); while( rc==SQLITE_OK && nRem>0 ){ const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ int bUseHint = 0; /* True if attempting to append */ int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ /* Search the %_segdir table for the absolute level with the smallest ** relative level number that contains at least nMin segments, if any. ** If one is found, set iAbsLevel to the absolute level number and ** nSeg to nMin. If no level with at least nMin segments can be found, ** set nSeg to -1. */ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin)); if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ iAbsLevel = sqlite3_column_int64(pFindLevel, 0); nSeg = sqlite3_column_int(pFindLevel, 1); assert( nSeg>=2 ); }else{ nSeg = -1; } rc = sqlite3_reset(pFindLevel); /* If the hint read from the %_stat table is not empty, check if the ** last entry in it specifies a relative level smaller than or equal ** to the level identified by the block above (if any). If so, this ** iteration of the loop will work on merging at the hinted level. */ if( rc==SQLITE_OK && hint.n ){ int nHint = hint.n; sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ int nHintSeg = 0; /* Hint number of segments */ rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ /* Based on the scan in the block above, it is known that there ** are no levels with a relative level smaller than that of ** iAbsLevel with more than nSeg segments, or if nSeg is -1, ** no levels with more than nMin segments. Use this to limit the ** value of nHintSeg to avoid a large memory allocation in case the ** merge-hint is corrupt*/ iAbsLevel = iHintAbsLevel; nSeg = MIN(MAX(nMin,nSeg), nHintSeg); bUseHint = 1; bDirtyHint = 1; }else{ /* This undoes the effect of the HintPop() above - so that no entry ** is removed from the hint blob. */ hint.n = nHint; } } /* If nSeg is less that zero, then there is no level with at least ** nMin segments and no hint in the %_stat table. No work to do. ** Exit early in this case. */ if( nSeg<=0 ) break; assert( nMod<=0x7FFFFFFF ); if( iAbsLevel<0 || iAbsLevel>(nMod<<32) ){ rc = FTS_CORRUPT_VTAB; break; } /* Open a cursor to iterate through the contents of the oldest nSeg ** indexes of absolute level iAbsLevel. If this cursor is opened using ** the 'hint' parameters, it is possible that there are less than nSeg ** segments available in level iAbsLevel. In this case, no work is ** done on iAbsLevel - fall through to the next iteration of the loop ** to start work on some other level. */ memset(pWriter, 0, nAlloc); pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; if( rc==SQLITE_OK ){ rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); assert( bUseHint==1 || bUseHint==0 ); if( iIdx==0 || (bUseHint && iIdx==1) ){ int bIgnore = 0; rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); if( bIgnore ){ pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; } } } if( rc==SQLITE_OK ){ rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); } if( SQLITE_OK==rc && pCsr->nSegment==nSeg && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) ){ int bEmpty = 0; rc = sqlite3Fts3SegReaderStep(p, pCsr); if( rc==SQLITE_OK ){ bEmpty = 1; }else if( rc!=SQLITE_ROW ){ sqlite3Fts3SegReaderFinish(pCsr); break; } if( bUseHint && iIdx>0 ){ const char *zKey = pCsr->zTerm; int nKey = pCsr->nTerm; rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); }else{ rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); } if( rc==SQLITE_OK && pWriter->nLeafEst ){ fts3LogMerge(nSeg, iAbsLevel); if( bEmpty==0 ){ do { rc = fts3IncrmergeAppend(p, pWriter, pCsr); if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; }while( rc==SQLITE_ROW ); } /* Update or delete the input segments */ if( rc==SQLITE_OK ){ nRem -= (1 + pWriter->nWork); rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); if( nSeg!=0 ){ bDirtyHint = 1; fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); } } } if( nSeg!=0 ){ pWriter->nLeafData = pWriter->nLeafData * -1; } fts3IncrmergeRelease(p, pWriter, &rc); if( nSeg==0 && pWriter->bNoLeafData==0 ){ fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); } } sqlite3Fts3SegReaderFinish(pCsr); } /* Write the hint values into the %_stat table for the next incr-merger */ if( bDirtyHint && rc==SQLITE_OK ){ rc = fts3IncrmergeHintStore(p, &hint); } sqlite3_free(pWriter); sqlite3_free(hint.a); return rc; } /* ** Convert the text beginning at *pz into an integer and return ** its value. Advance *pz to point to the first character past ** the integer. ** ** This function used for parameters to merge= and incrmerge= ** commands. */ static int fts3Getint(const char **pz){ const char *z = *pz; int i = 0; while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0'; *pz = z; return i; } /* ** Process statements of the form: ** ** INSERT INTO table(table) VALUES('merge=A,B'); ** ** A and B are integers that decode to be the number of leaf pages ** written for the merge, and the minimum number of segments on a level ** before it will be selected for a merge, respectively. */ static int fts3DoIncrmerge( Fts3Table *p, /* FTS3 table handle */ const char *zParam /* Nul-terminated string containing "A,B" */ ){ int rc; int nMin = (MergeCount(p) / 2); int nMerge = 0; const char *z = zParam; /* Read the first integer value */ nMerge = fts3Getint(&z); /* If the first integer value is followed by a ',', read the second ** integer value. */ if( z[0]==',' && z[1]!='\0' ){ z++; nMin = fts3Getint(&z); } if( z[0]!='\0' || nMin<2 ){ rc = SQLITE_ERROR; }else{ rc = SQLITE_OK; if( !p->bHasStat ){ assert( p->bFts4==0 ); sqlite3Fts3CreateStatTable(&rc, p); } if( rc==SQLITE_OK ){ rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); } sqlite3Fts3SegmentsClose(p); } return rc; } /* ** Process statements of the form: ** ** INSERT INTO table(table) VALUES('automerge=X'); ** ** where X is an integer. X==0 means to turn automerge off. X!=0 means ** turn it on. The setting is persistent. */ static int fts3DoAutoincrmerge( Fts3Table *p, /* FTS3 table handle */ const char *zParam /* Nul-terminated string containing boolean */ ){ int rc = SQLITE_OK; sqlite3_stmt *pStmt = 0; p->nAutoincrmerge = fts3Getint(&zParam); if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){ p->nAutoincrmerge = 8; } if( !p->bHasStat ){ assert( p->bFts4==0 ); sqlite3Fts3CreateStatTable(&rc, p); if( rc ) return rc; } rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); if( rc ) return rc; sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); return rc; } /* ** Return a 64-bit checksum for the FTS index entry specified by the ** arguments to this function. */ static u64 fts3ChecksumEntry( const char *zTerm, /* Pointer to buffer containing term */ int nTerm, /* Size of zTerm in bytes */ int iLangid, /* Language id for current row */ int iIndex, /* Index (0..Fts3Table.nIndex-1) */ i64 iDocid, /* Docid for current row. */ int iCol, /* Column number */ int iPos /* Position */ ){ int i; u64 ret = (u64)iDocid; ret += (ret<<3) + iLangid; ret += (ret<<3) + iIndex; ret += (ret<<3) + iCol; ret += (ret<<3) + iPos; for(i=0; inIndex-1) */ int *pRc /* OUT: Return code */ ){ Fts3SegFilter filter; Fts3MultiSegReader csr; int rc; u64 cksum = 0; if( *pRc ) return 0; memset(&filter, 0, sizeof(filter)); memset(&csr, 0, sizeof(csr)); filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; filter.flags |= FTS3_SEGMENT_SCAN; rc = sqlite3Fts3SegReaderCursor( p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); } if( rc==SQLITE_OK ){ while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ char *pCsr = csr.aDoclist; char *pEnd = &pCsr[csr.nDoclist]; i64 iDocid = 0; i64 iCol = 0; u64 iPos = 0; pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); while( pCsrbDescIdx ){ iDocid = (i64)((u64)iDocid - iVal); }else{ iDocid = (i64)((u64)iDocid + iVal); } } }else{ iPos += (iVal - 2); cksum = cksum ^ fts3ChecksumEntry( csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, (int)iCol, (int)iPos ); } } } } } sqlite3Fts3SegReaderFinish(&csr); *pRc = rc; return cksum; } /* ** Check if the contents of the FTS index match the current contents of the ** content table. If no error occurs and the contents do match, set *pbOk ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk ** to false before returning. ** ** If an error occurs (e.g. an OOM or IO error), return an SQLite error ** code. The final value of *pbOk is undefined in this case. */ SQLITE_PRIVATE int sqlite3Fts3IntegrityCheck(Fts3Table *p, int *pbOk){ int rc = SQLITE_OK; /* Return code */ u64 cksum1 = 0; /* Checksum based on FTS index contents */ u64 cksum2 = 0; /* Checksum based on %_content contents */ sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ /* This block calculates the checksum according to the FTS index. */ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); sqlite3_bind_int(pAllLangid, 2, p->nIndex); while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ int iLangid = sqlite3_column_int(pAllLangid, 0); int i; for(i=0; inIndex; i++){ cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); } } rc2 = sqlite3_reset(pAllLangid); if( rc==SQLITE_OK ) rc = rc2; } /* This block calculates the checksum according to the %_content table */ if( rc==SQLITE_OK ){ sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; sqlite3_stmt *pStmt = 0; char *zSql; zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ i64 iDocid = sqlite3_column_int64(pStmt, 0); int iLang = langidFromSelect(p, pStmt); int iCol; for(iCol=0; rc==SQLITE_OK && iColnColumn; iCol++){ if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); sqlite3_tokenizer_cursor *pT = 0; rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT); while( rc==SQLITE_OK ){ char const *zToken; /* Buffer containing token */ int nToken = 0; /* Number of bytes in token */ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ int iPos = 0; /* Position of token in zText */ rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); if( rc==SQLITE_OK ){ int i; cksum2 = cksum2 ^ fts3ChecksumEntry( zToken, nToken, iLang, 0, iDocid, iCol, iPos ); for(i=1; inIndex; i++){ if( p->aIndex[i].nPrefix<=nToken ){ cksum2 = cksum2 ^ fts3ChecksumEntry( zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos ); } } } } if( pT ) pModule->xClose(pT); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } } } sqlite3_finalize(pStmt); } *pbOk = (rc==SQLITE_OK && cksum1==cksum2); return rc; } /* ** Run the integrity-check. If no error occurs and the current contents of ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. ** ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite ** error code. ** ** The integrity-check works as follows. For each token and indexed token ** prefix in the document set, a 64-bit checksum is calculated (by code ** in fts3ChecksumEntry()) based on the following: ** ** + The index number (0 for the main index, 1 for the first prefix ** index etc.), ** + The token (or token prefix) text itself, ** + The language-id of the row it appears in, ** + The docid of the row it appears in, ** + The column it appears in, and ** + The tokens position within that column. ** ** The checksums for all entries in the index are XORed together to create ** a single checksum for the entire index. ** ** The integrity-check code calculates the same checksum in two ways: ** ** 1. By scanning the contents of the FTS index, and ** 2. By scanning and tokenizing the content table. ** ** If the two checksums are identical, the integrity-check is deemed to have ** passed. */ static int fts3DoIntegrityCheck( Fts3Table *p /* FTS3 table handle */ ){ int rc; int bOk = 0; rc = sqlite3Fts3IntegrityCheck(p, &bOk); if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB; return rc; } /* ** Handle a 'special' INSERT of the form: ** ** "INSERT INTO tbl(tbl) VALUES()" ** ** Argument pVal contains the result of . Currently the only ** meaningful value to insert is the text 'optimize'. */ static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ int rc = SQLITE_ERROR; /* Return Code */ const char *zVal = (const char *)sqlite3_value_text(pVal); int nVal = sqlite3_value_bytes(pVal); if( !zVal ){ return SQLITE_NOMEM; }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ rc = fts3DoOptimize(p, 0); }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ rc = fts3DoRebuild(p); }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ rc = fts3DoIntegrityCheck(p); }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ rc = fts3DoIncrmerge(p, &zVal[6]); }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ rc = fts3DoAutoincrmerge(p, &zVal[10]); }else if( nVal==5 && 0==sqlite3_strnicmp(zVal, "flush", 5) ){ rc = sqlite3Fts3PendingTermsFlush(p); } #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) else{ int v; if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ v = atoi(&zVal[9]); if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v; rc = SQLITE_OK; }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ v = atoi(&zVal[11]); if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v; rc = SQLITE_OK; }else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){ p->bNoIncrDoclist = atoi(&zVal[21]); rc = SQLITE_OK; }else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){ v = atoi(&zVal[11]); if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v; rc = SQLITE_OK; } } #endif return rc; } #ifndef SQLITE_DISABLE_FTS4_DEFERRED /* ** Delete all cached deferred doclists. Deferred doclists are cached ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. */ SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ Fts3DeferredToken *pDef; for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ fts3PendingListDelete(pDef->pList); pDef->pList = 0; } } /* ** Free all entries in the pCsr->pDeffered list. Entries are added to ** this list using sqlite3Fts3DeferToken(). */ SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ Fts3DeferredToken *pDef; Fts3DeferredToken *pNext; for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ pNext = pDef->pNext; fts3PendingListDelete(pDef->pList); sqlite3_free(pDef); } pCsr->pDeferred = 0; } /* ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list ** based on the row that pCsr currently points to. ** ** A deferred-doclist is like any other doclist with position information ** included, except that it only contains entries for a single row of the ** table, not for all rows. */ SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ int rc = SQLITE_OK; /* Return code */ if( pCsr->pDeferred ){ int i; /* Used to iterate through table columns */ sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; sqlite3_tokenizer *pT = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pT->pModule; assert( pCsr->isRequireSeek==0 ); iDocid = sqlite3_column_int64(pCsr->pStmt, 0); for(i=0; inColumn && rc==SQLITE_OK; i++){ if( p->abNotindexed[i]==0 ){ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); sqlite3_tokenizer_cursor *pTC = 0; rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); while( rc==SQLITE_OK ){ char const *zToken; /* Buffer containing token */ int nToken = 0; /* Number of bytes in token */ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ int iPos = 0; /* Position of token in zText */ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ Fts3PhraseToken *pPT = pDef->pToken; if( (pDef->iCol>=p->nColumn || pDef->iCol==i) && (pPT->bFirst==0 || iPos==0) && (pPT->n==nToken || (pPT->isPrefix && pPT->nz, pPT->n)) ){ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); } } } if( pTC ) pModule->xClose(pTC); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } } for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ if( pDef->pList ){ rc = fts3PendingListAppendVarint(&pDef->pList, 0); } } } return rc; } SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList( Fts3DeferredToken *p, char **ppData, int *pnData ){ char *pRet; int nSkip; sqlite3_int64 dummy; *ppData = 0; *pnData = 0; if( p->pList==0 ){ return SQLITE_OK; } pRet = (char *)sqlite3_malloc64(p->pList->nData); if( !pRet ) return SQLITE_NOMEM; nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); *pnData = p->pList->nData - nSkip; *ppData = pRet; memcpy(pRet, &p->pList->aData[nSkip], *pnData); return SQLITE_OK; } /* ** Add an entry for token pToken to the pCsr->pDeferred list. */ SQLITE_PRIVATE int sqlite3Fts3DeferToken( Fts3Cursor *pCsr, /* Fts3 table cursor */ Fts3PhraseToken *pToken, /* Token to defer */ int iCol /* Column that token must appear in (or -1) */ ){ Fts3DeferredToken *pDeferred; pDeferred = sqlite3_malloc64(sizeof(*pDeferred)); if( !pDeferred ){ return SQLITE_NOMEM; } memset(pDeferred, 0, sizeof(*pDeferred)); pDeferred->pToken = pToken; pDeferred->pNext = pCsr->pDeferred; pDeferred->iCol = iCol; pCsr->pDeferred = pDeferred; assert( pToken->pDeferred==0 ); pToken->pDeferred = pDeferred; return SQLITE_OK; } #endif /* ** SQLite value pRowid contains the rowid of a row that may or may not be ** present in the FTS3 table. If it is, delete it and adjust the contents ** of subsiduary data structures accordingly. */ static int fts3DeleteByRowid( Fts3Table *p, sqlite3_value *pRowid, int *pnChng, /* IN/OUT: Decrement if row is deleted */ u32 *aSzDel ){ int rc = SQLITE_OK; /* Return code */ int bFound = 0; /* True if *pRowid really is in the table */ fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); if( bFound && rc==SQLITE_OK ){ int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ rc = fts3IsEmpty(p, pRowid, &isEmpty); if( rc==SQLITE_OK ){ if( isEmpty ){ /* Deleting this row means the whole table is empty. In this case ** delete the contents of all three tables and throw away any ** data in the pendingTerms hash table. */ rc = fts3DeleteAll(p, 1); *pnChng = 0; memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); }else{ *pnChng = *pnChng - 1; if( p->zContentTbl==0 ){ fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); } if( p->bHasDocsize ){ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); } } } } return rc; } /* ** This function does the work for the xUpdate method of FTS3 virtual ** tables. The schema of the virtual table being: ** ** CREATE TABLE
    ( ** , **
    HIDDEN, ** docid HIDDEN, ** HIDDEN ** ); ** ** */ SQLITE_PRIVATE int sqlite3Fts3UpdateMethod( sqlite3_vtab *pVtab, /* FTS3 vtab object */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return Code */ u32 *aSzIns = 0; /* Sizes of inserted documents */ u32 *aSzDel = 0; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ int bInsertDone = 0; /* At this point it must be known if the %_stat table exists or not. ** So bHasStat may not be 2. */ assert( p->bHasStat==0 || p->bHasStat==1 ); assert( p->pSegments==0 ); assert( nArg==1 /* DELETE operations */ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ ); /* Check for a "special" INSERT operation. One of the form: ** ** INSERT INTO xyz(xyz) VALUES('command'); */ if( nArg>1 && sqlite3_value_type(apVal[0])==SQLITE_NULL && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){ rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); goto update_out; } if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ rc = SQLITE_CONSTRAINT; goto update_out; } /* Allocate space to hold the change in document sizes */ aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2); if( aSzDel==0 ){ rc = SQLITE_NOMEM; goto update_out; } aSzIns = &aSzDel[p->nColumn+1]; memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); rc = fts3Writelock(p); if( rc!=SQLITE_OK ) goto update_out; /* If this is an INSERT operation, or an UPDATE that modifies the rowid ** value, then this operation requires constraint handling. ** ** If the on-conflict mode is REPLACE, this means that the existing row ** should be deleted from the database before inserting the new row. Or, ** if the on-conflict mode is other than REPLACE, then this method must ** detect the conflict and return SQLITE_CONSTRAINT before beginning to ** modify the database file. */ if( nArg>1 && p->zContentTbl==0 ){ /* Find the value object that holds the new rowid value. */ sqlite3_value *pNewRowid = apVal[3+p->nColumn]; if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ pNewRowid = apVal[1]; } if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( sqlite3_value_type(apVal[0])==SQLITE_NULL || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) )){ /* The new rowid is not NULL (in this case the rowid will be ** automatically assigned and there is no chance of a conflict), and ** the statement is either an INSERT or an UPDATE that modifies the ** rowid column. So if the conflict mode is REPLACE, then delete any ** existing row with rowid=pNewRowid. ** ** Or, if the conflict mode is not REPLACE, insert the new record into ** the %_content table. If we hit the duplicate rowid constraint (or any ** other error) while doing so, return immediately. ** ** This branch may also run if pNewRowid contains a value that cannot ** be losslessly converted to an integer. In this case, the eventual ** call to fts3InsertData() (either just below or further on in this ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is ** invoked, it will delete zero rows (since no row will have ** docid=$pNewRowid if $pNewRowid is not an integer value). */ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); }else{ rc = fts3InsertData(p, apVal, pRowid); bInsertDone = 1; } } } if( rc!=SQLITE_OK ){ goto update_out; } /* If this is a DELETE or UPDATE operation, remove the old record. */ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); } /* If this is an INSERT or UPDATE operation, insert the new record. */ if( nArg>1 && rc==SQLITE_OK ){ int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); if( bInsertDone==0 ){ rc = fts3InsertData(p, apVal, pRowid); if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ rc = FTS_CORRUPT_VTAB; } } if( rc==SQLITE_OK ){ rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid); } if( rc==SQLITE_OK ){ assert( p->iPrevDocid==*pRowid ); rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSzIns); } nChng++; } if( p->bFts4 ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); } update_out: sqlite3_free(aSzDel); sqlite3Fts3SegmentsClose(p); return rc; } /* ** Flush any data in the pending-terms hash table to disk. If successful, ** merge all segments in the database (including the new segment, if ** there was any data to flush) into a single segment. */ SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){ int rc; rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); if( rc==SQLITE_OK ){ rc = fts3DoOptimize(p, 1); if( rc==SQLITE_OK || rc==SQLITE_DONE ){ int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); if( rc2!=SQLITE_OK ) rc = rc2; }else{ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); } } sqlite3Fts3SegmentsClose(p); return rc; } #endif /************** End of fts3_write.c ******************************************/ /************** Begin file fts3_snippet.c ************************************/ /* ** 2009 Oct 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ #ifndef SQLITE_AMALGAMATION typedef sqlite3_int64 i64; #endif /* ** Characters that may appear in the second argument to matchinfo(). */ #define FTS3_MATCHINFO_NPHRASE 'p' /* 1 value */ #define FTS3_MATCHINFO_NCOL 'c' /* 1 value */ #define FTS3_MATCHINFO_NDOC 'n' /* 1 value */ #define FTS3_MATCHINFO_AVGLENGTH 'a' /* nCol values */ #define FTS3_MATCHINFO_LENGTH 'l' /* nCol values */ #define FTS3_MATCHINFO_LCS 's' /* nCol values */ #define FTS3_MATCHINFO_HITS 'x' /* 3*nCol*nPhrase values */ #define FTS3_MATCHINFO_LHITS 'y' /* nCol*nPhrase values */ #define FTS3_MATCHINFO_LHITS_BM 'b' /* nCol*nPhrase values */ /* ** The default value for the second argument to matchinfo(). */ #define FTS3_MATCHINFO_DEFAULT "pcx" /* ** Used as an sqlite3Fts3ExprIterate() context when loading phrase doclists to ** Fts3Expr.aDoclist[]/nDoclist. */ typedef struct LoadDoclistCtx LoadDoclistCtx; struct LoadDoclistCtx { Fts3Cursor *pCsr; /* FTS3 Cursor */ int nPhrase; /* Number of phrases seen so far */ int nToken; /* Number of tokens seen so far */ }; /* ** The following types are used as part of the implementation of the ** fts3BestSnippet() routine. */ typedef struct SnippetIter SnippetIter; typedef struct SnippetPhrase SnippetPhrase; typedef struct SnippetFragment SnippetFragment; struct SnippetIter { Fts3Cursor *pCsr; /* Cursor snippet is being generated from */ int iCol; /* Extract snippet from this column */ int nSnippet; /* Requested snippet length (in tokens) */ int nPhrase; /* Number of phrases in query */ SnippetPhrase *aPhrase; /* Array of size nPhrase */ int iCurrent; /* First token of current snippet */ }; struct SnippetPhrase { int nToken; /* Number of tokens in phrase */ char *pList; /* Pointer to start of phrase position list */ i64 iHead; /* Next value in position list */ char *pHead; /* Position list data following iHead */ i64 iTail; /* Next value in trailing position list */ char *pTail; /* Position list data following iTail */ }; struct SnippetFragment { int iCol; /* Column snippet is extracted from */ int iPos; /* Index of first token in snippet */ u64 covered; /* Mask of query phrases covered */ u64 hlmask; /* Mask of snippet terms to highlight */ }; /* ** This type is used as an sqlite3Fts3ExprIterate() context object while ** accumulating the data returned by the matchinfo() function. */ typedef struct MatchInfo MatchInfo; struct MatchInfo { Fts3Cursor *pCursor; /* FTS3 Cursor */ int nCol; /* Number of columns in table */ int nPhrase; /* Number of matchable phrases in query */ sqlite3_int64 nDoc; /* Number of docs in database */ char flag; u32 *aMatchinfo; /* Pre-allocated buffer */ }; /* ** An instance of this structure is used to manage a pair of buffers, each ** (nElem * sizeof(u32)) bytes in size. See the MatchinfoBuffer code below ** for details. */ struct MatchinfoBuffer { u8 aRef[3]; int nElem; int bGlobal; /* Set if global data is loaded */ char *zMatchinfo; u32 aMatchinfo[1]; }; /* ** The snippet() and offsets() functions both return text values. An instance ** of the following structure is used to accumulate those values while the ** functions are running. See fts3StringAppend() for details. */ typedef struct StrBuffer StrBuffer; struct StrBuffer { char *z; /* Pointer to buffer containing string */ int n; /* Length of z in bytes (excl. nul-term) */ int nAlloc; /* Allocated size of buffer z in bytes */ }; /************************************************************************* ** Start of MatchinfoBuffer code. */ /* ** Allocate a two-slot MatchinfoBuffer object. */ static MatchinfoBuffer *fts3MIBufferNew(size_t nElem, const char *zMatchinfo){ MatchinfoBuffer *pRet; sqlite3_int64 nByte = sizeof(u32) * (2*(sqlite3_int64)nElem + 1) + sizeof(MatchinfoBuffer); sqlite3_int64 nStr = strlen(zMatchinfo); pRet = sqlite3Fts3MallocZero(nByte + nStr+1); if( pRet ){ pRet->aMatchinfo[0] = (u8*)(&pRet->aMatchinfo[1]) - (u8*)pRet; pRet->aMatchinfo[1+nElem] = pRet->aMatchinfo[0] + sizeof(u32)*((int)nElem+1); pRet->nElem = (int)nElem; pRet->zMatchinfo = ((char*)pRet) + nByte; memcpy(pRet->zMatchinfo, zMatchinfo, nStr+1); pRet->aRef[0] = 1; } return pRet; } static void fts3MIBufferFree(void *p){ MatchinfoBuffer *pBuf = (MatchinfoBuffer*)((u8*)p - ((u32*)p)[-1]); assert( (u32*)p==&pBuf->aMatchinfo[1] || (u32*)p==&pBuf->aMatchinfo[pBuf->nElem+2] ); if( (u32*)p==&pBuf->aMatchinfo[1] ){ pBuf->aRef[1] = 0; }else{ pBuf->aRef[2] = 0; } if( pBuf->aRef[0]==0 && pBuf->aRef[1]==0 && pBuf->aRef[2]==0 ){ sqlite3_free(pBuf); } } static void (*fts3MIBufferAlloc(MatchinfoBuffer *p, u32 **paOut))(void*){ void (*xRet)(void*) = 0; u32 *aOut = 0; if( p->aRef[1]==0 ){ p->aRef[1] = 1; aOut = &p->aMatchinfo[1]; xRet = fts3MIBufferFree; } else if( p->aRef[2]==0 ){ p->aRef[2] = 1; aOut = &p->aMatchinfo[p->nElem+2]; xRet = fts3MIBufferFree; }else{ aOut = (u32*)sqlite3_malloc64(p->nElem * sizeof(u32)); if( aOut ){ xRet = sqlite3_free; if( p->bGlobal ) memcpy(aOut, &p->aMatchinfo[1], p->nElem*sizeof(u32)); } } *paOut = aOut; return xRet; } static void fts3MIBufferSetGlobal(MatchinfoBuffer *p){ p->bGlobal = 1; memcpy(&p->aMatchinfo[2+p->nElem], &p->aMatchinfo[1], p->nElem*sizeof(u32)); } /* ** Free a MatchinfoBuffer object allocated using fts3MIBufferNew() */ SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p){ if( p ){ assert( p->aRef[0]==1 ); p->aRef[0] = 0; if( p->aRef[0]==0 && p->aRef[1]==0 && p->aRef[2]==0 ){ sqlite3_free(p); } } } /* ** End of MatchinfoBuffer code. *************************************************************************/ /* ** This function is used to help iterate through a position-list. A position ** list is a list of unique integers, sorted from smallest to largest. Each ** element of the list is represented by an FTS3 varint that takes the value ** of the difference between the current element and the previous one plus ** two. For example, to store the position-list: ** ** 4 9 113 ** ** the three varints: ** ** 6 7 106 ** ** are encoded. ** ** When this function is called, *pp points to the start of an element of ** the list. *piPos contains the value of the previous entry in the list. ** After it returns, *piPos contains the value of the next element of the ** list and *pp is advanced to the following varint. */ static void fts3GetDeltaPosition(char **pp, i64 *piPos){ int iVal; *pp += fts3GetVarint32(*pp, &iVal); *piPos += (iVal-2); } /* ** Helper function for sqlite3Fts3ExprIterate() (see below). */ static int fts3ExprIterate2( Fts3Expr *pExpr, /* Expression to iterate phrases of */ int *piPhrase, /* Pointer to phrase counter */ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */ void *pCtx /* Second argument to pass to callback */ ){ int rc; /* Return code */ int eType = pExpr->eType; /* Type of expression node pExpr */ if( eType!=FTSQUERY_PHRASE ){ assert( pExpr->pLeft && pExpr->pRight ); rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx); if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){ rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx); } }else{ rc = x(pExpr, *piPhrase, pCtx); (*piPhrase)++; } return rc; } /* ** Iterate through all phrase nodes in an FTS3 query, except those that ** are part of a sub-tree that is the right-hand-side of a NOT operator. ** For each phrase node found, the supplied callback function is invoked. ** ** If the callback function returns anything other than SQLITE_OK, ** the iteration is abandoned and the error code returned immediately. ** Otherwise, SQLITE_OK is returned after a callback has been made for ** all eligible phrase nodes. */ SQLITE_PRIVATE int sqlite3Fts3ExprIterate( Fts3Expr *pExpr, /* Expression to iterate phrases of */ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */ void *pCtx /* Second argument to pass to callback */ ){ int iPhrase = 0; /* Variable used as the phrase counter */ return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx); } /* ** This is an sqlite3Fts3ExprIterate() callback used while loading the ** doclists for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also ** fts3ExprLoadDoclists(). */ static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){ int rc = SQLITE_OK; Fts3Phrase *pPhrase = pExpr->pPhrase; LoadDoclistCtx *p = (LoadDoclistCtx *)ctx; UNUSED_PARAMETER(iPhrase); p->nPhrase++; p->nToken += pPhrase->nToken; return rc; } /* ** Load the doclists for each phrase in the query associated with FTS3 cursor ** pCsr. ** ** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable ** phrases in the expression (all phrases except those directly or ** indirectly descended from the right-hand-side of a NOT operator). If ** pnToken is not NULL, then it is set to the number of tokens in all ** matchable phrases of the expression. */ static int fts3ExprLoadDoclists( Fts3Cursor *pCsr, /* Fts3 cursor for current query */ int *pnPhrase, /* OUT: Number of phrases in query */ int *pnToken /* OUT: Number of tokens in query */ ){ int rc; /* Return Code */ LoadDoclistCtx sCtx = {0,0,0}; /* Context for sqlite3Fts3ExprIterate() */ sCtx.pCsr = pCsr; rc = sqlite3Fts3ExprIterate(pCsr->pExpr,fts3ExprLoadDoclistsCb,(void*)&sCtx); if( pnPhrase ) *pnPhrase = sCtx.nPhrase; if( pnToken ) *pnToken = sCtx.nToken; return rc; } static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){ (*(int *)ctx)++; pExpr->iPhrase = iPhrase; return SQLITE_OK; } static int fts3ExprPhraseCount(Fts3Expr *pExpr){ int nPhrase = 0; (void)sqlite3Fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase); return nPhrase; } /* ** Advance the position list iterator specified by the first two ** arguments so that it points to the first element with a value greater ** than or equal to parameter iNext. */ static void fts3SnippetAdvance(char **ppIter, i64 *piIter, int iNext){ char *pIter = *ppIter; if( pIter ){ i64 iIter = *piIter; while( iIteriCurrent<0 ){ /* The SnippetIter object has just been initialized. The first snippet ** candidate always starts at offset 0 (even if this candidate has a ** score of 0.0). */ pIter->iCurrent = 0; /* Advance the 'head' iterator of each phrase to the first offset that ** is greater than or equal to (iNext+nSnippet). */ for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet); } }else{ int iStart; int iEnd = 0x7FFFFFFF; for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; if( pPhrase->pHead && pPhrase->iHeadiHead; } } if( iEnd==0x7FFFFFFF ){ return 1; } pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1; for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1); fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart); } } return 0; } /* ** Retrieve information about the current candidate snippet of snippet ** iterator pIter. */ static void fts3SnippetDetails( SnippetIter *pIter, /* Snippet iterator */ u64 mCovered, /* Bitmask of phrases already covered */ int *piToken, /* OUT: First token of proposed snippet */ int *piScore, /* OUT: "Score" for this snippet */ u64 *pmCover, /* OUT: Bitmask of phrases covered */ u64 *pmHighlight /* OUT: Bitmask of terms to highlight */ ){ int iStart = pIter->iCurrent; /* First token of snippet */ int iScore = 0; /* Score of this snippet */ int i; /* Loop counter */ u64 mCover = 0; /* Mask of phrases covered by this snippet */ u64 mHighlight = 0; /* Mask of tokens to highlight in snippet */ for(i=0; inPhrase; i++){ SnippetPhrase *pPhrase = &pIter->aPhrase[i]; if( pPhrase->pTail ){ char *pCsr = pPhrase->pTail; i64 iCsr = pPhrase->iTail; while( iCsr<(iStart+pIter->nSnippet) && iCsr>=iStart ){ int j; u64 mPhrase = (u64)1 << (i%64); u64 mPos = (u64)1 << (iCsr - iStart); assert( iCsr>=iStart && (iCsr - iStart)<=64 ); assert( i>=0 ); if( (mCover|mCovered)&mPhrase ){ iScore++; }else{ iScore += 1000; } mCover |= mPhrase; for(j=0; jnToken; j++){ mHighlight |= (mPos>>j); } if( 0==(*pCsr & 0x0FE) ) break; fts3GetDeltaPosition(&pCsr, &iCsr); } } } /* Set the output variables before returning. */ *piToken = iStart; *piScore = iScore; *pmCover = mCover; *pmHighlight = mHighlight; } /* ** This function is an sqlite3Fts3ExprIterate() callback used by ** fts3BestSnippet(). Each invocation populates an element of the ** SnippetIter.aPhrase[] array. */ static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){ SnippetIter *p = (SnippetIter *)ctx; SnippetPhrase *pPhrase = &p->aPhrase[iPhrase]; char *pCsr; int rc; pPhrase->nToken = pExpr->pPhrase->nToken; rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr); assert( rc==SQLITE_OK || pCsr==0 ); if( pCsr ){ i64 iFirst = 0; pPhrase->pList = pCsr; fts3GetDeltaPosition(&pCsr, &iFirst); if( iFirst<0 ){ rc = FTS_CORRUPT_VTAB; }else{ pPhrase->pHead = pCsr; pPhrase->pTail = pCsr; pPhrase->iHead = iFirst; pPhrase->iTail = iFirst; } }else{ assert( rc!=SQLITE_OK || ( pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0 )); } return rc; } /* ** Select the fragment of text consisting of nFragment contiguous tokens ** from column iCol that represent the "best" snippet. The best snippet ** is the snippet with the highest score, where scores are calculated ** by adding: ** ** (a) +1 point for each occurrence of a matchable phrase in the snippet. ** ** (b) +1000 points for the first occurrence of each matchable phrase in ** the snippet for which the corresponding mCovered bit is not set. ** ** The selected snippet parameters are stored in structure *pFragment before ** returning. The score of the selected snippet is stored in *piScore ** before returning. */ static int fts3BestSnippet( int nSnippet, /* Desired snippet length */ Fts3Cursor *pCsr, /* Cursor to create snippet for */ int iCol, /* Index of column to create snippet from */ u64 mCovered, /* Mask of phrases already covered */ u64 *pmSeen, /* IN/OUT: Mask of phrases seen */ SnippetFragment *pFragment, /* OUT: Best snippet found */ int *piScore /* OUT: Score of snippet pFragment */ ){ int rc; /* Return Code */ int nList; /* Number of phrases in expression */ SnippetIter sIter; /* Iterates through snippet candidates */ sqlite3_int64 nByte; /* Number of bytes of space to allocate */ int iBestScore = -1; /* Best snippet score found so far */ int i; /* Loop counter */ memset(&sIter, 0, sizeof(sIter)); /* Iterate through the phrases in the expression to count them. The same ** callback makes sure the doclists are loaded for each phrase. */ rc = fts3ExprLoadDoclists(pCsr, &nList, 0); if( rc!=SQLITE_OK ){ return rc; } /* Now that it is known how many phrases there are, allocate and zero ** the required space using malloc(). */ nByte = sizeof(SnippetPhrase) * nList; sIter.aPhrase = (SnippetPhrase *)sqlite3Fts3MallocZero(nByte); if( !sIter.aPhrase ){ return SQLITE_NOMEM; } /* Initialize the contents of the SnippetIter object. Then iterate through ** the set of phrases in the expression to populate the aPhrase[] array. */ sIter.pCsr = pCsr; sIter.iCol = iCol; sIter.nSnippet = nSnippet; sIter.nPhrase = nList; sIter.iCurrent = -1; rc = sqlite3Fts3ExprIterate( pCsr->pExpr, fts3SnippetFindPositions, (void*)&sIter ); if( rc==SQLITE_OK ){ /* Set the *pmSeen output variable. */ for(i=0; iiCol = iCol; while( !fts3SnippetNextCandidate(&sIter) ){ int iPos; int iScore; u64 mCover; u64 mHighlite; fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover,&mHighlite); assert( iScore>=0 ); if( iScore>iBestScore ){ pFragment->iPos = iPos; pFragment->hlmask = mHighlite; pFragment->covered = mCover; iBestScore = iScore; } } *piScore = iBestScore; } sqlite3_free(sIter.aPhrase); return rc; } /* ** Append a string to the string-buffer passed as the first argument. ** ** If nAppend is negative, then the length of the string zAppend is ** determined using strlen(). */ static int fts3StringAppend( StrBuffer *pStr, /* Buffer to append to */ const char *zAppend, /* Pointer to data to append to buffer */ int nAppend /* Size of zAppend in bytes (or -1) */ ){ if( nAppend<0 ){ nAppend = (int)strlen(zAppend); } /* If there is insufficient space allocated at StrBuffer.z, use realloc() ** to grow the buffer until so that it is big enough to accomadate the ** appended data. */ if( pStr->n+nAppend+1>=pStr->nAlloc ){ sqlite3_int64 nAlloc = pStr->nAlloc+(sqlite3_int64)nAppend+100; char *zNew = sqlite3_realloc64(pStr->z, nAlloc); if( !zNew ){ return SQLITE_NOMEM; } pStr->z = zNew; pStr->nAlloc = nAlloc; } assert( pStr->z!=0 && (pStr->nAlloc >= pStr->n+nAppend+1) ); /* Append the data to the string buffer. */ memcpy(&pStr->z[pStr->n], zAppend, nAppend); pStr->n += nAppend; pStr->z[pStr->n] = '\0'; return SQLITE_OK; } /* ** The fts3BestSnippet() function often selects snippets that end with a ** query term. That is, the final term of the snippet is always a term ** that requires highlighting. For example, if 'X' is a highlighted term ** and '.' is a non-highlighted term, BestSnippet() may select: ** ** ........X.....X ** ** This function "shifts" the beginning of the snippet forward in the ** document so that there are approximately the same number of ** non-highlighted terms to the right of the final highlighted term as there ** are to the left of the first highlighted term. For example, to this: ** ** ....X.....X.... ** ** This is done as part of extracting the snippet text, not when selecting ** the snippet. Snippet selection is done based on doclists only, so there ** is no way for fts3BestSnippet() to know whether or not the document ** actually contains terms that follow the final highlighted term. */ static int fts3SnippetShift( Fts3Table *pTab, /* FTS3 table snippet comes from */ int iLangid, /* Language id to use in tokenizing */ int nSnippet, /* Number of tokens desired for snippet */ const char *zDoc, /* Document text to extract snippet from */ int nDoc, /* Size of buffer zDoc in bytes */ int *piPos, /* IN/OUT: First token of snippet */ u64 *pHlmask /* IN/OUT: Mask of tokens to highlight */ ){ u64 hlmask = *pHlmask; /* Local copy of initial highlight-mask */ if( hlmask ){ int nLeft; /* Tokens to the left of first highlight */ int nRight; /* Tokens to the right of last highlight */ int nDesired; /* Ideal number of tokens to shift forward */ for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++); for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++); assert( (nSnippet-1-nRight)<=63 && (nSnippet-1-nRight)>=0 ); nDesired = (nLeft-nRight)/2; /* Ideally, the start of the snippet should be pushed forward in the ** document nDesired tokens. This block checks if there are actually ** nDesired tokens to the right of the snippet. If so, *piPos and ** *pHlMask are updated to shift the snippet nDesired tokens to the ** right. Otherwise, the snippet is shifted by the number of tokens ** available. */ if( nDesired>0 ){ int nShift; /* Number of tokens to shift snippet by */ int iCurrent = 0; /* Token counter */ int rc; /* Return Code */ sqlite3_tokenizer_module *pMod; sqlite3_tokenizer_cursor *pC; pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule; /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired) ** or more tokens in zDoc/nDoc. */ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, iLangid, zDoc, nDoc, &pC); if( rc!=SQLITE_OK ){ return rc; } while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){ const char *ZDUMMY; int DUMMY1 = 0, DUMMY2 = 0, DUMMY3 = 0; rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent); } pMod->xClose(pC); if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; } nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet; assert( nShift<=nDesired ); if( nShift>0 ){ *piPos += nShift; *pHlmask = hlmask >> nShift; } } } return SQLITE_OK; } /* ** Extract the snippet text for fragment pFragment from cursor pCsr and ** append it to string buffer pOut. */ static int fts3SnippetText( Fts3Cursor *pCsr, /* FTS3 Cursor */ SnippetFragment *pFragment, /* Snippet to extract */ int iFragment, /* Fragment number */ int isLast, /* True for final fragment in snippet */ int nSnippet, /* Number of tokens in extracted snippet */ const char *zOpen, /* String inserted before highlighted term */ const char *zClose, /* String inserted after highlighted term */ const char *zEllipsis, /* String inserted between snippets */ StrBuffer *pOut /* Write output here */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc; /* Return code */ const char *zDoc; /* Document text to extract snippet from */ int nDoc; /* Size of zDoc in bytes */ int iCurrent = 0; /* Current token number of document */ int iEnd = 0; /* Byte offset of end of current token */ int isShiftDone = 0; /* True after snippet is shifted */ int iPos = pFragment->iPos; /* First token of snippet */ u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */ int iCol = pFragment->iCol+1; /* Query column to extract text from */ sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol); if( zDoc==0 ){ if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){ return SQLITE_NOMEM; } return SQLITE_OK; } nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol); /* Open a token cursor on the document. */ pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule; rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc,nDoc,&pC); if( rc!=SQLITE_OK ){ return rc; } while( rc==SQLITE_OK ){ const char *ZDUMMY; /* Dummy argument used with tokenizer */ int DUMMY1 = -1; /* Dummy argument used with tokenizer */ int iBegin = 0; /* Offset in zDoc of start of token */ int iFin = 0; /* Offset in zDoc of end of token */ int isHighlight = 0; /* True for highlighted terms */ /* Variable DUMMY1 is initialized to a negative value above. Elsewhere ** in the FTS code the variable that the third argument to xNext points to ** is initialized to zero before the first (*but not necessarily ** subsequent*) call to xNext(). This is done for a particular application ** that needs to know whether or not the tokenizer is being used for ** snippet generation or for some other purpose. ** ** Extreme care is required when writing code to depend on this ** initialization. It is not a documented part of the tokenizer interface. ** If a tokenizer is used directly by any code outside of FTS, this ** convention might not be respected. */ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ /* Special case - the last token of the snippet is also the last token ** of the column. Append any punctuation that occurred between the end ** of the previous token and the end of the document to the output. ** Then break out of the loop. */ rc = fts3StringAppend(pOut, &zDoc[iEnd], -1); } break; } if( iCurrentiLangid, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask ); isShiftDone = 1; /* Now that the shift has been done, check if the initial "..." are ** required. They are required if (a) this is not the first fragment, ** or (b) this fragment does not begin at position 0 of its column. */ if( rc==SQLITE_OK ){ if( iPos>0 || iFragment>0 ){ rc = fts3StringAppend(pOut, zEllipsis, -1); }else if( iBegin ){ rc = fts3StringAppend(pOut, zDoc, iBegin); } } if( rc!=SQLITE_OK || iCurrent=(iPos+nSnippet) ){ if( isLast ){ rc = fts3StringAppend(pOut, zEllipsis, -1); } break; } /* Set isHighlight to true if this term should be highlighted. */ isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0; if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd); if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1); if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin); if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1); iEnd = iFin; } pMod->xClose(pC); return rc; } /* ** This function is used to count the entries in a column-list (a ** delta-encoded list of term offsets within a single column of a single ** row). When this function is called, *ppCollist should point to the ** beginning of the first varint in the column-list (the varint that ** contains the position of the first matching term in the column data). ** Before returning, *ppCollist is set to point to the first byte after ** the last varint in the column-list (either the 0x00 signifying the end ** of the position-list, or the 0x01 that precedes the column number of ** the next column in the position-list). ** ** The number of elements in the column-list is returned. */ static int fts3ColumnlistCount(char **ppCollist){ char *pEnd = *ppCollist; char c = 0; int nEntry = 0; /* A column-list is terminated by either a 0x01 or 0x00. */ while( 0xFE & (*pEnd | c) ){ c = *pEnd++ & 0x80; if( !c ) nEntry++; } *ppCollist = pEnd; return nEntry; } /* ** This function gathers 'y' or 'b' data for a single phrase. */ static int fts3ExprLHits( Fts3Expr *pExpr, /* Phrase expression node */ MatchInfo *p /* Matchinfo context */ ){ Fts3Table *pTab = (Fts3Table *)p->pCursor->base.pVtab; int iStart; Fts3Phrase *pPhrase = pExpr->pPhrase; char *pIter = pPhrase->doclist.pList; int iCol = 0; assert( p->flag==FTS3_MATCHINFO_LHITS_BM || p->flag==FTS3_MATCHINFO_LHITS ); if( p->flag==FTS3_MATCHINFO_LHITS ){ iStart = pExpr->iPhrase * p->nCol; }else{ iStart = pExpr->iPhrase * ((p->nCol + 31) / 32); } if( pIter ) while( 1 ){ int nHit = fts3ColumnlistCount(&pIter); if( (pPhrase->iColumn>=pTab->nColumn || pPhrase->iColumn==iCol) ){ if( p->flag==FTS3_MATCHINFO_LHITS ){ p->aMatchinfo[iStart + iCol] = (u32)nHit; }else if( nHit ){ p->aMatchinfo[iStart + (iCol+1)/32] |= (1 << (iCol&0x1F)); } } assert( *pIter==0x00 || *pIter==0x01 ); if( *pIter!=0x01 ) break; pIter++; pIter += fts3GetVarint32(pIter, &iCol); if( iCol>=p->nCol ) return FTS_CORRUPT_VTAB; } return SQLITE_OK; } /* ** Gather the results for matchinfo directives 'y' and 'b'. */ static int fts3ExprLHitGather( Fts3Expr *pExpr, MatchInfo *p ){ int rc = SQLITE_OK; assert( (pExpr->pLeft==0)==(pExpr->pRight==0) ); if( pExpr->bEof==0 && pExpr->iDocid==p->pCursor->iPrevId ){ if( pExpr->pLeft ){ rc = fts3ExprLHitGather(pExpr->pLeft, p); if( rc==SQLITE_OK ) rc = fts3ExprLHitGather(pExpr->pRight, p); }else{ rc = fts3ExprLHits(pExpr, p); } } return rc; } /* ** sqlite3Fts3ExprIterate() callback used to collect the "global" matchinfo ** stats for a single query. ** ** sqlite3Fts3ExprIterate() callback to load the 'global' elements of a ** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements ** of the matchinfo array that are constant for all rows returned by the ** current query. ** ** Argument pCtx is actually a pointer to a struct of type MatchInfo. This ** function populates Matchinfo.aMatchinfo[] as follows: ** ** for(iCol=0; iColpCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol] ); } /* ** sqlite3Fts3ExprIterate() callback used to collect the "local" part of the ** FTS3_MATCHINFO_HITS array. The local stats are those elements of the ** array that are different for each row returned by the query. */ static int fts3ExprLocalHitsCb( Fts3Expr *pExpr, /* Phrase expression node */ int iPhrase, /* Phrase number */ void *pCtx /* Pointer to MatchInfo structure */ ){ int rc = SQLITE_OK; MatchInfo *p = (MatchInfo *)pCtx; int iStart = iPhrase * p->nCol * 3; int i; for(i=0; inCol && rc==SQLITE_OK; i++){ char *pCsr; rc = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i, &pCsr); if( pCsr ){ p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr); }else{ p->aMatchinfo[iStart+i*3] = 0; } } return rc; } static int fts3MatchinfoCheck( Fts3Table *pTab, char cArg, char **pzErr ){ if( (cArg==FTS3_MATCHINFO_NPHRASE) || (cArg==FTS3_MATCHINFO_NCOL) || (cArg==FTS3_MATCHINFO_NDOC && pTab->bFts4) || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bFts4) || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize) || (cArg==FTS3_MATCHINFO_LCS) || (cArg==FTS3_MATCHINFO_HITS) || (cArg==FTS3_MATCHINFO_LHITS) || (cArg==FTS3_MATCHINFO_LHITS_BM) ){ return SQLITE_OK; } sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo request: %c", cArg); return SQLITE_ERROR; } static size_t fts3MatchinfoSize(MatchInfo *pInfo, char cArg){ size_t nVal; /* Number of integers output by cArg */ switch( cArg ){ case FTS3_MATCHINFO_NDOC: case FTS3_MATCHINFO_NPHRASE: case FTS3_MATCHINFO_NCOL: nVal = 1; break; case FTS3_MATCHINFO_AVGLENGTH: case FTS3_MATCHINFO_LENGTH: case FTS3_MATCHINFO_LCS: nVal = pInfo->nCol; break; case FTS3_MATCHINFO_LHITS: nVal = pInfo->nCol * pInfo->nPhrase; break; case FTS3_MATCHINFO_LHITS_BM: nVal = pInfo->nPhrase * ((pInfo->nCol + 31) / 32); break; default: assert( cArg==FTS3_MATCHINFO_HITS ); nVal = pInfo->nCol * pInfo->nPhrase * 3; break; } return nVal; } static int fts3MatchinfoSelectDoctotal( Fts3Table *pTab, sqlite3_stmt **ppStmt, sqlite3_int64 *pnDoc, const char **paLen, const char **ppEnd ){ sqlite3_stmt *pStmt; const char *a; const char *pEnd; sqlite3_int64 nDoc; int n; if( !*ppStmt ){ int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt); if( rc!=SQLITE_OK ) return rc; } pStmt = *ppStmt; assert( sqlite3_data_count(pStmt)==1 ); n = sqlite3_column_bytes(pStmt, 0); a = sqlite3_column_blob(pStmt, 0); if( a==0 ){ return FTS_CORRUPT_VTAB; } pEnd = a + n; a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc); if( nDoc<=0 || a>pEnd ){ return FTS_CORRUPT_VTAB; } *pnDoc = nDoc; if( paLen ) *paLen = a; if( ppEnd ) *ppEnd = pEnd; return SQLITE_OK; } /* ** An instance of the following structure is used to store state while ** iterating through a multi-column position-list corresponding to the ** hits for a single phrase on a single row in order to calculate the ** values for a matchinfo() FTS3_MATCHINFO_LCS request. */ typedef struct LcsIterator LcsIterator; struct LcsIterator { Fts3Expr *pExpr; /* Pointer to phrase expression */ int iPosOffset; /* Tokens count up to end of this phrase */ char *pRead; /* Cursor used to iterate through aDoclist */ int iPos; /* Current position */ }; /* ** If LcsIterator.iCol is set to the following value, the iterator has ** finished iterating through all offsets for all columns. */ #define LCS_ITERATOR_FINISHED 0x7FFFFFFF; static int fts3MatchinfoLcsCb( Fts3Expr *pExpr, /* Phrase expression node */ int iPhrase, /* Phrase number (numbered from zero) */ void *pCtx /* Pointer to MatchInfo structure */ ){ LcsIterator *aIter = (LcsIterator *)pCtx; aIter[iPhrase].pExpr = pExpr; return SQLITE_OK; } /* ** Advance the iterator passed as an argument to the next position. Return ** 1 if the iterator is at EOF or if it now points to the start of the ** position list for the next column. */ static int fts3LcsIteratorAdvance(LcsIterator *pIter){ char *pRead; sqlite3_int64 iRead; int rc = 0; if( NEVER(pIter==0) ) return 1; pRead = pIter->pRead; pRead += sqlite3Fts3GetVarint(pRead, &iRead); if( iRead==0 || iRead==1 ){ pRead = 0; rc = 1; }else{ pIter->iPos += (int)(iRead-2); } pIter->pRead = pRead; return rc; } /* ** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag. ** ** If the call is successful, the longest-common-substring lengths for each ** column are written into the first nCol elements of the pInfo->aMatchinfo[] ** array before returning. SQLITE_OK is returned in this case. ** ** Otherwise, if an error occurs, an SQLite error code is returned and the ** data written to the first nCol elements of pInfo->aMatchinfo[] is ** undefined. */ static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){ LcsIterator *aIter; int i; int iCol; int nToken = 0; int rc = SQLITE_OK; /* Allocate and populate the array of LcsIterator objects. The array ** contains one element for each matchable phrase in the query. **/ aIter = sqlite3Fts3MallocZero(sizeof(LcsIterator) * pCsr->nPhrase); if( !aIter ) return SQLITE_NOMEM; (void)sqlite3Fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter); for(i=0; inPhrase; i++){ LcsIterator *pIter = &aIter[i]; nToken -= pIter->pExpr->pPhrase->nToken; pIter->iPosOffset = nToken; } for(iCol=0; iColnCol; iCol++){ int nLcs = 0; /* LCS value for this column */ int nLive = 0; /* Number of iterators in aIter not at EOF */ for(i=0; inPhrase; i++){ LcsIterator *pIt = &aIter[i]; rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead); if( rc!=SQLITE_OK ) goto matchinfo_lcs_out; if( pIt->pRead ){ pIt->iPos = pIt->iPosOffset; fts3LcsIteratorAdvance(pIt); if( pIt->pRead==0 ){ rc = FTS_CORRUPT_VTAB; goto matchinfo_lcs_out; } nLive++; } } while( nLive>0 ){ LcsIterator *pAdv = 0; /* The iterator to advance by one position */ int nThisLcs = 0; /* LCS for the current iterator positions */ for(i=0; inPhrase; i++){ LcsIterator *pIter = &aIter[i]; if( pIter->pRead==0 ){ /* This iterator is already at EOF for this column. */ nThisLcs = 0; }else{ if( pAdv==0 || pIter->iPosiPos ){ pAdv = pIter; } if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){ nThisLcs++; }else{ nThisLcs = 1; } if( nThisLcs>nLcs ) nLcs = nThisLcs; } } if( fts3LcsIteratorAdvance(pAdv) ) nLive--; } pInfo->aMatchinfo[iCol] = nLcs; } matchinfo_lcs_out: sqlite3_free(aIter); return rc; } /* ** Populate the buffer pInfo->aMatchinfo[] with an array of integers to ** be returned by the matchinfo() function. Argument zArg contains the ** format string passed as the second argument to matchinfo (or the ** default value "pcx" if no second argument was specified). The format ** string has already been validated and the pInfo->aMatchinfo[] array ** is guaranteed to be large enough for the output. ** ** If bGlobal is true, then populate all fields of the matchinfo() output. ** If it is false, then assume that those fields that do not change between ** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS) ** have already been populated. ** ** Return SQLITE_OK if successful, or an SQLite error code if an error ** occurs. If a value other than SQLITE_OK is returned, the state the ** pInfo->aMatchinfo[] buffer is left in is undefined. */ static int fts3MatchinfoValues( Fts3Cursor *pCsr, /* FTS3 cursor object */ int bGlobal, /* True to grab the global stats */ MatchInfo *pInfo, /* Matchinfo context object */ const char *zArg /* Matchinfo format string */ ){ int rc = SQLITE_OK; int i; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; sqlite3_stmt *pSelect = 0; for(i=0; rc==SQLITE_OK && zArg[i]; i++){ pInfo->flag = zArg[i]; switch( zArg[i] ){ case FTS3_MATCHINFO_NPHRASE: if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase; break; case FTS3_MATCHINFO_NCOL: if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol; break; case FTS3_MATCHINFO_NDOC: if( bGlobal ){ sqlite3_int64 nDoc = 0; rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0, 0); pInfo->aMatchinfo[0] = (u32)nDoc; } break; case FTS3_MATCHINFO_AVGLENGTH: if( bGlobal ){ sqlite3_int64 nDoc; /* Number of rows in table */ const char *a; /* Aggregate column length array */ const char *pEnd; /* First byte past end of length array */ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a, &pEnd); if( rc==SQLITE_OK ){ int iCol; for(iCol=0; iColnCol; iCol++){ u32 iVal; sqlite3_int64 nToken; a += sqlite3Fts3GetVarint(a, &nToken); if( a>pEnd ){ rc = SQLITE_CORRUPT_VTAB; break; } iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc); pInfo->aMatchinfo[iCol] = iVal; } } } break; case FTS3_MATCHINFO_LENGTH: { sqlite3_stmt *pSelectDocsize = 0; rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize); if( rc==SQLITE_OK ){ int iCol; const char *a = sqlite3_column_blob(pSelectDocsize, 0); const char *pEnd = a + sqlite3_column_bytes(pSelectDocsize, 0); for(iCol=0; iColnCol; iCol++){ sqlite3_int64 nToken; a += sqlite3Fts3GetVarintBounded(a, pEnd, &nToken); if( a>pEnd ){ rc = SQLITE_CORRUPT_VTAB; break; } pInfo->aMatchinfo[iCol] = (u32)nToken; } } sqlite3_reset(pSelectDocsize); break; } case FTS3_MATCHINFO_LCS: rc = fts3ExprLoadDoclists(pCsr, 0, 0); if( rc==SQLITE_OK ){ rc = fts3MatchinfoLcs(pCsr, pInfo); } break; case FTS3_MATCHINFO_LHITS_BM: case FTS3_MATCHINFO_LHITS: { size_t nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32); memset(pInfo->aMatchinfo, 0, nZero); rc = fts3ExprLHitGather(pCsr->pExpr, pInfo); break; } default: { Fts3Expr *pExpr; assert( zArg[i]==FTS3_MATCHINFO_HITS ); pExpr = pCsr->pExpr; rc = fts3ExprLoadDoclists(pCsr, 0, 0); if( rc!=SQLITE_OK ) break; if( bGlobal ){ if( pCsr->pDeferred ){ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc,0,0); if( rc!=SQLITE_OK ) break; } rc = sqlite3Fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo); sqlite3Fts3EvalTestDeferred(pCsr, &rc); if( rc!