/******************************************************************** FileName: main.c Dependencies: See INCLUDES section Processor: PIC18 or PIC24 USB Microcontrollers Hardware: The code is natively intended to be used on the following hardware platforms: PICDEM™ FS USB Demo Board, PIC18F87J50 FS USB Plug-In Module, or Explorer 16 + PIC24 USB PIM. The firmware may be modified for use on other USB platforms by editing the HardwareProfile.h file. Complier: Microchip C18 (for PIC18) or C30 (for PIC24) Company: Microchip Technology, Inc. Software License Agreement: The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PIC® Microcontroller is intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PIC Microcontroller products. The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license. THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. ******************************************************************** File Description: Change History: Rev Date Description 1.0 11/19/2004 Initial release 2.1 02/26/2007 Updated for simplicity and to use common coding style ********************************************************************/ /** INCLUDES *******************************************************/ #include "USB/usb.h" #include "USB/usb_function_generic.h" #include "HardwareProfile.h" //#include "Compiler.h" //#include "GenericTypeDefs.h" //#include "USB/usb_device.h" //#include "USB/usb.h" //#include "usb_config.h" #include "Benchmark.h" /** CONFIGURATION **************************************************/ #if defined(PICDEM_FS_USB) // Configuration bits for PICDEM FS USB Demo Board (based on PIC18F4550) #pragma config PLLDIV = 5 // (20 MHz crystal on PICDEM FS USB board) #pragma config CPUDIV = OSC1_PLL2 #pragma config USBDIV = 2 // Clock source from 96MHz PLL/2 #pragma config FOSC = HSPLL_HS #pragma config FCMEN = OFF #pragma config IESO = OFF #pragma config PWRT = OFF #pragma config BOR = ON #pragma config BORV = 3 #pragma config VREGEN = ON //USB Voltage Regulator #pragma config WDT = OFF #pragma config WDTPS = 32768 #pragma config MCLRE = ON #pragma config LPT1OSC = OFF #pragma config PBADEN = OFF // #pragma config CCP2MX = ON #pragma config STVREN = ON #pragma config LVP = OFF // #pragma config ICPRT = OFF // Dedicated In-Circuit Debug/Programming #pragma config XINST = OFF // Extended Instruction Set #pragma config CP0 = OFF #pragma config CP1 = OFF // #pragma config CP2 = OFF // #pragma config CP3 = OFF #pragma config CPB = OFF // #pragma config CPD = OFF #pragma config WRT0 = OFF #pragma config WRT1 = OFF // #pragma config WRT2 = OFF // #pragma config WRT3 = OFF #pragma config WRTB = OFF // Boot Block Write Protection #pragma config WRTC = OFF // #pragma config WRTD = OFF #pragma config EBTR0 = OFF #pragma config EBTR1 = OFF // #pragma config EBTR2 = OFF // #pragma config EBTR3 = OFF #pragma config EBTRB = OFF #elif defined(PICKIT2_KIT_USB) // Configuration bits for PICKIT2 KIT USB Board (based on PIC18F2550) #pragma config PLLDIV = 5 // (20 MHz crystal on PICKit2 Kit USB board) #pragma config CPUDIV = OSC1_PLL2 #pragma config USBDIV = 2 // Clock source from 96MHz PLL/2 #pragma config FOSC = HSPLL_HS #pragma config FCMEN = OFF #pragma config IESO = OFF #pragma config PWRT = OFF #pragma config BOR = ON #pragma config BORV = 3 #pragma config VREGEN = ON // USB Voltage Regulator #pragma config WDT = OFF #pragma config WDTPS = 32768 #pragma config MCLRE = OFF // Make sure this is OFF to have firmware run from USB power #pragma config LPT1OSC = OFF #pragma config PBADEN = OFF // #pragma config CCP2MX = ON #pragma config STVREN = ON #pragma config LVP = OFF // #pragma config ICPRT = OFF // Dedicated In-Circuit Debug/Programming #pragma config XINST = OFF // Extended Instruction Set #pragma config CP0 = OFF #pragma config CP1 = OFF // #pragma config CP2 = OFF // #pragma config CP3 = OFF #pragma config CPB = OFF // #pragma config CPD = OFF #pragma config WRT0 = OFF #pragma config WRT1 = OFF // #pragma config WRT2 = OFF // #pragma config WRT3 = OFF #pragma config WRTB = OFF // Boot Block Write Protection #pragma config WRTC = OFF // #pragma config WRTD = OFF #pragma config EBTR0 = OFF #pragma config EBTR1 = OFF // #pragma config EBTR2 = OFF // #pragma config EBTR3 = OFF #pragma config EBTRB = OFF #elif defined(PIC18F87J50_PIM) // Configuration bits for PIC18F87J50 FS USB Plug-In Module board #pragma config XINST = OFF // Extended instruction set #pragma config STVREN = ON // Stack overflow reset #pragma config PLLDIV = 3 // (12 MHz crystal used on this board) #pragma config WDTEN = OFF // Watch Dog Timer (WDT) #pragma config CP0 = OFF // Code protect #pragma config CPUDIV = OSC1 // OSC1 = divide by 1 mode #pragma config IESO = OFF // Internal External (clock) Switchover #pragma config FCMEN = OFF // Fail Safe Clock Monitor #pragma config FOSC = HSPLL // Firmware must also set OSCTUNE to start PLL! #pragma config WDTPS = 32768 // #pragma config WAIT = OFF // Commented choices are // #pragma config BW = 16 // only available on the // #pragma config MODE = MM // 80 pin devices in the // #pragma config EASHFT = OFF // family. #pragma config MSSPMSK = MSK5 // #pragma config PMPMX = DEFAULT // #pragma config ECCPMX = DEFAULT #pragma config CCP2MX = DEFAULT #elif defined(PIC18F46J50_PIM) #pragma config WDTEN = OFF //WDT disabled (enabled by SWDTEN bit) #pragma config PLLDIV = 3 //Divide by 3 (12 MHz oscillator input) #pragma config STVREN = ON //stack overflow/underflow reset enabled #pragma config XINST = OFF //Extended instruction set disabled #pragma config CPUDIV = OSC1 //No CPU system clock divide #pragma config CP0 = OFF //Program memory is not code-protected #pragma config OSC = HSPLL //HS oscillator, PLL