library(lightgbm) # Load in the agaricus dataset data(agaricus.train, package = "lightgbm") data(agaricus.test, package = "lightgbm") dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label) dtest <- lgb.Dataset.create.valid(dtrain, data = agaricus.test$data, label = agaricus.test$label) # Note: for customized objective function, we leave objective as default # Note: what we are getting is margin value in prediction # You must know what you are doing param <- list( num_leaves = 4L , learning_rate = 1.0 ) valids <- list(eval = dtest) num_round <- 20L # User define objective function, given prediction, return gradient and second order gradient # This is loglikelihood loss logregobj <- function(preds, dtrain) { labels <- get_field(dtrain, "label") preds <- 1.0 / (1.0 + exp(-preds)) grad <- preds - labels hess <- preds * (1.0 - preds) return(list(grad = grad, hess = hess)) } # User-defined evaluation function returns a pair (metric_name, result, higher_better) # NOTE: when you do customized loss function, the default prediction value is margin # This may make built-in evalution metric calculate wrong results # For example, we are doing logistic loss, the prediction is score before logistic transformation # The built-in evaluation error assumes input is after logistic transformation # Keep this in mind when you use the customization, and maybe you need write customized evaluation function evalerror <- function(preds, dtrain) { labels <- get_field(dtrain, "label") err <- as.numeric(sum(labels != (preds > 0.5))) / length(labels) return(list(name = "error", value = err, higher_better = FALSE)) } print("Start training with early Stopping setting") bst <- lgb.train( param , dtrain , num_round , valids , obj = logregobj , eval = evalerror , early_stopping_round = 3L )