#' @name lgb.plot.interpretation #' @title Plot feature contribution as a bar graph #' @description Plot previously calculated feature contribution as a bar graph. #' @param tree_interpretation_dt a \code{data.table} returned by \code{\link{lgb.interprete}}. #' @param top_n maximal number of top features to include into the plot. #' @param cols the column numbers of layout, will be used only for multiclass classification feature contribution. #' @param left_margin (base R barplot) allows to adjust the left margin size to fit feature names. #' @param cex (base R barplot) passed as \code{cex.names} parameter to \code{barplot}. #' #' @details #' The graph represents each feature as a horizontal bar of length proportional to the defined #' contribution of a feature. Features are shown ranked in a decreasing contribution order. #' #' @return #' The \code{lgb.plot.interpretation} function creates a \code{barplot}. #' #' @examples #' \donttest{ #' \dontshow{setLGBMthreads(2L)} #' \dontshow{data.table::setDTthreads(1L)} #' Logit <- function(x) { #' log(x / (1.0 - x)) #' } #' data(agaricus.train, package = "lightgbm") #' labels <- agaricus.train$label #' dtrain <- lgb.Dataset( #' agaricus.train$data #' , label = labels #' ) #' set_field( #' dataset = dtrain #' , field_name = "init_score" #' , data = rep(Logit(mean(labels)), length(labels)) #' ) #' #' data(agaricus.test, package = "lightgbm") #' #' params <- list( #' objective = "binary" #' , learning_rate = 0.1 #' , max_depth = -1L #' , min_data_in_leaf = 1L #' , min_sum_hessian_in_leaf = 1.0 #' , num_threads = 2L #' ) #' model <- lgb.train( #' params = params #' , data = dtrain #' , nrounds = 5L #' ) #' #' tree_interpretation <- lgb.interprete( #' model = model #' , data = agaricus.test$data #' , idxset = 1L:5L #' ) #' lgb.plot.interpretation( #' tree_interpretation_dt = tree_interpretation[[1L]] #' , top_n = 3L #' ) #' } #' @importFrom data.table setnames #' @importFrom graphics barplot par #' @export lgb.plot.interpretation <- function(tree_interpretation_dt, top_n = 10L, cols = 1L, left_margin = 10L, cex = NULL) { num_class <- ncol(tree_interpretation_dt) - 1L # Refresh plot op <- graphics::par(no.readonly = TRUE) on.exit(graphics::par(op)) # Do some magic plotting bottom_margin <- 3.0 top_margin <- 2.0 right_margin <- op$mar[4L] graphics::par( mar = c( bottom_margin , left_margin , top_margin , right_margin ) ) if (num_class == 1L) { # Only one class, plot straight away .multiple_tree_plot_interpretation( tree_interpretation = tree_interpretation_dt , top_n = top_n , title = NULL , cex = cex ) } else { # More than one class, shape data first layout_mat <- matrix( seq.int(to = cols * ceiling(num_class / cols)) , ncol = cols , nrow = ceiling(num_class / cols) ) # Shape output graphics::par(mfcol = c(nrow(layout_mat), ncol(layout_mat))) # Loop throughout all classes for (i in seq_len(num_class)) { # Prepare interpretation, perform T, get the names, and plot straight away plot_dt <- tree_interpretation_dt[, c(1L, i + 1L), with = FALSE] data.table::setnames( x = plot_dt , old = names(plot_dt) , new = c("Feature", "Contribution") ) .multiple_tree_plot_interpretation( tree_interpretation = plot_dt , top_n = top_n , title = paste("Class", i - 1L) , cex = cex ) } } return(invisible(NULL)) } #' @importFrom graphics barplot .multiple_tree_plot_interpretation <- function(tree_interpretation, top_n, title, cex) { # Parse tree tree_interpretation <- tree_interpretation[order(abs(Contribution), decreasing = TRUE), ][seq_len(min(top_n, .N)), ] # Attempt to setup a correct cex if (is.null(cex)) { cex <- 2.5 / log2(1.0 + top_n) } # create plot tree_interpretation[abs(Contribution) > 0.0, bar_color := "firebrick"] tree_interpretation[Contribution == 0.0, bar_color := "steelblue"] tree_interpretation[rev(seq_len(.N)), graphics::barplot( height = Contribution , names.arg = Feature , horiz = TRUE , col = bar_color , border = NA , main = title , cex.names = cex , las = 1L )] return(invisible(NULL)) }