enabled, HSPLL used by USB #pragma config T1DIG = ON //Sec Osc clock source may be selected #pragma config LPT1OSC = OFF //high power Timer1 mode #pragma config FCMEN = OFF //Fail-Safe Clock Monitor disabled #pragma config IESO = OFF //Two-Speed Start-up disabled #pragma config WDTPS = 32768 //1:32768 #pragma config DSWDTOSC = INTOSCREF //DSWDT uses INTOSC/INTRC as clock #pragma config RTCOSC = T1OSCREF //RTCC uses T1OSC/T1CKI as clock #pragma config DSBOREN = OFF //Zero-Power BOR disabled in Deep Sleep #pragma config DSWDTEN = OFF //Disabled #pragma config DSWDTPS = 8192 //1:8,192 (8.5 seconds) #pragma config IOL1WAY = OFF //IOLOCK bit can be set and cleared #pragma config MSSP7B_EN = MSK7 //7 Bit address masking #pragma config WPFP = PAGE_1 //Write Protect Program Flash Page 0 #pragma config WPEND = PAGE_0 //Start protection at page 0 #pragma config WPCFG = OFF //Write/Erase last page protect Disabled #pragma config WPDIS = OFF //WPFP[5:0], WPEND, and WPCFG bits ignored #elif defined(LOW_PIN_COUNT_USB_DEVELOPMENT_KIT) // PIC18F14K50 #pragma config CPUDIV = NOCLKDIV #pragma config USBDIV = OFF #pragma config FOSC = HS #pragma config PLLEN = ON #pragma config FCMEN = OFF #pragma config IESO = OFF #pragma config PWRTEN = OFF #pragma config BOREN = OFF #pragma config BORV = 30 #pragma config WDTEN = OFF #pragma config WDTPS = 32768 #pragma config MCLRE = OFF #pragma config HFOFST = OFF #pragma config STVREN = ON #pragma config LVP = OFF #pragma config XINST = OFF #pragma config BBSIZ = OFF #pragma config CP0 = OFF #pragma config CP1 = OFF #pragma config CPB = OFF #pragma config WRT0 = OFF #pragma config WRT1 = OFF #pragma config WRTB = OFF #pragma config WRTC = OFF #pragma config EBTR0 = OFF #pragma config EBTR1 = OFF #pragma config EBTRB = OFF #elif defined(EXPLORER_16) #ifdef __PIC24FJ256GB110__ //Defined by MPLAB when using 24FJ256GB110 device _CONFIG1( JTAGEN_OFF & GCP_OFF & GWRP_OFF & COE_OFF & FWDTEN_OFF & ICS_PGx2) _CONFIG2( 0xF7FF & IESO_OFF & FCKSM_CSDCMD & OSCIOFNC_ON & POSCMOD_HS & FNOSC_PRIPLL & PLLDIV_DIV2 & IOL1WAY_ON) #elif defined(__PIC24FJ64GB004__) _CONFIG1(WDTPS_PS1 & FWPSA_PR32 & WINDIS_OFF & FWDTEN_OFF & ICS_PGx1 & GWRP_OFF & GCP_OFF & JTAGEN_OFF) _CONFIG2(POSCMOD_HS & I2C1SEL_PRI & IOL1WAY_OFF & OSCIOFNC_ON & FCKSM_CSDCMD & FNOSC_PRIPLL & PLL96MHZ_ON & PLLDIV_DIV2 & IESO_ON) _CONFIG3(WPFP_WPFP0 & SOSCSEL_SOSC & WUTSEL_LEG & WPDIS_WPDIS & WPCFG_WPCFGDIS & WPEND_WPENDMEM) _CONFIG4(DSWDTPS_DSWDTPS3 & DSWDTOSC_LPRC & RTCOSC_SOSC & DSBOREN_OFF & DSWDTEN_OFF) #elif defined(__32MX460F512L__) #pragma config UPLLEN = ON // USB PLL Enabled #pragma config FPLLMUL = MUL_15 // PLL Multiplier #pragma config UPLLIDIV = DIV_2 // USB PLL Input Divider #pragma config FPLLIDIV = DIV_2 // PLL Input Divider #pragma config FPLLODIV = DIV_1 // PLL Output Divider #pragma config FPBDIV = DIV_1 // Peripheral Clock divisor #pragma config FWDTEN = OFF // Watchdog Timer #pragma config WDTPS = PS1 // Watchdog Timer Postscale #pragma config FCKSM = CSDCMD // Clock Switching & Fail Safe Clock Monitor #pragma config OSCIOFNC = OFF // CLKO Enable #pragma config POSCMOD = HS // Primary Oscillator #pragma config IESO = OFF // Internal/External Switch-over #pragma config FSOSCEN = OFF // Secondary Oscillator Enable (KLO was off) #pragma config FNOSC = PRIPLL // Oscillator Selection #pragma config CP = OFF // Code Protect #pragma config BWP = OFF // Boot Flash Write Protect #pragma config PWP = OFF // Program Flash Write Protect #pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select #pragma config DEBUG = ON // Background Debugger Enable #elif defined(__32MX695F512L__) #pragma config UPLLEN = ON // USB PLL Enabled #pragma config FPLLMUL = MUL_20 // PLL Multiplier #pragma config UPLLIDIV = DIV_2 // USB PLL Input Divider #pragma config FPLLIDIV = DIV_2 // PLL Input Divider #pragma config FPLLODIV = DIV_1 // PLL Output Divider #pragma config FPBDIV = DIV_1 // Peripheral Clock divisor #pragma config FWDTEN = OFF // Watchdog Timer #pragma config WDTPS = PS1 // Watchdog Timer Postscale #pragma config FCKSM = CSDCMD // Clock Switching & Fail Safe Clock Monitor #pragma config OSCIOFNC = OFF // CLKO Enable #pragma config POSCMOD = XT // Primary Oscillator //#pragma config IESO = OFF // Internal/External Switch-over #pragma config FSOSCEN = OFF // Secondary Oscillator Enable (KLO was off) #pragma config FNOSC = PRIPLL // Oscillator Selection #pragma config CP = OFF // Code Protect #pragma config BWP = OFF // Boot Flash Write Protect #pragma config PWP = OFF // Program Flash Write Protect //#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select //#pragma config DEBUG = ON // Background Debugger Enable #else #error No hardware board defined, see "HardwareProfile.h" and __FILE__ #endif #elif defined(PIC24F_STARTER_KIT) _CONFIG1( JTAGEN_OFF & GCP_OFF & GWRP_OFF & COE_OFF & FWDTEN_OFF & ICS_PGx2) _CONFIG2( 0xF7FF & IESO_OFF & FCKSM_CSDCMD & OSCIOFNC_ON & POSCMOD_HS & FNOSC_PRIPLL & PLLDIV_DIV3 & IOL1WAY_ON) #elif defined(PIC32_USB_STARTER_KIT) #pragma config UPLLEN = ON // USB PLL Enabled #pragma config FPLLMUL = MUL_15 // PLL Multiplier #pragma config UPLLIDIV = DIV_2 // USB PLL Input Divider #pragma config FPLLIDIV = DIV_2 // PLL Input Divider #pragma config FPLLODIV = DIV_1 // PLL Output Divider #pragma config FPBDIV = DIV_1 // Peripheral Clock divisor #pragma config FWDTEN = OFF // Watchdog Timer #pragma config WDTPS = PS1 // Watchdog Timer Postscale #pragma config FCKSM = CSDCMD // Clock Switching & Fail Safe Clock Monitor #pragma config OSCIOFNC = OFF // CLKO Enable #pragma config POSCMOD = HS // Primary Oscillator #pragma config IESO = OFF // Internal/External Switch-over #pragma config FSOSCEN = OFF // Secondary Oscillator