=SQLITE_OK ) break; } (void)sqlite3Fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo); break; } } pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]); } sqlite3_reset(pSelect); return rc; } /* ** Populate pCsr->aMatchinfo[] with data for the current row. The ** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32). */ static void fts3GetMatchinfo( sqlite3_context *pCtx, /* Return results here */ Fts3Cursor *pCsr, /* FTS3 Cursor object */ const char *zArg /* Second argument to matchinfo() function */ ){ MatchInfo sInfo; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int bGlobal = 0; /* Collect 'global' stats as well as local */ u32 *aOut = 0; void (*xDestroyOut)(void*) = 0; memset(&sInfo, 0, sizeof(MatchInfo)); sInfo.pCursor = pCsr; sInfo.nCol = pTab->nColumn; /* If there is cached matchinfo() data, but the format string for the ** cache does not match the format string for this request, discard ** the cached data. */ if( pCsr->pMIBuffer && strcmp(pCsr->pMIBuffer->zMatchinfo, zArg) ){ sqlite3Fts3MIBufferFree(pCsr->pMIBuffer); pCsr->pMIBuffer = 0; } /* If Fts3Cursor.pMIBuffer is NULL, then this is the first time the ** matchinfo function has been called for this query. In this case ** allocate the array used to accumulate the matchinfo data and ** initialize those elements that are constant for every row. */ if( pCsr->pMIBuffer==0 ){ size_t nMatchinfo = 0; /* Number of u32 elements in match-info */ int i; /* Used to iterate through zArg */ /* Determine the number of phrases in the query */ pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr); sInfo.nPhrase = pCsr->nPhrase; /* Determine the number of integers in the buffer returned by this call. */ for(i=0; zArg[i]; i++){ char *zErr = 0; if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){ sqlite3_result_error(pCtx, zErr, -1); sqlite3_free(zErr); return; } nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]); } /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */ pCsr->pMIBuffer = fts3MIBufferNew(nMatchinfo, zArg); if( !pCsr->pMIBuffer ) rc = SQLITE_NOMEM; pCsr->isMatchinfoNeeded = 1; bGlobal = 1; } if( rc==SQLITE_OK ){ xDestroyOut = fts3MIBufferAlloc(pCsr->pMIBuffer, &aOut); if( xDestroyOut==0 ){ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ sInfo.aMatchinfo = aOut; sInfo.nPhrase = pCsr->nPhrase; rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg); if( bGlobal ){ fts3MIBufferSetGlobal(pCsr->pMIBuffer); } } if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pCtx, rc); if( xDestroyOut ) xDestroyOut(aOut); }else{ int n = pCsr->pMIBuffer->nElem * sizeof(u32); sqlite3_result_blob(pCtx, aOut, n, xDestroyOut); } } /* ** Implementation of snippet() function. */ SQLITE_PRIVATE void sqlite3Fts3Snippet( sqlite3_context *pCtx, /* SQLite function call context */ Fts3Cursor *pCsr, /* Cursor object */ const char *zStart, /* Snippet start text - "" */ const char *zEnd, /* Snippet end text - "" */ const char *zEllipsis, /* Snippet ellipsis text - "..." */ int iCol, /* Extract snippet from this column */ int nToken /* Approximate number of tokens in snippet */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int i; StrBuffer res = {0, 0, 0}; /* The returned text includes up to four fragments of text extracted from ** the data in the current row. The first iteration of the for(...) loop ** below attempts to locate a single fragment of text nToken tokens in ** size that contains at least one instance of all phrases in the query ** expression that appear in the current row. If such a fragment of text ** cannot be found, the second iteration of the loop attempts to locate ** a pair of fragments, and so on. */ int nSnippet = 0; /* Number of fragments in this snippet */ SnippetFragment aSnippet[4]; /* Maximum of 4 fragments per snippet */ int nFToken = -1; /* Number of tokens in each fragment */ if( !pCsr->pExpr ){ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); return; } /* Limit the snippet length to 64 tokens. */ if( nToken<-64 ) nToken = -64; if( nToken>+64 ) nToken = +64; for(nSnippet=1; 1; nSnippet++){ int iSnip; /* Loop counter 0..nSnippet-1 */ u64 mCovered = 0; /* Bitmask of phrases covered by snippet */ u64 mSeen = 0; /* Bitmask of phrases seen by BestSnippet() */ if( nToken>=0 ){ nFToken = (nToken+nSnippet-1) / nSnippet; }else{ nFToken = -1 * nToken; } for(iSnip=0; iSnipnColumn; iRead++){ SnippetFragment sF = {0, 0, 0, 0}; int iS = 0; if( iCol>=0 && iRead!=iCol ) continue; /* Find the best snippet of nFToken tokens in column iRead. */ rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS); if( rc!=SQLITE_OK ){ goto snippet_out; } if( iS>iBestScore ){ *pFragment = sF; iBestScore = iS; } } mCovered |= pFragment->covered; } /* If all query phrases seen by fts3BestSnippet() are present in at least ** one of the nSnippet snippet fragments, break out of the loop. */ assert( (mCovered&mSeen)==mCovered ); if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break; } assert( nFToken>0 ); for(i=0; ipCsr, pExpr, p->iCol, &pList); nTerm = pExpr->pPhrase->nToken; if( pList ){ fts3GetDeltaPosition(&pList, &iPos); assert_fts3_nc( iPos>=0 ); } for(iTerm=0; iTermaTerm[p->iTerm++]; pT->iOff = nTerm-iTerm-1; pT->pList = pList; pT->iPos = iPos; } return rc; } /* ** Implementation of offsets() function. */ SQLITE_PRIVATE void sqlite3Fts3Offsets( sqlite3_context *pCtx, /* SQLite function call context */ Fts3Cursor *pCsr /* Cursor object */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule; int rc; /* Return Code */ int nToken; /* Number of tokens in query */ int iCol; /* Column currently being processed */ StrBuffer res = {0, 0, 0}; /* Result string */ TermOffsetCtx sCtx; /* Context for fts3ExprTermOffsetInit() */ if( !pCsr->pExpr ){ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC); return; } memset(&sCtx, 0, sizeof(sCtx)); assert( pCsr->isRequireSeek==0 ); /* Count the number of terms in the query */ rc = fts3ExprLoadDoclists(pCsr, 0, &nToken); if( rc!=SQLITE_OK ) goto offsets_out; /* Allocate the array of TermOffset iterators. */ sCtx.aTerm = (TermOffset *)sqlite3Fts3MallocZero(sizeof(TermOffset)*nToken); if( 0==sCtx.aTerm ){ rc = SQLITE_NOMEM; goto offsets_out; } sCtx.iDocid = pCsr->iPrevId; sCtx.pCsr = pCsr; /* Loop through the table columns, appending offset information to ** string-buffer res for each column. */ for(iCol=0; iColnColumn; iCol++){ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */ const char *ZDUMMY; /* Dummy argument used with xNext() */ int NDUMMY = 0; /* Dummy argument used with xNext() */ int iStart = 0; int iEnd = 0; int iCurrent = 0; const char *zDoc; int nDoc; /* Initialize the contents of sCtx.aTerm[] for column iCol. This ** operation may fail if the database contains corrupt records. */ sCtx.iCol = iCol; sCtx.iTerm = 0; rc = sqlite3Fts3ExprIterate( pCsr->pExpr, fts3ExprTermOffsetInit, (void*)&sCtx ); if( rc!=SQLITE_OK ) goto offsets_out; /* Retreive the text stored in column iCol. If an SQL NULL is stored ** in column iCol, jump immediately to the next iteration of the loop. ** If an OOM occurs while retrieving the data (this can happen if SQLite ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM ** to the caller. */ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1); nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1); if( zDoc==0 ){ if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){ continue; } rc = SQLITE_NOMEM; goto offsets_out; } /* Initialize a tokenizer iterator to iterate through column iCol. */ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc, nDoc, &pC ); if( rc!=SQLITE_OK ) goto offsets_out; rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent); while( rc==SQLITE_OK ){ int i; /* Used to loop through terms */ int iMinPos = 0x7FFFFFFF; /* Position of next token */ TermOffset *pTerm = 0; /* TermOffset associated with next token */ for(i=0; ipList && (pT->iPos-pT->iOff)iPos-pT->iOff; pTerm = pT; } } if( !pTerm ){ /* All offsets for this column have been gathered. */ rc = SQLITE_DONE; }else{ assert_fts3_nc( iCurrent<=iMinPos ); if( 0==(0xFE&*pTerm->pList) ){ pTerm->pList = 0; }else{ fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos); } while( rc==SQLITE_OK && iCurrentxNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent); } if( rc==SQLITE_OK ){ char aBuffer[64]; sqlite3_snprintf(sizeof(aBuffer), aBuffer, "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart ); rc = fts3StringAppend(&res, aBuffer, -1); }else if( rc==SQLITE_DONE && pTab->zContentTbl==0 ){ rc = FTS_CORRUPT_VTAB; } } } if( rc==SQLITE_DONE ){ rc = SQLITE_OK; } pMod->xClose(pC); if( rc!=SQLITE_OK ) goto offsets_out; } offsets_out: sqlite3_free(sCtx.aTerm); assert( rc!=SQLITE_DONE ); sqlite3Fts3SegmentsClose(pTab); if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pCtx, rc); sqlite3_free(res.z); }else{ sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free); } return; } /* ** Implementation of matchinfo() function. */ SQLITE_PRIVATE void sqlite3Fts3Matchinfo( sqlite3_context *pContext, /* Function call context */ Fts3Cursor *pCsr, /* FTS3 table cursor */ const char *zArg /* Second arg to matchinfo() function */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; const char *zFormat; if( zArg ){ zFormat = zArg; }else{ zFormat = FTS3_MATCHINFO_DEFAULT; } if( !pCsr->pExpr ){ sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC); return; }else{ /* Retrieve matchinfo() data. */ fts3GetMatchinfo(pContext, pCsr, zFormat); sqlite3Fts3SegmentsClose(pTab); } } #endif /************** End of fts3_snippet.c ****************************************/ /************** Begin file fts3_unicode.c ************************************/ /* ** 2012 May 24 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** Implementation of the "unicode" full-text-search tokenizer. */ #ifndef SQLITE_DISABLE_FTS3_UNICODE /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* #include */ /* #include */ /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ /* ** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied ** from the sqlite3 source file utf.c. If this file is compiled as part ** of the amalgamation, they are not required. */ #ifndef SQLITE_AMALGAMATION static const unsigned char sqlite3Utf8Trans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; #define READ_UTF8(zIn, zTerm, c) \ c = *(zIn++); \ if( c>=0xc0 ){ \ c = sqlite3Utf8Trans1[c-0xc0]; \ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ c = (c<<6) + (0x3f & *(zIn++)); \ } \ if( c<0x80 \ || (c&0xFFFFF800)==0xD800 \ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ } #define WRITE_UTF8(zOut, c) { \ if( c<0x00080 ){ \ *zOut++ = (u8)(c&0xFF); \ } \ else if( c<0x00800 ){ \ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ else if( c<0x10000 ){ \ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ }else{ \ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ *zOut++ = 0x80 + (u8)(c & 0x3F); \ } \ } #endif /* ifndef SQLITE_AMALGAMATION */ typedef struct unicode_tokenizer unicode_tokenizer; typedef struct unicode_cursor unicode_cursor; struct unicode_tokenizer { sqlite3_tokenizer base; int eRemoveDiacritic; int nException; int *aiException; }; struct unicode_cursor { sqlite3_tokenizer_cursor base; const unsigned char *aInput; /* Input text being tokenized */ int nInput; /* Size of aInput[] in bytes */ int iOff; /* Current offset within aInput[] */ int iToken; /* Index of next token to be returned */ char *zToken; /* storage for current token */ int nAlloc; /* space allocated at zToken */ }; /* ** Destroy a tokenizer allocated by unicodeCreate(). */ static int unicodeDestroy(sqlite3_tokenizer *pTokenizer){ if( pTokenizer ){ unicode_tokenizer *p = (unicode_tokenizer *)pTokenizer; sqlite3_free(p->aiException); sqlite3_free(p); } return SQLITE_OK; } /* ** As part of a tokenchars= or separators= option, the CREATE VIRTUAL TABLE ** statement has specified that the tokenizer for this table shall consider ** all characters in string zIn/nIn to be separators (if bAlnum==0) or ** token characters (if bAlnum==1). ** ** For each codepoint in the zIn/nIn string, this function checks if the ** sqlite3FtsUnicodeIsalnum() function already returns the desired result. ** If so, no action is taken. Otherwise, the codepoint is added to the ** unicode_tokenizer.aiException[] array. For the purposes of tokenization, ** the return value of sqlite3FtsUnicodeIsalnum() is inverted for all ** codepoints in the aiException[] array. ** ** If a standalone diacritic mark (one that sqlite3FtsUnicodeIsdiacritic() ** identifies as a diacritic) occurs in the zIn/nIn string it is ignored. ** It is not possible to change the behavior of the tokenizer with respect ** to these codepoints. */ static int unicodeAddExceptions( unicode_tokenizer *p, /* Tokenizer to add exceptions to */ int bAlnum, /* Replace Isalnum() return value with this */ const char *zIn, /* Array of characters to make exceptions */ int nIn /* Length of z in bytes */ ){ const unsigned char *z = (const unsigned char *)zIn; const unsigned char *zTerm = &z[nIn]; unsigned int iCode; int nEntry = 0; assert( bAlnum==0 || bAlnum==1 ); while( zaiException,(p->nException+nEntry)*sizeof(int)); if( aNew==0 ) return SQLITE_NOMEM; nNew = p->nException; z = (const unsigned char *)zIn; while( zi; j--) aNew[j] = aNew[j-1]; aNew[i] = (int)iCode; nNew++; } } p->aiException = aNew; p->nException = nNew; } return SQLITE_OK; } /* ** Return true if the p->aiException[] array contains the value iCode. */ static int unicodeIsException(unicode_tokenizer *p, int iCode){ if( p->nException>0 ){ int *a = p->aiException; int iLo = 0; int iHi = p->nException-1; while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; if( iCode==a[iTest] ){ return 1; }else if( iCode>a[iTest] ){ iLo = iTest+1; }else{ iHi = iTest-1; } } } return 0; } /* ** Return true if, for the purposes of tokenization, codepoint iCode is ** considered a token character (not a separator). */ static int unicodeIsAlnum(unicode_tokenizer *p, int iCode){ assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 ); return sqlite3FtsUnicodeIsalnum(iCode) ^ unicodeIsException(p, iCode); } /* ** Create a new tokenizer instance. */ static int unicodeCreate( int nArg, /* Size of array argv[] */ const char * const *azArg, /* Tokenizer creation arguments */ sqlite3_tokenizer **pp /* OUT: New tokenizer handle */ ){ unicode_tokenizer *pNew; /* New tokenizer object */ int i; int rc = SQLITE_OK; pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer)); if( pNew==NULL ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(unicode_tokenizer)); pNew->eRemoveDiacritic = 1; for(i=0; rc==SQLITE_OK && ieRemoveDiacritic = 1; } else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){ pNew->eRemoveDiacritic = 0; } else if( n==19 && memcmp("remove_diacritics=2", z, 19)==0 ){ pNew->eRemoveDiacritic = 2; } else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){ rc = unicodeAddExceptions(pNew, 1, &z[11], n-11); } else if( n>=11 && memcmp("separators=", z, 11)==0 ){ rc = unicodeAddExceptions(pNew, 0, &z[11], n-11); } else{ /* Unrecognized argument */ rc = SQLITE_ERROR; } } if( rc!=SQLITE_OK ){ unicodeDestroy((sqlite3_tokenizer *)pNew); pNew = 0; } *pp = (sqlite3_tokenizer *)pNew; return rc; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is pInput[0..nBytes-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int unicodeOpen( sqlite3_tokenizer *p, /* The tokenizer */ const char *aInput, /* Input string */ int nInput, /* Size of string aInput in bytes */ sqlite3_tokenizer_cursor **pp /* OUT: New cursor object */ ){ unicode_cursor *pCsr; pCsr = (unicode_cursor *)sqlite3_malloc(sizeof(unicode_cursor)); if( pCsr==0 ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(unicode_cursor)); pCsr->aInput = (const unsigned char *)aInput; if( aInput==0 ){ pCsr->nInput = 0; pCsr->aInput = (const unsigned char*)""; }else if( nInput<0 ){ pCsr->nInput = (int)strlen(aInput); }else{ pCsr->nInput = nInput; } *pp = &pCsr->base; UNUSED_PARAMETER(p); return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to ** simpleOpen() above. */ static int unicodeClose(sqlite3_tokenizer_cursor *pCursor){ unicode_cursor *pCsr = (unicode_cursor *) pCursor; sqlite3_free(pCsr->zToken); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Extract the next token from a tokenization cursor. The cursor must ** have been opened by a prior call to simpleOpen(). */ static int unicodeNext( sqlite3_tokenizer_cursor *pC, /* Cursor returned by simpleOpen */ const char **paToken, /* OUT: Token text */ int *pnToken, /* OUT: Number of bytes at *paToken */ int *piStart, /* OUT: Starting offset of token */ int *piEnd, /* OUT: Ending offset of token */ int *piPos /* OUT: Position integer of token */ ){ unicode_cursor *pCsr = (unicode_cursor *)pC; unicode_tokenizer *p = ((unicode_tokenizer *)pCsr->base.pTokenizer); unsigned int iCode = 0; char *zOut; const unsigned char *z = &pCsr->aInput[pCsr->iOff]; const unsigned char *zStart = z; const unsigned char *zEnd; const unsigned char *zTerm = &pCsr->aInput[pCsr->nInput]; /* Scan past any delimiter characters before the start of the next token. ** Return SQLITE_DONE early if this takes us all the way to the end of ** the input. */ while( z=zTerm ) return SQLITE_DONE; zOut = pCsr->zToken; do { int iOut; /* Grow the output buffer if required. */ if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){ char *zNew = sqlite3_realloc64(pCsr->zToken, pCsr->nAlloc+64); if( !zNew ) return SQLITE_NOMEM; zOut = &zNew[zOut - pCsr->zToken]; pCsr->zToken = zNew; pCsr->nAlloc += 64; } /* Write the folded case of the last character read to the output */ zEnd = z; iOut = sqlite3FtsUnicodeFold((int)iCode, p->eRemoveDiacritic); if( iOut ){ WRITE_UTF8(zOut, iOut); } /* If the cursor is not at EOF, read the next character */ if( z>=zTerm ) break; READ_UTF8(z, zTerm, iCode); }while( unicodeIsAlnum(p, (int)iCode) || sqlite3FtsUnicodeIsdiacritic((int)iCode) ); /* Set the output variables and return. */ pCsr->iOff = (int)(z - pCsr->aInput); *paToken = pCsr->zToken; *pnToken = (int)(zOut - pCsr->zToken); *piStart = (int)(zStart - pCsr->aInput); *piEnd = (int)(zEnd - pCsr->aInput); *piPos = pCsr->iToken++; return SQLITE_OK; } /* ** Set *ppModule to a pointer to the sqlite3_tokenizer_module ** structure for the unicode tokenizer. */ SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const **ppModule){ static const sqlite3_tokenizer_module module = { 0, unicodeCreate, unicodeDestroy, unicodeOpen, unicodeClose, unicodeNext, 0, }; *ppModule = &module; } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ #endif /* ifndef SQLITE_DISABLE_FTS3_UNICODE */ /************** End of fts3_unicode.c ****************************************/ /************** Begin file fts3_unicode2.c ***********************************/ /* ** 2012-05-25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** */ /* ** DO NOT EDIT THIS MACHINE GENERATED FILE. */ #ifndef SQLITE_DISABLE_FTS3_UNICODE #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) /* #include */ /* ** Return true if the argument corresponds to a unicode codepoint ** classified as either a letter or a number. Otherwise false. ** ** The results are undefined if the value passed to this function ** is less than zero. */ SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int c){ /* Each unsigned integer in the following array corresponds to a contiguous ** range of unicode codepoints that are not either letters or numbers (i.e. ** codepoints for which this function should return 0). ** ** The most significant 22 bits in each 32-bit value contain the first ** codepoint in the range. The least significant 10 bits are used to store ** the size of the range (always at least 1). In other words, the value ** ((C<<22) + N) represents a range of N codepoints starting with codepoint ** C. It is not possible to represent a range larger than 1023 codepoints ** using this format. */ static const unsigned int aEntry[] = { 0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07, 0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01, 0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401, 0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01, 0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01, 0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802, 0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F, 0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401, 0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804, 0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403, 0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812, 0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001, 0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802, 0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805, 0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401, 0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03, 0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807, 0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001, 0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01, 0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804, 0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001, 0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802, 0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01, 0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06, 0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007, 0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006, 0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417, 0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14, 0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07, 0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01, 0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001, 0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802, 0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F, 0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002, 0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802, 0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006, 0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D, 0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802, 0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027, 0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403, 0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805, 0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04, 0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401, 0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005, 0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B, 0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A, 0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001, 0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59, 0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807, 0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01, 0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E, 0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100, 0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10, 0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402, 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804, 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012, 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004, 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002, 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803, 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07, 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02, 0x037FFC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, 0x03F4F802, 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, 0x03F95013, 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, 0x03FCEC06, 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, 0x04040003, 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, 0x040E7C01, 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, 0x04280403, 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, 0x04294009, 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, 0x04420003, 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, 0x04460003, 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, 0x05BD442E, 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, 0x07480046, 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, 0x075C5401, 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, 0x075EA401, 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, 0x07C2800F, 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, 0x07C4C03C, 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, 0x07C94002, 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, 0x07CE8025, 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, 0x07D108B6, 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, 0x07D7EC46, 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060, 0x380400F0, }; static const unsigned int aAscii[4] = { 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001, }; if( (unsigned int)c<128 ){ return ( (aAscii[c >> 5] & ((unsigned int)1 << (c & 0x001F)))==0 ); }else if( (unsigned int)c<(1<<22) ){ unsigned int key = (((unsigned int)c)<<10) | 0x000003FF; int iRes = 0; int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1; int iLo = 0; while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; if( key >= aEntry[iTest] ){ iRes = iTest; iLo = iTest+1; }else{ iHi = iTest-1; } } assert( aEntry[0]=aEntry[iRes] ); return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF))); } return 1; } /* ** If the argument is a codepoint corresponding to a lowercase letter ** in the ASCII range with a diacritic added, return the codepoint ** of the ASCII letter only. For example, if passed 235 - "LATIN ** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER ** E"). The resuls of passing a codepoint that corresponds to an ** uppercase letter are undefined. */ static int remove_diacritic(int c, int bComplex){ unsigned short aDia[] = { 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995, 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286, 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732, 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336, 3456, 3696, 3712, 3728, 3744, 3766, 3832, 3896, 3912, 3928, 3944, 3968, 4008, 4040, 4056, 4106, 4138, 4170, 4202, 4234, 4266, 4296, 4312, 4344, 4408, 4424, 4442, 4472, 4488, 4504, 6148, 6198, 6264, 6280, 6360, 6429, 6505, 6529, 61448, 61468, 61512, 61534, 61592, 61610, 61642, 61672, 61688, 61704, 61726, 61784, 61800, 61816, 61836, 61880, 61896, 61914, 61948, 61998, 62062, 62122, 62154, 62184, 62200, 62218, 62252, 62302, 62364, 62410, 62442, 62478, 62536, 62554, 62584, 62604, 62640, 62648, 62656, 62664, 62730, 62766, 62830, 62890, 62924, 62974, 63032, 63050, 63082, 63118, 63182, 63242, 63274, 63310, 63368, 63390, }; #define HIBIT ((unsigned char)0x80) unsigned char aChar[] = { '\0', 'a', 'c', 'e', 'i', 'n', 'o', 'u', 'y', 'y', 'a', 'c', 'd', 'e', 'e', 'g', 'h', 'i', 'j', 'k', 'l', 'n', 'o', 'r', 's', 't', 'u', 'u', 'w', 'y', 'z', 'o', 'u', 'a', 'i', 'o', 'u', 'u'|HIBIT, 'a'|HIBIT, 'g', 'k', 'o', 'o'|HIBIT, 'j', 'g', 'n', 'a'|HIBIT, 'a', 'e', 'i', 'o', 'r', 'u', 's', 't', 'h', 'a', 'e', 'o'|HIBIT, 'o', 'o'|HIBIT, 'y', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', 'a', 'b', 'c'|HIBIT, 'd', 'd', 'e'|HIBIT, 'e', 'e'|HIBIT, 'f', 'g', 'h', 'h', 'i', 'i'|HIBIT, 'k', 'l', 'l'|HIBIT, 'l', 'm', 'n', 'o'|HIBIT, 'p', 'r', 'r'|HIBIT, 'r', 's', 's'|HIBIT, 't', 'u', 'u'|HIBIT, 'v', 'w', 'w', 'x', 'y', 'z', 'h', 't', 'w', 'y', 'a', 'a'|HIBIT, 'a'|HIBIT, 'a'|HIBIT, 'e', 'e'|HIBIT, 'e'|HIBIT, 'i', 'o', 'o'|HIBIT, 'o'|HIBIT, 'o'|HIBIT, 'u', 'u'|HIBIT, 'u'|HIBIT, 'y', }; unsigned int key = (((unsigned int)c)<<3) | 0x00000007; int iRes = 0; int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1; int iLo = 0; while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; if( key >= aDia[iTest] ){ iRes = iTest; iLo = iTest+1; }else{ iHi = iTest-1; } } assert( key>=aDia[iRes] ); if( bComplex==0 && (aChar[iRes] & 0x80) ) return c; return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F); } /* ** Return true if the argument interpreted as a unicode codepoint ** is a diacritical modifier character. */ SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int c){ unsigned int mask0 = 0x08029FDF; unsigned int mask1 = 0x000361F8; if( c<768 || c>817 ) return 0; return (c < 768+32) ? (mask0 & ((unsigned int)1 << (c-768))) : (mask1 & ((unsigned int)1 << (c-768-32))); } /* ** Interpret the argument as a unicode codepoint. If the codepoint ** is an upper case character that has a lower case equivalent, ** return the codepoint corresponding to the lower case version. ** Otherwise, return a copy of the argument. ** ** The results are undefined if the value passed to this function ** is less than zero. */ SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int c, int eRemoveDiacritic){ /* Each entry in the following array defines a rule for folding a range ** of codepoints to lower case. The rule applies to a range of nRange ** codepoints starting at codepoint iCode. ** ** If the least significant bit in flags is clear, then the rule applies ** to all nRange codepoints (i.e. all nRange codepoints are upper case and ** need to be folded). Or, if it is set, then the rule only applies to ** every second codepoint in the range, starting with codepoint C. ** ** The 7 most significant bits in flags are an index into the aiOff[] ** array. If a specific codepoint C does require folding, then its lower ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF). ** ** The contents of this array are generated by parsing the CaseFolding.txt ** file distributed as part of the "Unicode Character Database". See ** http://www.unicode.org for details. */ static const struct TableEntry { unsigned short iCode; unsigned char flags; unsigned char nRange; } aEntry[] = { {65, 14, 26}, {181, 64, 1}, {192, 14, 23}, {216, 14, 7}, {256, 1, 48}, {306, 1, 6}, {313, 1, 16}, {330, 1, 46}, {376, 116, 1}, {377, 1, 6}, {383, 104, 1}, {385, 50, 1}, {386, 1, 4}, {390, 44, 1}, {391, 0, 1}, {393, 42, 2}, {395, 0, 1}, {398, 32, 1}, {399, 38, 1}, {400, 40, 1}, {401, 0, 1}, {403, 42, 1}, {404, 46, 1}, {406, 52, 1}, {407, 48, 1}, {408, 0, 1}, {412, 52, 1}, {413, 54, 1}, {415, 56, 1}, {416, 1, 6}, {422, 60, 1}, {423, 0, 1}, {425, 60, 1}, {428, 0, 1}, {430, 60, 1}, {431, 0, 1}, {433, 58, 2}, {435, 1, 4}, {439, 62, 1}, {440, 0, 1}, {444, 0, 1}, {452, 2, 1}, {453, 0, 1}, {455, 2, 1}, {456, 0, 1}, {458, 2, 1}, {459, 1, 18}, {478, 1, 18}, {497, 2, 1}, {498, 1, 4}, {502, 122, 1}, {503, 134, 1}, {504, 1, 40}, {544, 110, 1}, {546, 1, 18}, {570, 70, 1}, {571, 0, 1}, {573, 108, 1}, {574, 68, 1}, {577, 0, 1}, {579, 106, 1}, {580, 28, 1}, {581, 30, 1}, {582, 1, 10}, {837, 36, 1}, {880, 1, 4}, {886, 0, 1}, {902, 18, 1}, {904, 16, 3}, {908, 26, 1}, {910, 24, 2}, {913, 14, 17}, {931, 14, 9}, {962, 0, 1}, {975, 4, 1}, {976, 140, 1}, {977, 142, 1}, {981, 146, 1}, {982, 144, 1}, {984, 1, 24}, {1008, 136, 1}, {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1}, {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1}, {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32}, {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1}, {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38}, {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1}, {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1}, {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6}, {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6}, {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8}, {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2}, {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1}, {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2}, {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2}, {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2}, {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1}, {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16}, {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47}, {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1}, {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1}, {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1}, {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2}, {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1}, {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14}, {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1}, {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1}, {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1}, {65313, 14, 26}, }; static const unsigned short aiOff[] = { 1, 2, 8, 15, 16, 26, 28, 32, 37, 38, 40, 48, 63, 64, 69, 71, 79, 80, 116, 202, 203, 205, 206, 207, 209, 210, 211, 213, 214, 217, 218, 219, 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721, 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274, 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406, 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462, 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511, 65514, 65521, 65527, 65528, 65529, }; int ret = c; assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 ); if( c<128 ){ if( c>='A' && c<='Z' ) ret = c + ('a' - 'A'); }else if( c<65536 ){ const struct TableEntry *p; int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1; int iLo = 0; int iRes = -1; assert( c>aEntry[0].iCode ); while( iHi>=iLo ){ int iTest = (iHi + iLo) / 2; int cmp = (c - aEntry[iTest].iCode); if( cmp>=0 ){ iRes = iTest; iLo = iTest+1; }else{ iHi = iTest-1; } } assert( iRes>=0 && c>=aEntry[iRes].iCode ); p = &aEntry[iRes]; if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){ ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF; assert( ret>0 ); } if( eRemoveDiacritic ){ ret = remove_diacritic(ret, eRemoveDiacritic==2); } } else if( c>=66560 && c<66600 ){ ret = c + 40; } return ret; } #endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */ #endif /* !defined(SQLITE_DISABLE_FTS3_UNICODE) */ /************** End of fts3_unicode2.c ***************************************/ /************** Begin file json.c ********************************************/ /* ** 2015-08-12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** SQLite JSON functions. ** ** This file began as an extension in ext/misc/json1.c in 2015. That ** extension proved so useful that it has now been moved into the core. ** ** The original design stored all JSON as pure text, canonical RFC-8259. ** Support for JSON-5 extensions was added with version 3.42.0 (2023-05-16). ** All generated JSON text still conforms strictly to RFC-8259, but text ** with JSON-5 extensions is accepted as input. ** ** Beginning with version 3.45.0 (circa 2024-01-01), these routines also ** accept BLOB values that have JSON encoded using a binary representation ** called "JSONB". The name JSONB comes from PostgreSQL, however the on-disk ** format SQLite JSONB is completely different and incompatible with ** PostgreSQL JSONB. ** ** Decoding and interpreting JSONB is still O(N) where N is the size of ** the input, the same as text JSON. However, the constant of proportionality ** for JSONB is much smaller due to faster parsing. The size of each ** element in JSONB is encoded in its header, so there is no need to search ** for delimiters using persnickety syntax rules. JSONB seems to be about ** 3x faster than text JSON as a result. JSONB is also tends to be slightly ** smaller than text JSON, by 5% or 10%, but there are corner cases where ** JSONB can be slightly larger. So you are not far mistaken to say that ** a JSONB blob is the same size as the equivalent RFC-8259 text. ** ** ** THE JSONB ENCODING: ** ** Every JSON element is encoded in JSONB as a header and a payload. ** The header is between 1 and 9 bytes in size. The payload is zero ** or more bytes. ** ** The lower 4 bits of the first byte of the header determines the ** element type: ** ** 0: NULL ** 1: TRUE ** 2: FALSE ** 3: INT -- RFC-8259 integer literal ** 4: INT5 -- JSON5 integer literal ** 5: FLOAT -- RFC-8259 floating point literal ** 6: FLOAT5 -- JSON5 floating point literal ** 7: TEXT -- Text literal acceptable to both SQL and JSON ** 8: TEXTJ -- Text containing RFC-8259 escapes ** 9: TEXT5 -- Text containing JSON5 and/or RFC-8259 escapes ** 10: TEXTRAW -- Text containing unescaped syntax characters ** 11: ARRAY ** 12: OBJECT ** ** The other three possible values (13-15) are reserved for future ** enhancements. ** ** The upper 4 bits of the first byte determine the size of the header ** and sometimes also the size of the payload. If X is the first byte ** of the element and if X>>4 is between 0 and 11, then the payload ** will be that many bytes in size and the header is exactly one byte ** in size. Other four values for X>>4 (12-15) indicate that the header ** is more than one byte in size and that the payload size is determined ** by the remainder of the header, interpreted as a unsigned big-endian ** integer. ** ** Value of X>>4 Size integer Total header size ** ------------- -------------------- ----------------- ** 12 1 byte (0-255) 2 ** 13 2 byte (0-65535) 3 ** 14 4 byte (0-4294967295) 5 ** 15 8 byte (0-1.8e19) 9 ** ** The payload size need not be expressed in its minimal form. For example, ** if the payload size is 10, the size can be expressed in any of 5 different ** ways: (1) (X>>4)==10, (2) (X>>4)==12 following by on 0x0a byte, ** (3) (X>>4)==13 followed by 0x00 and 0x0a, (4) (X>>4)==14 followed by ** 0x00 0x00 0x00 0x0a, or (5) (X>>4)==15 followed by 7 bytes of 0x00 and ** a single byte of 0x0a. The shorter forms are preferred, of course, but ** sometimes when generating JSONB, the payload size is not known in advance ** and it is convenient to reserve sufficient header space to cover the ** largest possible payload size and then come back later and patch up ** the size when it becomes known, resulting in a non-minimal encoding. ** ** The value (X>>4)==15 is not actually used in the current implementation ** (as SQLite is currently unable handle BLOBs larger than about 2GB) ** but is included in the design to allow for future enhancements. ** ** The payload follows the header. NULL, TRUE, and FALSE have no payload and ** their payload size must always be zero. The payload for INT, INT5, ** FLOAT, FLOAT5, TEXT, TEXTJ, TEXT5, and TEXTROW is text. Note that the ** "..." or '...' delimiters are omitted from the various text encodings. ** The payload for ARRAY and OBJECT is a list of additional elements that ** are the content for the array or object. The payload for an OBJECT ** must be an even number of elements. The first element of each pair is ** the label and must be of type TEXT, TEXTJ, TEXT5, or TEXTRAW. ** ** A valid JSONB blob consists of a single element, as described above. ** Usually this will be an ARRAY or OBJECT element which has many more ** elements as its content. But the overall blob is just a single element. ** ** Input validation for JSONB blobs simply checks that the element type ** code is between 0 and 12 and that the total size of the element ** (header plus payload) is the same as the size of the BLOB. If those ** checks are true, the BLOB is assumed to be JSONB and processing continues. ** Errors are only raised if some other miscoding is discovered during ** processing. ** ** Additional information can be found in the doc/jsonb.md file of the ** canonical SQLite source tree. */ #ifndef SQLITE_OMIT_JSON /* #include "sqliteInt.h" */ /* JSONB element types */ #define JSONB_NULL 0 /* "null" */ #define JSONB_TRUE 1 /* "true" */ #define JSONB_FALSE 2 /* "false" */ #define JSONB_INT 3 /* integer acceptable to JSON and SQL */ #define JSONB_INT5 4 /* integer in 0x000 notation */ #define JSONB_FLOAT 5 /* float acceptable to JSON and SQL */ #define JSONB_FLOAT5 6 /* float with JSON5 extensions */ #define JSONB_TEXT 7 /* Text compatible with both JSON and SQL */ #define JSONB_TEXTJ 8 /* Text with JSON escapes */ #define JSONB_TEXT5 9 /* Text with JSON-5 escape */ #define JSONB_TEXTRAW 10 /* SQL text that needs escaping for JSON */ #define JSONB_ARRAY 11 /* An array */ #define JSONB_OBJECT 12 /* An object */ /* Human-readable names for the JSONB values. The index for each ** string must correspond to the JSONB_* integer above. */ static const char * const jsonbType[] = { "null", "true", "false", "integer", "integer", "real", "real", "text", "text", "text", "text", "array", "object", "", "", "", "" }; /* ** Growing our own isspace() routine this way is twice as fast as ** the library isspace() function, resulting in a 7% overall performance ** increase for the text-JSON parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os). */ static const char jsonIsSpace[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define jsonIsspace(x) (jsonIsSpace[(unsigned char)x]) /* ** The set of all space characters recognized by jsonIsspace(). ** Useful as the second argument to strspn(). */ static const char jsonSpaces[] = "\011\012\015\040"; /* ** Characters that are special to JSON. Control characters, ** '"' and '\\' and '\''. Actually, '\'' is not special to ** canonical JSON, but it is special in JSON-5, so we include ** it in the set of special characters. */ static const char jsonIsOk[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; /* Objects */ typedef struct JsonCache JsonCache; typedef struct JsonString JsonString; typedef struct JsonParse JsonParse; /* ** Magic number used for the JSON parse cache in sqlite3_get_auxdata() */ #define JSON_CACHE_ID (-429938) /* Cache entry */ #define JSON_CACHE_SIZE 4 /* Max number of cache entries */ /* ** jsonUnescapeOneChar() returns this invalid code point if it encounters ** a syntax error. */ #define JSON_INVALID_CHAR 0x99999 /* A cache mapping JSON text into JSONB blobs. ** ** Each cache entry is a JsonParse object with the following restrictions: ** ** * The bReadOnly flag must be set ** ** * The aBlob[] array must be owned by the JsonParse object. In other ** words, nBlobAlloc must be non-zero. ** ** * eEdit and delta must be zero. ** ** * zJson must be an RCStr. In other words bJsonIsRCStr must be true. */ struct JsonCache { sqlite3 *db; /* Database connection */ int nUsed; /* Number of active entries in the cache */ JsonParse *a[JSON_CACHE_SIZE]; /* One line for each cache entry */ }; /* An instance of this object represents a JSON string ** under construction. Really, this is a generic string accumulator ** that can be and is used to create strings other than JSON. ** ** If the generated string is longer than will fit into the zSpace[] buffer, ** then it will be an RCStr string. This aids with caching of large ** JSON strings. */ struct JsonString { sqlite3_context *pCtx; /* Function context - put error messages here */ char *zBuf; /* Append JSON content here */ u64 nAlloc; /* Bytes of storage available in zBuf[] */ u64 nUsed; /* Bytes of zBuf[] currently used */ u8 bStatic; /* True if zBuf is static space */ u8 eErr; /* True if an error has been encountered */ char zSpace[100]; /* Initial static space */ }; /* Allowed values for JsonString.eErr */ #define JSTRING_OOM 0x01 /* Out of memory */ #define JSTRING_MALFORMED 0x02 /* Malformed JSONB */ #define JSTRING_ERR 0x04 /* Error already sent to sqlite3_result */ /* The "subtype" set for text JSON values passed through using ** sqlite3_result_subtype() and sqlite3_value_subtype(). */ #define JSON_SUBTYPE 74 /* Ascii for "J" */ /* ** Bit values for the flags passed into various SQL function implementations ** via the sqlite3_user_data() value. */ #define JSON_JSON 0x01 /* Result is always JSON */ #define JSON_SQL 0x02 /* Result is always SQL */ #define JSON_ABPATH 0x03 /* Allow abbreviated JSON path specs */ #define JSON_ISSET 0x04 /* json_set(), not json_insert() */ #define JSON_BLOB 0x08 /* Use the BLOB output format */ /* A parsed JSON value. Lifecycle: ** ** 1. JSON comes in and is parsed into a JSONB value in aBlob. The ** original text is stored in zJson. This step is skipped if the ** input is JSONB instead of text JSON. ** ** 2. The aBlob[] array is searched using the JSON path notation, if needed. ** ** 3. Zero or more changes are made to aBlob[] (via json_remove() or ** json_replace() or json_patch() or similar). ** ** 4. New JSON text is generated from the aBlob[] for output. This step ** is skipped if the function is one of the jsonb_* functions that ** returns JSONB instead of text JSON. */ struct JsonParse { u8 *aBlob; /* JSONB representation of JSON value */ u32 nBlob; /* Bytes of aBlob[] actually used */ u32 nBlobAlloc; /* Bytes allocated to aBlob[]. 0 if aBlob is external */ char *zJson; /* Json text used for parsing */ sqlite3 *db; /* The database connection to which this object belongs */ int nJson; /* Length of the zJson string in bytes */ u32 nJPRef; /* Number of references to this object */ u32 iErr; /* Error location in zJson[] */ u16 iDepth; /* Nesting depth */ u8 nErr; /* Number of errors seen */ u8 oom; /* Set to true if out of memory */ u8 bJsonIsRCStr; /* True if zJson is an RCStr */ u8 hasNonstd; /* True if input uses non-standard features like JSON5 */ u8 bReadOnly; /* Do not modify. */ /* Search and edit information. See jsonLookupStep() */ u8 eEdit; /* Edit operation to apply */ int delta; /* Size change due to the edit */ u32 nIns; /* Number of bytes to insert */ u32 iLabel; /* Location of label if search landed on an object value */ u8 *aIns; /* Content to be inserted */ }; /* Allowed values for JsonParse.eEdit */ #define JEDIT_DEL 1 /* Delete if exists */ #define JEDIT_REPL 2 /* Overwrite if exists */ #define JEDIT_INS 3 /* Insert if not exists */ #define JEDIT_SET 4 /* Insert or overwrite */ /* ** Maximum nesting depth of JSON for this implementation. ** ** This limit is needed to avoid a stack overflow in the recursive ** descent parser. A depth of 1000 is far deeper than any sane JSON ** should go. Historical note: This limit was 2000 prior to version 3.42.0 */ #ifndef SQLITE_JSON_MAX_DEPTH # define JSON_MAX_DEPTH 1000 #else # define JSON_MAX_DEPTH SQLITE_JSON_MAX_DEPTH #endif /* ** Allowed values for the flgs argument to jsonParseFuncArg(); */ #define JSON_EDITABLE 0x01 /* Generate a writable JsonParse object */ #define JSON_KEEPERROR 0x02 /* Return non-NULL even if there is an error */ /************************************************************************** ** Forward references **************************************************************************/ static void jsonReturnStringAsBlob(JsonString*); static int jsonFuncArgMightBeBinary(sqlite3_value *pJson); static u32 jsonTranslateBlobToText(const JsonParse*,u32,JsonString*); static void jsonReturnParse(sqlite3_context*,JsonParse*); static JsonParse *jsonParseFuncArg(sqlite3_context*,sqlite3_value*,u32); static void jsonParseFree(JsonParse*); static u32 jsonbPayloadSize(const JsonParse*, u32, u32*); static u32 jsonUnescapeOneChar(const char*, u32, u32*); /************************************************************************** ** Utility routines for dealing with JsonCache objects **************************************************************************/ /* ** Free a JsonCache object. */ static void jsonCacheDelete(JsonCache *p){ int i; for(i=0; inUsed; i++){ jsonParseFree(p->a[i]); } sqlite3DbFree(p->db, p); } static void jsonCacheDeleteGeneric(void *p){ jsonCacheDelete((JsonCache*)p); } /* ** Insert a new entry into the cache. If the cache is full, expel ** the least recently used entry. Return SQLITE_OK on success or a ** result code otherwise. ** ** Cache entries are stored in age order, oldest first. */ static int jsonCacheInsert( sqlite3_context *ctx, /* The SQL statement context holding the cache */ JsonParse *pParse /* The parse object to be added to the cache */ ){ JsonCache *p; assert( pParse->zJson!=0 ); assert( pParse->bJsonIsRCStr ); assert( pParse->delta==0 ); p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID); if( p==0 ){ sqlite3 *db = sqlite3_context_db_handle(ctx); p = sqlite3DbMallocZero(db, sizeof(*p)); if( p==0 ) return SQLITE_NOMEM; p->db = db; sqlite3_set_auxdata(ctx, JSON_CACHE_ID, p, jsonCacheDeleteGeneric); p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID); if( p==0 ) return SQLITE_NOMEM; } if( p->nUsed >= JSON_CACHE_SIZE ){ jsonParseFree(p->a[0]); memmove(p->a, &p->a[1], (JSON_CACHE_SIZE-1)*sizeof(p->a[0])); p->nUsed = JSON_CACHE_SIZE-1; } assert( pParse->nBlobAlloc>0 ); pParse->eEdit = 0; pParse->nJPRef++; pParse->bReadOnly = 1; p->a[p->nUsed] = pParse; p->nUsed++; return SQLITE_OK; } /* ** Search for a cached translation the json text supplied by pArg. Return ** the JsonParse object if found. Return NULL if not found. ** ** When a match if found, the matching entry is moved to become the ** most-recently used entry if it isn't so already. ** ** The JsonParse object returned still belongs to the Cache and might ** be deleted at any moment. If the caller whants the JsonParse to ** linger, it needs to increment the nPJRef reference counter. */ static JsonParse *jsonCacheSearch( sqlite3_context *ctx, /* The SQL statement context holding the cache */ sqlite3_value *pArg /* Function argument containing SQL text */ ){ JsonCache *p; int i; const char *zJson; int nJson; if( sqlite3_value_type(pArg)!=SQLITE_TEXT ){ return 0; } zJson = (const char*)sqlite3_value_text(pArg); if( zJson==0 ) return 0; nJson = sqlite3_value_bytes(pArg); p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID); if( p==0 ){ return 0; } for(i=0; inUsed; i++){ if( p->a[i]->zJson==zJson ) break; } if( i>=p->nUsed ){ for(i=0; inUsed; i++){ if( p->a[i]->nJson!=nJson ) continue; if( memcmp(p->a[i]->zJson, zJson, nJson)==0 ) break; } } if( inUsed ){ if( inUsed-1 ){ /* Make the matching entry the most recently used entry */ JsonParse *tmp = p->a[i]; memmove(&p->a[i], &p->a[i+1], (p->nUsed-i-1)*sizeof(tmp)); p->a[p->nUsed-1] = tmp; i = p->nUsed - 1; } assert( p->a[i]->delta==0 ); return p->a[i]; }else{ return 0; } } /************************************************************************** ** Utility routines for dealing with JsonString objects **************************************************************************/ /* Turn uninitialized bulk memory into a valid JsonString object ** holding a zero-length string. */ static void jsonStringZero(JsonString *p){ p->zBuf = p->zSpace; p->nAlloc = sizeof(p->zSpace); p->nUsed = 0; p->bStatic = 1; } /* Initialize the JsonString object */ static void jsonStringInit(JsonString *p, sqlite3_context *pCtx){ p->pCtx = pCtx; p->eErr = 0; jsonStringZero(p); } /* Free all allocated memory and reset the JsonString object back to its ** initial state. */ static void jsonStringReset(JsonString *p){ if( !p->bStatic ) sqlite3RCStrUnref(p->zBuf); jsonStringZero(p); } /* Report an out-of-memory (OOM) condition */ static void jsonStringOom(JsonString *p){ p->eErr |= JSTRING_OOM; if( p->pCtx ) sqlite3_result_error_nomem(p->pCtx); jsonStringReset(p); } /* Enlarge pJson->zBuf so that it can hold at least N more bytes. ** Return zero on success. Return non-zero on an OOM error */ static int jsonStringGrow(JsonString *p, u32 N){ u64 nTotal = NnAlloc ? p->nAlloc*2 : p->nAlloc+N+10; char *zNew; if( p->bStatic ){ if( p->eErr ) return 1; zNew = sqlite3RCStrNew(nTotal); if( zNew==0 ){ jsonStringOom(p); return SQLITE_NOMEM; } memcpy(zNew, p->zBuf, (size_t)p->nUsed); p->zBuf = zNew; p->bStatic = 0; }else{ p->zBuf = sqlite3RCStrResize(p->zBuf, nTotal); if( p->zBuf==0 ){ p->eErr |= JSTRING_OOM; jsonStringZero(p); return SQLITE_NOMEM; } } p->nAlloc = nTotal; return SQLITE_OK; } /* Append N bytes from zIn onto the end of the JsonString string. */ static SQLITE_NOINLINE void jsonStringExpandAndAppend( JsonString *p, const char *zIn, u32 N ){ assert( N>0 ); if( jsonStringGrow(p,N) ) return; memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){ if( N==0 ) return; if( N+p->nUsed >= p->nAlloc ){ jsonStringExpandAndAppend(p,zIn,N); }else{ memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } } static void jsonAppendRawNZ(JsonString *p, const char *zIn, u32 N){ assert( N>0 ); if( N+p->nUsed >= p->nAlloc ){ jsonStringExpandAndAppend(p,zIn,N); }else{ memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } } /* Append formatted text (not to exceed N bytes) to the JsonString. */ static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){ va_list ap; if( (p->nUsed + N >= p->nAlloc) && jsonStringGrow(p, N) ) return; va_start(ap, zFormat); sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap); va_end(ap); p->nUsed += (int)strlen(p->zBuf+p->nUsed); } /* Append a single character */ static SQLITE_NOINLINE void jsonAppendCharExpand(JsonString *p, char c){ if( jsonStringGrow(p,1) ) return; p->zBuf[p->nUsed++] = c; } static void jsonAppendChar(JsonString *p, char c){ if( p->nUsed>=p->nAlloc ){ jsonAppendCharExpand(p,c); }else{ p->zBuf[p->nUsed++] = c; } } /* Remove a single character from the end of the string */ static void jsonStringTrimOneChar(JsonString *p){ if( p->eErr==0 ){ assert( p->nUsed>0 ); p->nUsed--; } } /* Make sure there is a zero terminator on p->zBuf[] ** ** Return true on success. Return false if an OOM prevents this ** from happening. */ static int jsonStringTerminate(JsonString *p){ jsonAppendChar(p, 0); jsonStringTrimOneChar(p); return p->eErr==0; } /* Append a comma separator to the output buffer, if the previous ** character is not '[' or '{'. */ static void jsonAppendSeparator(JsonString *p){ char c; if( p->nUsed==0 ) return; c = p->zBuf[p->nUsed-1]; if( c=='[' || c=='{' ) return; jsonAppendChar(p, ','); } /* Append the N-byte string in zIn to the end of the JsonString string ** under construction. Enclose the string in double-quotes ("...") and ** escape any double-quotes or backslash characters contained within the ** string. ** ** This routine is a high-runner. There is a measurable performance ** increase associated with unwinding the jsonIsOk[] loop. */ static void jsonAppendString(JsonString *p, const char *zIn, u32 N){ u32 k; u8 c; const u8 *z = (const u8*)zIn; if( z==0 ) return; if( (N+p->nUsed+2 >= p->nAlloc) && jsonStringGrow(p,N+2)!=0 ) return; p->zBuf[p->nUsed++] = '"'; while( 1 /*exit-by-break*/ ){ k = 0; /* The following while() is the 4-way unwound equivalent of ** ** while( k=N ){ while( k=N ){ if( k>0 ){ memcpy(&p->zBuf[p->nUsed], z, k); p->nUsed += k; } break; } if( k>0 ){ memcpy(&p->zBuf[p->nUsed], z, k); p->nUsed += k; z += k; N -= k; } c = z[0]; if( c=='"' || c=='\\' ){ json_simple_escape: if( (p->nUsed+N+3 > p->nAlloc) && jsonStringGrow(p,N+3)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; p->zBuf[p->nUsed++] = c; }else if( c=='\'' ){ p->zBuf[p->nUsed++] = c; }else{ static const char aSpecial[] = { 0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; assert( sizeof(aSpecial)==32 ); assert( aSpecial['\b']=='b' ); assert( aSpecial['\f']=='f' ); assert( aSpecial['\n']=='n' ); assert( aSpecial['\r']=='r' ); assert( aSpecial['\t']=='t' ); assert( c>=0 && cnUsed+N+7 > p->nAlloc) && jsonStringGrow(p,N+7)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; p->zBuf[p->nUsed++] = 'u'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = "0123456789abcdef"[c>>4]; p->zBuf[p->nUsed++] = "0123456789abcdef"[c&0xf]; } z++; N--; } p->zBuf[p->nUsed++] = '"'; assert( p->nUsednAlloc ); } /* ** Append an sqlite3_value (such as a function parameter) to the JSON ** string under construction in p. */ static void jsonAppendSqlValue( JsonString *p, /* Append to this JSON string */ sqlite3_value *pValue /* Value to append */ ){ switch( sqlite3_value_type(pValue) ){ case SQLITE_NULL: { jsonAppendRawNZ(p, "null", 4); break; } case SQLITE_FLOAT: { jsonPrintf(100, p, "%!0.15g", sqlite3_value_double(pValue)); break; } case SQLITE_INTEGER: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); jsonAppendRaw(p, z, n); break; } case SQLITE_TEXT: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){ jsonAppendRaw(p, z, n); }else{ jsonAppendString(p, z, n); } break; } default: { if( jsonFuncArgMightBeBinary(pValue) ){ JsonParse px; memset(&px, 0, sizeof(px)); px.aBlob = (u8*)sqlite3_value_blob(pValue); px.nBlob = sqlite3_value_bytes(pValue); jsonTranslateBlobToText(&px, 0, p); }else if( p->eErr==0 ){ sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1); p->eErr = JSTRING_ERR; jsonStringReset(p); } break; } } } /* Make the text in p (which is probably a generated JSON text string) ** the result of the SQL function. ** ** The JsonString is reset. ** ** If pParse and ctx are both non-NULL, then the SQL string in p is ** loaded into the zJson field of the pParse object as a RCStr and the ** pParse is added to the cache. */ static void jsonReturnString( JsonString *p, /* String to return */ JsonParse *pParse, /* JSONB source or NULL */ sqlite3_context *ctx /* Where to cache */ ){ assert( (pParse!=0)==(ctx!=0) ); assert( ctx==0 || ctx==p->pCtx ); if( p->eErr==0 ){ int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(p->pCtx)); if( flags & JSON_BLOB ){ jsonReturnStringAsBlob(p); }else if( p->bStatic ){ sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed, SQLITE_TRANSIENT, SQLITE_UTF8); }else if( jsonStringTerminate(p) ){ if( pParse && pParse->bJsonIsRCStr==0 && pParse->nBlobAlloc>0 ){ int rc; pParse->zJson = sqlite3RCStrRef(p->zBuf); pParse->nJson = p->nUsed; pParse->bJsonIsRCStr = 1; rc = jsonCacheInsert(ctx, pParse); if( rc==SQLITE_NOMEM ){ sqlite3_result_error_nomem(ctx); jsonStringReset(p); return; } } sqlite3_result_text64(p->pCtx, sqlite3RCStrRef(p->zBuf), p->nUsed, sqlite3RCStrUnref, SQLITE_UTF8); }else{ sqlite3_result_error_nomem(p->pCtx); } }else if( p->eErr & JSTRING_OOM ){ sqlite3_result_error_nomem(p->pCtx); }else if( p->eErr & JSTRING_MALFORMED ){ sqlite3_result_error(p->pCtx, "malformed JSON", -1); } jsonStringReset(p); } /************************************************************************** ** Utility routines for dealing with JsonParse objects **************************************************************************/ /* ** Reclaim all memory allocated by a JsonParse object. But do not ** delete the JsonParse object itself. */ static void jsonParseReset(JsonParse *pParse){ assert( pParse->nJPRef<=1 ); if( pParse->bJsonIsRCStr ){ sqlite3RCStrUnref(pParse->zJson); pParse->zJson = 0; pParse->nJson = 0; pParse->bJsonIsRCStr = 0; } if( pParse->nBlobAlloc ){ sqlite3DbFree(pParse->db, pParse->aBlob); pParse->aBlob = 0; pParse->nBlob = 0; pParse->nBlobAlloc = 0; } } /* ** Decrement the reference count on the JsonParse object. When the ** count reaches zero, free the object. */ static void jsonParseFree(JsonParse *pParse){ if( pParse ){ if( pParse->nJPRef>1 ){ pParse->nJPRef--; }else{ jsonParseReset(pParse); sqlite3DbFree(pParse->db, pParse); } } } /************************************************************************** ** Utility routines for the JSON text parser **************************************************************************/ /* ** Translate a single byte of Hex into an integer. ** This routine only gives a correct answer if h really is a valid hexadecimal ** character: 0..9a..fA..F. But unlike sqlite3HexToInt(), it does not ** assert() if the digit is not hex. */ static u8 jsonHexToInt(int h){ #ifdef SQLITE_ASCII h += 9*(1&(h>>6)); #endif #ifdef SQLITE_EBCDIC h += 9*(1&~(h>>4)); #endif return (u8)(h & 0xf); } /* ** Convert a 4-byte hex string into an integer */ static u32 jsonHexToInt4(const char *z){ u32 v; v = (jsonHexToInt(z[0])<<12) + (jsonHexToInt(z[1])<<8) + (jsonHexToInt(z[2])<<4) + jsonHexToInt(z[3]); return v; } /* ** Return true if z[] begins with 2 (or more) hexadecimal digits */ static int jsonIs2Hex(const char *z){ return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]); } /* ** Return true if z[] begins with 4 (or more) hexadecimal digits */ static int jsonIs4Hex(const char *z){ return jsonIs2Hex(z) && jsonIs2Hex(&z[2]); } /* ** Return the number of bytes of JSON5 whitespace at the beginning of ** the input string z[]. ** ** JSON5 whitespace consists of any of the following characters: ** ** Unicode UTF-8 Name ** U+0009 09 horizontal tab ** U+000a 0a line feed ** U+000b 0b vertical tab ** U+000c 0c form feed ** U+000d 0d carriage return ** U+0020 20 space ** U+00a0 c2 a0 non-breaking space ** U+1680 e1 9a 80 ogham space mark ** U+2000 e2 80 80 en quad ** U+2001 e2 80 81 em quad ** U+2002 e2 80 82 en space ** U+2003 e2 80 83 em space ** U+2004 e2 80 84 three-per-em space ** U+2005 e2 80 85 four-per-em space ** U+2006 e2 80 86 six-per-em space ** U+2007 e2 80 87 figure space ** U+2008 e2 80 88 punctuation space ** U+2009 e2 80 89 thin space ** U+200a e2 80 8a hair space ** U+2028 e2 80 a8 line separator ** U+2029 e2 80 a9 paragraph separator ** U+202f e2 80 af narrow no-break space (NNBSP) ** U+205f e2 81 9f medium mathematical space (MMSP) ** U+3000 e3 80 80 ideographical space ** U+FEFF ef bb bf byte order mark ** ** In addition, comments between '/', '*' and '*', '/' and ** from '/', '/' to end-of-line are also considered to be whitespace. */ static int json5Whitespace(const char *zIn){ int n = 0; const u8 *z = (u8*)zIn; while( 1 /*exit by "goto whitespace_done"*/ ){ switch( z[n] ){ case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x20: { n++; break; } case '/': { if( z[n+1]=='*' && z[n+2]!=0 ){ int j; for(j=n+3; z[j]!='/' || z[j-1]!='*'; j++){ if( z[j]==0 ) goto whitespace_done; } n = j+1; break; }else if( z[n+1]=='/' ){ int j; char c; for(j=n+2; (c = z[j])!