/*! * \file c_api.h * \copyright Copyright (c) 2016 Microsoft Corporation. All rights reserved. * Licensed under the MIT License. See LICENSE file in the project root for license information. * \note * To avoid type conversion on large data, the most of our exposed interface supports both float32 and float64, * except the following: * 1. gradient and Hessian; * 2. current score for training and validation data. * . * The reason is that they are called frequently, and the type conversion on them may be time-cost. */ #ifndef LIGHTGBM_C_API_H_ #define LIGHTGBM_C_API_H_ #include #include #include #include typedef void* DatasetHandle; /*!< \brief Handle of dataset. */ typedef void* BoosterHandle; /*!< \brief Handle of booster. */ typedef void* FastConfigHandle; /*!< \brief Handle of FastConfig. */ #define C_API_DTYPE_FLOAT32 (0) /*!< \brief float32 (single precision float). */ #define C_API_DTYPE_FLOAT64 (1) /*!< \brief float64 (double precision float). */ #define C_API_DTYPE_INT32 (2) /*!< \brief int32. */ #define C_API_DTYPE_INT64 (3) /*!< \brief int64. */ #define C_API_PREDICT_NORMAL (0) /*!< \brief Normal prediction, with transform (if needed). */ #define C_API_PREDICT_RAW_SCORE (1) /*!< \brief Predict raw score. */ #define C_API_PREDICT_LEAF_INDEX (2) /*!< \brief Predict leaf index. */ #define C_API_PREDICT_CONTRIB (3) /*!< \brief Predict feature contributions (SHAP values). */ #define C_API_MATRIX_TYPE_CSR (0) /*!< \brief CSR sparse matrix type. */ #define C_API_MATRIX_TYPE_CSC (1) /*!< \brief CSC sparse matrix type. */ #define C_API_FEATURE_IMPORTANCE_SPLIT (0) /*!< \brief Split type of feature importance. */ #define C_API_FEATURE_IMPORTANCE_GAIN (1) /*!< \brief Gain type of feature importance. */ /*! * \brief Get string message of the last error. * \return Error information */ LIGHTGBM_C_EXPORT const char* LGBM_GetLastError(); /*! * \brief Register a callback function for log redirecting. * \param callback The callback function to register * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_RegisterLogCallback(void (*callback)(const char*)); // --- start Dataset interface /*! * \brief Load dataset from file (like LightGBM CLI version does). * \param filename The name of the file * \param parameters Additional parameters * \param reference Used to align bin mapper with other dataset, nullptr means isn't used * \param[out] out A loaded dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromFile(const char* filename, const char* parameters, const DatasetHandle reference, DatasetHandle* out); /*! * \brief Allocate the space for dataset and bucket feature bins according to sampled data. * \param sample_data Sampled data, grouped by the column * \param sample_indices Indices of sampled data * \param ncol Number of columns * \param num_per_col Size of each sampling column * \param num_sample_row Number of sampled rows * \param num_total_row Number of total rows * \param parameters Additional parameters * \param[out] out Created dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromSampledColumn(double** sample_data, int** sample_indices, int32_t ncol, const int* num_per_col, int32_t num_sample_row, int32_t num_total_row, const char* parameters, DatasetHandle* out); /*! * \brief Allocate the space for dataset and bucket feature bins according to reference dataset. * \param reference Used to align bin mapper with other dataset * \param num_total_row Number of total rows * \param[out] out Created dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateByReference(const DatasetHandle reference, int64_t num_total_row, DatasetHandle* out); /*! * \brief Push data to existing dataset, if ``nrow + start_row == num_total_row``, will call ``dataset->FinishLoad``. * \param dataset Handle of dataset * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nrow Number of rows * \param ncol Number of columns * \param start_row Row start index * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetPushRows(DatasetHandle dataset, const void* data, int data_type, int32_t nrow, int32_t ncol, int32_t start_row); /*! * \brief Push data to existing dataset, if ``nrow + start_row == num_total_row``, will call ``dataset->FinishLoad``. * \param dataset Handle of dataset * \param indptr Pointer to row headers * \param indptr_type Type of ``indptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to column indices * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nindptr Number of rows in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param num_col Number of columns * \param start_row Row start index * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetPushRowsByCSR(DatasetHandle dataset, const void* indptr, int indptr_type, const int32_t* indices, const void* data, int data_type, int64_t nindptr, int64_t nelem, int64_t num_col, int64_t start_row); /*! * \brief Create a dataset from CSR format. * \param indptr Pointer to row headers * \param indptr_type Type of ``indptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to column indices * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nindptr Number of rows in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param num_col Number of columns * \param parameters Additional parameters * \param reference Used to align bin mapper with other