Enable (KLO was off) #pragma config FNOSC = PRIPLL // Oscillator Selection #pragma config CP = OFF // Code Protect #pragma config BWP = OFF // Boot Flash Write Protect #pragma config PWP = OFF // Program Flash Write Protect #pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select #pragma config DEBUG = ON // Background Debugger Enable #elif defined(BREADBOARD) #if defined(__PIC24FJ64GB002__) _CONFIG1(WDTPS_PS1 & FWPSA_PR32 & WINDIS_OFF & FWDTEN_OFF & ICS_PGx3 & GWRP_OFF & GCP_OFF & JTAGEN_OFF) _CONFIG2(POSCMOD_HS & I2C1SEL_PRI & IOL1WAY_OFF & OSCIOFNC_OFF & FCKSM_CSDCMD & FNOSC_PRIPLL & PLL96MHZ_ON & PLLDIV_DIV3 & IESO_ON) _CONFIG3(WPFP_WPFP0 & SOSCSEL_SOSC & WUTSEL_LEG & WPDIS_WPDIS & WPCFG_WPCFGDIS & WPEND_WPENDMEM) _CONFIG4(DSWDTPS_DSWDTPS3 & DSWDTOSC_LPRC & RTCOSC_LPRC & DSBOREN_OFF & DSWDTEN_OFF) //_CONFIG1(WDTPS_PS1 & FWPSA_PR32 & WINDIS_OFF & FWDTEN_OFF & ICS_PGx3 & GWRP_OFF & GCP_OFF & JTAGEN_OFF) //_CONFIG2(POSCMOD_NONE & I2C1SEL_PRI & IOL1WAY_OFF & OSCIOFNC_OFF & FCKSM_CSDCMD & FNOSC_FRCPLL & PLL96MHZ_ON & PLLDIV_NODIV & IESO_ON) //_CONFIG3(WPFP_WPFP0 & SOSCSEL_SOSC & WUTSEL_LEG & WPDIS_WPDIS & WPCFG_WPCFGDIS & WPEND_WPENDMEM) //_CONFIG4(DSWDTPS_DSWDTPS3 & DSWDTOSC_LPRC & RTCOSC_SOSC & DSBOREN_OFF & DSWDTEN_OFF) #else #error No breadboard device defined, see "HardwareProfile.h" and __FILE__ #endif #else #error No hardware board defined, see "HardwareProfile.h" #endif /** VARIABLES ***************************************************** #if defined(__18F14K50) || defined(__18F13K50) || defined(__18LF14K50) || defined(__18LF13K50) #pragma udata usbram2 #elif defined(__18F2455) || defined(__18F2550) || defined(__18F4455) || defined(__18F4550)\ || defined(__18F2458) || defined(__18F2453) || defined(__18F4558) || defined(__18F4553) #pragma udata USB_VARIABLES=0x500 #elif defined(__18F4450) || defined(__18F2450) #pragma udata USB_VARIABLES=0x480 #else #pragma udata #endif unsigned char OUTPacket[64]; //User application buffer for receiving and holding OUT packets sent from the host unsigned char INPacket[64]; //User application buffer for sending IN packets to the host */ #pragma udata BOOL blinkStatusValid; volatile WORD led_count; /* USB_HANDLE USBGenericOutHandle; USB_HANDLE USBGenericInHandle; #pragma udata */ /** PRIVATE PROTOTYPES *********************************************/ static void InitializeSystem(void); void USBDeviceTasks(void); void YourHighPriorityISRCode(void); void YourLowPriorityISRCode(void); void UserInit(void); void ProcessIO(void); void BlinkUSBStatus(void); /** VECTOR REMAPPING ***********************************************/ #if defined(__18CXX) //On PIC18 devices, addresses 0x00, 0x08, and 0x18 are used for //the reset, high priority interrupt, and low priority interrupt //vectors. However, the current Microchip USB bootloader //examples are intended to occupy addresses 0x00-0x7FF or //0x00-0xFFF depending on which bootloader is used. Therefore, //the bootloader code remaps these vectors to new locations //as indicated below. This remapping is only necessary if you //wish to program the hex file generated from this project with //the USB bootloader. If no bootloader is used, edit the //usb_config.h file and comment out the following defines: //#define PROGRAMMABLE_WITH_USB_HID_BOOTLOADER //#define PROGRAMMABLE_WITH_USB_LEGACY_CUSTOM_CLASS_BOOTLOADER #if defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER) #define REMAPPED_RESET_VECTOR_ADDRESS 0x1000 #define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x1008 #define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x1018 #elif defined(PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOADER) #define REMAPPED_RESET_VECTOR_ADDRESS 0x800 #define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x808 #define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x818 #else #define REMAPPED_RESET_VECTOR_ADDRESS 0x00 #define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x08 #define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x18 #endif #if defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)||defined(PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOADER) extern void _startup (void); // See c018i.c in your C18 compiler dir #pragma code REMAPPED_RESET_VECTOR = REMAPPED_RESET_VECTOR_ADDRESS void _reset (void) { _asm goto _startup _endasm } #endif #pragma code REMAPPED_HIGH_INTERRUPT_VECTOR = REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS void Remapped_High_ISR (void) { _asm goto YourHighPriorityISRCode _endasm } #pragma code REMAPPED_LOW_INTERRUPT_VECTOR = REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS void Remapped_Low_ISR (void) { _asm goto YourLowPriorityISRCode _endasm } #if defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)||defined(PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOADER) //Note: If this project is built while one of the bootloaders has //been defined, but then the output hex file is not programmed with //the bootloader, addresses 0x08 and 0x18 would end up programmed with 0xFFFF. //As a result, if an actual interrupt was enabled and occured, the PC would jump //to 0x08 (or 0x18) and would begin executing "0xFFFF" (unprogrammed space). This //executes as nop instructions, but the PC would eventually reach the REMAPPED_RESET_VECTOR_ADDRESS //(0x1000 or 0x800, depending upon bootloader), and would execute the "goto _startup". This //would effective reset the application. //To fix this situation, we should always deliberately place a //"goto REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS" at address 0x08, and a //"goto REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS" at address 0x18. When the output //hex file of this project is