/* SWISSEPH * * Steve Moshier's analytical lunar ephemeris **************************************************************/ /* Copyright (C) 1997 - 2021 Astrodienst AG, Switzerland. All rights reserved. License conditions ------------------ This file is part of Swiss Ephemeris. Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author or distributor accepts any responsibility for the consequences of using it, or for whether it serves any particular purpose or works at all, unless he or she says so in writing. Swiss Ephemeris is made available by its authors under a dual licensing system. The software developer, who uses any part of Swiss Ephemeris in his or her software, must choose between one of the two license models, which are a) GNU Affero General Public License (AGPL) b) Swiss Ephemeris Professional License The choice must be made before the software developer distributes software containing parts of Swiss Ephemeris to others, and before any public service using the developed software is activated. If the developer choses the AGPL software license, he or she must fulfill the conditions of that license, which includes the obligation to place his or her whole software project under the AGPL or a compatible license. See https://www.gnu.org/licenses/agpl-3.0.html If the developer choses the Swiss Ephemeris Professional license, he must follow the instructions as found in http://www.astro.com/swisseph/ and purchase the Swiss Ephemeris Professional Edition from Astrodienst and sign the corresponding license contract. The License grants you the right to use, copy, modify and redistribute Swiss Ephemeris, but only under certain conditions described in the License. Among other things, the License requires that the copyright notices and this notice be preserved on all copies. Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl The authors of Swiss Ephemeris have no control or influence over any of the derived works, i.e. over software or services created by other programmers which use Swiss Ephemeris functions. The names of the authors or of the copyright holder (Astrodienst) must not be used for promoting any software, product or service which uses or contains the Swiss Ephemeris. This copyright notice is the ONLY place where the names of the authors can legally appear, except in cases where they have given special permission in writing. The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used for promoting such software, products or services. */ /* * Expansions for the geocentric ecliptic longitude, * latitude, and distance of the Moon referred to the mean equinox * and ecliptic of date. * * This version of cmoon.c adjusts the ELP2000-85 analytical Lunar * theory of Chapront-Touze and Chapront to fit the Jet Propulsion * Laboratory's DE404 long ephemeris on the interval from 3000 B.C. * to 3000 A.D. * * The fit is much better in the remote past and future if * secular terms are included in the arguments of the oscillatory * perturbations. Such adjustments cannot easily be incorporated * into the 1991 lunar tables. In this program the traditional * literal arguments are used instead, with mean elements adjusted * for a best fit to the reference ephemeris. * * This program omits many oscillatory terms from the analytical * theory which, if they were included, would yield a much higher * accuracy for modern dates. Detailed statistics of the precision * are given in the table below. Comparing at 64-day intervals * over the period -3000 to +3000, the maximum discrepancies noted * were 7" longitude, 5" latitude, and 5 x 10^-8 au radius. * The expressions used for precession in this comparision were * those of Simon et al (1994). * * The adjusted coefficients were found by an unweighted least squares * fit to the numerical ephemeris in the mentioned test interval. * The approximation error increases rapidly outside this interval. * J. Chapront (1994) has described the basic fitting procedure. * * A major change from DE200 to DE404 is in the coefficient * of tidal acceleration of the Moon, which causes the Moon's * longitude to depart by about -0.9" per century squared * from DE200. Uncertainty in this quantity continues to * be the limiting factor in long term projections of the Moon's * ephemeris. * * Since the Lunar theory is cast in the ecliptic of date, it makes * some difference what formula you use for precession. The adjustment * to DE404 was carried out relative to the mean equinox and ecliptic * of date as defined in Williams (1994). An earlier version of this * program used the precession given by Simon et al (1994). The difference * between these two precession formulas amounts to about 12" in Lunar * longitude at 3000 B.C. * * Maximum deviations between DE404 and this program * in a set of 34274 samples spaced 64 days apart * * Interval Longitude Latitude Radius * Julian Year arc sec arc sec 10^-8 au * -3000 to -2500 5.66 4.66 4.93 * -2500 to -2000 5.49 3.98 4.56 * -2000 to -1500 6.98 4.17 4.81 * -1500 to -1000 5.74 3.53 4.87 * -1000 to -500 5.95 3.42 4.67 * -500 to 0 4.94 3.07 4.04 * 0 to 500 4.42 2.65 4.55 * 500 to 1000 5.68 3.30 3.99 * 1000 to 1500 4.32 3.21 3.83 * 1500 to 2000 2.70 2.69 3.71 * 2000 to 2500 3.35 2.32 3.85 * 2500 to 3000 4.62 2.39 4.11 * * * * References: * * James G. Williams, "Contributions to the Earth's obliquity rate, * precession, and nutation," Astron. J. 108, 711-724 (1994) * * DE403 and DE404 ephemerides by E. M. Standish, X. X. Newhall, and * J. G. Williams are at the JPL computer site navigator.jpl.nasa.gov. * * J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze', G. Francou, * and J. Laskar, "Numerical Expressions for precession formulae and * mean elements for the Moon and the planets," Astronomy and Astrophysics * 282, 663-683 (1994) * * P. Bretagnon and Francou, G., "Planetary theories in rectangular * and spherical variables. VSOP87 solutions," Astronomy and * Astrophysics 202, 309-315 (1988) * * M. Chapront-Touze' and J. Chapront, "ELP2000-85: a semi-analytical * lunar ephemeris adequate for historical times," Astronomy and * Astrophysics 190, 342-352 (1988). * * M. Chapront-Touze' and J. Chapront, _Lunar Tables and * Programs from 4000 B.C. to A.D. 8000_, Willmann-Bell (1991) * * J. Laskar, "Secular terms of classical planetary theories * using the results