=0; j++){ if( c=='\n' || c=='\r' ) break; if( 0xe2==(u8)c && 0x80==(u8)z[j+1] && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2]) ){ j += 2; break; } } n = j; if( z[n] ) n++; break; } goto whitespace_done; } case 0xc2: { if( z[n+1]==0xa0 ){ n += 2; break; } goto whitespace_done; } case 0xe1: { if( z[n+1]==0x9a && z[n+2]==0x80 ){ n += 3; break; } goto whitespace_done; } case 0xe2: { if( z[n+1]==0x80 ){ u8 c = z[n+2]; if( c<0x80 ) goto whitespace_done; if( c<=0x8a || c==0xa8 || c==0xa9 || c==0xaf ){ n += 3; break; } }else if( z[n+1]==0x81 && z[n+2]==0x9f ){ n += 3; break; } goto whitespace_done; } case 0xe3: { if( z[n+1]==0x80 && z[n+2]==0x80 ){ n += 3; break; } goto whitespace_done; } case 0xef: { if( z[n+1]==0xbb && z[n+2]==0xbf ){ n += 3; break; } goto whitespace_done; } default: { goto whitespace_done; } } } whitespace_done: return n; } /* ** Extra floating-point literals to allow in JSON. */ static const struct NanInfName { char c1; char c2; char n; char eType; char nRepl; char *zMatch; char *zRepl; } aNanInfName[] = { { 'i', 'I', 3, JSONB_FLOAT, 7, "inf", "9.0e999" }, { 'i', 'I', 8, JSONB_FLOAT, 7, "infinity", "9.0e999" }, { 'n', 'N', 3, JSONB_NULL, 4, "NaN", "null" }, { 'q', 'Q', 4, JSONB_NULL, 4, "QNaN", "null" }, { 's', 'S', 4, JSONB_NULL, 4, "SNaN", "null" }, }; /* ** Report the wrong number of arguments for json_insert(), json_replace() ** or json_set(). */ static void jsonWrongNumArgs( sqlite3_context *pCtx, const char *zFuncName ){ char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments", zFuncName); sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); } /**************************************************************************** ** Utility routines for dealing with the binary BLOB representation of JSON ****************************************************************************/ /* ** Expand pParse->aBlob so that it holds at least N bytes. ** ** Return the number of errors. */ static int jsonBlobExpand(JsonParse *pParse, u32 N){ u8 *aNew; u32 t; assert( N>pParse->nBlobAlloc ); if( pParse->nBlobAlloc==0 ){ t = 100; }else{ t = pParse->nBlobAlloc*2; } if( tdb, pParse->aBlob, t); if( aNew==0 ){ pParse->oom = 1; return 1; } pParse->aBlob = aNew; pParse->nBlobAlloc = t; return 0; } /* ** If pParse->aBlob is not previously editable (because it is taken ** from sqlite3_value_blob(), as indicated by the fact that ** pParse->nBlobAlloc==0 and pParse->nBlob>0) then make it editable ** by making a copy into space obtained from malloc. ** ** Return true on success. Return false on OOM. */ static int jsonBlobMakeEditable(JsonParse *pParse, u32 nExtra){ u8 *aOld; u32 nSize; assert( !pParse->bReadOnly ); if( pParse->oom ) return 0; if( pParse->nBlobAlloc>0 ) return 1; aOld = pParse->aBlob; nSize = pParse->nBlob + nExtra; pParse->aBlob = 0; if( jsonBlobExpand(pParse, nSize) ){ return 0; } assert( pParse->nBlobAlloc >= pParse->nBlob + nExtra ); memcpy(pParse->aBlob, aOld, pParse->nBlob); return 1; } /* Expand pParse->aBlob and append one bytes. */ static SQLITE_NOINLINE void jsonBlobExpandAndAppendOneByte( JsonParse *pParse, u8 c ){ jsonBlobExpand(pParse, pParse->nBlob+1); if( pParse->oom==0 ){ assert( pParse->nBlob+1<=pParse->nBlobAlloc ); pParse->aBlob[pParse->nBlob++] = c; } } /* Append a single character. */ static void jsonBlobAppendOneByte(JsonParse *pParse, u8 c){ if( pParse->nBlob >= pParse->nBlobAlloc ){ jsonBlobExpandAndAppendOneByte(pParse, c); }else{ pParse->aBlob[pParse->nBlob++] = c; } } /* Slow version of jsonBlobAppendNode() that first resizes the ** pParse->aBlob structure. */ static void jsonBlobAppendNode(JsonParse*,u8,u32,const void*); static SQLITE_NOINLINE void jsonBlobExpandAndAppendNode( JsonParse *pParse, u8 eType, u32 szPayload, const void *aPayload ){ if( jsonBlobExpand(pParse, pParse->nBlob+szPayload+9) ) return; jsonBlobAppendNode(pParse, eType, szPayload, aPayload); } /* Append an node type byte together with the payload size and ** possibly also the payload. ** ** If aPayload is not NULL, then it is a pointer to the payload which ** is also appended. If aPayload is NULL, the pParse->aBlob[] array ** is resized (if necessary) so that it is big enough to hold the ** payload, but the payload is not appended and pParse->nBlob is left ** pointing to where the first byte of payload will eventually be. */ static void jsonBlobAppendNode( JsonParse *pParse, /* The JsonParse object under construction */ u8 eType, /* Node type. One of JSONB_* */ u32 szPayload, /* Number of bytes of payload */ const void *aPayload /* The payload. Might be NULL */ ){ u8 *a; if( pParse->nBlob+szPayload+9 > pParse->nBlobAlloc ){ jsonBlobExpandAndAppendNode(pParse,eType,szPayload,aPayload); return; } assert( pParse->aBlob!=0 ); a = &pParse->aBlob[pParse->nBlob]; if( szPayload<=11 ){ a[0] = eType | (szPayload<<4); pParse->nBlob += 1; }else if( szPayload<=0xff ){ a[0] = eType | 0xc0; a[1] = szPayload & 0xff; pParse->nBlob += 2; }else if( szPayload<=0xffff ){ a[0] = eType | 0xd0; a[1] = (szPayload >> 8) & 0xff; a[2] = szPayload & 0xff; pParse->nBlob += 3; }else{ a[0] = eType | 0xe0; a[1] = (szPayload >> 24) & 0xff; a[2] = (szPayload >> 16) & 0xff; a[3] = (szPayload >> 8) & 0xff; a[4] = szPayload & 0xff; pParse->nBlob += 5; } if( aPayload ){ pParse->nBlob += szPayload; memcpy(&pParse->aBlob[pParse->nBlob-szPayload], aPayload, szPayload); } } /* Change the payload size for the node at index i to be szPayload. */ static int jsonBlobChangePayloadSize( JsonParse *pParse, u32 i, u32 szPayload ){ u8 *a; u8 szType; u8 nExtra; u8 nNeeded; int delta; if( pParse->oom ) return 0; a = &pParse->aBlob[i]; szType = a[0]>>4; if( szType<=11 ){ nExtra = 0; }else if( szType==12 ){ nExtra = 1; }else if( szType==13 ){ nExtra = 2; }else{ nExtra = 4; } if( szPayload<=11 ){ nNeeded = 0; }else if( szPayload<=0xff ){ nNeeded = 1; }else if( szPayload<=0xffff ){ nNeeded = 2; }else{ nNeeded = 4; } delta = nNeeded - nExtra; if( delta ){ u32 newSize = pParse->nBlob + delta; if( delta>0 ){ if( newSize>pParse->nBlobAlloc && jsonBlobExpand(pParse, newSize) ){ return 0; /* OOM error. Error state recorded in pParse->oom. */ } a = &pParse->aBlob[i]; memmove(&a[1+delta], &a[1], pParse->nBlob - (i+1)); }else{ memmove(&a[1], &a[1-delta], pParse->nBlob - (i+1-delta)); } pParse->nBlob = newSize; } if( nNeeded==0 ){ a[0] = (a[0] & 0x0f) | (szPayload<<4); }else if( nNeeded==1 ){ a[0] = (a[0] & 0x0f) | 0xc0; a[1] = szPayload & 0xff; }else if( nNeeded==2 ){ a[0] = (a[0] & 0x0f) | 0xd0; a[1] = (szPayload >> 8) & 0xff; a[2] = szPayload & 0xff; }else{ a[0] = (a[0] & 0x0f) | 0xe0; a[1] = (szPayload >> 24) & 0xff; a[2] = (szPayload >> 16) & 0xff; a[3] = (szPayload >> 8) & 0xff; a[4] = szPayload & 0xff; } return delta; } /* ** If z[0] is 'u' and is followed by exactly 4 hexadecimal character, ** then set *pOp to JSONB_TEXTJ and return true. If not, do not make ** any changes to *pOp and return false. */ static int jsonIs4HexB(const char *z, int *pOp){ if( z[0]!='u' ) return 0; if( !jsonIs4Hex(&z[1]) ) return 0; *pOp = JSONB_TEXTJ; return 1; } /* ** Check a single element of the JSONB in pParse for validity. ** ** The element to be checked starts at offset i and must end at on the ** last byte before iEnd. ** ** Return 0 if everything is correct. Return the 1-based byte offset of the ** error if a problem is detected. (In other words, if the error is at offset ** 0, return 1). */ static u32 jsonbValidityCheck( const JsonParse *pParse, /* Input JSONB. Only aBlob and nBlob are used */ u32 i, /* Start of element as pParse->aBlob[i] */ u32 iEnd, /* One more than the last byte of the element */ u32 iDepth /* Current nesting depth */ ){ u32 n, sz, j, k; const u8 *z; u8 x; if( iDepth>JSON_MAX_DEPTH ) return i+1; sz = 0; n = jsonbPayloadSize(pParse, i, &sz); if( NEVER(n==0) ) return i+1; /* Checked by caller */ if( NEVER(i+n+sz!=iEnd) ) return i+1; /* Checked by caller */ z = pParse->aBlob; x = z[i] & 0x0f; switch( x ){ case JSONB_NULL: case JSONB_TRUE: case JSONB_FALSE: { return n+sz==1 ? 0 : i+1; } case JSONB_INT: { if( sz<1 ) return i+1; j = i+n; if( z[j]=='-' ){ j++; if( sz<2 ) return i+1; } k = i+n+sz; while( jk ) return j+1; if( z[j+1]!='.' && z[j+1]!='e' && z[j+1]!='E' ) return j+1; j++; } for(; j0 ) return j+1; if( x==JSONB_FLOAT && (j==k-1 || !sqlite3Isdigit(z[j+1])) ){ return j+1; } seen = 1; continue; } if( z[j]=='e' || z[j]=='E' ){ if( seen==2 ) return j+1; if( j==k-1 ) return j+1; if( z[j+1]=='+' || z[j+1]=='-' ){ j++; if( j==k-1 ) return j+1; } seen = 2; continue; } return j+1; } if( seen==0 ) return i+1; return 0; } case JSONB_TEXT: { j = i+n; k = j+sz; while( j=k ){ return j+1; }else if( strchr("\"\\/bfnrt",z[j+1])!=0 ){ j++; }else if( z[j+1]=='u' ){ if( j+5>=k ) return j+1; if( !jsonIs4Hex((const char*)&z[j+2]) ) return j+1; j++; }else if( x!=JSONB_TEXT5 ){ return j+1; }else{ u32 c = 0; u32 szC = jsonUnescapeOneChar((const char*)&z[j], k-j, &c); if( c==JSON_INVALID_CHAR ) return j+1; j += szC - 1; } } j++; } return 0; } case JSONB_TEXTRAW: { return 0; } case JSONB_ARRAY: { u32 sub; j = i+n; k = j+sz; while( jk ) return j+1; sub = jsonbValidityCheck(pParse, j, j+n+sz, iDepth+1); if( sub ) return sub; j += n + sz; } assert( j==k ); return 0; } case JSONB_OBJECT: { u32 cnt = 0; u32 sub; j = i+n; k = j+sz; while( jk ) return j+1; if( (cnt & 1)==0 ){ x = z[j] & 0x0f; if( xJSONB_TEXTRAW ) return j+1; } sub = jsonbValidityCheck(pParse, j, j+n+sz, iDepth+1); if( sub ) return sub; cnt++; j += n + sz; } assert( j==k ); if( (cnt & 1)!=0 ) return j+1; return 0; } default: { return i+1; } } } /* ** Translate a single element of JSON text at pParse->zJson[i] into ** its equivalent binary JSONB representation. Append the translation into ** pParse->aBlob[] beginning at pParse->nBlob. The size of ** pParse->aBlob[] is increased as necessary. ** ** Return the index of the first character past the end of the element parsed, ** or one of the following special result codes: ** ** 0 End of input ** -1 Syntax error or OOM ** -2 '}' seen \ ** -3 ']' seen \___ For these returns, pParse->iErr is set to ** -4 ',' seen / the index in zJson[] of the seen character ** -5 ':' seen / */ static int jsonTranslateTextToBlob(JsonParse *pParse, u32 i){ char c; u32 j; u32 iThis, iStart; int x; u8 t; const char *z = pParse->zJson; json_parse_restart: switch( (u8)z[i] ){ case '{': { /* Parse object */ iThis = pParse->nBlob; jsonBlobAppendNode(pParse, JSONB_OBJECT, pParse->nJson-i, 0); if( ++pParse->iDepth > JSON_MAX_DEPTH ){ pParse->iErr = i; return -1; } iStart = pParse->nBlob; for(j=i+1;;j++){ u32 iBlob = pParse->nBlob; x = jsonTranslateTextToBlob(pParse, j); if( x<=0 ){ int op; if( x==(-2) ){ j = pParse->iErr; if( pParse->nBlob!=(u32)iStart ) pParse->hasNonstd = 1; break; } j += json5Whitespace(&z[j]); op = JSONB_TEXT; if( sqlite3JsonId1(z[j]) || (z[j]=='\\' && jsonIs4HexB(&z[j+1], &op)) ){ int k = j+1; while( (sqlite3JsonId2(z[k]) && json5Whitespace(&z[k])==0) || (z[k]=='\\' && jsonIs4HexB(&z[k+1], &op)) ){ k++; } assert( iBlob==pParse->nBlob ); jsonBlobAppendNode(pParse, op, k-j, &z[j]); pParse->hasNonstd = 1; x = k; }else{ if( x!=-1 ) pParse->iErr = j; return -1; } } if( pParse->oom ) return -1; t = pParse->aBlob[iBlob] & 0x0f; if( tJSONB_TEXTRAW ){ pParse->iErr = j; return -1; } j = x; if( z[j]==':' ){ j++; }else{ if( jsonIsspace(z[j]) ){ /* strspn() is not helpful here */ do{ j++; }while( jsonIsspace(z[j]) ); if( z[j]==':' ){ j++; goto parse_object_value; } } x = jsonTranslateTextToBlob(pParse, j); if( x!=(-5) ){ if( x!=(-1) ) pParse->iErr = j; return -1; } j = pParse->iErr+1; } parse_object_value: x = jsonTranslateTextToBlob(pParse, j); if( x<=0 ){ if( x!=(-1) ) pParse->iErr = j; return -1; } j = x; if( z[j]==',' ){ continue; }else if( z[j]=='}' ){ break; }else{ if( jsonIsspace(z[j]) ){ j += 1 + (u32)strspn(&z[j+1], jsonSpaces); if( z[j]==',' ){ continue; }else if( z[j]=='}' ){ break; } } x = jsonTranslateTextToBlob(pParse, j); if( x==(-4) ){ j = pParse->iErr; continue; } if( x==(-2) ){ j = pParse->iErr; break; } } pParse->iErr = j; return -1; } jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart); pParse->iDepth--; return j+1; } case '[': { /* Parse array */ iThis = pParse->nBlob; assert( i<=(u32)pParse->nJson ); jsonBlobAppendNode(pParse, JSONB_ARRAY, pParse->nJson - i, 0); iStart = pParse->nBlob; if( pParse->oom ) return -1; if( ++pParse->iDepth > JSON_MAX_DEPTH ){ pParse->iErr = i; return -1; } for(j=i+1;;j++){ x = jsonTranslateTextToBlob(pParse, j); if( x<=0 ){ if( x==(-3) ){ j = pParse->iErr; if( pParse->nBlob!=iStart ) pParse->hasNonstd = 1; break; } if( x!=(-1) ) pParse->iErr = j; return -1; } j = x; if( z[j]==',' ){ continue; }else if( z[j]==']' ){ break; }else{ if( jsonIsspace(z[j]) ){ j += 1 + (u32)strspn(&z[j+1], jsonSpaces); if( z[j]==',' ){ continue; }else if( z[j]==']' ){ break; } } x = jsonTranslateTextToBlob(pParse, j); if( x==(-4) ){ j = pParse->iErr; continue; } if( x==(-3) ){ j = pParse->iErr; break; } } pParse->iErr = j; return -1; } jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart); pParse->iDepth--; return j+1; } case '\'': { u8 opcode; char cDelim; pParse->hasNonstd = 1; opcode = JSONB_TEXT; goto parse_string; case '"': /* Parse string */ opcode = JSONB_TEXT; parse_string: cDelim = z[i]; j = i+1; while( 1 /*exit-by-break*/ ){ if( jsonIsOk[(u8)z[j]] ){ if( !jsonIsOk[(u8)z[j+1]] ){ j += 1; }else if( !jsonIsOk[(u8)z[j+2]] ){ j += 2; }else{ j += 3; continue; } } c = z[j]; if( c==cDelim ){ break; }else if( c=='\\' ){ c = z[++j]; if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f' || c=='n' || c=='r' || c=='t' || (c=='u' && jsonIs4Hex(&z[j+1])) ){ if( opcode==JSONB_TEXT ) opcode = JSONB_TEXTJ; }else if( c=='\'' || c=='0' || c=='v' || c=='\n' || (0xe2==(u8)c && 0x80==(u8)z[j+1] && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2])) || (c=='x' && jsonIs2Hex(&z[j+1])) ){ opcode = JSONB_TEXT5; pParse->hasNonstd = 1; }else if( c=='\r' ){ if( z[j+1]=='\n' ) j++; opcode = JSONB_TEXT5; pParse->hasNonstd = 1; }else{ pParse->iErr = j; return -1; } }else if( c<=0x1f ){ /* Control characters are not allowed in strings */ pParse->iErr = j; return -1; }else if( c=='"' ){ opcode = JSONB_TEXT5; } j++; } jsonBlobAppendNode(pParse, opcode, j-1-i, &z[i+1]); return j+1; } case 't': { if( strncmp(z+i,"true",4)==0 && !sqlite3Isalnum(z[i+4]) ){ jsonBlobAppendOneByte(pParse, JSONB_TRUE); return i+4; } pParse->iErr = i; return -1; } case 'f': { if( strncmp(z+i,"false",5)==0 && !sqlite3Isalnum(z[i+5]) ){ jsonBlobAppendOneByte(pParse, JSONB_FALSE); return i+5; } pParse->iErr = i; return -1; } case '+': { u8 seenE; pParse->hasNonstd = 1; t = 0x00; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */ goto parse_number; case '.': if( sqlite3Isdigit(z[i+1]) ){ pParse->hasNonstd = 1; t = 0x03; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */ seenE = 0; goto parse_number_2; } pParse->iErr = i; return -1; case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* Parse number */ t = 0x00; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */ parse_number: seenE = 0; assert( '-' < '0' ); assert( '+' < '0' ); assert( '.' < '0' ); c = z[i]; if( c<='0' ){ if( c=='0' ){ if( (z[i+1]=='x' || z[i+1]=='X') && sqlite3Isxdigit(z[i+2]) ){ assert( t==0x00 ); pParse->hasNonstd = 1; t = 0x01; for(j=i+3; sqlite3Isxdigit(z[j]); j++){} goto parse_number_finish; }else if( sqlite3Isdigit(z[i+1]) ){ pParse->iErr = i+1; return -1; } }else{ if( !sqlite3Isdigit(z[i+1]) ){ /* JSON5 allows for "+Infinity" and "-Infinity" using exactly ** that case. SQLite also allows these in any case and it allows ** "+inf" and "-inf". */ if( (z[i+1]=='I' || z[i+1]=='i') && sqlite3StrNICmp(&z[i+1], "inf",3)==0 ){ pParse->hasNonstd = 1; if( z[i]=='-' ){ jsonBlobAppendNode(pParse, JSONB_FLOAT, 6, "-9e999"); }else{ jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999"); } return i + (sqlite3StrNICmp(&z[i+4],"inity",5)==0 ? 9 : 4); } if( z[i+1]=='.' ){ pParse->hasNonstd = 1; t |= 0x01; goto parse_number_2; } pParse->iErr = i; return -1; } if( z[i+1]=='0' ){ if( sqlite3Isdigit(z[i+2]) ){ pParse->iErr = i+1; return -1; }else if( (z[i+2]=='x' || z[i+2]=='X') && sqlite3Isxdigit(z[i+3]) ){ pParse->hasNonstd = 1; t |= 0x01; for(j=i+4; sqlite3Isxdigit(z[j]); j++){} goto parse_number_finish; } } } } parse_number_2: for(j=i+1;; j++){ c = z[j]; if( sqlite3Isdigit(c) ) continue; if( c=='.' ){ if( (t & 0x02)!=0 ){ pParse->iErr = j; return -1; } t |= 0x02; continue; } if( c=='e' || c=='E' ){ if( z[j-1]<'0' ){ if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){ pParse->hasNonstd = 1; t |= 0x01; }else{ pParse->iErr = j; return -1; } } if( seenE ){ pParse->iErr = j; return -1; } t |= 0x02; seenE = 1; c = z[j+1]; if( c=='+' || c=='-' ){ j++; c = z[j+1]; } if( c<'0' || c>'9' ){ pParse->iErr = j; return -1; } continue; } break; } if( z[j-1]<'0' ){ if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){ pParse->hasNonstd = 1; t |= 0x01; }else{ pParse->iErr = j; return -1; } } parse_number_finish: assert( JSONB_INT+0x01==JSONB_INT5 ); assert( JSONB_FLOAT+0x01==JSONB_FLOAT5 ); assert( JSONB_INT+0x02==JSONB_FLOAT ); if( z[i]=='+' ) i++; jsonBlobAppendNode(pParse, JSONB_INT+t, j-i, &z[i]); return j; } case '}': { pParse->iErr = i; return -2; /* End of {...} */ } case ']': { pParse->iErr = i; return -3; /* End of [...] */ } case ',': { pParse->iErr = i; return -4; /* List separator */ } case ':': { pParse->iErr = i; return -5; /* Object label/value separator */ } case 0: { return 0; /* End of file */ } case 0x09: case 0x0a: case 0x0d: case 0x20: { i += 1 + (u32)strspn(&z[i+1], jsonSpaces); goto json_parse_restart; } case 0x0b: case 0x0c: case '/': case 0xc2: case 0xe1: case 0xe2: case 0xe3: case 0xef: { j = json5Whitespace(&z[i]); if( j>0 ){ i += j; pParse->hasNonstd = 1; goto json_parse_restart; } pParse->iErr = i; return -1; } case 'n': { if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){ jsonBlobAppendOneByte(pParse, JSONB_NULL); return i+4; } /* fall-through into the default case that checks for NaN */ } default: { u32 k; int nn; c = z[i]; for(k=0; khasNonstd = 1; return i + nn; } pParse->iErr = i; return -1; /* Syntax error */ } } /* End switch(z[i]) */ } /* ** Parse a complete JSON string. Return 0 on success or non-zero if there ** are any errors. If an error occurs, free all memory held by pParse, ** but not pParse itself. ** ** pParse must be initialized to an empty parse object prior to calling ** this routine. */ static int jsonConvertTextToBlob( JsonParse *pParse, /* Initialize and fill this JsonParse object */ sqlite3_context *pCtx /* Report errors here */ ){ int i; const char *zJson = pParse->zJson; i = jsonTranslateTextToBlob(pParse, 0); if( pParse->oom ) i = -1; if( i>0 ){ #ifdef SQLITE_DEBUG assert( pParse->iDepth==0 ); if( sqlite3Config.bJsonSelfcheck ){ assert( jsonbValidityCheck(pParse, 0, pParse->nBlob, 0)==0 ); } #endif while( jsonIsspace(zJson[i]) ) i++; if( zJson[i] ){ i += json5Whitespace(&zJson[i]); if( zJson[i] ){ if( pCtx ) sqlite3_result_error(pCtx, "malformed JSON", -1); jsonParseReset(pParse); return 1; } pParse->hasNonstd = 1; } } if( i<=0 ){ if( pCtx!=0 ){ if( pParse->oom ){ sqlite3_result_error_nomem(pCtx); }else{ sqlite3_result_error(pCtx, "malformed JSON", -1); } } jsonParseReset(pParse); return 1; } return 0; } /* ** The input string pStr is a well-formed JSON text string. Convert ** this into the JSONB format and make it the return value of the ** SQL function. */ static void jsonReturnStringAsBlob(JsonString *pStr){ JsonParse px; memset(&px, 0, sizeof(px)); jsonStringTerminate(pStr); if( pStr->eErr ){ sqlite3_result_error_nomem(pStr->pCtx); return; } px.zJson = pStr->zBuf; px.nJson = pStr->nUsed; px.db = sqlite3_context_db_handle(pStr->pCtx); (void)jsonTranslateTextToBlob(&px, 0); if( px.oom ){ sqlite3DbFree(px.db, px.aBlob); sqlite3_result_error_nomem(pStr->pCtx); }else{ assert( px.nBlobAlloc>0 ); assert( !px.bReadOnly ); sqlite3_result_blob(pStr->pCtx, px.aBlob, px.nBlob, SQLITE_DYNAMIC); } } /* The byte at index i is a node type-code. This routine ** determines the payload size for that node and writes that ** payload size in to *pSz. It returns the offset from i to the ** beginning of the payload. Return 0 on error. */ static u32 jsonbPayloadSize(const JsonParse *pParse, u32 i, u32 *pSz){ u8 x; u32 sz; u32 n; if( NEVER(i>pParse->nBlob) ){ *pSz = 0; return 0; } x = pParse->aBlob[i]>>4; if( x<=11 ){ sz = x; n = 1; }else if( x==12 ){ if( i+1>=pParse->nBlob ){ *pSz = 0; return 0; } sz = pParse->aBlob[i+1]; n = 2; }else if( x==13 ){ if( i+2>=pParse->nBlob ){ *pSz = 0; return 0; } sz = (pParse->aBlob[i+1]<<8) + pParse->aBlob[i+2]; n = 3; }else if( x==14 ){ if( i+4>=pParse->nBlob ){ *pSz = 0; return 0; } sz = ((u32)pParse->aBlob[i+1]<<24) + (pParse->aBlob[i+2]<<16) + (pParse->aBlob[i+3]<<8) + pParse->aBlob[i+4]; n = 5; }else{ if( i+8>=pParse->nBlob || pParse->aBlob[i+1]!=0 || pParse->aBlob[i+2]!=0 || pParse->aBlob[i+3]!=0 || pParse->aBlob[i+4]!=0 ){ *pSz = 0; return 0; } sz = (pParse->aBlob[i+5]<<24) + (pParse->aBlob[i+6]<<16) + (pParse->aBlob[i+7]<<8) + pParse->aBlob[i+8]; n = 9; } if( (i64)i+sz+n > pParse->nBlob && (i64)i+sz+n > pParse->nBlob-pParse->delta ){ sz = 0; n = 0; } *pSz = sz; return n; } /* ** Translate the binary JSONB representation of JSON beginning at ** pParse->aBlob[i] into a JSON text string. Append the JSON ** text onto the end of pOut. Return the index in pParse->aBlob[] ** of the first byte past the end of the element that is translated. ** ** If an error is detected in the BLOB input, the pOut->eErr flag ** might get set to JSTRING_MALFORMED. But not all BLOB input errors ** are detected. So a malformed JSONB input might either result ** in an error, or in incorrect JSON. ** ** The pOut->eErr JSTRING_OOM flag is set on a OOM. */ static u32 jsonTranslateBlobToText( const JsonParse *pParse, /* the complete parse of the JSON */ u32 i, /* Start rendering at this index */ JsonString *pOut /* Write JSON here */ ){ u32 sz, n, j, iEnd; n = jsonbPayloadSize(pParse, i, &sz); if( n==0 ){ pOut->eErr |= JSTRING_MALFORMED; return pParse->nBlob+1; } switch( pParse->aBlob[i] & 0x0f ){ case JSONB_NULL: { jsonAppendRawNZ(pOut, "null", 4); return i+1; } case JSONB_TRUE: { jsonAppendRawNZ(pOut, "true", 4); return i+1; } case JSONB_FALSE: { jsonAppendRawNZ(pOut, "false", 5); return i+1; } case JSONB_INT: case JSONB_FLOAT: { if( sz==0 ) goto malformed_jsonb; jsonAppendRaw(pOut, (const char*)&pParse->aBlob[i+n], sz); break; } case JSONB_INT5: { /* Integer literal in hexadecimal notation */ u32 k = 2; sqlite3_uint64 u = 0; const char *zIn = (const char*)&pParse->aBlob[i+n]; int bOverflow = 0; if( sz==0 ) goto malformed_jsonb; if( zIn[0]=='-' ){ jsonAppendChar(pOut, '-'); k++; }else if( zIn[0]=='+' ){ k++; } for(; keErr |= JSTRING_MALFORMED; break; }else if( (u>>60)!=0 ){ bOverflow = 1; }else{ u = u*16 + sqlite3HexToInt(zIn[k]); } } jsonPrintf(100,pOut,bOverflow?"9.0e999":"%llu", u); break; } case JSONB_FLOAT5: { /* Float literal missing digits beside "." */ u32 k = 0; const char *zIn = (const char*)&pParse->aBlob[i+n]; if( sz==0 ) goto malformed_jsonb; if( zIn[0]=='-' ){ jsonAppendChar(pOut, '-'); k++; } if( zIn[k]=='.' ){ jsonAppendChar(pOut, '0'); } for(; kaBlob[i+n], sz); jsonAppendChar(pOut, '"'); break; } case JSONB_TEXT5: { const char *zIn; u32 k; u32 sz2 = sz; zIn = (const char*)&pParse->aBlob[i+n]; jsonAppendChar(pOut, '"'); while( sz2>0 ){ for(k=0; k0 ){ jsonAppendRawNZ(pOut, zIn, k); if( k>=sz2 ){ break; } zIn += k; sz2 -= k; } if( zIn[0]=='"' ){ jsonAppendRawNZ(pOut, "\\\"", 2); zIn++; sz2--; continue; } assert( zIn[0]=='\\' ); assert( sz2>=1 ); if( sz2<2 ){ pOut->eErr |= JSTRING_MALFORMED; break; } switch( (u8)zIn[1] ){ case '\'': jsonAppendChar(pOut, '\''); break; case 'v': jsonAppendRawNZ(pOut, "\\u0009", 6); break; case 'x': if( sz2<4 ){ pOut->eErr |= JSTRING_MALFORMED; sz2 = 2; break; } jsonAppendRawNZ(pOut, "\\u00", 4); jsonAppendRawNZ(pOut, &zIn[2], 2); zIn += 2; sz2 -= 2; break; case '0': jsonAppendRawNZ(pOut, "\\u0000", 6); break; case '\r': if( sz2>2 && zIn[2]=='\n' ){ zIn++; sz2--; } break; case '\n': break; case 0xe2: /* '\' followed by either U+2028 or U+2029 is ignored as ** whitespace. Not that in UTF8, U+2028 is 0xe2 0x80 0x29. ** U+2029 is the same except for the last byte */ if( sz2<4 || 0x80!=(u8)zIn[2] || (0xa8!=(u8)zIn[3] && 0xa9!=(u8)zIn[3]) ){ pOut->eErr |= JSTRING_MALFORMED; sz2 = 2; break; } zIn += 2; sz2 -= 2; break; default: jsonAppendRawNZ(pOut, zIn, 2); break; } assert( sz2>=2 ); zIn += 2; sz2 -= 2; } jsonAppendChar(pOut, '"'); break; } case JSONB_TEXTRAW: { jsonAppendString(pOut, (const char*)&pParse->aBlob[i+n], sz); break; } case JSONB_ARRAY: { jsonAppendChar(pOut, '['); j = i+n; iEnd = j+sz; while( jeErr==0 ){ j = jsonTranslateBlobToText(pParse, j, pOut); jsonAppendChar(pOut, ','); } if( j>iEnd ) pOut->eErr |= JSTRING_MALFORMED; if( sz>0 ) jsonStringTrimOneChar(pOut); jsonAppendChar(pOut, ']'); break; } case JSONB_OBJECT: { int x = 0; jsonAppendChar(pOut, '{'); j = i+n; iEnd = j+sz; while( jeErr==0 ){ j = jsonTranslateBlobToText(pParse, j, pOut); jsonAppendChar(pOut, (x++ & 1) ? ',' : ':'); } if( (x & 1)!=0 || j>iEnd ) pOut->eErr |= JSTRING_MALFORMED; if( sz>0 ) jsonStringTrimOneChar(pOut); jsonAppendChar(pOut, '}'); break; } default: { malformed_jsonb: pOut->eErr |= JSTRING_MALFORMED; break; } } return i+n+sz; } /* Return true if the input pJson ** ** For performance reasons, this routine does not do a detailed check of the ** input BLOB to ensure that it is well-formed. Hence, false positives are ** possible. False negatives should never occur, however. */ static int jsonFuncArgMightBeBinary(sqlite3_value *pJson){ u32 sz, n; const u8 *aBlob; int nBlob; JsonParse s; if( sqlite3_value_type(pJson)!=SQLITE_BLOB ) return 0; aBlob = sqlite3_value_blob(pJson); nBlob = sqlite3_value_bytes(pJson); if( nBlob<1 ) return 0; if( NEVER(aBlob==0) || (aBlob[0] & 0x0f)>JSONB_OBJECT ) return 0; memset(&s, 0, sizeof(s)); s.aBlob = (u8*)aBlob; s.nBlob = nBlob; n = jsonbPayloadSize(&s, 0, &sz); if( n==0 ) return 0; if( sz+n!=(u32)nBlob ) return 0; if( (aBlob[0] & 0x0f)<=JSONB_FALSE && sz>0 ) return 0; return sz+n==(u32)nBlob; } /* ** Given that a JSONB_ARRAY object starts at offset i, return ** the number of entries in that array. */ static u32 jsonbArrayCount(JsonParse *pParse, u32 iRoot){ u32 n, sz, i, iEnd; u32 k = 0; n = jsonbPayloadSize(pParse, iRoot, &sz); iEnd = iRoot+n+sz; for(i=iRoot+n; n>0 && idelta. */ static void jsonAfterEditSizeAdjust(JsonParse *pParse, u32 iRoot){ u32 sz = 0; u32 nBlob; assert( pParse->delta!=0 ); assert( pParse->nBlobAlloc >= pParse->nBlob ); nBlob = pParse->nBlob; pParse->nBlob = pParse->nBlobAlloc; (void)jsonbPayloadSize(pParse, iRoot, &sz); pParse->nBlob = nBlob; sz += pParse->delta; pParse->delta += jsonBlobChangePayloadSize(pParse, iRoot, sz); } /* ** Modify the JSONB blob at pParse->aBlob by removing nDel bytes of ** content beginning at iDel, and replacing them with nIns bytes of ** content given by aIns. ** ** nDel may be zero, in which case no bytes are removed. But iDel is ** still important as new bytes will be insert beginning at iDel. ** ** aIns may be zero, in which case space is created to hold nIns bytes ** beginning at iDel, but that space is uninitialized. ** ** Set pParse->oom if an OOM occurs. */ static void jsonBlobEdit( JsonParse *pParse, /* The JSONB to be modified is in pParse->aBlob */ u32 iDel, /* First byte to be removed */ u32 nDel, /* Number of bytes to remove */ const u8 *aIns, /* Content to insert */ u32 nIns /* Bytes of content to insert */ ){ i64 d = (i64)nIns - (i64)nDel; if( d!=0 ){ if( pParse->nBlob + d > pParse->nBlobAlloc ){ jsonBlobExpand(pParse, pParse->nBlob+d); if( pParse->oom ) return; } memmove(&pParse->aBlob[iDel+nIns], &pParse->aBlob[iDel+nDel], pParse->nBlob - (iDel+nDel)); pParse->nBlob += d; pParse->delta += d; } if( nIns && aIns ) memcpy(&pParse->aBlob[iDel], aIns, nIns); } /* ** Return the number of escaped newlines to be ignored. ** An escaped newline is a one of the following byte sequences: ** ** 0x5c 0x0a ** 0x5c 0x0d ** 0x5c 0x0d 0x0a ** 0x5c 0xe2 0x80 0xa8 ** 0x5c 0xe2 0x80 0xa9 */ static u32 jsonBytesToBypass(const char *z, u32 n){ u32 i = 0; while( i+10 ); assert( z[0]=='\\' ); if( n<2 ){ *piOut = JSON_INVALID_CHAR; return n; } switch( (u8)z[1] ){ case 'u': { u32 v, vlo; if( n<6 ){ *piOut = JSON_INVALID_CHAR; return n; } v = jsonHexToInt4(&z[2]); if( (v & 0xfc00)==0xd800 && n>=12 && z[6]=='\\' && z[7]=='u' && ((vlo = jsonHexToInt4(&z[8]))&0xfc00)==0xdc00 ){ *piOut = ((v&0x3ff)<<10) + (vlo&0x3ff) + 0x10000; return 12; }else{ *piOut = v; return 6; } } case 'b': { *piOut = '\b'; return 2; } case 'f': { *piOut = '\f'; return 2; } case 'n': { *piOut = '\n'; return 2; } case 'r': { *piOut = '\r'; return 2; } case 't': { *piOut = '\t'; return 2; } case 'v': { *piOut = '\v'; return 2; } case '0': { *piOut = 0; return 2; } case '\'': case '"': case '/': case '\\':{ *piOut = z[1]; return 2; } case 'x': { if( n<4 ){ *piOut = JSON_INVALID_CHAR; return n; } *piOut = (jsonHexToInt(z[2])<<4) | jsonHexToInt(z[3]); return 4; } case 0xe2: case '\r': case '\n': { u32 nSkip = jsonBytesToBypass(z, n); if( nSkip==0 ){ *piOut = JSON_INVALID_CHAR; return n; }else if( nSkip==n ){ *piOut = 0; return n; }else if( z[nSkip]=='\\' ){ return nSkip + jsonUnescapeOneChar(&z[nSkip], n-nSkip, piOut); }else{ int sz = sqlite3Utf8ReadLimited((u8*)&z[nSkip], n-nSkip, piOut); return nSkip + sz; } } default: { *piOut = JSON_INVALID_CHAR; return 2; } } } /* ** Compare two object labels. Return 1 if they are equal and ** 0 if they differ. ** ** In this version, we know that one or the other or both of the ** two comparands contains an escape sequence. */ static SQLITE_NOINLINE int jsonLabelCompareEscaped( const char *zLeft, /* The left label */ u32 nLeft, /* Size of the left label in bytes */ int rawLeft, /* True if zLeft contains no escapes */ const char *zRight, /* The right label */ u32 nRight, /* Size of the right label in bytes */ int rawRight /* True if zRight is escape-free */ ){ u32 cLeft, cRight; assert( rawLeft==0 || rawRight==0 ); while( 1 /*exit-by-return*/ ){ if( nLeft==0 ){ cLeft = 0; }else if( rawLeft || zLeft[0]!='\\' ){ cLeft = ((u8*)zLeft)[0]; if( cLeft>=0xc0 ){ int sz = sqlite3Utf8ReadLimited((u8*)zLeft, nLeft, &cLeft); zLeft += sz; nLeft -= sz; }else{ zLeft++; nLeft--; } }else{ u32 n = jsonUnescapeOneChar(zLeft, nLeft, &cLeft); zLeft += n; assert( n<=nLeft ); nLeft -= n; } if( nRight==0 ){ cRight = 0; }else if( rawRight || zRight[0]!='\\' ){ cRight = ((u8*)zRight)[0]; if( cRight>=0xc0 ){ int sz = sqlite3Utf8ReadLimited((u8*)zRight, nRight, &cRight); zRight += sz; nRight -= sz; }else{ zRight++; nRight--; } }else{ u32 n = jsonUnescapeOneChar(zRight, nRight, &cRight); zRight += n; assert( n<=nRight ); nRight -= n; } if( cLeft!=cRight ) return 0; if( cLeft==0 ) return 1; } } /* ** Compare two object labels. Return 1 if they are equal and ** 0 if they differ. Return -1 if an OOM occurs. */ static int jsonLabelCompare( const char *zLeft, /* The left label */ u32 nLeft, /* Size of the left label in bytes */ int rawLeft, /* True if zLeft contains no escapes */ const char *zRight, /* The right label */ u32 nRight, /* Size of the right label in bytes */ int rawRight /* True if zRight is escape-free */ ){ if( rawLeft && rawRight ){ /* Simpliest case: Neither label contains escapes. A simple ** memcmp() is sufficient. */ if( nLeft!=nRight ) return 0; return memcmp(zLeft, zRight, nLeft)==0; }else{ return jsonLabelCompareEscaped(zLeft, nLeft, rawLeft, zRight, nRight, rawRight); } } /* ** Error returns from jsonLookupStep() */ #define JSON_LOOKUP_ERROR 0xffffffff #define JSON_LOOKUP_NOTFOUND 0xfffffffe #define JSON_LOOKUP_PATHERROR 0xfffffffd #define JSON_LOOKUP_ISERROR(x) ((x)>=JSON_LOOKUP_PATHERROR) /* Forward declaration */ static u32 jsonLookupStep(JsonParse*,u32,const char*,u32); /* This helper routine for jsonLookupStep() populates pIns with ** binary data that is to be inserted into pParse. ** ** In the common case, pIns just points to pParse->aIns and pParse->nIns. ** But if the zPath of the original edit operation includes path elements ** that go deeper, additional substructure must be created. ** ** For example: ** ** json_insert('{}', '$.a.b.c', 123); ** ** The search stops at '$.a' But additional substructure must be ** created for the ".b.c" part of the patch so that the final result ** is: {"a":{"b":{"c"::123}}}. This routine populates pIns with ** the binary equivalent of {"b":{"c":123}} so that it can be inserted. ** ** The caller is responsible for resetting pIns when it has finished ** using the substructure. */ static u32 jsonCreateEditSubstructure( JsonParse *pParse, /* The original JSONB that is being edited */ JsonParse *pIns, /* Populate this with the blob data to insert */ const char *zTail /* Tail of the path that determins substructure */ ){ static const u8 emptyObject[] = { JSONB_ARRAY, JSONB_OBJECT }; int rc; memset(pIns, 0, sizeof(*pIns)); pIns->db = pParse->db; if( zTail[0]==0 ){ /* No substructure. Just insert what is given in pParse. */ pIns->aBlob = pParse->aIns; pIns->nBlob = pParse->nIns; rc = 0; }else{ /* Construct the binary substructure */ pIns->nBlob = 1; pIns->aBlob = (u8*)&emptyObject[zTail[0]=='.']; pIns->eEdit = pParse->eEdit; pIns->nIns = pParse->nIns; pIns->aIns = pParse->aIns; rc = jsonLookupStep(pIns, 0, zTail, 0); pParse->oom |= pIns->oom; } return rc; /* Error code only */ } /* ** Search along zPath to find the Json element specified. Return an ** index into pParse->aBlob[] for the start of that element's value. ** ** If the value found by this routine is the value half of label/value pair ** within an object, then set pPath->iLabel to the start of the corresponding ** label, before returning. ** ** Return one of the JSON_LOOKUP error codes if problems are seen. ** ** This routine will also modify the blob. If pParse->eEdit is one of ** JEDIT_DEL, JEDIT_REPL, JEDIT_INS, or JEDIT_SET, then changes might be ** made to the selected value. If an edit is performed, then the return ** value does not necessarily point to the select element. If an edit ** is performed, the return value is only useful for detecting error ** conditions. */ static u32 jsonLookupStep( JsonParse *pParse, /* The JSON to search */ u32 iRoot, /* Begin the search at this element of aBlob[] */ const char *zPath, /* The path to search */ u32 iLabel /* Label if iRoot is a value of in an object */ ){ u32 i, j, k, nKey, sz, n, iEnd, rc; const char *zKey; u8 x; if( zPath[0]==0 ){ if( pParse->eEdit && jsonBlobMakeEditable(pParse, pParse->nIns) ){ n = jsonbPayloadSize(pParse, iRoot, &sz); sz += n; if( pParse->eEdit==JEDIT_DEL ){ if( iLabel>0 ){ sz += iRoot - iLabel; iRoot = iLabel; } jsonBlobEdit(pParse, iRoot, sz, 0, 0); }else if( pParse->eEdit==JEDIT_INS ){ /* Already exists, so json_insert() is a no-op */ }else{ /* json_set() or json_replace() */ jsonBlobEdit(pParse, iRoot, sz, pParse->aIns, pParse->nIns); } } pParse->iLabel = iLabel; return iRoot; } if( zPath[0]=='.' ){ int rawKey = 1; x = pParse->aBlob[iRoot]; zPath++; if( zPath[0]=='"' ){ zKey = zPath + 1; for(i=1; zPath[i] && zPath[i]!='"'; i++){} nKey = i-1; if( zPath[i] ){ i++; }else{ return JSON_LOOKUP_PATHERROR; } testcase( nKey==0 ); rawKey = memchr(zKey, '\\', nKey)==0; }else{ zKey = zPath; for(i=0; zPath[i] && zPath[i]!='.' && zPath[i]!='['; i++){} nKey = i; if( nKey==0 ){ return JSON_LOOKUP_PATHERROR; } } if( (x & 0x0f)!=JSONB_OBJECT ) return JSON_LOOKUP_NOTFOUND; n = jsonbPayloadSize(pParse, iRoot, &sz); j = iRoot + n; /* j is the index of a label */ iEnd = j+sz; while( jaBlob[j] & 0x0f; if( xJSONB_TEXTRAW ) return JSON_LOOKUP_ERROR; n = jsonbPayloadSize(pParse, j, &sz); if( n==0 ) return JSON_LOOKUP_ERROR; k = j+n; /* k is the index of the label text */ if( k+sz>=iEnd ) return JSON_LOOKUP_ERROR; zLabel = (const char*)&pParse->aBlob[k]; rawLabel = x==JSONB_TEXT || x==JSONB_TEXTRAW; if( jsonLabelCompare(zKey, nKey, rawKey, zLabel, sz, rawLabel) ){ u32 v = k+sz; /* v is the index of the value */ if( ((pParse->aBlob[v])&0x0f)>JSONB_OBJECT ) return JSON_LOOKUP_ERROR; n = jsonbPayloadSize(pParse, v, &sz); if( n==0 || v+n+sz>iEnd ) return JSON_LOOKUP_ERROR; assert( j>0 ); rc = jsonLookupStep(pParse, v, &zPath[i], j); if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot); return rc; } j = k+sz; if( ((pParse->aBlob[j])&0x0f)>JSONB_OBJECT ) return JSON_LOOKUP_ERROR; n = jsonbPayloadSize(pParse, j, &sz); if( n==0 ) return JSON_LOOKUP_ERROR; j += n+sz; } if( j>iEnd ) return JSON_LOOKUP_ERROR; if( pParse->eEdit>=JEDIT_INS ){ u32 nIns; /* Total bytes to insert (label+value) */ JsonParse v; /* BLOB encoding of the value to be inserted */ JsonParse ix; /* Header of the label to be inserted */ testcase( pParse->eEdit==JEDIT_INS ); testcase( pParse->eEdit==JEDIT_SET ); memset(&ix, 0, sizeof(ix)); ix.db = pParse->db; jsonBlobAppendNode(&ix, rawKey?JSONB_TEXTRAW:JSONB_TEXT5, nKey, 0); pParse->oom |= ix.oom; rc = jsonCreateEditSubstructure(pParse, &v, &zPath[i]); if( !JSON_LOOKUP_ISERROR(rc) && jsonBlobMakeEditable(pParse, ix.nBlob+nKey+v.nBlob) ){ assert( !pParse->oom ); nIns = ix.nBlob + nKey + v.nBlob; jsonBlobEdit(pParse, j, 0, 0, nIns); if( !pParse->oom ){ assert( pParse->aBlob!=0 ); /* Because pParse->oom!=0 */ assert( ix.aBlob!=0 ); /* Because pPasre->oom!=0 */ memcpy(&pParse->aBlob[j], ix.aBlob, ix.nBlob); k = j + ix.nBlob; memcpy(&pParse->aBlob[k], zKey, nKey); k += nKey; memcpy(&pParse->aBlob[k], v.aBlob, v.nBlob); if( ALWAYS(pParse->delta) ) jsonAfterEditSizeAdjust(pParse, iRoot); } } jsonParseReset(&v); jsonParseReset(&ix); return rc; } }else if( zPath[0]=='[' ){ x = pParse->aBlob[iRoot] & 0x0f; if( x!=JSONB_ARRAY ) return JSON_LOOKUP_NOTFOUND; n = jsonbPayloadSize(pParse, iRoot, &sz); k = 0; i = 1; while( sqlite3Isdigit(zPath[i]) ){ k = k*10 + zPath[i] - '0'; i++; } if( i<2 || zPath[i]!=']' ){ if( zPath[1]=='#' ){ k = jsonbArrayCount(pParse, iRoot); i = 2; if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){ unsigned int nn = 0; i = 3; do{ nn = nn*10 + zPath[i] - '0'; i++; }while( sqlite3Isdigit(zPath[i]) ); if( nn>k ) return JSON_LOOKUP_NOTFOUND; k -= nn; } if( zPath[i]!=']' ){ return JSON_LOOKUP_PATHERROR; } }else{ return JSON_LOOKUP_PATHERROR; } } j = iRoot+n; iEnd = j+sz; while( jdelta ) jsonAfterEditSizeAdjust(pParse, iRoot); return rc; } k--; n = jsonbPayloadSize(pParse, j, &sz); if( n==0 ) return JSON_LOOKUP_ERROR; j += n+sz; } if( j>iEnd ) return JSON_LOOKUP_ERROR; if( k>0 ) return JSON_LOOKUP_NOTFOUND; if( pParse->eEdit>=JEDIT_INS ){ JsonParse v; testcase( pParse->eEdit==JEDIT_INS ); testcase( pParse->eEdit==JEDIT_SET ); rc = jsonCreateEditSubstructure(pParse, &v, &zPath[i+1]); if( !JSON_LOOKUP_ISERROR(rc) && jsonBlobMakeEditable(pParse, v.nBlob) ){ assert( !pParse->oom ); jsonBlobEdit(pParse, j, 0, v.aBlob, v.nBlob); } jsonParseReset(&v); if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot); return rc; } }else{ return JSON_LOOKUP_PATHERROR; } return JSON_LOOKUP_NOTFOUND; } /* ** Convert a JSON BLOB into text and make that text the return value ** of an SQL function. */ static void jsonReturnTextJsonFromBlob( sqlite3_context *ctx, const u8 *aBlob, u32 nBlob ){ JsonParse x; JsonString s; if( NEVER(aBlob==0) ) return; memset(&x, 0, sizeof(x)); x.aBlob = (u8*)aBlob; x.nBlob = nBlob; jsonStringInit(&s, ctx); jsonTranslateBlobToText(&x, 0, &s); jsonReturnString(&s, 0, 0); } /* ** Return the value of the BLOB node at index i. ** ** If the value is a primitive, return it as an SQL value. ** If the value is an array or object, return it as either ** JSON text or the BLOB encoding, depending on the JSON_B flag ** on the userdata. */ static void jsonReturnFromBlob( JsonParse *pParse, /* Complete JSON parse tree */ u32 i, /* Index of the node */ sqlite3_context *pCtx, /* Return value for this function */ int textOnly /* return text JSON. Disregard user-data */ ){ u32 n, sz; int rc; sqlite3 *db = sqlite3_context_db_handle(pCtx); n = jsonbPayloadSize(pParse, i, &sz); if( n==0 ){ sqlite3_result_error(pCtx, "malformed JSON", -1); return; } switch( pParse->aBlob[i] & 0x0f ){ case JSONB_NULL: { if( sz ) goto returnfromblob_malformed; sqlite3_result_null(pCtx); break; } case JSONB_TRUE: { if( sz ) goto returnfromblob_malformed; sqlite3_result_int(pCtx, 1); break; } case JSONB_FALSE: { if( sz ) goto returnfromblob_malformed; sqlite3_result_int(pCtx, 0); break; } case JSONB_INT5: case JSONB_INT: { sqlite3_int64 iRes = 0; char *z; int bNeg = 0; char x; if( sz==0 ) goto returnfromblob_malformed; x = (char)pParse->aBlob[i+n]; if( x=='-' ){ if( sz<2 ) goto returnfromblob_malformed; n++; sz--; bNeg = 1; } z = sqlite3DbStrNDup(db, (const char*)&pParse->aBlob[i+n], (int)sz); if( z==0 ) goto returnfromblob_oom; rc = sqlite3DecOrHexToI64(z, &iRes); sqlite3DbFree(db, z); if( rc==0 ){ sqlite3_result_int64(pCtx, bNeg ? -iRes : iRes); }else if( rc==3 && bNeg ){ sqlite3_result_int64(pCtx, SMALLEST_INT64); }else if( rc==1 ){ goto returnfromblob_malformed; }else{ if( bNeg ){ n--; sz++; } goto to_double; } break; } case JSONB_FLOAT5: case JSONB_FLOAT: { double r; char *z; if( sz==0 ) goto returnfromblob_malformed; to_double: z = sqlite3DbStrNDup(db, (const char*)&pParse->aBlob[i+n], (int)sz); if( z==0 ) goto returnfromblob_oom; rc = sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8); sqlite3DbFree(db, z); if( rc<=0 ) goto returnfromblob_malformed; sqlite3_result_double(pCtx, r); break; } case JSONB_TEXTRAW: case JSONB_TEXT: { sqlite3_result_text(pCtx, (char*)&pParse->aBlob[i+n], sz, SQLITE_TRANSIENT); break; } case JSONB_TEXT5: case JSONB_TEXTJ: { /* Translate JSON formatted string into raw text */ u32 iIn, iOut; const char *z; char *zOut; u32 nOut = sz; z = (const char*)&pParse->aBlob[i+n]; zOut = sqlite3DbMallocRaw(db, nOut+1); if( zOut==0 ) goto returnfromblob_oom; for(iIn=iOut=0; iIn=2 ); zOut[iOut++] = (char)(0xc0 | (v>>6)); zOut[iOut++] = 0x80 | (v&0x3f); }else if( v<0x10000 ){ assert( szEscape>=3 ); zOut[iOut++] = 0xe0 | (v>>12); zOut[iOut++] = 0x80 | ((v>>6)&0x3f); zOut[iOut++] = 0x80 | (v&0x3f); }else if( v==JSON_INVALID_CHAR ){ /* Silently ignore illegal unicode */ }else{ assert( szEscape>=4 ); zOut[iOut++] = 0xf0 | (v>>18); zOut[iOut++] = 0x80 | ((v>>12)&0x3f); zOut[iOut++] = 0x80 | ((v>>6)&0x3f); zOut[iOut++] = 0x80 | (v&0x3f); } iIn += szEscape - 1; }else{ zOut[iOut++] = c; } } /* end for() */ assert( iOut<=nOut ); zOut[iOut] = 0; sqlite3_result_text(pCtx, zOut, iOut, SQLITE_DYNAMIC); break; } case JSONB_ARRAY: case JSONB_OBJECT: { int flags = textOnly ? 0 : SQLITE_PTR_TO_INT(sqlite3_user_data(pCtx)); if( flags & JSON_BLOB ){ sqlite3_result_blob(pCtx, &pParse->aBlob[i], sz+n, SQLITE_TRANSIENT); }else{ jsonReturnTextJsonFromBlob(pCtx, &pParse->aBlob[i], sz+n); } break; } default: { goto returnfromblob_malformed; } } return; returnfromblob_oom: sqlite3_result_error_nomem(pCtx); return; returnfromblob_malformed: sqlite3_result_error(pCtx, "malformed JSON", -1); return; } /* ** pArg is a function argument that might be an SQL value or a JSON ** value. Figure out what it is and encode it as a JSONB blob. ** Return the results in pParse. ** ** pParse is uninitialized upon entry. This routine will handle the ** initialization of pParse. The result will be contained in ** pParse->aBlob and pParse->nBlob. pParse->aBlob might be dynamically ** allocated (if pParse->nBlobAlloc is greater than zero) in which case ** the caller is responsible for freeing the space allocated to pParse->aBlob ** when it has finished with it. Or pParse->aBlob might be a static string ** or a value obtained from sqlite3_value_blob(pArg). ** ** If the argument is a BLOB that is clearly not a JSONB, then this ** function might set an error message in ctx and return non-zero. ** It might also set an error message and return non-zero on an OOM error. */ static int jsonFunctionArgToBlob( sqlite3_context *ctx, sqlite3_value *pArg, JsonParse *pParse ){ int eType = sqlite3_value_type(pArg); static u8 aNull[] = { 0x00 }; memset(pParse, 0, sizeof(pParse[0])); pParse->db = sqlite3_context_db_handle(ctx); switch( eType ){ default: { pParse->aBlob = aNull; pParse->nBlob = 1; return 0; } case SQLITE_BLOB: { if( jsonFuncArgMightBeBinary(pArg) ){ pParse->aBlob = (u8*)sqlite3_value_blob(pArg); pParse->nBlob = sqlite3_value_bytes(pArg); }else{ sqlite3_result_error(ctx, "JSON cannot hold BLOB values", -1); return 1; } break; } case SQLITE_TEXT: { const char *zJson = (const char*)sqlite3_value_text(pArg); int nJson = sqlite3_value_bytes(pArg); if( zJson==0 ) return 1; if( sqlite3_value_subtype(pArg)==JSON_SUBTYPE ){ pParse->zJson = (char*)zJson; pParse->nJson = nJson; if( jsonConvertTextToBlob(pParse, ctx) ){ sqlite3_result_error(ctx, "malformed JSON", -1); sqlite3DbFree(pParse->db, pParse->aBlob); memset(pParse, 0, sizeof(pParse[0])); return 1; } }else{ jsonBlobAppendNode(pParse, JSONB_TEXTRAW, nJson, zJson); } break; } case SQLITE_FLOAT: { double r = sqlite3_value_double(pArg); if( NEVER(sqlite3IsNaN(r)) ){ jsonBlobAppendNode(pParse, JSONB_NULL, 0, 0); }else{ int n = sqlite3_value_bytes(pArg); const char *z = (const char*)sqlite3_value_text(pArg); if( z==0 ) return 1; if( z[0]=='I' ){ jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999"); }else if( z[0]=='-' && z[1]=='I' ){ jsonBlobAppendNode(pParse, JSONB_FLOAT, 6, "-9e999"); }else{ jsonBlobAppendNode(pParse, JSONB_FLOAT, n, z); } } break; } case SQLITE_INTEGER: { int n = sqlite3_value_bytes(pArg); const char *z = (const char*)sqlite3_value_text(pArg); if( z==0 ) return 1; jsonBlobAppendNode(pParse, JSONB_INT, n, z); break; } } if( pParse->oom ){ sqlite3_result_error_nomem(ctx); return 1; }else{ return 0; } } /* ** Generate a bad path error. ** ** If ctx is not NULL then push the error message into ctx and return NULL. ** If ctx is NULL, then return the text of the error message. */ static char *jsonBadPathError( sqlite3_context *ctx, /* The function call containing the error */ const char *zPath /* The path with the problem */ ){ char *zMsg = sqlite3_mprintf("bad JSON path: %Q", zPath); if( ctx==0 ) return zMsg; if( zMsg ){ sqlite3_result_error(ctx, zMsg, -1); sqlite3_free(zMsg); }else{ sqlite3_result_error_nomem(ctx); } return 0; } /* argv[0] is a BLOB that seems likely to be a JSONB. Subsequent ** arguments come in parse where each pair contains a JSON path and ** content to insert or set at that patch. Do the updates ** and return the result. ** ** The specific operation is determined by eEdit, which can be one ** of JEDIT_INS, JEDIT_REPL, or JEDIT_SET. */ static void jsonInsertIntoBlob( sqlite3_context *ctx, int argc, sqlite3_value **argv, int eEdit /* JEDIT_INS, JEDIT_REPL, or JEDIT_SET */ ){ int i; u32 rc = 0; const char *zPath = 0; int flgs; JsonParse *p; JsonParse ax; assert( (argc&1)==1 ); flgs = argc==1 ? 0 : JSON_EDITABLE; p = jsonParseFuncArg(ctx, argv[0], flgs); if( p==0 ) return; for(i=1; inBlob, ax.aBlob, ax.nBlob); } rc = 0; }else{ p->eEdit = eEdit; p->nIns = ax.nBlob; p->aIns = ax.aBlob; p->delta = 0; rc = jsonLookupStep(p, 0, zPath+1, 0); } jsonParseReset(&ax); if( rc==JSON_LOOKUP_NOTFOUND ) continue; if( JSON_LOOKUP_ISERROR(rc) ) goto jsonInsertIntoBlob_patherror; } jsonReturnParse(ctx, p); jsonParseFree(p); return; jsonInsertIntoBlob_patherror: jsonParseFree(p); if( rc==JSON_LOOKUP_ERROR ){ sqlite3_result_error(ctx, "malformed JSON", -1); }else{ jsonBadPathError(ctx, zPath); } return; } /* ** If pArg is a blob that seems like a JSONB blob, then initialize ** p to point to that JSONB and return TRUE. If pArg does not seem like ** a JSONB blob, then return FALSE; ** ** This routine is only called if it is already known that pArg is a ** blob. The only open question is whether or not the blob appears ** to be a JSONB blob. */ static int jsonArgIsJsonb(sqlite3_value *pArg, JsonParse *p){ u32 n, sz = 0; p->aBlob = (u8*)sqlite3_value_blob(pArg); p->nBlob = (u32)sqlite3_value_bytes(pArg); if( p->nBlob==0 ){ p->aBlob = 0; return 0; } if( NEVER(p->aBlob==0) ){ return 0; } if( (p->aBlob[0] & 0x0f)<=JSONB_OBJECT && (n = jsonbPayloadSize(p, 0, &sz))>0 && sz+n==p->nBlob && ((p->aBlob[0] & 0x0f)>JSONB_FALSE || sz==0) ){ return 1; } p->aBlob = 0; p->nBlob = 0; return 0; } /* ** Generate a JsonParse object, containing valid JSONB in aBlob and nBlob, ** from the SQL function argument pArg. Return a pointer to the new ** JsonParse object. ** ** Ownership of the new JsonParse object is passed to the caller. The ** caller should invoke jsonParseFree() on the return value when it ** has finished using it. ** ** If any errors are detected, an appropriate error messages is set ** using sqlite3_result_error() or the equivalent and this routine ** returns NULL. This routine also returns NULL if the pArg argument ** is an SQL NULL value, but no error message is set in that case. This ** is so that SQL functions that are given NULL arguments will return ** a NULL value. */ static JsonParse *jsonParseFuncArg( sqlite3_context *ctx, sqlite3_value *pArg, u32 flgs ){ int eType; /* Datatype of pArg */ JsonParse *p = 0; /* Value to be returned */ JsonParse *pFromCache = 0; /* Value taken from cache */ sqlite3 *db; /* The database connection */ assert( ctx!=0 ); eType = sqlite3_value_type(pArg); if( eType==SQLITE_NULL ){ return 0; } pFromCache = jsonCacheSearch(ctx, pArg); if( pFromCache ){ pFromCache->nJPRef++; if( (flgs & JSON_EDITABLE)==0 ){ return pFromCache; } } db = sqlite3_context_db_handle(ctx); rebuild_from_cache: p = sqlite3DbMallocZero(db, sizeof(*p)); if( p==0 ) goto json_pfa_oom; memset(p, 0, sizeof(*p)); p->db = db; p->nJPRef = 1; if( pFromCache!=0 ){ u32 nBlob = pFromCache->nBlob; p->aBlob = sqlite3DbMallocRaw(db, nBlob); if( p->aBlob==0 ) goto json_pfa_oom; memcpy(p->aBlob, pFromCache->aBlob, nBlob); p->nBlobAlloc = p->nBlob = nBlob; p->hasNonstd = pFromCache->hasNonstd; jsonParseFree(pFromCache); return p; } if( eType==SQLITE_BLOB ){ if( jsonArgIsJsonb(pArg,p) ){ if( (flgs & JSON_EDITABLE)!=0 && jsonBlobMakeEditable(p, 0)==0 ){ goto json_pfa_oom; } return p; } /* If the blob is not valid JSONB, fall through into trying to cast ** the blob into text which is then interpreted as JSON. (tag-20240123-a) ** ** This goes against all historical documentation about how the SQLite ** JSON functions were suppose to work. From the beginning, blob was ** reserved for expansion and a blob value should have raised an error. ** But it did not, due to a bug. And many applications came to depend ** upon this buggy behavior, espeically when using the CLI and reading ** JSON text using readfile(), which returns a blob. For this reason ** we will continue to support the bug moving forward. ** See for example https://sqlite.org/forum/forumpost/012136abd5292b8d */ } p->zJson = (char*)sqlite3_value_text(pArg); p->nJson = sqlite3_value_bytes(pArg); if( db->mallocFailed ) goto json_pfa_oom; if( p->nJson==0 ) goto json_pfa_malformed; assert( p->zJson!=0 ); if( jsonConvertTextToBlob(p, (flgs & JSON_KEEPERROR) ? 0 : ctx) ){ if( flgs & JSON_KEEPERROR ){ p->nErr = 1; return p; }else{ jsonParseFree(p); return 0; } }else{ int isRCStr = sqlite3ValueIsOfClass(pArg, sqlite3RCStrUnref); int rc; if( !isRCStr ){ char *zNew = sqlite3RCStrNew( p->nJson ); if( zNew==0 ) goto json_pfa_oom; memcpy(zNew, p->zJson, p->nJson); p->zJson = zNew; p->zJson[p->nJson] = 0; }else{ sqlite3RCStrRef(p->zJson); } p->bJsonIsRCStr = 1; rc = jsonCacheInsert(ctx, p); if( rc==SQLITE_NOMEM ) goto json_pfa_oom; if( flgs & JSON_EDITABLE ){ pFromCache = p; p = 0; goto rebuild_from_cache; } } return p; json_pfa_malformed: if( flgs & JSON_KEEPERROR ){ p->nErr = 1; return p; }else{ jsonParseFree(p); sqlite3_result_error(ctx, "malformed JSON", -1); return 0; } json_pfa_oom: jsonParseFree(pFromCache); jsonParseFree(p); sqlite3_result_error_nomem(ctx); return 0; } /* ** Make the return value of a JSON function either the raw JSONB blob ** or make it JSON text, depending on whether the JSON_BLOB flag is ** set on the function. */ static void jsonReturnParse( sqlite3_context *ctx, JsonParse *p ){ int flgs; if( p->oom ){ sqlite3_result_error_nomem(ctx); return; } flgs = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); if( flgs & JSON_BLOB ){ if( p->nBlobAlloc>0 && !p->bReadOnly ){ sqlite3_result_blob(ctx, p->aBlob, p->nBlob, SQLITE_DYNAMIC); p->nBlobAlloc = 0; }else{ sqlite3_result_blob(ctx, p->aBlob, p->nBlob, SQLITE_TRANSIENT); } }else{ JsonString s; jsonStringInit(&s, ctx); p->delta = 0; jsonTranslateBlobToText(p, 0, &s); jsonReturnString(&s, p, ctx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } } /**************************************************************************** ** SQL functions used for testing and debugging ****************************************************************************/ #if SQLITE_DEBUG /* ** Decode JSONB bytes in aBlob[] starting at iStart through but not ** including iEnd. Indent the ** content by nIndent spaces. */ static void jsonDebugPrintBlob( JsonParse *pParse, /* JSON content */ u32 iStart, /* Start rendering here */ u32 iEnd, /* Do not render this byte or any byte after this one */ int nIndent, /* Indent by this many spaces */ sqlite3_str *pOut /* Generate output into this sqlite3_str object */ ){ while( iStartaBlob[iStart] & 0x0f; u32 savedNBlob = pParse->nBlob; sqlite3_str_appendf(pOut, "%5d:%*s", iStart, nIndent, ""); if( pParse->nBlobAlloc>pParse->nBlob ){ pParse->nBlob = pParse->nBlobAlloc; } nn = n = jsonbPayloadSize(pParse, iStart, &sz); if( nn==0 ) nn = 1; if( sz>0 && xaBlob[iStart+i]); } if( n==0 ){ sqlite3_str_appendf(pOut, " ERROR invalid node size\n"); iStart = n==0 ? iStart+1 : iEnd; continue; } pParse->nBlob = savedNBlob; if( iStart+n+sz>iEnd ){ iEnd = iStart+n+sz; if( iEnd>pParse->nBlob ){ if( pParse->nBlobAlloc>0 && iEnd>pParse->nBlobAlloc ){ iEnd = pParse->nBlobAlloc; }else{ iEnd = pParse->nBlob; } } } sqlite3_str_appendall(pOut," <-- "); switch( x ){ case JSONB_NULL: sqlite3_str_appendall(pOut,"null"); break; case JSONB_TRUE: sqlite3_str_appendall(pOut,"true"); break; case JSONB_FALSE: sqlite3_str_appendall(pOut,"false"); break; case JSONB_INT: sqlite3_str_appendall(pOut,"int"); break; case JSONB_INT5: sqlite3_str_appendall(pOut,"int5"); break; case JSONB_FLOAT: sqlite3_str_appendall(pOut,"float"); break; case JSONB_FLOAT5: sqlite3_str_appendall(pOut,"float5"); break; case JSONB_TEXT: sqlite3_str_appendall(pOut,"text"); break; case JSONB_TEXTJ: sqlite3_str_appendall(pOut,"textj"); break; case JSONB_TEXT5: sqlite3_str_appendall(pOut,"text5"); break; case JSONB_TEXTRAW: sqlite3_str_appendall(pOut,"textraw"); break; case JSONB_ARRAY: { sqlite3_str_appendf(pOut,"array, %u bytes\n", sz); jsonDebugPrintBlob(pParse, iStart+n, iStart+n+sz, nIndent+2, pOut); showContent = 0; break; } case JSONB_OBJECT: { sqlite3_str_appendf(pOut, "object, %u bytes\n", sz); jsonDebugPrintBlob(pParse, iStart+n, iStart+n+sz, nIndent+2, pOut); showContent = 0; break; } default: { sqlite3_str_appendall(pOut, "ERROR: unknown node type\n"); showContent = 0; break; } } if( showContent ){ if( sz==0 && x<=JSONB_FALSE ){ sqlite3_str_append(pOut, "\n", 1); }else{ u32 j; sqlite3_str_appendall(pOut, ": \""); for(j=iStart+n; jaBlob[j]; if( c<0x20 || c>=0x7f ) c = '.'; sqlite3_str_append(pOut, (char*)&c, 1); } sqlite3_str_append(pOut, "\"\n", 2); } } iStart += n + sz; } } static void jsonShowParse(JsonParse *pParse){ sqlite3_str out; char zBuf[1000]; if( pParse==0 ){ printf("NULL pointer\n"); return; }else{ printf("nBlobAlloc = %u\n", pParse->nBlobAlloc); printf("nBlob = %u\n", pParse->nBlob); printf("delta = %d\n", pParse->delta); if( pParse->nBlob==0 ) return; printf("content (bytes 0..%u):\n", pParse->nBlob-1); } sqlite3StrAccumInit(&out, 0, zBuf, sizeof(zBuf), 1000000); jsonDebugPrintBlob(pParse, 0, pParse->nBlob, 0, &out); printf("%s", sqlite3_str_value(&out)); sqlite3_str_reset(&out); } #endif /* SQLITE_DEBUG */ #ifdef SQLITE_DEBUG /* ** SQL function: json_parse(JSON) ** ** Parse JSON using jsonParseFuncArg(). Return text that is a ** human-readable dump of the binary JSONB for the input parameter. */ static void jsonParseFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ sqlite3_str out; assert( argc>=1 ); sqlite3StrAccumInit(&out, 0, 0, 0, 1000000); p = jsonParseFuncArg(ctx, argv[0], 0); if( p==0 ) return; if( argc==1 ){ jsonDebugPrintBlob(p, 0, p->nBlob, 0, &out); sqlite3_result_text64(ctx, out.zText, out.nChar, SQLITE_DYNAMIC, SQLITE_UTF8); }else{ jsonShowParse(p); } jsonParseFree(p); } #endif /* SQLITE_DEBUG */ /**************************************************************************** ** Scalar SQL function implementations ****************************************************************************/ /* ** Implementation of the json_quote(VALUE) function. Return a JSON value ** corresponding to the SQL value input. Mostly this means putting ** double-quotes around strings and returning the unquoted string "null" ** when given a NULL input. */ static void jsonQuoteFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString jx; UNUSED_PARAMETER(argc); jsonStringInit(&jx, ctx); jsonAppendSqlValue(&jx, argv[0]); jsonReturnString(&jx, 0, 0); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } /* ** Implementation of the json_array(VALUE,...) function. Return a JSON ** array that contains all values given in arguments. Or if any argument ** is a BLOB, throw an error. */ static void jsonArrayFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ int i; JsonString jx; jsonStringInit(&jx, ctx); jsonAppendChar(&jx, '['); for(i=0; iaBlob[i] & 0x0f)==JSONB_ARRAY ){ cnt = jsonbArrayCount(p, i); } if( !eErr ) sqlite3_result_int64(ctx, cnt); jsonParseFree(p); } /* True if the string is all digits */ static int jsonAllDigits(const char *z, int n){ int i; for(i=0; i"(JSON,PATH) ** "->>"(JSON,PATH) ** ** Return the element described by PATH. Return NULL if that PATH element ** is not found. ** ** If JSON_JSON is set or if more that one PATH argument is supplied then ** always return a JSON representation of the result. If JSON_SQL is set, ** then always return an SQL representation of the result. If neither flag ** is present and argc==2, then return JSON for objects and arrays and SQL ** for all other values. ** ** When multiple PATH arguments are supplied, the result is a JSON array ** containing the result of each PATH. ** ** Abbreviated JSON path expressions are allows if JSON_ABPATH, for ** compatibility with PG. */ static void jsonExtractFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p = 0; /* The parse */ int flags; /* Flags associated with the function */ int i; /* Loop counter */ JsonString jx; /* String for array result */ if( argc<2 ) return; p = jsonParseFuncArg(ctx, argv[0], 0); if( p==0 ) return; flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); jsonStringInit(&jx, ctx); if( argc>2 ){ jsonAppendChar(&jx, '['); } for(i=1; i and ->> operators accept abbreviated PATH arguments. This ** is mostly for compatibility with PostgreSQL, but also for ** convenience. ** ** NUMBER ==> $[NUMBER] // PG compatible ** LABEL ==> $.LABEL // PG compatible ** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience */ jsonStringInit(&jx, ctx); if( jsonAllDigits(zPath, nPath) ){ jsonAppendRawNZ(&jx, "[", 1); jsonAppendRaw(&jx, zPath, nPath); jsonAppendRawNZ(&jx, "]", 2); }else if( jsonAllAlphanum(zPath, nPath) ){ jsonAppendRawNZ(&jx, ".", 1); jsonAppendRaw(&jx, zPath, nPath); }else if( zPath[0]=='[' && nPath>=3 && zPath[nPath-1]==']' ){ jsonAppendRaw(&jx, zPath, nPath); }else{ jsonAppendRawNZ(&jx, ".