programmed with the bootloader, these sections do not //get bootloaded (as they overlap the bootloader space). If the output hex file is not //programmed using the bootloader, then the below goto instructions do get programmed, //and the hex file still works like normal. The below section is only required to fix this //scenario. #pragma code HIGH_INTERRUPT_VECTOR = 0x08 void High_ISR (void) { _asm goto REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS _endasm } #pragma code LOW_INTERRUPT_VECTOR = 0x18 void Low_ISR (void) { _asm goto REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS _endasm } #endif //end of "#if defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER)||defined(PROGRAMMABLE_WITH_USB_LEGACY_CUSTOM_CLASS_BOOTLOADER)" #pragma code //These are your actual interrupt handling routines. #pragma interrupt YourHighPriorityISRCode void YourHighPriorityISRCode() { //Check which interrupt flag caused the interrupt. //Service the interrupt //Clear the interrupt flag //Etc. #if defined(USB_INTERRUPT) USBDeviceTasks(); #endif } //This return will be a "retfie fast", since this is in a #pragma interrupt section #pragma interruptlow YourLowPriorityISRCode void YourLowPriorityISRCode() { //Check which interrupt flag caused the interrupt. //Service the interrupt //Clear the interrupt flag //Etc. } //This return will be a "retfie", since this is in a #pragma interruptlow section #elif defined(__C30__) #if defined(PROGRAMMABLE_WITH_USB_HID_BOOTLOADER) /* * ISR JUMP TABLE * * It is necessary to define jump table as a function because C30 will * not store 24-bit wide values in program memory as variables. * * This function should be stored at an address where the goto instructions * line up with the remapped vectors from the bootloader's linker script. * * For more information about how to remap the interrupt vectors, * please refer to AN1157. An example is provided below for the T2 * interrupt with a bootloader ending at address 0x1400 */ // void __attribute__ ((address(0x1404))) ISRTable(){ // // asm("reset"); //reset instruction to prevent runaway code // asm("goto %0"::"i"(&_T2Interrupt)); //T2Interrupt's address // } #endif #endif /** DECLARATIONS ***************************************************/ #pragma code /****************************************************************************** * Function: void main(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: Main program entry point. * * Note: None *******************************************************************/ #if defined(__18CXX) void main(void) #else int main(void) #endif { led_count=0; InitializeSystem(); #if defined(USB_INTERRUPT) USBDeviceAttach(); #endif while(1) { #if defined(USB_POLLING) // Check bus status and service USB interrupts. USBDeviceTasks(); // Interrupt or polling method. If using polling, must call // this function periodically. This function will take care // of processing and responding to SETUP transactions // (such as during the enumeration process when you first // plug in). USB hosts require that USB devices should accept // and process SETUP packets in a timely fashion. Therefore, // when using polling, this function should be called // frequently (such as once about every 100 microseconds) at any // time that a SETUP packet might reasonably be expected to // be sent by the host to your device. In most cases, the // USBDeviceTasks() function does not take very long to // execute (~50 instruction cycles) before it returns. #endif // Application-specific tasks. // Application related code may be added here, or in the ProcessIO() function. Benchmark_ProcessIO(); }//end while }//end main /******************************************************************** * Function: static void InitializeSystem(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: InitializeSystem is a centralize initialization * routine. All required USB initialization routines * are called from here. * * User application initialization routine should * also be called from here. * * Note: None *******************************************************************/ static void InitializeSystem(void) { #if (defined(__18CXX) & !defined(PIC18F87J50_PIM)) ADCON1 |= 0x0F; // Default all pins to digital #elif defined(__C30__) AD1PCFGL = 0xFFFF; #elif defined(__C32__) AD1PCFG = 0xFFFF; // disable JTAG port DDPCONbits.JTAGEN = 0; #endif #if defined(PIC18F87J50_PIM) || defined(PIC18F46J50_PIM) //On the PIC18F87J50 Family of USB microcontrollers, the PLL will not power up and be enabled //by default, even if a PLL enabled oscillator configuration is selected (such as HS+PLL). //This allows the device to power up at a lower initial operating frequency, which can be //advantageous when powered from a source which is not gauranteed to be adequate for 48MHz //operation. On these devices, user firmware needs to manually set the OSCTUNE bit to //power up the PLL. { unsigned int pll_startup_counter = 600; OSCTUNEbits.PLLEN = 1; //Enable the PLL and wait 2+ms until the PLL locks before enabling USB module while(pll_startup_counter--); } //Device switches over automatically to PLL output after PLL is locked and ready. #endif #if defined(PIC18F87J50_PIM) //Configure all I/O pins to use digital input buffers. The PIC18F87J50 Family devices //use the ANCONx registers to control this, which is different from other devices which //use the ADCON1 register for this purpose. WDTCONbits.ADSHR = 1; // Select alternate SFR location to access ANCONx registers ANCON0 = 0xFF; // Default all pins to digital ANCON1 = 0xFF; // Default all pins to digital WDTCONbits.ADSHR = 0; // Select normal SFR locations #endif #if defined(PIC18F46J50_PIM) //Configure all I/O pins to use digital