of general theory," Astronomy and Astrophysics * 157, 59070 (1986) * * S. L. Moshier, "Comparison of a 7000-year lunar ephemeris * with analytical theory," Astronomy and Astrophysics 262, * 613-616 (1992) * * J. Chapront, "Representation of planetary ephemerides by frequency * analysis. Application to the five outer planets," Astronomy and * Astrophysics Suppl. Ser. 109, 181-192 (1994) * * * Entry swi_moshmoon2() returns the geometric position of the Moon * relative to the Earth. Its calling procedure is as follows: * * double JD; input Julian Ephemeris Date * double pol[3]; output ecliptic polar coordinatees in radians and au * pol[0] longitude, pol[1] latitude, pol[2] radius * swi_moshmoon2( JD, pol ); * * - S. L. Moshier, August, 1991 * DE200 fit: July, 1992 * DE404 fit: October, 1995 * * Dieter Koch: adaptation to SWISSEPH, April 1996 * 18-feb-2006 replaced LP by SWELP because of name collision */ #include #include "swephexp.h" #include "sweph.h" #include "swephlib.h" static void mean_elements(void); static void mean_elements_pl(void); static double mods3600(double x); static void ecldat_equ2000(double tjd, double *xpm); static void chewm(const short *pt, int nlines, int nangles, int typflg, double *ans ); static void sscc(int k, double arg, int n ); static void moon1(void); static void moon2(void); static void moon3(void); static void moon4(void); #ifdef MOSH_MOON_200 /* The following coefficients were calculated by a simultaneous least * squares fit between the analytical theory and the continued DE200 * numerically integrated ephemeris from 9000 BC to 13000 AD. * See references to the array z[] later on in the program. * The 71 coefficients were estimated from 42,529 Lunar positions. */ static const double z[] = { -1.225346551567e+001, /* F, t^2 */ -1.096676093208e-003, /* F, t^3 */ -2.165750777942e-006, /* F, t^4 */ -2.790392351314e-009, /* F, t^5 */ 4.189032191814e-011, /* F, t^6 */ 4.474984866301e-013, /* F, t^7 */ 3.239398410335e+001, /* l, t^2 */ 5.185305877294e-002, /* l, t^3 */ -2.536291235258e-004, /* l, t^4 */ -2.506365935364e-008, /* l, t^5 */ 3.452144225877e-011, /* l, t^6 */ -1.755312760154e-012, /* l, t^7 */ -5.870522364514e+000, /* D, t^2 */ 6.493037519768e-003, /* D, t^3 */ -3.702060118571e-005, /* D, t^4 */ 2.560078201452e-009, /* D, t^5 */ 2.555243317839e-011, /* D, t^6 */ -3.207663637426e-013, /* D, t^7 */ -4.776684245026e+000, /* L, t^2 */ 6.580112707824e-003, /* L, t^3 */ -6.073960534117e-005, /* L, t^4 */ -1.024222633731e-008, /* L, t^5 */ 2.235210987108e-010, /* L, t^6 */ 7.200592540556e-014, /* L, t^7 */ -8.552017636339e+001, /* t^2 cos(18V - 16E - l) */ -2.055794304596e+002, /* t^2 sin(18V - 16E - l) */ -1.097555241866e+000, /* t^3 cos(18V - 16E - l) */ 5.219423171002e-001, /* t^3 sin(18V - 16E - l) */ 2.088802640755e-003, /* t^4 cos(18V - 16E - l) */ 4.616541527921e-003, /* t^4 sin(18V - 16E - l) */ 4.794930645807e+000, /* t^2 cos(10V - 3E - l) */ -4.595134364283e+001, /* t^2 sin(10V - 3E - l) */ -6.659812174691e-002, /* t^3 cos(10V - 3E - l) */ -2.570048828246e-001, /* t^3 sin(10V - 3E - l) */ 6.229863046223e-004, /* t^4 cos(10V - 3E - l) */ 5.504368344700e-003, /* t^4 sin(10V - 3E - l) */ -3.084830597278e+000, /* t^2 cos(8V - 13E) */ -1.000471012253e+001, /* t^2 sin(8V - 13E) */ 6.590112074510e-002, /* t^3 cos(8V - 13E) */ -3.212573348278e-003, /* t^3 sin(8V - 13E) */ 5.409038312567e-004, /* t^4 cos(8V - 13E) */ 1.293377988163e-003, /* t^4 sin(8V - 13E) */ 2.311794636111e+001, /* t^2 cos(4E - 8M + 3J) */ -3.157036220040e+000, /* t^2 sin(4E - 8M + 3J) */ -3.019293162417e+000, /* t^2 cos(18V - 16E) */ -9.211526858975e+000, /* t^2 sin(18V - 16E) */ -4.993704215784e-002, /* t^3 cos(18V - 16E) */ 2.991187525454e-002, /* t^3 sin(18V - 16E) */ -3.827414182969e+000, /* t^2 cos(18V - 16E - 2l) */ -9.891527703219e+000, /* t^2 sin(18V - 16E - 2l) */ -5.322093802878e-002, /* t^3 cos(18V - 16E - 2l) */ 3.164702647371e-002, /* t^3 sin(18V - 16E - 2l) */ 7.713905234217e+000, /* t^2 cos(2J - 5S) */ -6.077986950734e+000, /* t^3 sin(2J - 5S) */ -1.278232501462e-001, /* t^2 cos(L - F) */ 4.760967236383e-001, /* t^2 sin(L - F) */ -6.759005756460e-001, /* t^3 sin(l') */ 1.655727996357e-003, /* t^4 sin(l') */ 1.646526117252e-001, /* t^3 sin(2D - l') */ -4.167078100233e-004, /* t^4 sin(2D - l') */ 2.067529538504e-001, /* t^3 sin(2D - l' - l) */ -5.219127398748e-004, /* t^4 sin(2D - l' - l) */ -1.526335222289e-001, /* t^3 sin(l' - l) */ -1.120545131358e-001, /* t^3 sin(l' + l) */ 4.619472391553e-002, /* t^3 sin(2D - 2l') */ 4.863621236157e-004, /* t^4 sin(2D - 2l') */ -4.280059182608e-002, /* t^3 sin(2l') */ -4.328378207833e-004, /* t^4 sin(2l') */ -8.371028286974e-003, /* t^3 sin(2D - l) */ 4.089447328174e-002, /* t^3 sin(2D - 2l' - l) */ -1.238363006354e-002, /* t^3 sin(2D + 2l' - l) */ }; #else /* The following coefficients were calculated by a simultaneous least * squares fit between the analytical theory and DE404 on the finite * interval from -3000 to +3000. * The coefficients were estimated from 34,247 Lunar positions. */ static const double z[] = { /* The following are scaled in arc seconds, time in Julian centuries. They replace the corresponding terms in the mean elements. */ -1.312045233711e+01, /* F, t^2 */ -1.138215912580e-03, /* F, t^3 */ -9.646018347184e-06, /* F, t^4 */ 3.146734198839e+01, /* l, t^2 */ 4.768357585780e-02, /* l, t^3 */ -3.421689790404e-04, /* l, t^4 */ -6.847070905410e+00, /* D, t^2 */ -5.834100476561e-03, /* D, t^3 */ -2.905334122698e-04, /* D, t^4 */ -5.663161722088e+00, /* L, t^2 */ 5.722859298199e-03, /* L, t^3 */ -8.466472828815e-05, /* L, t^4 */ /* The following longitude terms are in arc seconds times 10^5. */ -8.429817796435e+01, /* t^2 cos(18V - 16E - l) */ -2.072552484689e+02, /* t^2 sin(18V - 16E - l) */ 7.876842214863e+00, /* t^2 cos(10V - 3E - l) */ 1.836463749022e+00, /* t^2 sin(10V - 3E - l) */ -1.557471855361e+01, /* t^2 cos(8V - 13E) */ -2.006969124724e+01, /* t^2 sin(8V - 13E) */ 2.152670284757e+01, /* t^2 cos(4E - 8M + 3J) */ -6.179946916139e+00, /* t^2 sin(4E - 8M + 3J) */ -9.070028191196e-01, /* t^2 cos(18V - 16E) */ -1.270848233038e+01, /* t^2 sin(18V - 16E) */ -2.145589319058e+00, /* t^2 cos(2J - 5S) */ 1.381936399935e+01, /* t^2 sin(2J - 5S) */ -1.999840061168e+00, /* t^3 sin(l') */ }; #endif /* ! MOSH_MOON_200 */ /* Perturbation tables */ #define NLR 118 static const short LR[8*NLR] = { /* Longitude Radius D l' l F 1" .0001" 1km .0001km */ 0, 0, 1, 0, 22639, 5858,-20905,-3550, 2, 0,-1, 0, 4586, 4383, -3699,-1109, 2, 0, 0, 0, 2369, 9139, -2955,-9676, 0, 0, 2, 0, 769, 257, -569,-9251, 0, 1, 0, 0, -666,-4171, 48, 8883, 0, 0, 0, 2, -411,-5957, -3,-1483, 2, 0,-2, 0, 211, 6556, 246, 1585, 2,-1,-1, 0, 205, 4358, -152,-1377, 2, 0, 1, 0, 191, 9562, -170,-7331, 2,-1, 0, 0, 164, 7285, -204,-5860, 0, 1,-1, 0, -147,-3213, -129,-6201, 1, 0, 0, 0, -124,-9881, 108, 7427, 0, 1, 1, 0, -109,-3803, 104, 7552, 2, 0, 0,-2, 55, 1771, 10, 3211, 0, 0, 1, 2, -45, -996, 0, 0, 0, 0, 1,-2, 39, 5333, 79, 6606, 4, 0,-1, 0, 38, 4298, -34,-7825, 0, 0, 3, 0, 36, 1238, -23,-2104, 4, 0,-2, 0, 30, 7726, -21,-6363, 2, 1,-1, 0, -28,-3971, 24, 2085, 2, 1, 0, 0, -24,-3582, 30, 8238, 1, 0,-1, 0, -18,-5847, -8,-3791, 1, 1, 0, 0, 17, 9545, -16,-6747, 2,-1, 1, 0, 14, 5303, -12,-8314, 2, 0, 2, 0, 14, 3797, -10,-4448, 4, 0, 0, 0, 13, 8991, -11,-6500, 2, 0,-3, 0, 13, 1941, 14, 4027, 0, 1,-2, 0, -9,-6791, -7, -27, 2, 0,-1, 2, -9,-3659, 0, 7740, 2,-1,-2, 0, 8, 6055, 10, 562, 1, 0, 1, 0, -8,-4531, 6, 3220, 2,-2, 0, 0, 8, 502, -9,-8845, 0, 1, 2, 0, -7,-6302, 5, 7509, 0, 2, 0, 0, -7,-4475, 1, 657, 2,-2,-1, 0, 7, 3712, -4,-9501, 2, 0, 1,-2, -6,-3832, 4, 1311, 2, 0, 0, 2, -5,-7416, 0, 0, 4,-1,-1, 0, 4, 3740, -3,-9580, 0, 0, 2, 2, -3,-9976, 0, 0, 3, 0,-1, 0, -3,-2097, 3, 2582, 2, 1, 1, 0, -2,-9145, 2, 6164, 4,-1,-2, 0, 2, 7319, -1,-8970, 0, 2,-1, 0, -2,-5679, -2,-1171, 2, 2,-1, 0, -2,-5212, 2, 3536, 2, 1,-2, 0, 2, 4889, 0, 1437, 2,-1, 0,-2, 2, 1461, 0, 6571, 4, 0, 1, 0, 1, 9777, -1,-4226, 0, 0, 4, 0, 1, 9337, -1,-1169, 4,-1, 0, 0, 1, 8708, -1,-5714, 1, 0,-2, 0, -1,-7530, -1,-7385, 2, 1, 0,-2, -1,-4372, 0,-1357, 0, 0, 2,-2, -1,-3726, -4,-4212, 1, 1, 1, 0, 1, 2618, 0,-9333, 3, 0,-2, 0, -1,-2241, 0, 8624, 4, 0,-3, 0, 1, 1868, 0,-5142, 2,-1, 2, 0, 1, 1770, 0,-8488, 0, 2, 1, 0, -1,-1617, 1, 1655, 1, 1,-1, 0, 1, 777, 0, 8512, 2, 0, 3, 0, 1, 595, 0,-6697, 2, 0, 1, 2, 0,-9902, 0, 0, 2, 0,-4, 0, 0, 9483, 0, 7785, 2,-2, 1, 0, 0, 7517, 0,-6575, 0, 1,-3, 0, 0,-6694, 0,-4224, 4, 1,-1, 0, 0,-6352, 0, 5788, 1, 0, 2, 0, 0,-5840, 0, 3785, 1, 0, 0,-2, 0,-5833, 0,-7956, 6, 0,-2, 0, 0, 5716, 0,-4225, 2, 0,-2,-2, 0,-5606, 0, 4726, 1,-1, 0, 0, 0,-5569, 0, 4976, 0, 1, 3, 0, 0,-5459, 0, 3551, 2, 0,-2, 2, 0,-5357, 0, 7740, 2, 0,-1,-2, 0, 1790, 8, 7516, 3, 0, 0, 0, 0, 4042, -1,-4189, 2,-1,-3, 0, 0, 4784, 0, 4950, 2,-1, 3, 0, 0, 932, 0, -585, 2, 0, 2,-2, 0,-4538, 0, 2840, 2,-1,-1, 2, 0,-4262, 0, 373, 0, 0, 0, 4, 0, 4203, 0, 0, 0, 1, 0, 2, 0, 4134, 0,-1580, 6, 0,-1, 0, 0, 3945, 0,-2866, 2,-1, 0, 2, 0,-3821, 0, 0, 2,-1, 1,-2, 0,-3745, 0, 2094, 4, 1,-2, 0, 0,-3576, 0, 2370, 1, 1,-2, 0, 0, 3497, 0, 3323, 2,-3, 0, 0, 0, 3398, 0,-4107, 0, 0, 3, 2, 0,-3286, 0, 0, 4,-2,-1, 0, 0,-3087, 0,-2790, 0, 1,-1,-2, 0, 3015, 0, 0, 4, 0,-1,-2, 0, 3009, 0,-3218, 2,-2,-2, 0, 0, 2942, 0, 3430, 6, 0,-3, 0, 0, 2925, 0,-1832, 2, 1, 2, 0, 0,-2902, 0, 2125, 4, 1, 0, 0, 0,-2891, 0, 2445, 4,-1, 1, 0, 0, 2825, 0,-2029, 3, 1,-1, 0, 0, 2737, 0,-2126, 0, 1, 1, 2, 0, 2634, 0, 0, 1, 0, 0, 2, 0, 2543, 0, 0, 3, 0, 0,-2, 0,-2530, 0, 2010, 2, 2,-2, 0, 0,-2499, 0,-1089, 2,-3,-1, 0, 0, 2469, 0,-1481, 3,-1,-1, 0, 0,-2314, 0, 2556, 4, 0, 2, 0, 0, 2185, 0,-1392, 4, 0,-1, 2, 0,-2013, 0, 0, 0, 2,-2, 0, 0,-1931, 0, 0, 2, 2, 0, 0, 0,-1858, 0, 0, 2, 1,-3, 0, 0, 1762, 0, 0, 4, 0,-2, 2, 0,-1698, 0, 0, 4,-2,-2, 0, 0, 1578, 0,-1083, 4,-2, 0, 0, 0, 1522, 0,-1281, 3, 1, 0, 0, 0, 1499, 0,-1077, 1,-1,-1, 0, 0,-1364, 0, 1141, 1,-3, 0, 0, 0,-1281, 0, 0, 6, 0, 0, 0, 0, 1261, 0, -859, 2, 0, 2, 2, 0,-1239, 0, 0, 1,-1, 1, 0, 0,-1207, 0, 1100, 0, 0, 5, 0, 0, 1110, 0, -589, 0, 3, 0, 0, 0,-1013, 0, 213, 4,-1,-3, 0, 0, 998, 0, 0, }; #ifdef MOSH_MOON_200 #define NMB 56 static const short MB[6*NMB] = { /* Latitude D l' l F 1" .0001" */ 0, 0, 0, 1,18461, 2387, 0, 0, 1, 1, 1010, 1671, 0, 0, 1,-1, 999, 6936, 2, 0, 0,-1, 623, 6524, 2, 0,-1, 1, 199, 4837, 2, 0,-1,-1, 166, 5741, 2, 0, 0, 1, 117, 2607, 0, 0, 2, 1, 61, 9120, 2, 0, 1,-1, 33, 3572, 0, 0, 2,-1, 31, 7597, 2,-1, 0,-1, 29, 5766, 2, 0,-2,-1, 15, 5663, 2, 0, 1, 1, 15, 1216, 2, 1, 0,-1, -12, -941, 2,-1,-1, 1, 8, 8681, 2,-1, 0, 1, 7, 9586, 2,-1,-1,-1, 7, 4346, 0, 1,-1,-1, -6,-7314, 4, 0,-1,-1, 6, 5796, 0, 1, 0, 1, -6,-4601, 0, 0, 0, 3, -6,-2965, 0, 1,-1, 1, -5,-6324, 1, 0, 0, 1, -5,-3684, 0, 1, 1, 1, -5,-3113, 0, 1, 1,-1, -5, -759, 0, 1, 0,-1, -4,-8396, 1, 0, 0,-1, -4,-8057, 0, 0, 3, 1, 3, 9841, 4, 0, 0,-1, 3, 6745, 4, 0,-1, 1, 2, 9985, 0, 0, 1,-3, 2, 7986, 4, 0,-2, 1, 2, 4139, 2, 0, 0,-3, 2, 1863, 2, 0, 2,-1, 2, 1462, 2,-1, 1,-1, 1, 7660, 2, 0,-2, 1, -1,-6244, 0, 0, 3,-1, 1, 5813, 2, 0, 2, 1, 1, 5198, 2, 0,-3,-1, 1, 5156, 2, 1,-1, 1, -1,-3178, 2, 1, 0, 1, -1,-2643, 4, 0, 0, 1, 1, 1919, 2,-1, 1, 1, 1, 1346, 2,-2, 0,-1, 1, 859, 0, 0, 1, 3, -1, -194, 2, 1, 1,-1, 0,-8227, 1, 1, 0,-1, 0, 8042, 1, 1, 0, 1, 0, 8026, 0, 1,-2,-1, 0,-7932, 2, 1,-1,-1, 0,-7910, 1, 0, 1, 1, 0,-6674, 2,-1,-2,-1, 0, 6502, 0, 1, 2, 1, 0,-6388, 4, 0,-2,-1, 0, 6337, 4,-1,-1,-1, 0, 5958, 1, 0, 1,-1, 0,-5889, }; #else #define NMB 77 static const short MB[6*NMB] = { /* Latitude D l' l F 1" .0001" */ 0, 0, 0, 1,18461, 2387, 0, 0, 1, 1, 1010, 1671, 0, 0, 1,-1, 999, 6936, 2, 0, 0,-1, 623, 6524, 2, 0,-1, 1, 199, 4837, 2, 0,-1,-1, 166, 5741, 2, 0, 0, 1, 117, 2607, 0, 0, 2, 1, 61, 9120, 2, 0, 1,-1, 33, 3572, 0, 0, 2,-1, 31, 7597, 2,-1, 0,-1, 29, 5766, 2, 0,-2,-1, 15, 5663, 2, 0, 1, 1, 15, 1216, 2, 1, 0,-1, -12, -941, 2,-1,-1, 1, 8, 8681, 2,-1, 0, 1, 7, 9586, 2,-1,-1,-1, 7, 4346, 0, 1,-1,-1, -6,-7314, 4, 0,-1,-1, 6, 5796, 0, 1, 0, 1, -6,-4601, 0, 0, 0, 3, -6,-2965, 0, 1,-1, 1, -5,-6324, 1, 0, 0, 1, -5,-3684, 0, 1, 1, 1, -5,-3113, 0, 1, 1,-1, -5, -759, 0, 1, 0,-1, -4,-8396, 1, 0, 0,-1, -4,-8057, 0, 0, 3, 1, 3, 9841, 4, 0, 0,-1, 3, 6745, 4, 0,-1, 1, 2, 9985, 0, 0, 1,-3, 2, 7986, 4, 0,-2, 1, 2, 4139, 2, 0, 0,-3, 2, 1863, 2, 0, 2,-1, 2, 1462, 2,-1, 1,-1, 1, 7660, 2, 0,-2, 1, -1,-6244, 0, 0, 3,-1, 1, 5813, 2, 0, 2, 1, 1, 5198, 2, 0,-3,-1, 1, 5156, 2, 1,-1, 1, -1,-3178, 2, 1, 0, 1, -1,-2643, 4, 0, 0, 1, 1, 1919, 2,-1, 1, 1, 1, 1346, 2,-2, 0,-1, 1, 859, 0, 0, 1, 3, -1, -194, 2, 1, 1,-1, 0,-8227, 1, 1, 0,-1, 0, 8042, 1, 1, 0, 1, 0, 8026, 0, 1,-2,-1, 0,-7932, 2, 1,-1,-1, 0,-7910, 1, 0, 1, 1, 0,-6674, 2,-1,-2,-1, 0, 6502, 0, 1, 2, 1, 0,-6388, 4, 0,-2,-1, 0, 6337, 4,-1,-1,-1, 0, 5958, 1, 