test_that("lgb.convert_with_rules() rejects inputs that are not a data.table or data.frame", { bad_inputs <- list( matrix(1.0:10.0, 2L, 5L) , TRUE , c("a", "b") , NA , 10L , lgb.Dataset( data = matrix(1.0:10.0, 2L, 5L) , params = list() ) ) for (bad_input in bad_inputs) { expect_error({ conversion_result <- lgb.convert_with_rules(bad_input) }, regexp = "lgb.convert_with_rules: you provided", fixed = TRUE) } }) test_that("lgb.convert_with_rules() should work correctly for a dataset with only character columns", { testDF <- data.frame( col1 = c("a", "b", "c") , col2 = c("green", "green", "red") , stringsAsFactors = FALSE ) testDT <- data.table::as.data.table(testDF) for (input_data in list(testDF, testDT)) { conversion_result <- lgb.convert_with_rules(input_data) # dataset should have been converted to integer converted_dataset <- conversion_result[["data"]] expect_identical(class(input_data), class(converted_dataset)) expect_identical(class(converted_dataset[["col1"]]), "integer") expect_identical(class(converted_dataset[["col2"]]), "integer") expect_identical(converted_dataset[["col1"]], c(1L, 2L, 3L)) expect_identical(converted_dataset[["col2"]], c(1L, 1L, 2L)) # rules should be returned and correct rules <- conversion_result$rules expect_true(methods::is(rules, "list")) expect_length(rules, ncol(input_data)) expect_identical(rules[["col1"]], c("a" = 1L, "b" = 2L, "c" = 3L)) expect_identical(rules[["col2"]], c("green" = 1L, "red" = 2L)) } }) test_that("lgb.convert_with_rules() should work correctly for a dataset with only factor columns", { testDF <- data.frame( col1 = as.factor(c("a", "b", "c")) , col2 = as.factor(c("green", "green", "red")) , stringsAsFactors = FALSE ) testDT <- data.table::as.data.table(testDF) for (input_data in list(testDF, testDT)) { conversion_result <- lgb.convert_with_rules(input_data) # dataset should have been converted to integer converted_dataset <- conversion_result[["data"]] expect_identical(class(input_data), class(converted_dataset)) expect_identical(class(converted_dataset[["col1"]]), "integer") expect_identical(class(converted_dataset[["col2"]]), "integer") expect_identical(converted_dataset[["col1"]], c(1L, 2L, 3L)) expect_identical(converted_dataset[["col2"]], c(1L, 1L, 2L)) # rules should be returned and correct rules <- conversion_result$rules expect_true(methods::is(rules, "list")) expect_length(rules, ncol(input_data)) expect_identical(rules[["col1"]], c("a" = 1L, "b" = 2L, "c" = 3L)) expect_identical(rules[["col2"]], c("green" = 1L, "red" = 2L)) } }) test_that("lgb.convert_with_rules() should not change a dataset with only integer columns", { testDF <- data.frame( col1 = 11L:15L , col2 = 16L:20L , stringsAsFactors = FALSE ) testDT <- data.table::as.data.table(testDF) for (input_data in list(testDF, testDT)) { conversion_result <- lgb.convert_with_rules(input_data) # dataset should have been converted to integer converted_dataset <- conversion_result[["data"]] expect_identical(converted_dataset, input_data) # rules should be returned and correct rules <- conversion_result$rules expect_identical(rules, list()) } }) test_that("lgb.convert_with_rules() should work correctly for a dataset with numeric, factor, and character columns", { testDF <- data.frame( character_col = c("a", "b", "c") , numeric_col = c(1.0, 9.0, 10.0) , factor_col = as.factor(c("n", "n", "y")) , stringsAsFactors = FALSE ) testDT <- data.table::as.data.table(testDF) for (input_data in list(testDF, testDT)) { conversion_result <- lgb.convert_with_rules(input_data) # dataset should have been converted to numeric converted_dataset <- conversion_result[["data"]] expect_identical(class(input_data), class(converted_dataset)) expect_identical(class(converted_dataset[["character_col"]]), "integer") expect_identical(class(converted_dataset[["factor_col"]]), "integer") expect_identical(converted_dataset[["character_col"]], c(1L, 2L, 3L)) expect_identical(converted_dataset[["factor_col"]], c(1L, 1L, 2L)) # rules should be returned and correct rules <- conversion_result$rules expect_true(methods::is(rules, "list")) expect_length(rules, 2L) expect_identical(rules[["character_col"]], c("a" = 1L, "b" = 2L, "c" = 3L)) expect_identical(rules[["factor_col"]], c("n" = 1L, "y" = 2L)) # today, lgb.convert_with_rules() does not convert numeric columns expect_identical(class(converted_dataset[["numeric_col"]]), "numeric") expect_identical(converted_dataset[["numeric_col"]], c(1.0, 9.0, 10.0)) } }) test_that("lgb.convert_with_rules() should convert missing values to the expected value", { testDF <- data.frame( character_col = c("a", NA_character_, "c") , na_col = rep(NA, 3L) , na_real_col = rep(NA_real_, 3L) , na_int_col = rep(NA_integer_, 3L) , na_character_col = rep(NA_character_, 3L) , numeric_col = c(1.0, 