input buffers. The PIC18F87J50 Family devices //use the ANCONx registers to control this, which is different from other devices which //use the ADCON1 register for this purpose. ANCON0 = 0xFF; // Default all pins to digital ANCON1 = 0xFF; // Default all pins to digital #endif #if defined(PIC24FJ64GB004_PIM) //On the PIC24FJ64GB004 Family of USB microcontrollers, the PLL will not power up and be enabled //by default, even if a PLL enabled oscillator configuration is selected (such as HS+PLL). //This allows the device to power up at a lower initial operating frequency, which can be //advantageous when powered from a source which is not gauranteed to be adequate for 32MHz //operation. On these devices, user firmware needs to manually set the CLKDIV bit to //power up the PLL. { unsigned int pll_startup_counter = 600; CLKDIVbits.PLLEN = 1; while(pll_startup_counter--); } //Device switches over automatically to PLL output after PLL is locked and ready. #endif // The USB specifications require that USB peripheral devices must never source // current onto the Vbus pin. Additionally, USB peripherals should not source // current on D+ or D- when the host/hub is not actively powering the Vbus line. // When designing a self powered (as opposed to bus powered) USB peripheral // device, the firmware should make sure not to turn on the USB module and D+ // or D- pull up resistor unless Vbus is actively powered. Therefore, the // firmware needs some means to detect when Vbus is being powered by the host. // A 5V tolerant I/O pin can be connected to Vbus (through a resistor), and // can be used to detect when Vbus is high (host actively powering), or low // (host is shut down or otherwise not supplying power). The USB firmware // can then periodically poll this I/O pin to know when it is okay to turn on // the USB module/D+/D- pull up resistor. When designing a purely bus powered // peripheral device, it is not possible to source current on D+ or D- when the // host is not actively providing power on Vbus. Therefore, implementing this // bus sense feature is optional. This firmware can be made to use this bus // sense feature by making sure "USE_USB_BUS_SENSE_IO" has been defined in the // HardwareProfile.h file. #if defined(USE_USB_BUS_SENSE_IO) tris_usb_bus_sense = INPUT_PIN; // See HardwareProfile.h #endif // If the host PC sends a GetStatus (device) request, the firmware must respond // and let the host know if the USB peripheral device is currently bus powered // or self powered. See chapter 9 in the official USB specifications for details // regarding this request. If the peripheral device is capable of being both // self and bus powered, it should not return a hard coded value for this request. // Instead, firmware should check if it is currently self or bus powered, and // respond accordingly. If the hardware has been configured like demonstrated // on the PICDEM FS USB Demo Board, an I/O pin can be polled to determine the // currently selected power source. On the PICDEM FS USB Demo Board, "RA2" // is used for this purpose. If using this feature, make sure "USE_SELF_POWER_SENSE_IO" // has been defined in HardwareProfile.h, and that an appropriate I/O pin has been mapped // to it in HardwareProfile.h. #if defined(USE_SELF_POWER_SENSE_IO) tris_self_power = INPUT_PIN; // See HardwareProfile.h #endif /* USBGenericOutHandle = 0; USBGenericInHandle = 0; */ UserInit(); //Application related initialization. See user.c USBDeviceInit(); //usb_device.c. Initializes USB module SFRs and firmware //variables to known states. }//end InitializeSystem void UserInit(void) { mInitAllLEDs(); mInitAllSwitches(); blinkStatusValid = TRUE; //Blink the normal USB state on the LEDs. #if defined(WITH_SERIAL_DEBUG) SerialDbg_Init(); #endif Benchmark_Init(); }//end UserInit /****************************************************************************** * Function: void ProcessIO(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: This function is a place holder for other user routines. * It is a mixture of both USB and non-USB tasks. * * Note: None *****************************************************************************/ /* void ProcessIO(void) { //Blink the LEDs according to the USB device status, but only do so if the PC application isn't connected and controlling the LEDs. if(blinkStatusValid) { BlinkUSBStatus(); } //User Application USB tasks below. //Note: The user application should not begin attempting to read/write over the USB //until after the device has been fully enumerated. After the device is fully //enumerated, the USBDeviceState will be set to "CONFIGURED_STATE". if((USBDeviceState < CONFIGURED_STATE)||(USBSuspendControl==1)) return; //As the device completes the enumeration process, the USBCBInitEP() function will //get called. In this function, we initialize the user application endpoints (in this //example code, the user application makes use of endpoint 1 IN and endpoint 1 OUT). //The USBGenRead() function call in the USBCBInitEP() function initializes endpoint 1 OUT //and "arms" it so that it can receive a packet of data from the host. Once the endpoint //has been armed, the host can then send data to it (assuming some kind of application software //is running on the host, and the application software tries to send data to the USB device). //If the host sends a packet of data to the endpoint 1 OUT buffer, the hardware of the SIE will //automatically receive it and store the data at the memory location pointed to when we called //USBGenRead(). Additionally, the endpoint handle (in this case USBGenericOutHandle) will indicate //that the endpoint is no longer busy. At this point, it is safe for this firmware to begin reading //from the endpoint buffer, and processing the data. In this example, we have implemented a few very //simple commands. For example, if the host sends a packet of data to the endpoint 1 OUT buffer, with the //first byte = 0x80, this is being used as a command to indicate that the firmware should "Toggle LED(s)". if(!USBHandleBusy(USBGenericOutHandle)) //Check if the endpoint has received any data from the host. { switch(OUTPacket[0]) //Data arrived, check what kind of command might be in the packet of data. { case 0x80: //Toggle LED(s) command from PC application. blinkStatusValid = FALSE; //Disable the regular LED blink pattern indicating USB state, PC application is controlling the LEDs. if(mGetLED_1() == mGetLED_2()) { mLED_1_Toggle(); mLED_2_Toggle(); } else { mLED_1_On(); mLED_2_On(); } break; case 0x81: //Get push button state command from PC application. INPacket[0] = 0x81; //Echo back to the host PC the command we are fulfilling in the first byte. In this case, the Get Pushbutton State command. if(sw2 == 1) //pushbutton not pressed, pull up resistor on circuit board is pulling the PORT pin high { INPacket[1] = 0x01; } else //sw2 must be == 0, pushbutton is pressed and overpowering the pull up resistor { INPacket[1] = 0x00; } //Now check to make sure no previous attempts to send data to the host are still pending. If any attemps are still //pending, we do not want to write to the endpoint 1 IN buffer again, until the previous transaction is complete. //Otherwise the unsent data waiting in the buffer will get overwritten and will result in unexpected behavior. if(!USBHandleBusy(USBGenericInHandle)) { //The endpoint was not "busy", therefore it is safe to write to the buffer and arm the endpoint. //The USBGenWrite() function call "arms" the endpoint (and makes the handle indicate the endpoint is busy). //Once armed, the data will be automatically sent to the host (in hardware by the SIE) the next time the //host polls the endpoint. Once the data is successfully sent, the handle (in this case USBGenericInHandle) //will indicate the the endpoint is no longer busy. USBGenericInHandle = USBGenWrite(USBGEN_EP_NUM,(BYTE*)&INPacket,USBGEN_EP_SIZE); } break; } //Re-arm the OUT endpoint for the next packet: //The USBGenRead() function call "arms" the endpoint (and makes it "busy"). If the endpoint is armed, the SIE will //automatically accept data from the host, if the host tries to send a packet of data to the endpoint. Once a data //packet addressed to this endpoint is received from the host, the endpoint will no longer be busy, and the application //can read the data which will be sitting in the buffer. USBGenericOutHandle = USBGenRead(USBGEN_EP_NUM,(BYTE*)&OUTPacket,USBGEN_EP_SIZE); } }//end ProcessIO */ /******************************************************************** * Function: void BlinkUSBStatus(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: BlinkUSBStatus turns on and off LEDs * corresponding to the USB device state. * * Note: mLED macros can be found in HardwareProfile.h * USBDeviceState is declared and updated in * usb_device.c. *******************************************************************/ void BlinkUSBStatus(void) { if(led_count == 0)led_count = 10000U; led_count--; #define mLED_Both_Off() {mLED_1_Off();mLED_2_Off();} #define mLED_Both_On() {mLED_1_On();mLED_2_On();} #define mLED_Only_1_On() {mLED_1_On();mLED_2_Off();} #define mLED_Only_2_On() {mLED_1_Off();mLED_2_On();} if(USBSuspendControl == 1) { if(led_count==0) { mLED_1_Toggle(); if(mGetLED_1()) { mLED_2_On(); } else { mLED_2_Off(); } }//end if } else { if(USBDeviceState == DETACHED_STATE) { mLED_Both_Off(); } else if(USBDeviceState == ATTACHED_STATE) { mLED_Both_On(); } else if(USBDeviceState == POWERED_STATE) { mLED_Only_1_On(); } else if(USBDeviceState == DEFAULT_STATE) { mLED_Only_2_On(); } else if(USBDeviceState == ADDRESS_STATE) { if(led_count == 0) { mLED_1_Toggle(); mLED_2_Off(); }//end if } else if(USBDeviceState == CONFIGURED_STATE) { if(led_count==0) { mLED_1_Toggle(); if(mGetLED_1()) { mLED_2_Off(); } else { mLED_2_On(); } }//end if }//end if(...) }//end if(UCONbits.SUSPND...) }//end BlinkUSBStatus // ****************************************************************************************************** // ************** USB Callback Functions **************************************************************** // ****************************************************************************************************** // The USB firmware stack will call the callback functions USBCBxxx() in response to certain USB related // events. For example, if the host PC is powering down, it will stop sending out Start of Frame (SOF) // packets to your device. In response to this, all USB devices are supposed to decrease their power // consumption from the USB Vbus to <2.5mA each. The USB module detects this condition (which according // to the USB specifications is 3+ms of no bus activity/SOF packets) and then calls the USBCBSuspend() // function. You should modify these callback functions to take appropriate actions for each of these // conditions. For example, in the USBCBSuspend(), you may wish to add code that will decrease power // consumption from Vbus to <2.5mA (such as by clock switching, turning off LEDs, putting the // microcontroller to sleep, etc.). Then, in the USBCBWakeFromSuspend() function, you may then wish to // add code that undoes the power saving things done in the USBCBSuspend() function. // The USBCBSendResume() function is special, in that the USB stack will not automatically call this // function. This function is meant to be called from the application firmware instead. See the // additional comments near the