0, 1,-1, 0,-5889, 4, 0, 1,-1, 0, 4734, 1, 0,-1,-1, 0,-4299, 4,-1, 0,-1, 0, 4149, 2,-2, 0, 1, 0, 3835, 3, 0, 0,-1, 0,-3518, 4,-1,-1, 1, 0, 3388, 2, 0,-1,-3, 0, 3291, 2,-2,-1, 1, 0, 3147, 0, 1, 2,-1, 0,-3129, 3, 0,-1,-1, 0,-3052, 0, 1,-2, 1, 0,-3013, 2, 0, 1,-3, 0,-2912, 2,-2,-1,-1, 0, 2686, 0, 0, 4, 1, 0, 2633, 2, 0,-3, 1, 0, 2541, 2, 0,-1, 3, 0,-2448, 2, 1, 1, 1, 0,-2370, 4,-1,-2, 1, 0, 2138, 4, 0, 1, 1, 0, 2126, 3, 0,-1, 1, 0,-2059, 4, 1,-1,-1, 0,-1719, }; #endif /* ! MOSH_MOON_200 */ #define NLRT 38 static const short LRT[8*NLRT] = { /* Multiply by T Longitude Radius D l' l F .1" .00001" .1km .00001km */ 0, 1, 0, 0, 16, 7680, -1,-2302, 2,-1,-1, 0, -5,-1642, 3, 8245, 2,-1, 0, 0, -4,-1383, 5, 1395, 0, 1,-1, 0, 3, 7115, 3, 2654, 0, 1, 1, 0, 2, 7560, -2,-6396, 2, 1,-1, 0, 0, 7118, 0,-6068, 2, 1, 0, 0, 0, 6128, 0,-7754, 1, 1, 0, 0, 0,-4516, 0, 4194, 2,-2, 0, 0, 0,-4048, 0, 4970, 0, 2, 0, 0, 0, 3747, 0, -540, 2,-2,-1, 0, 0,-3707, 0, 2490, 2,-1, 1, 0, 0,-3649, 0, 3222, 0, 1,-2, 0, 0, 2438, 0, 1760, 2,-1,-2, 0, 0,-2165, 0,-2530, 0, 1, 2, 0, 0, 1923, 0,-1450, 0, 2,-1, 0, 0, 1292, 0, 1070, 2, 2,-1, 0, 0, 1271, 0,-6070, 4,-1,-1, 0, 0,-1098, 0, 990, 2, 0, 0, 0, 0, 1073, 0,-1360, 2, 0,-1, 0, 0, 839, 0, -630, 2, 1, 1, 0, 0, 734, 0, -660, 4,-1,-2, 0, 0, -688, 0, 480, 2, 1,-2, 0, 0, -630, 0, 0, 0, 2, 1, 0, 0, 587, 0, -590, 2,-1, 0,-2, 0, -540, 0, -170, 4,-1, 0, 0, 0, -468, 0, 390, 2,-2, 1, 0, 0, -378, 0, 330, 2, 1, 0,-2, 0, 364, 0, 0, 1, 1, 1, 0, 0, -317, 0, 240, 2,-1, 2, 0, 0, -295, 0, 210, 1, 1,-1, 0, 0, -270, 0, -210, 2,-3, 0, 0, 0, -256, 0, 310, 2,-3,-1, 0, 0, -187, 0, 110, 0, 1,-3, 0, 0, 169, 0, 110, 4, 1,-1, 0, 0, 158, 0, -150, 4,-2,-1, 0, 0, -155, 0, 140, 0, 0, 1, 0, 0, 155, 0, -250, 2,-2,-2, 0, 0, -148, 0, -170, }; #define NBT 16 static const short BT[5*NBT] = { /* Multiply by T Latitude D l' l F .00001" */ 2,-1, 0,-1, -7430, 2, 1, 0,-1, 3043, 2,-1,-1, 1, -2229, 2,-1, 0, 1, -1999, 2,-1,-1,-1, -1869, 0, 1,-1,-1, 1696, 0, 1, 0, 1, 1623, 0, 1,-1, 1, 1418, 0, 1, 1, 1, 1339, 0, 1, 1,-1, 1278, 0, 1, 0,-1, 1217, 2,-2, 0,-1, -547, 2,-1, 1,-1, -443, 2, 1,-1, 1, 331, 2, 1, 0, 1, 317, 2, 0, 0,-1, 295, }; #define NLRT2 25 static const short LRT2[6*NLRT2] = { /* Multiply by T^2 Longitude Radius D l' l F .00001" .00001km */ 0, 1, 0, 0, 487, -36, 2,-1,-1, 0, -150, 111, 2,-1, 0, 0, -120, 149, 0, 1,-1, 0, 108, 95, 0, 1, 1, 0, 80, -77, 2, 1,-1, 0, 21, -18, 2, 1, 0, 0, 20, -23, 1, 1, 0, 0, -13, 12, 2,-2, 0, 0, -12, 14, 2,-1, 1, 0, -11, 9, 2,-2,-1, 0, -11, 7, 0, 2, 0, 0, 11, 0, 2,-1,-2, 0, -6, -7, 0, 1,-2, 0, 7, 5, 0, 1, 2, 0, 6, -4, 2, 2,-1, 0, 5, -3, 0, 2,-1, 0, 5, 3, 4,-1,-1, 0, -3, 3, 2, 0, 0, 0, 3, -4, 4,-1,-2, 0, -2, 0, 2, 1,-2, 0, -2, 0, 2,-1, 0,-2, -2, 0, 2, 1, 1, 0, 2, -2, 2, 0,-1, 0, 2, 0, 0, 2, 1, 0, 2, 0, }; #define NBT2 12 static const short BT2[5*NBT2] = { /* Multiply by T^2 Latitiude D l' l F .00001" */ 2,-1, 0,-1, -22, 2, 1, 0,-1, 9, 2,-1, 0, 1, -6, 2,-1,-1, 1, -6, 2,-1,-1,-1, -5, 0, 1, 0, 1, 5, 0, 1,-1,-1, 5, 0, 1, 1, 1, 4, 0, 1, 1,-1, 4, 0, 1, 0,-1, 4, 0, 1,-1, 1, 4, 2,-2, 0,-1, -2, }; /* corrections for mean lunar node in degrees, from -13100 to 17200, * in 100-year steps. corrections are set to 0 between the years 0 and 3000 */ static const double mean_node_corr[] = { -2.56, -2.473, -2.392347, -2.316425, -2.239639, -2.167764, -2.095100, -2.024810, -1.957622, -1.890097, -1.826389, -1.763335, -1.701047, -1.643016, -1.584186, -1.527309, -1.473352, -1.418917, -1.367736, -1.317202, -1.267269, -1.221121, -1.174218, -1.128862, -1.086214, -1.042998, -1.002491, -0.962635, -0.923176, -0.887191, -0.850403, -0.814929, -0.782117, -0.748462, -0.717241, -0.686598, -0.656013, -0.628726, -0.600460, -0.573219, -0.548634, -0.522931, -0.499285, -0.476273, -0.452978, -0.432663, -0.411386, -0.390788, -0.372825, -0.353681, -0.336230, -0.319520, -0.302343, -0.287794, -0.272262, -0.257166, -0.244534, -0.230635, -0.218126, -0.206365, -0.194000, -0.183876, -0.172782, -0.161877, -0.153254, -0.143371, -0.134501, -0.126552, -0.117932, -0.111199, -0.103716, -0.096160, -0.090718, -0.084046, -0.078007, -0.072959, -0.067235, -0.062990, -0.058102, -0.053070, -0.049786, -0.045381, -0.041317, -0.038165, -0.034501, -0.031871, -0.028844, -0.025701, -0.024018, -0.021427, -0.018881, -0.017291, -0.015186, -0.013755, -0.012098, -0.010261, -0.009688, -0.008218, -0.006670, -0.005979, -0.004756, -0.003991, -0.002996, -0.001974, -0.001975, -0.001213, -0.000377, -0.000356, 5.779e-05, 0.000378, 0.000710, 0.001092, 0.000767, 0.000985, 0.001443, 0.001069, 0.001141, 0.001321, 0.001462, 0.001695, 0.001319, 0.001567, 0.001873, 0.001376, 0.001336, 0.001347, 0.001330, 0.001256, 0.000813, 0.000946, 0.001079, #if 0 0.000509, 0.000375, 0.000477, 0.000321, 0.000279, 5.998e-05, 0.000251, 0.000623, 0.000180, 0.000225, 0.000506, 0.000331, 0.000253, 4.156e-05, 0.000247, 0.000394, -9.294e-05, -2.738e-05, 0.000140, -6.193e-05, -0.000232, -0.000361, -0.000152, -3.571e-05, -0.000395, -0.000218, 0.000127, -0.000125, -0.000254, -0.000339, #endif 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.000364, -0.000452, -0.001091, -0.001159, -0.001136, -0.001798, -0.002249, -0.002622, -0.002990, -0.003555, -0.004425, -0.004758, -0.005134, -0.006065, -0.006839, -0.007474, -0.008283, -0.009411, -0.010786, -0.011810, -0.012989, -0.014825, -0.016426, -0.017922, -0.019774, -0.021881, -0.024194, -0.026190, -0.028440, -0.031285, -0.033817, -0.036318, -0.039212, -0.042456, -0.045799, -0.048994, -0.052710, -0.056948, -0.061017, -0.065181, -0.069843, -0.074922, -0.079976, -0.085052, -0.090755, -0.096840, -0.102797, -0.108939, -0.115568, -0.122636, -0.129593, -0.136683, -0.144641, -0.152825, -0.161044, -0.169758, -0.178916, -0.188712, -0.198401, -0.208312, -0.219395, -0.230407, -0.241577, -0.253508, -0.265640, -0.278556, -0.291330, -0.304353, -0.318815, -0.332882, -0.347316, -0.362895, -0.378421, -0.395061, -0.411748, -0.428666, -0.447477, -0.465636, -0.484277, -0.504600, -0.524405, -0.545533, -0.567020, -0.588404, -0.612099, -0.634965, -0.658262, -0.683866, -0.708526, -0.734719, -0.761800, -0.788562, -0.818092, -0.846885, -0.876177, -0.908385, -0.939371, -0.972027, -1.006149, -1.039634, -1.076135, -1.112156, -1.148490, -1.188312, -1.226761, -1.266821, -1.309156, -1.350583, -1.395223, -1.440028, -1.485047, -1.534104, -1.582023, -1.631506, -1.684031, -1.735687, -1.790421, -1.846039, -1.901951, -1.961872, -2.021179, -2.081987, -2.146259, -2.210031, -2.276609, -2.344904, -2.413795, -2.486559, -2.559564, -2.634215, -2.712692, -2.791289, -2.872533, -2.956217, -3.040965, -3.129234, -3.218545, -3.309805, -3.404827, -3.5008, -3.601, -3.7, -3.8, }; /* corrections