\"", 2); jsonAppendRaw(&jx, zPath, nPath); jsonAppendRawNZ(&jx, "\"", 1); } jsonStringTerminate(&jx); j = jsonLookupStep(p, 0, jx.zBuf, 0); jsonStringReset(&jx); }else{ jsonBadPathError(ctx, zPath); goto json_extract_error; } if( jnBlob ){ if( argc==2 ){ if( flags & JSON_JSON ){ jsonStringInit(&jx, ctx); jsonTranslateBlobToText(p, j, &jx); jsonReturnString(&jx, 0, 0); jsonStringReset(&jx); assert( (flags & JSON_BLOB)==0 ); sqlite3_result_subtype(ctx, JSON_SUBTYPE); }else{ jsonReturnFromBlob(p, j, ctx, 0); if( (flags & (JSON_SQL|JSON_BLOB))==0 && (p->aBlob[j]&0x0f)>=JSONB_ARRAY ){ sqlite3_result_subtype(ctx, JSON_SUBTYPE); } } }else{ jsonAppendSeparator(&jx); jsonTranslateBlobToText(p, j, &jx); } }else if( j==JSON_LOOKUP_NOTFOUND ){ if( argc==2 ){ goto json_extract_error; /* Return NULL if not found */ }else{ jsonAppendSeparator(&jx); jsonAppendRawNZ(&jx, "null", 4); } }else if( j==JSON_LOOKUP_ERROR ){ sqlite3_result_error(ctx, "malformed JSON", -1); goto json_extract_error; }else{ jsonBadPathError(ctx, zPath); goto json_extract_error; } } if( argc>2 ){ jsonAppendChar(&jx, ']'); jsonReturnString(&jx, 0, 0); if( (flags & JSON_BLOB)==0 ){ sqlite3_result_subtype(ctx, JSON_SUBTYPE); } } json_extract_error: jsonStringReset(&jx); jsonParseFree(p); return; } /* ** Return codes for jsonMergePatch() */ #define JSON_MERGE_OK 0 /* Success */ #define JSON_MERGE_BADTARGET 1 /* Malformed TARGET blob */ #define JSON_MERGE_BADPATCH 2 /* Malformed PATCH blob */ #define JSON_MERGE_OOM 3 /* Out-of-memory condition */ /* ** RFC-7396 MergePatch for two JSONB blobs. ** ** pTarget is the target. pPatch is the patch. The target is updated ** in place. The patch is read-only. ** ** The original RFC-7396 algorithm is this: ** ** define MergePatch(Target, Patch): ** if Patch is an Object: ** if Target is not an Object: ** Target = {} # Ignore the contents and set it to an empty Object ** for each Name/Value pair in Patch: ** if Value is null: ** if Name exists in Target: ** remove the Name/Value pair from Target ** else: ** Target[Name] = MergePatch(Target[Name], Value) ** return Target ** else: ** return Patch ** ** Here is an equivalent algorithm restructured to show the actual ** implementation: ** ** 01 define MergePatch(Target, Patch): ** 02 if Patch is not an Object: ** 03 return Patch ** 04 else: // if Patch is an Object ** 05 if Target is not an Object: ** 06 Target = {} ** 07 for each Name/Value pair in Patch: ** 08 if Name exists in Target: ** 09 if Value is null: ** 10 remove the Name/Value pair from Target ** 11 else ** 12 Target[name] = MergePatch(Target[Name], Value) ** 13 else if Value is not NULL: ** 14 if Value is not an Object: ** 15 Target[name] = Value ** 16 else: ** 17 Target[name] = MergePatch('{}',value) ** 18 return Target ** | ** ^---- Line numbers referenced in comments in the implementation */ static int jsonMergePatch( JsonParse *pTarget, /* The JSON parser that contains the TARGET */ u32 iTarget, /* Index of TARGET in pTarget->aBlob[] */ const JsonParse *pPatch, /* The PATCH */ u32 iPatch /* Index of PATCH in pPatch->aBlob[] */ ){ u8 x; /* Type of a single node */ u32 n, sz=0; /* Return values from jsonbPayloadSize() */ u32 iTCursor; /* Cursor position while scanning the target object */ u32 iTStart; /* First label in the target object */ u32 iTEndBE; /* Original first byte past end of target, before edit */ u32 iTEnd; /* Current first byte past end of target */ u8 eTLabel; /* Node type of the target label */ u32 iTLabel = 0; /* Index of the label */ u32 nTLabel = 0; /* Header size in bytes for the target label */ u32 szTLabel = 0; /* Size of the target label payload */ u32 iTValue = 0; /* Index of the target value */ u32 nTValue = 0; /* Header size of the target value */ u32 szTValue = 0; /* Payload size for the target value */ u32 iPCursor; /* Cursor position while scanning the patch */ u32 iPEnd; /* First byte past the end of the patch */ u8 ePLabel; /* Node type of the patch label */ u32 iPLabel; /* Start of patch label */ u32 nPLabel; /* Size of header on the patch label */ u32 szPLabel; /* Payload size of the patch label */ u32 iPValue; /* Start of patch value */ u32 nPValue; /* Header size for the patch value */ u32 szPValue; /* Payload size of the patch value */ assert( iTarget>=0 && iTargetnBlob ); assert( iPatch>=0 && iPatchnBlob ); x = pPatch->aBlob[iPatch] & 0x0f; if( x!=JSONB_OBJECT ){ /* Algorithm line 02 */ u32 szPatch; /* Total size of the patch, header+payload */ u32 szTarget; /* Total size of the target, header+payload */ n = jsonbPayloadSize(pPatch, iPatch, &sz); szPatch = n+sz; sz = 0; n = jsonbPayloadSize(pTarget, iTarget, &sz); szTarget = n+sz; jsonBlobEdit(pTarget, iTarget, szTarget, pPatch->aBlob+iPatch, szPatch); return pTarget->oom ? JSON_MERGE_OOM : JSON_MERGE_OK; /* Line 03 */ } x = pTarget->aBlob[iTarget] & 0x0f; if( x!=JSONB_OBJECT ){ /* Algorithm line 05 */ n = jsonbPayloadSize(pTarget, iTarget, &sz); jsonBlobEdit(pTarget, iTarget+n, sz, 0, 0); x = pTarget->aBlob[iTarget]; pTarget->aBlob[iTarget] = (x & 0xf0) | JSONB_OBJECT; } n = jsonbPayloadSize(pPatch, iPatch, &sz); if( NEVER(n==0) ) return JSON_MERGE_BADPATCH; iPCursor = iPatch+n; iPEnd = iPCursor+sz; n = jsonbPayloadSize(pTarget, iTarget, &sz); if( NEVER(n==0) ) return JSON_MERGE_BADTARGET; iTStart = iTarget+n; iTEndBE = iTStart+sz; while( iPCursoraBlob[iPCursor] & 0x0f; if( ePLabelJSONB_TEXTRAW ){ return JSON_MERGE_BADPATCH; } nPLabel = jsonbPayloadSize(pPatch, iPCursor, &szPLabel); if( nPLabel==0 ) return JSON_MERGE_BADPATCH; iPValue = iPCursor + nPLabel + szPLabel; if( iPValue>=iPEnd ) return JSON_MERGE_BADPATCH; nPValue = jsonbPayloadSize(pPatch, iPValue, &szPValue); if( nPValue==0 ) return JSON_MERGE_BADPATCH; iPCursor = iPValue + nPValue + szPValue; if( iPCursor>iPEnd ) return JSON_MERGE_BADPATCH; iTCursor = iTStart; iTEnd = iTEndBE + pTarget->delta; while( iTCursoraBlob[iTCursor] & 0x0f; if( eTLabelJSONB_TEXTRAW ){ return JSON_MERGE_BADTARGET; } nTLabel = jsonbPayloadSize(pTarget, iTCursor, &szTLabel); if( nTLabel==0 ) return JSON_MERGE_BADTARGET; iTValue = iTLabel + nTLabel + szTLabel; if( iTValue>=iTEnd ) return JSON_MERGE_BADTARGET; nTValue = jsonbPayloadSize(pTarget, iTValue, &szTValue); if( nTValue==0 ) return JSON_MERGE_BADTARGET; if( iTValue + nTValue + szTValue > iTEnd ) return JSON_MERGE_BADTARGET; isEqual = jsonLabelCompare( (const char*)&pPatch->aBlob[iPLabel+nPLabel], szPLabel, (ePLabel==JSONB_TEXT || ePLabel==JSONB_TEXTRAW), (const char*)&pTarget->aBlob[iTLabel+nTLabel], szTLabel, (eTLabel==JSONB_TEXT || eTLabel==JSONB_TEXTRAW)); if( isEqual ) break; iTCursor = iTValue + nTValue + szTValue; } x = pPatch->aBlob[iPValue] & 0x0f; if( iTCursoroom) ) return JSON_MERGE_OOM; }else{ /* Algorithm line 12 */ int rc, savedDelta = pTarget->delta; pTarget->delta = 0; rc = jsonMergePatch(pTarget, iTValue, pPatch, iPValue); if( rc ) return rc; pTarget->delta += savedDelta; } }else if( x>0 ){ /* Algorithm line 13 */ /* No match and patch value is not NULL */ u32 szNew = szPLabel+nPLabel; if( (pPatch->aBlob[iPValue] & 0x0f)!=JSONB_OBJECT ){ /* Line 14 */ jsonBlobEdit(pTarget, iTEnd, 0, 0, szPValue+nPValue+szNew); if( pTarget->oom ) return JSON_MERGE_OOM; memcpy(&pTarget->aBlob[iTEnd], &pPatch->aBlob[iPLabel], szNew); memcpy(&pTarget->aBlob[iTEnd+szNew], &pPatch->aBlob[iPValue], szPValue+nPValue); }else{ int rc, savedDelta; jsonBlobEdit(pTarget, iTEnd, 0, 0, szNew+1); if( pTarget->oom ) return JSON_MERGE_OOM; memcpy(&pTarget->aBlob[iTEnd], &pPatch->aBlob[iPLabel], szNew); pTarget->aBlob[iTEnd+szNew] = 0x00; savedDelta = pTarget->delta; pTarget->delta = 0; rc = jsonMergePatch(pTarget, iTEnd+szNew,pPatch,iPValue); if( rc ) return rc; pTarget->delta += savedDelta; } } } if( pTarget->delta ) jsonAfterEditSizeAdjust(pTarget, iTarget); return pTarget->oom ? JSON_MERGE_OOM : JSON_MERGE_OK; } /* ** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON ** object that is the result of running the RFC 7396 MergePatch() algorithm ** on the two arguments. */ static void jsonPatchFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pTarget; /* The TARGET */ JsonParse *pPatch; /* The PATCH */ int rc; /* Result code */ UNUSED_PARAMETER(argc); assert( argc==2 ); pTarget = jsonParseFuncArg(ctx, argv[0], JSON_EDITABLE); if( pTarget==0 ) return; pPatch = jsonParseFuncArg(ctx, argv[1], 0); if( pPatch ){ rc = jsonMergePatch(pTarget, 0, pPatch, 0); if( rc==JSON_MERGE_OK ){ jsonReturnParse(ctx, pTarget); }else if( rc==JSON_MERGE_OOM ){ sqlite3_result_error_nomem(ctx); }else{ sqlite3_result_error(ctx, "malformed JSON", -1); } jsonParseFree(pPatch); } jsonParseFree(pTarget); } /* ** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON ** object that contains all name/value given in arguments. Or if any name ** is not a string or if any value is a BLOB, throw an error. */ static void jsonObjectFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ int i; JsonString jx; const char *z; u32 n; if( argc&1 ){ sqlite3_result_error(ctx, "json_object() requires an even number " "of arguments", -1); return; } jsonStringInit(&jx, ctx); jsonAppendChar(&jx, '{'); for(i=0; i1 ? JSON_EDITABLE : 0); if( p==0 ) return; for(i=1; ieEdit = JEDIT_DEL; p->delta = 0; rc = jsonLookupStep(p, 0, zPath+1, 0); if( JSON_LOOKUP_ISERROR(rc) ){ if( rc==JSON_LOOKUP_NOTFOUND ){ continue; /* No-op */ }else if( rc==JSON_LOOKUP_PATHERROR ){ jsonBadPathError(ctx, zPath); }else{ sqlite3_result_error(ctx, "malformed JSON", -1); } goto json_remove_done; } } jsonReturnParse(ctx, p); jsonParseFree(p); return; json_remove_patherror: jsonBadPathError(ctx, zPath); json_remove_done: jsonParseFree(p); return; } /* ** json_replace(JSON, PATH, VALUE, ...) ** ** Replace the value at PATH with VALUE. If PATH does not already exist, ** this routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonReplaceFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, "replace"); return; } jsonInsertIntoBlob(ctx, argc, argv, JEDIT_REPL); } /* ** json_set(JSON, PATH, VALUE, ...) ** ** Set the value at PATH to VALUE. Create the PATH if it does not already ** exist. Overwrite existing values that do exist. ** If JSON or PATH is malformed, throw an error. ** ** json_insert(JSON, PATH, VALUE, ...) ** ** Create PATH and initialize it to VALUE. If PATH already exists, this ** routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonSetFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); int bIsSet = (flags&JSON_ISSET)!=0; if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert"); return; } jsonInsertIntoBlob(ctx, argc, argv, bIsSet ? JEDIT_SET : JEDIT_INS); } /* ** json_type(JSON) ** json_type(JSON, PATH) ** ** Return the top-level "type" of a JSON string. json_type() raises an ** error if either the JSON or PATH inputs are not well-formed. */ static void jsonTypeFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ const char *zPath = 0; u32 i; p = jsonParseFuncArg(ctx, argv[0], 0); if( p==0 ) return; if( argc==2 ){ zPath = (const char*)sqlite3_value_text(argv[1]); if( zPath==0 ) goto json_type_done; if( zPath[0]!='$' ){ jsonBadPathError(ctx, zPath); goto json_type_done; } i = jsonLookupStep(p, 0, zPath+1, 0); if( JSON_LOOKUP_ISERROR(i) ){ if( i==JSON_LOOKUP_NOTFOUND ){ /* no-op */ }else if( i==JSON_LOOKUP_PATHERROR ){ jsonBadPathError(ctx, zPath); }else{ sqlite3_result_error(ctx, "malformed JSON", -1); } goto json_type_done; } }else{ i = 0; } sqlite3_result_text(ctx, jsonbType[p->aBlob[i]&0x0f], -1, SQLITE_STATIC); json_type_done: jsonParseFree(p); } /* ** json_valid(JSON) ** json_valid(JSON, FLAGS) ** ** Check the JSON argument to see if it is well-formed. The FLAGS argument ** encodes the various constraints on what is meant by "well-formed": ** ** 0x01 Canonical RFC-8259 JSON text ** 0x02 JSON text with optional JSON-5 extensions ** 0x04 Superficially appears to be JSONB ** 0x08 Strictly well-formed JSONB ** ** If the FLAGS argument is omitted, it defaults to 1. Useful values for ** FLAGS include: ** ** 1 Strict canonical JSON text ** 2 JSON text perhaps with JSON-5 extensions ** 4 Superficially appears to be JSONB ** 5 Canonical JSON text or superficial JSONB ** 6 JSON-5 text or superficial JSONB ** 8 Strict JSONB ** 9 Canonical JSON text or strict JSONB ** 10 JSON-5 text or strict JSONB ** ** Other flag combinations are redundant. For example, every canonical ** JSON text is also well-formed JSON-5 text, so FLAG values 2 and 3 ** are the same. Similarly, any input that passes a strict JSONB validation ** will also pass the superficial validation so 12 through 15 are the same ** as 8 through 11 respectively. ** ** This routine runs in linear time to validate text and when doing strict ** JSONB validation. Superficial JSONB validation is constant time, ** assuming the BLOB is already in memory. The performance advantage ** of superficial JSONB validation is why that option is provided. ** Application developers can choose to do fast superficial validation or ** slower strict validation, according to their specific needs. ** ** Only the lower four bits of the FLAGS argument are currently used. ** Higher bits are reserved for future expansion. To facilitate ** compatibility, the current implementation raises an error if any bit ** in FLAGS is set other than the lower four bits. ** ** The original circa 2015 implementation of the JSON routines in ** SQLite only supported canonical RFC-8259 JSON text and the json_valid() ** function only accepted one argument. That is why the default value ** for the FLAGS argument is 1, since FLAGS=1 causes this routine to only ** recognize canonical RFC-8259 JSON text as valid. The extra FLAGS ** argument was added when the JSON routines were extended to support ** JSON5-like extensions and binary JSONB stored in BLOBs. ** ** Return Values: ** ** * Raise an error if FLAGS is outside the range of 1 to 15. ** * Return NULL if the input is NULL ** * Return 1 if the input is well-formed. ** * Return 0 if the input is not well-formed. */ static void jsonValidFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ u8 flags = 1; u8 res = 0; if( argc==2 ){ i64 f = sqlite3_value_int64(argv[1]); if( f<1 || f>15 ){ sqlite3_result_error(ctx, "FLAGS parameter to json_valid() must be" " between 1 and 15", -1); return; } flags = f & 0x0f; } switch( sqlite3_value_type(argv[0]) ){ case SQLITE_NULL: { #ifdef SQLITE_LEGACY_JSON_VALID /* Incorrect legacy behavior was to return FALSE for a NULL input */ sqlite3_result_int(ctx, 0); #endif return; } case SQLITE_BLOB: { if( jsonFuncArgMightBeBinary(argv[0]) ){ if( flags & 0x04 ){ /* Superficial checking only - accomplished by the ** jsonFuncArgMightBeBinary() call above. */ res = 1; }else if( flags & 0x08 ){ /* Strict checking. Check by translating BLOB->TEXT->BLOB. If ** no errors occur, call that a "strict check". */ JsonParse px; u32 iErr; memset(&px, 0, sizeof(px)); px.aBlob = (u8*)sqlite3_value_blob(argv[0]); px.nBlob = sqlite3_value_bytes(argv[0]); iErr = jsonbValidityCheck(&px, 0, px.nBlob, 1); res = iErr==0; } break; } /* Fall through into interpreting the input as text. See note ** above at tag-20240123-a. */ /* no break */ deliberate_fall_through } default: { JsonParse px; if( (flags & 0x3)==0 ) break; memset(&px, 0, sizeof(px)); p = jsonParseFuncArg(ctx, argv[0], JSON_KEEPERROR); if( p ){ if( p->oom ){ sqlite3_result_error_nomem(ctx); }else if( p->nErr ){ /* no-op */ }else if( (flags & 0x02)!=0 || p->hasNonstd==0 ){ res = 1; } jsonParseFree(p); }else{ sqlite3_result_error_nomem(ctx); } break; } } sqlite3_result_int(ctx, res); } /* ** json_error_position(JSON) ** ** If the argument is NULL, return NULL ** ** If the argument is BLOB, do a full validity check and return non-zero ** if the check fails. The return value is the approximate 1-based offset ** to the byte of the element that contains the first error. ** ** Otherwise interpret the argument is TEXT (even if it is numeric) and ** return the 1-based character position for where the parser first recognized ** that the input was not valid JSON, or return 0 if the input text looks ** ok. JSON-5 extensions are accepted. */ static void jsonErrorFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ i64 iErrPos = 0; /* Error position to be returned */ JsonParse s; assert( argc==1 ); UNUSED_PARAMETER(argc); memset(&s, 0, sizeof(s)); s.db = sqlite3_context_db_handle(ctx); if( jsonFuncArgMightBeBinary(argv[0]) ){ s.aBlob = (u8*)sqlite3_value_blob(argv[0]); s.nBlob = sqlite3_value_bytes(argv[0]); iErrPos = (i64)jsonbValidityCheck(&s, 0, s.nBlob, 1); }else{ s.zJson = (char*)sqlite3_value_text(argv[0]); if( s.zJson==0 ) return; /* NULL input or OOM */ s.nJson = sqlite3_value_bytes(argv[0]); if( jsonConvertTextToBlob(&s,0) ){ if( s.oom ){ iErrPos = -1; }else{ /* Convert byte-offset s.iErr into a character offset */ u32 k; assert( s.zJson!=0 ); /* Because s.oom is false */ for(k=0; kzBuf==0 ){ jsonStringInit(pStr, ctx); jsonAppendChar(pStr, '['); }else if( pStr->nUsed>1 ){ jsonAppendChar(pStr, ','); } pStr->pCtx = ctx; jsonAppendSqlValue(pStr, argv[0]); } } static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){ JsonString *pStr; pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); if( pStr ){ int flags; pStr->pCtx = ctx; jsonAppendChar(pStr, ']'); flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); if( pStr->eErr ){ jsonReturnString(pStr, 0, 0); return; }else if( flags & JSON_BLOB ){ jsonReturnStringAsBlob(pStr); if( isFinal ){ if( !pStr->bStatic ) sqlite3RCStrUnref(pStr->zBuf); }else{ jsonStringTrimOneChar(pStr); } return; }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : sqlite3RCStrUnref); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); jsonStringTrimOneChar(pStr); } }else{ sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC); } sqlite3_result_subtype(ctx, JSON_SUBTYPE); } static void jsonArrayValue(sqlite3_context *ctx){ jsonArrayCompute(ctx, 0); } static void jsonArrayFinal(sqlite3_context *ctx){ jsonArrayCompute(ctx, 1); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** This method works for both json_group_array() and json_group_object(). ** It works by removing the first element of the group by searching forward ** to the first comma (",") that is not within a string and deleting all ** text through that comma. */ static void jsonGroupInverse( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ unsigned int i; int inStr = 0; int nNest = 0; char *z; char c; JsonString *pStr; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); #ifdef NEVER /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will ** always have been called to initialize it */ if( NEVER(!pStr) ) return; #endif z = pStr->zBuf; for(i=1; inUsed && ((c = z[i])!=',' || inStr || nNest); i++){ if( c=='"' ){ inStr = !inStr; }else if( c=='\\' ){ i++; }else if( !inStr ){ if( c=='{' || c=='[' ) nNest++; if( c=='}' || c==']' ) nNest--; } } if( inUsed ){ pStr->nUsed -= i; memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1); z[pStr->nUsed] = 0; }else{ pStr->nUsed = 1; } } #else # define jsonGroupInverse 0 #endif /* ** json_group_obj(NAME,VALUE) ** ** Return a JSON object composed of all names and values in the aggregate. */ static void jsonObjectStep( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString *pStr; const char *z; u32 n; UNUSED_PARAMETER(argc); pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr)); if( pStr ){ if( pStr->zBuf==0 ){ jsonStringInit(pStr, ctx); jsonAppendChar(pStr, '{'); }else if( pStr->nUsed>1 ){ jsonAppendChar(pStr, ','); } pStr->pCtx = ctx; z = (const char*)sqlite3_value_text(argv[0]); n = sqlite3Strlen30(z); jsonAppendString(pStr, z, n); jsonAppendChar(pStr, ':'); jsonAppendSqlValue(pStr, argv[1]); } } static void jsonObjectCompute(sqlite3_context *ctx, int isFinal){ JsonString *pStr; pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); if( pStr ){ int flags; jsonAppendChar(pStr, '}'); pStr->pCtx = ctx; flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); if( pStr->eErr ){ jsonReturnString(pStr, 0, 0); return; }else if( flags & JSON_BLOB ){ jsonReturnStringAsBlob(pStr); if( isFinal ){ if( !pStr->bStatic ) sqlite3RCStrUnref(pStr->zBuf); }else{ jsonStringTrimOneChar(pStr); } return; }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : sqlite3RCStrUnref); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); jsonStringTrimOneChar(pStr); } }else{ sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC); } sqlite3_result_subtype(ctx, JSON_SUBTYPE); } static void jsonObjectValue(sqlite3_context *ctx){ jsonObjectCompute(ctx, 0); } static void jsonObjectFinal(sqlite3_context *ctx){ jsonObjectCompute(ctx, 1); } #ifndef SQLITE_OMIT_VIRTUALTABLE /**************************************************************************** ** The json_each virtual table ****************************************************************************/ typedef struct JsonParent JsonParent; struct JsonParent { u32 iHead; /* Start of object or array */ u32 iValue; /* Start of the value */ u32 iEnd; /* First byte past the end */ u32 nPath; /* Length of path */ i64 iKey; /* Key for JSONB_ARRAY */ }; typedef struct JsonEachCursor JsonEachCursor; struct JsonEachCursor { sqlite3_vtab_cursor base; /* Base class - must be first */ u32 iRowid; /* The rowid */ u32 i; /* Index in sParse.aBlob[] of current row */ u32 iEnd; /* EOF when i equals or exceeds this value */ u32 nRoot; /* Size of the root path in bytes */ u8 eType; /* Type of the container for element i */ u8 bRecursive; /* True for json_tree(). False for json_each() */ u32 nParent; /* Current nesting depth */ u32 nParentAlloc; /* Space allocated for aParent[] */ JsonParent *aParent; /* Parent elements of i */ sqlite3 *db; /* Database connection */ JsonString path; /* Current path */ JsonParse sParse; /* Parse of the input JSON */ }; typedef struct JsonEachConnection JsonEachConnection; struct JsonEachConnection { sqlite3_vtab base; /* Base class - must be first */ sqlite3 *db; /* Database connection */ }; /* Constructor for the json_each virtual table */ static int jsonEachConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ JsonEachConnection *pNew; int rc; /* Column numbers */ #define JEACH_KEY 0 #define JEACH_VALUE 1 #define JEACH_TYPE 2 #define JEACH_ATOM 3 #define JEACH_ID 4 #define JEACH_PARENT 5 #define JEACH_FULLKEY 6 #define JEACH_PATH 7 /* The xBestIndex method assumes that the JSON and ROOT columns are ** the last two columns in the table. Should this ever changes, be ** sure to update the xBestIndex method. */ #define JEACH_JSON 8 #define JEACH_ROOT 9 UNUSED_PARAMETER(pzErr); UNUSED_PARAMETER(argv); UNUSED_PARAMETER(argc); UNUSED_PARAMETER(pAux); rc = sqlite3_declare_vtab(db, "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path," "json HIDDEN,root HIDDEN)"); if( rc==SQLITE_OK ){ pNew = (JsonEachConnection*)sqlite3DbMallocZero(db, sizeof(*pNew)); *ppVtab = (sqlite3_vtab*)pNew; if( pNew==0 ) return SQLITE_NOMEM; sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); pNew->db = db; } return rc; } /* destructor for json_each virtual table */ static int jsonEachDisconnect(sqlite3_vtab *pVtab){ JsonEachConnection *p = (JsonEachConnection*)pVtab; sqlite3DbFree(p->db, pVtab); return SQLITE_OK; } /* constructor for a JsonEachCursor object for json_each(). */ static int jsonEachOpenEach(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ JsonEachConnection *pVtab = (JsonEachConnection*)p; JsonEachCursor *pCur; UNUSED_PARAMETER(p); pCur = sqlite3DbMallocZero(pVtab->db, sizeof(*pCur)); if( pCur==0 ) return SQLITE_NOMEM; pCur->db = pVtab->db; jsonStringZero(&pCur->path); *ppCursor = &pCur->base; return SQLITE_OK; } /* constructor for a JsonEachCursor object for json_tree(). */ static int jsonEachOpenTree(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ int rc = jsonEachOpenEach(p, ppCursor); if( rc==SQLITE_OK ){ JsonEachCursor *pCur = (JsonEachCursor*)*ppCursor; pCur->bRecursive = 1; } return rc; } /* Reset a JsonEachCursor back to its original state. Free any memory ** held. */ static void jsonEachCursorReset(JsonEachCursor *p){ jsonParseReset(&p->sParse); jsonStringReset(&p->path); sqlite3DbFree(p->db, p->aParent); p->iRowid = 0; p->i = 0; p->aParent = 0; p->nParent = 0; p->nParentAlloc = 0; p->iEnd = 0; p->eType = 0; } /* Destructor for a jsonEachCursor object */ static int jsonEachClose(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; jsonEachCursorReset(p); sqlite3DbFree(p->db, cur); return SQLITE_OK; } /* Return TRUE if the jsonEachCursor object has been advanced off the end ** of the JSON object */ static int jsonEachEof(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; return p->i >= p->iEnd; } /* ** If the cursor is currently pointing at the label of a object entry, ** then return the index of the value. For all other cases, return the ** current pointer position, which is the value. */ static int jsonSkipLabel(JsonEachCursor *p){ if( p->eType==JSONB_OBJECT ){ u32 sz = 0; u32 n = jsonbPayloadSize(&p->sParse, p->i, &sz); return p->i + n + sz; }else{ return p->i; } } /* ** Append the path name for the current element. */ static void jsonAppendPathName(JsonEachCursor *p){ assert( p->nParent>0 ); assert( p->eType==JSONB_ARRAY || p->eType==JSONB_OBJECT ); if( p->eType==JSONB_ARRAY ){ jsonPrintf(30, &p->path, "[%lld]", p->aParent[p->nParent-1].iKey); }else{ u32 n, sz = 0, k, i; const char *z; int needQuote = 0; n = jsonbPayloadSize(&p->sParse, p->i, &sz); k = p->i + n; z = (const char*)&p->sParse.aBlob[k]; if( sz==0 || !sqlite3Isalpha(z[0]) ){ needQuote = 1; }else{ for(i=0; ipath,".\"%.*s\"", sz, z); }else{ jsonPrintf(sz+2,&p->path,".%.*s", sz, z); } } } /* Advance the cursor to the next element for json_tree() */ static int jsonEachNext(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; int rc = SQLITE_OK; if( p->bRecursive ){ u8 x; u8 levelChange = 0; u32 n, sz = 0; u32 i = jsonSkipLabel(p); x = p->sParse.aBlob[i] & 0x0f; n = jsonbPayloadSize(&p->sParse, i, &sz); if( x==JSONB_OBJECT || x==JSONB_ARRAY ){ JsonParent *pParent; if( p->nParent>=p->nParentAlloc ){ JsonParent *pNew; u64 nNew; nNew = p->nParentAlloc*2 + 3; pNew = sqlite3DbRealloc(p->db, p->aParent, sizeof(JsonParent)*nNew); if( pNew==0 ) return SQLITE_NOMEM; p->nParentAlloc = (u32)nNew; p->aParent = pNew; } levelChange = 1; pParent = &p->aParent[p->nParent]; pParent->iHead = p->i; pParent->iValue = i; pParent->iEnd = i + n + sz; pParent->iKey = -1; pParent->nPath = (u32)p->path.nUsed; if( p->eType && p->nParent ){ jsonAppendPathName(p); if( p->path.eErr ) rc = SQLITE_NOMEM; } p->nParent++; p->i = i + n; }else{ p->i = i + n + sz; } while( p->nParent>0 && p->i >= p->aParent[p->nParent-1].iEnd ){ p->nParent--; p->path.nUsed = p->aParent[p->nParent].nPath; levelChange = 1; } if( levelChange ){ if( p->nParent>0 ){ JsonParent *pParent = &p->aParent[p->nParent-1]; u32 iVal = pParent->iValue; p->eType = p->sParse.aBlob[iVal] & 0x0f; }else{ p->eType = 0; } } }else{ u32 n, sz = 0; u32 i = jsonSkipLabel(p); n = jsonbPayloadSize(&p->sParse, i, &sz); p->i = i + n + sz; } if( p->eType==JSONB_ARRAY && p->nParent ){ p->aParent[p->nParent-1].iKey++; } p->iRowid++; return rc; } /* Length of the path for rowid==0 in bRecursive mode. */ static int jsonEachPathLength(JsonEachCursor *p){ u32 n = p->path.nUsed; char *z = p->path.zBuf; if( p->iRowid==0 && p->bRecursive && n>=2 ){ while( n>1 ){ n--; if( z[n]=='[' || z[n]=='.' ){ u32 x, sz = 0; char cSaved = z[n]; z[n] = 0; assert( p->sParse.eEdit==0 ); x = jsonLookupStep(&p->sParse, 0, z+1, 0); z[n] = cSaved; if( JSON_LOOKUP_ISERROR(x) ) continue; if( x + jsonbPayloadSize(&p->sParse, x, &sz) == p->i ) break; } } } return n; } /* Return the value of a column */ static int jsonEachColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int iColumn /* Which column to return */ ){ JsonEachCursor *p = (JsonEachCursor*)cur; switch( iColumn ){ case JEACH_KEY: { if( p->nParent==0 ){ u32 n, j; if( p->nRoot==1 ) break; j = jsonEachPathLength(p); n = p->nRoot - j; if( n==0 ){ break; }else if( p->path.zBuf[j]=='[' ){ i64 x; sqlite3Atoi64(&p->path.zBuf[j+1], &x, n-1, SQLITE_UTF8); sqlite3_result_int64(ctx, x); }else if( p->path.zBuf[j+1]=='"' ){ sqlite3_result_text(ctx, &p->path.zBuf[j+2], n-3, SQLITE_TRANSIENT); }else{ sqlite3_result_text(ctx, &p->path.zBuf[j+1], n-1, SQLITE_TRANSIENT); } break; } if( p->eType==JSONB_OBJECT ){ jsonReturnFromBlob(&p->sParse, p->i, ctx, 1); }else{ assert( p->eType==JSONB_ARRAY ); sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iKey); } break; } case JEACH_VALUE: { u32 i = jsonSkipLabel(p); jsonReturnFromBlob(&p->sParse, i, ctx, 1); if( (p->sParse.aBlob[i] & 0x0f)>=JSONB_ARRAY ){ sqlite3_result_subtype(ctx, JSON_SUBTYPE); } break; } case JEACH_TYPE: { u32 i = jsonSkipLabel(p); u8 eType = p->sParse.aBlob[i] & 0x0f; sqlite3_result_text(ctx, jsonbType[eType], -1, SQLITE_STATIC); break; } case JEACH_ATOM: { u32 i = jsonSkipLabel(p); if( (p->sParse.aBlob[i] & 0x0f)sParse, i, ctx, 1); } break; } case JEACH_ID: { sqlite3_result_int64(ctx, (sqlite3_int64)p->i); break; } case JEACH_PARENT: { if( p->nParent>0 && p->bRecursive ){ sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iHead); } break; } case JEACH_FULLKEY: { u64 nBase = p->path.nUsed; if( p->nParent ) jsonAppendPathName(p); sqlite3_result_text64(ctx, p->path.zBuf, p->path.nUsed, SQLITE_TRANSIENT, SQLITE_UTF8); p->path.nUsed = nBase; break; } case JEACH_PATH: { u32 n = jsonEachPathLength(p); sqlite3_result_text64(ctx, p->path.zBuf, n, SQLITE_TRANSIENT, SQLITE_UTF8); break; } default: { sqlite3_result_text(ctx, p->path.zBuf, p->nRoot, SQLITE_STATIC); break; } case JEACH_JSON: { if( p->sParse.zJson==0 ){ sqlite3_result_blob(ctx, p->sParse.aBlob, p->sParse.nBlob, SQLITE_TRANSIENT); }else{ sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_TRANSIENT); } break; } } return SQLITE_OK; } /* Return the current rowid value */ static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ JsonEachCursor *p = (JsonEachCursor*)cur; *pRowid = p->iRowid; return SQLITE_OK; } /* The query strategy is to look for an equality constraint on the json ** column. Without such a constraint, the table cannot operate. idxNum is ** 1 if the constraint is found, 3 if the constraint and zRoot are found, ** and 0 otherwise. */ static int jsonEachBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop counter or computed array index */ int aIdx[2]; /* Index of constraints for JSON and ROOT */ int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */ int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */ const struct sqlite3_index_constraint *pConstraint; /* This implementation assumes that JSON and ROOT are the last two ** columns in the table */ assert( JEACH_ROOT == JEACH_JSON+1 ); UNUSED_PARAMETER(tab); aIdx[0] = aIdx[1] = -1; pConstraint = pIdxInfo->aConstraint; for(i=0; inConstraint; i++, pConstraint++){ int iCol; int iMask; if( pConstraint->iColumn < JEACH_JSON ) continue; iCol = pConstraint->iColumn - JEACH_JSON; assert( iCol==0 || iCol==1 ); testcase( iCol==0 ); iMask = 1 << iCol; if( pConstraint->usable==0 ){ unusableMask |= iMask; }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ aIdx[iCol] = i; idxMask |= iMask; } } if( pIdxInfo->nOrderBy>0 && pIdxInfo->aOrderBy[0].iColumn<0 && pIdxInfo->aOrderBy[0].desc==0 ){ pIdxInfo->orderByConsumed = 1; } if( (unusableMask & ~idxMask)!=0 ){ /* If there are any unusable constraints on JSON or ROOT, then reject ** this entire plan */ return SQLITE_CONSTRAINT; } if( aIdx[0]<0 ){ /* No JSON input. Leave estimatedCost at the huge value that it was ** initialized to to discourage the query planner from selecting this ** plan. */ pIdxInfo->idxNum = 0; }else{ pIdxInfo->estimatedCost = 1.0; i = aIdx[0]; pIdxInfo->aConstraintUsage[i].argvIndex = 1; pIdxInfo->aConstraintUsage[i].omit = 1; if( aIdx[1]<0 ){ pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */ }else{ i = aIdx[1]; pIdxInfo->aConstraintUsage[i].argvIndex = 2; pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */ } } return SQLITE_OK; } /* Start a search on a new JSON string */ static int jsonEachFilter( sqlite3_vtab_cursor *cur, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ JsonEachCursor *p = (JsonEachCursor*)cur; const char *zRoot = 0; u32 i, n, sz; UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(argc); jsonEachCursorReset(p); if( idxNum==0 ) return SQLITE_OK; memset(&p->sParse, 0, sizeof(p->sParse)); p->sParse.nJPRef = 1; p->sParse.db = p->db; if( jsonFuncArgMightBeBinary(argv[0]) ){ p->sParse.nBlob = sqlite3_value_bytes(argv[0]); p->sParse.aBlob = (u8*)sqlite3_value_blob(argv[0]); }else{ p->sParse.zJson = (char*)sqlite3_value_text(argv[0]); p->sParse.nJson = sqlite3_value_bytes(argv[0]); if( p->sParse.zJson==0 ){ p->i = p->iEnd = 0; return SQLITE_OK; } if( jsonConvertTextToBlob(&p->sParse, 0) ){ if( p->sParse.oom ){ return SQLITE_NOMEM; } goto json_each_malformed_input; } } if( idxNum==3 ){ zRoot = (const char*)sqlite3_value_text(argv[1]); if( zRoot==0 ) return SQLITE_OK; if( zRoot[0]!='$' ){ sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = jsonBadPathError(0, zRoot); jsonEachCursorReset(p); return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; } p->nRoot = sqlite3Strlen30(zRoot); if( zRoot[1]==0 ){ i = p->i = 0; p->eType = 0; }else{ i = jsonLookupStep(&p->sParse, 0, zRoot+1, 0); if( JSON_LOOKUP_ISERROR(i) ){ if( i==JSON_LOOKUP_NOTFOUND ){ p->i = 0; p->eType = 0; p->iEnd = 0; return SQLITE_OK; } sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = jsonBadPathError(0, zRoot); jsonEachCursorReset(p); return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; } if( p->sParse.iLabel ){ p->i = p->sParse.iLabel; p->eType = JSONB_OBJECT; }else{ p->i = i; p->eType = JSONB_ARRAY; } } jsonAppendRaw(&p->path, zRoot, p->nRoot); }else{ i = p->i = 0; p->eType = 0; p->nRoot = 1; jsonAppendRaw(&p->path, "$", 1); } p->nParent = 0; n = jsonbPayloadSize(&p->sParse, i, &sz); p->iEnd = i+n+sz; if( (p->sParse.aBlob[i] & 0x0f)>=JSONB_ARRAY && !p->bRecursive ){ p->i = i + n; p->eType = p->sParse.aBlob[i] & 0x0f; p->aParent = sqlite3DbMallocZero(p->db, sizeof(JsonParent)); if( p->aParent==0 ) return SQLITE_NOMEM; p->nParent = 1; p->nParentAlloc = 1; p->aParent[0].iKey = 0; p->aParent[0].iEnd = p->iEnd; p->aParent[0].iHead = p->i; p->aParent[0].iValue = i; } return SQLITE_OK; json_each_malformed_input: sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON"); jsonEachCursorReset(p); return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; } /* The methods of the json_each virtual table */ static sqlite3_module jsonEachModule = { 0, /* iVersion */ 0, /* xCreate */ jsonEachConnect, /* xConnect */ jsonEachBestIndex, /* xBestIndex */ jsonEachDisconnect, /* xDisconnect */ 0, /* xDestroy */ jsonEachOpenEach, /* xOpen - open a cursor */ jsonEachClose, /* xClose - close a cursor */ jsonEachFilter, /* xFilter - configure scan constraints */ jsonEachNext, /* xNext - advance a cursor */ jsonEachEof, /* xEof - check for end of scan */ jsonEachColumn, /* xColumn - read data */ jsonEachRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; /* The methods of the json_tree virtual table. */ static sqlite3_module jsonTreeModule = { 0, /* iVersion */ 0, /* xCreate */ jsonEachConnect, /* xConnect */ jsonEachBestIndex, /* xBestIndex */ jsonEachDisconnect, /* xDisconnect */ 0, /* xDestroy */ jsonEachOpenTree, /* xOpen - open a cursor */ jsonEachClose, /* xClose - close a cursor */ jsonEachFilter, /* xFilter - configure scan constraints */ jsonEachNext, /* xNext - advance a cursor */ jsonEachEof, /* xEof - check for end of scan */ jsonEachColumn, /* xColumn - read data */ jsonEachRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 /* xIntegrity */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ #endif /* !defined(SQLITE_OMIT_JSON) */ /* ** Register JSON functions. */ SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void){ #ifndef SQLITE_OMIT_JSON static FuncDef aJsonFunc[] = { /* sqlite3_result_subtype() ----, ,--- sqlite3_value_subtype() */ /* | | */ /* Uses cache ------, | | ,---- Returns JSONB */ /* | | | | */ /* Number of arguments ---, | | | | ,--- Flags */ /* | | | | | | */ JFUNCTION(json, 1,1,1, 0,0,0, jsonRemoveFunc), JFUNCTION(jsonb, 1,1,0, 0,1,0, jsonRemoveFunc), JFUNCTION(json_array, -1,0,1, 1,0,0, jsonArrayFunc), JFUNCTION(jsonb_array, -1,0,1, 1,1,0, jsonArrayFunc), JFUNCTION(json_array_length, 1,1,0, 0,0,0, jsonArrayLengthFunc), JFUNCTION(json_array_length, 2,1,0, 0,0,0, jsonArrayLengthFunc), JFUNCTION(json_error_position,1,1,0, 0,0,0, jsonErrorFunc), JFUNCTION(json_extract, -1,1,1, 0,0,0, jsonExtractFunc), JFUNCTION(jsonb_extract, -1,1,0, 0,1,0, jsonExtractFunc), JFUNCTION(->, 2,1,1, 0,0,JSON_JSON, jsonExtractFunc), JFUNCTION(->>, 2,1,0, 0,0,JSON_SQL, jsonExtractFunc), JFUNCTION(json_insert, -1,1,1, 1,0,0, jsonSetFunc), JFUNCTION(jsonb_insert, -1,1,0, 1,1,0, jsonSetFunc), JFUNCTION(json_object, -1,0,1, 1,0,0, jsonObjectFunc), JFUNCTION(jsonb_object, -1,0,1, 1,1,0, jsonObjectFunc), JFUNCTION(json_patch, 2,1,1, 0,0,0, jsonPatchFunc), JFUNCTION(jsonb_patch, 2,1,0, 0,1,0, jsonPatchFunc), JFUNCTION(json_quote, 1,0,1, 1,0,0, jsonQuoteFunc), JFUNCTION(json_remove, -1,1,1, 0,0,0, jsonRemoveFunc), JFUNCTION(jsonb_remove, -1,1,0, 0,1,0, jsonRemoveFunc), JFUNCTION(json_replace, -1,1,1, 1,0,0, jsonReplaceFunc), JFUNCTION(jsonb_replace, -1,1,0, 1,1,0, jsonReplaceFunc), JFUNCTION(json_set, -1,1,1, 1,0,JSON_ISSET, jsonSetFunc), JFUNCTION(jsonb_set, -1,1,0, 1,1,JSON_ISSET, jsonSetFunc), JFUNCTION(json_type, 1,1,0, 0,0,0, jsonTypeFunc), JFUNCTION(json_type, 2,1,0, 0,0,0, jsonTypeFunc), JFUNCTION(json_valid, 1,1,0, 0,0,0, jsonValidFunc), JFUNCTION(json_valid, 2,1,0, 0,0,0, jsonValidFunc), #if SQLITE_DEBUG JFUNCTION(json_parse, 1,1,0, 0,0,0, jsonParseFunc), #endif WAGGREGATE(json_group_array, 1, 0, 0, jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8| SQLITE_DETERMINISTIC), WAGGREGATE(jsonb_group_array, 1, JSON_BLOB, 0, jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC), WAGGREGATE(json_group_object, 2, 0, 0, jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC), WAGGREGATE(jsonb_group_object,2, JSON_BLOB, 0, jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8| SQLITE_DETERMINISTIC) }; sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc)); #endif } #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) /* ** Register the JSON table-valued functions */ SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3 *db){ int rc = SQLITE_OK; static const struct { const char *zName; sqlite3_module *pModule; } aMod[] = { { "json_each", &jsonEachModule }, { "json_tree", &jsonTreeModule }, }; unsigned int i; for(i=0; i */ /* #include */ /* #include */ /* #include */ /* The following macro is used to suppress compiler warnings. */ #ifndef UNUSED_PARAMETER # define UNUSED_PARAMETER(x) (void)(x) #endif typedef struct Rtree Rtree; typedef struct RtreeCursor RtreeCursor; typedef struct RtreeNode RtreeNode; typedef struct RtreeCell RtreeCell; typedef struct RtreeConstraint RtreeConstraint; typedef struct RtreeMatchArg RtreeMatchArg; typedef struct RtreeGeomCallback RtreeGeomCallback; typedef union RtreeCoord RtreeCoord; typedef struct RtreeSearchPoint RtreeSearchPoint; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Maximum number of auxiliary columns */ #define RTREE_MAX_AUX_COLUMN 100 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ #define HASHSIZE 97 /* The xBestIndex method of this virtual table requires an estimate of ** the number of rows in the virtual table to calculate the costs of ** various strategies. If possible, this estimate is loaded from the ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). ** Otherwise, if no sqlite_stat1 entry is available, use ** RTREE_DEFAULT_ROWEST. */ #define RTREE_DEFAULT_ROWEST 1048576 #define RTREE_MIN_ROWEST 100 /* ** An rtree virtual-table object. */ struct Rtree { sqlite3_vtab base; /* Base class. Must be first */ sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ u8 nDim; /* Number of dimensions */ u8 nDim2; /* Twice the number of dimensions */ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ u8 nBytesPerCell; /* Bytes consumed per cell */ u8 inWrTrans; /* True if inside write transaction */ u8 nAux; /* # of auxiliary columns in %_rowid */ #ifdef SQLITE_ENABLE_GEOPOLY u8 nAuxNotNull; /* Number of initial not-null aux columns */ #endif #ifdef SQLITE_DEBUG u8 bCorrupt; /* Shadow table corruption detected */ #endif int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ char *zNodeName; /* Name of the %_node table */ u32 nBusy; /* Current number of users of this structure */ i64 nRowEst; /* Estimated number of rows in this table */ u32 nCursor; /* Number of open cursors */ u32 nNodeRef; /* Number RtreeNodes with positive nRef */ char *zReadAuxSql; /* SQL for statement to read aux data */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree ** headed by the node (leaf nodes have RtreeNode.iNode==0). */ RtreeNode *pDeleted; /* Blob I/O on xxx_node */ sqlite3_blob *pNodeBlob; /* Statements to read/write/delete a record from xxx_node */ sqlite3_stmt *pWriteNode; sqlite3_stmt *pDeleteNode; /* Statements to read/write/delete a record from xxx_rowid */ sqlite3_stmt *pReadRowid; sqlite3_stmt *pWriteRowid; sqlite3_stmt *pDeleteRowid; /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; /* Statement for writing to the "aux:" fields, if there are any */ sqlite3_stmt *pWriteAux; RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ }; /* Possible values for Rtree.eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 /* ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will ** only deal with integer coordinates. No floating point operations ** will be done. */ #ifdef SQLITE_RTREE_INT_ONLY typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ typedef int RtreeValue; /* Low accuracy coordinate */ # define RTREE_ZERO 0 #else typedef double RtreeDValue; /* High accuracy coordinate */ typedef float RtreeValue; /* Low accuracy coordinate */ # define RTREE_ZERO 0.0 #endif /* ** Set the Rtree.bCorrupt flag */ #ifdef SQLITE_DEBUG # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1) #else # define RTREE_IS_CORRUPT(X) #endif /* ** When doing a search of an r-tree, instances of the following structure ** record intermediate results from the tree walk. ** ** The id is always a node-id. For iLevel>=1 the id is the node-id of ** the node that the RtreeSearchPoint represents. When iLevel==0, however, ** the id is of the parent node and the cell that RtreeSearchPoint ** represents is the iCell-th entry in the parent node. */ struct RtreeSearchPoint { RtreeDValue rScore; /* The score for this node. Smallest goes first. */ sqlite3_int64 id; /* Node ID */ u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ u8 iCell; /* Cell index within the node */ }; /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** ** m = M/3 ** ** If an R*-tree "Reinsert" operation is required, the same number of ** cells are removed from the overfull node and reinserted into the tree. */ #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) #define RTREE_REINSERT(p) RTREE_MINCELLS(p) #define RTREE_MAXCELLS 51 /* ** The smallest possible node-size is (512-64)==448 bytes. And the largest ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). ** Therefore all non-root nodes must contain at least 3 entries. Since ** 3^40 is greater than 2^64, an r-tree structure always has a depth of ** 40 or less. */ #define RTREE_MAX_DEPTH 40 /* ** Number of entries in the cursor RtreeNode cache. The first entry is ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining ** entries cache the RtreeNode for the first elements of the priority queue. */ #define RTREE_CACHE_SZ 5 /* ** An rtree cursor object. */ struct RtreeCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ u8 atEOF; /* True if at end of search */ u8 bPoint; /* True if sPoint is valid */ u8 bAuxValid; /* True if pReadAux is valid */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ int nPointAlloc; /* Number of slots allocated for aPoint[] */ int nPoint; /* Number of slots used in aPoint[] */ int mxLevel; /* iLevel value for root of the tree */ RtreeSearchPoint *aPoint; /* Priority queue for search points */ sqlite3_stmt *pReadAux; /* Statement to read aux-data */ RtreeSearchPoint sPoint; /* Cached next search point */ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ }; /* Return the Rtree of a RtreeCursor */ #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) /* ** A coordinate can be either a floating point number or a integer. All ** coordinates within a single R-Tree are always of the same time. */ union RtreeCoord { RtreeValue f; /* Floating point value */ int i; /* Integer value */ u32 u; /* Unsigned for byte-order conversions */ }; /* ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord ** formatted as a RtreeDValue (double or int64). This macro assumes that local ** variable pRtree points to the Rtree structure associated with the ** RtreeCoord. */ #ifdef SQLITE_RTREE_INT_ONLY # define DCOORD(coord) ((RtreeDValue)coord.i) #else # define DCOORD(coord) ( \ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ ((double)coord.f) : \ ((double)coord.i) \ ) #endif /* ** A search constraint. */ struct RtreeConstraint { int iCoord; /* Index of constrained coordinate */ int op; /* Constraining operation */ union { RtreeDValue rValue; /* Constraint value. */ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); int (*xQueryFunc)(sqlite3_rtree_query_info*); } u; sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ }; /* Possible values for RtreeConstraint.op */ #define RTREE_EQ 0x41 /* A */ #define RTREE_LE 0x42 /* B */ #define RTREE_LT 0x43 /* C */ #define RTREE_GE 0x44 /* D */ #define RTREE_GT 0x45 /* E */ #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ /* Special operators available only on cursors. Needs to be consecutive ** with the normal values above, but must be less than RTREE_MATCH. These ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or ** x<'xyz' (RTREE_TRUE) */ #define RTREE_TRUE 0x3f /* ? */ #define RTREE_FALSE 0x40 /* @ */ /* ** An rtree structure node. */ struct RtreeNode { RtreeNode *pParent; /* Parent node */ i64 iNode; /* The node number */ int nRef; /* Number of references to this node */ int isDirty; /* True if the node needs to be written to disk */ u8 *zData; /* Content of the node, as should be on disk */ RtreeNode *pNext; /* Next node in this hash collision chain */ }; /* Return the number of cells in a node */ #define NCELL(pNode) readInt16(&(pNode)->zData[2]) /* ** A single cell from a node, deserialized */ struct RtreeCell { i64 iRowid; /* Node or entry ID */ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ }; /* ** This object becomes the sqlite3_user_data() for the SQL functions ** that are created by sqlite3_rtree_geometry_callback() and ** sqlite3_rtree_query_callback() and which appear on the right of MATCH ** operators in order to constrain a search. ** ** xGeom and xQueryFunc are the callback functions. Exactly one of ** xGeom and xQueryFunc fields is non-NULL, depending on whether the ** SQL function was created using sqlite3_rtree_geometry_callback() or ** sqlite3_rtree_query_callback(). ** ** This object is deleted automatically by the destructor mechanism in ** sqlite3_create_function_v2(). */ struct RtreeGeomCallback { int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); int (*xQueryFunc)(sqlite3_rtree_query_info*); void (*xDestructor)(void*); void *pContext; }; /* ** An instance of this structure (in the form of a BLOB) is returned by ** the SQL functions that sqlite3_rtree_geometry_callback() and ** sqlite3_rtree_query_callback() create, and is read as the right-hand ** operand to the MATCH operator of an R-Tree. */ struct RtreeMatchArg { u32 iSize; /* Size of this object */ RtreeGeomCallback cb; /* Info about the callback functions */ int nParam; /* Number of parameters to the SQL function */ sqlite3_value **apSqlParam; /* Original SQL parameter values */ RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ }; #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif #ifndef MIN # define MIN(x,y) ((x) > (y) ? (y) : (x)) #endif /* What version of GCC is being used. 0 means GCC is not being used . ** Note that the GCC_VERSION macro will also be set correctly when using ** clang, since clang works hard to be gcc compatible. So the gcc ** optimizations will also work when compiling with clang. */ #ifndef GCC_VERSION #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #endif /* The testcase() macro should already be defined in the amalgamation. If ** it is not, make it a no-op. */ #ifndef SQLITE_AMALGAMATION # if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) unsigned int sqlite3RtreeTestcase = 0; # define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; } # else # define testcase(X) # endif #endif /* ** Make sure that the compiler intrinsics we desire are enabled when ** compiling with an appropriate version of MSVC unless prevented by ** the SQLITE_DISABLE_INTRINSIC define. */ #if !defined(SQLITE_DISABLE_INTRINSIC) # if defined(_MSC_VER) && _MSC_VER>=1400 # if !defined(_WIN32_WCE) /* # include */ # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_byteswap_uint64) # else /* # include */ # endif # endif #endif /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined ** at run-time. */ #ifndef SQLITE_BYTEORDER /* Replicate changes at tag-20230904a */ # if defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_BIG_ENDIAN__ # define SQLITE_BYTEORDER 4321 # elif defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__ # define SQLITE_BYTEORDER 1234 # elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1 # define SQLITE_BYTEORDER 4321 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64) # define SQLITE_BYTEORDER 1234 # elif defined(sparc) || defined(__ARMEB__) || defined(__AARCH64EB__) # define SQLITE_BYTEORDER 4321 # else # define SQLITE_BYTEORDER 0 # endif #endif /* What version of MSVC is being used. 0 means MSVC is not being used */ #ifndef MSVC_VERSION #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif #endif /* ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ assert( FOUR_BYTE_ALIGNED(p) ); #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 pCoord->u = _byteswap_ulong(*(u32*)p); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 pCoord->u = __builtin_bswap32(*(u32*)p); #elif SQLITE_BYTEORDER==4321 pCoord->u = *(u32*)p; #else pCoord->u = ( (((u32)p[0]) << 24) + (((u32)p[1]) << 16) + (((u32)p[2]) << 8) + (((u32)p[3]) << 0) ); #endif } static i64 readInt64(u8 *p){ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u64 x; memcpy(&x, p, 8); return (i64)_byteswap_uint64(x); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 u64 x; memcpy(&x, p, 8); return (i64)__builtin_bswap64(x); #elif SQLITE_BYTEORDER==4321 i64 x; memcpy(&x, p, 8); return x; #else return (i64)( (((u64)p[0]) << 56) + (((u64)p[1]) << 48) + (((u64)p[2]) << 40) + (((u64)p[3]) << 32) + (((u64)p[4]) << 24) + (((u64)p[5]) << 16) + (((u64)p[6]) << 8) + (((u64)p[7]) << 0) ); #endif } /* ** Functions to serialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The value returned is the number of bytes written ** to the argument buffer (always 2, 4 and 8 respectively). */ static void writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; } static int writeCoord(u8 *p, RtreeCoord *pCoord){ u32 i; assert( FOUR_BYTE_ALIGNED(p) ); assert( sizeof(RtreeCoord)==4 ); assert( sizeof(u32)==4 ); #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 i = __builtin_bswap32(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = _byteswap_ulong(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==4321 i = pCoord->u; memcpy(p, &i, 4); #else i = pCoord->u; p[0] = (i>>24)&0xFF; p[1] = (i>>16)&0xFF; p[2] = (i>> 8)&0xFF; p[3] = (i>> 0)&0xFF; #endif return 4; } static int writeInt64(u8 *p, i64 i){ #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 i = (i64)__builtin_bswap64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = (i64)_byteswap_uint64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==4321 memcpy(p, &i, 8); #else p[0] = (i>>56)&0xFF; p[1] = (i>>48)&0xFF; p[2] = (i>>40)&0xFF; p[3] = (i>>32)&0xFF; p[4] = (i>>24)&0xFF; p[5] = (i>>16)&0xFF; p[6] = (i>> 8)&0xFF; p[7] = (i>> 0)&0xFF; #endif return 8; } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ if( p ){ assert( p->nRef>0 ); p->nRef++; } } /* ** Clear the content of node p (set all bytes to 0x00). */ static void nodeZero(Rtree *pRtree, RtreeNode *p){ memset(&p->zData[2], 0, pRtree->iNodeSize-2); p->isDirty = 1; } /* ** Given a node number iNode, return the corresponding key to use ** in the Rtree.aHash table. */ static unsigned int nodeHash(i64 iNode){ return ((unsigned)iNode) % HASHSIZE; } /* ** Search the node hash table for node iNode. If found, return a pointer ** to it. Otherwise, return 0. */ static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ RtreeNode *p; for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); return p; } /* ** Add node pNode to the node hash table. */ static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ int iHash; assert( pNode->pNext==0 ); iHash = nodeHash(pNode->iNode); pNode->pNext = pRtree->aHash[iHash]; pRtree->aHash[iHash] = pNode; } /* ** Remove node pNode from the node hash table. */ static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ RtreeNode **pp; if( pNode->iNode!=0 ){ pp = &pRtree->aHash[nodeHash(pNode->iNode)]; for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } *pp = pNode->pNext; pNode->pNext = 0; } } /* ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), ** indicating that node has not yet been assigned a node number. It is ** assigned a node number when nodeWrite() is called to write the ** node contents out to the database. */ static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ RtreeNode *pNode; pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize); if( pNode ){ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->pParent = pParent; pNode->isDirty = 1; nodeReference(pParent); } return pNode; } /* ** Clear the Rtree.pNodeBlob object */ static void nodeBlobReset(Rtree *pRtree){ sqlite3_blob *pBlob = pRtree->pNodeBlob; pRtree->pNodeBlob = 0; sqlite3_blob_close(pBlob); } /* ** Obtain a reference to an r-tree node. */ static int nodeAcquire( Rtree *pRtree, /* R-tree structure */ i64 iNode, /* Node number to load */ RtreeNode *pParent, /* Either the parent node or NULL */ RtreeNode **ppNode /* OUT: Acquired node */ ){ int rc = SQLITE_OK; RtreeNode *pNode = 0; /* Check if the requested node is already in the hash table. If so, ** increase its reference count and return it. */ if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ if( pParent && ALWAYS(pParent!=pNode->pParent) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } pNode->nRef++; *ppNode = pNode; return SQLITE_OK; } if( pRtree->pNodeBlob ){ sqlite3_blob *pBlob = pRtree->pNodeBlob; pRtree->pNodeBlob = 0; rc = sqlite3_blob_reopen(pBlob, iNode); pRtree->pNodeBlob = pBlob; if( rc ){ nodeBlobReset(pRtree); if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; } } if( pRtree->pNodeBlob==0 ){ rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, pRtree->zNodeName, "data", iNode, 0, &pRtree->pNodeBlob); } if( rc ){ *ppNode = 0; /* If unable to open an sqlite3_blob on the desired row, that can only ** be because the shadow tables hold erroneous data. */ if( rc==SQLITE_ERROR ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize); if( !pNode ){ rc = SQLITE_NOMEM; }else{ pNode->pParent = pParent; pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->iNode = iNode; pNode->isDirty = 0; pNode->pNext = 0; rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, pRtree->iNodeSize, 0); } } /* If the root node was just loaded, set pRtree->iDepth to the height ** of the r-tree structure. A height of zero means all data is stored on ** the root node. A height of one means the children of the root node ** are the leaves, and so on. If the depth as specified on the root node ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. */ if( rc==SQLITE_OK && pNode && iNode==1 ){ pRtree->iDepth = readInt16(pNode->zData); if( pRtree->iDepth>RTREE_MAX_DEPTH ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } } /* If no error has occurred so far, check if the "number of entries" ** field on the node is too large. If so, set the return code to ** SQLITE_CORRUPT_VTAB. */ if( pNode && rc==SQLITE_OK ){ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } } if( rc==SQLITE_OK ){ if( pNode!=0 ){ nodeReference(pParent); nodeHashInsert(pRtree, pNode); }else{ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } *ppNode = pNode; }else{ nodeBlobReset(pRtree); if( pNode ){ pRtree->nNodeRef--; sqlite3_free(pNode); } *ppNode = 0; } return rc; } /* ** Overwrite cell iCell of node pNode with the contents of pCell. */ static void nodeOverwriteCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node into which the cell is to be written */ RtreeCell *pCell, /* The cell to write */ int iCell /* Index into pNode into which pCell is written */ ){ int ii; u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; p += writeInt64(p, pCell->iRowid); for(ii=0; iinDim2; ii++){ p += writeCoord(p, &pCell->aCoord[ii]); } pNode->isDirty = 1; } /* ** Remove the cell with index iCell from node pNode. */ static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; u8 *pSrc = &pDst[pRtree->nBytesPerCell]; int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; memmove(pDst, pSrc, nByte); writeInt16(&pNode->zData[2], NCELL(pNode)-1); pNode->isDirty = 1; } /* ** Insert the contents of cell pCell into node pNode. If the insert ** is successful, return SQLITE_OK. ** ** If there is not enough free space in pNode, return SQLITE_FULL. */ static int nodeInsertCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* Write new cell into this node */ RtreeCell *pCell /* The cell to be inserted */ ){ int nCell; /* Current number of cells in pNode */ int nMaxCell; /* Maximum number of cells for pNode */ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; nCell = NCELL(pNode); assert( nCell<=nMaxCell ); if( nCellzData[2], nCell+1); pNode->isDirty = 1; } return (nCell==nMaxCell); } /* ** If the node is dirty, write it out to the database. */ static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode->isDirty ){ sqlite3_stmt *p = pRtree->pWriteNode; if( pNode->iNode ){ sqlite3_bind_int64(p, 1, pNode->iNode); }else{ sqlite3_bind_null(p, 1); } sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); sqlite3_step(p); pNode->isDirty = 0; rc = sqlite3_reset(p); sqlite3_bind_null(p, 2); if( pNode->iNode==0 && rc==SQLITE_OK ){ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); nodeHashInsert(pRtree, pNode); } } return rc; } /* ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); assert( pRtree->nNodeRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ pRtree->nNodeRef--; if( pNode->iNode==1 ){ pRtree->iDepth = -1; } if( pNode->pParent ){ rc = nodeRelease(pRtree, pNode->pParent); } if( rc==SQLITE_OK ){ rc = nodeWrite(pRtree, pNode); } nodeHashDelete(pRtree, pNode); sqlite3_free(pNode); } } return rc; } /* ** Return the 64-bit integer value associated with cell iCell of ** node pNode. If pNode is a leaf node, this is a rowid. If it is ** an internal node, then the 64-bit integer is a child page number. */ static i64 nodeGetRowid( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node from which to extract the ID */ int iCell /* The cell index from which to extract the ID */ ){ assert( iCellzData[4 + pRtree->nBytesPerCell*iCell]); } /* ** Return coordinate iCoord from cell iCell in node pNode. */ static void nodeGetCoord( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node from which to extract a coordinate */ int iCell, /* The index of the cell within the node */ int iCoord, /* Which coordinate to extract */ RtreeCoord *pCoord /* OUT: Space to write result to */ ){ assert( iCellzData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); } /* ** Deserialize cell iCell of node pNode. Populate the structure pointed ** to by pCell with the results. */ static void nodeGetCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node containing the cell to be read */ int iCell, /* Index of the cell within the node */ RtreeCell *pCell /* OUT: Write the cell contents here */ ){ u8 *pData; RtreeCoord *pCoord; int ii = 0; pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); pCoord = pCell->aCoord; do{ readCoord(pData, &pCoord[ii]); readCoord(pData+4, &pCoord[ii+1]); pData += 8; ii += 2; }while( iinDim2 ); } /* Forward declaration for the function that does the work of ** the virtual table module xCreate() and xConnect() methods. */ static int rtreeInit( sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int ); /* ** Rtree virtual table module xCreate method. */ static int rtreeCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); } /* ** Rtree virtual table module xConnect method. */ static int rtreeConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); } /* ** Increment the r-tree reference count. */ static void rtreeReference(Rtree *pRtree){ pRtree->nBusy++; } /* ** Decrement the r-tree reference count. When the reference count reaches ** zero the structure is deleted. */ static void rtreeRelease(Rtree *pRtree){ pRtree->nBusy--; if( pRtree->nBusy==0 ){ pRtree->inWrTrans = 0; assert( pRtree->nCursor==0 ); nodeBlobReset(pRtree); assert( pRtree->nNodeRef==0 || pRtree->bCorrupt ); sqlite3_finalize(pRtree->pWriteNode); sqlite3_finalize(pRtree->pDeleteNode); sqlite3_finalize(pRtree->pReadRowid); sqlite3_finalize(pRtree->pWriteRowid); sqlite3_finalize(pRtree->pDeleteRowid); sqlite3_finalize(pRtree->pReadParent); sqlite3_finalize(pRtree->pWriteParent); sqlite3_finalize(pRtree->pDeleteParent); sqlite3_finalize(pRtree->pWriteAux); sqlite3_free(pRtree->zReadAuxSql); sqlite3_free(pRtree); } } /* ** Rtree virtual table module xDisconnect method. */ static int rtreeDisconnect(sqlite3_vtab *pVtab){ rtreeRelease((Rtree *)pVtab); return SQLITE_OK; } /* ** Rtree virtual table module xDestroy method. */ static int rtreeDestroy(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; int rc; char *zCreate = sqlite3_mprintf( "DROP TABLE '%q'.'