function. /****************************************************************************** * Function: void USBCBSuspend(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: Call back that is invoked when a USB suspend is detected * * Note: None *****************************************************************************/ void USBCBSuspend(void) { //Example power saving code. Insert appropriate code here for the desired //application behavior. If the microcontroller will be put to sleep, a //process similar to that shown below may be used: //ConfigureIOPinsForLowPower(); //SaveStateOfAllInterruptEnableBits(); //DisableAllInterruptEnableBits(); //EnableOnlyTheInterruptsWhichWillBeUsedToWakeTheMicro(); //should enable at least USBActivityIF as a wake source //Sleep(); //RestoreStateOfAllPreviouslySavedInterruptEnableBits(); //Preferrably, this should be done in the USBCBWakeFromSuspend() function instead. //RestoreIOPinsToNormal(); //Preferrably, this should be done in the USBCBWakeFromSuspend() function instead. //IMPORTANT NOTE: Do not clear the USBActivityIF (ACTVIF) bit here. This bit is //cleared inside the usb_device.c file. Clearing USBActivityIF here will cause //things to not work as intended. #if defined(__C30__) #if 0 U1EIR = 0xFFFF; U1IR = 0xFFFF; U1OTGIR = 0xFFFF; IFS5bits.USB1IF = 0; IEC5bits.USB1IE = 1; U1OTGIEbits.ACTVIE = 1; U1OTGIRbits.ACTVIF = 1; Sleep(); #endif #endif } /****************************************************************************** * Function: void _USB1Interrupt(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: This function is called when the USB interrupt bit is set * In this example the interrupt is only used when the device * goes to sleep when it receives a USB suspend command * * Note: None *****************************************************************************/ #if 0 void __attribute__ ((interrupt)) _USB1Interrupt(void) { #if !defined(self_powered) if(U1OTGIRbits.ACTVIF) { IEC5bits.USB1IE = 0; U1OTGIEbits.ACTVIE = 0; IFS5bits.USB1IF = 0; //USBClearInterruptFlag(USBActivityIFReg,USBActivityIFBitNum); USBClearInterruptFlag(USBIdleIFReg,USBIdleIFBitNum); //USBSuspendControl = 0; } #endif } #endif /****************************************************************************** * Function: void USBCBWakeFromSuspend(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: The host may put USB peripheral devices in low power * suspend mode (by "sending" 3+ms of idle). Once in suspend * mode, the host may wake the device back up by sending non- * idle state signalling. * * This call back is invoked when a wakeup from USB suspend * is detected. * * Note: None *****************************************************************************/ void USBCBWakeFromSuspend(void) { // If clock switching or other power savings measures were taken when // executing the USBCBSuspend() function, now would be a good time to // switch back to normal full power run mode conditions. The host allows // a few milliseconds of wakeup time, after which the device must be // fully back to normal, and capable of receiving and processing USB // packets. In order to do this, the USB module must receive proper // clocking (IE: 48MHz clock must be available to SIE for full speed USB // operation). } /******************************************************************** * Function: void USBCB_SOF_Handler(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: The USB host sends out a SOF packet to full-speed * devices every 1 ms. This interrupt may be useful * for isochronous pipes. End designers should * implement callback routine as necessary. * * Note: None *******************************************************************/ void USBCB_SOF_Handler(void) { // No need to clear UIRbits.SOFIF to 0 here. // Callback caller is already doing that. } /******************************************************************* * Function: void USBCBErrorHandler(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: The purpose of this callback is mainly for * debugging during development. Check UEIR to see * which error causes the interrupt. * * Note: None *******************************************************************/ void USBCBErrorHandler(void) { // No need to clear UEIR to 0 here. // Callback caller is already doing that. // Typically, user firmware does not need to do anything special // if a USB error occurs. For example, if the host sends an OUT // packet to your device, but the packet gets corrupted (ex: // because of a bad connection, or the user unplugs the // USB cable during the transmission) this will typically set // one or more USB error interrupt flags. Nothing specific // needs to be done however, since the SIE will automatically // send a "NAK" packet to the host. In response to this, the // host will normally retry to send the packet again, and no // data loss occurs. The system will typically recover // automatically, without the need for application firmware // intervention. // Nevertheless, this callback function is provided, such as // for debugging purposes. } /******************************************************************* * Function: void USBCBCheckOtherReq(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: When SETUP packets arrive from the host, some * firmware must process the request and respond * appropriately to fulfill the request. Some of * the SETUP packets will be for standard * USB "chapter 9" (as in, fulfilling chapter 9 of * the official USB specifications) requests, while * others may be specific to the USB device class * that is being implemented. For example, a HID * class device needs to be able to respond to * "GET REPORT" type of requests. This * is not a