dataset, nullptr means isn't used * \param[out] out Created dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromCSR(const void* indptr, int indptr_type, const int32_t* indices, const void* data, int data_type, int64_t nindptr, int64_t nelem, int64_t num_col, const char* parameters, const DatasetHandle reference, DatasetHandle* out); /*! * \brief Create a dataset from CSR format through callbacks. * \param get_row_funptr Pointer to ``std::function>& ret)>`` * (called for every row and expected to clear and fill ``ret``) * \param num_rows Number of rows * \param num_col Number of columns * \param parameters Additional parameters * \param reference Used to align bin mapper with other dataset, nullptr means isn't used * \param[out] out Created dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromCSRFunc(void* get_row_funptr, int num_rows, int64_t num_col, const char* parameters, const DatasetHandle reference, DatasetHandle* out); /*! * \brief Create a dataset from CSC format. * \param col_ptr Pointer to column headers * \param col_ptr_type Type of ``col_ptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to row indices * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param ncol_ptr Number of columns in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param num_row Number of rows * \param parameters Additional parameters * \param reference Used to align bin mapper with other dataset, nullptr means isn't used * \param[out] out Created dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromCSC(const void* col_ptr, int col_ptr_type, const int32_t* indices, const void* data, int data_type, int64_t ncol_ptr, int64_t nelem, int64_t num_row, const char* parameters, const DatasetHandle reference, DatasetHandle* out); /*! * \brief Create dataset from dense matrix. * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nrow Number of rows * \param ncol Number of columns * \param is_row_major 1 for row-major, 0 for column-major * \param parameters Additional parameters * \param reference Used to align bin mapper with other dataset, nullptr means isn't used * \param[out] out Created dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromMat(const void* data, int data_type, int32_t nrow, int32_t ncol, int is_row_major, const char* parameters, const DatasetHandle reference, DatasetHandle* out); /*! * \brief Create dataset from array of dense matrices. * \param nmat Number of dense matrices * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nrow Number of rows * \param ncol Number of columns * \param is_row_major 1 for row-major, 0 for column-major * \param parameters Additional parameters * \param reference Used to align bin mapper with other dataset, nullptr means isn't used * \param[out] out Created dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetCreateFromMats(int32_t nmat, const void** data, int data_type, int32_t* nrow, int32_t ncol, int is_row_major, const char* parameters, const DatasetHandle reference, DatasetHandle* out); /*! * \brief Create subset of a data. * \param handle Handle of full dataset * \param used_row_indices Indices used in subset * \param num_used_row_indices Length of ``used_row_indices`` * \param parameters Additional parameters * \param[out] out Subset of data * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetGetSubset(const DatasetHandle handle, const int32_t* used_row_indices, int32_t num_used_row_indices, const char* parameters, DatasetHandle* out); /*! * \brief Save feature names to dataset. * \param handle Handle of dataset * \param feature_names Feature names * \param num_feature_names Number of feature names * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetSetFeatureNames(DatasetHandle handle, const char** feature_names, int num_feature_names); /*! * \brief Get feature names of dataset. * \param handle Handle of dataset * \param len Number of ``char*`` pointers stored at ``out_strs``. * If smaller than the max size, only this many strings are copied * \param[out] num_feature_names Number of feature names * \param buffer_len Size of pre-allocated strings. * Content is copied up to ``buffer_len - 1`` and null-terminated * \param[out] out_buffer_len String sizes required to do the full string copies * \param[out] feature_names Feature names, should pre-allocate memory * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetGetFeatureNames(DatasetHandle handle, const int len, int* num_feature_names, const size_t buffer_len, size_t* out_buffer_len, char** feature_names); /*! * \brief Free space for dataset. * \param handle Handle of dataset to be freed * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetFree(DatasetHandle handle); /*! * \brief Save dataset to binary file. * \param handle Handle of dataset * \param filename The name of the file * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetSaveBinary(DatasetHandle handle, const char* filename); /*! * \brief Save dataset to text file, intended for debugging use only. * \param handle Handle of dataset * \param filename The name of the file * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetDumpText(DatasetHandle handle, const char* filename); /*! * \brief Set vector to a content in info. * \note * - \a group only works for ``C_API_DTYPE_INT32``; * - \a label and \a