% Generated by roxygen2: do not edit by hand % Please edit documentation in R/lgb.Booster.R \name{lgb.get.eval.result} \alias{lgb.get.eval.result} \title{Get record evaluation result from booster} \usage{ lgb.get.eval.result( booster, data_name, eval_name, iters = NULL, is_err = FALSE ) } \arguments{ \item{booster}{Object of class \code{lgb.Booster}} \item{data_name}{Name of the dataset to return evaluation results for.} \item{eval_name}{Name of the evaluation metric to return results for.} \item{iters}{An integer vector of iterations you want to get evaluation results for. If NULL (the default), evaluation results for all iterations will be returned.} \item{is_err}{TRUE will return evaluation error instead} } \value{ numeric vector of evaluation result } \description{ Given a \code{lgb.Booster}, return evaluation results for a particular metric on a particular dataset. } \examples{ \donttest{ \dontshow{setLGBMthreads(2L)} \dontshow{data.table::setDTthreads(1L)} # train a regression model data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) data(agaricus.test, package = "lightgbm") test <- agaricus.test dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label) params <- list( objective = "regression" , metric = "l2" , min_data = 1L , learning_rate = 1.0 , num_threads = 2L ) valids <- list(test = dtest) model <- lgb.train( params = params , data = dtrain , nrounds = 5L , valids = valids ) # Examine valid data_name values print(setdiff(names(model$record_evals), "start_iter")) # Examine valid eval_name values for dataset "test" print(names(model$record_evals[["test"]])) # Get L2 values for "test" dataset lgb.get.eval.result(model, "test", "l2") } }