standard USB chapter 9 request, and * therefore not handled by usb_device.c. Instead * this request should be handled by class specific * firmware, such as that contained in usb_function_hid.c. * * Note: None ***************************************************************************** void USBCBCheckOtherReq(void) { }//end */ /******************************************************************* * Function: void USBCBStdSetDscHandler(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: The USBCBStdSetDscHandler() callback function is * called when a SETUP, bRequest: SET_DESCRIPTOR request * arrives. Typically SET_DESCRIPTOR requests are * not used in most applications, and it is * optional to support this type of request. * * Note: None *****************************************************************************/ //void USBCBStdSetDscHandler(void) //{ // Must claim session ownership if supporting this request //}//end /****************************************************************************** * Function: void USBCBInitEP(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: This function is called when the device becomes * initialized, which occurs after the host sends a * SET_CONFIGURATION (wValue not = 0) request. This * callback function should initialize the endpoints * for the device's usage according to the current * configuration. * * Note: None ***************************************************************************** void USBCBInitEP(void) { USBEnableEndpoint(USBGEN_EP_NUM,USB_OUT_ENABLED|USB_IN_ENABLED|USB_HANDSHAKE_ENABLED|USB_DISALLOW_SETUP); USBGenericOutHandle = USBGenRead(USBGEN_EP_NUM,(BYTE*)&OUTPacket,USBGEN_EP_SIZE); } */ /******************************************************************** * Function: void USBCBSendResume(void) * * PreCondition: None * * Input: None * * Output: None * * Side Effects: None * * Overview: The USB specifications allow some types of USB * peripheral devices to wake up a host PC (such * as if it is in a low power suspend to RAM state). * This can be a very useful feature in some * USB applications, such as an Infrared remote * control receiver. If a user presses the "power" * button on a remote control, it is nice that the * IR receiver can detect this signalling, and then * send a USB "command" to the PC to wake up. * * The USBCBSendResume() "callback" function is used * to send this special USB signalling which wakes * up the PC. This function may be called by * application firmware to wake up the PC. This * function should only be called when: * * 1. The USB driver used on the host PC supports * the remote wakeup capability. * 2. The USB configuration descriptor indicates * the device is remote wakeup capable in the * bmAttributes field. * 3. The USB host PC is currently sleeping, * and has previously sent your device a SET * FEATURE setup packet which "armed" the * remote wakeup capability. * * This callback should send a RESUME signal that * has the period of 1-15ms. * * Note: Interrupt vs. Polling * -Primary clock * -Secondary clock ***** MAKE NOTES ABOUT THIS ******* * > Can switch to primary first by calling USBCBWakeFromSuspend() * The modifiable section in this routine should be changed * to meet the application needs. Current implementation * temporary blocks other functions from executing for a * period of 1-13 ms depending on the core frequency. * * According to USB 2.0 specification section 7.1.7.7, * "The remote wakeup device must hold the resume signaling * for at lest 1 ms but for no more than 15 ms." * The idea here is to use a delay counter loop, using a * common value that would work over a wide range of core * frequencies. * That value selected is 1800. See table below: * ========================================================== * Core Freq(MHz) MIP RESUME Signal Period (ms) * ========================================================== * 48 12 1.05 * 4 1 12.6 * ========================================================== * * These timing could be incorrect when using code * optimization or extended instruction mode, * or when having other interrupts enabled. * Make sure to verify using the MPLAB SIM's Stopwatch * and verify the actual signal on an oscilloscope. *******************************************************************/ void USBCBSendResume(void) { static WORD delay_count; USBResumeControl = 1; // Start RESUME signaling delay_count = 1800U; // Set RESUME line for 1-13 ms do { delay_count--; }while(delay_count); USBResumeControl = 0; } /******************************************************************* * Function: BOOL USER_USB_CALLBACK_EVENT_HANDLER( * USB_EVENT event, void *pdata, WORD size) * * PreCondition: None * * Input: USB_EVENT event - the type of event * void *pdata - pointer to the event data * WORD size - size of the event data * * Output: None * * Side Effects: None * * Overview: This function is called from the USB stack to * notify a user application that a USB event * occured. This callback is in interrupt context * when the USB_INTERRUPT option is selected. * * Note: None *******************************************************************/ BOOL USER_USB_CALLBACK_EVENT_HANDLER(USB_EVENT event, void *pdata, WORD size) { switch(event) { case EVENT_CONFIGURED: USBCBInitEP(); break; case EVENT_SET_DESCRIPTOR: USBCBStdSetDscHandler(); break; case EVENT_EP0_REQUEST: USBCBCheckOtherReq(); break; case EVENT_SOF: USBCB_SOF_Handler(); break; case EVENT_SUSPEND: USBCBSuspend(); break; case EVENT_RESUME: USBCBWakeFromSuspend(); break; case EVENT_BUS_ERROR: USBCBErrorHandler(); break; case EVENT_TRANSFER: Nop(); break; default: break; } return TRUE; } /** EOF main.c ***************************************************************/