for mean lunar apsides in degrees, from -13100 to 17200, * in 100-year steps. corrections are set to 0 between the years 0 and 3000 */ static const double mean_apsis_corr[] = { 7.525, 7.290, 7.057295, 6.830813, 6.611723, 6.396775, 6.189569, 5.985968, 5.788342, 5.597304, 5.410167, 5.229946, 5.053389, 4.882187, 4.716494, 4.553532, 4.396734, 4.243718, 4.094282, 3.950865, 3.810366, 3.674978, 3.543284, 3.414270, 3.290526, 3.168775, 3.050904, 2.937541, 2.826189, 2.719822, 2.616193, 2.515431, 2.419193, 2.323782, 2.232545, 2.143635, 2.056803, 1.974913, 1.893874, 1.816201, 1.741957, 1.668083, 1.598335, 1.529645, 1.463016, 1.399693, 1.336905, 1.278097, 1.220965, 1.165092, 1.113071, 1.060858, 1.011007, 0.963701, 0.916523, 0.872887, 0.829596, 0.788486, 0.750017, 0.711177, 0.675589, 0.640303, 0.605303, 0.573490, 0.541113, 0.511482, 0.483159, 0.455210, 0.430305, 0.404643, 0.380782, 0.358524, 0.335405, 0.315244, 0.295131, 0.275766, 0.259223, 0.241586, 0.225890, 0.210404, 0.194775, 0.181573, 0.167246, 0.154514, 0.143435, 0.131131, 0.121648, 0.111835, 0.102474, 0.094284, 0.085204, 0.078240, 0.070697, 0.063696, 0.058894, 0.052390, 0.047632, 0.043129, 0.037823, 0.034143, 0.029188, 0.025648, 0.021972, 0.018348, 0.017127, 0.013989, 0.011967, 0.011003, 0.007865, 0.007033, 0.005574, 0.004060, 0.003699, 0.002465, 0.002889, 0.002144, 0.001018, 0.001757, -9.67e-05, -0.000734, -0.000392, -0.001546, -0.000863, -0.001266, -0.000933, -0.000503, -0.001304, 0.000238, -0.000507, -0.000897, 0.000647, #if 0 -0.000247, 0.000938, 0.001373, 0.001159, 0.001644, 0.000691, 0.001454, 0.000532, -0.000249, 0.000871, -0.000210, 0.000171, 0.000702, 0.000389, 0.000609, -0.000250, 0.000426, 0.000123, -0.000339, 0.001200, 0.000413, 0.000612, 0.001169, 0.000163, 0.000553, -0.000330, -0.000498, -0.000224, -0.000948, 0.000863, #endif 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000514, 0.000683, 0.002228, 0.001974, 0.003485, 0.004280, 0.005409, 0.007468, 0.007938, 0.011012, 0.012525, 0.013757, 0.016757, 0.017932, 0.020780, 0.023416, 0.026386, 0.030428, 0.033512, 0.038789, 0.043126, 0.047778, 0.054175, 0.058891, 0.065878, 0.072345, 0.079668, 0.088238, 0.095307, 0.104873, 0.113533, 0.122336, 0.133205, 0.142922, 0.154871, 0.166488, 0.179234, 0.193928, 0.207262, 0.223089, 0.238736, 0.254907, 0.273232, 0.291085, 0.311046, 0.331025, 0.351955, 0.374422, 0.396341, 0.420772, 0.444867, 0.469984, 0.497448, 0.524717, 0.554752, 0.584581, 0.616272, 0.649744, 0.682947, 0.719405, 0.755834, 0.793780, 0.833875, 0.873893, 0.917340, 0.960429, 1.005471, 1.052384, 1.099317, 1.149508, 1.200130, 1.253038, 1.307672, 1.363480, 1.422592, 1.481900, 1.544111, 1.607982, 1.672954, 1.741025, 1.809727, 1.882038, 1.955243, 2.029956, 2.108428, 2.186805, 2.268697, 2.352071, 2.437370, 2.525903, 2.615415, 2.709082, 2.804198, 2.901704, 3.002606, 3.104412, 3.210406, 3.317733, 3.428386, 3.541634, 3.656634, 3.775988, 3.896306, 4.020480, 4.146814, 4.275356, 4.408257, 4.542282, 4.681174, 4.822524, 4.966424, 5.114948, 5.264973, 5.419906, 5.577056, 5.737688, 5.902347, 6.069138, 6.241065, 6.415155, 6.593317, 6.774853, 6.959322, 7.148845, 7.340334, 7.537156, 7.737358, 7.940882, 8.149932, 8.361576, 8.579150, 8.799591, 9.024378, 9.254584, 9.487362, 9.726535, 9.968784, 10.216089, 10.467716, 10.725293, 10.986, 11.25, 11.52, }; /* The following times are set up by update() and refer * to the same instant. The distinction between them * is required by altaz(). */ static TLS double ss[5][8]; static TLS double cc[5][8]; static TLS double l; /* Moon's ecliptic longitude */ static TLS double B; /* Ecliptic latitude */ static TLS double moonpol[3]; /* Orbit calculation begins. */ static TLS double SWELP; static TLS double M; static TLS double MP; static TLS double D; static TLS double NF; static TLS double T; static TLS double T2; static TLS double T3; static TLS double T4; static TLS double f; static TLS double g; static TLS double Ve; static TLS double Ea; static TLS double Ma; static TLS double Ju; static TLS double Sa; static TLS double cg; static TLS double sg; static TLS double l1; static TLS double l2; static TLS double l3; static TLS double l4; /* Calculate geometric coordinates of Moon * without light time or nutation correction. */ int swi_moshmoon2(double J, double *pol) { int i; T = (J-J2000)/36525.0; T2 = T*T; mean_elements(); mean_elements_pl(); moon1(); moon2(); moon3(); moon4(); for( i=0; i<3; i++ ) pol[i] = moonpol[i]; return(0); } /* Moshier's moom * tjd julian day * xpm array of 6 doubles for moon's position and speed vectors * serr pointer to error string */ int swi_moshmoon(double tjd, AS_BOOL do_save, double *xpmret, char *serr) { int i; double a, b, x1[6], x2[6], t; double xx[6], *xpm; struct plan_data *pdp = &swed.pldat[SEI_MOON]; char s[AS_MAXCH]; if (do_save) xpm = pdp->x; else xpm = xx; /* allow 0.2 day tolerance so that true node interval fits in */ if (tjd < MOSHLUEPH_START - 0.2 || tjd > MOSHLUEPH_END + 0.2) { if (serr != NULL) { sprintf(s, "jd %f outside Moshier's Moon range %.2f .. %.2f ", tjd, MOSHLUEPH_START, MOSHLUEPH_END); if (strlen(serr) + strlen(s) < AS_MAXCH) strcat(serr, s); } return(ERR); } /* if moon has already been computed */ if (tjd == pdp->teval && pdp->iephe == SEFLG_MOSEPH) { if (xpmret != NULL) for (i = 0; i <= 5; i++) xpmret[i] = pdp->x[i]; return(OK); } /* else compute moon */ swi_moshmoon2(tjd, xpm); if (do_save) { pdp->teval = tjd; pdp->xflgs = -1; pdp->iephe = SEFLG_MOSEPH; } /* Moshier moon is referred to ecliptic of date. But we need * equatorial positions for several reasons. * e.g. computation of earth from emb and moon * of heliocentric moon * Besides, this helps to keep the program structure simpler */ ecldat_equ2000(tjd, xpm); /* speed */ /* from 2 other positions. */ /* one would be good enough for computation of osculating node, * but not for osculating apogee */ t = tjd + MOON_SPEED_INTV; swi_moshmoon2(t, x1); ecldat_equ2000(t, x1); t = tjd - MOON_SPEED_INTV; swi_moshmoon2(t, x2); ecldat_equ2000(t, x2); for (i = 0; i <= 2; i++) { #if 0 xpm[i+3] = (x1[i] - x2[i]) / MOON_SPEED_INTV / 2; #else b = (x1[i] - x2[i]) / 2; a = (x1[i] + x2[i]) / 2 - xpm[i]; xpm[i+3] = (2 * a + b) / MOON_SPEED_INTV; #endif } if (xpmret != NULL) for (i = 0; i <= 5; i++) xpmret[i] = xpm[i]; return(OK); } #ifdef MOSH_MOON_200 static void moon1() { double a; sscc( 0, STR*D, 6 ); sscc( 1, STR*M, 4 ); sscc( 2, STR*MP, 4 ); sscc( 3, STR*NF, 4 ); moonpol[0] = 0.0; moonpol[1] = 0.0; moonpol[2] = 0.0; /* terms in T^2, scale 1.0 = 10^-5" */ chewm( LRT2, NLRT2, 4, 2, moonpol ); chewm( BT2, NBT2, 4, 4, moonpol ); f = 18 * Ve - 16 * Ea; g = STR*(f - MP ); /* 18V - 16E - l */ cg = cos(g); sg = sin(g); l = 6.367278 * cg + 12.747036 * sg; /* t^0 */ l1 = 23123.70 * cg - 10570.02 * sg; /* t^1 */ l2 = z[24] * cg + z[25] * sg; /* t^2 */ l3 = z[26] * cg + z[27] * sg; /* t^3 */ l4 = z[28] * cg + z[29] * sg; /* t^4 */ moonpol[2] += 5.01 * cg + 2.72 * sg; g = STR * (10.