library(lightgbm) # load in the agaricus dataset data(agaricus.train, package = "lightgbm") data(agaricus.test, package = "lightgbm") dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label) dtest <- lgb.Dataset.create.valid(dtrain, data = agaricus.test$data, label = agaricus.test$label) nrounds <- 2L param <- list( num_leaves = 4L , learning_rate = 1.0 , objective = "binary" ) print("Running cross validation") # Do cross validation, this will print result out as # [iteration] metric_name:mean_value+std_value # std_value is standard deviation of the metric lgb.cv( param , dtrain , nrounds , nfold = 5L , eval = "binary_error" ) print("Running cross validation, disable standard deviation display") # do cross validation, this will print result out as # [iteration] metric_name:mean_value+std_value # std_value is standard deviation of the metric lgb.cv( param , dtrain , nrounds , nfold = 5L , eval = "binary_error" , showsd = FALSE ) # You can also do cross validation with cutomized loss function print("Running cross validation, with cutomsized loss function") logregobj <- function(preds, dtrain) { labels <- get_field(dtrain, "label") preds <- 1.0 / (1.0 + exp(-preds)) grad <- preds - labels hess <- preds * (1.0 - preds) return(list(grad = grad, hess = hess)) } # User-defined evaluation function returns a pair (metric_name, result, higher_better) # NOTE: when you do customized loss function, the default prediction value is margin # This may make built-in evalution metric calculate wrong results # For example, we are doing logistic loss, the prediction is score before logistic transformation # Keep this in mind when you use the customization, and maybe you need write customized evaluation function evalerror <- function(preds, dtrain) { labels <- get_field(dtrain, "label") preds <- 1.0 / (1.0 + exp(-preds)) err <- as.numeric(sum(labels != (preds > 0.5))) / length(labels) return(list(name = "error", value = err, higher_better = FALSE)) } # train with customized objective lgb.cv( params = param , data = dtrain , nrounds = nrounds , obj = logregobj , eval = evalerror , nfold = 5L )