% Generated by roxygen2: do not edit by hand % Please edit documentation in R/lgb.Booster.R \name{lgb.dump} \alias{lgb.dump} \title{Dump LightGBM model to json} \usage{ lgb.dump(booster, num_iteration = NULL, start_iteration = 1L) } \arguments{ \item{booster}{Object of class \code{lgb.Booster}} \item{num_iteration}{Number of iterations to be dumped. NULL or <= 0 means use best iteration} \item{start_iteration}{Index (1-based) of the first boosting round to dump. For example, passing \code{start_iteration=5, num_iteration=3} for a regression model means "dump the fifth, sixth, and seventh tree" \emph{New in version 4.4.0}} } \value{ json format of model } \description{ Dump LightGBM model to json } \examples{ \donttest{ library(lightgbm) \dontshow{setLGBMthreads(2L)} \dontshow{data.table::setDTthreads(1L)} data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) data(agaricus.test, package = "lightgbm") test <- agaricus.test dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label) params <- list( objective = "regression" , metric = "l2" , min_data = 1L , learning_rate = 1.0 , num_threads = 2L ) valids <- list(test = dtest) model <- lgb.train( params = params , data = dtrain , nrounds = 10L , valids = valids , early_stopping_rounds = 5L ) json_model <- lgb.dump(model) } }