*Ve - 3.*Ea - MP); cg = cos(g); sg = sin(g); l += -0.253102 * cg + 0.503359 * sg; l1 += 1258.46 * cg + 707.29 * sg; l2 += z[30] * cg + z[31] * sg; l3 += z[32] * cg + z[33] * sg; l4 += z[34] * cg + z[35] * sg; g = STR*(8.*Ve - 13.*Ea); cg = cos(g); sg = sin(g); l += -0.187231 * cg - 0.127481 * sg; l1 += -319.87 * cg - 18.34 * sg; l2 += z[36] * cg + z[37] * sg; l3 += z[38] * cg + z[39] * sg; l4 += z[40] * cg + z[41] * sg; a = 4.0*Ea - 8.0*Ma + 3.0*Ju; g = STR * a; cg = cos(g); sg = sin(g); l += -0.866287 * cg + 0.248192 * sg; l1 += 41.87 * cg + 1053.97 * sg; l2 += z[42] * cg + z[43] * sg; g = STR*(a - MP); cg = cos(g); sg = sin(g); l += -0.165009 * cg + 0.044176 * sg; l1 += 4.67 * cg + 201.55 * sg; g = STR*f; /* 18V - 16E */ cg = cos(g); sg = sin(g); l += 0.330401 * cg + 0.661362 * sg; l1 += 1202.67 * cg - 555.59 * sg; l2 += z[44] * cg + z[45] * sg; l3 += z[46] * cg + z[47] * sg; g = STR*(f - 2.0*MP ); /* 18V - 16E - 2l */ cg = cos(g); sg = sin(g); l += 0.352185 * cg + 0.705041 * sg; l1 += 1283.59 * cg - 586.43 * sg; l2 += z[48] * cg + z[49] * sg; l3 += z[50] * cg + z[51] * sg; g = STR * (2.0*Ju - 5.0*Sa); cg = cos(g); sg = sin(g); l += -0.034700 * cg + 0.160041 * sg; l2 += z[52] * cg + z[53] * sg; g = STR * (SWELP - NF); cg = cos(g); sg = sin(g); l += 0.000116 * cg + 7.063040 * sg; l1 += 298.8 * sg; l2 += z[54] * cg + z[55] * sg; /* T^3 terms */ sg = sin( STR * M ); l3 += z[56] * sg; l4 += z[57] * sg; g = STR * (2.0*D - M); sg = sin(g); cg = cos(g); l3 += z[58] * sg; l4 += z[59] * sg; moonpol[2] += -0.2655 * cg * T; g = g - STR * MP; sg = sin(g); l3 += z[60] * sg; l4 += z[61] * sg; g = STR * (M - MP); l3 += z[62] * sin( g ); moonpol[2] += -0.1568 * cos( g ) * T; g = STR * (M + MP); l3 += z[63] * sin( g ); moonpol[2] += 0.1309 * cos( g ) * T; g = STR * 2.0 * (D - M); sg = sin(g); l3 += z[64] * sg; l4 += z[65] * sg; g = STR * 2.0 * M; sg = sin(g); l3 += z[66] * sg; l4 += z[67] * sg; g = STR * (2.0*D - MP); sg = sin(g); l3 += z[68] * sg; g = STR * (2.0*(D - M) - MP); sg = sin(g); l3 += z[69] * sg; g = STR * (2.0*(D + M) - MP); sg = sin(g); cg = cos(g); l3 += z[70] * sg; moonpol[2] += 0.5568 * cg * T; l2 += moonpol[0]; g = STR*(2.0*D - M - MP); moonpol[2] += -0.1910 * cos( g ) * T; moonpol[1] *= T; moonpol[2] *= T; /* terms in T */ moonpol[0] = 0.0; chewm( BT, NBT, 4, 4, moonpol ); chewm( LRT, NLRT, 4, 1, moonpol ); g = STR*(f - MP - NF - 2355767.6); /* 18V - 16E - l - F */ moonpol[1] += -1127. * sin(g); g = STR*(f - MP + NF - 235353.6); /* 18V - 16E - l + F */ moonpol[1] += -1123. * sin(g); g = STR*(Ea + D + 51987.6); moonpol[1] += 1303. * sin(g); g = STR*SWELP; moonpol[1] += 342. * sin(g); g = STR*(2.*Ve - 3.*Ea); cg = cos(g); sg = sin(g); l += -0.343550 * cg - 0.000276 * sg; l1 += 105.90 * cg + 336.53 * sg; g = STR*(f - 2.*D); /* 18V - 16E - 2D */ cg = cos(g); sg = sin(g); l += 0.074668 * cg + 0.149501 * sg; l1 += 271.77 * cg - 124.20 * sg; g = STR*(f - 2.*D - MP); cg = cos(g); sg = sin(g); l += 0.073444 * cg + 0.147094 * sg; l1 += 265.24 * cg - 121.16 * sg; g = STR*(f + 2.*D - MP); cg = cos(g); sg = sin(g); l += 0.072844 * cg + 0.145829 * sg; l1 += 265.18 * cg - 121.29 * sg; g = STR*(f + 2.*(D - MP)); cg = cos(g); sg = sin(g); l += 0.070201 * cg + 0.140542 * sg; l1 += 255.36 * cg - 116.79 * sg; g = STR*(Ea + D - NF); cg = cos(g); sg = sin(g); l += 0.288209 * cg - 0.025901 * sg; l1 += -63.51 * cg - 240.14 * sg; g = STR*(2.*Ea - 3.*Ju + 2.*D - MP); cg = cos(g); sg = sin(g); l += 0.077865 * cg + 0.438460 * sg; l1 += 210.57 * cg + 124.84 * sg; g = STR*(Ea - 2.*Ma); cg = cos(g); sg = sin(g); l += -0.216579 * cg + 0.241702 * sg; l1 += 197.67 * cg + 125.23 * sg; g = STR*(a + MP); cg = cos(g); sg = sin(g); l += -0.165009 * cg + 0.044176 * sg; l1 += 4.67 * cg + 201.55 * sg; g = STR*(a + 2.*D - MP); cg = cos(g); sg = sin(g); l += -0.133533 * cg + 0.041116 * sg; l1 += 6.95 * cg + 187.07 * sg; g = STR*(a - 2.*D + MP); cg = cos(g); sg = sin(g); l += -0.133430 * cg + 0.041079 * sg; l1 += 6.28 * cg + 169.08 * sg; g = STR*(3.*Ve - 4.*Ea); cg = cos(g); sg = sin(g); l += -0.175074 * cg + 0.003035 * sg; l1 += 49.17 * cg + 150.57 * sg; g = STR*(2.*(Ea + D - MP) - 3.*Ju + 213534.); l1 += 158.4 * sin(g); l1 += moonpol[0]; a = 0.1 * T; /* set amplitude scale of 1.0 = 10^-4 arcsec */ moonpol[1] *= a; moonpol[2] *= a; } #else static void moon1(void) { double a; /* This code added by Bhanu Pinnamaneni, 17-aug-2009 */ /* Note by Dieter: Bhanu noted that ss and cc are not sufficiently * initialised and random values are used for the calculation. * However, this may be only part of the bug. * The bug could be in sscc(). Or may be the bug is rather in * the 116th line of NLR, where the value "5" may be wrong. * Still, this will make a maximum difference of only 0.1", while the error * of the Moshier lunar ephemeris can reach 7". */ int i, j; for (i = 0; i < 5; i++) { for (j = 0; j < 8; j++) { ss[i][j] = 0; cc[i][j] = 0; } } /* End of code addition */ sscc( 0, STR*D, 6 ); sscc( 1, STR*M, 4 ); sscc( 2, STR*MP, 4 ); sscc( 3, STR*NF, 4 ); moonpol[0] = 0.0; moonpol[1] = 0.0; moonpol[2] = 0.0; /* terms in T^2, scale 1.0 = 10^-5" */ chewm( LRT2, NLRT2, 4, 2, moonpol ); chewm( BT2, NBT2, 4, 4, moonpol ); f = 18 * Ve - 16 * Ea; g = STR*(f - MP ); /* 18V - 16E - l */ cg = cos(g); sg = sin(g); l = 6.367278 * cg + 12.747036 * sg; /* t^0 */ l1 = 23123.70 * cg - 10570.02 * sg; /* t^1 */ l2 = z[12] * cg + z[13] * sg; /* t^2 */ moonpol[2] += 5.01 * cg + 2.72 * sg; g = STR * (10.*Ve - 3.