weight only work for ``C_API_DTYPE_FLOAT32``; * - \a init_score only works for ``C_API_DTYPE_FLOAT64``. * \param handle Handle of dataset * \param field_name Field name, can be \a label, \a weight, \a init_score, \a group * \param field_data Pointer to data vector * \param num_element Number of elements in ``field_data`` * \param type Type of ``field_data`` pointer, can be ``C_API_DTYPE_INT32``, ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetSetField(DatasetHandle handle, const char* field_name, const void* field_data, int num_element, int type); /*! * \brief Get info vector from dataset. * \param handle Handle of dataset * \param field_name Field name * \param[out] out_len Used to set result length * \param[out] out_ptr Pointer to the result * \param[out] out_type Type of result pointer, can be ``C_API_DTYPE_INT32``, ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetGetField(DatasetHandle handle, const char* field_name, int* out_len, const void** out_ptr, int* out_type); /*! * \brief Raise errors for attempts to update dataset parameters. * \param old_parameters Current dataset parameters * \param new_parameters New dataset parameters * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetUpdateParamChecking(const char* old_parameters, const char* new_parameters); /*! * \brief Get number of data points. * \param handle Handle of dataset * \param[out] out The address to hold number of data points * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetGetNumData(DatasetHandle handle, int* out); /*! * \brief Get number of features. * \param handle Handle of dataset * \param[out] out The address to hold number of features * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetGetNumFeature(DatasetHandle handle, int* out); /*! * \brief Add features from ``source`` to ``target``. * \param target The handle of the dataset to add features to * \param source The handle of the dataset to take features from * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_DatasetAddFeaturesFrom(DatasetHandle target, DatasetHandle source); // --- start Booster interfaces /*! * \brief Get boolean representing whether booster is fitting linear trees. * \param handle Handle of booster * \param[out] out The address to hold linear trees indicator * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetLinear(BoosterHandle handle, bool* out); /*! * \brief Create a new boosting learner. * \param train_data Training dataset * \param parameters Parameters in format 'key1=value1 key2=value2' * \param[out] out Handle of created booster * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterCreate(const DatasetHandle train_data, const char* parameters, BoosterHandle* out); /*! * \brief Load an existing booster from model file. * \param filename Filename of model * \param[out] out_num_iterations Number of iterations of this booster * \param[out] out Handle of created booster * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterCreateFromModelfile(const char* filename, int* out_num_iterations, BoosterHandle* out); /*! * \brief Load an existing booster from string. * \param model_str Model string * \param[out] out_num_iterations Number of iterations of this booster * \param[out] out Handle of created booster * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterLoadModelFromString(const char* model_str, int* out_num_iterations, BoosterHandle* out); /*! * \brief Free space for booster. * \param handle Handle of booster to be freed * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterFree(BoosterHandle handle); /*! * \brief Shuffle models. * \param handle Handle of booster * \param start_iter The first iteration that will be shuffled * \param end_iter The last iteration that will be shuffled * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterShuffleModels(BoosterHandle handle, int start_iter, int end_iter); /*! * \brief Merge model from ``other_handle`` into ``handle``. * \param handle Handle of booster, will merge another booster into this one * \param other_handle Other handle of booster * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterMerge(BoosterHandle handle, BoosterHandle other_handle); /*! * \brief Add new validation data to booster. * \param handle Handle of booster * \param valid_data Validation dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterAddValidData(BoosterHandle handle, const DatasetHandle valid_data); /*! * \brief Reset training data for booster. * \param handle Handle of booster * \param train_data Training dataset * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterResetTrainingData(BoosterHandle handle, const DatasetHandle train_data); /*! * \brief Reset config for booster. * \param handle Handle of booster * \param parameters Parameters in format 'key1=value1 key2=value2' * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterResetParameter(BoosterHandle handle, const char* parameters); /*! * \brief Get number of classes. * \param handle Handle of booster * \param[out] out_len Number of classes * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetNumClasses(BoosterHandle handle, int* out_len); /*! * \brief Update the model for one iteration. * \param handle Handle of booster * \param[out] is_finished 1 means the update was successfully finished (cannot split any more), 0 indicates failure * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterUpdateOneIter(BoosterHandle handle, int* is_finished); /*! * \brief Refit the tree model using the new data (online learning). * \param handle Handle of booster * \param leaf_preds Pointer to predicted leaf indices * \param nrow Number of rows of ``leaf_preds`` * \param ncol Number of columns of ``leaf_preds`` * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterRefit(BoosterHandle handle, const int32_t* leaf_preds, int32_t nrow, int32_t ncol); /*! * \brief Update the model by specifying gradient and Hessian directly * (this can be used to support customized loss functions). * \param handle Handle of booster * \param grad The first order derivative (gradient) statistics * \param hess The second order derivative (Hessian) statistics * \param[out] is_finished 1 means the update was successfully finished (cannot split any more), 0 indicates failure * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterUpdateOneIterCustom(BoosterHandle handle, const float* grad, const float* hess, int* is_finished); /*! * \brief Rollback one iteration. * \param handle Handle of booster * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterRollbackOneIter(BoosterHandle handle); /*! * \brief Get index of the current boosting iteration. * \param handle Handle of booster * \param[out] out_iteration Index of the current boosting iteration * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetCurrentIteration(BoosterHandle handle, int* out_iteration); /*! * \brief Get number of trees per iteration. * \param handle Handle of booster * \param[out] out_tree_per_iteration Number of trees per iteration * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterNumModelPerIteration(BoosterHandle handle, int* out_tree_per_iteration); /*! * \brief Get number of weak sub-models. * \param handle Handle of booster * \param[out] out_models Number of weak sub-models * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterNumberOfTotalModel(BoosterHandle handle, int* out_models); /*! * \brief Get number of evaluation datasets. * \param handle Handle of booster * \param[out] out_len Total number of evaluation datasets * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetEvalCounts(BoosterHandle handle, int* out_len); /*! * \brief Get names of evaluation datasets. * \param handle Handle of booster * \param len Number of ``char*`` pointers stored at ``out_strs``. * If smaller than the max size, only this many strings are copied * \param[out] out_len Total number of evaluation datasets * \param buffer_len Size of pre-allocated strings. * Content is copied up to ``buffer_len - 1`` and null-terminated * \param[out] out_buffer_len String sizes required to do the full string copies * \param[out] out_strs Names of evaluation datasets, should pre-allocate memory * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetEvalNames(BoosterHandle handle, const int len, int* out_len, const size_t buffer_len, size_t* out_buffer_len, char** out_strs); /*! * \brief Get names of features. * \param handle Handle of booster * \param len Number of ``char*`` pointers stored at ``out_strs``. * If smaller than the max size, only this many strings are copied * \param[out] out_len Total number of features * \param buffer_len Size of pre-allocated strings. * Content is copied up to ``buffer_len - 1`` and null-terminated * \param[out] out_buffer_len String sizes required to do the full string copies * \param[out] out_strs Names of features, should pre-allocate memory * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetFeatureNames(BoosterHandle handle, const int len, int* out_len, const size_t buffer_len, size_t* out_buffer_len, char** out_strs); /*! * \brief Get number of features. * \param handle Handle of booster * \param[out] out_len Total number of features * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetNumFeature(BoosterHandle handle, int* out_len); /*! * \brief Get evaluation for training data and validation data. * \note * 1. You should call ``LGBM_BoosterGetEvalNames`` first to get the names of evaluation datasets. * 2. You should pre-allocate memory for ``out_results``, you can get its length by ``LGBM_BoosterGetEvalCounts``. * \param handle Handle of booster * \param data_idx Index of data, 0: training data, 1: 1st validation data, 2: 2nd validation data and so on * \param[out] out_len Length of output result * \param[out] out_results Array with evaluation results * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetEval(BoosterHandle handle, int data_idx, int* out_len, double* out_results); /*! * \brief Get number of predictions for training data and validation data * (this can be used to support customized evaluation functions). * \param handle Handle of booster * \param data_idx Index of data, 0: training data, 1: 1st validation data, 2: 2nd validation data and so on * \param[out] out_len Number of predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetNumPredict(BoosterHandle handle, int data_idx, int64_t* out_len); /*! * \brief Get prediction for training data and validation data. * \note * You should pre-allocate memory for ``out_result``, its length is equal to ``num_class * num_data``. * \param handle Handle