#' @name lgb.plot.importance #' @title Plot feature importance as a bar graph #' @description Plot previously calculated feature importance: Gain, Cover and Frequency, as a bar graph. #' @param tree_imp a \code{data.table} returned by \code{\link{lgb.importance}}. #' @param top_n maximal number of top features to include into the plot. #' @param measure the name of importance measure to plot, can be "Gain", "Cover" or "Frequency". #' @param left_margin (base R barplot) allows to adjust the left margin size to fit feature names. #' @param cex (base R barplot) passed as \code{cex.names} parameter to \code{\link[graphics]{barplot}}. #' Set a number smaller than 1.0 to make the bar labels smaller than R's default and values #' greater than 1.0 to make them larger. #' #' @details #' The graph represents each feature as a horizontal bar of length proportional to the defined importance of a feature. #' Features are shown ranked in a decreasing importance order. #' #' @return #' The \code{lgb.plot.importance} function creates a \code{barplot} #' and silently returns a processed data.table with \code{top_n} features sorted by defined importance. #' #' @examples #' \donttest{ #' \dontshow{setLGBMthreads(2L)} #' \dontshow{data.table::setDTthreads(1L)} #' data(agaricus.train, package = "lightgbm") #' train <- agaricus.train #' dtrain <- lgb.Dataset(train$data, label = train$label) #' #' params <- list( #' objective = "binary" #' , learning_rate = 0.1 #' , min_data_in_leaf = 1L #' , min_sum_hessian_in_leaf = 1.0 #' , num_threads = 2L #' ) #' #' model <- lgb.train( #' params = params #' , data = dtrain #' , nrounds = 5L #' ) #' #' tree_imp <- lgb.importance(model, percentage = TRUE) #' lgb.plot.importance(tree_imp, top_n = 5L, measure = "Gain") #' } #' @importFrom graphics barplot par #' @export lgb.plot.importance <- function(tree_imp, top_n = 10L, measure = "Gain", left_margin = 10L, cex = NULL ) { # Check for measurement (column names) correctness measure <- match.arg( measure , choices = c("Gain", "Cover", "Frequency") , several.ok = FALSE ) # Get top N importance (defaults to 10) top_n <- min(top_n, nrow(tree_imp)) # Parse importance tree_imp <- tree_imp[order(abs(get(measure)), decreasing = TRUE), ][seq_len(top_n), ] # Attempt to setup a correct cex if (is.null(cex)) { cex <- 2.5 / log2(1.0 + top_n) } # Refresh plot op <- graphics::par(no.readonly = TRUE) on.exit(graphics::par(op)) graphics::par( mar = c( op$mar[1L] , left_margin , op$mar[3L] , op$mar[4L] ) ) tree_imp[rev(seq_len(.N)), graphics::barplot( height = get(measure) , names.arg = Feature , horiz = TRUE , border = NA , main = "Feature Importance" , xlab = measure , cex.names = cex , las = 1L )] return(invisible(tree_imp)) }