%q_node';" "DROP TABLE '%q'.'%q_rowid';" "DROP TABLE '%q'.'%q_parent';", pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName ); if( !zCreate ){ rc = SQLITE_NOMEM; }else{ nodeBlobReset(pRtree); rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); sqlite3_free(zCreate); } if( rc==SQLITE_OK ){ rtreeRelease(pRtree); } return rc; } /* ** Rtree virtual table module xOpen method. */ static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_NOMEM; Rtree *pRtree = (Rtree *)pVTab; RtreeCursor *pCsr; pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor)); if( pCsr ){ memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = pVTab; rc = SQLITE_OK; pRtree->nCursor++; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return rc; } /* ** Reset a cursor back to its initial state. */ static void resetCursor(RtreeCursor *pCsr){ Rtree *pRtree = (Rtree *)(pCsr->base.pVtab); int ii; sqlite3_stmt *pStmt; if( pCsr->aConstraint ){ int i; /* Used to iterate through constraint array */ for(i=0; inConstraint; i++){ sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; if( pInfo ){ if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); sqlite3_free(pInfo); } } sqlite3_free(pCsr->aConstraint); pCsr->aConstraint = 0; } for(ii=0; iiaNode[ii]); sqlite3_free(pCsr->aPoint); pStmt = pCsr->pReadAux; memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = (sqlite3_vtab*)pRtree; pCsr->pReadAux = pStmt; } /* ** Rtree virtual table module xClose method. */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); RtreeCursor *pCsr = (RtreeCursor *)cur; assert( pRtree->nCursor>0 ); resetCursor(pCsr); sqlite3_finalize(pCsr->pReadAux); sqlite3_free(pCsr); pRtree->nCursor--; if( pRtree->nCursor==0 && pRtree->inWrTrans==0 ){ nodeBlobReset(pRtree); } return SQLITE_OK; } /* ** Rtree virtual table module xEof method. ** ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int rtreeEof(sqlite3_vtab_cursor *cur){ RtreeCursor *pCsr = (RtreeCursor *)cur; return pCsr->atEOF; } /* ** Convert raw bits from the on-disk RTree record into a coordinate value. ** The on-disk format is big-endian and needs to be converted for little- ** endian platforms. The on-disk record stores integer coordinates if ** eInt is true and it stores 32-bit floating point records if eInt is ** false. a[] is the four bytes of the on-disk record to be decoded. ** Store the results in "r". ** ** There are five versions of this macro. The last one is generic. The ** other four are various architectures-specific optimizations. */ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = _byteswap_ulong(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = __builtin_bswap32(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==4321 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #else #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ +((u32)a[2]<<8) + a[3]; \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #endif /* ** Check the RTree node or entry given by pCellData and p against the MATCH ** constraint pConstraint. */ static int rtreeCallbackConstraint( RtreeConstraint *pConstraint, /* The constraint to test */ int eInt, /* True if RTree holding integer coordinates */ u8 *pCellData, /* Raw cell content */ RtreeSearchPoint *pSearch, /* Container of this cell */ sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ int *peWithin /* OUT: visibility of the cell */ ){ sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ int nCoord = pInfo->nCoord; /* No. of coordinates */ int rc; /* Callback return code */ RtreeCoord c; /* Translator union */ sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ pInfo->iRowid = readInt64(pCellData); } pCellData += 8; #ifndef SQLITE_RTREE_INT_ONLY if( eInt==0 ){ switch( nCoord ){ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; readCoord(pCellData+32, &c); aCoord[8] = c.f; case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; readCoord(pCellData+24, &c); aCoord[6] = c.f; case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; readCoord(pCellData+16, &c); aCoord[4] = c.f; case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; readCoord(pCellData+8, &c); aCoord[2] = c.f; default: readCoord(pCellData+4, &c); aCoord[1] = c.f; readCoord(pCellData, &c); aCoord[0] = c.f; } }else #endif { switch( nCoord ){ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; readCoord(pCellData+32, &c); aCoord[8] = c.i; case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; readCoord(pCellData+24, &c); aCoord[6] = c.i; case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; readCoord(pCellData+16, &c); aCoord[4] = c.i; case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; readCoord(pCellData+8, &c); aCoord[2] = c.i; default: readCoord(pCellData+4, &c); aCoord[1] = c.i; readCoord(pCellData, &c); aCoord[0] = c.i; } } if( pConstraint->op==RTREE_MATCH ){ int eWithin = 0; rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, nCoord, aCoord, &eWithin); if( eWithin==0 ) *peWithin = NOT_WITHIN; *prScore = RTREE_ZERO; }else{ pInfo->aCoord = aCoord; pInfo->iLevel = pSearch->iLevel - 1; pInfo->rScore = pInfo->rParentScore = pSearch->rScore; pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; rc = pConstraint->u.xQueryFunc(pInfo); if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; if( pInfo->rScore<*prScore || *prScorerScore; } } return rc; } /* ** Check the internal RTree node given by pCellData against constraint p. ** If this constraint cannot be satisfied by any child within the node, ** set *peWithin to NOT_WITHIN. */ static void rtreeNonleafConstraint( RtreeConstraint *p, /* The constraint to test */ int eInt, /* True if RTree holds integer coordinates */ u8 *pCellData, /* Raw cell content as appears on disk */ int *peWithin /* Adjust downward, as appropriate */ ){ sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ /* p->iCoord might point to either a lower or upper bound coordinate ** in a coordinate pair. But make pCellData point to the lower bound. */ pCellData += 8 + 4*(p->iCoord&0xfe); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); assert( FOUR_BYTE_ALIGNED(pCellData) ); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_EQ: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ){ pCellData += 4; RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the upper bound of the coordinate pair */ if( p->u.rValue<=val ) return; } break; case RTREE_LE: case RTREE_LT: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ) return; break; default: pCellData += 4; RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the upper bound of the coordinate pair */ if( p->u.rValue<=val ) return; break; } *peWithin = NOT_WITHIN; } /* ** Check the leaf RTree cell given by pCellData against constraint p. ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. ** If the constraint is satisfied, leave *peWithin unchanged. ** ** The constraint is of the form: xN op $val ** ** The op is given by p->op. The xN is p->iCoord-th coordinate in ** pCellData. $val is given by p->u.rValue. */ static void rtreeLeafConstraint( RtreeConstraint *p, /* The constraint to test */ int eInt, /* True if RTree holds integer coordinates */ u8 *pCellData, /* Raw cell content as appears on disk */ int *peWithin /* Adjust downward, as appropriate */ ){ RtreeDValue xN; /* Coordinate value converted to a double */ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); pCellData += 8 + p->iCoord*4; assert( FOUR_BYTE_ALIGNED(pCellData) ); RTREE_DECODE_COORD(eInt, pCellData, xN); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_LE: if( xN <= p->u.rValue ) return; break; case RTREE_LT: if( xN < p->u.rValue ) return; break; case RTREE_GE: if( xN >= p->u.rValue ) return; break; case RTREE_GT: if( xN > p->u.rValue ) return; break; default: if( xN == p->u.rValue ) return; break; } *peWithin = NOT_WITHIN; } /* ** One of the cells in node pNode is guaranteed to have a 64-bit ** integer value equal to iRowid. Return the index of this cell. */ static int nodeRowidIndex( Rtree *pRtree, RtreeNode *pNode, i64 iRowid, int *piIndex ){ int ii; int nCell = NCELL(pNode); assert( nCell<200 ); for(ii=0; iipParent; if( ALWAYS(pParent) ){ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); }else{ *piIndex = -1; return SQLITE_OK; } } /* ** Compare two search points. Return negative, zero, or positive if the first ** is less than, equal to, or greater than the second. ** ** The rScore is the primary key. Smaller rScore values come first. ** If the rScore is a tie, then use iLevel as the tie breaker with smaller ** iLevel values coming first. In this way, if rScore is the same for all ** SearchPoints, then iLevel becomes the deciding factor and the result ** is a depth-first search, which is the desired default behavior. */ static int rtreeSearchPointCompare( const RtreeSearchPoint *pA, const RtreeSearchPoint *pB ){ if( pA->rScorerScore ) return -1; if( pA->rScore>pB->rScore ) return +1; if( pA->iLeveliLevel ) return -1; if( pA->iLevel>pB->iLevel ) return +1; return 0; } /* ** Interchange two search points in a cursor. */ static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ RtreeSearchPoint t = p->aPoint[i]; assert( iaPoint[i] = p->aPoint[j]; p->aPoint[j] = t; i++; j++; if( i=RTREE_CACHE_SZ ){ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); p->aNode[i] = 0; }else{ RtreeNode *pTemp = p->aNode[i]; p->aNode[i] = p->aNode[j]; p->aNode[j] = pTemp; } } } /* ** Return the search point with the lowest current score. */ static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; } /* ** Get the RtreeNode for the search point with the lowest score. */ static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ sqlite3_int64 id; int ii = 1 - pCur->bPoint; assert( ii==0 || ii==1 ); assert( pCur->bPoint || pCur->nPoint ); if( pCur->aNode[ii]==0 ){ assert( pRC!=0 ); id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); } return pCur->aNode[ii]; } /* ** Push a new element onto the priority queue */ static RtreeSearchPoint *rtreeEnqueue( RtreeCursor *pCur, /* The cursor */ RtreeDValue rScore, /* Score for the new search point */ u8 iLevel /* Level for the new search point */ ){ int i, j; RtreeSearchPoint *pNew; if( pCur->nPoint>=pCur->nPointAlloc ){ int nNew = pCur->nPointAlloc*2 + 8; pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); if( pNew==0 ) return 0; pCur->aPoint = pNew; pCur->nPointAlloc = nNew; } i = pCur->nPoint++; pNew = pCur->aPoint + i; pNew->rScore = rScore; pNew->iLevel = iLevel; assert( iLevel<=RTREE_MAX_DEPTH ); while( i>0 ){ RtreeSearchPoint *pParent; j = (i-1)/2; pParent = pCur->aPoint + j; if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; rtreeSearchPointSwap(pCur, j, i); i = j; pNew = pParent; } return pNew; } /* ** Allocate a new RtreeSearchPoint and return a pointer to it. Return ** NULL if malloc fails. */ static RtreeSearchPoint *rtreeSearchPointNew( RtreeCursor *pCur, /* The cursor */ RtreeDValue rScore, /* Score for the new search point */ u8 iLevel /* Level for the new search point */ ){ RtreeSearchPoint *pNew, *pFirst; pFirst = rtreeSearchPointFirst(pCur); pCur->anQueue[iLevel]++; if( pFirst==0 || pFirst->rScore>rScore || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) ){ if( pCur->bPoint ){ int ii; pNew = rtreeEnqueue(pCur, rScore, iLevel); if( pNew==0 ) return 0; ii = (int)(pNew - pCur->aPoint) + 1; assert( ii==1 ); if( ALWAYS(iiaNode[ii]==0 ); pCur->aNode[ii] = pCur->aNode[0]; }else{ nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); } pCur->aNode[0] = 0; *pNew = pCur->sPoint; } pCur->sPoint.rScore = rScore; pCur->sPoint.iLevel = iLevel; pCur->bPoint = 1; return &pCur->sPoint; }else{ return rtreeEnqueue(pCur, rScore, iLevel); } } #if 0 /* Tracing routines for the RtreeSearchPoint queue */ static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } printf(" %d.%05lld.%02d %g %d", p->iLevel, p->id, p->iCell, p->rScore, p->eWithin ); idx++; if( idxaNode[idx]); }else{ printf("\n"); } } static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ int ii; printf("=== %9s ", zPrefix); if( pCur->bPoint ){ tracePoint(&pCur->sPoint, -1, pCur); } for(ii=0; iinPoint; ii++){ if( ii>0 || pCur->bPoint ) printf(" "); tracePoint(&pCur->aPoint[ii], ii, pCur); } } # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) #else # define RTREE_QUEUE_TRACE(A,B) /* no-op */ #endif /* Remove the search point with the lowest current score. */ static void rtreeSearchPointPop(RtreeCursor *p){ int i, j, k, n; i = 1 - p->bPoint; assert( i==0 || i==1 ); if( p->aNode[i] ){ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); p->aNode[i] = 0; } if( p->bPoint ){ p->anQueue[p->sPoint.iLevel]--; p->bPoint = 0; }else if( ALWAYS(p->nPoint) ){ p->anQueue[p->aPoint[0].iLevel]--; n = --p->nPoint; p->aPoint[0] = p->aPoint[n]; if( naNode[1] = p->aNode[n+1]; p->aNode[n+1] = 0; } i = 0; while( (j = i*2+1)aPoint[k], &p->aPoint[j])<0 ){ if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ rtreeSearchPointSwap(p, i, k); i = k; }else{ break; } }else{ if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ rtreeSearchPointSwap(p, i, j); i = j; }else{ break; } } } } } /* ** Continue the search on cursor pCur until the front of the queue ** contains an entry suitable for returning as a result-set row, ** or until the RtreeSearchPoint queue is empty, indicating that the ** query has completed. */ static int rtreeStepToLeaf(RtreeCursor *pCur){ RtreeSearchPoint *p; Rtree *pRtree = RTREE_OF_CURSOR(pCur); RtreeNode *pNode; int eWithin; int rc = SQLITE_OK; int nCell; int nConstraint = pCur->nConstraint; int ii; int eInt; RtreeSearchPoint x; eInt = pRtree->eCoordType==RTREE_COORD_INT32; while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ u8 *pCellData; pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); if( rc ) return rc; nCell = NCELL(pNode); assert( nCell<200 ); pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); while( p->iCellaConstraint + ii; if( pConstraint->op>=RTREE_MATCH ){ rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, &rScore, &eWithin); if( rc ) return rc; }else if( p->iLevel==1 ){ rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); }else{ rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); } if( eWithin==NOT_WITHIN ){ p->iCell++; pCellData += pRtree->nBytesPerCell; break; } } if( eWithin==NOT_WITHIN ) continue; p->iCell++; x.iLevel = p->iLevel - 1; if( x.iLevel ){ x.id = readInt64(pCellData); for(ii=0; iinPoint; ii++){ if( pCur->aPoint[ii].id==x.id ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } } x.iCell = 0; }else{ x.id = p->id; x.iCell = p->iCell - 1; } if( p->iCell>=nCell ){ RTREE_QUEUE_TRACE(pCur, "POP-S:"); rtreeSearchPointPop(pCur); } if( rScoreeWithin = (u8)eWithin; p->id = x.id; p->iCell = x.iCell; RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); break; } if( p->iCell>=nCell ){ RTREE_QUEUE_TRACE(pCur, "POP-Se:"); rtreeSearchPointPop(pCur); } } pCur->atEOF = p==0; return SQLITE_OK; } /* ** Rtree virtual table module xNext method. */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; /* Move to the next entry that matches the configured constraints. */ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); if( pCsr->bAuxValid ){ pCsr->bAuxValid = 0; sqlite3_reset(pCsr->pReadAux); } rtreeSearchPointPop(pCsr); rc = rtreeStepToLeaf(pCsr); return rc; } /* ** Rtree virtual table module xRowid method. */ static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc==SQLITE_OK && ALWAYS(p) ){ if( p->iCell>=NCELL(pNode) ){ rc = SQLITE_ABORT; }else{ *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); } } return rc; } /* ** Rtree virtual table module xColumn method. */ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); RtreeCoord c; int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc ) return rc; if( NEVER(p==0) ) return SQLITE_OK; if( p->iCell>=NCELL(pNode) ) return SQLITE_ABORT; if( i==0 ){ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); }else if( i<=pRtree->nDim2 ){ nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); }else #endif { assert( pRtree->eCoordType==RTREE_COORD_INT32 ); sqlite3_result_int(ctx, c.i); } }else{ if( !pCsr->bAuxValid ){ if( pCsr->pReadAux==0 ){ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, &pCsr->pReadAux, 0); if( rc ) return rc; } sqlite3_bind_int64(pCsr->pReadAux, 1, nodeGetRowid(pRtree, pNode, p->iCell)); rc = sqlite3_step(pCsr->pReadAux); if( rc==SQLITE_ROW ){ pCsr->bAuxValid = 1; }else{ sqlite3_reset(pCsr->pReadAux); if( rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } } sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); } return SQLITE_OK; } /* ** Use nodeAcquire() to obtain the leaf node containing the record with ** rowid iRowid. If successful, set *ppLeaf to point to the node and ** return SQLITE_OK. If there is no such record in the table, set ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf ** to zero and return an SQLite error code. */ static int findLeafNode( Rtree *pRtree, /* RTree to search */ i64 iRowid, /* The rowid searching for */ RtreeNode **ppLeaf, /* Write the node here */ sqlite3_int64 *piNode /* Write the node-id here */ ){ int rc; *ppLeaf = 0; sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); if( piNode ) *piNode = iNode; rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); sqlite3_reset(pRtree->pReadRowid); }else{ rc = sqlite3_reset(pRtree->pReadRowid); } return rc; } /* ** This function is called to configure the RtreeConstraint object passed ** as the second argument for a MATCH constraint. The value passed as the ** first argument to this function is the right-hand operand to the MATCH ** operator. */ static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */ sqlite3_rtree_query_info *pInfo; /* Callback information */ pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg"); if( pSrc==0 ) return SQLITE_ERROR; pInfo = (sqlite3_rtree_query_info*) sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize ); if( !pInfo ) return SQLITE_NOMEM; memset(pInfo, 0, sizeof(*pInfo)); pBlob = (RtreeMatchArg*)&pInfo[1]; memcpy(pBlob, pSrc, pSrc->iSize); pInfo->pContext = pBlob->cb.pContext; pInfo->nParam = pBlob->nParam; pInfo->aParam = pBlob->aParam; pInfo->apSqlParam = pBlob->apSqlParam; if( pBlob->cb.xGeom ){ pCons->u.xGeom = pBlob->cb.xGeom; }else{ pCons->op = RTREE_QUERY; pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; } pCons->pInfo = pInfo; return SQLITE_OK; } /* ** Rtree virtual table module xFilter method. */ static int rtreeFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; int iCell = 0; rtreeReference(pRtree); /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ resetCursor(pCsr); pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ RtreeSearchPoint *p; /* Search point for the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); i64 iNode = 0; int eType = sqlite3_value_numeric_type(argv[0]); if( eType==SQLITE_INTEGER || (eType==SQLITE_FLOAT && sqlite3_value_double(argv[0])==iRowid) ){ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); }else{ rc = SQLITE_OK; pLeaf = 0; } if( rc==SQLITE_OK && pLeaf!=0 ){ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); assert( p!=0 ); /* Always returns pCsr->sPoint */ pCsr->aNode[0] = pLeaf; p->id = iNode; p->eWithin = PARTLY_WITHIN; rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); p->iCell = (u8)iCell; RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); }else{ pCsr->atEOF = 1; } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); if( rc==SQLITE_OK && argc>0 ){ pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); assert( (idxStr==0 && argc==0) || (idxStr && (int)strlen(idxStr)==argc*2) ); for(ii=0; iiaConstraint[ii]; int eType = sqlite3_value_numeric_type(argv[ii]); p->op = idxStr[ii*2]; p->iCoord = idxStr[ii*2+1]-'0'; if( p->op>=RTREE_MATCH ){ /* A MATCH operator. The right-hand-side must be a blob that ** can be cast into an RtreeMatchArg object. One created using ** an sqlite3_rtree_geometry_callback() SQL user function. */ rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } p->pInfo->nCoord = pRtree->nDim2; p->pInfo->anQueue = pCsr->anQueue; p->pInfo->mxLevel = pRtree->iDepth + 1; }else if( eType==SQLITE_INTEGER ){ sqlite3_int64 iVal = sqlite3_value_int64(argv[ii]); #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = iVal; #else p->u.rValue = (double)iVal; if( iVal>=((sqlite3_int64)1)<<48 || iVal<=-(((sqlite3_int64)1)<<48) ){ if( p->op==RTREE_LT ) p->op = RTREE_LE; if( p->op==RTREE_GT ) p->op = RTREE_GE; } #endif }else if( eType==SQLITE_FLOAT ){ #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = sqlite3_value_int64(argv[ii]); #else p->u.rValue = sqlite3_value_double(argv[ii]); #endif }else{ p->u.rValue = RTREE_ZERO; if( eType==SQLITE_NULL ){ p->op = RTREE_FALSE; }else if( p->op==RTREE_LT || p->op==RTREE_LE ){ p->op = RTREE_TRUE; }else{ p->op = RTREE_FALSE; } } } } } if( rc==SQLITE_OK ){ RtreeSearchPoint *pNew; assert( pCsr->bPoint==0 ); /* Due to the resetCursor() call above */ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); if( NEVER(pNew==0) ){ /* Because pCsr->bPoint was FALSE */ return SQLITE_NOMEM; } pNew->id = 1; pNew->iCell = 0; pNew->eWithin = PARTLY_WITHIN; assert( pCsr->bPoint==1 ); pCsr->aNode[0] = pRoot; pRoot = 0; RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); rc = rtreeStepToLeaf(pCsr); } } nodeRelease(pRtree, pRoot); rtreeRelease(pRtree); return rc; } /* ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 Unused Direct lookup by rowid. ** 2 See below R-tree query or full-table scan. ** ------------------------------------------------ ** ** If strategy 1 is used, then idxStr is not meaningful. If strategy ** 2 is used, idxStr is formatted to contain 2 bytes for each ** constraint used. The first two bytes of idxStr correspond to ** the constraint in sqlite3_index_info.aConstraintUsage[] with ** (argvIndex==1) etc. ** ** The first of each pair of bytes in idxStr identifies the constraint ** operator as follows: ** ** Operator Byte Value ** ---------------------- ** = 0x41 ('A') ** <= 0x42 ('B') ** < 0x43 ('C') ** >= 0x44 ('D') ** > 0x45 ('E') ** MATCH 0x46 ('F') ** ---------------------- ** ** The second of each pair of bytes identifies the coordinate column ** to which the constraint applies. The leftmost coordinate column ** is 'a', the second from the left 'b' etc. */ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ Rtree *pRtree = (Rtree*)tab; int rc = SQLITE_OK; int ii; int bMatch = 0; /* True if there exists a MATCH constraint */ i64 nRow; /* Estimated rows returned by this scan */ int iIdx = 0; char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; memset(zIdxStr, 0, sizeof(zIdxStr)); /* Check if there exists a MATCH constraint - even an unusable one. If there ** is, do not consider the lookup-by-rowid plan as using such a plan would ** require the VDBE to evaluate the MATCH constraint, which is not currently ** possible. */ for(ii=0; iinConstraint; ii++){ if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ bMatch = 1; } } assert( pIdxInfo->idxStr==0 ); for(ii=0; iinConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( bMatch==0 && p->usable && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ /* We have an equality constraint on the rowid. Use strategy 1. */ int jj; for(jj=0; jjaConstraintUsage[jj].argvIndex = 0; pIdxInfo->aConstraintUsage[jj].omit = 0; } pIdxInfo->idxNum = 1; pIdxInfo->aConstraintUsage[ii].argvIndex = 1; pIdxInfo->aConstraintUsage[jj].omit = 1; /* This strategy involves a two rowid lookups on an B-Tree structures ** and then a linear search of an R-Tree node. This should be ** considered almost as quick as a direct rowid lookup (for which ** sqlite uses an internal cost of 0.0). It is expected to return ** a single row. */ pIdxInfo->estimatedCost = 30.0; pIdxInfo->estimatedRows = 1; pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; return SQLITE_OK; } if( p->usable && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ u8 op; u8 doOmit = 1; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; default: op = 0; break; } if( op ){ zIdxStr[iIdx++] = op; zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = doOmit; } } } pIdxInfo->idxNum = 2; pIdxInfo->needToFreeIdxStr = 1; if( iIdx>0 ){ pIdxInfo->idxStr = sqlite3_malloc( iIdx+1 ); if( pIdxInfo->idxStr==0 ){ return SQLITE_NOMEM; } memcpy(pIdxInfo->idxStr, zIdxStr, iIdx+1); } nRow = pRtree->nRowEst >> (iIdx/2); pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; pIdxInfo->estimatedRows = nRow; return rc; } /* ** Return the N-dimensional volumn of the cell stored in *p. */ static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ RtreeDValue area = (RtreeDValue)1; assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ switch( pRtree->nDim ){ case 5: area = p->aCoord[9].f - p->aCoord[8].f; case 4: area *= p->aCoord[7].f - p->aCoord[6].f; case 3: area *= p->aCoord[5].f - p->aCoord[4].f; case 2: area *= p->aCoord[3].f - p->aCoord[2].f; default: area *= p->aCoord[1].f - p->aCoord[0].f; } }else #endif { switch( pRtree->nDim ){ case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i; case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i; case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i; case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i; default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i; } } return area; } /* ** Return the margin length of cell p. The margin length is the sum ** of the objects size in each dimension. */ static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ RtreeDValue margin = 0; int ii = pRtree->nDim2 - 2; do{ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); ii -= 2; }while( ii>=0 ); return margin; } /* ** Store the union of cells p1 and p2 in p1. */ static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii = 0; if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ do{ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); ii += 2; }while( iinDim2 ); }else{ do{ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); ii += 2; }while( iinDim2 ); } } /* ** Return true if the area covered by p2 is a subset of the area covered ** by p1. False otherwise. */ static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii; if( pRtree->eCoordType==RTREE_COORD_INT32 ){ for(ii=0; iinDim2; ii+=2){ RtreeCoord *a1 = &p1->aCoord[ii]; RtreeCoord *a2 = &p2->aCoord[ii]; if( a2[0].ia1[1].i ) return 0; } }else{ for(ii=0; iinDim2; ii+=2){ RtreeCoord *a1 = &p1->aCoord[ii]; RtreeCoord *a2 = &p2->aCoord[ii]; if( a2[0].fa1[1].f ) return 0; } } return 1; } static RtreeDValue cellOverlap( Rtree *pRtree, RtreeCell *p, RtreeCell *aCell, int nCell ){ int ii; RtreeDValue overlap = RTREE_ZERO; for(ii=0; iinDim2; jj+=2){ RtreeDValue x1, x2; x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); if( x2iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest = 0; int bFound = 0; RtreeDValue fMinGrowth = RTREE_ZERO; RtreeDValue fMinArea = RTREE_ZERO; int nCell = NCELL(pNode); RtreeNode *pChild = 0; /* First check to see if there is are any cells in pNode that completely ** contains pCell. If two or more cells in pNode completely contain pCell ** then pick the smallest. */ for(iCell=0; iCellpParent ){ RtreeNode *pParent = p->pParent; RtreeCell cell; int iCell; cnt++; if( NEVER(cnt>100) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } rc = nodeParentIndex(pRtree, p, &iCell); if( NEVER(rc!=SQLITE_OK) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } nodeGetCell(pRtree, pParent, iCell, &cell); if( !cellContains(pRtree, &cell, pCell) ){ cellUnion(pRtree, &cell, pCell); nodeOverwriteCell(pRtree, pParent, &cell, iCell); } p = pParent; } return SQLITE_OK; } /* ** Write mapping (iRowid->iNode) to the _rowid table. */ static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); sqlite3_step(pRtree->pWriteRowid); return sqlite3_reset(pRtree->pWriteRowid); } /* ** Write mapping (iNode->iPar) to the _parent table. */ static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); sqlite3_step(pRtree->pWriteParent); return sqlite3_reset(pRtree->pWriteParent); } static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); /* ** Arguments aIdx, aCell and aSpare all point to arrays of size ** nIdx. The aIdx array contains the set of integers from 0 to ** (nIdx-1) in no particular order. This function sorts the values ** in aIdx according to dimension iDim of the cells in aCell. The ** minimum value of dimension iDim is considered first, the ** maximum used to break ties. ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDimension( Rtree *pRtree, int *aIdx, int nIdx, int iDim, RtreeCell *aCell, int *aSpare ){ if( nIdx>1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeftnDim+1)*(sizeof(int*)+nCell*sizeof(int)); aaSorted = (int **)sqlite3_malloc64(nByte); if( !aaSorted ){ return SQLITE_NOMEM; } aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; memset(aaSorted, 0, nByte); for(ii=0; iinDim; ii++){ int jj; aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; for(jj=0; jjnDim; ii++){ RtreeDValue margin = RTREE_ZERO; RtreeDValue fBestOverlap = RTREE_ZERO; RtreeDValue fBestArea = RTREE_ZERO; int iBestLeft = 0; int nLeft; for( nLeft=RTREE_MINCELLS(pRtree); nLeft<=(nCell-RTREE_MINCELLS(pRtree)); nLeft++ ){ RtreeCell left; RtreeCell right; int kk; RtreeDValue overlap; RtreeDValue area; memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); for(kk=1; kk<(nCell-1); kk++){ if( kk0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); RtreeNode *p; for(p=pNode; p; p=p->pParent){ if( p==pChild ) return SQLITE_CORRUPT_VTAB; } if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( NEVER(pNode==0) ) return SQLITE_ERROR; return xSetMapping(pRtree, iRowid, pNode->iNode); } static int SplitNode( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int i; int newCellIsRight = 0; int rc = SQLITE_OK; int nCell = NCELL(pNode); RtreeCell *aCell; int *aiUsed; RtreeNode *pLeft = 0; RtreeNode *pRight = 0; RtreeCell leftbbox; RtreeCell rightbbox; /* Allocate an array and populate it with a copy of pCell and ** all cells from node pLeft. Then zero the original node. */ aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); if( !aCell ){ rc = SQLITE_NOMEM; goto splitnode_out; } aiUsed = (int *)&aCell[nCell+1]; memset(aiUsed, 0, sizeof(int)*(nCell+1)); for(i=0; iiNode==1 ){ pRight = nodeNew(pRtree, pNode); pLeft = nodeNew(pRtree, pNode); pRtree->iDepth++; pNode->isDirty = 1; writeInt16(pNode->zData, pRtree->iDepth); }else{ pLeft = pNode; pRight = nodeNew(pRtree, pLeft->pParent); pLeft->nRef++; } if( !pLeft || !pRight ){ rc = SQLITE_NOMEM; goto splitnode_out; } memset(pLeft->zData, 0, pRtree->iNodeSize); memset(pRight->zData, 0, pRtree->iNodeSize); rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); if( rc!=SQLITE_OK ){ goto splitnode_out; } /* Ensure both child nodes have node numbers assigned to them by calling ** nodeWrite(). Node pRight always needs a node number, as it was created ** by nodeNew() above. But node pLeft sometimes already has a node number. ** In this case avoid the all to nodeWrite(). */ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) ){ goto splitnode_out; } rightbbox.iRowid = pRight->iNode; leftbbox.iRowid = pLeft->iNode; if( pNode->iNode==1 ){ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); if( rc!=SQLITE_OK ){ goto splitnode_out; } }else{ RtreeNode *pParent = pLeft->pParent; int iCell; rc = nodeParentIndex(pRtree, pLeft, &iCell); if( ALWAYS(rc==SQLITE_OK) ){ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); rc = AdjustTree(pRtree, pParent, &leftbbox); assert( rc==SQLITE_OK ); } if( NEVER(rc!=SQLITE_OK) ){ goto splitnode_out; } } if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ goto splitnode_out; } for(i=0; iiRowid ){ newCellIsRight = 1; } if( rc!=SQLITE_OK ){ goto splitnode_out; } } if( pNode->iNode==1 ){ for(i=0; iiRowid, pLeft, iHeight); } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRight); pRight = 0; } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pLeft); pLeft = 0; } splitnode_out: nodeRelease(pRtree, pRight); nodeRelease(pRtree, pLeft); sqlite3_free(aCell); return rc; } /* ** If node pLeaf is not the root of the r-tree and its pParent pointer is ** still NULL, load all ancestor nodes of pLeaf into memory and populate ** the pLeaf->pParent chain all the way up to the root node. ** ** This operation is required when a row is deleted (or updated - an update ** is implemented as a delete followed by an insert). SQLite provides the ** rowid of the row to delete, which can be used to find the leaf on which ** the entry resides (argument pLeaf). Once the leaf is located, this ** function is called to determine its ancestry. */ static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ int rc = SQLITE_OK; RtreeNode *pChild = pLeaf; while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); rc = sqlite3_step(pRtree->pReadParent); if( rc==SQLITE_ROW ){ RtreeNode *pTest; /* Used to test for reference loops */ i64 iNode; /* Node number of parent node */ /* Before setting pChild->pParent, test that we are not creating a ** loop of references (as we would if, say, pChild==pParent). We don't ** want to do this as it leads to a memory leak when trying to delete ** the referenced counted node structures. */ iNode = sqlite3_column_int64(pRtree->pReadParent, 0); for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); if( pTest==0 ){ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); } } rc = sqlite3_reset(pRtree->pReadParent); if( rc==SQLITE_OK ) rc = rc2; if( rc==SQLITE_OK && !pChild->pParent ){ RTREE_IS_CORRUPT(pRtree); rc = SQLITE_CORRUPT_VTAB; } pChild = pChild->pParent; } return rc; } static int deleteCell(Rtree *, RtreeNode *, int, int); static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ int rc; int rc2; RtreeNode *pParent = 0; int iCell; assert( pNode->nRef==1 ); /* Remove the entry in the parent cell. */ rc = nodeParentIndex(pRtree, pNode, &iCell); if( rc==SQLITE_OK ){ pParent = pNode->pParent; pNode->pParent = 0; rc = deleteCell(pRtree, pParent, iCell, iHeight+1); testcase( rc!=SQLITE_OK ); } rc2 = nodeRelease(pRtree, pParent); if( rc==SQLITE_OK ){ rc = rc2; } if( rc!=SQLITE_OK ){ return rc; } /* Remove the xxx_node entry. */ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteNode); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ return rc; } /* Remove the xxx_parent entry. */ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteParent); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ return rc; } /* Remove the node from the in-memory hash table and link it into ** the Rtree.pDeleted list. Its contents will be re-inserted later on. */ nodeHashDelete(pRtree, pNode); pNode->iNode = iHeight; pNode->pNext = pRtree->pDeleted; pNode->nRef++; pRtree->pDeleted = pNode; return SQLITE_OK; } static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ RtreeNode *pParent = pNode->pParent; int rc = SQLITE_OK; if( pParent ){ int ii; int nCell = NCELL(pNode); RtreeCell box; /* Bounding box for pNode */ nodeGetCell(pRtree, pNode, 0, &box); for(ii=1; iiiNode; rc = nodeParentIndex(pRtree, pNode, &ii); if( rc==SQLITE_OK ){ nodeOverwriteCell(pRtree, pParent, &box, ii); rc = fixBoundingBox(pRtree, pParent); } } return rc; } /* ** Delete the cell at index iCell of node pNode. After removing the ** cell, adjust the r-tree data structure if required. */ static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ RtreeNode *pParent; int rc; if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ return rc; } /* Remove the cell from the node. This call just moves bytes around ** the in-memory node image, so it cannot fail. */ nodeDeleteCell(pRtree, pNode, iCell); /* If the node is not the tree root and now has less than the minimum ** number of cells, remove it from the tree. Otherwise, update the ** cell in the parent node so that it tightly contains the updated ** node. */ pParent = pNode->pParent; assert( pParent || pNode->iNode==1 ); if( pParent ){ if( NCELL(pNode)0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( nodeInsertCell(pRtree, pNode, pCell) ){ rc = SplitNode(pRtree, pNode, pCell, iHeight); }else{ rc = AdjustTree(pRtree, pNode, pCell); if( ALWAYS(rc==SQLITE_OK) ){ if( iHeight==0 ){ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); } } } return rc; } static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ int ii; int rc = SQLITE_OK; int nCell = NCELL(pNode); for(ii=0; rc==SQLITE_OK && iiiNode currently contains ** the height of the sub-tree headed by the cell. */ rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** Select a currently unused rowid for a new r-tree record. */ static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){ int rc; sqlite3_bind_null(pRtree->pWriteRowid, 1); sqlite3_bind_null(pRtree->pWriteRowid, 2); sqlite3_step(pRtree->pWriteRowid); rc = sqlite3_reset(pRtree->pWriteRowid); *piRowid = sqlite3_last_insert_rowid(pRtree->db); return rc; } /* ** Remove the entry with rowid=iDelete from the r-tree structure. */ static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ int rc; /* Return code */ RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ int iCell; /* Index of iDelete cell in pLeaf */ RtreeNode *pRoot = 0; /* Root node of rtree structure */ /* Obtain a reference to the root node to initialize Rtree.iDepth */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); /* Obtain a reference to the leaf node that contains the entry ** about to be deleted. */ if( rc==SQLITE_OK ){ rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); } #ifdef CORRUPT_DB assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB ); #endif /* Delete the cell in question from the leaf node. */ if( rc==SQLITE_OK && pLeaf ){ int rc2; rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); if( rc==SQLITE_OK ){ rc = deleteCell(pRtree, pLeaf, iCell, 0); } rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } /* Delete the corresponding entry in the _rowid table. */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); sqlite3_step(pRtree->pDeleteRowid); rc = sqlite3_reset(pRtree->pDeleteRowid); } /* Check if the root node now has exactly one child. If so, remove ** it, schedule the contents of the child for reinsertion and ** reduce the tree height by one. ** ** This is equivalent to copying the contents of the child into ** the root node (the operation that Gutman's paper says to perform ** in this scenario). */ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ int rc2; RtreeNode *pChild = 0; i64 iChild = nodeGetRowid(pRtree, pRoot, 0); rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); /* tag-20210916a */ if( rc==SQLITE_OK ){ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); } rc2 = nodeRelease(pRtree, pChild); if( rc==SQLITE_OK ) rc = rc2; if( rc==SQLITE_OK ){ pRtree->iDepth--; writeInt16(pRoot->zData, pRtree->iDepth); pRoot->isDirty = 1; } } /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; pRtree->nNodeRef--; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ nodeRelease(pRtree, pRoot); } return rc; } /* ** Rounding constants for float->double conversion. */ #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ #if !defined(SQLITE_RTREE_INT_ONLY) /* ** Convert an sqlite3_value into an RtreeValue (presumably a float) ** while taking care to round toward negative or positive, respectively. */ static RtreeValue rtreeValueDown(sqlite3_value *v){ double d = sqlite3_value_double(v); float f = (float)d; if( f>d ){ f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); } return f; } static RtreeValue rtreeValueUp(sqlite3_value *v){ double d = sqlite3_value_double(v); float f = (float)d; if( fbase.zErrMsg) to an appropriate value and returns ** SQLITE_CONSTRAINT. ** ** Parameter iCol is the index of the leftmost column involved in the ** constraint failure. If it is 0, then the constraint that failed is ** the unique constraint on the id column. Otherwise, it is the rtree ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed. ** ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT. */ static int rtreeConstraintError(Rtree *pRtree, int iCol){ sqlite3_stmt *pStmt = 0; char *zSql; int rc; assert( iCol==0 || iCol%2 ); zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName); if( zSql ){ rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); if( rc==SQLITE_OK ){ if( iCol==0 ){ const char *zCol = sqlite3_column_name(pStmt, 0); pRtree->base.zErrMsg = sqlite3_mprintf( "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol ); }else{ const char *zCol1 = sqlite3_column_name(pStmt, iCol); const char *zCol2 = sqlite3_column_name(pStmt, iCol+1); pRtree->base.zErrMsg = sqlite3_mprintf( "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2 ); } } sqlite3_finalize(pStmt); return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc); } /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **aData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; RtreeCell cell; /* New cell to insert if nData>1 */ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ if( pRtree->nNodeRef ){ /* Unable to write to the btree while another cursor is reading from it, ** since the write might do a rebalance which would disrupt the read ** cursor. */ return SQLITE_LOCKED_VTAB; } rtreeReference(pRtree); assert(nData>=1); memset(&cell, 0, sizeof(cell)); /* Constraint handling. A write operation on an r-tree table may return ** SQLITE_CONSTRAINT for two reasons: ** ** 1. A duplicate rowid value, or ** 2. The supplied data violates the "x2>=x1" constraint. ** ** In the first case, if the conflict-handling mode is REPLACE, then ** the conflicting row can be removed before proceeding. In the second ** case, SQLITE_CONSTRAINT must be returned regardless of the ** conflict-handling mode specified by the user. */ if( nData>1 ){ int ii; int nn = nData - 4; if( nn > pRtree->nDim2 ) nn = pRtree->nDim2; /* Populate the cell.aCoord[] array. The first coordinate is aData[3]. ** ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared ** with "column" that are interpreted as table constraints. ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); ** This problem was discovered after years of use, so we silently ignore ** these kinds of misdeclared tables to avoid breaking any legacy. */ #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; iicell.aCoord[ii+1].f ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } }else #endif { for(ii=0; iicell.aCoord[ii+1].i ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } } /* If a rowid value was supplied, check if it is already present in ** the table. If so, the constraint has failed. */ if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){ cell.iRowid = sqlite3_value_int64(aData[2]); if( sqlite3_value_type(aData[0])==SQLITE_NULL || sqlite3_value_int64(aData[0])!=cell.iRowid ){ int steprc; sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); steprc = sqlite3_step(pRtree->pReadRowid); rc = sqlite3_reset(pRtree->pReadRowid); if( SQLITE_ROW==steprc ){ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ rc = rtreeDeleteRowid(pRtree, cell.iRowid); }else{ rc = rtreeConstraintError(pRtree, 0); goto constraint; } } } bHaveRowid = 1; } } /* If aData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0])); } /* If the aData[] array contains more than one element, elements ** (aData[2]..aData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 ){ /* Insert the new record into the r-tree */ RtreeNode *pLeaf = 0; /* Figure out the rowid of the new row. */ if( bHaveRowid==0 ){ rc = rtreeNewRowid(pRtree, &cell.iRowid); } *pRowid = cell.iRowid; if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } if( rc==SQLITE_OK && pRtree->nAux ){ sqlite3_stmt *pUp = pRtree->pWriteAux; int jj; sqlite3_bind_int64(pUp, 1, *pRowid); for(jj=0; jjnAux; jj++){ sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]); } sqlite3_step(pUp); rc = sqlite3_reset(pUp); } } constraint: rtreeRelease(pRtree); return rc; } /* ** Called when a transaction starts. */ static int rtreeBeginTransaction(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; pRtree->inWrTrans = 1; return SQLITE_OK; } /* ** Called when a transaction completes (either by COMMIT or ROLLBACK). ** The sqlite3_blob object should be released at this point. */ static int rtreeEndTransaction(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; pRtree->inWrTrans = 0; nodeBlobReset(pRtree); return SQLITE_OK; } static int rtreeRollback(sqlite3_vtab *pVtab){ return rtreeEndTransaction(pVtab); } /* ** The xRename method for rtree module virtual tables. */ static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_NOMEM; char *zSql = sqlite3_mprintf( "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName ); if( zSql ){ nodeBlobReset(pRtree); rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); sqlite3_free(zSql); } return rc; } /* ** The xSavepoint method. ** ** This module does not need to do anything to support savepoints. However, ** it uses this hook to close any open blob handle. This is done because a ** DROP TABLE command - which fortunately always opens a savepoint - cannot ** succeed if there are any open blob handles. i.e. if the blob handle were ** not closed here, the following would fail: ** ** BEGIN; ** INSERT INTO rtree... ** DROP TABLE ; -- Would fail with SQLITE_LOCKED ** COMMIT; */ static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){ Rtree *pRtree = (Rtree *)pVtab; u8 iwt = pRtree->inWrTrans; UNUSED_PARAMETER(iSavepoint); pRtree->inWrTrans = 0; nodeBlobReset(pRtree); pRtree->inWrTrans = iwt; return SQLITE_OK; } /* ** This function populates the pRtree->nRowEst variable with an estimate ** of the number of rows in the virtual table. If possible, this is based ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. */ static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; char *zSql; sqlite3_stmt *p; int rc; i64 nRow = RTREE_MIN_ROWEST; rc = sqlite3_table_column_metadata( db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0 ); if( rc!=SQLITE_OK ){ pRtree->nRowEst = RTREE_DEFAULT_ROWEST; return rc==SQLITE_ERROR ? SQLITE_OK : rc; } zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); if( rc==SQLITE_OK ){ if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); rc = sqlite3_finalize(p); } sqlite3_free(zSql); } pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); return rc; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int rtreeShadowName(const char *zName){ static const char *azName[] = { "node", "parent", "rowid" }; unsigned int i; for(i=0; idb = db; if( isCreate ){ char *zCreate; sqlite3_str *p = sqlite3_str_new(db); int ii; sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno", zDb, zPrefix); for(ii=0; iinAux; ii++){ sqlite3_str_appendf(p,",a%d",ii); } sqlite3_str_appendf(p, ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);", zDb, zPrefix); sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);", zDb, zPrefix); sqlite3_str_appendf(p, "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))", zDb, zPrefix, pRtree->iNodeSize); zCreate = sqlite3_str_finish(p); if( !zCreate ){ return SQLITE_NOMEM; } rc = sqlite3_exec(db, zCreate, 0, 0, 0); sqlite3_free(zCreate); if( rc!=SQLITE_OK ){ return rc; } } appStmt[0] = &pRtree->pWriteNode; appStmt[1] = &pRtree->pDeleteNode; appStmt[2] = &pRtree->pReadRowid; appStmt[3] = &pRtree->pWriteRowid; appStmt[4] = &pRtree->pDeleteRowid; appStmt[5] = &pRtree->pReadParent; appStmt[6] = &pRtree->pWriteParent; appStmt[7] = &pRtree->pDeleteParent; rc = rtreeQueryStat1(db, pRtree); for(i=0; inAux==0 ){ zFormat = azSql[i]; }else { /* An UPSERT is very slightly slower than REPLACE, but it is needed ** if there are auxiliary columns */ zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)" "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno"; } zSql = sqlite3_mprintf(zFormat, zDb, zPrefix); if( zSql ){ rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); } if( pRtree->nAux && rc!=SQLITE_NOMEM ){ pRtree->zReadAuxSql = sqlite3_mprintf( "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1", zDb, zPrefix); if( pRtree->zReadAuxSql==0 ){ rc = SQLITE_NOMEM; }else{ sqlite3_str *p = sqlite3_str_new(db); int ii; char *zSql; sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix); for(ii=0; iinAux; ii++){ if( ii ) sqlite3_str_append(p, ",", 1); #ifdef SQLITE_ENABLE_GEOPOLY if( iinAuxNotNull ){ sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii); }else #endif { sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2); } } sqlite3_str_appendf(p, " WHERE rowid=?1"); zSql = sqlite3_str_finish(p); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0); sqlite3_free(zSql); } } } return rc; } /* ** The second argument to this function contains the text of an SQL statement ** that returns a single integer value. The statement is compiled and executed ** using database connection db. If successful, the integer value returned ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error ** code is returned and the value of *piVal after returning is not defined. */ static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ int rc = SQLITE_NOMEM; if( zSql ){ sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ *piVal = sqlite3_column_int(pStmt, 0); } rc = sqlite3_finalize(pStmt); } } return rc; } /* ** This function is called from within the xConnect() or xCreate() method to ** determine the node-size used by the rtree table being created or connected ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. ** Otherwise, an SQLite error code is returned. ** ** If this function is being called as part of an xConnect(), then the rtree ** table already exists. In this case the node-size is determined by inspecting ** the root node of the tree. ** ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. ** This ensures that each node is stored on a single database page. If the ** database page-size is so large that more than RTREE_MAXCELLS entries ** would fit in a single node, use a smaller node-size. */ static int getNodeSize( sqlite3 *db, /* Database handle */ Rtree *pRtree, /* Rtree handle */ int isCreate, /* True for xCreate, false for xConnect */ char **pzErr /* OUT: Error message, if any */ ){ int rc; char *zSql; if( isCreate ){ int iPageSize = 0; zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); rc = getIntFromStmt(db, zSql, &iPageSize); if( rc==SQLITE_OK ){ pRtree->iNodeSize = iPageSize-64; if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)iNodeSize ){ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; } }else{ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } }else{ zSql = sqlite3_mprintf( "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", pRtree->zDb, pRtree->zName ); rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); }else if( pRtree->iNodeSize<(512-64) ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"", pRtree->zName); } } sqlite3_free(zSql); return rc; } /* ** Return the length of a token */ static int rtreeTokenLength(const char *z){ int dummy = 0; return sqlite3GetToken((const unsigned char*)z,&dummy); } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the r-tree virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int rtreeInit( sqlite3 *db, /* Database connection */ void *pAux, /* One of the RTREE_COORD_* constants */ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ char **pzErr, /* OUT: Error message, if any */ int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; Rtree *pRtree; int nDb; /* Length of string argv[1] */ int nName; /* Length of string argv[2] */ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); sqlite3_str *pSql; char *zSql; int ii = 4; int iErr; const char *aErrMsg[] = { 0, /* 0 */ "Wrong number of columns for an rtree table", /* 1 */ "Too few columns for an rtree table", /* 2 */ "Too many columns for an rtree table", /* 3 */ "Auxiliary rtree columns must be last" /* 4 */ }; assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */ if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]); return SQLITE_ERROR; } sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); /* Allocate the sqlite3_vtab structure */ nDb = (int)strlen(argv[1]); nName = (int)strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName*2+8); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName*2+8); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->zNodeName = &pRtree->zName[nName+1]; pRtree->eCoordType = (u8)eCoordType; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); memcpy(pRtree->zNodeName, argv[2], nName); memcpy(&pRtree->zNodeName[nName], "_node", 6); /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ pSql = sqlite3_str_new(db); sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT", rtreeTokenLength(argv[3]), argv[3]); for(ii=4; iinAux++; sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1); }else if( pRtree->nAux>0 ){ break; }else{ static const char *azFormat[] = {",%.*s REAL", ",%.*s INT"}; pRtree->nDim2++; sqlite3_str_appendf(pSql, azFormat[eCoordType], rtreeTokenLength(zArg), zArg); } } sqlite3_str_appendf(pSql, ");"); zSql = sqlite3_str_finish(pSql); if( !zSql ){ rc = SQLITE_NOMEM; }else if( iinDim = pRtree->nDim2/2; if( pRtree->nDim<1 ){ iErr = 2; }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){ iErr = 3; }else if( pRtree->nDim2 % 2 ){ iErr = 1; }else{ iErr = 0; } if( iErr ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); goto rtreeInit_fail; } pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; /* Figure out the node size to use. */ rc = getNodeSize(db, pRtree, isCreate, pzErr); if( rc ) goto rtreeInit_fail; rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); if( rc ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); goto rtreeInit_fail; } *ppVtab = (sqlite3_vtab *)pRtree; return SQLITE_OK; rtreeInit_fail: if( rc==SQLITE_OK ) rc = SQLITE_ERROR; assert( *ppVtab==0 ); assert( pRtree->nBusy==1 ); rtreeRelease(pRtree); return rc; } /* ** Implementation of a scalar function that decodes r-tree nodes to ** human readable strings. This can be used for debugging and analysis. ** ** The scalar function takes two arguments: (1) the number of dimensions ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing ** an r-tree node. For a two-dimensional r-tree structure called "rt", to ** deserialize all nodes, a statement like: ** ** SELECT rtreenode(2, data) FROM rt_node; ** ** The human readable string takes the form of a Tcl list with one ** entry for each cell in the r-tree node. Each entry is itself a ** list, containing the 8-byte rowid/pageno followed by the ** *2 coordinates. */ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ RtreeNode node; Rtree tree; int ii; int nData; int errCode; sqlite3_str *pOut; UNUSED_PARAMETER(nArg); memset(&node, 0, sizeof(RtreeNode)); memset(&tree, 0, sizeof(Rtree)); tree.nDim = (u8)sqlite3_value_int(apArg[0]); if( tree.nDim<1 || tree.nDim>5 ) return; tree.nDim2 = tree.nDim*2; tree.nBytesPerCell = 8 + 8 * tree.nDim; node.zData = (u8 *)sqlite3_value_blob(apArg[1]); if( node.zData==0 ) return; nData = sqlite3_value_bytes(apArg[1]); if( nData<4 ) return; if( nData0 ) sqlite3_str_append(pOut, " ", 1); sqlite3_str_appendf(pOut, "{%lld", cell.iRowid); for(jj=0; jjrc==SQLITE_OK ) pCheck->rc = rc; } /* ** The second and subsequent arguments to this function are a format string ** and printf style arguments. This function formats the string and attempts ** to compile it as an SQL statement. ** ** If successful, a pointer to the new SQL statement is returned. Otherwise, ** NULL is returned and an error code left in RtreeCheck.rc. */ static sqlite3_stmt *rtreeCheckPrepare( RtreeCheck *pCheck, /* RtreeCheck object */ const char *zFmt, ... /* Format string and trailing args */ ){ va_list ap; char *z; sqlite3_stmt *pRet = 0; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); if( pCheck->rc==SQLITE_OK ){ if( z==0 ){ pCheck->rc = SQLITE_NOMEM; }else{ pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0); } } sqlite3_free(z); va_end(ap); return pRet; } /* ** The second and subsequent arguments to this function are a printf() ** style format string and arguments. This function formats the string and ** appends it to the report being accumuated in pCheck. */ static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); if( pCheck->rc==SQLITE_OK && pCheck->nErrrc = SQLITE_NOMEM; }else{ pCheck->zReport = sqlite3_mprintf("%z%s%z", pCheck->zReport, (pCheck->zReport ? "\n" : ""), z ); if( pCheck->zReport==0 ){ pCheck->rc = SQLITE_NOMEM; } } pCheck->nErr++; } va_end(ap); } /* ** This function is a no-op if there is already an error code stored ** in the RtreeCheck object indicated by the first argument. NULL is ** returned in this case. ** ** Otherwise, the contents of rtree table node iNode are loaded from ** the database and copied into a buffer obtained from sqlite3_malloc(). ** If no error occurs, a pointer to the buffer is returned and (*pnNode) ** is set to the size of the buffer in bytes. ** ** Or, if an error does occur, NULL is returned and an error code left ** in the RtreeCheck object. The final value of *pnNode is undefined in ** this case. */ static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){ u8 *pRet = 0; /* Return value */ if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){ pCheck->pGetNode = rtreeCheckPrepare(pCheck, "SELECT data FROM %Q.'%q_node' WHERE nodeno=?", pCheck->zDb, pCheck->zTab ); } if( pCheck->rc==SQLITE_OK ){ sqlite3_bind_int64(pCheck->pGetNode, 1, iNode); if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){ int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0); const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0); pRet = sqlite3_malloc64(nNode); if( pRet==0 ){ pCheck->rc = SQLITE_NOMEM; }else{ memcpy(pRet, pNode, nNode); *pnNode = nNode; } } rtreeCheckReset(pCheck, pCheck->pGetNode); if( pCheck->rc==SQLITE_OK && pRet==0 ){ rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode); } } return pRet; } /* ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid ** (if bLeaf==1) table contains a specified entry. The schemas of the ** two tables are: ** ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) ** ** In both cases, this function checks that there exists an entry with ** IPK value iKey and the second column set to iVal. ** */ static void rtreeCheckMapping( RtreeCheck *pCheck, /* RtreeCheck object */ int bLeaf, /* True for a leaf cell, false for interior */ i64 iKey, /* Key for mapping */ i64 iVal /* Expected value for mapping */ ){ int rc; sqlite3_stmt *pStmt; const char *azSql[2] = { "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1", "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1" }; assert( bLeaf==0 || bLeaf==1 ); if( pCheck->aCheckMapping[bLeaf]==0 ){ pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck, azSql[bLeaf], pCheck->zDb, pCheck->zTab ); } if( pCheck->rc!=SQLITE_OK ) return; pStmt = pCheck->aCheckMapping[bLeaf]; sqlite3_bind_int64(pStmt, 1, iKey); rc = sqlite3_step(pStmt); if( rc==SQLITE_DONE ){ rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table", iKey, iVal, (bLeaf ? "%_rowid" : "%_parent") ); }else if( rc==SQLITE_ROW ){ i64 ii = sqlite3_column_int64(pStmt, 0); if( ii!