of booster * \param data_idx Index of data, 0: training data, 1: 1st validation data, 2: 2nd validation data and so on * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetPredict(BoosterHandle handle, int data_idx, int64_t* out_len, double* out_result); /*! * \brief Make prediction for file. * \param handle Handle of booster * \param data_filename Filename of file with data * \param data_has_header Whether file has header or not * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iterations for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param result_filename Filename of result file in which predictions will be written * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForFile(BoosterHandle handle, const char* data_filename, int data_has_header, int predict_type, int start_iteration, int num_iteration, const char* parameter, const char* result_filename); /*! * \brief Get number of predictions. * \param handle Handle of booster * \param num_row Number of rows * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iterations for prediction, <= 0 means no limit * \param[out] out_len Length of prediction * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterCalcNumPredict(BoosterHandle handle, int num_row, int predict_type, int start_iteration, int num_iteration, int64_t* out_len); /*! * \brief Release FastConfig object. * * \param fastConfig Handle to the FastConfig object acquired with a ``*FastInit()`` method. * \return 0 when it succeeds, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_FastConfigFree(FastConfigHandle fastConfig); /*! * \brief Make prediction for a new dataset in CSR format. * \note * You should pre-allocate memory for ``out_result``: * - for normal and raw score, its length is equal to ``num_class * num_data``; * - for leaf index, its length is equal to ``num_class * num_data * num_iteration``; * - for feature contributions, its length is equal to ``num_class * num_data * (num_feature + 1)``. * \param handle Handle of booster * \param indptr Pointer to row headers * \param indptr_type Type of ``indptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to column indices * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nindptr Number of rows in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param num_col Number of columns * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iterations for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSR(BoosterHandle handle, const void* indptr, int indptr_type, const int32_t* indices, const void* data, int data_type, int64_t nindptr, int64_t nelem, int64_t num_col, int predict_type, int start_iteration, int num_iteration, const char* parameter, int64_t* out_len, double* out_result); /*! * \brief Make sparse prediction for a new dataset in CSR or CSC format. Currently only used for feature contributions. * \note * The outputs are pre-allocated, as they can vary for each invocation, but the shape should be the same: * - for feature contributions, the shape of sparse matrix will be ``num_class * num_data * (num_feature + 1)``. * The output indptr_type for the sparse matrix will be the same as the given input indptr_type. * Call ``LGBM_BoosterFreePredictSparse`` to deallocate resources. * \param handle Handle of booster * \param indptr Pointer to row headers for CSR or column headers for CSC * \param indptr_type Type of ``indptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to column indices for CSR or row indices for CSC * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nindptr Number of rows in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param num_col_or_row Number of columns for CSR or number of rows for CSC * \param predict_type What should be predicted, only feature contributions supported currently * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iterations for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param matrix_type Type of matrix input and output, can be ``C_API_MATRIX_TYPE_CSR`` or ``C_API_MATRIX_TYPE_CSC`` * \param[out] out_len Length of output indices and data * \param[out] out_indptr Pointer to output row headers for CSR or column headers for CSC * \param[out] out_indices Pointer to sparse column indices for CSR or row indices for CSC * \param[out] out_data Pointer to sparse data space * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictSparseOutput(BoosterHandle handle, const void* indptr, int indptr_type, const int32_t* indices, const void* data, int data_type, int64_t nindptr, int64_t nelem, int64_t num_col_or_row, int predict_type, int start_iteration, int num_iteration, const char* parameter, int matrix_type, int64_t* out_len, void** out_indptr, int32_t** out_indices, void** out_data); /*! * \brief Method corresponding to ``LGBM_BoosterPredictSparseOutput`` to free the allocated data. * \param indptr Pointer to output row headers or column headers to be deallocated * \param indices Pointer to sparse indices to be deallocated * \param data Pointer to sparse data space to be deallocated * \param indptr_type Type of ``indptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterFreePredictSparse(void* indptr, int32_t* indices, void* data, int indptr_type, int data_type); /*! * \brief Make prediction for a new dataset in CSR format. This method