*Ea - MP); cg = cos(g); sg = sin(g); l += -0.253102 * cg + 0.503359 * sg; l1 += 1258.46 * cg + 707.29 * sg; l2 += z[14] * cg + z[15] * sg; g = STR*(8.*Ve - 13.*Ea); cg = cos(g); sg = sin(g); l += -0.187231 * cg - 0.127481 * sg; l1 += -319.87 * cg - 18.34 * sg; l2 += z[16] * cg + z[17] * sg; a = 4.0*Ea - 8.0*Ma + 3.0*Ju; g = STR * a; cg = cos(g); sg = sin(g); l += -0.866287 * cg + 0.248192 * sg; l1 += 41.87 * cg + 1053.97 * sg; l2 += z[18] * cg + z[19] * sg; g = STR*(a - MP); cg = cos(g); sg = sin(g); l += -0.165009 * cg + 0.044176 * sg; l1 += 4.67 * cg + 201.55 * sg; g = STR*f; /* 18V - 16E */ cg = cos(g); sg = sin(g); l += 0.330401 * cg + 0.661362 * sg; l1 += 1202.67 * cg - 555.59 * sg; l2 += z[20] * cg + z[21] * sg; g = STR*(f - 2.0*MP ); /* 18V - 16E - 2l */ cg = cos(g); sg = sin(g); l += 0.352185 * cg + 0.705041 * sg; l1 += 1283.59 * cg - 586.43 * sg; g = STR * (2.0*Ju - 5.0*Sa); cg = cos(g); sg = sin(g); l += -0.034700 * cg + 0.160041 * sg; l2 += z[22] * cg + z[23] * sg; g = STR * (SWELP - NF); cg = cos(g); sg = sin(g); l += 0.000116 * cg + 7.063040 * sg; l1 += 298.8 * sg; /* T^3 terms */ sg = sin( STR * M ); /* l3 += z[24] * sg; moshier! l3 not initialized! */ l3 = z[24] * sg; l4 = 0; g = STR * (2.0*D - M); sg = sin(g); cg = cos(g); moonpol[2] += -0.2655 * cg * T; g = STR * (M - MP); moonpol[2] += -0.1568 * cos( g ) * T; g = STR * (M + MP); moonpol[2] += 0.1309 * cos( g ) * T; g = STR * (2.0*(D + M) - MP); sg = sin(g); cg = cos(g); moonpol[2] += 0.5568 * cg * T; l2 += moonpol[0]; g = STR*(2.0*D - M - MP); moonpol[2] += -0.1910 * cos( g ) * T; moonpol[1] *= T; moonpol[2] *= T; /* terms in T */ moonpol[0] = 0.0; chewm( BT, NBT, 4, 4, moonpol ); chewm( LRT, NLRT, 4, 1, moonpol ); g = STR*(f - MP - NF - 2355767.6); /* 18V - 16E - l - F */ moonpol[1] += -1127. * sin(g); g = STR*(f - MP + NF - 235353.6); /* 18V - 16E - l + F */ moonpol[1] += -1123. * sin(g); g = STR*(Ea + D + 51987.6); moonpol[1] += 1303. * sin(g); g = STR*SWELP; moonpol[1] += 342. * sin(g); g = STR*(2.*Ve - 3.*Ea); cg = cos(g); sg = sin(g); l += -0.343550 * cg - 0.000276 * sg; l1 += 105.90 * cg + 336.53 * sg; g = STR*(f - 2.*D); /* 18V - 16E - 2D */ cg = cos(g); sg = sin(g); l += 0.074668 * cg + 0.149501 * sg; l1 += 271.77 * cg - 124.20 * sg; g = STR*(f - 2.*D - MP); cg = cos(g); sg = sin(g); l += 0.073444 * cg + 0.147094 * sg; l1 += 265.24 * cg - 121.16 * sg; g = STR*(f + 2.*D - MP); cg = cos(g); sg = sin(g); l += 0.072844 * cg + 0.145829 * sg; l1 += 265.18 * cg - 121.29 * sg; g = STR*(f + 2.*(D - MP)); cg = cos(g); sg = sin(g); l += 0.070201 * cg + 0.140542 * sg; l1 += 255.36 * cg - 116.79 * sg; g = STR*(Ea + D - NF); cg = cos(g); sg = sin(g); l += 0.288209 * cg - 0.025901 * sg; l1 += -63.51 * cg - 240.14 * sg; g = STR*(2.*Ea - 3.*Ju + 2.*D - MP); cg = cos(g); sg = sin(g); l += 0.077865 * cg + 0.438460 * sg; l1 += 210.57 * cg + 124.84 * sg; g = STR*(Ea - 2.*Ma); cg = cos(g); sg = sin(g); l += -0.216579 * cg + 0.241702 * sg; l1 += 197.67 * cg + 125.23 * sg; g = STR*(a + MP); cg = cos(g); sg = sin(g); l += -0.165009 * cg + 0.044176 * sg; l1 += 4.67 * cg + 201.55 * sg; g = STR*(a + 2.*D - MP); cg = cos(g); sg = sin(g); l += -0.133533 * cg + 0.041116 * sg; l1 += 6.95 * cg + 187.07 * sg; g = STR*(a - 2.*D + MP); cg = cos(g); sg = sin(g); l += -0.133430 * cg + 0.041079 * sg; l1 += 6.28 * cg + 169.08 * sg; g = STR*(3.*Ve - 4.*Ea); cg = cos(g); sg = sin(g); l += -0.175074 * cg + 0.003035 * sg; l1 += 49.17 * cg + 150.57 * sg; g = STR*(2.*(Ea + D - MP) - 3.*Ju + 213534.); l1 += 158.4 * sin(g); l1 += moonpol[0]; a = 0.1 * T; /* set amplitude scale of 1.0 = 10^-4 arcsec */ moonpol[1] *= a; moonpol[2] *= a; } #endif /* MOSH_MOON_200 */ static void moon2(void) { /* terms in T^0 */ g = STR*(2*(Ea-Ju+D)-MP+648431.172); l += 1.14307 * sin(g); g = STR*(Ve-Ea+648035.568); l += 0.82155 * sin(g); g = STR*(3*(Ve-Ea)+2*D-MP+647933.184); l += 0.64371 * sin(g); g = STR*(Ea-Ju+4424.04); l += 0.63880 * sin(g); g = STR*(SWELP + MP - NF + 4.68); l += 0.49331 * sin(g); g = STR*(SWELP - MP - NF + 4.68); l += 0.4914 * sin(g); g = STR*(SWELP+NF+2.52); l += 0.36061 * sin(g); g = STR*(2.*Ve - 2.*Ea + 736.2); l += 0.30154 * sin(g); g = STR*(2.*Ea - 3.*Ju + 2.*D - 2.*MP + 36138.2); l += 0.28282 * sin(g); g = STR*(2.*Ea - 2.*Ju + 2.*D - 2.*MP + 311.0); l += 0.24516 * sin(g); g = STR*(Ea - Ju - 2.*D + MP + 6275.88); l += 0.21117 * sin(g); g = STR*(2.*(Ea - Ma) - 846.36); l += 0.19444 * sin(g); g = STR*(2.*(Ea - Ju) + 1569.96); l -= 0.18457 * sin(g); g = STR*(2.*(Ea - Ju) - MP - 55.8); l += 0.18256 * sin(g); g = STR*(Ea - Ju - 2.*D + 6490.08); l += 0.16499 * sin(g); g = STR*(Ea - 2.*Ju - 212378.4); l += 0.16427 * sin(g); g = STR*(2.*(Ve - Ea - D) + MP + 1122.48); l += 0.16088 * sin(g); g = STR*(Ve - Ea - MP + 32.04); l -= 0.15350 * sin(g); g = STR*(Ea - Ju - MP + 4488.88); l += 0.14346 * sin(g); g = STR*(2.*(Ve - Ea + D) - MP - 8.64); l += 0.13594 * sin(g); g = STR*(2.*(Ve - Ea - D) + 1319.76); l += 0.13432 * sin(g); g = STR*(Ve - Ea - 2.*D + MP - 56.16); l -= 0.13122 * sin(g); g = STR*(Ve - Ea + MP + 54.36); l -= 0.12722 * sin(g); g = STR*(3.*(Ve - Ea) - MP + 433.8); l += 0.12539 * sin(g); g = STR*(Ea - Ju + MP + 4002.12); l += 0.10994 * sin(g); g = STR*(20.*Ve - 21.*Ea - 2.*D + MP - 317511.72); l += 0.10652 * sin(g); g = STR*(26.*Ve - 29.*Ea - MP + 270002.52); l += 0.10490 * sin(g); g = STR*(3.*Ve - 4.*Ea + D - MP - 322765.56); l += 0.10386 * sin(g); g = STR*(SWELP+648002.556); B = 8.04508 * sin(g); g = STR*(Ea+D+996048.252); B += 1.51021 * sin(g); g = STR*(f - MP + NF + 95554.332); B += 0.63037 * sin(g); g = STR*(f - MP - NF + 95553.792); B += 0.63014 * sin(g); g = STR*(SWELP - MP + 2.9); B += 0.45587 * sin(g); g = STR*(SWELP + MP + 2.5); B += -0.41573 * sin(g); g = STR*(SWELP - 2.0*NF + 3.2); B += 0.32623 * sin(g); g = STR*(SWELP - 2.0*D + 2.5); B += 0.29855 * sin(g); } static void moon3(void) { /* terms in T^0 */ moonpol[0] = 0.0; chewm( LR, NLR, 4, 1, moonpol ); chewm( MB, NMB, 4, 3, moonpol ); l += (((l4 * T + l3) * T + l2) * T + l1) * T * 1.0e-5; moonpol[0] = SWELP + l + 1.0e-4 * moonpol[0]; moonpol[1] = 1.0e-4 * moonpol[1] + B; moonpol[2] = 1.0e-4 * moonpol[2] + 385000.52899; /* kilometers */ } /* Compute final ecliptic polar coordinates */ static void moon4(void) { moonpol[2] /= AUNIT / 1000; moonpol[0] = STR * mods3600( moonpol[0] ); moonpol[1] = STR * moonpol[1]; B = moonpol[1]; } #define