=iVal ){ rtreeCheckAppendMsg(pCheck, "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)", iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal ); } } rtreeCheckReset(pCheck, pStmt); } /* ** Argument pCell points to an array of coordinates stored on an rtree page. ** This function checks that the coordinates are internally consistent (no ** x1>x2 conditions) and adds an error message to the RtreeCheck object ** if they are not. ** ** Additionally, if pParent is not NULL, then it is assumed to point to ** the array of coordinates on the parent page that bound the page ** containing pCell. In this case it is also verified that the two ** sets of coordinates are mutually consistent and an error message added ** to the RtreeCheck object if they are not. */ static void rtreeCheckCellCoord( RtreeCheck *pCheck, i64 iNode, /* Node id to use in error messages */ int iCell, /* Cell number to use in error messages */ u8 *pCell, /* Pointer to cell coordinates */ u8 *pParent /* Pointer to parent coordinates */ ){ RtreeCoord c1, c2; RtreeCoord p1, p2; int i; for(i=0; inDim; i++){ readCoord(&pCell[4*2*i], &c1); readCoord(&pCell[4*(2*i + 1)], &c2); /* printf("%e, %e\n", c1.u.f, c2.u.f); */ if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){ rtreeCheckAppendMsg(pCheck, "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode ); } if( pParent ){ readCoord(&pParent[4*2*i], &p1); readCoord(&pParent[4*(2*i + 1)], &p2); if( (pCheck->bInt ? c1.ibInt ? c2.i>p2.i : c2.f>p2.f) ){ rtreeCheckAppendMsg(pCheck, "Dimension %d of cell %d on node %lld is corrupt relative to parent" , i, iCell, iNode ); } } } } /* ** Run rtreecheck() checks on node iNode, which is at depth iDepth within ** the r-tree structure. Argument aParent points to the array of coordinates ** that bound node iNode on the parent node. ** ** If any problems are discovered, an error message is appended to the ** report accumulated in the RtreeCheck object. */ static void rtreeCheckNode( RtreeCheck *pCheck, int iDepth, /* Depth of iNode (0==leaf) */ u8 *aParent, /* Buffer containing parent coords */ i64 iNode /* Node to check */ ){ u8 *aNode = 0; int nNode = 0; assert( iNode==1 || aParent!=0 ); assert( pCheck->nDim>0 ); aNode = rtreeCheckGetNode(pCheck, iNode, &nNode); if( aNode ){ if( nNode<4 ){ rtreeCheckAppendMsg(pCheck, "Node %lld is too small (%d bytes)", iNode, nNode ); }else{ int nCell; /* Number of cells on page */ int i; /* Used to iterate through cells */ if( aParent==0 ){ iDepth = readInt16(aNode); if( iDepth>RTREE_MAX_DEPTH ){ rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth); sqlite3_free(aNode); return; } } nCell = readInt16(&aNode[2]); if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){ rtreeCheckAppendMsg(pCheck, "Node %lld is too small for cell count of %d (%d bytes)", iNode, nCell, nNode ); }else{ for(i=0; inDim*2*4)]; i64 iVal = readInt64(pCell); rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent); if( iDepth>0 ){ rtreeCheckMapping(pCheck, 0, iVal, iNode); rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal); pCheck->nNonLeaf++; }else{ rtreeCheckMapping(pCheck, 1, iVal, iNode); pCheck->nLeaf++; } } } } sqlite3_free(aNode); } } /* ** The second argument to this function must be either "_rowid" or ** "_parent". This function checks that the number of entries in the ** %_rowid or %_parent table is exactly nExpect. If not, it adds ** an error message to the report in the RtreeCheck object indicated ** by the first argument. */ static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){ if( pCheck->rc==SQLITE_OK ){ sqlite3_stmt *pCount; pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'", pCheck->zDb, pCheck->zTab, zTbl ); if( pCount ){ if( sqlite3_step(pCount)==SQLITE_ROW ){ i64 nActual = sqlite3_column_int64(pCount, 0); if( nActual!=nExpect ){ rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table" " - expected %lld, actual %lld" , zTbl, nExpect, nActual ); } } pCheck->rc = sqlite3_finalize(pCount); } } } /* ** This function does the bulk of the work for the rtree integrity-check. ** It is called by rtreecheck(), which is the SQL function implementation. */ static int rtreeCheckTable( sqlite3 *db, /* Database handle to access db through */ const char *zDb, /* Name of db ("main", "temp" etc.) */ const char *zTab, /* Name of rtree table to check */ char **pzReport /* OUT: sqlite3_malloc'd report text */ ){ RtreeCheck check; /* Common context for various routines */ sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ int nAux = 0; /* Number of extra columns. */ /* Initialize the context object */ memset(&check, 0, sizeof(check)); check.db = db; check.zDb = zDb; check.zTab = zTab; /* Find the number of auxiliary columns */ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab); if( pStmt ){ nAux = sqlite3_column_count(pStmt) - 2; sqlite3_finalize(pStmt); }else if( check.rc!=SQLITE_NOMEM ){ check.rc = SQLITE_OK; } /* Find number of dimensions in the rtree table. */ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); if( pStmt ){ int rc; check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2; if( check.nDim<1 ){ rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree"); }else if( SQLITE_ROW==sqlite3_step(pStmt) ){ check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER); } rc = sqlite3_finalize(pStmt); if( rc!=SQLITE_CORRUPT ) check.rc = rc; } /* Do the actual integrity-check */ if( check.nDim>=1 ){ if( check.rc==SQLITE_OK ){ rtreeCheckNode(&check, 0, 0, 1); } rtreeCheckCount(&check, "_rowid", check.nLeaf); rtreeCheckCount(&check, "_parent", check.nNonLeaf); } /* Finalize SQL statements used by the integrity-check */ sqlite3_finalize(check.pGetNode); sqlite3_finalize(check.aCheckMapping[0]); sqlite3_finalize(check.aCheckMapping[1]); *pzReport = check.zReport; return check.rc; } /* ** Implementation of the xIntegrity method for Rtree. */ static int rtreeIntegrity( sqlite3_vtab *pVtab, /* The virtual table to check */ const char *zSchema, /* Schema in which the virtual table lives */ const char *zName, /* Name of the virtual table */ int isQuick, /* True for a quick_check */ char **pzErr /* Write results here */ ){ Rtree *pRtree = (Rtree*)pVtab; int rc; assert( pzErr!=0 && *pzErr==0 ); UNUSED_PARAMETER(zSchema); UNUSED_PARAMETER(zName); UNUSED_PARAMETER(isQuick); rc = rtreeCheckTable(pRtree->db, pRtree->zDb, pRtree->zName, pzErr); if( rc==SQLITE_OK && *pzErr ){ *pzErr = sqlite3_mprintf("In RTree %s.%s:\n%z", pRtree->zDb, pRtree->zName, *pzErr); if( (*pzErr)==0 ) rc = SQLITE_NOMEM; } return rc; } /* ** Usage: ** ** rtreecheck(); ** rtreecheck(, ); ** ** Invoking this SQL function runs an integrity-check on the named rtree ** table. The integrity-check verifies the following: ** ** 1. For each cell in the r-tree structure (%_node table), that: ** ** a) for each dimension, (coord1 <= coord2). ** ** b) unless the cell is on the root node, that the cell is bounded ** by the parent cell on the parent node. ** ** c) for leaf nodes, that there is an entry in the %_rowid ** table corresponding to the cell's rowid value that ** points to the correct node. ** ** d) for cells on non-leaf nodes, that there is an entry in the ** %_parent table mapping from the cell's child node to the ** node that it resides on. ** ** 2. That there are the same number of entries in the %_rowid table ** as there are leaf cells in the r-tree structure, and that there ** is a leaf cell that corresponds to each entry in the %_rowid table. ** ** 3. That there are the same number of entries in the %_parent table ** as there are non-leaf cells in the r-tree structure, and that ** there is a non-leaf cell that corresponds to each entry in the ** %_parent table. */ static void rtreecheck( sqlite3_context *ctx, int nArg, sqlite3_value **apArg ){ if( nArg!=1 && nArg!=2 ){ sqlite3_result_error(ctx, "wrong number of arguments to function rtreecheck()", -1 ); }else{ int rc; char *zReport = 0; const char *zDb = (const char*)sqlite3_value_text(apArg[0]); const char *zTab; if( nArg==1 ){ zTab = zDb; zDb = "main"; }else{ zTab = (const char*)sqlite3_value_text(apArg[1]); } rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport); if( rc==SQLITE_OK ){ sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT); }else{ sqlite3_result_error_code(ctx, rc); } sqlite3_free(zReport); } } /* Conditionally include the geopoly code */ #ifdef SQLITE_ENABLE_GEOPOLY /************** Include geopoly.c in the middle of rtree.c *******************/ /************** Begin file geopoly.c *****************************************/ /* ** 2018-05-25 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file implements an alternative R-Tree virtual table that ** uses polygons to express the boundaries of 2-dimensional objects. ** ** This file is #include-ed onto the end of "rtree.c" so that it has ** access to all of the R-Tree internals. */ /* #include */ /* Enable -DGEOPOLY_ENABLE_DEBUG for debugging facilities */ #ifdef GEOPOLY_ENABLE_DEBUG static int geo_debug = 0; # define GEODEBUG(X) if(geo_debug)printf X #else # define GEODEBUG(X) #endif /* Character class routines */ #ifdef sqlite3Isdigit /* Use the SQLite core versions if this routine is part of the ** SQLite amalgamation */ # define safe_isdigit(x) sqlite3Isdigit(x) # define safe_isalnum(x) sqlite3Isalnum(x) # define safe_isxdigit(x) sqlite3Isxdigit(x) #else /* Use the standard library for separate compilation */ #include /* amalgamator: keep */ # define safe_isdigit(x) isdigit((unsigned char)(x)) # define safe_isalnum(x) isalnum((unsigned char)(x)) # define safe_isxdigit(x) isxdigit((unsigned char)(x)) #endif #ifndef JSON_NULL /* The following stuff repeats things found in json1 */ /* ** Growing our own isspace() routine this way is twice as fast as ** the library isspace() function. */ static const char geopolyIsSpace[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define fast_isspace(x) (geopolyIsSpace[(unsigned char)x]) #endif /* JSON NULL - back to original code */ /* Compiler and version */ #ifndef GCC_VERSION #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #endif #ifndef MSVC_VERSION #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif #endif /* Datatype for coordinates */ typedef float GeoCoord; /* ** Internal representation of a polygon. ** ** The polygon consists of a sequence of vertexes. There is a line ** segment between each pair of vertexes, and one final segment from ** the last vertex back to the first. (This differs from the GeoJSON ** standard in which the final vertex is a repeat of the first.) ** ** The polygon follows the right-hand rule. The area to the right of ** each segment is "outside" and the area to the left is "inside". ** ** The on-disk representation consists of a 4-byte header followed by ** the values. The 4-byte header is: ** ** encoding (1 byte) 0=big-endian, 1=little-endian ** nvertex (3 bytes) Number of vertexes as a big-endian integer ** ** Enough space is allocated for 4 coordinates, to work around over-zealous ** warnings coming from some compiler (notably, clang). In reality, the size ** of each GeoPoly memory allocate is adjusted as necessary so that the ** GeoPoly.a[] array at the end is the appropriate size. */ typedef struct GeoPoly GeoPoly; struct GeoPoly { int nVertex; /* Number of vertexes */ unsigned char hdr[4]; /* Header for on-disk representation */ GeoCoord a[8]; /* 2*nVertex values. X (longitude) first, then Y */ }; /* The size of a memory allocation needed for a GeoPoly object sufficient ** to hold N coordinate pairs. */ #define GEOPOLY_SZ(N) (sizeof(GeoPoly) + sizeof(GeoCoord)*2*((N)-4)) /* Macros to access coordinates of a GeoPoly. ** We have to use these macros, rather than just say p->a[i] in order ** to silence (incorrect) UBSAN warnings if the array index is too large. */ #define GeoX(P,I) (((GeoCoord*)(P)->a)[(I)*2]) #define GeoY(P,I) (((GeoCoord*)(P)->a)[(I)*2+1]) /* ** State of a parse of a GeoJSON input. */ typedef struct GeoParse GeoParse; struct GeoParse { const unsigned char *z; /* Unparsed input */ int nVertex; /* Number of vertexes in a[] */ int nAlloc; /* Space allocated to a[] */ int nErr; /* Number of errors encountered */ GeoCoord *a; /* Array of vertexes. From sqlite3_malloc64() */ }; /* Do a 4-byte byte swap */ static void geopolySwab32(unsigned char *a){ unsigned char t = a[0]; a[0] = a[3]; a[3] = t; t = a[1]; a[1] = a[2]; a[2] = t; } /* Skip whitespace. Return the next non-whitespace character. */ static char geopolySkipSpace(GeoParse *p){ while( fast_isspace(p->z[0]) ) p->z++; return p->z[0]; } /* Parse out a number. Write the value into *pVal if pVal!=0. ** return non-zero on success and zero if the next token is not a number. */ static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){ char c = geopolySkipSpace(p); const unsigned char *z = p->z; int j = 0; int seenDP = 0; int seenE = 0; if( c=='-' ){ j = 1; c = z[j]; } if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0; for(;; j++){ c = z[j]; if( safe_isdigit(c) ) continue; if( c=='.' ){ if( z[j-1]=='-' ) return 0; if( seenDP ) return 0; seenDP = 1; continue; } if( c=='e' || c=='E' ){ if( z[j-1]<'0' ) return 0; if( seenE ) return -1; seenDP = seenE = 1; c = z[j+1]; if( c=='+' || c=='-' ){ j++; c = z[j+1]; } if( c<'0' || c>'9' ) return 0; continue; } break; } if( z[j-1]<'0' ) return 0; if( pVal ){ #ifdef SQLITE_AMALGAMATION /* The sqlite3AtoF() routine is much much faster than atof(), if it ** is available */ double r; (void)sqlite3AtoF((const char*)p->z, &r, j, SQLITE_UTF8); *pVal = r; #else *pVal = (GeoCoord)atof((const char*)p->z); #endif } p->z += j; return 1; } /* ** If the input is a well-formed JSON array of coordinates with at least ** four coordinates and where each coordinate is itself a two-value array, ** then convert the JSON into a GeoPoly object and return a pointer to ** that object. ** ** If any error occurs, return NULL. */ static GeoPoly *geopolyParseJson(const unsigned char *z, int *pRc){ GeoParse s; int rc = SQLITE_OK; memset(&s, 0, sizeof(s)); s.z = z; if( geopolySkipSpace(&s)=='[' ){ s.z++; while( geopolySkipSpace(&s)=='[' ){ int ii = 0; char c; s.z++; if( s.nVertex>=s.nAlloc ){ GeoCoord *aNew; s.nAlloc = s.nAlloc*2 + 16; aNew = sqlite3_realloc64(s.a, s.nAlloc*sizeof(GeoCoord)*2 ); if( aNew==0 ){ rc = SQLITE_NOMEM; s.nErr++; break; } s.a = aNew; } while( geopolyParseNumber(&s, ii<=1 ? &s.a[s.nVertex*2+ii] : 0) ){ ii++; if( ii==2 ) s.nVertex++; c = geopolySkipSpace(&s); s.z++; if( c==',' ) continue; if( c==']' && ii>=2 ) break; s.nErr++; rc = SQLITE_ERROR; goto parse_json_err; } if( geopolySkipSpace(&s)==',' ){ s.z++; continue; } break; } if( geopolySkipSpace(&s)==']' && s.nVertex>=4 && s.a[0]==s.a[s.nVertex*2-2] && s.a[1]==s.a[s.nVertex*2-1] && (s.z++, geopolySkipSpace(&s)==0) ){ GeoPoly *pOut; int x = 1; s.nVertex--; /* Remove the redundant vertex at the end */ pOut = sqlite3_malloc64( GEOPOLY_SZ((sqlite3_int64)s.nVertex) ); x = 1; if( pOut==0 ) goto parse_json_err; pOut->nVertex = s.nVertex; memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord)); pOut->hdr[0] = *(unsigned char*)&x; pOut->hdr[1] = (s.nVertex>>16)&0xff; pOut->hdr[2] = (s.nVertex>>8)&0xff; pOut->hdr[3] = s.nVertex&0xff; sqlite3_free(s.a); if( pRc ) *pRc = SQLITE_OK; return pOut; }else{ s.nErr++; rc = SQLITE_ERROR; } } parse_json_err: if( pRc ) *pRc = rc; sqlite3_free(s.a); return 0; } /* ** Given a function parameter, try to interpret it as a polygon, either ** in the binary format or JSON text. Compute a GeoPoly object and ** return a pointer to that object. Or if the input is not a well-formed ** polygon, put an error message in sqlite3_context and return NULL. */ static GeoPoly *geopolyFuncParam( sqlite3_context *pCtx, /* Context for error messages */ sqlite3_value *pVal, /* The value to decode */ int *pRc /* Write error here */ ){ GeoPoly *p = 0; int nByte; testcase( pCtx==0 ); if( sqlite3_value_type(pVal)==SQLITE_BLOB && (nByte = sqlite3_value_bytes(pVal))>=(int)(4+6*sizeof(GeoCoord)) ){ const unsigned char *a = sqlite3_value_blob(pVal); int nVertex; if( a==0 ){ if( pCtx ) sqlite3_result_error_nomem(pCtx); return 0; } nVertex = (a[1]<<16) + (a[2]<<8) + a[3]; if( (a[0]==0 || a[0]==1) && (nVertex*2*sizeof(GeoCoord) + 4)==(unsigned int)nByte ){ p = sqlite3_malloc64( sizeof(*p) + (nVertex-1)*2*sizeof(GeoCoord) ); if( p==0 ){ if( pRc ) *pRc = SQLITE_NOMEM; if( pCtx ) sqlite3_result_error_nomem(pCtx); }else{ int x = 1; p->nVertex = nVertex; memcpy(p->hdr, a, nByte); if( a[0] != *(unsigned char*)&x ){ int ii; for(ii=0; iihdr[0] ^= 1; } } } if( pRc ) *pRc = SQLITE_OK; return p; }else if( sqlite3_value_type(pVal)==SQLITE_TEXT ){ const unsigned char *zJson = sqlite3_value_text(pVal); if( zJson==0 ){ if( pRc ) *pRc = SQLITE_NOMEM; return 0; } return geopolyParseJson(zJson, pRc); }else{ if( pRc ) *pRc = SQLITE_ERROR; return 0; } } /* ** Implementation of the geopoly_blob(X) function. ** ** If the input is a well-formed Geopoly BLOB or JSON string ** then return the BLOB representation of the polygon. Otherwise ** return NULL. */ static void geopolyBlobFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** SQL function: geopoly_json(X) ** ** Interpret X as a polygon and render it as a JSON array ** of coordinates. Or, if X is not a valid polygon, return NULL. */ static void geopolyJsonFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ sqlite3 *db = sqlite3_context_db_handle(context); sqlite3_str *x = sqlite3_str_new(db); int i; sqlite3_str_append(x, "[", 1); for(i=0; inVertex; i++){ sqlite3_str_appendf(x, "[%!g,%!g],", GeoX(p,i), GeoY(p,i)); } sqlite3_str_appendf(x, "[%!g,%!g]]", GeoX(p,0), GeoY(p,0)); sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free); sqlite3_free(p); } } /* ** SQL function: geopoly_svg(X, ....) ** ** Interpret X as a polygon and render it as a SVG . ** Additional arguments are added as attributes to the . */ static void geopolySvgFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p; if( argc<1 ) return; p = geopolyFuncParam(context, argv[0], 0); if( p ){ sqlite3 *db = sqlite3_context_db_handle(context); sqlite3_str *x = sqlite3_str_new(db); int i; char cSep = '\''; sqlite3_str_appendf(x, ""); sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free); sqlite3_free(p); } } /* ** SQL Function: geopoly_xform(poly, A, B, C, D, E, F) ** ** Transform and/or translate a polygon as follows: ** ** x1 = A*x0 + B*y0 + E ** y1 = C*x0 + D*y0 + F ** ** For a translation: ** ** geopoly_xform(poly, 1, 0, 0, 1, x-offset, y-offset) ** ** Rotate by R around the point (0,0): ** ** geopoly_xform(poly, cos(R), sin(R), -sin(R), cos(R), 0, 0) */ static void geopolyXformFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); double A = sqlite3_value_double(argv[1]); double B = sqlite3_value_double(argv[2]); double C = sqlite3_value_double(argv[3]); double D = sqlite3_value_double(argv[4]); double E = sqlite3_value_double(argv[5]); double F = sqlite3_value_double(argv[6]); GeoCoord x1, y1, x0, y0; int ii; (void)argc; if( p ){ for(ii=0; iinVertex; ii++){ x0 = GeoX(p,ii); y0 = GeoY(p,ii); x1 = (GeoCoord)(A*x0 + B*y0 + E); y1 = (GeoCoord)(C*x0 + D*y0 + F); GeoX(p,ii) = x1; GeoY(p,ii) = y1; } sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** Compute the area enclosed by the polygon. ** ** This routine can also be used to detect polygons that rotate in ** the wrong direction. Polygons are suppose to be counter-clockwise (CCW). ** This routine returns a negative value for clockwise (CW) polygons. */ static double geopolyArea(GeoPoly *p){ double rArea = 0.0; int ii; for(ii=0; iinVertex-1; ii++){ rArea += (GeoX(p,ii) - GeoX(p,ii+1)) /* (x0 - x1) */ * (GeoY(p,ii) + GeoY(p,ii+1)) /* (y0 + y1) */ * 0.5; } rArea += (GeoX(p,ii) - GeoX(p,0)) /* (xN - x0) */ * (GeoY(p,ii) + GeoY(p,0)) /* (yN + y0) */ * 0.5; return rArea; } /* ** Implementation of the geopoly_area(X) function. ** ** If the input is a well-formed Geopoly BLOB then return the area ** enclosed by the polygon. If the polygon circulates clockwise instead ** of counterclockwise (as it should) then return the negative of the ** enclosed area. Otherwise return NULL. */ static void geopolyAreaFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ sqlite3_result_double(context, geopolyArea(p)); sqlite3_free(p); } } /* ** Implementation of the geopoly_ccw(X) function. ** ** If the rotation of polygon X is clockwise (incorrect) instead of ** counter-clockwise (the correct winding order according to RFC7946) ** then reverse the order of the vertexes in polygon X. ** ** In other words, this routine returns a CCW polygon regardless of the ** winding order of its input. ** ** Use this routine to sanitize historical inputs that that sometimes ** contain polygons that wind in the wrong direction. */ static void geopolyCcwFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); (void)argc; if( p ){ if( geopolyArea(p)<0.0 ){ int ii, jj; for(ii=1, jj=p->nVertex-1; iihdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } #define GEOPOLY_PI 3.1415926535897932385 /* Fast approximation for sine(X) for X between -0.5*pi and 2*pi */ static double geopolySine(double r){ assert( r>=-0.5*GEOPOLY_PI && r<=2.0*GEOPOLY_PI ); if( r>=1.5*GEOPOLY_PI ){ r -= 2.0*GEOPOLY_PI; } if( r>=0.5*GEOPOLY_PI ){ return -geopolySine(r-GEOPOLY_PI); }else{ double r2 = r*r; double r3 = r2*r; double r5 = r3*r2; return 0.9996949*r - 0.1656700*r3 + 0.0075134*r5; } } /* ** Function: geopoly_regular(X,Y,R,N) ** ** Construct a simple, convex, regular polygon centered at X, Y ** with circumradius R and with N sides. */ static void geopolyRegularFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ double x = sqlite3_value_double(argv[0]); double y = sqlite3_value_double(argv[1]); double r = sqlite3_value_double(argv[2]); int n = sqlite3_value_int(argv[3]); int i; GeoPoly *p; (void)argc; if( n<3 || r<=0.0 ) return; if( n>1000 ) n = 1000; p = sqlite3_malloc64( sizeof(*p) + (n-1)*2*sizeof(GeoCoord) ); if( p==0 ){ sqlite3_result_error_nomem(context); return; } i = 1; p->hdr[0] = *(unsigned char*)&i; p->hdr[1] = 0; p->hdr[2] = (n>>8)&0xff; p->hdr[3] = n&0xff; for(i=0; ihdr, 4+8*n, SQLITE_TRANSIENT); sqlite3_free(p); } /* ** If pPoly is a polygon, compute its bounding box. Then: ** ** (1) if aCoord!=0 store the bounding box in aCoord, returning NULL ** (2) otherwise, compute a GeoPoly for the bounding box and return the ** new GeoPoly ** ** If pPoly is NULL but aCoord is not NULL, then compute a new GeoPoly from ** the bounding box in aCoord and return a pointer to that GeoPoly. */ static GeoPoly *geopolyBBox( sqlite3_context *context, /* For recording the error */ sqlite3_value *pPoly, /* The polygon */ RtreeCoord *aCoord, /* Results here */ int *pRc /* Error code here */ ){ GeoPoly *pOut = 0; GeoPoly *p; float mnX, mxX, mnY, mxY; if( pPoly==0 && aCoord!=0 ){ p = 0; mnX = aCoord[0].f; mxX = aCoord[1].f; mnY = aCoord[2].f; mxY = aCoord[3].f; goto geopolyBboxFill; }else{ p = geopolyFuncParam(context, pPoly, pRc); } if( p ){ int ii; mnX = mxX = GeoX(p,0); mnY = mxY = GeoY(p,0); for(ii=1; iinVertex; ii++){ double r = GeoX(p,ii); if( rmxX ) mxX = (float)r; r = GeoY(p,ii); if( rmxY ) mxY = (float)r; } if( pRc ) *pRc = SQLITE_OK; if( aCoord==0 ){ geopolyBboxFill: pOut = sqlite3_realloc64(p, GEOPOLY_SZ(4)); if( pOut==0 ){ sqlite3_free(p); if( context ) sqlite3_result_error_nomem(context); if( pRc ) *pRc = SQLITE_NOMEM; return 0; } pOut->nVertex = 4; ii = 1; pOut->hdr[0] = *(unsigned char*)ⅈ pOut->hdr[1] = 0; pOut->hdr[2] = 0; pOut->hdr[3] = 4; GeoX(pOut,0) = mnX; GeoY(pOut,0) = mnY; GeoX(pOut,1) = mxX; GeoY(pOut,1) = mnY; GeoX(pOut,2) = mxX; GeoY(pOut,2) = mxY; GeoX(pOut,3) = mnX; GeoY(pOut,3) = mxY; }else{ sqlite3_free(p); aCoord[0].f = mnX; aCoord[1].f = mxX; aCoord[2].f = mnY; aCoord[3].f = mxY; } }else if( aCoord ){ memset(aCoord, 0, sizeof(RtreeCoord)*4); } return pOut; } /* ** Implementation of the geopoly_bbox(X) SQL function. */ static void geopolyBBoxFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyBBox(context, argv[0], 0, 0); (void)argc; if( p ){ sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** State vector for the geopoly_group_bbox() aggregate function. */ typedef struct GeoBBox GeoBBox; struct GeoBBox { int isInit; RtreeCoord a[4]; }; /* ** Implementation of the geopoly_group_bbox(X) aggregate SQL function. */ static void geopolyBBoxStep( sqlite3_context *context, int argc, sqlite3_value **argv ){ RtreeCoord a[4]; int rc = SQLITE_OK; (void)argc; (void)geopolyBBox(context, argv[0], a, &rc); if( rc==SQLITE_OK ){ GeoBBox *pBBox; pBBox = (GeoBBox*)sqlite3_aggregate_context(context, sizeof(*pBBox)); if( pBBox==0 ) return; if( pBBox->isInit==0 ){ pBBox->isInit = 1; memcpy(pBBox->a, a, sizeof(RtreeCoord)*4); }else{ if( a[0].f < pBBox->a[0].f ) pBBox->a[0] = a[0]; if( a[1].f > pBBox->a[1].f ) pBBox->a[1] = a[1]; if( a[2].f < pBBox->a[2].f ) pBBox->a[2] = a[2]; if( a[3].f > pBBox->a[3].f ) pBBox->a[3] = a[3]; } } } static void geopolyBBoxFinal( sqlite3_context *context ){ GeoPoly *p; GeoBBox *pBBox; pBBox = (GeoBBox*)sqlite3_aggregate_context(context, 0); if( pBBox==0 ) return; p = geopolyBBox(context, 0, pBBox->a, 0); if( p ){ sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** Determine if point (x0,y0) is beneath line segment (x1,y1)->(x2,y2). ** Returns: ** ** +2 x0,y0 is on the line segement ** ** +1 x0,y0 is beneath line segment ** ** 0 x0,y0 is not on or beneath the line segment or the line segment ** is vertical and x0,y0 is not on the line segment ** ** The left-most coordinate min(x1,x2) is not considered to be part of ** the line segment for the purposes of this analysis. */ static int pointBeneathLine( double x0, double y0, double x1, double y1, double x2, double y2 ){ double y; if( x0==x1 && y0==y1 ) return 2; if( x1x2 ) return 0; }else if( x1>x2 ){ if( x0<=x2 || x0>x1 ) return 0; }else{ /* Vertical line segment */ if( x0!=x1 ) return 0; if( y0y1 && y0>y2 ) return 0; return 2; } y = y1 + (y2-y1)*(x0-x1)/(x2-x1); if( y0==y ) return 2; if( y0nVertex-1; ii++){ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii), GeoX(p1,ii+1),GeoY(p1,ii+1)); if( v==2 ) break; cnt += v; } if( v!=2 ){ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii), GeoX(p1,0), GeoY(p1,0)); } if( v==2 ){ sqlite3_result_int(context, 1); }else if( ((v+cnt)&1)==0 ){ sqlite3_result_int(context, 0); }else{ sqlite3_result_int(context, 2); } sqlite3_free(p1); } /* Forward declaration */ static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2); /* ** SQL function: geopoly_within(P1,P2) ** ** Return +2 if P1 and P2 are the same polygon ** Return +1 if P2 is contained within P1 ** Return 0 if any part of P2 is on the outside of P1 ** */ static void geopolyWithinFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0); GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0); (void)argc; if( p1 && p2 ){ int x = geopolyOverlap(p1, p2); if( x<0 ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_int(context, x==2 ? 1 : x==4 ? 2 : 0); } } sqlite3_free(p1); sqlite3_free(p2); } /* Objects used by the overlap algorihm. */ typedef struct GeoEvent GeoEvent; typedef struct GeoSegment GeoSegment; typedef struct GeoOverlap GeoOverlap; struct GeoEvent { double x; /* X coordinate at which event occurs */ int eType; /* 0 for ADD, 1 for REMOVE */ GeoSegment *pSeg; /* The segment to be added or removed */ GeoEvent *pNext; /* Next event in the sorted list */ }; struct GeoSegment { double C, B; /* y = C*x + B */ double y; /* Current y value */ float y0; /* Initial y value */ unsigned char side; /* 1 for p1, 2 for p2 */ unsigned int idx; /* Which segment within the side */ GeoSegment *pNext; /* Next segment in a list sorted by y */ }; struct GeoOverlap { GeoEvent *aEvent; /* Array of all events */ GeoSegment *aSegment; /* Array of all segments */ int nEvent; /* Number of events */ int nSegment; /* Number of segments */ }; /* ** Add a single segment and its associated events. */ static void geopolyAddOneSegment( GeoOverlap *p, GeoCoord x0, GeoCoord y0, GeoCoord x1, GeoCoord y1, unsigned char side, unsigned int idx ){ GeoSegment *pSeg; GeoEvent *pEvent; if( x0==x1 ) return; /* Ignore vertical segments */ if( x0>x1 ){ GeoCoord t = x0; x0 = x1; x1 = t; t = y0; y0 = y1; y1 = t; } pSeg = p->aSegment + p->nSegment; p->nSegment++; pSeg->C = (y1-y0)/(x1-x0); pSeg->B = y1 - x1*pSeg->C; pSeg->y0 = y0; pSeg->side = side; pSeg->idx = idx; pEvent = p->aEvent + p->nEvent; p->nEvent++; pEvent->x = x0; pEvent->eType = 0; pEvent->pSeg = pSeg; pEvent = p->aEvent + p->nEvent; p->nEvent++; pEvent->x = x1; pEvent->eType = 1; pEvent->pSeg = pSeg; } /* ** Insert all segments and events for polygon pPoly. */ static void geopolyAddSegments( GeoOverlap *p, /* Add segments to this Overlap object */ GeoPoly *pPoly, /* Take all segments from this polygon */ unsigned char side /* The side of pPoly */ ){ unsigned int i; GeoCoord *x; for(i=0; i<(unsigned)pPoly->nVertex-1; i++){ x = &GeoX(pPoly,i); geopolyAddOneSegment(p, x[0], x[1], x[2], x[3], side, i); } x = &GeoX(pPoly,i); geopolyAddOneSegment(p, x[0], x[1], pPoly->a[0], pPoly->a[1], side, i); } /* ** Merge two lists of sorted events by X coordinate */ static GeoEvent *geopolyEventMerge(GeoEvent *pLeft, GeoEvent *pRight){ GeoEvent head, *pLast; head.pNext = 0; pLast = &head; while( pRight && pLeft ){ if( pRight->x <= pLeft->x ){ pLast->pNext = pRight; pLast = pRight; pRight = pRight->pNext; }else{ pLast->pNext = pLeft; pLast = pLeft; pLeft = pLeft->pNext; } } pLast->pNext = pRight ? pRight : pLeft; return head.pNext; } /* ** Sort an array of nEvent event objects into a list. */ static GeoEvent *geopolySortEventsByX(GeoEvent *aEvent, int nEvent){ int mx = 0; int i, j; GeoEvent *p; GeoEvent *a[50]; for(i=0; ipNext = 0; for(j=0; j=mx ) mx = j+1; } p = 0; for(i=0; iy - pLeft->y; if( r==0.0 ) r = pRight->C - pLeft->C; if( r<0.0 ){ pLast->pNext = pRight; pLast = pRight; pRight = pRight->pNext; }else{ pLast->pNext = pLeft; pLast = pLeft; pLeft = pLeft->pNext; } } pLast->pNext = pRight ? pRight : pLeft; return head.pNext; } /* ** Sort a list of GeoSegments in order of increasing Y and in the event of ** a tie, increasing C (slope). */ static GeoSegment *geopolySortSegmentsByYAndC(GeoSegment *pList){ int mx = 0; int i; GeoSegment *p; GeoSegment *a[50]; while( pList ){ p = pList; pList = pList->pNext; p->pNext = 0; for(i=0; i=mx ) mx = i+1; } p = 0; for(i=0; inVertex + p2->nVertex + 2; GeoOverlap *p; sqlite3_int64 nByte; GeoEvent *pThisEvent; double rX; int rc = 0; int needSort = 0; GeoSegment *pActive = 0; GeoSegment *pSeg; unsigned char aOverlap[4]; nByte = sizeof(GeoEvent)*nVertex*2 + sizeof(GeoSegment)*nVertex + sizeof(GeoOverlap); p = sqlite3_malloc64( nByte ); if( p==0 ) return -1; p->aEvent = (GeoEvent*)&p[1]; p->aSegment = (GeoSegment*)&p->aEvent[nVertex*2]; p->nEvent = p->nSegment = 0; geopolyAddSegments(p, p1, 1); geopolyAddSegments(p, p2, 2); pThisEvent = geopolySortEventsByX(p->aEvent, p->nEvent); rX = pThisEvent && pThisEvent->x==0.0 ? -1.0 : 0.0; memset(aOverlap, 0, sizeof(aOverlap)); while( pThisEvent ){ if( pThisEvent->x!=rX ){ GeoSegment *pPrev = 0; int iMask = 0; GEODEBUG(("Distinct X: %g\n", pThisEvent->x)); rX = pThisEvent->x; if( needSort ){ GEODEBUG(("SORT\n")); pActive = geopolySortSegmentsByYAndC(pActive); needSort = 0; } for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){ if( pPrev ){ if( pPrev->y!=pSeg->y ){ GEODEBUG(("MASK: %d\n", iMask)); aOverlap[iMask] = 1; } } iMask ^= pSeg->side; pPrev = pSeg; } pPrev = 0; for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){ double y = pSeg->C*rX + pSeg->B; GEODEBUG(("Segment %d.%d %g->%g\n", pSeg->side, pSeg->idx, pSeg->y, y)); pSeg->y = y; if( pPrev ){ if( pPrev->y>pSeg->y && pPrev->side!=pSeg->side ){ rc = 1; GEODEBUG(("Crossing: %d.%d and %d.%d\n", pPrev->side, pPrev->idx, pSeg->side, pSeg->idx)); goto geopolyOverlapDone; }else if( pPrev->y!=pSeg->y ){ GEODEBUG(("MASK: %d\n", iMask)); aOverlap[iMask] = 1; } } iMask ^= pSeg->side; pPrev = pSeg; } } GEODEBUG(("%s %d.%d C=%g B=%g\n", pThisEvent->eType ? "RM " : "ADD", pThisEvent->pSeg->side, pThisEvent->pSeg->idx, pThisEvent->pSeg->C, pThisEvent->pSeg->B)); if( pThisEvent->eType==0 ){ /* Add a segment */ pSeg = pThisEvent->pSeg; pSeg->y = pSeg->y0; pSeg->pNext = pActive; pActive = pSeg; needSort = 1; }else{ /* Remove a segment */ if( pActive==pThisEvent->pSeg ){ pActive = ALWAYS(pActive) ? pActive->pNext : 0; }else{ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){ if( pSeg->pNext==pThisEvent->pSeg ){ pSeg->pNext = ALWAYS(pSeg->pNext) ? pSeg->pNext->pNext : 0; break; } } } } pThisEvent = pThisEvent->pNext; } if( aOverlap[3]==0 ){ rc = 0; }else if( aOverlap[1]!=0 && aOverlap[2]==0 ){ rc = 3; }else if( aOverlap[1]==0 && aOverlap[2]!=0 ){ rc = 2; }else if( aOverlap[1]==0 && aOverlap[2]==0 ){ rc = 4; }else{ rc = 1; } geopolyOverlapDone: sqlite3_free(p); return rc; } /* ** SQL function: geopoly_overlap(P1,P2) ** ** Determine whether or not P1 and P2 overlap. Return value: ** ** 0 The two polygons are disjoint ** 1 They overlap ** 2 P1 is completely contained within P2 ** 3 P2 is completely contained within P1 ** 4 P1 and P2 are the same polygon ** NULL Either P1 or P2 or both are not valid polygons */ static void geopolyOverlapFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0); GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0); (void)argc; if( p1 && p2 ){ int x = geopolyOverlap(p1, p2); if( x<0 ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_int(context, x); } } sqlite3_free(p1); sqlite3_free(p2); } /* ** Enable or disable debugging output */ static void geopolyDebugFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ (void)context; (void)argc; #ifdef GEOPOLY_ENABLE_DEBUG geo_debug = sqlite3_value_int(argv[0]); #else (void)argv; #endif } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the geopoly virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int geopolyInit( sqlite3 *db, /* Database connection */ void *pAux, /* One of the RTREE_COORD_* constants */ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ char **pzErr, /* OUT: Error message, if any */ int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; Rtree *pRtree; sqlite3_int64 nDb; /* Length of string argv[1] */ sqlite3_int64 nName; /* Length of string argv[2] */ sqlite3_str *pSql; char *zSql; int ii; (void)pAux; sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); /* Allocate the sqlite3_vtab structure */ nDb = strlen(argv[1]); nName = strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName*2+8); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName*2+8); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->zNodeName = &pRtree->zName[nName+1]; pRtree->eCoordType = RTREE_COORD_REAL32; pRtree->nDim = 2; pRtree->nDim2 = 4; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); memcpy(pRtree->zNodeName, argv[2], nName); memcpy(&pRtree->zNodeName[nName], "_node", 6); /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ pSql = sqlite3_str_new(db); sqlite3_str_appendf(pSql, "CREATE TABLE x(_shape"); pRtree->nAux = 1; /* Add one for _shape */ pRtree->nAuxNotNull = 1; /* The _shape column is always not-null */ for(ii=3; iinAux++; sqlite3_str_appendf(pSql, ",%s", argv[ii]); } sqlite3_str_appendf(pSql, ");"); zSql = sqlite3_str_finish(pSql); if( !zSql ){ rc = SQLITE_NOMEM; }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } sqlite3_free(zSql); if( rc ) goto geopolyInit_fail; pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; /* Figure out the node size to use. */ rc = getNodeSize(db, pRtree, isCreate, pzErr); if( rc ) goto geopolyInit_fail; rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); if( rc ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); goto geopolyInit_fail; } *ppVtab = (sqlite3_vtab *)pRtree; return SQLITE_OK; geopolyInit_fail: if( rc==SQLITE_OK ) rc = SQLITE_ERROR; assert( *ppVtab==0 ); assert( pRtree->nBusy==1 ); rtreeRelease(pRtree); return rc; } /* ** GEOPOLY virtual table module xCreate method. */ static int geopolyCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 1); } /* ** GEOPOLY virtual table module xConnect method. */ static int geopolyConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 0); } /* ** GEOPOLY virtual table module xFilter method. ** ** Query plans: ** ** 1 rowid lookup ** 2 search for objects overlapping the same bounding box ** that contains polygon argv[0] ** 3 search for objects overlapping the same bounding box ** that contains polygon argv[0] ** 4 full table scan */ static int geopolyFilter( sqlite3_vtab_cursor *pVtabCursor, /* The cursor to initialize */ int idxNum, /* Query plan */ const char *idxStr, /* Not Used */ int argc, sqlite3_value **argv /* Parameters to the query plan */ ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int rc = SQLITE_OK; int iCell = 0; (void)idxStr; rtreeReference(pRtree); /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ resetCursor(pCsr); pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ RtreeSearchPoint *p; /* Search point for the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); i64 iNode = 0; rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); if( rc==SQLITE_OK && pLeaf!=0 ){ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); assert( p!=0 ); /* Always returns pCsr->sPoint */ pCsr->aNode[0] = pLeaf; p->id = iNode; p->eWithin = PARTLY_WITHIN; rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); p->iCell = (u8)iCell; RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); }else{ pCsr->atEOF = 1; } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); if( rc==SQLITE_OK && idxNum<=3 ){ RtreeCoord bbox[4]; RtreeConstraint *p; assert( argc==1 ); assert( argv[0]!=0 ); geopolyBBox(0, argv[0], bbox, &rc); if( rc ){ goto geopoly_filter_end; } pCsr->aConstraint = p = sqlite3_malloc(sizeof(RtreeConstraint)*4); pCsr->nConstraint = 4; if( p==0 ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*4); memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); if( idxNum==2 ){ /* Overlap query */ p->op = 'B'; p->iCoord = 0; p->u.rValue = bbox[1].f; p++; p->op = 'D'; p->iCoord = 1; p->u.rValue = bbox[0].f; p++; p->op = 'B'; p->iCoord = 2; p->u.rValue = bbox[3].f; p++; p->op = 'D'; p->iCoord = 3; p->u.rValue = bbox[2].f; }else{ /* Within query */ p->op = 'D'; p->iCoord = 0; p->u.rValue = bbox[0].f; p++; p->op = 'B'; p->iCoord = 1; p->u.rValue = bbox[1].f; p++; p->op = 'D'; p->iCoord = 2; p->u.rValue = bbox[2].f; p++; p->op = 'B'; p->iCoord = 3; p->u.rValue = bbox[3].f; } } } if( rc==SQLITE_OK ){ RtreeSearchPoint *pNew; pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); if( pNew==0 ){ rc = SQLITE_NOMEM; goto geopoly_filter_end; } pNew->id = 1; pNew->iCell = 0; pNew->eWithin = PARTLY_WITHIN; assert( pCsr->bPoint==1 ); pCsr->aNode[0] = pRoot; pRoot = 0; RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); rc = rtreeStepToLeaf(pCsr); } } geopoly_filter_end: nodeRelease(pRtree, pRoot); rtreeRelease(pRtree); return rc; } /* ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 "rowid" Direct lookup by rowid. ** 2 "rtree" R-tree overlap query using geopoly_overlap() ** 3 "rtree" R-tree within query using geopoly_within() ** 4 "fullscan" full-table scan. ** ------------------------------------------------ */ static int geopolyBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int ii; int iRowidTerm = -1; int iFuncTerm = -1; int idxNum = 0; (void)tab; for(ii=0; iinConstraint; ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( !p->usable ) continue; if( p->iColumn<0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ iRowidTerm = ii; break; } if( p->iColumn==0 && p->op>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ /* p->op==SQLITE_INDEX_CONSTRAINT_FUNCTION for geopoly_overlap() ** p->op==(SQLITE_INDEX_CONTRAINT_FUNCTION+1) for geopoly_within(). ** See geopolyFindFunction() */ iFuncTerm = ii; idxNum = p->op - SQLITE_INDEX_CONSTRAINT_FUNCTION + 2; } } if( iRowidTerm>=0 ){ pIdxInfo->idxNum = 1; pIdxInfo->idxStr = "rowid"; pIdxInfo->aConstraintUsage[iRowidTerm].argvIndex = 1; pIdxInfo->aConstraintUsage[iRowidTerm].omit = 1; pIdxInfo->estimatedCost = 30.0; pIdxInfo->estimatedRows = 1; pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; return SQLITE_OK; } if( iFuncTerm>=0 ){ pIdxInfo->idxNum = idxNum; pIdxInfo->idxStr = "rtree"; pIdxInfo->aConstraintUsage[iFuncTerm].argvIndex = 1; pIdxInfo->aConstraintUsage[iFuncTerm].omit = 0; pIdxInfo->estimatedCost = 300.0; pIdxInfo->estimatedRows = 10; return SQLITE_OK; } pIdxInfo->idxNum = 4; pIdxInfo->idxStr = "fullscan"; pIdxInfo->estimatedCost = 3000000.0; pIdxInfo->estimatedRows = 100000; return SQLITE_OK; } /* ** GEOPOLY virtual table module xColumn method. */ static int geopolyColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc ) return rc; if( p==0 ) return SQLITE_OK; if( i==0 && sqlite3_vtab_nochange(ctx) ) return SQLITE_OK; if( i<=pRtree->nAux ){ if( !pCsr->bAuxValid ){ if( pCsr->pReadAux==0 ){ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, &pCsr->pReadAux, 0); if( rc ) return rc; } sqlite3_bind_int64(pCsr->pReadAux, 1, nodeGetRowid(pRtree, pNode, p->iCell)); rc = sqlite3_step(pCsr->pReadAux); if( rc==SQLITE_ROW ){ pCsr->bAuxValid = 1; }else{ sqlite3_reset(pCsr->pReadAux); if( rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } } sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i+2)); } return SQLITE_OK; } /* ** The xUpdate method for GEOPOLY module virtual tables. ** ** For DELETE: ** ** argv[0] = the rowid to be deleted ** ** For INSERT: ** ** argv[0] = SQL NULL ** argv[1] = rowid to insert, or an SQL NULL to select automatically ** argv[2] = _shape column ** argv[3] = first application-defined column.... ** ** For UPDATE: ** ** argv[0] = rowid to modify. Never NULL ** argv[1] = rowid after the change. Never NULL ** argv[2] = new value for _shape ** argv[3] = new value for first application-defined column.... */ static int geopolyUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **aData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; RtreeCell cell; /* New cell to insert if nData>1 */ i64 oldRowid; /* The old rowid */ int oldRowidValid; /* True if oldRowid is valid */ i64 newRowid; /* The new rowid */ int newRowidValid; /* True if newRowid is valid */ int coordChange = 0; /* Change in coordinates */ if( pRtree->nNodeRef ){ /* Unable to write to the btree while another cursor is reading from it, ** since the write might do a rebalance which would disrupt the read ** cursor. */ return SQLITE_LOCKED_VTAB; } rtreeReference(pRtree); assert(nData>=1); oldRowidValid = sqlite3_value_type(aData[0])!=SQLITE_NULL;; oldRowid = oldRowidValid ? sqlite3_value_int64(aData[0]) : 0; newRowidValid = nData>1 && sqlite3_value_type(aData[1])!=SQLITE_NULL; newRowid = newRowidValid ? sqlite3_value_int64(aData[1]) : 0; cell.iRowid = newRowid; if( nData>1 /* not a DELETE */ && (!oldRowidValid /* INSERT */ || !sqlite3_value_nochange(aData[2]) /* UPDATE _shape */ || oldRowid!=newRowid) /* Rowid change */ ){ assert( aData[2]!=0 ); geopolyBBox(0, aData[2], cell.aCoord, &rc); if( rc ){ if( rc==SQLITE_ERROR ){ pVtab->zErrMsg = sqlite3_mprintf("_shape does not contain a valid polygon"); } goto geopoly_update_end; } coordChange = 1; /* If a rowid value was supplied, check if it is already present in ** the table. If so, the constraint has failed. */ if( newRowidValid && (!oldRowidValid || oldRowid!=newRowid) ){ int steprc; sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); steprc = sqlite3_step(pRtree->pReadRowid); rc = sqlite3_reset(pRtree->pReadRowid); if( SQLITE_ROW==steprc ){ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ rc = rtreeDeleteRowid(pRtree, cell.iRowid); }else{ rc = rtreeConstraintError(pRtree, 0); } } } } /* If aData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( rc==SQLITE_OK && (nData==1 || (coordChange && oldRowidValid)) ){ rc = rtreeDeleteRowid(pRtree, oldRowid); } /* If the aData[] array contains more than one element, elements ** (aData[2]..aData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 && coordChange ){ /* Insert the new record into the r-tree */ RtreeNode *pLeaf = 0; if( !newRowidValid ){ rc = rtreeNewRowid(pRtree, &cell.iRowid); } *pRowid = cell.iRowid; if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } } /* Change the data */ if( rc==SQLITE_OK && nData>1 ){ sqlite3_stmt *pUp = pRtree->pWriteAux; int jj; int nChange = 0; sqlite3_bind_int64(pUp, 1, cell.iRowid); assert( pRtree->nAux>=1 ); if( sqlite3_value_nochange(aData[2]) ){ sqlite3_bind_null(pUp, 2); }else{ GeoPoly *p = 0; if( sqlite3_value_type(aData[2])==SQLITE_TEXT && (p = geopolyFuncParam(0, aData[2], &rc))!=0 && rc==SQLITE_OK ){ sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); }else{ sqlite3_bind_value(pUp, 2, aData[2]); } sqlite3_free(p); nChange = 1; } for(jj=1; jjxDestructor ) pInfo->xDestructor(pInfo->pContext); sqlite3_free(p); } /* ** This routine frees the BLOB that is returned by geomCallback(). */ static void rtreeMatchArgFree(void *pArg){ int i; RtreeMatchArg *p = (RtreeMatchArg*)pArg; for(i=0; inParam; i++){ sqlite3_value_free(p->apSqlParam[i]); } sqlite3_free(p); } /* ** Each call to sqlite3_rtree_geometry_callback() or ** sqlite3_rtree_query_callback() creates an ordinary SQLite ** scalar function that is implemented by this routine. ** ** All this function does is construct an RtreeMatchArg object that ** contains the geometry-checking callback routines and a list of ** parameters to this function, then return that RtreeMatchArg object ** as a BLOB. ** ** The R-Tree MATCH operator will read the returned BLOB, deserialize ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure ** out which elements of the R-Tree should be returned by the query. */ static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); RtreeMatchArg *pBlob; sqlite3_int64 nBlob; int memErr = 0; nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue) + nArg*sizeof(sqlite3_value*); pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob); if( !pBlob ){ sqlite3_result_error_nomem(ctx); }else{ int i; pBlob->iSize = nBlob; pBlob->cb = pGeomCtx[0]; pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg]; pBlob->nParam = nArg; for(i=0; iapSqlParam[i] = sqlite3_value_dup(aArg[i]); if( pBlob->apSqlParam[i]==0 ) memErr = 1; #ifdef SQLITE_RTREE_INT_ONLY pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); #else pBlob->aParam[i] = sqlite3_value_double(aArg[i]); #endif } if( memErr ){ sqlite3_result_error_nomem(ctx); rtreeMatchArgFree(pBlob); }else{ sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree); } } } /* ** Register a new geometry function for use with the r-tree MATCH operator. */ SQLITE_API int sqlite3_rtree_geometry_callback( sqlite3 *db, /* Register SQL function on this connection */ const char *zGeom, /* Name of the new SQL function */ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ void *pContext /* Extra data associated with the callback */ ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ) return SQLITE_NOMEM; pGeomCtx->xGeom = xGeom; pGeomCtx->xQueryFunc = 0; pGeomCtx->xDestructor = 0; pGeomCtx->pContext = pContext; return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback ); } /* ** Register a new 2nd-generation geometry function for use with the ** r-tree MATCH operator. */ SQLITE_API int sqlite3_rtree_query_callback( sqlite3 *db, /* Register SQL function on this connection */ const char *zQueryFunc, /* Name of new SQL function */ int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ void *pContext, /* Extra data passed into the callback */ void (*xDestructor)(void*) /* Destructor for the extra data */ ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ){ if( xDestructor ) xDestructor(pContext); return SQLITE_NOMEM; } pGeomCtx->xGeom = 0; pGeomCtx->xQueryFunc = xQueryFunc; pGeomCtx->xDestructor = xDestructor; pGeomCtx->pContext = pContext; return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback ); } #if !SQLITE_CORE #ifdef _WIN32 __declspec(dllexport) #endif SQLITE_API int sqlite3_rtree_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3RtreeInit(db); } #endif #endif /************** End of rtree.c ***********************************************/ /************** Begin file icu.c *********************************************/ /* ** 2007 May 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $ ** ** This file implements an integration between the ICU library ** ("International Components for Unicode", an open-source library ** for handling unicode data) and SQLite. The integration uses ** ICU to provide the following to SQLite: ** ** * An implementation of the SQL regexp() function (and hence REGEXP ** operator) using the ICU uregex_XX() APIs. ** ** * Implementations of the SQL scalar upper() and lower() functions ** for case mapping. ** ** * Integration of ICU and SQLite collation sequences. ** ** * An implementation of the LIKE operator that uses ICU to ** provide case-independent matching. */ #if !defined(SQLITE_CORE) \ || defined(SQLITE_ENABLE_ICU) \ || defined(SQLITE_ENABLE_ICU_COLLATIONS) /* Include ICU headers */ #include #include #include #include /* #include */ #ifndef SQLITE_CORE /* #include "sqlite3ext.h" */ SQLITE_EXTENSION_INIT1 #else /* #include "sqlite3.h" */ #endif /* ** This function is called when an ICU function called from within ** the implementation of an SQL scalar function returns an error. ** ** The scalar function context passed as the first argument is ** loaded with an error message based on the following two args. */ static void icuFunctionError( sqlite3_context *pCtx, /* SQLite scalar function context */ const char *zName, /* Name of ICU function that failed */ UErrorCode e /* Error code returned by ICU function */ ){ char zBuf[128]; sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e)); zBuf[127] = '\0'; sqlite3_result_error(pCtx, zBuf, -1); } #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) /* ** Maximum length (in bytes) of the pattern in a LIKE or GLOB ** operator. */ #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 #endif /* ** Version of sqlite3_free() that is always a function, never a macro. */ static void xFree(void *p){ sqlite3_free(p); } /* ** This lookup table is used to help decode the first byte of ** a multi-byte UTF8 character. It is copied here from SQLite source ** code file utf8.c. */ static const unsigned char icuUtf8Trans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; #define SQLITE_ICU_READ_UTF8(zIn, c) \ c = *(zIn++); \ if( c>=0xc0 ){ \ c = icuUtf8Trans1[c-0xc0]; \ while( (*zIn & 0xc0)==0x80 ){ \ c = (c<<6) + (0x3f & *(zIn++)); \ } \ } #define SQLITE_ICU_SKIP_UTF8(zIn) \ assert( *zIn ); \ if( *(zIn++)>=0xc0 ){ \ while( (*zIn & 0xc0)==0x80 ){zIn++;} \ } /* ** Compare two UTF-8 strings for equality where the first string is ** a "LIKE" expression. Return true (1) if they are the same and ** false (0) if they are different. */ static int icuLikeCompare( const uint8_t *zPattern, /* LIKE pattern */ const uint8_t *zString, /* The UTF-8 string to compare against */ const UChar32 uEsc /* The escape character */ ){ static const uint32_t MATCH_ONE = (uint32_t)'_'; static const uint32_t MATCH_ALL = (uint32_t)'%'; int prevEscape = 0; /* True if the previous character was uEsc */ while( 1 ){ /* Read (and consume) the next character from the input pattern. */ uint32_t uPattern; SQLITE_ICU_READ_UTF8(zPattern, uPattern); if( uPattern==0 ) break; /* There are now 4 possibilities: ** ** 1. uPattern is an unescaped match-all character "%", ** 2. uPattern is an unescaped match-one character "_", ** 3. uPattern is an unescaped escape character, or ** 4. uPattern is to be handled as an ordinary character */ if( uPattern==MATCH_ALL && !prevEscape && uPattern!=(uint32_t)uEsc ){ /* Case 1. */ uint8_t c; /* Skip any MATCH_ALL or MATCH_ONE characters that follow a ** MATCH_ALL. For each MATCH_ONE, skip one character in the ** test string. */ while( (c=*zPattern) == MATCH_ALL || c == MATCH_ONE ){ if( c==MATCH_ONE ){ if( *zString==0 ) return 0; SQLITE_ICU_SKIP_UTF8(zString); } zPattern++; } if( *zPattern==0 ) return 1; while( *zString ){ if( icuLikeCompare(zPattern, zString, uEsc) ){ return 1; } SQLITE_ICU_SKIP_UTF8(zString); } return 0; }else if( uPattern==MATCH_ONE && !prevEscape && uPattern!=(uint32_t)uEsc ){ /* Case 2. */ if( *zString==0 ) return 0; SQLITE_ICU_SKIP_UTF8(zString); }else if( uPattern==(uint32_t)uEsc && !prevEscape ){ /* Case 3. */ prevEscape = 1; }else{ /* Case 4. */ uint32_t uString; SQLITE_ICU_READ_UTF8(zString, uString); uString = (uint32_t)u_foldCase((UChar32)uString, U_FOLD_CASE_DEFAULT); uPattern = (uint32_t)u_foldCase((UChar32)uPattern, U_FOLD_CASE_DEFAULT); if( uString!=uPattern ){ return 0; } prevEscape = 0; } } return *zString==0; } /* ** Implementation of the like() SQL function. This function implements ** the build-in LIKE operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(B, A). If there is an escape character E, ** ** A LIKE B ESCAPE E ** ** is mapped to like(B, A, E). */ static void icuLikeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zA = sqlite3_value_text(argv[0]); const unsigned char *zB = sqlite3_value_text(argv[1]); UChar32 uEsc = 0; /* Limit the length of the LIKE or GLOB pattern to avoid problems ** of deep recursion and N*N behavior in patternCompare(). */ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); return; } if( argc==3 ){ /* The escape character string must consist of a single UTF-8 character. ** Otherwise, return an error. */ int nE= sqlite3_value_bytes(argv[2]); const unsigned char *zE = sqlite3_value_text(argv[2]); int i = 0; if( zE==0 ) return; U8_NEXT(zE, i, nE, uEsc); if( i!=nE){ sqlite3_result_error(context, "ESCAPE expression must be a single character", -1); return; } } if( zA && zB ){ sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc)); } } /* ** Function to delete compiled regexp objects. Registered as ** a destructor function with sqlite3_set_auxdata(). */ static void icuRegexpDelete(void *p){ URegularExpression *pExpr = (URegularExpression *)p; uregex_close(pExpr); } /* ** Implementation of SQLite REGEXP operator. This scalar function takes ** two arguments. The first is a regular expression pattern to compile ** the second is a string to match against that pattern. If either ** argument is an SQL NULL, then NULL Is returned. Otherwise, the result ** is 1 if the string matches the pattern, or 0 otherwise. ** ** SQLite maps the regexp() function to the regexp() operator such ** that the following two are equivalent: ** ** zString REGEXP zPattern ** regexp(zPattern, zString) ** ** Uses the following ICU regexp APIs: ** ** uregex_open() ** uregex_matches() ** uregex_close() */ static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){ UErrorCode status = U_ZERO_ERROR; URegularExpression *pExpr; UBool res; const UChar *zString = sqlite3_value_text16(apArg[1]); (void)nArg; /* Unused parameter */ /* If the left hand side of the regexp operator is NULL, ** then the result is also NULL. */ if( !zString ){ return; } pExpr = sqlite3_get_auxdata(p, 0); if( !pExpr ){ const UChar *zPattern = sqlite3_value_text16(apArg[0]); if( !zPattern ){ return; } pExpr = uregex_open(zPattern, -1, 0, 0, &status); if( U_SUCCESS(status) ){ sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete); pExpr = sqlite3_get_auxdata(p, 0); } if( !pExpr ){ icuFunctionError(p, "uregex_open", status); return; } } /* Configure the text that the regular expression operates on. */ uregex_setText(pExpr, zString, -1, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "uregex_setText", status); return; } /* Attempt the match */ res = uregex_matches(pExpr, 0, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "uregex_matches", status); return; } /* Set the text that the regular expression operates on to a NULL ** pointer. This is not really necessary, but it is tidier than ** leaving the regular expression object configured with an invalid ** pointer after this function returns. */ uregex_setText(pExpr, 0, 0, &status); /* Return 1 or 0. */ sqlite3_result_int(p, res ? 1 : 0); } /* ** Implementations of scalar functions for case mapping - upper() and ** lower(). Function upper() converts its input to upper-case (ABC). ** Function lower() converts to lower-case (abc). ** ** ICU provides two types of case mapping, "general" case mapping and ** "language specific". Refer to ICU documentation for the differences ** between the two. ** ** To utilise "general" case mapping, the upper() or lower() scalar ** functions are invoked with one argument: ** ** upper('ABC') -> 'abc' ** lower('abc') -> 'ABC' ** ** To access ICU "language specific" case mapping, upper() or lower() ** should be invoked with two arguments. The second argument is the name ** of the locale to use. Passing an empty string ("") or SQL NULL value ** as the second argument is the same as invoking the 1 argument version ** of upper() or lower(). ** ** lower('I', 'en_us') -> 'i' ** lower('I', 'tr_tr') -> '\u131' (small dotless i) ** ** http://www.icu-project.org/userguide/posix.html#case_mappings */ static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){ const UChar *zInput; /* Pointer to input string */ UChar *zOutput = 0; /* Pointer to output buffer */ int nInput; /* Size of utf-16 input string in bytes */ int nOut; /* Size of output buffer in bytes */ int cnt; int bToUpper; /* True for toupper(), false for tolower() */ UErrorCode status; const char *zLocale = 0; assert(nArg==1 || nArg==2); bToUpper = (sqlite3_user_data(p)!=0); if( nArg==2 ){ zLocale = (const char *)sqlite3_value_text(apArg[1]); } zInput = sqlite3_value_text16(apArg[0]); if( !zInput ){ return; } nOut = nInput = sqlite3_value_bytes16(apArg[0]); if( nOut==0 ){ sqlite3_result_text16(p, "", 0, SQLITE_STATIC); return; } for(cnt=0; cnt<2; cnt++){ UChar *zNew = sqlite3_realloc(zOutput, nOut); if( zNew==0 ){ sqlite3_free(zOutput); sqlite3_result_error_nomem(p); return; } zOutput = zNew; status = U_ZERO_ERROR; if( bToUpper ){ nOut = 2*u_strToUpper(zOutput,nOut/2,zInput,nInput/2,zLocale,&status); }else{ nOut = 2*u_strToLower(zOutput,nOut/2,zInput,nInput/2,zLocale,&status); } if( U_SUCCESS(status) ){ sqlite3_result_text16(p, zOutput, nOut, xFree); }else if( status==U_BUFFER_OVERFLOW_ERROR ){ assert( cnt==0 ); continue; }else{ icuFunctionError(p, bToUpper ? "u_strToUpper" : "u_strToLower", status); } return; } assert( 0 ); /* Unreachable */ } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */ /* ** Collation sequence destructor function. The pCtx argument points to ** a UCollator structure previously allocated using ucol_open(). */ static void icuCollationDel(void *pCtx){ UCollator *p = (UCollator *)pCtx; ucol_close(p); } /* ** Collation sequence comparison function. The pCtx argument points to ** a UCollator structure previously allocated using ucol_open(). */ static int icuCollationColl( void *pCtx, int nLeft, const void *zLeft, int nRight, const void *zRight ){ UCollationResult res; UCollator *p = (UCollator *)pCtx; res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2); switch( res ){ case UCOL_LESS: return -1; case UCOL_GREATER: return +1; case UCOL_EQUAL: return 0; } assert(!"Unexpected return value from ucol_strcoll()"); return 0; } /* ** Implementation of the scalar function icu_load_collation(). ** ** This scalar function is used to add ICU collation based collation ** types to an SQLite database connection. It is intended to be called ** as follows: ** ** SELECT icu_load_collation(, ); ** ** Where is a string containing an ICU locale identifier (i.e. ** "en_AU", "tr_TR" etc.) and is the name of the ** collation sequence to create. */ static void icuLoadCollation( sqlite3_context *p, int nArg, sqlite3_value **apArg ){ sqlite3 *db = (sqlite3 *)sqlite3_user_data(p); UErrorCode status = U_ZERO_ERROR; const char *zLocale; /* Locale identifier - (eg. "jp_JP") */ const char *zName; /* SQL Collation sequence name (eg. "japanese") */ UCollator *pUCollator; /* ICU library collation object */ int rc; /* Return code from sqlite3_create_collation_x() */ assert(nArg==2); (void)nArg; /* Unused parameter */ zLocale = (const char *)sqlite3_value_text(apArg[0]); zName = (const char *)sqlite3_value_text(apArg[1]); if( !zLocale || !zName ){ return; } pUCollator = ucol_open(zLocale, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "ucol_open", status); return; } assert(p); rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator, icuCollationColl, icuCollationDel ); if( rc!