/* SPDX-License-Identifier: MIT */ /* * Description: Helpers for tests. */ #include #include #include #include #include #include #include #include #include #include #include #include "helpers.h" #include "liburing.h" /* * Helper for allocating memory in tests. */ void *t_malloc(size_t size) { void *ret; ret = malloc(size); assert(ret); return ret; } /* * Helper for binding socket to an ephemeral port. * The port number to be bound is returned in @addr->sin_port. */ int t_bind_ephemeral_port(int fd, struct sockaddr_in *addr) { socklen_t addrlen; int ret; addr->sin_port = 0; if (bind(fd, (struct sockaddr *)addr, sizeof(*addr))) return -errno; addrlen = sizeof(*addr); ret = getsockname(fd, (struct sockaddr *)addr, &addrlen); assert(!ret); assert(addr->sin_port != 0); return 0; } /* * Helper for allocating size bytes aligned on a boundary. */ void t_posix_memalign(void **memptr, size_t alignment, size_t size) { int ret; ret = posix_memalign(memptr, alignment, size); assert(!ret); } /* * Helper for allocating space for an array of nmemb elements * with size bytes for each element. */ void *t_calloc(size_t nmemb, size_t size) { void *ret; ret = calloc(nmemb, size); assert(ret); return ret; } /* * Helper for creating file and write @size byte buf with 0xaa value in the file. */ static void __t_create_file(const char *file, size_t size, char pattern) { ssize_t ret; char *buf; int fd; buf = t_malloc(size); memset(buf, pattern, size); fd = open(file, O_WRONLY | O_CREAT, 0644); assert(fd >= 0); ret = write(fd, buf, size); fsync(fd); close(fd); free(buf); assert(ret == size); } void t_create_file(const char *file, size_t size) { __t_create_file(file, size, 0xaa); } void t_create_file_pattern(const char *file, size_t size, char pattern) { __t_create_file(file, size, pattern); } /* * Helper for creating @buf_num number of iovec * with @buf_size bytes buffer of each iovec. */ struct iovec *t_create_buffers(size_t buf_num, size_t buf_size) { struct iovec *vecs; int i; vecs = t_malloc(buf_num * sizeof(struct iovec)); for (i = 0; i < buf_num; i++) { t_posix_memalign(&vecs[i].iov_base, buf_size, buf_size); vecs[i].iov_len = buf_size; } return vecs; } /* * Helper for setting up an io_uring instance, skipping if the given user isn't * allowed to. */ enum t_setup_ret t_create_ring_params(int depth, struct io_uring *ring, struct io_uring_params *p) { int ret; ret = io_uring_queue_init_params(depth, ring, p); if (!ret) return T_SETUP_OK; if ((p->flags & IORING_SETUP_SQPOLL) && ret == -EPERM && geteuid()) { fprintf(stdout, "SQPOLL skipped for regular user\n"); return T_SETUP_SKIP; } if (ret != -EINVAL) fprintf(stderr, "queue_init: %s\n", strerror(-ret)); return ret; } enum t_setup_ret t_create_ring(int depth, struct io_uring *ring, unsigned int flags) { struct io_uring_params p = { }; p.flags = flags; return t_create_ring_params(depth, ring, &p); } enum t_setup_ret t_register_buffers(struct io_uring *ring, const struct iovec *iovecs, unsigned nr_iovecs) { int ret; ret = io_uring_register_buffers(ring, iovecs, nr_iovecs); if (!ret) return T_SETUP_OK; if ((ret == -EPERM || ret == -ENOMEM) && geteuid()) { fprintf(stdout, "too large non-root buffer registration, skip\n"); return T_SETUP_SKIP; } fprintf(stderr, "buffer register failed: %s\n", strerror(-ret)); return ret; } int t_create_socket_pair(int fd[2], bool stream) { int ret; int type = stream ? SOCK_STREAM : SOCK_DGRAM; int val; struct sockaddr_in serv_addr; struct sockaddr *paddr; socklen_t paddrlen; type |= SOCK_CLOEXEC; fd[0] = socket(AF_INET, type, 0); if (fd[0] < 0) return errno; fd[1] = socket(AF_INET, type, 0); if (fd[1] < 0) { ret = errno; close(fd[0]); return ret; } val = 1; if (setsockopt(fd[0], SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val))) goto errno_cleanup; memset(&serv_addr, 0, sizeof(serv_addr)); serv_addr.sin_family = AF_INET; serv_addr.sin_port = 0; inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr); paddr = (struct sockaddr *)&serv_addr; paddrlen = sizeof(serv_addr); if (bind(fd[0], paddr, paddrlen)) { fprintf(stderr, "bind failed\n"); goto errno_cleanup; } if (stream && listen(fd[0], 16)) { fprintf(stderr, "listen failed\n"); goto errno_cleanup; } if (getsockname(fd[0], (struct sockaddr *)&serv_addr, (socklen_t *)&paddrlen)) { fprintf(stderr, "getsockname failed\n"); goto errno_cleanup; } inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr); if (connect(fd[1], (struct sockaddr *)&serv_addr, paddrlen)) { fprintf(stderr, "connect failed\n"); goto errno_cleanup; } if (!stream) { /* connect the other udp side */ if (getsockname(fd[1], (struct sockaddr *)&serv_addr, (socklen_t *)&paddrlen)) { fprintf(stderr, "getsockname failed\n"); goto errno_cleanup; } inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr); if (connect(fd[0], (struct sockaddr *)&serv_addr, paddrlen)) { fprintf(stderr, "connect failed\n"); goto errno_cleanup; } return 0; } /* for stream case we must accept and cleanup the listen socket */ ret = accept(fd[0], NULL, NULL); if (ret < 0) goto errno_cleanup; close(fd[0]); fd[0] = ret; return 0; errno_cleanup: ret = errno; close(fd[0]); close(fd[1]); return ret; } bool t_probe_defer_taskrun(void) { struct io_uring ring; int ret; ret = io_uring_queue_init(1, &ring, IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN); if (ret < 0) return false; io_uring_queue_exit(&ring); return true; } /* * Sync internal state with kernel ring state on the SQ side. Returns the * number of pending items in the SQ ring, for the shared ring. */ unsigned __io_uring_flush_sq(struct io_uring *ring) { struct io_uring_sq *sq = &ring->sq; unsigned tail = sq->sqe_tail; if (sq->sqe_head != tail) { sq->sqe_head = tail; /* * Ensure kernel sees the SQE updates before the tail update. */ if (!(ring->flags & IORING_SETUP_SQPOLL)) IO_URING_WRITE_ONCE(*sq->ktail, tail); else io_uring_smp_store_release(sq->ktail, tail); } /* * This _may_ look problematic, as we're not supposed to be reading * SQ->head without acquire semantics. When we're in SQPOLL mode, the * kernel submitter could be updating this right now. For non-SQPOLL, * task itself does it, and there's no potential race. But even for * SQPOLL, the load is going to be potentially out-of-date the very * instant it's done, regardless or whether or not it's done * atomically. Worst case, we're going to be over-estimating what * we can submit. The point is, we need to be able to deal with this * situation regardless of any perceived atomicity. */ return tail - *sq->khead; } /* * Implementation of error(3), prints an error message and exits. */ void t_error(int status, int errnum, const char *format, ...) { va_list args; va_start(args, format); vfprintf(stderr, format, args); if (errnum) fprintf(stderr, ": %s", strerror(errnum)); fprintf(stderr, "\n"); va_end(args); exit(status); }