% Generated by roxygen2: do not edit by hand % Please edit documentation in R/lgb.interprete.R \name{lgb.interprete} \alias{lgb.interprete} \title{Compute feature contribution of prediction} \usage{ lgb.interprete(model, data, idxset, num_iteration = NULL) } \arguments{ \item{model}{object of class \code{lgb.Booster}.} \item{data}{a matrix object or a dgCMatrix object.} \item{idxset}{an integer vector of indices of rows needed.} \item{num_iteration}{number of iteration want to predict with, NULL or <= 0 means use best iteration.} } \value{ For regression, binary classification and lambdarank model, a \code{list} of \code{data.table} with the following columns: \itemize{ \item{\code{Feature}: Feature names in the model.} \item{\code{Contribution}: The total contribution of this feature's splits.} } For multiclass classification, a \code{list} of \code{data.table} with the Feature column and Contribution columns to each class. } \description{ Computes feature contribution components of rawscore prediction. } \examples{ \donttest{ \dontshow{setLGBMthreads(2L)} \dontshow{data.table::setDTthreads(1L)} Logit <- function(x) log(x / (1.0 - x)) data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) set_field( dataset = dtrain , field_name = "init_score" , data = rep(Logit(mean(train$label)), length(train$label)) ) data(agaricus.test, package = "lightgbm") test <- agaricus.test params <- list( objective = "binary" , learning_rate = 0.1 , max_depth = -1L , min_data_in_leaf = 1L , min_sum_hessian_in_leaf = 1.0 , num_threads = 2L ) model <- lgb.train( params = params , data = dtrain , nrounds = 3L ) tree_interpretation <- lgb.interprete(model, test$data, 1L:5L) } }