=SQLITE_OK ){ ucol_close(pUCollator); sqlite3_result_error(p, "Error registering collation function", -1); } } /* ** Register the ICU extension functions with database db. */ SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){ # define SQLITEICU_EXTRAFLAGS (SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS) static const struct IcuScalar { const char *zName; /* Function name */ unsigned char nArg; /* Number of arguments */ unsigned int enc; /* Optimal text encoding */ unsigned char iContext; /* sqlite3_user_data() context */ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } scalars[] = { {"icu_load_collation",2,SQLITE_UTF8|SQLITE_DIRECTONLY,1, icuLoadCollation}, #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) {"regexp", 2, SQLITE_ANY|SQLITEICU_EXTRAFLAGS, 0, icuRegexpFunc}, {"lower", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"lower", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"upper", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"upper", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"lower", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"lower", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16}, {"upper", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"upper", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16}, {"like", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc}, {"like", 3, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc}, #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */ }; int rc = SQLITE_OK; int i; for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){ const struct IcuScalar *p = &scalars[i]; rc = sqlite3_create_function( db, p->zName, p->nArg, p->enc, p->iContext ? (void*)db : (void*)0, p->xFunc, 0, 0 ); } return rc; } #if !SQLITE_CORE #ifdef _WIN32 __declspec(dllexport) #endif SQLITE_API int sqlite3_icu_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3IcuInit(db); } #endif #endif /************** End of icu.c *************************************************/ /************** Begin file fts3_icu.c ****************************************/ /* ** 2007 June 22 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements a tokenizer for fts3 based on the ICU library. */ /* #include "fts3Int.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #ifdef SQLITE_ENABLE_ICU /* #include */ /* #include */ /* #include "fts3_tokenizer.h" */ #include /* #include */ /* #include */ #include typedef struct IcuTokenizer IcuTokenizer; typedef struct IcuCursor IcuCursor; struct IcuTokenizer { sqlite3_tokenizer base; char *zLocale; }; struct IcuCursor { sqlite3_tokenizer_cursor base; UBreakIterator *pIter; /* ICU break-iterator object */ int nChar; /* Number of UChar elements in pInput */ UChar *aChar; /* Copy of input using utf-16 encoding */ int *aOffset; /* Offsets of each character in utf-8 input */ int nBuffer; char *zBuffer; int iToken; }; /* ** Create a new tokenizer instance. */ static int icuCreate( int argc, /* Number of entries in argv[] */ const char * const *argv, /* Tokenizer creation arguments */ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ ){ IcuTokenizer *p; int n = 0; if( argc>0 ){ n = strlen(argv[0])+1; } p = (IcuTokenizer *)sqlite3_malloc64(sizeof(IcuTokenizer)+n); if( !p ){ return SQLITE_NOMEM; } memset(p, 0, sizeof(IcuTokenizer)); if( n ){ p->zLocale = (char *)&p[1]; memcpy(p->zLocale, argv[0], n); } *ppTokenizer = (sqlite3_tokenizer *)p; return SQLITE_OK; } /* ** Destroy a tokenizer */ static int icuDestroy(sqlite3_tokenizer *pTokenizer){ IcuTokenizer *p = (IcuTokenizer *)pTokenizer; sqlite3_free(p); return SQLITE_OK; } /* ** Prepare to begin tokenizing a particular string. The input ** string to be tokenized is pInput[0..nBytes-1]. A cursor ** used to incrementally tokenize this string is returned in ** *ppCursor. */ static int icuOpen( sqlite3_tokenizer *pTokenizer, /* The tokenizer */ const char *zInput, /* Input string */ int nInput, /* Length of zInput in bytes */ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ ){ IcuTokenizer *p = (IcuTokenizer *)pTokenizer; IcuCursor *pCsr; const int32_t opt = U_FOLD_CASE_DEFAULT; UErrorCode status = U_ZERO_ERROR; int nChar; UChar32 c; int iInput = 0; int iOut = 0; *ppCursor = 0; if( zInput==0 ){ nInput = 0; zInput = ""; }else if( nInput<0 ){ nInput = strlen(zInput); } nChar = nInput+1; pCsr = (IcuCursor *)sqlite3_malloc64( sizeof(IcuCursor) + /* IcuCursor */ ((nChar+3)&~3) * sizeof(UChar) + /* IcuCursor.aChar[] */ (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */ ); if( !pCsr ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(IcuCursor)); pCsr->aChar = (UChar *)&pCsr[1]; pCsr->aOffset = (int *)&pCsr->aChar[(nChar+3)&~3]; pCsr->aOffset[iOut] = iInput; U8_NEXT(zInput, iInput, nInput, c); while( c>0 ){ int isError = 0; c = u_foldCase(c, opt); U16_APPEND(pCsr->aChar, iOut, nChar, c, isError); if( isError ){ sqlite3_free(pCsr); return SQLITE_ERROR; } pCsr->aOffset[iOut] = iInput; if( iInputpIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status); if( !U_SUCCESS(status) ){ sqlite3_free(pCsr); return SQLITE_ERROR; } pCsr->nChar = iOut; ubrk_first(pCsr->pIter); *ppCursor = (sqlite3_tokenizer_cursor *)pCsr; return SQLITE_OK; } /* ** Close a tokenization cursor previously opened by a call to icuOpen(). */ static int icuClose(sqlite3_tokenizer_cursor *pCursor){ IcuCursor *pCsr = (IcuCursor *)pCursor; ubrk_close(pCsr->pIter); sqlite3_free(pCsr->zBuffer); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Extract the next token from a tokenization cursor. */ static int icuNext( sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ const char **ppToken, /* OUT: *ppToken is the token text */ int *pnBytes, /* OUT: Number of bytes in token */ int *piStartOffset, /* OUT: Starting offset of token */ int *piEndOffset, /* OUT: Ending offset of token */ int *piPosition /* OUT: Position integer of token */ ){ IcuCursor *pCsr = (IcuCursor *)pCursor; int iStart = 0; int iEnd = 0; int nByte = 0; while( iStart==iEnd ){ UChar32 c; iStart = ubrk_current(pCsr->pIter); iEnd = ubrk_next(pCsr->pIter); if( iEnd==UBRK_DONE ){ return SQLITE_DONE; } while( iStartaChar, iWhite, pCsr->nChar, c); if( u_isspace(c) ){ iStart = iWhite; }else{ break; } } assert(iStart<=iEnd); } do { UErrorCode status = U_ZERO_ERROR; if( nByte ){ char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte); if( !zNew ){ return SQLITE_NOMEM; } pCsr->zBuffer = zNew; pCsr->nBuffer = nByte; } u_strToUTF8( pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */ &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */ &status /* Output success/failure */ ); } while( nByte>pCsr->nBuffer ); *ppToken = pCsr->zBuffer; *pnBytes = nByte; *piStartOffset = pCsr->aOffset[iStart]; *piEndOffset = pCsr->aOffset[iEnd]; *piPosition = pCsr->iToken++; return SQLITE_OK; } /* ** The set of routines that implement the simple tokenizer */ static const sqlite3_tokenizer_module icuTokenizerModule = { 0, /* iVersion */ icuCreate, /* xCreate */ icuDestroy, /* xCreate */ icuOpen, /* xOpen */ icuClose, /* xClose */ icuNext, /* xNext */ 0, /* xLanguageid */ }; /* ** Set *ppModule to point at the implementation of the ICU tokenizer. */ SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule( sqlite3_tokenizer_module const**ppModule ){ *ppModule = &icuTokenizerModule; } #endif /* defined(SQLITE_ENABLE_ICU) */ #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ /************** End of fts3_icu.c ********************************************/ /************** Begin file sqlite3rbu.c **************************************/ /* ** 2014 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** ** OVERVIEW ** ** The RBU extension requires that the RBU update be packaged as an ** SQLite database. The tables it expects to find are described in ** sqlite3rbu.h. Essentially, for each table xyz in the target database ** that the user wishes to write to, a corresponding data_xyz table is ** created in the RBU database and populated with one row for each row to ** update, insert or delete from the target table. ** ** The update proceeds in three stages: ** ** 1) The database is updated. The modified database pages are written ** to a *-oal file. A *-oal file is just like a *-wal file, except ** that it is named "-oal" instead of "-wal". ** Because regular SQLite clients do not look for file named ** "-oal", they go on using the original database in ** rollback mode while the *-oal file is being generated. ** ** During this stage RBU does not update the database by writing ** directly to the target tables. Instead it creates "imposter" ** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses ** to update each b-tree individually. All updates required by each ** b-tree are completed before moving on to the next, and all ** updates are done in sorted key order. ** ** 2) The "-oal" file is moved to the equivalent "-wal" ** location using a call to rename(2). Before doing this the RBU ** module takes an EXCLUSIVE lock on the database file, ensuring ** that there are no other active readers. ** ** Once the EXCLUSIVE lock is released, any other database readers ** detect the new *-wal file and read the database in wal mode. At ** this point they see the new version of the database - including ** the updates made as part of the RBU update. ** ** 3) The new *-wal file is checkpointed. This proceeds in the same way ** as a regular database checkpoint, except that a single frame is ** checkpointed each time sqlite3rbu_step() is called. If the RBU ** handle is closed before the entire *-wal file is checkpointed, ** the checkpoint progress is saved in the RBU database and the ** checkpoint can be resumed by another RBU client at some point in ** the future. ** ** POTENTIAL PROBLEMS ** ** The rename() call might not be portable. And RBU is not currently ** syncing the directory after renaming the file. ** ** When state is saved, any commit to the *-oal file and the commit to ** the RBU update database are not atomic. So if the power fails at the ** wrong moment they might get out of sync. As the main database will be ** committed before the RBU update database this will likely either just ** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE ** constraint violations). ** ** If some client does modify the target database mid RBU update, or some ** other error occurs, the RBU extension will keep throwing errors. It's ** not really clear how to get out of this state. The system could just ** by delete the RBU update database and *-oal file and have the device ** download the update again and start over. ** ** At present, for an UPDATE, both the new.* and old.* records are ** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all ** fields are collected. This means we're probably writing a lot more ** data to disk when saving the state of an ongoing update to the RBU ** update database than is strictly necessary. ** */ /* #include */ /* #include */ /* #include */ /* #include "sqlite3.h" */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) /************** Include sqlite3rbu.h in the middle of sqlite3rbu.c ***********/ /************** Begin file sqlite3rbu.h **************************************/ /* ** 2014 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the public interface for the RBU extension. */ /* ** SUMMARY ** ** Writing a transaction containing a large number of operations on ** b-tree indexes that are collectively larger than the available cache ** memory can be very inefficient. ** ** The problem is that in order to update a b-tree, the leaf page (at least) ** containing the entry being inserted or deleted must be modified. If the ** working set of leaves is larger than the available cache memory, then a ** single leaf that is modified more than once as part of the transaction ** may be loaded from or written to the persistent media multiple times. ** Additionally, because the index updates are likely to be applied in ** random order, access to pages within the database is also likely to be in ** random order, which is itself quite inefficient. ** ** One way to improve the situation is to sort the operations on each index ** by index key before applying them to the b-tree. This leads to an IO ** pattern that resembles a single linear scan through the index b-tree, ** and all but guarantees each modified leaf page is loaded and stored ** exactly once. SQLite uses this trick to improve the performance of ** CREATE INDEX commands. This extension allows it to be used to improve ** the performance of large transactions on existing databases. ** ** Additionally, this extension allows the work involved in writing the ** large transaction to be broken down into sub-transactions performed ** sequentially by separate processes. This is useful if the system cannot ** guarantee that a single update process will run for long enough to apply ** the entire update, for example because the update is being applied on a ** mobile device that is frequently rebooted. Even after the writer process ** has committed one or more sub-transactions, other database clients continue ** to read from the original database snapshot. In other words, partially ** applied transactions are not visible to other clients. ** ** "RBU" stands for "Resumable Bulk Update". As in a large database update ** transmitted via a wireless network to a mobile device. A transaction ** applied using this extension is hence refered to as an "RBU update". ** ** ** LIMITATIONS ** ** An "RBU update" transaction is subject to the following limitations: ** ** * The transaction must consist of INSERT, UPDATE and DELETE operations ** only. ** ** * INSERT statements may not use any default values. ** ** * UPDATE and DELETE statements must identify their target rows by ** non-NULL PRIMARY KEY values. Rows with NULL values stored in PRIMARY ** KEY fields may not be updated or deleted. If the table being written ** has no PRIMARY KEY, affected rows must be identified by rowid. ** ** * UPDATE statements may not modify PRIMARY KEY columns. ** ** * No triggers will be fired. ** ** * No foreign key violations are detected or reported. ** ** * CHECK constraints are not enforced. ** ** * No constraint handling mode except for "OR ROLLBACK" is supported. ** ** ** PREPARATION ** ** An "RBU update" is stored as a separate SQLite database. A database ** containing an RBU update is an "RBU database". For each table in the ** target database to be updated, the RBU database should contain a table ** named "data_" containing the same set of columns as the ** target table, and one more - "rbu_control". The data_% table should ** have no PRIMARY KEY or UNIQUE constraints, but each column should have ** the same type as the corresponding column in the target database. ** The "rbu_control" column should have no type at all. For example, if ** the target database contains: ** ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c UNIQUE); ** ** Then the RBU database should contain: ** ** CREATE TABLE data_t1(a INTEGER, b TEXT, c, rbu_control); ** ** The order of the columns in the data_% table does not matter. ** ** Instead of a regular table, the RBU database may also contain virtual ** tables or views named using the data_ naming scheme. ** ** Instead of the plain data_ naming scheme, RBU database tables ** may also be named data_, where is any sequence ** of zero or more numeric characters (0-9). This can be significant because ** tables within the RBU database are always processed in order sorted by ** name. By judicious selection of the portion of the names ** of the RBU tables the user can therefore control the order in which they ** are processed. This can be useful, for example, to ensure that "external ** content" FTS4 tables are updated before their underlying content tables. ** ** If the target database table is a virtual table or a table that has no ** PRIMARY KEY declaration, the data_% table must also contain a column ** named "rbu_rowid". This column is mapped to the table's implicit primary ** key column - "rowid". Virtual tables for which the "rowid" column does ** not function like a primary key value cannot be updated using RBU. For ** example, if the target db contains either of the following: ** ** CREATE VIRTUAL TABLE x1 USING fts3(a, b); ** CREATE TABLE x1(a, b) ** ** then the RBU database should contain: ** ** CREATE TABLE data_x1(a, b, rbu_rowid, rbu_control); ** ** All non-hidden columns (i.e. all columns matched by "SELECT *") of the ** target table must be present in the input table. For virtual tables, ** hidden columns are optional - they are updated by RBU if present in ** the input table, or not otherwise. For example, to write to an fts4 ** table with a hidden languageid column such as: ** ** CREATE VIRTUAL TABLE ft1 USING fts4(a, b, languageid='langid'); ** ** Either of the following input table schemas may be used: ** ** CREATE TABLE data_ft1(a, b, langid, rbu_rowid, rbu_control); ** CREATE TABLE data_ft1(a, b, rbu_rowid, rbu_control); ** ** For each row to INSERT into the target database as part of the RBU ** update, the corresponding data_% table should contain a single record ** with the "rbu_control" column set to contain integer value 0. The ** other columns should be set to the values that make up the new record ** to insert. ** ** If the target database table has an INTEGER PRIMARY KEY, it is not ** possible to insert a NULL value into the IPK column. Attempting to ** do so results in an SQLITE_MISMATCH error. ** ** For each row to DELETE from the target database as part of the RBU ** update, the corresponding data_% table should contain a single record ** with the "rbu_control" column set to contain integer value 1. The ** real primary key values of the row to delete should be stored in the ** corresponding columns of the data_% table. The values stored in the ** other columns are not used. ** ** For each row to UPDATE from the target database as part of the RBU ** update, the corresponding data_% table should contain a single record ** with the "rbu_control" column set to contain a value of type text. ** The real primary key values identifying the row to update should be ** stored in the corresponding columns of the data_% table row, as should ** the new values of all columns being update. The text value in the ** "rbu_control" column must contain the same number of characters as ** there are columns in the target database table, and must consist entirely ** of 'x' and '.' characters (or in some special cases 'd' - see below). For ** each column that is being updated, the corresponding character is set to ** 'x'. For those that remain as they are, the corresponding character of the ** rbu_control value should be set to '.'. For example, given the tables ** above, the update statement: ** ** UPDATE t1 SET c = 'usa' WHERE a = 4; ** ** is represented by the data_t1 row created by: ** ** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..x'); ** ** Instead of an 'x' character, characters of the rbu_control value specified ** for UPDATEs may also be set to 'd'. In this case, instead of updating the ** target table with the value stored in the corresponding data_% column, the ** user-defined SQL function "rbu_delta()" is invoked and the result stored in ** the target table column. rbu_delta() is invoked with two arguments - the ** original value currently stored in the target table column and the ** value specified in the data_xxx table. ** ** For example, this row: ** ** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..d'); ** ** is similar to an UPDATE statement such as: ** ** UPDATE t1 SET c = rbu_delta(c, 'usa') WHERE a = 4; ** ** Finally, if an 'f' character appears in place of a 'd' or 's' in an ** ota_control string, the contents of the data_xxx table column is assumed ** to be a "fossil delta" - a patch to be applied to a blob value in the ** format used by the fossil source-code management system. In this case ** the existing value within the target database table must be of type BLOB. ** It is replaced by the result of applying the specified fossil delta to ** itself. ** ** If the target database table is a virtual table or a table with no PRIMARY ** KEY, the rbu_control value should not include a character corresponding ** to the rbu_rowid value. For example, this: ** ** INSERT INTO data_ft1(a, b, rbu_rowid, rbu_control) ** VALUES(NULL, 'usa', 12, '.x'); ** ** causes a result similar to: ** ** UPDATE ft1 SET b = 'usa' WHERE rowid = 12; ** ** The data_xxx tables themselves should have no PRIMARY KEY declarations. ** However, RBU is more efficient if reading the rows in from each data_xxx ** table in "rowid" order is roughly the same as reading them sorted by ** the PRIMARY KEY of the corresponding target database table. In other ** words, rows should be sorted using the destination table PRIMARY KEY ** fields before they are inserted into the data_xxx tables. ** ** USAGE ** ** The API declared below allows an application to apply an RBU update ** stored on disk to an existing target database. Essentially, the ** application: ** ** 1) Opens an RBU handle using the sqlite3rbu_open() function. ** ** 2) Registers any required virtual table modules with the database ** handle returned by sqlite3rbu_db(). Also, if required, register ** the rbu_delta() implementation. ** ** 3) Calls the sqlite3rbu_step() function one or more times on ** the new handle. Each call to sqlite3rbu_step() performs a single ** b-tree operation, so thousands of calls may be required to apply ** a complete update. ** ** 4) Calls sqlite3rbu_close() to close the RBU update handle. If ** sqlite3rbu_step() has been called enough times to completely ** apply the update to the target database, then the RBU database ** is marked as fully applied. Otherwise, the state of the RBU ** update application is saved in the RBU database for later ** resumption. ** ** See comments below for more detail on APIs. ** ** If an update is only partially applied to the target database by the ** time sqlite3rbu_close() is called, various state information is saved ** within the RBU database. This allows subsequent processes to automatically ** resume the RBU update from where it left off. ** ** To remove all RBU extension state information, returning an RBU database ** to its original contents, it is sufficient to drop all tables that begin ** with the prefix "rbu_" ** ** DATABASE LOCKING ** ** An RBU update may not be applied to a database in WAL mode. Attempting ** to do so is an error (SQLITE_ERROR). ** ** While an RBU handle is open, a SHARED lock may be held on the target ** database file. This means it is possible for other clients to read the ** database, but not to write it. ** ** If an RBU update is started and then suspended before it is completed, ** then an external client writes to the database, then attempting to resume ** the suspended RBU update is also an error (SQLITE_BUSY). */ #ifndef _SQLITE3RBU_H #define _SQLITE3RBU_H /* #include "sqlite3.h" ** Required for error code definitions ** */ #if 0 extern "C" { #endif typedef struct sqlite3rbu sqlite3rbu; /* ** Open an RBU handle. ** ** Argument zTarget is the path to the target database. Argument zRbu is ** the path to the RBU database. Each call to this function must be matched ** by a call to sqlite3rbu_close(). When opening the databases, RBU passes ** the SQLITE_CONFIG_URI flag to sqlite3_open_v2(). So if either zTarget ** or zRbu begin with "file:", it will be interpreted as an SQLite ** database URI, not a regular file name. ** ** If the zState argument is passed a NULL value, the RBU extension stores ** the current state of the update (how many rows have been updated, which ** indexes are yet to be updated etc.) within the RBU database itself. This ** can be convenient, as it means that the RBU application does not need to ** organize removing a separate state file after the update is concluded. ** Or, if zState is non-NULL, it must be a path to a database file in which ** the RBU extension can store the state of the update. ** ** When resuming an RBU update, the zState argument must be passed the same ** value as when the RBU update was started. ** ** Once the RBU update is finished, the RBU extension does not ** automatically remove any zState database file, even if it created it. ** ** By default, RBU uses the default VFS to access the files on disk. To ** use a VFS other than the default, an SQLite "file:" URI containing a ** "vfs=..." option may be passed as the zTarget option. ** ** IMPORTANT NOTE FOR ZIPVFS USERS: The RBU extension works with all of ** SQLite's built-in VFSs, including the multiplexor VFS. However it does ** not work out of the box with zipvfs. Refer to the comment describing ** the zipvfs_create_vfs() API below for details on using RBU with zipvfs. */ SQLITE_API sqlite3rbu *sqlite3rbu_open( const char *zTarget, const char *zRbu, const char *zState ); /* ** Open an RBU handle to perform an RBU vacuum on database file zTarget. ** An RBU vacuum is similar to SQLite's built-in VACUUM command, except ** that it can be suspended and resumed like an RBU update. ** ** The second argument to this function identifies a database in which ** to store the state of the RBU vacuum operation if it is suspended. The ** first time sqlite3rbu_vacuum() is called, to start an RBU vacuum ** operation, the state database should either not exist or be empty ** (contain no tables). If an RBU vacuum is suspended by calling ** sqlite3rbu_close() on the RBU handle before sqlite3rbu_step() has ** returned SQLITE_DONE, the vacuum state is stored in the state database. ** The vacuum can be resumed by calling this function to open a new RBU ** handle specifying the same target and state databases. ** ** If the second argument passed to this function is NULL, then the ** name of the state database is "-vacuum", where ** is the name of the target database file. In this case, on UNIX, if the ** state database is not already present in the file-system, it is created ** with the same permissions as the target db is made. ** ** With an RBU vacuum, it is an SQLITE_MISUSE error if the name of the ** state database ends with "-vactmp". This name is reserved for internal ** use. ** ** This function does not delete the state database after an RBU vacuum ** is completed, even if it created it. However, if the call to ** sqlite3rbu_close() returns any value other than SQLITE_OK, the contents ** of the state tables within the state database are zeroed. This way, ** the next call to sqlite3rbu_vacuum() opens a handle that starts a ** new RBU vacuum operation. ** ** As with sqlite3rbu_open(), Zipvfs users should rever to the comment ** describing the sqlite3rbu_create_vfs() API function below for ** a description of the complications associated with using RBU with ** zipvfs databases. */ SQLITE_API sqlite3rbu *sqlite3rbu_vacuum( const char *zTarget, const char *zState ); /* ** Configure a limit for the amount of temp space that may be used by ** the RBU handle passed as the first argument. The new limit is specified ** in bytes by the second parameter. If it is positive, the limit is updated. ** If the second parameter to this function is passed zero, then the limit ** is removed entirely. If the second parameter is negative, the limit is ** not modified (this is useful for querying the current limit). ** ** In all cases the returned value is the current limit in bytes (zero ** indicates unlimited). ** ** If the temp space limit is exceeded during operation, an SQLITE_FULL ** error is returned. */ SQLITE_API sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu*, sqlite3_int64); /* ** Return the current amount of temp file space, in bytes, currently used by ** the RBU handle passed as the only argument. */ SQLITE_API sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu*); /* ** Internally, each RBU connection uses a separate SQLite database ** connection to access the target and rbu update databases. This ** API allows the application direct access to these database handles. ** ** The first argument passed to this function must be a valid, open, RBU ** handle. The second argument should be passed zero to access the target ** database handle, or non-zero to access the rbu update database handle. ** Accessing the underlying database handles may be useful in the ** following scenarios: ** ** * If any target tables are virtual tables, it may be necessary to ** call sqlite3_create_module() on the target database handle to ** register the required virtual table implementations. ** ** * If the data_xxx tables in the RBU source database are virtual ** tables, the application may need to call sqlite3_create_module() on ** the rbu update db handle to any required virtual table ** implementations. ** ** * If the application uses the "rbu_delta()" feature described above, ** it must use sqlite3_create_function() or similar to register the ** rbu_delta() implementation with the target database handle. ** ** If an error has occurred, either while opening or stepping the RBU object, ** this function may return NULL. The error code and message may be collected ** when sqlite3rbu_close() is called. ** ** Database handles returned by this function remain valid until the next ** call to any sqlite3rbu_xxx() function other than sqlite3rbu_db(). */ SQLITE_API sqlite3 *sqlite3rbu_db(sqlite3rbu*, int bRbu); /* ** Do some work towards applying the RBU update to the target db. ** ** Return SQLITE_DONE if the update has been completely applied, or ** SQLITE_OK if no error occurs but there remains work to do to apply ** the RBU update. If an error does occur, some other error code is ** returned. ** ** Once a call to sqlite3rbu_step() has returned a value other than ** SQLITE_OK, all subsequent calls on the same RBU handle are no-ops ** that immediately return the same value. */ SQLITE_API int sqlite3rbu_step(sqlite3rbu *pRbu); /* ** Force RBU to save its state to disk. ** ** If a power failure or application crash occurs during an update, following ** system recovery RBU may resume the update from the point at which the state ** was last saved. In other words, from the most recent successful call to ** sqlite3rbu_close() or this function. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_API int sqlite3rbu_savestate(sqlite3rbu *pRbu); /* ** Close an RBU handle. ** ** If the RBU update has been completely applied, mark the RBU database ** as fully applied. Otherwise, assuming no error has occurred, save the ** current state of the RBU update appliation to the RBU database. ** ** If an error has already occurred as part of an sqlite3rbu_step() ** or sqlite3rbu_open() call, or if one occurs within this function, an ** SQLite error code is returned. Additionally, if pzErrmsg is not NULL, ** *pzErrmsg may be set to point to a buffer containing a utf-8 formatted ** English language error message. It is the responsibility of the caller to ** eventually free any such buffer using sqlite3_free(). ** ** Otherwise, if no error occurs, this function returns SQLITE_OK if the ** update has been partially applied, or SQLITE_DONE if it has been ** completely applied. */ SQLITE_API int sqlite3rbu_close(sqlite3rbu *pRbu, char **pzErrmsg); /* ** Return the total number of key-value operations (inserts, deletes or ** updates) that have been performed on the target database since the ** current RBU update was started. */ SQLITE_API sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu); /* ** Obtain permyriadage (permyriadage is to 10000 as percentage is to 100) ** progress indications for the two stages of an RBU update. This API may ** be useful for driving GUI progress indicators and similar. ** ** An RBU update is divided into two stages: ** ** * Stage 1, in which changes are accumulated in an oal/wal file, and ** * Stage 2, in which the contents of the wal file are copied into the ** main database. ** ** The update is visible to non-RBU clients during stage 2. During stage 1 ** non-RBU reader clients may see the original database. ** ** If this API is called during stage 2 of the update, output variable ** (*pnOne) is set to 10000 to indicate that stage 1 has finished and (*pnTwo) ** to a value between 0 and 10000 to indicate the permyriadage progress of ** stage 2. A value of 5000 indicates that stage 2 is half finished, ** 9000 indicates that it is 90% finished, and so on. ** ** If this API is called during stage 1 of the update, output variable ** (*pnTwo) is set to 0 to indicate that stage 2 has not yet started. The ** value to which (*pnOne) is set depends on whether or not the RBU ** database contains an "rbu_count" table. The rbu_count table, if it ** exists, must contain the same columns as the following: ** ** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID; ** ** There must be one row in the table for each source (data_xxx) table within ** the RBU database. The 'tbl' column should contain the name of the source ** table. The 'cnt' column should contain the number of rows within the ** source table. ** ** If the rbu_count table is present and populated correctly and this ** API is called during stage 1, the *pnOne output variable is set to the ** permyriadage progress of the same stage. If the rbu_count table does ** not exist, then (*pnOne) is set to -1 during stage 1. If the rbu_count ** table exists but is not correctly populated, the value of the *pnOne ** output variable during stage 1 is undefined. */ SQLITE_API void sqlite3rbu_bp_progress(sqlite3rbu *pRbu, int *pnOne, int*pnTwo); /* ** Obtain an indication as to the current stage of an RBU update or vacuum. ** This function always returns one of the SQLITE_RBU_STATE_XXX constants ** defined in this file. Return values should be interpreted as follows: ** ** SQLITE_RBU_STATE_OAL: ** RBU is currently building a *-oal file. The next call to sqlite3rbu_step() ** may either add further data to the *-oal file, or compute data that will ** be added by a subsequent call. ** ** SQLITE_RBU_STATE_MOVE: ** RBU has finished building the *-oal file. The next call to sqlite3rbu_step() ** will move the *-oal file to the equivalent *-wal path. If the current ** operation is an RBU update, then the updated version of the database ** file will become visible to ordinary SQLite clients following the next ** call to sqlite3rbu_step(). ** ** SQLITE_RBU_STATE_CHECKPOINT: ** RBU is currently performing an incremental checkpoint. The next call to ** sqlite3rbu_step() will copy a page of data from the *-wal file into ** the target database file. ** ** SQLITE_RBU_STATE_DONE: ** The RBU operation has finished. Any subsequent calls to sqlite3rbu_step() ** will immediately return SQLITE_DONE. ** ** SQLITE_RBU_STATE_ERROR: ** An error has occurred. Any subsequent calls to sqlite3rbu_step() will ** immediately return the SQLite error code associated with the error. */ #define SQLITE_RBU_STATE_OAL 1 #define SQLITE_RBU_STATE_MOVE 2 #define SQLITE_RBU_STATE_CHECKPOINT 3 #define SQLITE_RBU_STATE_DONE 4 #define SQLITE_RBU_STATE_ERROR 5 SQLITE_API int sqlite3rbu_state(sqlite3rbu *pRbu); /* ** As part of applying an RBU update or performing an RBU vacuum operation, ** the system must at one point move the *-oal file to the equivalent *-wal ** path. Normally, it does this by invoking POSIX function rename(2) directly. ** Except on WINCE platforms, where it uses win32 API MoveFileW(). This ** function may be used to register a callback that the RBU module will invoke ** instead of one of these APIs. ** ** If a callback is registered with an RBU handle, it invokes it instead ** of rename(2) when it needs to move a file within the file-system. The ** first argument passed to the xRename() callback is a copy of the second ** argument (pArg) passed to this function. The second is the full path ** to the file to move and the third the full path to which it should be ** moved. The callback function should return SQLITE_OK to indicate ** success. If an error occurs, it should return an SQLite error code. ** In this case the RBU operation will be abandoned and the error returned ** to the RBU user. ** ** Passing a NULL pointer in place of the xRename argument to this function ** restores the default behaviour. */ SQLITE_API void sqlite3rbu_rename_handler( sqlite3rbu *pRbu, void *pArg, int (*xRename)(void *pArg, const char *zOld, const char *zNew) ); /* ** Create an RBU VFS named zName that accesses the underlying file-system ** via existing VFS zParent. Or, if the zParent parameter is passed NULL, ** then the new RBU VFS uses the default system VFS to access the file-system. ** The new object is registered as a non-default VFS with SQLite before ** returning. ** ** Part of the RBU implementation uses a custom VFS object. Usually, this ** object is created and deleted automatically by RBU. ** ** The exception is for applications that also use zipvfs. In this case, ** the custom VFS must be explicitly created by the user before the RBU ** handle is opened. The RBU VFS should be installed so that the zipvfs ** VFS uses the RBU VFS, which in turn uses any other VFS layers in use ** (for example multiplexor) to access the file-system. For example, ** to assemble an RBU enabled VFS stack that uses both zipvfs and ** multiplexor (error checking omitted): ** ** // Create a VFS named "multiplex" (not the default). ** sqlite3_multiplex_initialize(0, 0); ** ** // Create an rbu VFS named "rbu" that uses multiplexor. If the ** // second argument were replaced with NULL, the "rbu" VFS would ** // access the file-system via the system default VFS, bypassing the ** // multiplexor. ** sqlite3rbu_create_vfs("rbu", "multiplex"); ** ** // Create a zipvfs VFS named "zipvfs" that uses rbu. ** zipvfs_create_vfs_v3("zipvfs", "rbu", 0, xCompressorAlgorithmDetector); ** ** // Make zipvfs the default VFS. ** sqlite3_vfs_register(sqlite3_vfs_find("zipvfs"), 1); ** ** Because the default VFS created above includes a RBU functionality, it ** may be used by RBU clients. Attempting to use RBU with a zipvfs VFS stack ** that does not include the RBU layer results in an error. ** ** The overhead of adding the "rbu" VFS to the system is negligible for ** non-RBU users. There is no harm in an application accessing the ** file-system via "rbu" all the time, even if it only uses RBU functionality ** occasionally. */ SQLITE_API int sqlite3rbu_create_vfs(const char *zName, const char *zParent); /* ** Deregister and destroy an RBU vfs created by an earlier call to ** sqlite3rbu_create_vfs(). ** ** VFS objects are not reference counted. If a VFS object is destroyed ** before all database handles that use it have been closed, the results ** are undefined. */ SQLITE_API void sqlite3rbu_destroy_vfs(const char *zName); #if 0 } /* end of the 'extern "C"' block */ #endif #endif /* _SQLITE3RBU_H */ /************** End of sqlite3rbu.h ******************************************/ /************** Continuing where we left off in sqlite3rbu.c *****************/ #if defined(_WIN32_WCE) /* #include "windows.h" */ #endif /* Maximum number of prepared UPDATE statements held by this module */ #define SQLITE_RBU_UPDATE_CACHESIZE 16 /* Delta checksums disabled by default. Compile with -DRBU_ENABLE_DELTA_CKSUM ** to enable checksum verification. */ #ifndef RBU_ENABLE_DELTA_CKSUM # define RBU_ENABLE_DELTA_CKSUM 0 #endif /* ** Swap two objects of type TYPE. */ #if !defined(SQLITE_AMALGAMATION) # define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} #endif /* ** Name of the URI option that causes RBU to take an exclusive lock as ** part of the incremental checkpoint operation. */ #define RBU_EXCLUSIVE_CHECKPOINT "rbu_exclusive_checkpoint" /* ** The rbu_state table is used to save the state of a partially applied ** update so that it can be resumed later. The table consists of integer ** keys mapped to values as follows: ** ** RBU_STATE_STAGE: ** May be set to integer values 1, 2, 4 or 5. As follows: ** 1: the *-rbu file is currently under construction. ** 2: the *-rbu file has been constructed, but not yet moved ** to the *-wal path. ** 4: the checkpoint is underway. ** 5: the rbu update has been checkpointed. ** ** RBU_STATE_TBL: ** Only valid if STAGE==1. The target database name of the table ** currently being written. ** ** RBU_STATE_IDX: ** Only valid if STAGE==1. The target database name of the index ** currently being written, or NULL if the main table is currently being ** updated. ** ** RBU_STATE_ROW: ** Only valid if STAGE==1. Number of rows already processed for the current ** table/index. ** ** RBU_STATE_PROGRESS: ** Trbul number of sqlite3rbu_step() calls made so far as part of this ** rbu update. ** ** RBU_STATE_CKPT: ** Valid if STAGE==4. The 64-bit checksum associated with the wal-index ** header created by recovering the *-wal file. This is used to detect ** cases when another client appends frames to the *-wal file in the ** middle of an incremental checkpoint (an incremental checkpoint cannot ** be continued if this happens). ** ** RBU_STATE_COOKIE: ** Valid if STAGE==1. The current change-counter cookie value in the ** target db file. ** ** RBU_STATE_OALSZ: ** Valid if STAGE==1. The size in bytes of the *-oal file. ** ** RBU_STATE_DATATBL: ** Only valid if STAGE==1. The RBU database name of the table ** currently being read. */ #define RBU_STATE_STAGE 1 #define RBU_STATE_TBL 2 #define RBU_STATE_IDX 3 #define RBU_STATE_ROW 4 #define RBU_STATE_PROGRESS 5 #define RBU_STATE_CKPT 6 #define RBU_STATE_COOKIE 7 #define RBU_STATE_OALSZ 8 #define RBU_STATE_PHASEONESTEP 9 #define RBU_STATE_DATATBL 10 #define RBU_STAGE_OAL 1 #define RBU_STAGE_MOVE 2 #define RBU_STAGE_CAPTURE 3 #define RBU_STAGE_CKPT 4 #define RBU_STAGE_DONE 5 #define RBU_CREATE_STATE \ "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)" typedef struct RbuFrame RbuFrame; typedef struct RbuObjIter RbuObjIter; typedef struct RbuState RbuState; typedef struct RbuSpan RbuSpan; typedef struct rbu_vfs rbu_vfs; typedef struct rbu_file rbu_file; typedef struct RbuUpdateStmt RbuUpdateStmt; #if !defined(SQLITE_AMALGAMATION) typedef unsigned int u32; typedef unsigned short u16; typedef unsigned char u8; typedef sqlite3_int64 i64; #endif /* ** These values must match the values defined in wal.c for the equivalent ** locks. These are not magic numbers as they are part of the SQLite file ** format. */ #define WAL_LOCK_WRITE 0 #define WAL_LOCK_CKPT 1 #define WAL_LOCK_READ0 3 #define SQLITE_FCNTL_RBUCNT 5149216 /* ** A structure to store values read from the rbu_state table in memory. */ struct RbuState { int eStage; char *zTbl; char *zDataTbl; char *zIdx; i64 iWalCksum; int nRow; i64 nProgress; u32 iCookie; i64 iOalSz; i64 nPhaseOneStep; }; struct RbuUpdateStmt { char *zMask; /* Copy of update mask used with pUpdate */ sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */ RbuUpdateStmt *pNext; }; struct RbuSpan { const char *zSpan; int nSpan; }; /* ** An iterator of this type is used to iterate through all objects in ** the target database that require updating. For each such table, the ** iterator visits, in order: ** ** * the table itself, ** * each index of the table (zero or more points to visit), and ** * a special "cleanup table" state. ** ** abIndexed: ** If the table has no indexes on it, abIndexed is set to NULL. Otherwise, ** it points to an array of flags nTblCol elements in size. The flag is ** set for each column that is either a part of the PK or a part of an ** index. Or clear otherwise. ** ** If there are one or more partial indexes on the table, all fields of ** this array set set to 1. This is because in that case, the module has ** no way to tell which fields will be required to add and remove entries ** from the partial indexes. ** */ struct RbuObjIter { sqlite3_stmt *pTblIter; /* Iterate through tables */ sqlite3_stmt *pIdxIter; /* Index iterator */ int nTblCol; /* Size of azTblCol[] array */ char **azTblCol; /* Array of unquoted target column names */ char **azTblType; /* Array of target column types */ int *aiSrcOrder; /* src table col -> target table col */ u8 *abTblPk; /* Array of flags, set on target PK columns */ u8 *abNotNull; /* Array of flags, set on NOT NULL columns */ u8 *abIndexed; /* Array of flags, set on indexed & PK cols */ int eType; /* Table type - an RBU_PK_XXX value */ /* Output variables. zTbl==0 implies EOF. */ int bCleanup; /* True in "cleanup" state */ const char *zTbl; /* Name of target db table */ const char *zDataTbl; /* Name of rbu db table (or null) */ const char *zIdx; /* Name of target db index (or null) */ int iTnum; /* Root page of current object */ int iPkTnum; /* If eType==EXTERNAL, root of PK index */ int bUnique; /* Current index is unique */ int nIndex; /* Number of aux. indexes on table zTbl */ /* Statements created by rbuObjIterPrepareAll() */ int nCol; /* Number of columns in current object */ sqlite3_stmt *pSelect; /* Source data */ sqlite3_stmt *pInsert; /* Statement for INSERT operations */ sqlite3_stmt *pDelete; /* Statement for DELETE ops */ sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */ int nIdxCol; RbuSpan *aIdxCol; char *zIdxSql; /* Last UPDATE used (for PK b-tree updates only), or NULL. */ RbuUpdateStmt *pRbuUpdate; }; /* ** Values for RbuObjIter.eType ** ** 0: Table does not exist (error) ** 1: Table has an implicit rowid. ** 2: Table has an explicit IPK column. ** 3: Table has an external PK index. ** 4: Table is WITHOUT ROWID. ** 5: Table is a virtual table. */ #define RBU_PK_NOTABLE 0 #define RBU_PK_NONE 1 #define RBU_PK_IPK 2 #define RBU_PK_EXTERNAL 3 #define RBU_PK_WITHOUT_ROWID 4 #define RBU_PK_VTAB 5 /* ** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs ** one of the following operations. */ #define RBU_INSERT 1 /* Insert on a main table b-tree */ #define RBU_DELETE 2 /* Delete a row from a main table b-tree */ #define RBU_REPLACE 3 /* Delete and then insert a row */ #define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */ #define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */ #define RBU_UPDATE 6 /* Update a row in a main table b-tree */ /* ** A single step of an incremental checkpoint - frame iWalFrame of the wal ** file should be copied to page iDbPage of the database file. */ struct RbuFrame { u32 iDbPage; u32 iWalFrame; }; /* ** RBU handle. ** ** nPhaseOneStep: ** If the RBU database contains an rbu_count table, this value is set to ** a running estimate of the number of b-tree operations required to ** finish populating the *-oal file. This allows the sqlite3_bp_progress() ** API to calculate the permyriadage progress of populating the *-oal file ** using the formula: ** ** permyriadage = (10000 * nProgress) / nPhaseOneStep ** ** nPhaseOneStep is initialized to the sum of: ** ** nRow * (nIndex + 1) ** ** for all source tables in the RBU database, where nRow is the number ** of rows in the source table and nIndex the number of indexes on the ** corresponding target database table. ** ** This estimate is accurate if the RBU update consists entirely of ** INSERT operations. However, it is inaccurate if: ** ** * the RBU update contains any UPDATE operations. If the PK specified ** for an UPDATE operation does not exist in the target table, then ** no b-tree operations are required on index b-trees. Or if the ** specified PK does exist, then (nIndex*2) such operations are ** required (one delete and one insert on each index b-tree). ** ** * the RBU update contains any DELETE operations for which the specified ** PK does not exist. In this case no operations are required on index ** b-trees. ** ** * the RBU update contains REPLACE operations. These are similar to ** UPDATE operations. ** ** nPhaseOneStep is updated to account for the conditions above during the ** first pass of each source table. The updated nPhaseOneStep value is ** stored in the rbu_state table if the RBU update is suspended. */ struct sqlite3rbu { int eStage; /* Value of RBU_STATE_STAGE field */ sqlite3 *dbMain; /* target database handle */ sqlite3 *dbRbu; /* rbu database handle */ char *zTarget; /* Path to target db */ char *zRbu; /* Path to rbu db */ char *zState; /* Path to state db (or NULL if zRbu) */ char zStateDb[5]; /* Db name for state ("stat" or "main") */ int rc; /* Value returned by last rbu_step() call */ char *zErrmsg; /* Error message if rc!=SQLITE_OK */ int nStep; /* Rows processed for current object */ int nProgress; /* Rows processed for all objects */ RbuObjIter objiter; /* Iterator for skipping through tbl/idx */ const char *zVfsName; /* Name of automatically created rbu vfs */ rbu_file *pTargetFd; /* File handle open on target db */ int nPagePerSector; /* Pages per sector for pTargetFd */ i64 iOalSz; i64 nPhaseOneStep; void *pRenameArg; int (*xRename)(void*, const char*, const char*); /* The following state variables are used as part of the incremental ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding ** function rbuSetupCheckpoint() for details. */ u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */ u32 mLock; int nFrame; /* Entries in aFrame[] array */ int nFrameAlloc; /* Allocated size of aFrame[] array */ RbuFrame *aFrame; int pgsz; u8 *aBuf; i64 iWalCksum; i64 szTemp; /* Current size of all temp files in use */ i64 szTempLimit; /* Total size limit for temp files */ /* Used in RBU vacuum mode only */ int nRbu; /* Number of RBU VFS in the stack */ rbu_file *pRbuFd; /* Fd for main db of dbRbu */ }; /* ** An rbu VFS is implemented using an instance of this structure. ** ** Variable pRbu is only non-NULL for automatically created RBU VFS objects. ** It is NULL for RBU VFS objects created explicitly using ** sqlite3rbu_create_vfs(). It is used to track the total amount of temp ** space used by the RBU handle. */ struct rbu_vfs { sqlite3_vfs base; /* rbu VFS shim methods */ sqlite3_vfs *pRealVfs; /* Underlying VFS */ sqlite3_mutex *mutex; /* Mutex to protect pMain */ sqlite3rbu *pRbu; /* Owner RBU object */ rbu_file *pMain; /* List of main db files */ rbu_file *pMainRbu; /* List of main db files with pRbu!=0 */ }; /* ** Each file opened by an rbu VFS is represented by an instance of ** the following structure. ** ** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable ** "sz" is set to the current size of the database file. */ struct rbu_file { sqlite3_file base; /* sqlite3_file methods */ sqlite3_file *pReal; /* Underlying file handle */ rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */ sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */ i64 sz; /* Size of file in bytes (temp only) */ int openFlags; /* Flags this file was opened with */ u32 iCookie; /* Cookie value for main db files */ u8 iWriteVer; /* "write-version" value for main db files */ u8 bNolock; /* True to fail EXCLUSIVE locks */ int nShm; /* Number of entries in apShm[] array */ char **apShm; /* Array of mmap'd *-shm regions */ char *zDel; /* Delete this when closing file */ const char *zWal; /* Wal filename for this main db file */ rbu_file *pWalFd; /* Wal file descriptor for this main db */ rbu_file *pMainNext; /* Next MAIN_DB file */ rbu_file *pMainRbuNext; /* Next MAIN_DB file with pRbu!=0 */ }; /* ** True for an RBU vacuum handle, or false otherwise. */ #define rbuIsVacuum(p) ((p)->zTarget==0) /************************************************************************* ** The following three functions, found below: ** ** rbuDeltaGetInt() ** rbuDeltaChecksum() ** rbuDeltaApply() ** ** are lifted from the fossil source code (http://fossil-scm.org). They ** are used to implement the scalar SQL function rbu_fossil_delta(). */ /* ** Read bytes from *pz and convert them into a positive integer. When ** finished, leave *pz pointing to the first character past the end of ** the integer. The *pLen parameter holds the length of the string ** in *pz and is decremented once for each character in the integer. */ static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){ static const signed char zValue[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36, -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1, }; unsigned int v = 0; int c; unsigned char *z = (unsigned char*)*pz; unsigned char *zStart = z; while( (c = zValue[0x7f&*(z++)])>=0 ){ v = (v<<6) + c; } z--; *pLen -= z - zStart; *pz = (char*)z; return v; } #if RBU_ENABLE_DELTA_CKSUM /* ** Compute a 32-bit checksum on the N-byte buffer. Return the result. */ static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){ const unsigned char *z = (const unsigned char *)zIn; unsigned sum0 = 0; unsigned sum1 = 0; unsigned sum2 = 0; unsigned sum3 = 0; while(N >= 16){ sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]); sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]); sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]); sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]); z += 16; N -= 16; } while(N >= 4){ sum0 += z[0]; sum1 += z[1]; sum2 += z[2]; sum3 += z[3]; z += 4; N -= 4; } sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24); switch(N){ case 3: sum3 += (z[2] << 8); case 2: sum3 += (z[1] << 16); case 1: sum3 += (z[0] << 24); default: ; } return sum3; } #endif /* ** Apply a delta. ** ** The output buffer should be big enough to hold the whole output ** file and a NUL terminator at the end. The delta_output_size() ** routine will determine this size for you. ** ** The delta string should be null-terminated. But the delta string ** may contain embedded NUL characters (if the input and output are ** binary files) so we also have to pass in the length of the delta in ** the lenDelta parameter. ** ** This function returns the size of the output file in bytes (excluding ** the final NUL terminator character). Except, if the delta string is ** malformed or intended for use with a source file other than zSrc, ** then this routine returns -1. ** ** Refer to the delta_create() documentation above for a description ** of the delta file format. */ static int rbuDeltaApply( const char *zSrc, /* The source or pattern file */ int lenSrc, /* Length of the source file */ const char *zDelta, /* Delta to apply to the pattern */ int lenDelta, /* Length of the delta */ char *zOut /* Write the output into this preallocated buffer */ ){ unsigned int limit; unsigned int total = 0; #if RBU_ENABLE_DELTA_CKSUM char *zOrigOut = zOut; #endif limit = rbuDeltaGetInt(&zDelta, &lenDelta); if( *zDelta!='\n' ){ /* ERROR: size integer not terminated by "\n" */ return -1; } zDelta++; lenDelta--; while( *zDelta && lenDelta>0 ){ unsigned int cnt, ofst; cnt = rbuDeltaGetInt(&zDelta, &lenDelta); switch( zDelta[0] ){ case '@': { zDelta++; lenDelta--; ofst = rbuDeltaGetInt(&zDelta, &lenDelta); if( lenDelta>0 && zDelta[0]!=',' ){ /* ERROR: copy command not terminated by ',' */ return -1; } zDelta++; lenDelta--; total += cnt; if( total>limit ){ /* ERROR: copy exceeds output file size */ return -1; } if( (int)(ofst+cnt) > lenSrc ){ /* ERROR: copy extends past end of input */ return -1; } memcpy(zOut, &zSrc[ofst], cnt); zOut += cnt; break; } case ':': { zDelta++; lenDelta--; total += cnt; if( total>limit ){ /* ERROR: insert command gives an output larger than predicted */ return -1; } if( (int)cnt>lenDelta ){ /* ERROR: insert count exceeds size of delta */ return -1; } memcpy(zOut, zDelta, cnt); zOut += cnt; zDelta += cnt; lenDelta -= cnt; break; } case ';': { zDelta++; lenDelta--; zOut[0] = 0; #if RBU_ENABLE_DELTA_CKSUM if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){ /* ERROR: bad checksum */ return -1; } #endif if( total!=limit ){ /* ERROR: generated size does not match predicted size */ return -1; } return total; } default: { /* ERROR: unknown delta operator */ return -1; } } } /* ERROR: unterminated delta */ return -1; } static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){ int size; size = rbuDeltaGetInt(&zDelta, &lenDelta); if( *zDelta!='\n' ){ /* ERROR: size integer not terminated by "\n" */ return -1; } return size; } /* ** End of code taken from fossil. *************************************************************************/ /* ** Implementation of SQL scalar function rbu_fossil_delta(). ** ** This function applies a fossil delta patch to a blob. Exactly two ** arguments must be passed to this function. The first is the blob to ** patch and the second the patch to apply. If no error occurs, this ** function returns the patched blob. */ static void rbuFossilDeltaFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *aDelta; int nDelta; const char *aOrig; int nOrig; int nOut; int nOut2; char *aOut; assert( argc==2 ); nOrig = sqlite3_value_bytes(argv[0]); aOrig = (const char*)sqlite3_value_blob(argv[0]); nDelta = sqlite3_value_bytes(argv[1]); aDelta = (const char*)sqlite3_value_blob(argv[1]); /* Figure out the size of the output */ nOut = rbuDeltaOutputSize(aDelta, nDelta); if( nOut<0 ){ sqlite3_result_error(context, "corrupt fossil delta", -1); return; } aOut = sqlite3_malloc(nOut+1); if( aOut==0 ){ sqlite3_result_error_nomem(context); }else{ nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut); if( nOut2!=nOut ){ sqlite3_free(aOut); sqlite3_result_error(context, "corrupt fossil delta", -1); }else{ sqlite3_result_blob(context, aOut, nOut, sqlite3_free); } } } /* ** Prepare the SQL statement in buffer zSql against database handle db. ** If successful, set *ppStmt to point to the new statement and return ** SQLITE_OK. ** ** Otherwise, if an error does occur, set *ppStmt to NULL and return ** an SQLite error code. Additionally, set output variable *pzErrmsg to ** point to a buffer containing an error message. It is the responsibility ** of the caller to (eventually) free this buffer using sqlite3_free(). */ static int prepareAndCollectError( sqlite3 *db, sqlite3_stmt **ppStmt, char **pzErrmsg, const char *zSql ){ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0); if( rc!=SQLITE_OK ){ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); *ppStmt = 0; } return rc; } /* ** Reset the SQL statement passed as the first argument. Return a copy ** of the value returned by sqlite3_reset(). ** ** If an error has occurred, then set *pzErrmsg to point to a buffer ** containing an error message. It is the responsibility of the caller ** to eventually free this buffer using sqlite3_free(). */ static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){ int rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt))); } return rc; } /* ** Unless it is NULL, argument zSql points to a buffer allocated using ** sqlite3_malloc containing an SQL statement. This function prepares the SQL ** statement against database db and frees the buffer. If statement ** compilation is successful, *ppStmt is set to point to the new statement ** handle and SQLITE_OK is returned. ** ** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code ** returned. In this case, *pzErrmsg may also be set to point to an error ** message. It is the responsibility of the caller to free this error message ** buffer using sqlite3_free(). ** ** If argument zSql is NULL, this function assumes that an OOM has occurred. ** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL. */ static int prepareFreeAndCollectError( sqlite3 *db, sqlite3_stmt **ppStmt, char **pzErrmsg, char *zSql ){ int rc; assert( *pzErrmsg==0 ); if( zSql==0 ){ rc = SQLITE_NOMEM; *ppStmt = 0; }else{ rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql); sqlite3_free(zSql); } return rc; } /* ** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated ** by an earlier call to rbuObjIterCacheTableInfo(). */ static void rbuObjIterFreeCols(RbuObjIter *pIter){ int i; for(i=0; inTblCol; i++){ sqlite3_free(pIter->azTblCol[i]); sqlite3_free(pIter->azTblType[i]); } sqlite3_free(pIter->azTblCol); pIter->azTblCol = 0; pIter->azTblType = 0; pIter->aiSrcOrder = 0; pIter->abTblPk = 0; pIter->abNotNull = 0; pIter->nTblCol = 0; pIter->eType = 0; /* Invalid value */ } /* ** Finalize all statements and free all allocations that are specific to ** the current object (table/index pair). */ static void rbuObjIterClearStatements(RbuObjIter *pIter){ RbuUpdateStmt *pUp; sqlite3_finalize(pIter->pSelect); sqlite3_finalize(pIter->pInsert); sqlite3_finalize(pIter->pDelete); sqlite3_finalize(pIter->pTmpInsert); pUp = pIter->pRbuUpdate; while( pUp ){ RbuUpdateStmt *pTmp = pUp->pNext; sqlite3_finalize(pUp->pUpdate); sqlite3_free(pUp); pUp = pTmp; } sqlite3_free(pIter->aIdxCol); sqlite3_free(pIter->zIdxSql); pIter->pSelect = 0; pIter->pInsert = 0; pIter->pDelete = 0; pIter->pRbuUpdate = 0; pIter->pTmpInsert = 0; pIter->nCol = 0; pIter->nIdxCol = 0; pIter->aIdxCol = 0; pIter->zIdxSql = 0; } /* ** Clean up any resources allocated as part of the iterator object passed ** as the only argument. */ static void rbuObjIterFinalize(RbuObjIter *pIter){ rbuObjIterClearStatements(pIter); sqlite3_finalize(pIter->pTblIter); sqlite3_finalize(pIter->pIdxIter); rbuObjIterFreeCols(pIter); memset(pIter, 0, sizeof(RbuObjIter)); } /* ** Advance the iterator to the next position. ** ** If no error occurs, SQLITE_OK is returned and the iterator is left ** pointing to the next entry. Otherwise, an error code and message is ** left in the RBU handle passed as the first argument. A copy of the ** error code is returned. */ static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){ int rc = p->rc; if( rc==SQLITE_OK ){ /* Free any SQLite statements used while processing the previous object */ rbuObjIterClearStatements(pIter); if( pIter->zIdx==0 ){ rc = sqlite3_exec(p->dbMain, "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;" "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;" "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;" "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;" , 0, 0, &p->zErrmsg ); } if( rc==SQLITE_OK ){ if( pIter->bCleanup ){ rbuObjIterFreeCols(pIter); pIter->bCleanup = 0; rc = sqlite3_step(pIter->pTblIter); if( rc!