9.0, NA_real_) , factor_col = as.factor(c("n", "n", "y")) , integer_col = c(1L, 9L, NA_integer_) , stringsAsFactors = FALSE ) testDT <- data.table::as.data.table(testDF) for (input_data in list(testDF, testDT)) { conversion_result <- lgb.convert_with_rules(input_data) # dataset should have been converted to integer converted_dataset <- conversion_result[["data"]] expect_identical(class(input_data), class(converted_dataset)) expect_identical(class(converted_dataset[["character_col"]]), "integer") expect_identical(converted_dataset[["character_col"]], c(1L, 0L, 2L)) # does not try to fill 0s in for already-integer columns expect_identical(class(converted_dataset[["integer_col"]]), "integer") expect_identical(converted_dataset[["integer_col"]], c(1L, 9L, NA_integer_)) expect_identical(class(converted_dataset[["na_int_col"]]), "integer") expect_identical(converted_dataset[["na_int_col"]], rep(NA_integer_, nrow(converted_dataset))) expect_identical(class(converted_dataset[["factor_col"]]), "integer") expect_identical(converted_dataset[["factor_col"]], c(1L, 1L, 2L)) # NAs in character columns should be converted to 0 expect_identical(class(converted_dataset[["na_character_col"]]), "integer") expect_identical(converted_dataset[["na_character_col"]], rep(0L, nrow(converted_dataset))) # logical should be converted to integer expect_identical(class(converted_dataset[["na_col"]]), "integer") expect_identical(converted_dataset[["na_col"]], rep(-1L, 3L)) # lgb.convert_with_rules() should not convert numeric columns to integer expect_identical(class(converted_dataset[["na_real_col"]]), "numeric") expect_identical(converted_dataset[["na_real_col"]], rep(NA_real_, nrow(converted_dataset))) expect_identical(class(converted_dataset[["numeric_col"]]), "numeric") expect_identical(converted_dataset[["numeric_col"]], c(1.0, 9.0, NA_real_)) # rules should be returned and correct rules <- conversion_result$rules expect_true(methods::is(rules, "list")) expect_length(rules, 3L) expect_identical(rules[["character_col"]], c("a" = 1L, "c" = 2L)) expect_identical(rules[["factor_col"]], c("n" = 1L, "y" = 2L)) expect_identical(rules[["na_col"]], stats::setNames(c(0L, 1L), c(FALSE, TRUE))) } }) test_that("lgb.convert_with_rules() should work correctly if you provide your own well-formed rules", { testDF <- data.frame( character_col = c("a", NA_character_, "c", "a", "a", "c") , na_col = rep(NA, 6L) , na_real_col = rep(NA_real_, 6L) , na_int_col = rep(NA_integer_, 6L) , na_character_col = rep(NA_character_, 6L) , numeric_col = c(1.0, 9.0, NA_real_, 10.0, 11.0, 12.0) , factor_col = as.factor(c("n", "n", "y", "y", "n", "n")) , integer_col = c(1L, 9L, NA_integer_, 1L, 1L, 1L) , stringsAsFactors = FALSE ) testDT <- data.table::as.data.table(testDF) # value used by lgb.convert_with_rules() when it encounters a categorical value that # is not in the provided rules UNKNOWN_FACTOR_VALUE <- 0L UNKNOWN_LOGICAL_VALUE <- -1L for (input_data in list(testDF, testDT)) { custom_rules <- list( "character_col" = c( "a" = 5L , "c" = -10L ) , "factor_col" = c( "n" = 65L , "y" = 66L ) ) conversion_result <- lgb.convert_with_rules( data = input_data , rules = custom_rules ) # dataset should have been converted to integer converted_dataset <- conversion_result[["data"]] expect_identical(class(input_data), class(converted_dataset)) expect_identical(class(converted_dataset[["character_col"]]), "integer") expect_identical(converted_dataset[["character_col"]], c(5L, UNKNOWN_FACTOR_VALUE, -10L, 5L, 5L, -10L)) expect_identical(class(converted_dataset[["factor_col"]]), "integer") expect_identical(converted_dataset[["factor_col"]], c(65L, 65L, 66L, 66L, 65L, 65L)) # columns not specified in rules are not going to be converted, unless they are all NA for (col in c("na_real_col", "na_int_col", "numeric_col", "integer_col")) { expect_identical(converted_dataset[[col]], input_data[[col]]) } # non-numeric/integer columns that are all NA should have been filled in expect_identical(converted_dataset[["na_col"]], rep(UNKNOWN_LOGICAL_VALUE, 6L)) expect_identical(converted_dataset[["na_character_col"]], rep(UNKNOWN_FACTOR_VALUE, 6L)) # the rules you passed in should be returned unchanged rules <- conversion_result$rules expect_identical(rules, custom_rules) } }) test_that("lgb.convert_with_rules() should modify data.tables in-place", { testDT <- data.table::data.table( character_col = c("a", NA_character_, "c") , na_col = rep(NA, 3L) , na_real_col = rep(NA_real_, 3L) , na_int_col = rep(NA_integer_, 3L) , na_character_col = rep(NA_character_, 3L) , numeric_col = c(1.0, 9.0, NA_real_) , factor_col = as.factor(c("n", "n", "y")) , integer_col = c(1L, 9L, NA_integer_) ) conversion_result <- lgb.convert_with_rules(testDT) resultDT <- conversion_result[["data"]] expect_identical(resultDT, testDT) })