% Generated by roxygen2: do not edit by hand % Please edit documentation in R/lgb.importance.R \name{lgb.importance} \alias{lgb.importance} \title{Compute feature importance in a model} \usage{ lgb.importance(model, percentage = TRUE) } \arguments{ \item{model}{object of class \code{lgb.Booster}.} \item{percentage}{whether to show importance in relative percentage.} } \value{ For a tree model, a \code{data.table} with the following columns: \itemize{ \item{\code{Feature}: Feature names in the model.} \item{\code{Gain}: The total gain of this feature's splits.} \item{\code{Cover}: The number of observation related to this feature.} \item{\code{Frequency}: The number of times a feature splited in trees.} } } \description{ Creates a \code{data.table} of feature importances in a model. } \examples{ \donttest{ \dontshow{setLGBMthreads(2L)} \dontshow{data.table::setDTthreads(1L)} data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) params <- list( objective = "binary" , learning_rate = 0.1 , max_depth = -1L , min_data_in_leaf = 1L , min_sum_hessian_in_leaf = 1.0 , num_threads = 2L ) model <- lgb.train( params = params , data = dtrain , nrounds = 5L ) tree_imp1 <- lgb.importance(model, percentage = TRUE) tree_imp2 <- lgb.importance(model, percentage = FALSE) } }