re-uses the internal predictor structure * from previous calls and is optimized for single row invocation. * \note * You should pre-allocate memory for ``out_result``: * - for normal and raw score, its length is equal to ``num_class * num_data``; * - for leaf index, its length is equal to ``num_class * num_data * num_iteration``; * - for feature contributions, its length is equal to ``num_class * num_data * (num_feature + 1)``. * \param handle Handle of booster * \param indptr Pointer to row headers * \param indptr_type Type of ``indptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to column indices * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nindptr Number of rows in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param num_col Number of columns * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iterations for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSRSingleRow(BoosterHandle handle, const void* indptr, int indptr_type, const int32_t* indices, const void* data, int data_type, int64_t nindptr, int64_t nelem, int64_t num_col, int predict_type, int start_iteration, int num_iteration, const char* parameter, int64_t* out_len, double* out_result); /*! * \brief Initialize and return a ``FastConfigHandle`` for use with ``LGBM_BoosterPredictForCSRSingleRowFast``. * * Release the ``FastConfig`` by passing its handle to ``LGBM_FastConfigFree`` when no longer needed. * * \param handle Booster handle * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iterations for prediction, <= 0 means no limit * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param num_col Number of columns * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_fastConfig FastConfig object with which you can call ``LGBM_BoosterPredictForCSRSingleRowFast`` * \return 0 when it succeeds, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSRSingleRowFastInit(BoosterHandle handle, const int predict_type, const int start_iteration, const int num_iteration, const int data_type, const int64_t num_col, const char* parameter, FastConfigHandle *out_fastConfig); /*! * \brief Faster variant of ``LGBM_BoosterPredictForCSRSingleRow``. * * Score single rows after setup with ``LGBM_BoosterPredictForCSRSingleRowFastInit``. * * By removing the setup steps from this call extra optimizations can be made like * initializing the config only once, instead of once per call. * * \note * Setting up the number of threads is only done once at ``LGBM_BoosterPredictForCSRSingleRowFastInit`` * instead of at each prediction. * If you use a different number of threads in other calls, you need to start the setup process over, * or that number of threads will be used for these calls as well. * * \note * You should pre-allocate memory for ``out_result``: * - for normal and raw score, its length is equal to ``num_class * num_data``; * - for leaf index, its length is equal to ``num_class * num_data * num_iteration``; * - for feature contributions, its length is equal to ``num_class * num_data * (num_feature + 1)``. * * \param fastConfig_handle FastConfig object handle returned by ``LGBM_BoosterPredictForCSRSingleRowFastInit`` * \param indptr Pointer to row headers * \param indptr_type Type of ``indptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to column indices * \param data Pointer to the data space * \param nindptr Number of rows in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSRSingleRowFast(FastConfigHandle fastConfig_handle, const void* indptr, const int indptr_type, const int32_t* indices, const void* data, const int64_t nindptr, const int64_t nelem, int64_t* out_len, double* out_result); /*! * \brief Make prediction for a new dataset in CSC format. * \note * You should pre-allocate memory for ``out_result``: * - for normal and raw score, its length is equal to ``num_class * num_data``; * - for leaf index, its length is equal to ``num_class * num_data * num_iteration``; * - for feature contributions, its length is equal to ``num_class * num_data * (num_feature + 1)``. * \param handle Handle of booster * \param col_ptr Pointer to column headers * \param col_ptr_type Type of ``col_ptr``, can be ``C_API_DTYPE_INT32`` or ``C_API_DTYPE_INT64`` * \param indices Pointer to row indices * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param ncol_ptr Number of columns in the matrix + 1 * \param nelem Number of nonzero elements in the matrix * \param num_row Number of rows * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iteration for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForCSC(BoosterHandle handle, const void* col_ptr, int col_ptr_type, const int32_t* indices, const void* data, int data_type, int64_t ncol_ptr, int64_t nelem, int64_t num_row, int predict_type, int start_iteration, int num_iteration, const char* parameter, int64_t* out_len, double* out_result); /*! * \brief Make prediction for a new dataset. * \note * You should pre-allocate memory for ``out_result``: * - for normal and raw score, its length is equal to ``num_class * num_data``; * - for leaf index, its length is equal to ``num_class * num_data * num_iteration``; * - for feature contributions, its length is equal to ``num_class * num_data * (num_feature + 1)``. * \param handle Handle of booster * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nrow