CORR_MNODE_JD_T0GREG -3063616.5 /* 1 jan -13100 greg. */ #define CORR_MNODE_JD_T1GREG 844477.5 /* 1 jan -2400 jul. */ #define CORR_MNODE_JD_T2GREG 2780263.5 /* 1 jan 2900 jul. */ #define CORR_MNODE_JD_T3GREG 7930182.5 /* 1 jan 17000 greg. */ static double corr_mean_node(double J) { double J0, dJ, dayscty, dcor, dcor0, dcor1, dfrac; int i; J0 = CORR_MNODE_JD_T0GREG; /* 1-jan--13000 greg */ dayscty = 36524.25; /* days per Gregorian century */ if (J < JPL_DE431_START) return 0; if (J > JPL_DE431_END) return 0; /*if (J > CORR_MNODE_JD_T1GREG && J < CORR_MNODE_JD_T2GREG) return 0;*/ dJ = J - J0; i = (int) floor(dJ / dayscty); /* centuries = index of lower correction value */ dfrac = (dJ - i * dayscty) / dayscty; dcor0 = mean_node_corr[i]; dcor1 = mean_node_corr[i + 1]; dcor = dcor0 + dfrac * (dcor1 - dcor0); return dcor; } /* mean lunar node * J julian day * pol return array for position and velocity * (polar coordinates of ecliptic of date) */ int swi_mean_node(double J, double *pol, char *serr) { #if 0 double a, b, c; #endif char s[AS_MAXCH]; double dcor; T = (J-J2000)/36525.0; T2 = T*T; T3 = T*T2; T4 = T2*T2; /* with elements from swi_moshmoon2(), which are fitted to jpl-ephemeris */ if (J < MOSHNDEPH_START || J > MOSHNDEPH_END) { if (serr != NULL) { sprintf(s, "jd %f outside mean node range %.2f .. %.2f ", J, MOSHNDEPH_START, MOSHNDEPH_END); if (strlen(serr) + strlen(s) < AS_MAXCH) strcat(serr, s); } return ERR; } mean_elements(); dcor = corr_mean_node(J) * 3600; /* longitude */ pol[0] = swi_mod2PI((SWELP - NF - dcor) * STR); /* latitude */ pol[1] = 0.0; /* distance */ pol[2] = MOON_MEAN_DIST / AUNIT; /* or should it be derived from mean * orbital ellipse? */ #if 0 a = pol[0]; /* Chapront, according to Meeus, German, p. 339 */ pol[0] = 125.0445550 - 1934.1361849 * T + 0.0020762 * T2 + T3 / 467410 - T4 / 60616000; pol[0] = swi_mod2PI(pol[0] * DEGTORAD); c = pol[0]; printf ("mean node\n"); printf ("moshier de404 - chapront %f\"\n", (a-c) * RADTODEG * 3600); #endif return OK; } #define CORR_MAPOG_JD_T0GREG -3063616.5 /* 1 jan -13100 greg. */ #define CORR_MAPOG_JD_T1GREG 1209720.5 /* 1 jan -1400 greg. */ #define CORR_MAPOG_JD_T2GREG 2780263.5 /* 1 jan 2900 greg. */ #define CORR_MAPOG_JD_T3GREG 7930182.5 /* 1 jan 17000 greg. */ static double corr_mean_apog(double J) { double J0, dJ, dayscty, dcor, dcor0, dcor1, dfrac; int i; J0 = CORR_MAPOG_JD_T0GREG; /* 1-jan--13000 greg */ dayscty = 36524.25; /* days per Gregorian century */ if (J < JPL_DE431_START) return 0; if (J > JPL_DE431_END) return 0; /*if (J > CORR_MAPOG_JD_T1GREG && J < CORR_MAPOG_JD_T2GREG) return 0;*/ dJ = J - J0; i = (int) floor(dJ / dayscty); /* centuries = index of lower correction value */ dfrac = (dJ - i * dayscty) / dayscty; dcor0 = mean_apsis_corr[i]; dcor1 = mean_apsis_corr[i + 1]; dcor = dcor0 + dfrac * (dcor1 - dcor0); return dcor; } /* mean lunar apogee ('dark moon', 'lilith') * J julian day * pol return array for position * (polar coordinates of ecliptic of date) * serr error return string */ int swi_mean_apog(double J, double *pol, char *serr) { #if 0 int i; double a, b; double x[3]; #endif double node, dcor; char s[AS_MAXCH]; T = (J-J2000)/36525.0; T2 = T*T; T3 = T*T2; T4 = T2*T2; /* with elements from swi_moshmoon2(), which are fitted to jpl-ephemeris */ if (J < MOSHNDEPH_START || J > MOSHNDEPH_END) { if (serr != NULL) { sprintf(s, "jd %f outside mean apogee range %.2f .. %.2f ", J, MOSHNDEPH_START, MOSHNDEPH_END); if (strlen(serr) + strlen(s) < AS_MAXCH) strcat(serr, s); } return(ERR); } mean_elements(); pol[0] = swi_mod2PI((SWELP - MP) * STR + PI); pol[1] = 0; pol[2] = MOON_MEAN_DIST * (1 + MOON_MEAN_ECC) / AUNIT; /* apogee */ /* Lilith or Dark Moon is either the empty focal point of the mean * lunar ellipse or, for some people, its apogee ("aphelion"). * This is 180 degrees from the perigee. * * Since the lunar orbit is not in the ecliptic, the apogee must be * projected onto the ecliptic. * Joelle de Gravelaine has in her book "Lilith der schwarze Mond" * (Astrodata, 1990) an ephemeris which gives noon (12.00) positions * but does not project them onto the ecliptic. * This results in a mistake of several arc minutes. * * There is also another problem. The other focal point doesn't * coincide with the geocenter but with the barycenter of the * earth-moon-system. The difference is about 4700 km. If one * took this into account, it would result in an oscillation * of the Black Moon. If defined as the apogee, this oscillation * would be about +/- 40 arcmin. * If defined as the second focus, the effect is very large: * +/- 6 deg! * We neglect this influence. */ dcor = corr_mean_apog(J) * DEGTORAD; pol[0] = swi_mod2PI(pol[0] - dcor); /* apogee is now projected onto ecliptic */ node = (SWELP - NF) * STR; dcor = corr_mean_node(J) * DEGTORAD; node = swi_mod2PI(node - dcor); pol[0] = swi_mod2PI(pol[0] - node); swi_polcart(pol, pol); swi_coortrf(pol, pol, -MOON_MEAN_INCL * DEGTORAD); swi_cartpol(pol, pol); pol[0] = swi_mod2PI(pol[0] + node); return OK; } /* Program to step through the perturbation table */ static void chewm(const short *pt, int nlines, int nangles, int typflg, double *ans ) { int i, j, k, k1, m; double cu, su, cv, sv, ff; for( i=0; i 0 */ /* sin, cos (k*angle) from lookup table */ su = ss[m][k-1]; cu = cc[m][k-1]; if( j < 0 ) su = -su; /* negative angle factor */ if( k1 == 0 ) { /* Set sin, cos of first angle. */ sv = su; cv = cu; k1 = 1; } else { /* Combine angles by trigonometry. */ ff = su*cv + cu*sv; cv = cu*cv - su*sv; sv = ff; } } } /* Accumulate */ switch( typflg ) { /* large longitude and radius */ case 1: j = *pt++; k = *pt++; ans[0] += (10000.0 * j + k) * sv; j = *pt++; k = *pt++; if( k ) ans[2] += (10000.0 * j + k) * cv; break; /* longitude and radius */ case 2: j = *pt++; k = *pt++; ans[0] += j * sv; ans[2] += k * cv; break; /* large latitude */ case 3: j = *pt++; k = *pt++; ans[1] += ( 10000.0*j + k)*sv; break; /* latitude */ case 4: j = *pt++; ans[1] += j * sv; break; } } } /* Prepare lookup table of sin and cos ( i*Lj ) * for required multiple angles */ static void sscc(int k, double arg, int n ) { double cu, su, cv, sv, s; int i; su = sin(arg); cu = cos(arg); ss[k][0] = su; /* sin(L) */ cc[k][0] = cu; /* cos(L) */ sv = 2.0*su*cu; cv = cu*cu - su*su; ss[k][1] = sv; /* sin(2L) */ cc[k][1] = cv; for( i=2; i