library(lightgbm) # Load in the agaricus dataset data(agaricus.train, package = "lightgbm") data(agaricus.test, package = "lightgbm") dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label) dtest <- lgb.Dataset.create.valid(dtrain, data = agaricus.test$data, label = agaricus.test$label) valids <- list(eval = dtest, train = dtrain) #--------------------Advanced features --------------------------- # advanced: start from an initial base prediction print("Start running example to start from an initial prediction") # Train lightgbm for 1 round param <- list( num_leaves = 4L , learning_rate = 1.0 , nthread = 2L , objective = "binary" ) bst <- lgb.train(param, dtrain, 1L, valids = valids) # Note: we need the margin value instead of transformed prediction in set_init_score ptrain <- predict(bst, agaricus.train$data, type = "raw") ptest <- predict(bst, agaricus.test$data, type = "raw") # set the init_score property of dtrain and dtest # base margin is the base prediction we will boost from set_field(dtrain, "init_score", ptrain) set_field(dtest, "init_score", ptest) print("This is result of boost from initial prediction") bst <- lgb.train( params = param , data = dtrain , nrounds = 5L , valids = valids )