Number of rows * \param ncol Number of columns * \param is_row_major 1 for row-major, 0 for column-major * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iteration for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMat(BoosterHandle handle, const void* data, int data_type, int32_t nrow, int32_t ncol, int is_row_major, int predict_type, int start_iteration, int num_iteration, const char* parameter, int64_t* out_len, double* out_result); /*! * \brief Make prediction for a new dataset. This method re-uses the internal predictor structure * from previous calls and is optimized for single row invocation. * \note * You should pre-allocate memory for ``out_result``: * - for normal and raw score, its length is equal to ``num_class * num_data``; * - for leaf index, its length is equal to ``num_class * num_data * num_iteration``; * - for feature contributions, its length is equal to ``num_class * num_data * (num_feature + 1)``. * \param handle Handle of booster * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param ncol Number columns * \param is_row_major 1 for row-major, 0 for column-major * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iteration for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMatSingleRow(BoosterHandle handle, const void* data, int data_type, int ncol, int is_row_major, int predict_type, int start_iteration, int num_iteration, const char* parameter, int64_t* out_len, double* out_result); /*! * \brief Initialize and return a ``FastConfigHandle`` for use with ``LGBM_BoosterPredictForMatSingleRowFast``. * * Release the ``FastConfig`` by passing its handle to ``LGBM_FastConfigFree`` when no longer needed. * * \param handle Booster handle * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iterations for prediction, <= 0 means no limit * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param ncol Number of columns * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_fastConfig FastConfig object with which you can call ``LGBM_BoosterPredictForMatSingleRowFast`` * \return 0 when it succeeds, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMatSingleRowFastInit(BoosterHandle handle, const int predict_type, const int start_iteration, const int num_iteration, const int data_type, const int32_t ncol, const char* parameter, FastConfigHandle *out_fastConfig); /*! * \brief Faster variant of ``LGBM_BoosterPredictForMatSingleRow``. * * Score a single row after setup with ``LGBM_BoosterPredictForMatSingleRowFastInit``. * * By removing the setup steps from this call extra optimizations can be made like * initializing the config only once, instead of once per call. * * \note * Setting up the number of threads is only done once at ``LGBM_BoosterPredictForMatSingleRowFastInit`` * instead of at each prediction. * If you use a different number of threads in other calls, you need to start the setup process over, * or that number of threads will be used for these calls as well. * * \param fastConfig_handle FastConfig object handle returned by ``LGBM_BoosterPredictForMatSingleRowFastInit`` * \param data Single-row array data (no other way than row-major form). * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when it succeeds, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMatSingleRowFast(FastConfigHandle fastConfig_handle, const void* data, int64_t* out_len, double* out_result); /*! * \brief Make prediction for a new dataset presented in a form of array of pointers to rows. * \note * You should pre-allocate memory for ``out_result``: * - for normal and raw score, its length is equal to ``num_class * num_data``; * - for leaf index, its length is equal to ``num_class * num_data * num_iteration``; * - for feature contributions, its length is equal to ``num_class * num_data * (num_feature + 1)``. * \param handle Handle of booster * \param data Pointer to the data space * \param data_type Type of ``data`` pointer, can be ``C_API_DTYPE_FLOAT32`` or ``C_API_DTYPE_FLOAT64`` * \param nrow Number of rows * \param ncol Number columns * \param predict_type What should be predicted * - ``C_API_PREDICT_NORMAL``: normal prediction, with transform (if needed); * - ``C_API_PREDICT_RAW_SCORE``: raw score; * - ``C_API_PREDICT_LEAF_INDEX``: leaf index; * - ``C_API_PREDICT_CONTRIB``: feature contributions (SHAP values) * \param start_iteration Start index of the iteration to predict * \param num_iteration Number of iteration for prediction, <= 0 means no limit * \param parameter Other parameters for prediction, e.g. early stopping for prediction * \param[out] out_len Length of output result * \param[out] out_result Pointer to array with predictions * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterPredictForMats(BoosterHandle handle, const void** data, int data_type, int32_t nrow, int32_t ncol, int predict_type, int start_iteration, int num_iteration, const char* parameter, int64_t* out_len, double* out_result); /*! * \brief Save model into file. * \param handle Handle of booster * \param start_iteration Start index of the iteration that should be saved * \param num_iteration Index of the iteration that should be saved, <= 0 means save all * \param feature_importance_type Type of feature importance, can be ``C_API_FEATURE_IMPORTANCE_SPLIT`` or ``C_API_FEATURE_IMPORTANCE_GAIN`` * \param filename The name of the file * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterSaveModel(BoosterHandle handle, int start_iteration, int num_iteration, int feature_importance_type, const char* filename); /*! * \brief Save model to string. * \param handle Handle of booster * \param start_iteration Start index of the iteration that should be saved * \param num_iteration Index of the iteration that should be saved, <= 0 means save all * \param feature_importance_type Type of feature importance, can be ``C_API_FEATURE_IMPORTANCE_SPLIT`` or ``C_API_FEATURE_IMPORTANCE_GAIN`` * \param buffer_len String buffer length, if ``buffer_len < out_len``, you should re-allocate buffer * \param[out] out_len Actual output length * \param[out] out_str String of model, should pre-allocate memory * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterSaveModelToString(BoosterHandle handle, int start_iteration, int num_iteration, int feature_importance_type, int64_t buffer_len, int64_t* out_len, char* out_str); /*! * \brief Dump model to JSON. * \param handle Handle of booster * \param start_iteration Start index of the iteration that should be dumped * \param num_iteration Index of the iteration that should be dumped, <= 0 means dump all * \param feature_importance_type Type of feature importance, can be ``C_API_FEATURE_IMPORTANCE_SPLIT`` or ``C_API_FEATURE_IMPORTANCE_GAIN`` * \param buffer_len String buffer length, if ``buffer_len < out_len``, you should re-allocate buffer * \param[out] out_len Actual output length * \param[out] out_str JSON format string of model, should pre-allocate memory * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterDumpModel(BoosterHandle handle, int start_iteration, int num_iteration, int feature_importance_type, int64_t buffer_len, int64_t* out_len, char* out_str); /*! * \brief Get leaf value. * \param handle Handle of booster * \param tree_idx Index of tree * \param leaf_idx Index of leaf * \param[out] out_val Output result from the specified leaf * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetLeafValue(BoosterHandle handle, int tree_idx, int leaf_idx, double* out_val); /*! * \brief Set leaf value. * \param handle Handle of booster * \param tree_idx Index of tree * \param leaf_idx Index of leaf * \param val Leaf value * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterSetLeafValue(BoosterHandle handle, int tree_idx, int leaf_idx, double val); /*! * \brief Get model feature importance. * \param handle Handle of booster * \param num_iteration Number of iterations for which feature importance is calculated, <= 0 means use all * \param importance_type Method of importance calculation: * - ``C_API_FEATURE_IMPORTANCE_SPLIT``: result contains numbers of times the feature is used in a model; * - ``C_API_FEATURE_IMPORTANCE_GAIN``: result contains total gains of splits which use the feature * \param[out] out_results Result array with feature importance * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterFeatureImportance(BoosterHandle handle, int num_iteration, int importance_type, double* out_results); /*! * \brief Get model upper bound value. * \param handle Handle of booster * \param[out] out_results Result pointing to max value * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetUpperBoundValue(BoosterHandle handle, double* out_results); /*! * \brief Get model lower bound value. * \param handle Handle of booster * \param[out] out_results Result pointing to min value * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_BoosterGetLowerBoundValue(BoosterHandle handle, double* out_results); /*! * \brief Initialize the network. * \param machines List of machines in format 'ip1:port1,ip2:port2' * \param local_listen_port TCP listen port for local machines * \param listen_time_out Socket time-out in minutes * \param num_machines Total number of machines * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_NetworkInit(const char* machines, int local_listen_port, int listen_time_out, int num_machines); /*! * \brief Finalize the network. * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_NetworkFree(); /*! * \brief Initialize the network with external collective functions. * \param num_machines Total number of machines * \param rank Rank of local machine * \param reduce_scatter_ext_fun The external reduce-scatter function * \param allgather_ext_fun The external allgather function * \return 0 when succeed, -1 when failure happens */ LIGHTGBM_C_EXPORT int LGBM_NetworkInitWithFunctions(int num_machines, int rank, void* reduce_scatter_ext_fun, void* allgather_ext_fun); #if defined(_MSC_VER) #define THREAD_LOCAL __declspec(thread) /*!< \brief Thread local specifier. */ #else #define THREAD_LOCAL thread_local /*!< \brief Thread local specifier. */ #endif /*! * \brief Handle of error message. * \return Error message */ static char* LastErrorMsg() { static THREAD_LOCAL char err_msg[512] = "Everything is fine"; return err_msg; } #ifdef _MSC_VER #pragma warning(disable : 4996) #endif /*! * \brief Set string message of the last error. * \param msg Error message */ inline void LGBM_SetLastError(const char* msg) { const int err_buf_len = 512; snprintf(LastErrorMsg(), err_buf_len, "%s", msg); } #endif // LIGHTGBM_C_API_H_