=SQLITE_ROW ){ rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg); pIter->zTbl = 0; }else{ pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0); pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1); rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM; } }else{ if( pIter->zIdx==0 ){ sqlite3_stmt *pIdx = pIter->pIdxIter; rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC); } if( rc==SQLITE_OK ){ rc = sqlite3_step(pIter->pIdxIter); if( rc!=SQLITE_ROW ){ rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg); pIter->bCleanup = 1; pIter->zIdx = 0; }else{ pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0); pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1); pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2); rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM; } } } } } if( rc!=SQLITE_OK ){ rbuObjIterFinalize(pIter); p->rc = rc; } return rc; } /* ** The implementation of the rbu_target_name() SQL function. This function ** accepts one or two arguments. The first argument is the name of a table - ** the name of a table in the RBU database. The second, if it is present, is 1 ** for a view or 0 for a table. ** ** For a non-vacuum RBU handle, if the table name matches the pattern: ** ** data[0-9]_ ** ** where is any sequence of 1 or more characters, is returned. ** Otherwise, if the only argument does not match the above pattern, an SQL ** NULL is returned. ** ** "data_t1" -> "t1" ** "data0123_t2" -> "t2" ** "dataAB_t3" -> NULL ** ** For an rbu vacuum handle, a copy of the first argument is returned if ** the second argument is either missing or 0 (not a view). */ static void rbuTargetNameFunc( sqlite3_context *pCtx, int argc, sqlite3_value **argv ){ sqlite3rbu *p = sqlite3_user_data(pCtx); const char *zIn; assert( argc==1 || argc==2 ); zIn = (const char*)sqlite3_value_text(argv[0]); if( zIn ){ if( rbuIsVacuum(p) ){ assert( argc==2 || argc==1 ); if( argc==1 || 0==sqlite3_value_int(argv[1]) ){ sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC); } }else{ if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){ int i; for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++); if( zIn[i]=='_' && zIn[i+1] ){ sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC); } } } } } /* ** Initialize the iterator structure passed as the second argument. ** ** If no error occurs, SQLITE_OK is returned and the iterator is left ** pointing to the first entry. Otherwise, an error code and message is ** left in the RBU handle passed as the first argument. A copy of the ** error code is returned. */ static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){ int rc; memset(pIter, 0, sizeof(RbuObjIter)); rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg, sqlite3_mprintf( "SELECT rbu_target_name(name, type='view') AS target, name " "FROM sqlite_schema " "WHERE type IN ('table', 'view') AND target IS NOT NULL " " %s " "ORDER BY name" , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : "")); if( rc==SQLITE_OK ){ rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg, "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' " " FROM main.sqlite_schema " " WHERE type='index' AND tbl_name = ?" ); } pIter->bCleanup = 1; p->rc = rc; return rbuObjIterNext(p, pIter); } /* ** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs, ** an error code is stored in the RBU handle passed as the first argument. ** ** If an error has already occurred (p->rc is already set to something other ** than SQLITE_OK), then this function returns NULL without modifying the ** stored error code. In this case it still calls sqlite3_free() on any ** printf() parameters associated with %z conversions. */ static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){ char *zSql = 0; va_list ap; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( p->rc==SQLITE_OK ){ if( zSql==0 ) p->rc = SQLITE_NOMEM; }else{ sqlite3_free(zSql); zSql = 0; } va_end(ap); return zSql; } /* ** Argument zFmt is a sqlite3_mprintf() style format string. The trailing ** arguments are the usual subsitution values. This function performs ** the printf() style substitutions and executes the result as an SQL ** statement on the RBU handles database. ** ** If an error occurs, an error code and error message is stored in the ** RBU handle. If an error has already occurred when this function is ** called, it is a no-op. */ static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){ va_list ap; char *zSql; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( p->rc==SQLITE_OK ){ if( zSql==0 ){ p->rc = SQLITE_NOMEM; }else{ p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg); } } sqlite3_free(zSql); va_end(ap); return p->rc; } /* ** Attempt to allocate and return a pointer to a zeroed block of nByte ** bytes. ** ** If an error (i.e. an OOM condition) occurs, return NULL and leave an ** error code in the rbu handle passed as the first argument. Or, if an ** error has already occurred when this function is called, return NULL ** immediately without attempting the allocation or modifying the stored ** error code. */ static void *rbuMalloc(sqlite3rbu *p, sqlite3_int64 nByte){ void *pRet = 0; if( p->rc==SQLITE_OK ){ assert( nByte>0 ); pRet = sqlite3_malloc64(nByte); if( pRet==0 ){ p->rc = SQLITE_NOMEM; }else{ memset(pRet, 0, nByte); } } return pRet; } /* ** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that ** there is room for at least nCol elements. If an OOM occurs, store an ** error code in the RBU handle passed as the first argument. */ static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){ sqlite3_int64 nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol; char **azNew; azNew = (char**)rbuMalloc(p, nByte); if( azNew ){ pIter->azTblCol = azNew; pIter->azTblType = &azNew[nCol]; pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol]; pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol]; pIter->abNotNull = (u8*)&pIter->abTblPk[nCol]; pIter->abIndexed = (u8*)&pIter->abNotNull[nCol]; } } /* ** The first argument must be a nul-terminated string. This function ** returns a copy of the string in memory obtained from sqlite3_malloc(). ** It is the responsibility of the caller to eventually free this memory ** using sqlite3_free(). ** ** If an OOM condition is encountered when attempting to allocate memory, ** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise, ** if the allocation succeeds, (*pRc) is left unchanged. */ static char *rbuStrndup(const char *zStr, int *pRc){ char *zRet = 0; if( *pRc==SQLITE_OK ){ if( zStr ){ size_t nCopy = strlen(zStr) + 1; zRet = (char*)sqlite3_malloc64(nCopy); if( zRet ){ memcpy(zRet, zStr, nCopy); }else{ *pRc = SQLITE_NOMEM; } } } return zRet; } /* ** Finalize the statement passed as the second argument. ** ** If the sqlite3_finalize() call indicates that an error occurs, and the ** rbu handle error code is not already set, set the error code and error ** message accordingly. */ static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){ sqlite3 *db = sqlite3_db_handle(pStmt); int rc = sqlite3_finalize(pStmt); if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){ p->rc = rc; p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } } /* Determine the type of a table. ** ** peType is of type (int*), a pointer to an output parameter of type ** (int). This call sets the output parameter as follows, depending ** on the type of the table specified by parameters dbName and zTbl. ** ** RBU_PK_NOTABLE: No such table. ** RBU_PK_NONE: Table has an implicit rowid. ** RBU_PK_IPK: Table has an explicit IPK column. ** RBU_PK_EXTERNAL: Table has an external PK index. ** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID. ** RBU_PK_VTAB: Table is a virtual table. ** ** Argument *piPk is also of type (int*), and also points to an output ** parameter. Unless the table has an external primary key index ** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or, ** if the table does have an external primary key index, then *piPk ** is set to the root page number of the primary key index before ** returning. ** ** ALGORITHM: ** ** if( no entry exists in sqlite_schema ){ ** return RBU_PK_NOTABLE ** }else if( sql for the entry starts with "CREATE VIRTUAL" ){ ** return RBU_PK_VTAB ** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){ ** if( the index that is the pk exists in sqlite_schema ){ ** *piPK = rootpage of that index. ** return RBU_PK_EXTERNAL ** }else{ ** return RBU_PK_WITHOUT_ROWID ** } ** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){ ** return RBU_PK_IPK ** }else{ ** return RBU_PK_NONE ** } */ static void rbuTableType( sqlite3rbu *p, const char *zTab, int *peType, int *piTnum, int *piPk ){ /* ** 0) SELECT count(*) FROM sqlite_schema where name=%Q AND IsVirtual(%Q) ** 1) PRAGMA index_list = ? ** 2) SELECT count(*) FROM sqlite_schema where name=%Q ** 3) PRAGMA table_info = ? */ sqlite3_stmt *aStmt[4] = {0, 0, 0, 0}; *peType = RBU_PK_NOTABLE; *piPk = 0; assert( p->rc==SQLITE_OK ); p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg, sqlite3_mprintf( "SELECT " " (sql COLLATE nocase BETWEEN 'CREATE VIRTUAL' AND 'CREATE VIRTUAM')," " rootpage" " FROM sqlite_schema" " WHERE name=%Q", zTab )); if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){ /* Either an error, or no such table. */ goto rbuTableType_end; } if( sqlite3_column_int(aStmt[0], 0) ){ *peType = RBU_PK_VTAB; /* virtual table */ goto rbuTableType_end; } *piTnum = sqlite3_column_int(aStmt[0], 1); p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg, sqlite3_mprintf("PRAGMA index_list=%Q",zTab) ); if( p->rc ) goto rbuTableType_end; while( sqlite3_step(aStmt[1])==SQLITE_ROW ){ const u8 *zOrig = sqlite3_column_text(aStmt[1], 3); const u8 *zIdx = sqlite3_column_text(aStmt[1], 1); if( zOrig && zIdx && zOrig[0]=='p' ){ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg, sqlite3_mprintf( "SELECT rootpage FROM sqlite_schema WHERE name = %Q", zIdx )); if( p->rc==SQLITE_OK ){ if( sqlite3_step(aStmt[2])==SQLITE_ROW ){ *piPk = sqlite3_column_int(aStmt[2], 0); *peType = RBU_PK_EXTERNAL; }else{ *peType = RBU_PK_WITHOUT_ROWID; } } goto rbuTableType_end; } } p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg, sqlite3_mprintf("PRAGMA table_info=%Q",zTab) ); if( p->rc==SQLITE_OK ){ while( sqlite3_step(aStmt[3])==SQLITE_ROW ){ if( sqlite3_column_int(aStmt[3],5)>0 ){ *peType = RBU_PK_IPK; /* explicit IPK column */ goto rbuTableType_end; } } *peType = RBU_PK_NONE; } rbuTableType_end: { unsigned int i; for(i=0; iabIndexed[] array. */ static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){ sqlite3_stmt *pList = 0; int bIndex = 0; if( p->rc==SQLITE_OK ){ memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol); p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl) ); } pIter->nIndex = 0; while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){ const char *zIdx = (const char*)sqlite3_column_text(pList, 1); int bPartial = sqlite3_column_int(pList, 4); sqlite3_stmt *pXInfo = 0; if( zIdx==0 ) break; if( bPartial ){ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol); } p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) ); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int iCid = sqlite3_column_int(pXInfo, 1); if( iCid>=0 ) pIter->abIndexed[iCid] = 1; if( iCid==-2 ){ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol); } } rbuFinalize(p, pXInfo); bIndex = 1; pIter->nIndex++; } if( pIter->eType==RBU_PK_WITHOUT_ROWID ){ /* "PRAGMA index_list" includes the main PK b-tree */ pIter->nIndex--; } rbuFinalize(p, pList); if( bIndex==0 ) pIter->abIndexed = 0; } /* ** If they are not already populated, populate the pIter->azTblCol[], ** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to ** the table (not index) that the iterator currently points to. ** ** Return SQLITE_OK if successful, or an SQLite error code otherwise. If ** an error does occur, an error code and error message are also left in ** the RBU handle. */ static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){ if( pIter->azTblCol==0 ){ sqlite3_stmt *pStmt = 0; int nCol = 0; int i; /* for() loop iterator variable */ int bRbuRowid = 0; /* If input table has column "rbu_rowid" */ int iOrder = 0; int iTnum = 0; /* Figure out the type of table this step will deal with. */ assert( pIter->eType==0 ); rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum); if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl); } if( p->rc ) return p->rc; if( pIter->zIdx==0 ) pIter->iTnum = iTnum; assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID || pIter->eType==RBU_PK_VTAB ); /* Populate the azTblCol[] and nTblCol variables based on the columns ** of the input table. Ignore any input table columns that begin with ** "rbu_". */ p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl) ); if( p->rc==SQLITE_OK ){ nCol = sqlite3_column_count(pStmt); rbuAllocateIterArrays(p, pIter, nCol); } for(i=0; p->rc==SQLITE_OK && irc); pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol; pIter->azTblCol[pIter->nTblCol++] = zCopy; } else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){ bRbuRowid = 1; } } sqlite3_finalize(pStmt); pStmt = 0; if( p->rc==SQLITE_OK && rbuIsVacuum(p)==0 && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE) ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf( "table %q %s rbu_rowid column", pIter->zDataTbl, (bRbuRowid ? "may not have" : "requires") ); } /* Check that all non-HIDDEN columns in the destination table are also ** present in the input table. Populate the abTblPk[], azTblType[] and ** aiTblOrder[] arrays at the same time. */ if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg, sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl) ); } while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ const char *zName = (const char*)sqlite3_column_text(pStmt, 1); if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */ for(i=iOrder; inTblCol; i++){ if( 0==strcmp(zName, pIter->azTblCol[i]) ) break; } if( i==pIter->nTblCol ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("column missing from %q: %s", pIter->zDataTbl, zName ); }else{ int iPk = sqlite3_column_int(pStmt, 5); int bNotNull = sqlite3_column_int(pStmt, 3); const char *zType = (const char*)sqlite3_column_text(pStmt, 2); if( i!=iOrder ){ SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]); SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]); } pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc); assert( iPk>=0 ); pIter->abTblPk[iOrder] = (u8)iPk; pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0); iOrder++; } } rbuFinalize(p, pStmt); rbuObjIterCacheIndexedCols(p, pIter); assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 ); assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 ); } return p->rc; } /* ** This function constructs and returns a pointer to a nul-terminated ** string containing some SQL clause or list based on one or more of the ** column names currently stored in the pIter->azTblCol[] array. */ static char *rbuObjIterGetCollist( sqlite3rbu *p, /* RBU object */ RbuObjIter *pIter /* Object iterator for column names */ ){ char *zList = 0; const char *zSep = ""; int i; for(i=0; inTblCol; i++){ const char *z = pIter->azTblCol[i]; zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z); zSep = ", "; } return zList; } /* ** Return a comma separated list of the quoted PRIMARY KEY column names, ** in order, for the current table. Before each column name, add the text ** zPre. After each column name, add the zPost text. Use zSeparator as ** the separator text (usually ", "). */ static char *rbuObjIterGetPkList( sqlite3rbu *p, /* RBU object */ RbuObjIter *pIter, /* Object iterator for column names */ const char *zPre, /* Before each quoted column name */ const char *zSeparator, /* Separator to use between columns */ const char *zPost /* After each quoted column name */ ){ int iPk = 1; char *zRet = 0; const char *zSep = ""; while( 1 ){ int i; for(i=0; inTblCol; i++){ if( (int)pIter->abTblPk[i]==iPk ){ const char *zCol = pIter->azTblCol[i]; zRet = rbuMPrintf(p, "%z%s%s\"%w\"%s", zRet, zSep, zPre, zCol, zPost); zSep = zSeparator; break; } } if( i==pIter->nTblCol ) break; iPk++; } return zRet; } /* ** This function is called as part of restarting an RBU vacuum within ** stage 1 of the process (while the *-oal file is being built) while ** updating a table (not an index). The table may be a rowid table or ** a WITHOUT ROWID table. It queries the target database to find the ** largest key that has already been written to the target table and ** constructs a WHERE clause that can be used to extract the remaining ** rows from the source table. For a rowid table, the WHERE clause ** is of the form: ** ** "WHERE _rowid_ > ?" ** ** and for WITHOUT ROWID tables: ** ** "WHERE (key1, key2) > (?, ?)" ** ** Instead of "?" placeholders, the actual WHERE clauses created by ** this function contain literal SQL values. */ static char *rbuVacuumTableStart( sqlite3rbu *p, /* RBU handle */ RbuObjIter *pIter, /* RBU iterator object */ int bRowid, /* True for a rowid table */ const char *zWrite /* Target table name prefix */ ){ sqlite3_stmt *pMax = 0; char *zRet = 0; if( bRowid ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg, sqlite3_mprintf( "SELECT max(_rowid_) FROM \"%s%w\"", zWrite, pIter->zTbl ) ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ sqlite3_int64 iMax = sqlite3_column_int64(pMax, 0); zRet = rbuMPrintf(p, " WHERE _rowid_ > %lld ", iMax); } rbuFinalize(p, pMax); }else{ char *zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", " DESC"); char *zSelect = rbuObjIterGetPkList(p, pIter, "quote(", "||','||", ")"); char *zList = rbuObjIterGetPkList(p, pIter, "", ", ", ""); if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg, sqlite3_mprintf( "SELECT %s FROM \"%s%w\" ORDER BY %s LIMIT 1", zSelect, zWrite, pIter->zTbl, zOrder ) ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ const char *zVal = (const char*)sqlite3_column_text(pMax, 0); zRet = rbuMPrintf(p, " WHERE (%s) > (%s) ", zList, zVal); } rbuFinalize(p, pMax); } sqlite3_free(zOrder); sqlite3_free(zSelect); sqlite3_free(zList); } return zRet; } /* ** This function is called as part of restating an RBU vacuum when the ** current operation is writing content to an index. If possible, it ** queries the target index b-tree for the largest key already written to ** it, then composes and returns an expression that can be used in a WHERE ** clause to select the remaining required rows from the source table. ** It is only possible to return such an expression if: ** ** * The index contains no DESC columns, and ** * The last key written to the index before the operation was ** suspended does not contain any NULL values. ** ** The expression is of the form: ** ** (index-field1, index-field2, ...) > (?, ?, ...) ** ** except that the "?" placeholders are replaced with literal values. ** ** If the expression cannot be created, NULL is returned. In this case, ** the caller has to use an OFFSET clause to extract only the required ** rows from the sourct table, just as it does for an RBU update operation. */ static char *rbuVacuumIndexStart( sqlite3rbu *p, /* RBU handle */ RbuObjIter *pIter /* RBU iterator object */ ){ char *zOrder = 0; char *zLhs = 0; char *zSelect = 0; char *zVector = 0; char *zRet = 0; int bFailed = 0; const char *zSep = ""; int iCol = 0; sqlite3_stmt *pXInfo = 0; p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx) ); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int iCid = sqlite3_column_int(pXInfo, 1); const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); const char *zCol; if( sqlite3_column_int(pXInfo, 3) ){ bFailed = 1; break; } if( iCid<0 ){ if( pIter->eType==RBU_PK_IPK ){ int i; for(i=0; pIter->abTblPk[i]==0; i++); assert( inTblCol ); zCol = pIter->azTblCol[i]; }else{ zCol = "_rowid_"; } }else{ zCol = pIter->azTblCol[iCid]; } zLhs = rbuMPrintf(p, "%z%s \"%w\" COLLATE %Q", zLhs, zSep, zCol, zCollate ); zOrder = rbuMPrintf(p, "%z%s \"rbu_imp_%d%w\" COLLATE %Q DESC", zOrder, zSep, iCol, zCol, zCollate ); zSelect = rbuMPrintf(p, "%z%s quote(\"rbu_imp_%d%w\")", zSelect, zSep, iCol, zCol ); zSep = ", "; iCol++; } rbuFinalize(p, pXInfo); if( bFailed ) goto index_start_out; if( p->rc==SQLITE_OK ){ sqlite3_stmt *pSel = 0; p->rc = prepareFreeAndCollectError(p->dbMain, &pSel, &p->zErrmsg, sqlite3_mprintf("SELECT %s FROM \"rbu_imp_%w\" ORDER BY %s LIMIT 1", zSelect, pIter->zTbl, zOrder ) ); if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSel) ){ zSep = ""; for(iCol=0; iColnCol; iCol++){ const char *zQuoted = (const char*)sqlite3_column_text(pSel, iCol); if( zQuoted==0 ){ p->rc = SQLITE_NOMEM; }else if( zQuoted[0]=='N' ){ bFailed = 1; break; } zVector = rbuMPrintf(p, "%z%s%s", zVector, zSep, zQuoted); zSep = ", "; } if( !bFailed ){ zRet = rbuMPrintf(p, "(%s) > (%s)", zLhs, zVector); } } rbuFinalize(p, pSel); } index_start_out: sqlite3_free(zOrder); sqlite3_free(zSelect); sqlite3_free(zVector); sqlite3_free(zLhs); return zRet; } /* ** This function is used to create a SELECT list (the list of SQL ** expressions that follows a SELECT keyword) for a SELECT statement ** used to read from an data_xxx or rbu_tmp_xxx table while updating the ** index object currently indicated by the iterator object passed as the ** second argument. A "PRAGMA index_xinfo = " statement is used ** to obtain the required information. ** ** If the index is of the following form: ** ** CREATE INDEX i1 ON t1(c, b COLLATE nocase); ** ** and "t1" is a table with an explicit INTEGER PRIMARY KEY column ** "ipk", the returned string is: ** ** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'" ** ** As well as the returned string, three other malloc'd strings are ** returned via output parameters. As follows: ** ** pzImposterCols: ... ** pzImposterPk: ... ** pzWhere: ... */ static char *rbuObjIterGetIndexCols( sqlite3rbu *p, /* RBU object */ RbuObjIter *pIter, /* Object iterator for column names */ char **pzImposterCols, /* OUT: Columns for imposter table */ char **pzImposterPk, /* OUT: Imposter PK clause */ char **pzWhere, /* OUT: WHERE clause */ int *pnBind /* OUT: Trbul number of columns */ ){ int rc = p->rc; /* Error code */ int rc2; /* sqlite3_finalize() return code */ char *zRet = 0; /* String to return */ char *zImpCols = 0; /* String to return via *pzImposterCols */ char *zImpPK = 0; /* String to return via *pzImposterPK */ char *zWhere = 0; /* String to return via *pzWhere */ int nBind = 0; /* Value to return via *pnBind */ const char *zCom = ""; /* Set to ", " later on */ const char *zAnd = ""; /* Set to " AND " later on */ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */ if( rc==SQLITE_OK ){ assert( p->zErrmsg==0 ); rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx) ); } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int iCid = sqlite3_column_int(pXInfo, 1); int bDesc = sqlite3_column_int(pXInfo, 3); const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); const char *zCol = 0; const char *zType; if( iCid==-2 ){ int iSeq = sqlite3_column_int(pXInfo, 0); zRet = sqlite3_mprintf("%z%s(%.*s) COLLATE %Q", zRet, zCom, pIter->aIdxCol[iSeq].nSpan, pIter->aIdxCol[iSeq].zSpan, zCollate ); zType = ""; }else { if( iCid<0 ){ /* An integer primary key. If the table has an explicit IPK, use ** its name. Otherwise, use "rbu_rowid". */ if( pIter->eType==RBU_PK_IPK ){ int i; for(i=0; pIter->abTblPk[i]==0; i++); assert( inTblCol ); zCol = pIter->azTblCol[i]; }else if( rbuIsVacuum(p) ){ zCol = "_rowid_"; }else{ zCol = "rbu_rowid"; } zType = "INTEGER"; }else{ zCol = pIter->azTblCol[iCid]; zType = pIter->azTblType[iCid]; } zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom,zCol,zCollate); } if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){ const char *zOrder = (bDesc ? " DESC" : ""); zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s", zImpPK, zCom, nBind, zCol, zOrder ); } zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q", zImpCols, zCom, nBind, zCol, zType, zCollate ); zWhere = sqlite3_mprintf( "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol ); if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM; zCom = ", "; zAnd = " AND "; nBind++; } rc2 = sqlite3_finalize(pXInfo); if( rc==SQLITE_OK ) rc = rc2; if( rc!=SQLITE_OK ){ sqlite3_free(zRet); sqlite3_free(zImpCols); sqlite3_free(zImpPK); sqlite3_free(zWhere); zRet = 0; zImpCols = 0; zImpPK = 0; zWhere = 0; p->rc = rc; } *pzImposterCols = zImpCols; *pzImposterPk = zImpPK; *pzWhere = zWhere; *pnBind = nBind; return zRet; } /* ** Assuming the current table columns are "a", "b" and "c", and the zObj ** paramter is passed "old", return a string of the form: ** ** "old.a, old.b, old.b" ** ** With the column names escaped. ** ** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append ** the text ", old._rowid_" to the returned value. */ static char *rbuObjIterGetOldlist( sqlite3rbu *p, RbuObjIter *pIter, const char *zObj ){ char *zList = 0; if( p->rc==SQLITE_OK && pIter->abIndexed ){ const char *zS = ""; int i; for(i=0; inTblCol; i++){ if( pIter->abIndexed[i] ){ const char *zCol = pIter->azTblCol[i]; zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol); }else{ zList = sqlite3_mprintf("%z%sNULL", zList, zS); } zS = ", "; if( zList==0 ){ p->rc = SQLITE_NOMEM; break; } } /* For a table with implicit rowids, append "old._rowid_" to the list. */ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj); } } return zList; } /* ** Return an expression that can be used in a WHERE clause to match the ** primary key of the current table. For example, if the table is: ** ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)); ** ** Return the string: ** ** "b = ?1 AND c = ?2" */ static char *rbuObjIterGetWhere( sqlite3rbu *p, RbuObjIter *pIter ){ char *zList = 0; if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){ zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1); }else if( pIter->eType==RBU_PK_EXTERNAL ){ const char *zSep = ""; int i; for(i=0; inTblCol; i++){ if( pIter->abTblPk[i] ){ zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1); zSep = " AND "; } } zList = rbuMPrintf(p, "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList ); }else{ const char *zSep = ""; int i; for(i=0; inTblCol; i++){ if( pIter->abTblPk[i] ){ const char *zCol = pIter->azTblCol[i]; zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1); zSep = " AND "; } } } return zList; } /* ** The SELECT statement iterating through the keys for the current object ** (p->objiter.pSelect) currently points to a valid row. However, there ** is something wrong with the rbu_control value in the rbu_control value ** stored in the (p->nCol+1)'th column. Set the error code and error message ** of the RBU handle to something reflecting this. */ static void rbuBadControlError(sqlite3rbu *p){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("invalid rbu_control value"); } /* ** Return a nul-terminated string containing the comma separated list of ** assignments that should be included following the "SET" keyword of ** an UPDATE statement used to update the table object that the iterator ** passed as the second argument currently points to if the rbu_control ** column of the data_xxx table entry is set to zMask. ** ** The memory for the returned string is obtained from sqlite3_malloc(). ** It is the responsibility of the caller to eventually free it using ** sqlite3_free(). ** ** If an OOM error is encountered when allocating space for the new ** string, an error code is left in the rbu handle passed as the first ** argument and NULL is returned. Or, if an error has already occurred ** when this function is called, NULL is returned immediately, without ** attempting the allocation or modifying the stored error code. */ static char *rbuObjIterGetSetlist( sqlite3rbu *p, RbuObjIter *pIter, const char *zMask ){ char *zList = 0; if( p->rc==SQLITE_OK ){ int i; if( (int)strlen(zMask)!=pIter->nTblCol ){ rbuBadControlError(p); }else{ const char *zSep = ""; for(i=0; inTblCol; i++){ char c = zMask[pIter->aiSrcOrder[i]]; if( c=='x' ){ zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, pIter->azTblCol[i], i+1 ); zSep = ", "; } else if( c=='d' ){ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)", zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1 ); zSep = ", "; } else if( c=='f' ){ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)", zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1 ); zSep = ", "; } } } } return zList; } /* ** Return a nul-terminated string consisting of nByte comma separated ** "?" expressions. For example, if nByte is 3, return a pointer to ** a buffer containing the string "?,?,?". ** ** The memory for the returned string is obtained from sqlite3_malloc(). ** It is the responsibility of the caller to eventually free it using ** sqlite3_free(). ** ** If an OOM error is encountered when allocating space for the new ** string, an error code is left in the rbu handle passed as the first ** argument and NULL is returned. Or, if an error has already occurred ** when this function is called, NULL is returned immediately, without ** attempting the allocation or modifying the stored error code. */ static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){ char *zRet = 0; sqlite3_int64 nByte = 2*(sqlite3_int64)nBind + 1; zRet = (char*)rbuMalloc(p, nByte); if( zRet ){ int i; for(i=0; izIdx==0 ); if( p->rc==SQLITE_OK ){ const char *zSep = "PRIMARY KEY("; sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = */ p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl) ); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){ const char *zOrig = (const char*)sqlite3_column_text(pXList,3); if( zOrig && strcmp(zOrig, "pk")==0 ){ const char *zIdx = (const char*)sqlite3_column_text(pXList,1); if( zIdx ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) ); } break; } } rbuFinalize(p, pXList); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ if( sqlite3_column_int(pXInfo, 5) ){ /* int iCid = sqlite3_column_int(pXInfo, 0); */ const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2); const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : ""; z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc); zSep = ", "; } } z = rbuMPrintf(p, "%z)", z); rbuFinalize(p, pXInfo); } return z; } /* ** This function creates the second imposter table used when writing to ** a table b-tree where the table has an external primary key. If the ** iterator passed as the second argument does not currently point to ** a table (not index) with an external primary key, this function is a ** no-op. ** ** Assuming the iterator does point to a table with an external PK, this ** function creates a WITHOUT ROWID imposter table named "rbu_imposter2" ** used to access that PK index. For example, if the target table is ** declared as follows: ** ** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c)); ** ** then the imposter table schema is: ** ** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID; ** */ static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){ if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){ int tnum = pIter->iPkTnum; /* Root page of PK index */ sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */ const char *zIdx = 0; /* Name of PK index */ sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */ const char *zComma = ""; char *zCols = 0; /* Used to build up list of table cols */ char *zPk = 0; /* Used to build up table PK declaration */ /* Figure out the name of the primary key index for the current table. ** This is needed for the argument to "PRAGMA index_xinfo". Set ** zIdx to point to a nul-terminated string containing this name. */ p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg, "SELECT name FROM sqlite_schema WHERE rootpage = ?" ); if( p->rc==SQLITE_OK ){ sqlite3_bind_int(pQuery, 1, tnum); if( SQLITE_ROW==sqlite3_step(pQuery) ){ zIdx = (const char*)sqlite3_column_text(pQuery, 0); } } if( zIdx ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) ); } rbuFinalize(p, pQuery); while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ int bKey = sqlite3_column_int(pXInfo, 5); if( bKey ){ int iCid = sqlite3_column_int(pXInfo, 1); int bDesc = sqlite3_column_int(pXInfo, 3); const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma, iCid, pIter->azTblType[iCid], zCollate ); zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":""); zComma = ", "; } } zCols = rbuMPrintf(p, "%z, id INTEGER", zCols); rbuFinalize(p, pXInfo); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum); rbuMPrintfExec(p, p->dbMain, "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID", zCols, zPk ); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); } } /* ** If an error has already occurred when this function is called, it ** immediately returns zero (without doing any work). Or, if an error ** occurs during the execution of this function, it sets the error code ** in the sqlite3rbu object indicated by the first argument and returns ** zero. ** ** The iterator passed as the second argument is guaranteed to point to ** a table (not an index) when this function is called. This function ** attempts to create any imposter table required to write to the main ** table b-tree of the table before returning. Non-zero is returned if ** an imposter table are created, or zero otherwise. ** ** An imposter table is required in all cases except RBU_PK_VTAB. Only ** virtual tables are written to directly. The imposter table has the ** same schema as the actual target table (less any UNIQUE constraints). ** More precisely, the "same schema" means the same columns, types, ** collation sequences. For tables that do not have an external PRIMARY ** KEY, it also means the same PRIMARY KEY declaration. */ static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){ if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){ int tnum = pIter->iTnum; const char *zComma = ""; char *zSql = 0; int iCol; sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1); for(iCol=0; p->rc==SQLITE_OK && iColnTblCol; iCol++){ const char *zPk = ""; const char *zCol = pIter->azTblCol[iCol]; const char *zColl = 0; p->rc = sqlite3_table_column_metadata( p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0 ); if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){ /* If the target table column is an "INTEGER PRIMARY KEY", add ** "PRIMARY KEY" to the imposter table column declaration. */ zPk = "PRIMARY KEY "; } zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s", zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl, (pIter->abNotNull[iCol] ? " NOT NULL" : "") ); zComma = ", "; } if( pIter->eType==RBU_PK_WITHOUT_ROWID ){ char *zPk = rbuWithoutRowidPK(p, pIter); if( zPk ){ zSql = rbuMPrintf(p, "%z, %z", zSql, zPk); } } sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum); rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s", pIter->zTbl, zSql, (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "") ); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); } } /* ** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table. ** Specifically a statement of the form: ** ** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...); ** ** The number of bound variables is equal to the number of columns in ** the target table, plus one (for the rbu_control column), plus one more ** (for the rbu_rowid column) if the target table is an implicit IPK or ** virtual table. */ static void rbuObjIterPrepareTmpInsert( sqlite3rbu *p, RbuObjIter *pIter, const char *zCollist, const char *zRbuRowid ){ int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE); char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid); if( zBind ){ assert( pIter->pTmpInsert==0 ); p->rc = prepareFreeAndCollectError( p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf( "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)", p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind )); } } static void rbuTmpInsertFunc( sqlite3_context *pCtx, int nVal, sqlite3_value **apVal ){ sqlite3rbu *p = sqlite3_user_data(pCtx); int rc = SQLITE_OK; int i; assert( sqlite3_value_int(apVal[0])!=0 || p->objiter.eType==RBU_PK_EXTERNAL || p->objiter.eType==RBU_PK_NONE ); if( sqlite3_value_int(apVal[0])!=0 ){ p->nPhaseOneStep += p->objiter.nIndex; } for(i=0; rc==SQLITE_OK && iobjiter.pTmpInsert, i+1, apVal[i]); } if( rc==SQLITE_OK ){ sqlite3_step(p->objiter.pTmpInsert); rc = sqlite3_reset(p->objiter.pTmpInsert); } if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pCtx, rc); } } static char *rbuObjIterGetIndexWhere(sqlite3rbu *p, RbuObjIter *pIter){ sqlite3_stmt *pStmt = 0; int rc = p->rc; char *zRet = 0; assert( pIter->zIdxSql==0 && pIter->nIdxCol==0 && pIter->aIdxCol==0 ); if( rc==SQLITE_OK ){ rc = prepareAndCollectError(p->dbMain, &pStmt, &p->zErrmsg, "SELECT trim(sql) FROM sqlite_schema WHERE type='index' AND name=?" ); } if( rc==SQLITE_OK ){ int rc2; rc = sqlite3_bind_text(pStmt, 1, pIter->zIdx, -1, SQLITE_STATIC); if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ char *zSql = (char*)sqlite3_column_text(pStmt, 0); if( zSql ){ pIter->zIdxSql = zSql = rbuStrndup(zSql, &rc); } if( zSql ){ int nParen = 0; /* Number of open parenthesis */ int i; int iIdxCol = 0; int nIdxAlloc = 0; for(i=0; zSql[i]; i++){ char c = zSql[i]; /* If necessary, grow the pIter->aIdxCol[] array */ if( iIdxCol==nIdxAlloc ){ RbuSpan *aIdxCol = (RbuSpan*)sqlite3_realloc( pIter->aIdxCol, (nIdxAlloc+16)*sizeof(RbuSpan) ); if( aIdxCol==0 ){ rc = SQLITE_NOMEM; break; } pIter->aIdxCol = aIdxCol; nIdxAlloc += 16; } if( c=='(' ){ if( nParen==0 ){ assert( iIdxCol==0 ); pIter->aIdxCol[0].zSpan = &zSql[i+1]; } nParen++; } else if( c==')' ){ nParen--; if( nParen==0 ){ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan; pIter->aIdxCol[iIdxCol++].nSpan = nSpan; i++; break; } }else if( c==',' && nParen==1 ){ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan; pIter->aIdxCol[iIdxCol++].nSpan = nSpan; pIter->aIdxCol[iIdxCol].zSpan = &zSql[i+1]; }else if( c=='"' || c=='\'' || c=='`' ){ for(i++; 1; i++){ if( zSql[i]==c ){ if( zSql[i+1]!=c ) break; i++; } } }else if( c=='[' ){ for(i++; 1; i++){ if( zSql[i]==']' ) break; } }else if( c=='-' && zSql[i+1]=='-' ){ for(i=i+2; zSql[i] && zSql[i]!='\n'; i++); if( zSql[i]=='\0' ) break; }else if( c=='/' && zSql[i+1]=='*' ){ for(i=i+2; zSql[i] && (zSql[i]!='*' || zSql[i+1]!='/'); i++); if( zSql[i]=='\0' ) break; i++; } } if( zSql[i] ){ zRet = rbuStrndup(&zSql[i], &rc); } pIter->nIdxCol = iIdxCol; } } rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) rc = rc2; } p->rc = rc; return zRet; } /* ** Ensure that the SQLite statement handles required to update the ** target database object currently indicated by the iterator passed ** as the second argument are available. */ static int rbuObjIterPrepareAll( sqlite3rbu *p, RbuObjIter *pIter, int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */ ){ assert( pIter->bCleanup==0 ); if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){ const int tnum = pIter->iTnum; char *zCollist = 0; /* List of indexed columns */ char **pz = &p->zErrmsg; const char *zIdx = pIter->zIdx; char *zLimit = 0; if( nOffset ){ zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset); if( !zLimit ) p->rc = SQLITE_NOMEM; } if( zIdx ){ const char *zTbl = pIter->zTbl; char *zImposterCols = 0; /* Columns for imposter table */ char *zImposterPK = 0; /* Primary key declaration for imposter */ char *zWhere = 0; /* WHERE clause on PK columns */ char *zBind = 0; char *zPart = 0; int nBind = 0; assert( pIter->eType!=RBU_PK_VTAB ); zPart = rbuObjIterGetIndexWhere(p, pIter); zCollist = rbuObjIterGetIndexCols( p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind ); zBind = rbuObjIterGetBindlist(p, nBind); /* Create the imposter table used to write to this index. */ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum); rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID", zTbl, zImposterCols, zImposterPK ); sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); /* Create the statement to insert index entries */ pIter->nCol = nBind; if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError( p->dbMain, &pIter->pInsert, &p->zErrmsg, sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind) ); } /* And to delete index entries */ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError( p->dbMain, &pIter->pDelete, &p->zErrmsg, sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere) ); } /* Create the SELECT statement to read keys in sorted order */ if( p->rc==SQLITE_OK ){ char *zSql; if( rbuIsVacuum(p) ){ char *zStart = 0; if( nOffset ){ zStart = rbuVacuumIndexStart(p, pIter); if( zStart ){ sqlite3_free(zLimit); zLimit = 0; } } zSql = sqlite3_mprintf( "SELECT %s, 0 AS rbu_control FROM '%q' %s %s %s ORDER BY %s%s", zCollist, pIter->zDataTbl, zPart, (zStart ? (zPart ? "AND" : "WHERE") : ""), zStart, zCollist, zLimit ); sqlite3_free(zStart); }else if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ zSql = sqlite3_mprintf( "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s ORDER BY %s%s", zCollist, p->zStateDb, pIter->zDataTbl, zPart, zCollist, zLimit ); }else{ zSql = sqlite3_mprintf( "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s " "UNION ALL " "SELECT %s, rbu_control FROM '%q' " "%s %s typeof(rbu_control)='integer' AND rbu_control!=1 " "ORDER BY %s%s", zCollist, p->zStateDb, pIter->zDataTbl, zPart, zCollist, pIter->zDataTbl, zPart, (zPart ? "AND" : "WHERE"), zCollist, zLimit ); } if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbRbu,&pIter->pSelect,pz,zSql); }else{ sqlite3_free(zSql); } } sqlite3_free(zImposterCols); sqlite3_free(zImposterPK); sqlite3_free(zWhere); sqlite3_free(zBind); sqlite3_free(zPart); }else{ int bRbuRowid = (pIter->eType==RBU_PK_VTAB) ||(pIter->eType==RBU_PK_NONE) ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p)); const char *zTbl = pIter->zTbl; /* Table this step applies to */ const char *zWrite; /* Imposter table name */ char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid); char *zWhere = rbuObjIterGetWhere(p, pIter); char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old"); char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new"); zCollist = rbuObjIterGetCollist(p, pIter); pIter->nCol = pIter->nTblCol; /* Create the imposter table or tables (if required). */ rbuCreateImposterTable(p, pIter); rbuCreateImposterTable2(p, pIter); zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_"); /* Create the INSERT statement to write to the target PK b-tree */ if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz, sqlite3_mprintf( "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)", zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings ) ); } /* Create the DELETE statement to write to the target PK b-tree. ** Because it only performs INSERT operations, this is not required for ** an rbu vacuum handle. */ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz, sqlite3_mprintf( "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere ) ); } if( rbuIsVacuum(p)==0 && pIter->abIndexed ){ const char *zRbuRowid = ""; if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ zRbuRowid = ", rbu_rowid"; } /* Create the rbu_tmp_xxx table and the triggers to populate it. */ rbuMPrintfExec(p, p->dbRbu, "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS " "SELECT *%s FROM '%q' WHERE 0;" , p->zStateDb, pIter->zDataTbl , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "") , pIter->zDataTbl ); rbuMPrintfExec(p, p->dbMain, "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(3, %s);" "END;" "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(3, %s);" "END;" "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(4, %s);" "END;", zWrite, zTbl, zOldlist, zWrite, zTbl, zOldlist, zWrite, zTbl, zNewlist ); if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ rbuMPrintfExec(p, p->dbMain, "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" " "BEGIN " " SELECT rbu_tmp_insert(0, %s);" "END;", zWrite, zTbl, zNewlist ); } rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid); } /* Create the SELECT statement to read keys from data_xxx */ if( p->rc==SQLITE_OK ){ const char *zRbuRowid = ""; char *zStart = 0; char *zOrder = 0; if( bRbuRowid ){ zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid"; } if( rbuIsVacuum(p) ){ if( nOffset ){ zStart = rbuVacuumTableStart(p, pIter, bRbuRowid, zWrite); if( zStart ){ sqlite3_free(zLimit); zLimit = 0; } } if( bRbuRowid ){ zOrder = rbuMPrintf(p, "_rowid_"); }else{ zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", ""); } } if( p->rc==SQLITE_OK ){ p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz, sqlite3_mprintf( "SELECT %s,%s rbu_control%s FROM '%q'%s %s %s %s", zCollist, (rbuIsVacuum(p) ? "0 AS " : ""), zRbuRowid, pIter->zDataTbl, (zStart ? zStart : ""), (zOrder ? "ORDER BY" : ""), zOrder, zLimit ) ); } sqlite3_free(zStart); sqlite3_free(zOrder); } sqlite3_free(zWhere); sqlite3_free(zOldlist); sqlite3_free(zNewlist); sqlite3_free(zBindings); } sqlite3_free(zCollist); sqlite3_free(zLimit); } return p->rc; } /* ** Set output variable *ppStmt to point to an UPDATE statement that may ** be used to update the imposter table for the main table b-tree of the ** table object that pIter currently points to, assuming that the ** rbu_control column of the data_xyz table contains zMask. ** ** If the zMask string does not specify any columns to update, then this ** is not an error. Output variable *ppStmt is set to NULL in this case. */ static int rbuGetUpdateStmt( sqlite3rbu *p, /* RBU handle */ RbuObjIter *pIter, /* Object iterator */ const char *zMask, /* rbu_control value ('x.x.') */ sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */ ){ RbuUpdateStmt **pp; RbuUpdateStmt *pUp = 0; int nUp = 0; /* In case an error occurs */ *ppStmt = 0; /* Search for an existing statement. If one is found, shift it to the front ** of the LRU queue and return immediately. Otherwise, leave nUp pointing ** to the number of statements currently in the cache and pUp to the ** last object in the list. */ for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){ pUp = *pp; if( strcmp(pUp->zMask, zMask)==0 ){ *pp = pUp->pNext; pUp->pNext = pIter->pRbuUpdate; pIter->pRbuUpdate = pUp; *ppStmt = pUp->pUpdate; return SQLITE_OK; } nUp++; } assert( pUp==0 || pUp->pNext==0 ); if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){ for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext)); *pp = 0; sqlite3_finalize(pUp->pUpdate); pUp->pUpdate = 0; }else{ pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1); } if( pUp ){ char *zWhere = rbuObjIterGetWhere(p, pIter); char *zSet = rbuObjIterGetSetlist(p, pIter, zMask); char *zUpdate = 0; pUp->zMask = (char*)&pUp[1]; memcpy(pUp->zMask, zMask, pIter->nTblCol); pUp->pNext = pIter->pRbuUpdate; pIter->pRbuUpdate = pUp; if( zSet ){ const char *zPrefix = ""; if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_"; zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s", zPrefix, pIter->zTbl, zSet, zWhere ); p->rc = prepareFreeAndCollectError( p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate ); *ppStmt = pUp->pUpdate; } sqlite3_free(zWhere); sqlite3_free(zSet); } return p->rc; } static sqlite3 *rbuOpenDbhandle( sqlite3rbu *p, const char *zName, int bUseVfs ){ sqlite3 *db = 0; if( p->rc==SQLITE_OK ){ const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI; p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0); if( p->rc ){ p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); sqlite3_close(db); db = 0; } } return db; } /* ** Free an RbuState object allocated by rbuLoadState(). */ static void rbuFreeState(RbuState *p){ if( p ){ sqlite3_free(p->zTbl); sqlite3_free(p->zDataTbl); sqlite3_free(p->zIdx); sqlite3_free(p); } } /* ** Allocate an RbuState object and load the contents of the rbu_state ** table into it. Return a pointer to the new object. It is the ** responsibility of the caller to eventually free the object using ** sqlite3_free(). ** ** If an error occurs, leave an error code and message in the rbu handle ** and return NULL. */ static RbuState *rbuLoadState(sqlite3rbu *p){ RbuState *pRet = 0; sqlite3_stmt *pStmt = 0; int rc; int rc2; pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState)); if( pRet==0 ) return 0; rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb) ); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ switch( sqlite3_column_int(pStmt, 0) ){ case RBU_STATE_STAGE: pRet->eStage = sqlite3_column_int(pStmt, 1); if( pRet->eStage!=RBU_STAGE_OAL && pRet->eStage!=RBU_STAGE_MOVE && pRet->eStage!=RBU_STAGE_CKPT ){ p->rc = SQLITE_CORRUPT; } break; case RBU_STATE_TBL: pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); break; case RBU_STATE_IDX: pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); break; case RBU_STATE_ROW: pRet->nRow = sqlite3_column_int(pStmt, 1); break; case RBU_STATE_PROGRESS: pRet->nProgress = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_CKPT: pRet->iWalCksum = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_COOKIE: pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_OALSZ: pRet->iOalSz = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_PHASEONESTEP: pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1); break; case RBU_STATE_DATATBL: pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); break; default: rc = SQLITE_CORRUPT; break; } } rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ) rc = rc2; p->rc = rc; return pRet; } /* ** Open the database handle and attach the RBU database as "rbu". If an ** error occurs, leave an error code and message in the RBU handle. ** ** If argument dbMain is not NULL, then it is a database handle already ** open on the target database. Use this handle instead of opening a new ** one. */ static void rbuOpenDatabase(sqlite3rbu *p, sqlite3 *dbMain, int *pbRetry){ assert( p->rc || (p->dbMain==0 && p->dbRbu==0) ); assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 ); assert( dbMain==0 || rbuIsVacuum(p)==0 ); /* Open the RBU database */ p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1); p->dbMain = dbMain; if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p); if( p->zState==0 ){ const char *zFile = sqlite3_db_filename(p->dbRbu, "main"); p->zState = rbuMPrintf(p, "file:///%s-vacuum?modeof=%s", zFile, zFile); } } /* If using separate RBU and state databases, attach the state database to ** the RBU db handle now. */ if( p->zState ){ rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState); memcpy(p->zStateDb, "stat", 4); }else{ memcpy(p->zStateDb, "main", 4); } #if 0 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0); } #endif /* If it has not already been created, create the rbu_state table */ rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb); #if 0 if( rbuIsVacuum(p) ){ if( p->rc==SQLITE_OK ){ int rc2; int bOk = 0; sqlite3_stmt *pCnt = 0; p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg, "SELECT count(*) FROM stat.sqlite_schema" ); if( p->rc==SQLITE_OK && sqlite3_step(pCnt)==SQLITE_ROW && 1==sqlite3_column_int(pCnt, 0) ){ bOk = 1; } rc2 = sqlite3_finalize(pCnt); if( p->rc==SQLITE_OK ) p->rc = rc2; if( p->rc==SQLITE_OK && bOk==0 ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("invalid state database"); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0); } } } #endif if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ int bOpen = 0; int rc; p->nRbu = 0; p->pRbuFd = 0; rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p); if( rc!=SQLITE_NOTFOUND ) p->rc = rc; if( p->eStage>=RBU_STAGE_MOVE ){ bOpen = 1; }else{ RbuState *pState = rbuLoadState(p); if( pState ){ bOpen = (pState->eStage>=RBU_STAGE_MOVE); rbuFreeState(pState); } } if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1); } p->eStage = 0; if( p->rc==SQLITE_OK && p->dbMain==0 ){ if( !rbuIsVacuum(p) ){ p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1); }else if( p->pRbuFd->pWalFd ){ if( pbRetry ){ p->pRbuFd->bNolock = 0; sqlite3_close(p->dbRbu); sqlite3_close(p->dbMain); p->dbMain = 0; p->dbRbu = 0; *pbRetry = 1; return; } p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database"); }else{ char *zTarget; char *zExtra = 0; if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){ zExtra = &p->zRbu[5]; while( *zExtra ){ if( *zExtra++=='?' ) break; } if( *zExtra=='\0' ) zExtra = 0; } zTarget = sqlite3_mprintf("file:%s-vactmp?rbu_memory=1%s%s", sqlite3_db_filename(p->dbRbu, "main"), (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra) ); if( zTarget==0 ){ p->rc = SQLITE_NOMEM; return; } p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1); sqlite3_free(zTarget); } } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_create_function(p->dbMain, "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0 ); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_create_function(p->dbMain, "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0 ); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_create_function(p->dbRbu, "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0 ); } if( p->rc==SQLITE_OK ){ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p); } rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_schema"); /* Mark the database file just opened as an RBU target database. If ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use. ** This is an error. */ if( p->rc==SQLITE_OK ){ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p); } if( p->rc==SQLITE_NOTFOUND ){ p->rc = SQLITE_ERROR; p->zErrmsg = sqlite3_mprintf("rbu vfs not found"); } } /* ** This routine is a copy of the sqlite3FileSuffix3() routine from the core. ** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined. ** ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than ** three characters, then shorten the suffix on z[] to be the last three ** characters of the original suffix. ** ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always ** do the suffix shortening regardless of URI parameter. ** ** Examples: ** ** test.db-journal => test.nal ** test.db-wal => test.wal ** test.db-shm => test.shm ** test.db-mj7f3319fa => test.9fa */ static void rbuFileSuffix3(const char *zBase, char *z){ #ifdef SQLITE_ENABLE_8_3_NAMES #if SQLITE_ENABLE_8_3_NAMES<2 if( sqlite3_uri_boolean(zBase, "8_3_names", 0) ) #endif { int i, sz; sz = (int)strlen(z)&0xffffff; for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4); } #endif } /* ** Return the current wal-index header checksum for the target database ** as a 64-bit integer. ** ** The checksum is store in the first page of xShmMap memory as an 8-byte ** blob starting at byte offset 40. */ static i64 rbuShmChecksum(sqlite3rbu *p){ i64 iRet = 0; if( p->rc==SQLITE_OK ){ sqlite3_file *pDb = p->pTargetFd->pReal; u32 volatile *ptr; p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr); if( p->rc==SQLITE_OK ){ iRet = ((i64)ptr[10] << 32) + ptr[11]; } } return iRet; } /* ** This function is called as part of initializing or reinitializing an ** incremental checkpoint. ** ** It populates the sqlite3rbu.aFrame[] array with the set of ** (wal frame -> db page) copy operations required to checkpoint the ** current wal file, and obtains the set of shm locks required to safely ** perform the copy operations directly on the file-system. ** ** If argument pState is not NULL, then the incremental checkpoint is ** being resumed. In this case, if the checksum of the wal-index-header ** following recovery is not the same as the checksum saved in the RbuState ** object, then the rbu handle is set to DONE state. This occurs if some ** other client appends a transaction to the wal file in the middle of ** an incremental checkpoint. */ static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){ /* If pState is NULL, then the wal file may not have been opened and ** recovered. Running a read-statement here to ensure that doing so ** does not interfere with the "capture" process below. */ if( pState==0 ){ p->eStage = 0; if( p->rc==SQLITE_OK ){ p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_schema", 0, 0, 0); } } /* Assuming no error has occurred, run a "restart" checkpoint with the ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following ** special behaviour in the rbu VFS: ** ** * If the exclusive shm WRITER or READ0 lock cannot be obtained, ** the checkpoint fails with SQLITE_BUSY (normally SQLite would ** proceed with running a passive checkpoint instead of failing). ** ** * Attempts to read from the *-wal file or write to the database file ** do not perform any IO. Instead, the frame/page combinations that ** would be read/written are recorded in the sqlite3rbu.aFrame[] ** array. ** ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER, ** READ0 and CHECKPOINT locks taken as part of the checkpoint are ** no-ops. These locks will not be released until the connection ** is closed. ** ** * Attempting to xSync() the database file causes an SQLITE_NOTICE ** error. ** ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the ** checkpoint below fails with SQLITE_NOTICE, and leaves the aFrame[] ** array populated with a set of (frame -> page) mappings. Because the ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy ** data from the wal file into the database file according to the ** contents of aFrame[]. */ if( p->rc==SQLITE_OK ){ int rc2; p->eStage = RBU_STAGE_CAPTURE; rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0); if( rc2!=SQLITE_NOTICE ) p->rc = rc2; } if( p->rc==SQLITE_OK && p->nFrame>0 ){ p->eStage = RBU_STAGE_CKPT; p->nStep = (pState ? pState->nRow : 0); p->aBuf = rbuMalloc(p, p->pgsz); p->iWalCksum = rbuShmChecksum(p); } if( p->rc==SQLITE_OK ){ if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){ p->rc = SQLITE_DONE; p->eStage = RBU_STAGE_DONE; }else{ int nSectorSize; sqlite3_file *pDb = p->pTargetFd->pReal; sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal; assert( p->nPagePerSector==0 ); nSectorSize = pDb->pMethods->xSectorSize(pDb); if( nSectorSize>p->pgsz ){ p->nPagePerSector = nSectorSize / p->pgsz; }else{ p->nPagePerSector = 1; } /* Call xSync() on the wal file. This causes SQLite to sync the ** directory in which the target database and the wal file reside, in ** case it has not been synced since the rename() call in ** rbuMoveOalFile(). */ p->rc = pWal->pMethods->xSync(pWal, SQLITE_SYNC_NORMAL); } } } /* ** Called when iAmt bytes are read from offset iOff of the wal file while ** the rbu object is in capture mode. Record the frame number of the frame ** being read in the aFrame[] array. */ static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){ const u32 mReq = (1<mLock!=mReq ){ pRbu->rc = SQLITE_BUSY; return SQLITE_NOTICE_RBU; } pRbu->pgsz = iAmt; if( pRbu->nFrame==pRbu->nFrameAlloc ){ int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2; RbuFrame *aNew; aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame)); if( aNew==0 ) return SQLITE_NOMEM; pRbu->aFrame = aNew; pRbu->nFrameAlloc = nNew; } iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1; if( pRbu->iMaxFrame